Dereven'kov, Ilia A; Hannibal, Luciana; Makarov, Sergei V; Makarova, Anna S; Molodtsov, Pavel A; Koifman, Oskar I
2018-05-02
Serum albumin binds to a variety of endogenous ligands and drugs. Human serum albumin (HSA) binds to heme via hydrophobic interactions and axial coordination of the iron center by protein residue Tyr161. Human serum albumin binds to another tetrapyrrole, cobalamin (Cbl), but the structural and functional properties of this complex are poorly understood. Herein, we investigate the reaction between aquacobalamin (H 2 OCbl) and bovine serum albumin (BSA, the bovine counterpart of HSA) using Ultraviolet-Visible and fluorescent spectroscopy, and electron paramagnetic resonance. The reaction between H 2 OCbl and BSA led to the formation of a BSA-Cbl(III) complex consistent with N-axial ligation (amino). Prior to the formation of this complex, the reactants participate in an additional binding event that has been examined by fluorescence spectroscopy. Binding of BSA to Cbl(III) reduced complex formation between the bound cobalamin and free cyanide to form cyanocobalamin (CNCbl), suggesting that the β-axial position of the cobalamin may be occupied by an amino acid residue from the protein. Reaction of BSA containing reduced disulfide bonds with H 2 OCbl produces cob(II)alamin and disulfide with intermediate formation of thiolate Cbl(III)-BSA complex and its decomposition. Finally, in vitro studies showed that cobalamin binds to BSA only in the presence of an excess of protein, which is in contrast to heme binding to BSA that involves a 1:1 stoichiometry. In vitro formation of BSA-Cbl(III) complex does not preclude subsequent heme binding, which occurs without displacement of H 2 OCbl bound to BSA. These data suggest that the two tetrapyrroles interact with BSA in different binding pockets.
Martínez-Júlvez, Marta; Medina, Milagros; Velázquez-Campoy, Adrián
2009-01-01
Abstract The thermodynamics of the formation of binary and ternary complexes between Anabaena PCC 7119 FNR and its substrates, NADP+ and Fd, or Fld, has been studied by ITC. Despite structural dissimilarities, the main difference between Fd and Fld binding to FNR relates to hydrophobicity, reflected in different binding heat capacity and number of water molecules released from the interface. At pH 8, the formation of the binary complexes is both enthalpically and entropically driven, accompanied by the protonation of at least one ionizable group. His299 FNR has been identified as the main responsible for the proton exchange observed. However, at pH 10, where no protonation occurs and intrinsic binding parameters can be obtained, the formation of the binary complexes is entropically driven, with negligible enthalpic contribution. Absence of the FMN cofactor in Fld does not alter significantly the strength of the interaction, but considerably modifies the enthalpic and entropic contributions, suggesting a different binding mode. Ternary complexes show negative cooperativity (6-fold and 11-fold reduction in binding affinity, respectively), and an increase in the enthalpic contribution (more favorable) and a decrease in the entropic contribution (less favorable), with regard to the binary complexes energetics. PMID:19527656
Analysis of Immune Complex Structure by Statistical Mechanics and Light Scattering Techniques.
NASA Astrophysics Data System (ADS)
Busch, Nathan Adams
1995-01-01
The size and structure of immune complexes determine their behavior in the immune system. The chemical physics of the complex formation is not well understood; this is due in part to inadequate characterization of the proteins involved, and in part by lack of sufficiently well developed theoretical techniques. Understanding the complex formation will permit rational design of strategies for inhibiting tissue deposition of the complexes. A statistical mechanical model of the proteins based upon the theory of associating fluids was developed. The multipole electrostatic potential for each protein used in this study was characterized for net protein charge, dipole moment magnitude, and dipole moment direction. The binding sites, between the model antigen and antibodies, were characterized for their net surface area, energy, and position relative to the dipole moment of the protein. The equilibrium binding graphs generated with the protein statistical mechanical model compares favorably with experimental data obtained from radioimmunoassay results. The isothermal compressibility predicted by the model agrees with results obtained from dynamic light scattering. The statistical mechanics model was used to investigate association between the model antigen and selected pairs of antibodies. It was found that, in accordance to expectations from thermodynamic arguments, the highest total binding energy yielded complex distributions which were skewed to higher complex size. From examination of the simulated formation of ring structures from linear chain complexes, and from the joint shape probability surfaces, it was found that ring configurations were formed by the "folding" of linear chains until the ends are within binding distance. By comparing the single antigen/two antibody system which differ only in their respective binding site locations, it was found that binding site location influences complex size and shape distributions only when ring formation occurs. The internal potential energy of a ring complex is considerably less than that of the non-associating system; therefore the ring complexes are quite stable and show no evidence of breaking, and collapsing into smaller complexes. The ring formation will occur only in systems where the total free energy of each complex may be minimized. Thus, ring formation will occur even though entropically unfavorable conformations result if the total free energy can be minimized by doing so.
Takahama, Umeo; Hirota, Sachiko
2011-06-08
During the digestion of starch in foods, starch is mixed with bile in the duodenum. Because fatty acids and some kinds of polyphenols could bind to starch, it was postulated that bile salts might also bind to starch. The purpose of this paper is to study the effects of bile and bile salts on starch/iodine complex formation and pancreatin-induced starch digestion. Bile suppressed starch/iodine complex formation and inhibited pancreatin-induced starch digestion slightly in control buckwheat starch, but did so significantly in buckwheat starch from which fatty acids and polyphenols had been extracted. Such significant suppression and inhibition by bile were also observed in a reagent soluble starch. The effects of cholate and taurocholate on the starch/iodine complex formation and the pancreatin-induced starch digestion were essentially the same as those of bile. Bile, cholate, and taurocholate suppressed amylose/iodine complex formation more significantly than amylopectin/iodine complex formation and inhibited pancreatin-induced amylose digestion more effectively than the digestion of amylopectin. It is concluded from the results that bile salts could bind to starch, especially amylose, the helical structures of which were not occupied by other molecules such as fatty acids and polyphenols, and that the binding resulted in the inhibition of starch digestion by pancreatin. The conclusion suggests that the function of bile salts can be discussed from the point of not only lipid digestion but also starch digestion.
NASA Astrophysics Data System (ADS)
Saurabh, Suman; Sahoo, Anil Kumar; Maiti, Prabal K.
2016-10-01
Experiments and computational studies have established that de-protonated dendrimers (SPL7013 and PAMAM) act as entry-inhibitors of HIV. SPL7013 based Vivagel is currently under clinical development. The dendrimer binds to gp120 in the gp120-CD4 complex, destabilizes it by breaking key contacts between gp120 and CD4 and prevents viral entry into target cells. In this work, we provide molecular details and energetics of the formation of the SPL7013-gp120-CD4 ternary complex and decipher modes of action of the dendrimer in preventing viral entry. It is also known from experiments that the dendrimer binds weakly to gp120 that is not bound to CD4. It binds even more weakly to the CD4-binding region of gp120 and thus cannot directly block gp120-CD4 complexation. In this work, we examine the feasibility of dendrimer binding to the gp120-binding region of CD4 and directly blocking gp120-CD4 complex formation. We find that the process of the dendrimer binding to CD4 can compete with gp120-CD4 binding due to comparable free energy change for the two processes, thus creating a possibility for the dendrimer to directly block gp120-CD4 complexation by binding to the gp120-binding region of CD4.
Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation.
Iwasa, Takuma; Han, Yong-Woon; Hiramatsu, Ryo; Yokota, Hiroaki; Nakao, Kimiko; Yokokawa, Ryuji; Ono, Teruo; Harada, Yoshie
2015-12-14
The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA-RuvB-Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA-Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA-Holliday junction DNA complex in the following order: no nucleotide, ADP, ATPγS, and mixture of ADP and ATPγS. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA-RuvB-Holliday junction DNA complex formation.
Young, Tessa R; Wedd, Anthony G; Xiao, Zhiguang
2018-01-24
The extracellular domain E2 of the amyloid precursor protein (APP) features a His-rich metal-binding site (denoted as the M1 site). In conjunction with surrounding basic residues, the site participates in interactions with components of the extracellular matrix including heparins, a class of negatively charged polysaccharide molecules of varying length. This work studied the chemistry of Cu(i) binding to APP E2 with the probe ligands Bcs, Bca, Fz and Fs. APP E2 forms a stable Cu(i)-mediated ternary complex with each of these anionic ligands. The complex with Bca was selected for isolation and characterization and was demonstrated, by native ESI-MS analysis, to have the stoichiometry E2 : Cu(i) : Bca = 1 : 1 : 1. Formation of these ternary complexes is specific for the APP E2 domain and requires Cu(i) coordination to the M1 site. Mutation of the M1 site was consistent with the His ligands being part of the E2 ligand set. It is likely that interactions between the negatively charged probe ligands and a positively charged patch on the surface of APP E2 are one aspect of the generation of the stable ternary complexes. Their formation prevented meaningful quantification of the affinity of Cu(i) binding to the M1 site with these probe ligands. However, the ternary complexes are disrupted by heparin, allowing reliable determination of a picomolar Cu(i) affinity for the E2/heparin complex with the Fz or Bca probe ligands. This is the first documented example of the formation of stable ternary complexes between a Cu(i) binding protein and a probe ligand. The ready disruption of the complexes by heparin identified clear 'tell-tale' signs for diagnosis of ternary complex formation and allowed a systematic review of conditions and criteria for reliable determination of affinities for metal binding via ligand competition. This study also provides new insights into a potential correlation of APP functions regulated by copper binding and heparin interaction.
Austin, S; Dixon, R
1992-01-01
The prokaryotic activator protein NTRC binds to enhancer-like elements and activates transcription in response to nitrogen limitation by catalysing open complex formation by sigma 54 RNA polymerase holoenzyme. Formation of open complexes requires the phosphorylated form of NTRC and the reaction is ATP dependent. We find that NTRC has an ATPase activity which is activated by phosphorylation and is strongly stimulated by the presence of DNA containing specific NTRC binding sites. Images PMID:1534752
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joulin, Y.; Delaforge, M.; Hoellinger, H.
1990-01-01
p-125I-amphetamine (I-Amp) is retained significantly in liver and lung during brain tomoscintigraphy. To attempt to explain this clinical observation, we have investigated the interaction of I-Amp with rat liver and lung microsomal proteins. Studies using spectral shift technique indicate that low concentration of I-Amp gives a type I complex and high concentration appears very stable type II complex with cytochrome P-450 Fe III. In the presence of NADPH, I-Amp gives rise to a 455 nm absorbing complex with similar properties to the Fe-RNO complexes. This complex formation was greatly enhanced with phenobarbital treated liver microsomes. The in vitro binding studymore » shows that I-Amp and/or its metabolites was covalently bound to macromolecules in the presence of the molecular oxygen and NADPH-generating system. Incubation in the presence of glutathione, cystein and radical scavengers decreases binding. Mixed function oxydase (MFO) inhibitors diminish the amount of covalent binding and alter the extent of metabolite formation. The total covalent binding level increased with liver microsomes from PB pretreated rats as it was observed with the 455nm complex formation. The radioactivity distribution on microsomal proteins was examinated with SDS polyacrylamide gel electrophoresis and autoradiography. This experiment proves that the radiolabelled compounds are bound on the cytochrome P-450. The radioactivity bound increased when the PB induced rat liver microsomes were used. All these results indicate that I-Amp was activated by an oxydative process dependent on the MFO system which suggests a N-oxydation of I-Amp and the formation of reactive entities which covalently bind to proteins.« less
Complexes of horseradish peroxidase with formate, acetate, and carbon monoxide.
Carlsson, Gunilla H; Nicholls, Peter; Svistunenko, Dimitri; Berglund, Gunnar I; Hajdu, Janos
2005-01-18
Carbon monoxide, formate, and acetate interact with horseradish peroxidase (HRP) by binding to subsites within the active site. These ligands also bind to catalases, but their interactions are different in the two types of enzymes. Formate (notionally the "hydrated" form of carbon monoxide) is oxidized to carbon dioxide by compound I in catalase, while no such reaction is reported to occur in HRP, and the CO complex of ferrocatalase can only be obtained indirectly. Here we describe high-resolution crystal structures for HRP in its complexes with carbon monoxide and with formate, and compare these with the previously determined HRP-acetate structure [Berglund, G. I., et al. (2002) Nature 417, 463-468]. A multicrystal X-ray data collection strategy preserved the correct oxidation state of the iron during the experiments. Absorption spectra of the crystals and electron paramagnetic resonance data for the acetate and formate complexes in solution correlate electronic states with the structural results. Formate in ferric HRP and CO in ferrous HRP bind directly to the heme iron with iron-ligand distances of 2.3 and 1.8 A, respectively. CO does not bind to the ferric iron in the crystal. Acetate bound to ferric HRP stacks parallel with the heme plane with its carboxylate group 3.6 A from the heme iron, and without an intervening solvent molecule between the iron and acetate. The positions of the oxygen atoms in the bound ligands outline a potential access route for hydrogen peroxide to the iron. We propose that interactions in this channel ensure deprotonation of the proximal oxygen before binding to the heme iron.
Sun, Na; Cui, Pengbo; Li, Dongmei; Jin, Ziqi; Zhang, Shuyu; Lin, Songyi
2017-09-20
A novel peptide from egg white, Asp-His-Thr-Lys-Glu (DHTKE), contains specific amino acids associated with iron binding. The present study aims to better understand the molecular basis of interactions between the DHTKE peptide and iron ions. The ultraviolet-visible and fluorescence spectra indicate an interaction between the DHTKE peptide and iron ions, which leads to the formation of a DHTKE-iron complex. Notably, Asp, Glu, His, and Lys in the DHTKE peptide play crucial roles in the formation of the DHTKE-iron complex, and the iron-binding site of the DHTKE peptide corresponds primarily to the amide and carboxyl groups. The DHTKE peptide can bind iron ions in a 1 : 2 ratio with a binding constant of 1.312 × 10 5 M -1 . Moreover, the DHTKE-iron complex belongs to thermodynamically stable nanoparticles that are present in the crystalline structure, which might be attributed to peptide folding induced by iron binding. Meanwhile, the DHTKE-iron complex exhibits a relatively high iron-releasing percentage and exerts excellent solubility in the human gastrointestinal tract in vitro. This suggests a potential application of peptides containing Asp, Glu, His, or Lys residues as potential iron supplements.
Lacy, Eilyn R; Nguyen, Binh; Le, Minh; Cox, Kari K; OHare, Caroline; Hartley, John A; Lee, Moses; Wilson, W David
2004-01-01
To complement available structure and binding results and to develop a detailed understanding of the basis for selective molecular recognition of T.G mismatches in DNA by imidazole containing polyamides, a full thermodynamic profile for formation of the T.G-polyamide complex has been determined. The amide-linked heterocycles f-ImImIm and f-PyImIm (where f is formamido group, Im is imidazole and Py is pyrrole) were studied by using biosensor-surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) with a T.G mismatch containing DNA hairpin duplex and a similar DNA with only Watson-Crick base pairs. Large negative binding enthalpies for all of the polyamide-DNA complexes indicate that the interactions are enthalpically driven. SPR results show slower complex formation and stronger binding of f-ImImIm to the T.G than to the match site. The thermodynamic analysis indicates that the enhanced binding to the T.G site is the result of better entropic contributions. Negative heat capacity changes for the complex are correlated with calculated solvent accessible surface area changes and indicate hydrophobic contributions to complex formation. DNase I footprinting analysis in a long DNA sequence provided supporting evidence that f-ImImIm binds selectively to T.G mismatch sites.
Lacy, Eilyn R.; Nguyen, Binh; Le, Minh; Cox, Kari K.; O'Hare, Caroline; Hartley, John A.; Lee, Moses; Wilson, W. David
2004-01-01
To complement available structure and binding results and to develop a detailed understanding of the basis for selective molecular recognition of T·G mismatches in DNA by imidazole containing polyamides, a full thermodynamic profile for formation of the T·G–polyamide complex has been determined. The amide-linked heterocycles f-ImImIm and f-PyImIm (where f is formamido group, Im is imidazole and Py is pyrrole) were studied by using biosensor-surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) with a T·G mismatch containing DNA hairpin duplex and a similar DNA with only Watson–Crick base pairs. Large negative binding enthalpies for all of the polyamide–DNA complexes indicate that the interactions are enthalpically driven. SPR results show slower complex formation and stronger binding of f-ImImIm to the T·G than to the match site. The thermodynamic analysis indicates that the enhanced binding to the T·G site is the result of better entropic contributions. Negative heat capacity changes for the complex are correlated with calculated solvent accessible surface area changes and indicate hydrophobic contributions to complex formation. DNase I footprinting analysis in a long DNA sequence provided supporting evidence that f-ImImIm binds selectively to T·G mismatch sites. PMID:15064359
NASA Astrophysics Data System (ADS)
Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander
2016-04-01
Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.
LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa, Brian A.; Rothballer, Andrea; Kutay, Ulrike
Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansivemore » grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.« less
Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake.
Yildiz, Ozkan; Kalthoff, Christoph; Raunser, Stefan; Kühlbrandt, Werner
2007-01-24
A binary complex of the ammonia channel Amt1 from Methanococcus jannaschii and its cognate P(II) signalling protein GlnK1 has been produced and characterized. Complex formation is prevented specifically by the effector molecules Mg-ATP and 2-ketoglutarate. Single-particle electron microscopy of the complex shows that GlnK1 binds on the cytoplasmic side of Amt1. Three high-resolution X-ray structures of GlnK1 indicate that the functionally important T-loop has an extended, flexible conformation in the absence of Mg-ATP, but assumes a compact, tightly folded conformation upon Mg-ATP binding, which in turn creates a 2-ketoglutarate-binding site. We propose a regulatory mechanism by which nitrogen uptake is controlled by the binding of both effector molecules to GlnK1. At normal effector levels, a 2-ketoglutarate molecule binding at the apex of the compact T-loop would prevent complex formation, ensuring uninhibited ammonia uptake. At low levels of Mg-ATP, the extended loops would seal the ammonia channels in the complex. Binding of both effector molecules to P(II) signalling proteins may thus represent an effective feedback mechanism for regulating ammonium uptake through the membrane.
Ivanisenko, Nikita V; Tregubchak, Tatiana V; Saik, Olga V; Ivanisenko, Vladimir A; Shchelkunov, Sergei N
2014-01-01
Inhibition of the activity of the tumor necrosis factor (TNF) has become the main strategy for treating inflammatory diseases. The orthopoxvirus TNF-binding proteins can bind and efficiently neutralize TNF. To analyze the mechanisms of the interaction between human (hTNF) or mouse (mTNF) TNF and the cowpox virus N-terminal binding domain (TNFBD-CPXV), also the variola virus N-terminal binding domain (TNFBD-VARV) and to define the amino acids most importantly involved in the formation of complexes, computer models, derived from the X-ray structure of a homologous hTNF/TNFRII complex, were used together with experiments. The hTNF/TNFBD-CPXV, hTNF/TNFBD-VARV, mTNF/TNFBD-CPXV, and mTNF/TNFBD-VARV complexes were used in the molecular dynamics (MD) simulations and MM/GBSA free energy calculations. The complexes were ordered as hTNF/TNFBD-CPXV, hTNF/TNFBD-VARV, mTNF/TNFBD-CPXV and mTNF/TNFBD-VARV according to increase in the binding affinity. The calculations were in agreement with surface plasmon resonance (SPR) measurements of the binding constants. Key residues involved in complex formation were identified.
NASA Technical Reports Server (NTRS)
Gupta, A.; Loew, G. H.; Lawless, J.
1983-01-01
A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.
Vital Roles of the Second DNA-binding Site of Rad52 Protein in Yeast Homologous Recombination*
Arai, Naoto; Kagawa, Wataru; Saito, Kengo; Shingu, Yoshinori; Mikawa, Tsutomu; Kurumizaka, Hitoshi; Shibata, Takehiko
2011-01-01
RecA/Rad51 proteins are essential in homologous DNA recombination and catalyze the ATP-dependent formation of D-loops from a single-stranded DNA and an internal homologous sequence in a double-stranded DNA. RecA and Rad51 require a “recombination mediator” to overcome the interference imposed by the prior binding of single-stranded binding protein/replication protein A to the single-stranded DNA. Rad52 is the prototype of recombination mediators, and the human Rad52 protein has two distinct DNA-binding sites: the first site binds to single-stranded DNA, and the second site binds to either double- or single-stranded DNA. We previously showed that yeast Rad52 extensively stimulates Rad51-catalyzed D-loop formation even in the absence of replication protein A, by forming a 2:1 stoichiometric complex with Rad51. However, the precise roles of Rad52 and Rad51 within the complex are unknown. In the present study, we constructed yeast Rad52 mutants in which the amino acid residues corresponding to the second DNA-binding site of the human Rad52 protein were replaced with either alanine or aspartic acid. We found that the second DNA-binding site is important for the yeast Rad52 function in vivo. Rad51-Rad52 complexes consisting of these Rad52 mutants were defective in promoting the formation of D-loops, and the ability of the complex to associate with double-stranded DNA was specifically impaired. Our studies suggest that Rad52 within the complex associates with double-stranded DNA to assist Rad51-mediated homologous pairing. PMID:21454474
2017-01-01
Abstract Target search as performed by DNA-binding proteins is a complex process, in which multiple factors contribute to both thermodynamic discrimination of the target sequence from overwhelmingly abundant off-target sites and kinetic acceleration of dynamic sequence interrogation. TRF1, the protein that binds to telomeric tandem repeats, faces an intriguing variant of the search problem where target sites are clustered within short fragments of chromosomal DNA. In this study, we use extensive (>0.5 ms in total) MD simulations to study the dynamical aspects of sequence-specific binding of TRF1 at both telomeric and non-cognate DNA. For the first time, we describe the spontaneous formation of a sequence-specific native protein–DNA complex in atomistic detail, and study the mechanism by which proteins avoid off-target binding while retaining high affinity for target sites. Our calculated free energy landscapes reproduce the thermodynamics of sequence-specific binding, while statistical approaches allow for a comprehensive description of intermediate stages of complex formation. PMID:28633355
Involvement of DPP-IV catalytic residues in enzyme–saxagliptin complex formation
Metzler, William J.; Yanchunas, Joseph; Weigelt, Carolyn; Kish, Kevin; Klei, Herbert E.; Xie, Dianlin; Zhang, Yaqun; Corbett, Martin; Tamura, James K.; He, Bin; Hamann, Lawrence G.; Kirby, Mark S.; Marcinkeviciene, Jovita
2008-01-01
The inhibition of DPP-IV by saxagliptin has been proposed to occur through formation of a covalent but reversible complex. To evaluate further the mechanism of inhibition, we determined the X-ray crystal structure of the DPP-IV:saxagliptin complex. This structure reveals covalent attachment between S630 and the inhibitor nitrile carbon (C–O distance <1.3 Å). To investigate whether this serine addition is assisted by the catalytic His-Asp dyad, we generated two mutants of DPP-IV, S630A and H740Q, and assayed them for ability to bind inhibitor. DPP-IVH740Q bound saxagliptin with an ∼1000-fold reduction in affinity relative to DPP-IVWT, while DPP-IVS630A showed no evidence for binding inhibitor. An analog of saxagliptin lacking the nitrile group showed unchanged binding properties to the both mutant proteins, highlighting the essential role S630 and H740 play in covalent bond formation between S630 and saxagliptin. Further supporting mechanism-based inhibition by saxagliptin, NMR spectra of enzyme–saxagliptin complexes revealed the presence of three downfield resonances with low fractionation factors characteristic of short and strong hydrogen bonds (SSHB). Comparison of the NMR spectra of various wild-type and mutant DPP-IV:ligand complexes enabled assignment of a resonance at ∼14 ppm to H740. Two additional DPP-IV mutants, Y547F and Y547Q, generated to probe potential stabilization of the enzyme–inhibitor complex by this residue, did not show any differences in inhibitor binding either by ITC or NMR. Together with the previously published enzymatic data, the structural and binding data presented here strongly support a histidine-assisted covalent bond formation between S630 hydroxyl oxygen and the nitrile group of saxagliptin. PMID:18227430
Involvement of DPP-IV Catalytic Residues in Enzyme-Saxagliptin Complex Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzler,W.; Yanchunas, J.; Weigelt, C.
The inhibition of DPP-IV by saxagliptin has been proposed to occur through formation of a covalent but reversible complex. To evaluate further the mechanism of inhibition, we determined the X-ray crystal structure of the DPP-IV:saxagliptin complex. This structure reveals covalent attachment between S630 and the inhibitor nitrile carbon (C-O distance <1.3 Angstroms). To investigate whether this serine addition is assisted by the catalytic His-Asp dyad, we generated two mutants of DPP-IV, S630A and H740Q, and assayed them for ability to bind inhibitor. DPP-IVH740Q bound saxagliptin with an {approx}1000-fold reduction in affinity relative to DPP-IVWT, while DPP-IVS630A showed no evidence formore » binding inhibitor. An analog of saxagliptin lacking the nitrile group showed unchanged binding properties to the both mutant proteins, highlighting the essential role S630 and H740 play in covalent bond formation between S630 and saxagliptin. Further supporting mechanism-based inhibition by saxagliptin, NMR spectra of enzyme-saxagliptin complexes revealed the presence of three downfield resonances with low fractionation factors characteristic of short and strong hydrogen bonds (SSHB). Comparison of the NMR spectra of various wild-type and mutant DPP-IV:ligand complexes enabled assignment of a resonance at {approx}14 ppm to H740. Two additional DPP-IV mutants, Y547F and Y547Q, generated to probe potential stabilization of the enzyme-inhibitor complex by this residue, did not show any differences in inhibitor binding either by ITC or NMR. Together with the previously published enzymatic data, the structural and binding data presented here strongly support a histidine-assisted covalent bond formation between S630 hydroxyl oxygen and the nitrile group of saxagliptin.« less
Trifluoperazine Regulation of Calmodulin Binding to Fas: A Computational Study
Pan, Di; Yan, Qi; Chen, Yabing; McDonald, Jay M; Song, Yuhua
2011-01-01
Death-inducing signaling complex (DISC) formation is a critical step in Fas-mediated signaling for apoptosis. Previous experiments have demonstrated that the calmodulin (CaM) antagonist, trifluoperazine (TFP) regulates CaM-Fas binding and affects Fas-mediated DISC formation. In this study, we investigated the anti-cooperative characteristics of TFP binding to CaM and the effect of TFP on the CaM-Fas interaction from both structural and thermodynamic perspectives using combined molecular dynamics simulations and binding free energy analyses. We studied the interactions of different numbers of TFP molecules with CaM and explored the effects of the resulting conformational changes in CaM on CaM-Fas binding. Results from these analyses showed that the number of TFP molecules bound to CaM directly influenced α-helix formation and hydrogen bond occupancy within the α-helices of CaM, contributing to the conformational and motion changes in CaM. These changes affected CaM binding to Fas, resulting in secondary structural changes in Fas and conformational and motion changes of Fas in CaM-Fas complexes, potentially perturbing the recruitment of Fas-associated death domain (FADD) for DISC formation. The computational results from this study reveal the structural and molecular mechanisms that underlie the role of the CaM antagonist, TFP, in regulation of CaM-Fas binding and Fas-mediated DISC formation in a concentration-dependent manner. PMID:21656570
Concerted formation of macromolecular Suppressor–mutator transposition complexes
Raina, Ramesh; Schläppi, Michael; Karunanandaa, Balasulojini; Elhofy, Adam; Fedoroff, Nina
1998-01-01
Transposition of the maize Suppressor–mutator (Spm) transposon requires two element-encoded proteins, TnpA and TnpD. Although there are multiple TnpA binding sites near each element end, binding of TnpA to DNA is not cooperative, and the binding affinity is not markedly affected by the number of binding sites per DNA fragment. However, intermolecular complexes form cooperatively between DNA fragments with three or more TnpA binding sites. TnpD, itself not a sequence-specific DNA-binding protein, binds to TnpA and stabilizes the TnpA–DNA complex. The high redundancy of TnpA binding sites at both element ends and the protein–protein interactions between DNA-bound TnpA complexes and between these and TnpD imply a concerted transition of the element from a linear to a protein crosslinked transposition complex within a very narrow protein concentration range. PMID:9671711
NASA Astrophysics Data System (ADS)
Kabir, Md. Zahirul; Tee, Wei-Ven; Mohamad, Saharuddin B.; Alias, Zazali; Tayyab, Saad
2017-06-01
Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04 × 104 M-1), obtained at 298 K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.
NASA Astrophysics Data System (ADS)
Lindström, A.; Klintenberg, M.; Sanyal, B.; Mirbt, S.
2015-08-01
The coexistence in Te-rich CdTe of substitutional Cl-dopants, ClTe, which act as donors, and Cd vacancies, VC d - 1 , which act as electron traps, was studied from first principles utilising the HSE06 hybrid functional. We find ClTe to preferably bind to VC d - 1 and to form an acceptor complex, (ClTe-VCd)-1. The complex has a (0,-1) charge transfer level close to the valence band and shows no trap state (deep level) in the band gap. During the complex formation, the defect state of VCd-1 is annihilated and leaves the Cl-doped CdTe bandgap without any trap states (self-purification). We calculate Cl-doped CdTe to be semi-insulating with a Fermi energy close to midgap. We calculate the formation energy of the complex to be sufficiently low to allow for spontanous defect formation upon Cl-doping (self-compensation). In addition, we quantitatively analyse the geometries, DOS, binding energies and formation energies of the (ClTe-VCd) complexes.
Roberts, Kenneth M.; Pavon, Jorge Alex; Fitzpatrick, Paul F.
2013-01-01
Phenylalanine hydroxylase (PheH) catalyzes the key step in the catabolism of dietary phenylalanine, its hydroxylation to tyrosine using tetrahydrobiopterin (BH4) and O2. A complete kinetic mechanism for PheH was determined by global analysis of single turnover data in the reaction of PheHΔ117, a truncated form of the enzyme lacking the N-terminal regulatory domain. Formation of the productive PheHΔ117-BH4-phenylalanine complex begins with the rapid binding of BH4 (Kd = 65 µM). Subsequent addition of phenylalanine to the binary complex to form the productive ternary complex (Kd = 130 µM) is approximately ten-fold slower. Both substrates can also bind to the free enzyme to form inhibitory binary complexes. O2 rapidly binds to the productive ternary complex; this is followed by formation of an unidentified intermediate, detectable as a decrease in absorbance at 340 nm, with a rate constant of 140 s−1. Formation of the 4a-hydroxypterin and Fe(IV)O intermediates is ten-fold slower and is followed by the rapid hydroxylation of the amino acid. Product release is the rate-determining step and largely determines kcat. Similar reactions using 6-methyltetrahydropterin indicate a preference for the physiological pterin during hydroxylation. PMID:23327364
Thermodynamic aspects of dicarboxylate recognition by simple artificial receptors.
Linton, B R; Goodman, M S; Fan, E; van Arman, S A; Hamilton, A D
2001-11-02
Recognition of dicarboxylates by bis-functional hydrogen-bonding receptors displays divergent thermodynamics in different solvent systems. NMR titration and isothermal titration calorimetry indicated that neutral bis-urea and bis-thiourea receptors form exothermic complexes with dicarboxylates in DMSO, with a near zero entropic contribution to binding. The increased binding strength of bis-guanidinium receptors precluded quantitative measurement of binding constants in DMSO, but titration calorimetry offered a qualitative picture of the association. Formation of these 1:1 complexes was also exothermic, but additional endothermic events occurred at both lower and higher host-guest ratios. These events indicated multiple binding equilibria but did not always occur at a discrete 2:1 or 1:2 host-guest molar ratio, suggesting higher aggregates. With increasing amounts of methanol as solvent, bis-guanidinium receptors form more endothermic complexes with dicarboxylates, with a favorable entropy of association. This switch from association driven by enthalpy to one driven by entropy may reflect a change from complexation involving the formation of hydrogen bonds to that promoted by solvent liberation from binding sites.
NASA Astrophysics Data System (ADS)
Roy, Swarup; Saxena, Shailendra K.; Mishra, Suryakant; Yogi, Priyanka; Sagdeo, P. R.; Kumar, Rajesh
2017-07-01
The binding ability of viologen herbicide with bovine serum albumin (BSA) has been investigated to understand viologen associated hazards by investigating ethyl viologen's (EV) binding using various spectroscopies and in-silico molecular docking approaches. Apparent association constant (1.3 × 104 L/mol), calculated using UV-Vis spectra indicating a moderate complex formation between BSA and EV. A static mode of fluorescence quenching has been observed as evident from inverse temperature dependence of Stern-Volmer quenching constant which also confirms an EV-BSA complex formation. Emission and time resolved fluorescence studies reveal that the emission quenching of BSA with EV is initiated by static quenching mechanism. A moderately strong binding affinity between EV and BSA has been observed (binding constant value of 7.58 × 104 L/Mol) using fluorescence quenching titration, obtained at 298 K. Quantitative measurements of thermodynamic parameters like enthalpy and entropy changes clearly indicates hydrophobic force responsible for EV-BSA complex formation. The binding distance between EV and BSA was found to be 4.48 nm are involved in non-radiative energy transfer process. Furthermore, from the circular dichroism spectra it was observed that addition of EV is also found to change the secondary structure of BSA which leads to decrease in α-helix. Above mentioned results are found to be in consonance with molecular docking simulations and supports the EV-BSA binding.
Antonini, E; Ascenzi, P; Bolognesi, M; Menegatti, E; Guarneri, M
1983-04-25
The formation of the bovine beta-trypsin-bovine basic pancreatic trypsin inhibitor (Kunitz) (BPTI) complex was monitored, making use of three different signals: proflavine displacement, optical density changes in the ultraviolet region, and the loss of the catalytic activity. The rates of the reactions indicated by the three different signals were similar at neutral pH, but diverged at low pH. At pH 3.50, proflavine displacement precedes the optical density changes in the ultraviolet and the loss of enzyme activity by several orders of magnitude in time (Antonini, E., Ascenzi, P., Menegatti, E., and Guarneri, M. (1983) Biopolymers 22, 363-375). These data indicated that the bovine beta-trypsin-BPTI complex formation is a multistage process and led to the prediction that, at pH 3.50, BPTI addition to the bovine beta-trypsin-proflavine complex would remove proflavine inhibition and the enzyme would recover transiently its catalytic activity before being irreversibly inhibited by completion of BPTI binding. The kinetic evidences, by completion of BPTI binding. The kinetic evidences, here shown, verified this prediction, indicating that during the bovine beta-trypsin-BPTI complex formation one transient intermediate occurs, which is not able to bind proflavine but may bind and hydrolyze the substrate. Thus, the observed peculiar catalytic behavior is in line with the proposed reaction mechanism for the bovine beta-trypsin-BPTI complex formation, which postulates a sequence of distinct polar and apolar interactions at the contact area.
Rangl, Martina; Leitner, Michael; Riihimäki, Tiina; Lehtonen, Soili; Hytönen, Vesa P; Gruber, Hermann J; Kulomaa, Markku; Hinterdorfer, Peter; Ebner, Andreas
2014-02-01
Molecular recognition force spectroscopy, a biosensing atomic force microscopy technique allows to characterise the dissociation of ligand-receptor complexes at the molecular level. Here, we used molecular recognition force spectroscopy to study the binding capability of recently developed testosterone binders. The two avidin-based proteins called sbAvd-1 and sbAvd-2 are expected to bind both testosterone and biotin but differ in their binding behaviour towards these ligands. To explore the ligand binding and dissociation energy landscape of these proteins, we tethered biotin or testosterone to the atomic force microscopy probe while the testosterone-binding protein was immobilized on the surface. Repeated formation and rupture of the ligand-receptor complex at different pulling velocities allowed determination of the loading rate dependence of the complex-rupturing force. In this way, we obtained the molecular dissociation rate (k(off)) and energy landscape distances (x(β)) of the four possible complexes: sbAvd-1-biotin, sbAvd-1-testosterone, sbAvd-2-biotin and sbAvd-2-testosterone. It was found that the kinetic off-rates for both proteins and both ligands are similar. In contrast, the x(β) values, as well as the probability of complex formations, varied considerably. In addition, competitive binding experiments with biotin and testosterone in solution differ significantly for the two testosterone-binding proteins, implying a decreased cross-reactivity of sbAvd-2. Unravelling the binding behaviour of the investigated testosterone-binding proteins is expected to improve their usability for possible sensing applications. Copyright © 2014 John Wiley & Sons, Ltd.
Phenanthrene binding by humic acid-protein complexes as studied by passive dosing technique.
Zhao, Jian; Wang, Zhenyu; Ghosh, Saikat; Xing, Baoshan
2014-01-01
This work investigated the binding behavior of phenanthrene by humic acids (HA-2 and HA-5), proteins (bovine serum albumin (BSA)), lysozyme and pepsin), and their complexes using a passive dosing technique. All sorption isotherms were fitted well with Freundlich model and the binding capability followed an order of HA-5 > HA-2 > BSA > pepsin > lysozyme. In NaCl solution, phenanthrene binding to HA-BSA complexes was much higher than the sum of binding to individual HA and BSA, while there was no enhancement for HA-pepsin. Positively charged lysozyme slightly lowered phenanthrene binding on both HAs due to strong aggregation of HA-lysozyme complexes, leading to reduction in the number of binding sites. The binding enhancement by HA-BSA was observed under all tested ion species and ionic strengths. This enhancement can be explained by unfolding of protein, reduction of aggregate size and formation of HA-BSA complexes with favorable conformations for binding phenanthrene. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Chao; Guo, Xiaofei; Cai, Wenqian; Ma, Yue; Zhao, Xiaoyan
2015-04-01
The binding characteristics and protective capacity of cyanidin (Cy) and cyanidin-3-glucoside (C3G) to calf thymus DNA were explored for the first time. The Cy and C3G gave a bathochromic shift to the ultraviolet-visible spectra of the DNA, indicating the formation of the DNA-Cy and DNA-C3G complexes. The complexes were formed by an intercalative binding mode based on the results of the fluorescence spectra and competitive binding analysis. Meanwhile, the Cy and C3G protected the DNA from the damage induced by the hydroxyl radical. The binding capacity and protective capacity of the C3G were stronger than that of the Cy. Furthermore, the formation of the DNA-anthocyanin complexes was spontaneous when the hydrogen bond and hydrophobic force played a key role. Hence, the Cy and C3G could protect the DNA automatically from the damage induced by the hydroxyl radical. © 2015 Institute of Food Technologists®
Wessel, Sarah R; Marceau, Aimee H; Massoni, Shawn C; Zhou, Ruobo; Ha, Taekjip; Sandler, Steven J; Keck, James L
2013-06-14
Frequent collisions between cellular DNA replication complexes (replisomes) and obstacles such as damaged DNA or frozen protein complexes make DNA replication fork progression surprisingly sporadic. These collisions can lead to the ejection of replisomes prior to completion of replication, which, if left unrepaired, results in bacterial cell death. As such, bacteria have evolved DNA replication restart mechanisms that function to reload replisomes onto abandoned DNA replication forks. Here, we define a direct interaction between PriC, a key Escherichia coli DNA replication restart protein, and the single-stranded DNA-binding protein (SSB), a protein that is ubiquitously associated with DNA replication forks. PriC/SSB complex formation requires evolutionarily conserved residues from both proteins, including a pair of Arg residues from PriC and the C terminus of SSB. In vitro, disruption of the PriC/SSB interface by sequence changes in either protein blocks the first step of DNA replication restart, reloading of the replicative DnaB helicase onto an abandoned replication fork. Consistent with the critical role of PriC/SSB complex formation in DNA replication restart, PriC variants that cannot bind SSB are non-functional in vivo. Single-molecule experiments demonstrate that PriC binding to SSB alters SSB/DNA complexes, exposing single-stranded DNA and creating a platform for other proteins to bind. These data lead to a model in which PriC interaction with SSB remodels SSB/DNA structures at abandoned DNA replication forks to create a DNA structure that is competent for DnaB loading.
2013-01-01
Background Herpes viruses are important human pathogens that can cause mild to severe lifelong infections with high morbidity. They remain latent in the host cells and can cause recurrent infections that might prove fatal. These viruses are known to infect the host cells by causing the fusion of viral and host cell membrane proteins. Fusion is achieved with the help of conserved fusion machinery components, glycoproteins gB, heterodimer gH-gL complex along with other non-conserved components. Whereas, another important glycoprotein gD without which viral entry to the cell is not possible, acts as a co-activator for the gB-gH-gL complex formation. Thus, this complex formation interface is the most promising drug target for the development of novel anti-herpes drug candidates. In the present study, we propose a model for binding of gH-gL to gB glycoprotein leading from pre to post conformational changes during gB-gH-gL complex formation and reported the key residues involved in this binding activity along with possible binding site locations. To validate the drug targetability of our proposed binding site, we have repositioned some of the most promising in vitro, in vivo validated anti-herpes molecules onto the proposed binding site of gH-gL complex in a computational approach. Methods Hex 6.3 standalone software was used for protein-protein docking studies. Arguslab 4.0.1 and Accelrys® Discovery Studio 3.1 Visualizer softwares were used for semi-flexible docking studies and visualizing the interactions respectively. Protein receptors and ethno compounds were retrieved from Protein Data Bank (PDB) and Pubchem databases respectively. Lipinski’s Filter, Osiris Property Explorer and Lazar online servers were used to check the pharmaceutical fidelity of the drug candidates. Results Through protein-protein docking studies, it was identified that the amino acid residues VAL342, GLU347, SER349, TYR355, SER388, ASN395, HIS398 and ALA387 of gH-gL complex play an active role in its binding activity with gB. Semi flexible docking analysis of the most promising in vitro, in vivo validated anti-herpes molecules targeting the above mentioned key residues of gH-gL complex showed that all the analyzed ethno medicinal compounds have successfully docked into the proposed binding site of gH-gL glycoprotein with binding energy range between -10.4 to -6.4 K.cal./mol. Conclusions Successful repositioning of the analyzed compounds onto the proposed binding site confirms the drug targetability of gH-gL complex. Based on the free binding energy and pharmacological properties, we propose (3-chloro phenyl) methyl-3,4,5 trihydroxybenzoate as worth a small ethno medicinal lead molecule for further development as potent anti-herpes drug candidate targeting gB-gH-gL complex formation interface. PMID:23587166
WAVE binds Ena/VASP for enhanced Arp2/3 complex–based actin assembly
Havrylenko, Svitlana; Noguera, Philippe; Abou-Ghali, Majdouline; Manzi, John; Faqir, Fahima; Lamora, Audrey; Guérin, Christophe; Blanchoin, Laurent; Plastino, Julie
2015-01-01
The WAVE complex is the main activator of the Arp2/3 complex for actin filament nucleation and assembly in the lamellipodia of moving cells. Other important players in lamellipodial protrusion are Ena/VASP proteins, which enhance actin filament elongation. Here we examine the molecular coordination between the nucleating activity of the Arp2/3 complex and the elongating activity of Ena/VASP proteins for the formation of actin networks. Using an in vitro bead motility assay, we show that WAVE directly binds VASP, resulting in an increase in Arp2/3 complex–based actin assembly. We show that this interaction is important in vivo as well, for the formation of lamellipodia during the ventral enclosure event of Caenorhabditis elegans embryogenesis. Ena/VASP's ability to bind F-actin and profilin-complexed G-actin are important for its effect, whereas Ena/VASP tetramerization is not necessary. Our data are consistent with the idea that binding of Ena/VASP to WAVE potentiates Arp2/3 complex activity and lamellipodial actin assembly. PMID:25355952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhati, Mugdha; Lee, Christopher; Nancarrow, Amy L.
2008-09-03
LIM-homeodomain (LIM-HD) transcription factors form a combinatorial 'LIM code' that contributes to the specification of cell types. In the ventral spinal cord, the binary LIM homeobox protein 3 (Lhx3)/LIM domain-binding protein 1 (Ldb1) complex specifies the formation of V2 interneurons. The additional expression of islet-1 (Isl1) in adjacent cells instead specifies the formation of motor neurons through assembly of a ternary complex in which Isl1 contacts both Lhx3 and Ldb1, displacing Lhx3 as the binding partner of Ldb1. However, little is known about how this molecular switch occurs. Here, we have identified the 30-residue Lhx3-binding domain on Isl1 (Isl1{sub LBD}).more » Although the LIM interaction domain of Ldb1 (Ldb1{sub LID}) and Isl1{sub LBD} share low levels of sequence homology, X-ray and NMR structures reveal that they bind Lhx3 in an identical manner, that is, Isl1{sub LBD} mimics Ldb1{sub LID}. These data provide a structural basis for the formation of cell type-specific protein-protein interactions in which unstructured linear motifs with diverse sequences compete to bind protein partners. The resulting alternate protein complexes can target different genes to regulate key biological events.« less
Structure, recognition and adaptive binding in RNA aptamer complexes.
Patel, D J; Suri, A K; Jiang, F; Jiang, L; Fan, P; Kumar, R A; Nonin, S
1997-10-10
Novel features of RNA structure, recognition and discrimination have been recently elucidated through the solution structural characterization of RNA aptamers that bind cofactors, aminoglycoside antibiotics, amino acids and peptides with high affinity and specificity. This review presents the solution structures of RNA aptamer complexes with adenosine monophosphate, flavin mononucleotide, arginine/citrulline and tobramycin together with an example of hydrogen exchange measurements of the base-pair kinetics for the AMP-RNA aptamer complex. A comparative analysis of the structures of these RNA aptamer complexes yields the principles, patterns and diversity associated with RNA architecture, molecular recognition and adaptive binding associated with complex formation.
Lin, C H; Patel, D J
1997-11-01
Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.
Network analysis reveals the recognition mechanism for complex formation of mannose-binding lectins
NASA Astrophysics Data System (ADS)
Jian, Yiren; Zhao, Yunjie; Zeng, Chen
The specific carbohydrate binding of lectin makes the protein a powerful molecular tool for various applications including cancer cell detection due to its glycoprotein profile on the cell surface. Most biologically active lectins are dimeric. To understand the structure-function relation of lectin complex, it is essential to elucidate the short- and long-range driving forces behind the dimer formation. Here we report our molecular dynamics simulations and associated dynamical network analysis on a particular lectin, i.e., the mannose-binding lectin from garlic. Our results, further supported by sequence coevolution analysis, shed light on how different parts of the complex communicate with each other. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.
Uhl, Juli D.; Cook, Tiffany A.; Gebelein, Brian
2010-01-01
Hox transcription factors specify numerous cell fates along the anterior-posterior axis by regulating the expression of downstream target genes. While expression analysis has uncovered large numbers of de-regulated genes in cells with altered Hox activity, determining which are direct versus indirect targets has remained a significant challenge. Here, we characterize the DNA binding activity of Hox transcription factor complexes on eight experimentally verified cis-regulatory elements. Hox factors regulate the activity of each element by forming protein complexes with two cofactor proteins, Extradenticle (Exd) and Homothorax (Hth). Using comparative DNA binding assays, we found that a number of flexible arrangements of Hox, Exd, and Hth binding sites mediate cooperative transcription factor complexes. Moreover, analysis of a Distal-less regulatory element (DMXR) that is repressed by abdominal Hox factors revealed that suboptimal binding sites can be combined to form high affinity transcription complexes. Lastly, we determined that the anterior Hox factors are more dependent upon Exd and Hth for complex formation than posterior Hox factors. Based upon these findings, we suggest a general set of guidelines to serve as a basis for designing bioinformatics algorithms aimed at identifying Hox regulatory elements using the wealth of recently sequenced genomes. PMID:20398649
Cusick, M E
1992-12-29
A novel approach is described to purify potential ribonucleoproteins (RNP) of yeast. The method assays a yeast RNP complex, assembled in vitro on actin pre-mRNA, by low-ionic strength acrylamide gel electrophoresis. The minimal protein components of this RNP complex were three proteins, one of 30 kDa and two at 42-44 kDa, defined by formation of the complex on biotinylated-RNA, binding of this complex to avidin-agarose, and salt elution of the protein in the biotinylated-RNP complex. Using the assay for RNP complex formation, an RNP protein was purified to homogeneity on the basis of its affinity towards single-stranded DNA and RNA. This RNP protein turned out to be identical to a known RNP protein, the single-stranded binding protein 1 (ssb1) of yeast, on the basis of identical gel electrophoretic migration, antibody cross-reactivity, and identical properties on the gel complex formation assay. In vitro mRNA splicing was normal in extracts made from a yeast strain missing ssb1 (ssb1- strain). Addition of anti-ssb1 antibody to splicing extracts made from a wild type strain did not inhibit or diminish splicing. Instead, mRNA splicing was reproducibly stimulated several fold, indicating competition between ssb1 and splicing factors for binding to single-stranded RNA in the extracts. RNP complexes still formed in the ssb1- strain, demonstrating that it would be possible to purify other RNP proteins from this strain using the gel complex formation assay.
Beier, Andreas; Schwarz, Thomas C; Kurzbach, Dennis; Platzer, Gerald; Tribuzio, Francesca; Konrat, Robert
2018-05-05
Molecular recognition of and by intrinsically disordered proteins (IDPs) is an intriguing and still largely elusive phenomenon. Typically, protein recognition involving IDPs requires either folding upon binding or, alternatively, the formation of "fuzzy complexes." Here we show via correlation analyses of paramagnetic relaxation enhancement data unprecedented and striking alterations of the concerted fluctuations within the conformational ensemble of IDPs upon ligand binding. We study the binding of α-synuclein to calmodulin, a ubiquitous calcium-binding protein, and the binding of the extracellular matrix IDP osteopontin to heparin, a mimic of the extracellular matrix ligand hyaluronic acid. In both cases, binding leads to reduction of correlated long-range motions in these two IDPs and thus indicates a loosening of structural compaction upon binding. Most importantly, however, the simultaneous presence of correlated and anti-correlated fluctuations in IDPs suggests the prevalence of "energetic frustration" and provides an explanation for the puzzling observation of disordered allostery in IDPs. Copyright © 2018. Published by Elsevier Ltd.
Lactate Dehydrogenase Undergoes a Substantial Structural Change to Bind its Substrate
Qiu, Linlin; Gulotta, Miriam; Callender, Robert
2007-01-01
Employing temperature-jump relaxation spectroscopy, we investigate the kinetics and thermodynamics of the formation of a very early ternary binding intermediate formed when lactate dehydrogenase (LDH) binds a substrate mimic on its way to forming the productive LDH/NADH·substrate Michaelis complex. Temperature-jump scans show two distinct submillisecond processes are involved in the formation of this ternary binding intermediate, called the encounter complex here. The on-rate of the formation of the encounter complex from LDH/NADH with oxamate (a substrate mimic) is determined as a function of temperature and in the presence of small concentrations of a protein destabilizer (urea) and protein stabilizer (TMAO). It shows a strong temperature dependence with inverse Arrhenius behavior and a temperature-dependent enthalpy (heat capacity of 610 ± 84 cal/Mol K), is slowed in the presence of TMAO and speeded up in the presence of urea. These results suggest that LDH/NADH occupies a range of conformations, some competent to bind substrate (open structure; a minority population) and others noncompetent (closed), in fast equilibrium with each other in accord with a select fit model of binding. From the thermodynamic results, the two species differ in the rearrangement of low energy hydrogen bonds as would arise from changes in internal hydrogen bonding and/or increases in the solvation of the protein structure. The binding-competent species can bind ligand at or very near diffusion-limited speeds, suggesting that the binding pocket is substantially exposed to solvent in these species. This would be in contrast to the putative closed structure where the binding pocket resides deep within the protein interior. PMID:17483169
Ranoa, Diana Rose E.; Kelley, Stacy L.; Tapping, Richard I.
2013-01-01
Bacterial lipoproteins are the most potent microbial agonists for the Toll-like receptor 2 (TLR2) subfamily, and this pattern recognition event induces cellular activation, leading to host immune responses. Triacylated bacterial lipoproteins coordinately bind TLR1 and TLR2, resulting in a stable ternary complex that drives intracellular signaling. The sensitivity of TLR-expressing cells to lipoproteins is greatly enhanced by two lipid-binding serum proteins known as lipopolysaccharide-binding protein (LBP) and soluble CD14 (sCD14); however, the physical mechanism that underlies this increased sensitivity is not known. To address this, we measured the ability of LBP and sCD14 to drive ternary complex formation between soluble extracellular domains of TLR1 and TLR2 and a synthetic triacylated lipopeptide agonist. Importantly, addition of substoichiometric amounts of either LBP or sCD14 significantly enhanced formation of a TLR1·TLR2 lipopeptide ternary complex as measured by size exclusion chromatography. However, neither LBP nor sCD14 was physically associated with the final ternary complex. Similar results were obtained using outer surface protein A (OspA), a naturally occurring triacylated lipoprotein agonist from Borrelia burgdorferi. Activation studies revealed that either LBP or sCD14 sensitized TLR-expressing cells to nanogram levels of either the synthetic lipopeptide or OspA lipoprotein agonist. Together, our results show that either LBP or sCD14 can drive ternary complex formation and TLR activation by acting as mobile carriers of triacylated lipopeptides or lipoproteins. PMID:23430250
NASA Astrophysics Data System (ADS)
Hitzenberger, Manuel; Schuster, Daniela; Hofer, Thomas S.
2017-10-01
Erroneous activation of the Hedgehog pathway has been linked to a great amount of cancerous diseases and therefore a large number of studies aiming at its inhibition have been carried out. One leverage point for novel therapeutic strategies targeting the proteins involved, is the prevention of complex formation between the extracellular signaling protein Sonic Hedgehog and the transmembrane protein Patched 1. In 2009 robotnikinin, a small molecule capable of binding to and inhibiting the activity of Sonic Hedgehog has been identified, however in the absence of X-ray structures of the Sonic Hedgehog-robotnikinin complex, the binding mode of this inhibitor remains unknown. In order to aid with the identification of novel Sonic Hedgehog inhibitors, the presented investigation elucidates the binding mode of robotnikinin by performing an extensive docking study, including subsequent molecular mechanical as well as quantum mechanical/molecular mechanical molecular dynamics simulations. The attained configurations enabled the identification of a number of key protein-ligand interactions, aiding complex formation and providing stabilizing contributions to the binding of the ligand. The predicted structure of the Sonic Hedgehog-robotnikinin complex is provided via a PDB file as supplementary material and can be used for further reference.
Jacobs, Y; Schnabel, C A; Cleary, M L
1999-07-01
Pbx/exd proteins modulate the DNA binding affinities and specificities of Hox proteins and contribute to the execution of Hox-dependent developmental programs in arthropods and vertebrates. Pbx proteins also stably heterodimerize and bind DNA with Meis and Pknox1-Prep1, additional members of the TALE (three-amino-acid loop extension) superclass of homeodomain proteins that function on common genetic pathways with a subset of Hox proteins. In this study, we demonstrated that Pbx and Meis bind DNA as heterotrimeric complexes with Hoxb1 on a genetically defined Hoxb2 enhancer, r4, that mediates the cross-regulatory transcriptional effects of Hoxb1 in vivo. The DNA binding specificity of the heterotrimeric complex for r4 is mediated by a Pbx-Hox site in conjunction with a distal Meis site, which we showed to be required for ternary complex formation and Meis-enhanced transcription. Formation of heterotrimeric complexes in which all three homeodomains bind their cognate DNA sites is topologically facilitated by the ability of Pbx and Meis to interact through their amino termini and bind DNA without stringent half-site orientation and spacing requirements. Furthermore, Meis site mutation in the Hoxb2 enhancer phenocopies Pbx-Hox site mutation to abrogate enhancer-directed expression of a reporter transgene in the murine embryonic hindbrain, demonstrating that DNA binding by all three proteins is required for trimer function in vivo. Our data provide in vitro and in vivo evidence for the combinatorial regulation of Hox and TALE protein functions that are mediated, in part, by their interdependent DNA binding activities as ternary complexes. As a consequence, Hoxb1 employs Pbx and Meis-related proteins, as a pair of essential cofactors in a higher-order molecular complex, to mediate its transcriptional effects on an endogenous Hox response element.
Gold nanoparticles as a factor of influence on doxorubicin-bovine serum albumin complex
NASA Astrophysics Data System (ADS)
Goncharenko, N. A.; Pavlenko, O. L.; Dmytrenko, O. P.; Kulish, M. P.; Lopatynskyi, A. M.; Chegel, V. I.
2018-04-01
The interaction between doxorubicin (Dox) and bovine serum albumin (BSA) complex with gold nanoparticles (AuNPs) was investigated by optical spectroscopy. The optical absorption of Dox and BSA solutions was studied. The formation of Dox-BSA complexes with a binding constant K = 7.56 × 106 M-2 and the number of binding sites n = 2 was found out. With pH 6.9, the concentration of complexes is an order of magnitude lower than the concentration of unbound antibiotic molecules. Optical absorption in solutions of Dox-BSA conjugates in the presence of AuNPs undergoes a significant rearrangement, which manifests the changes in the magnitude of the hydrophobic interaction of BSA with Dox, changes in the conformational state of antibiotic, and, as a consequence, a plasmon-induced change in the mechanism of complex formation. The aggregation of the Dox-AuNPs conjugate depends on the presence and concentration of BSA and in the case of formation of the Dox-BSA complex is minimal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Kaushik; Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in
The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitablemore » statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4–DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3–DNA complex.« less
Daughdrill, Gary W; Buchko, Garry W; Botuyan, Maria V; Arrowsmith, Cheryl; Wold, Marc S; Kennedy, Michael A; Lowry, David F
2003-07-15
Replication protein A (RPA) is a heterotrimeric single-stranded DNA- (ssDNA) binding protein that can form a complex with the xeroderma pigmentosum group A protein (XPA). This complex can preferentially recognize UV-damaged DNA over undamaged DNA and has been implicated in the stabilization of open complex formation during nucleotide excision repair. In this report, nuclear magnetic resonance (NMR) spectroscopy was used to investigate the interaction between a fragment of the 70 kDa subunit of human RPA, residues 1-326 (hRPA70(1-326)), and a fragment of the human XPA protein, residues 98-219 (XPA-MBD). Intensity changes were observed for amide resonances in the (1)H-(15)N correlation spectrum of uniformly (15)N-labeled hRPA70(1-326) after the addition of unlabeled XPA-MBD. The intensity changes observed were restricted to an ssDNA-binding domain that is between residues 183 and 296 of the hRPA70(1-326) fragment. The hRPA70(1-326) residues with the largest resonance intensity reductions were mapped onto the structure of the ssDNA-binding domain to identify the binding surface with XPA-MBD. The XPA-MBD-binding surface showed significant overlap with an ssDNA-binding surface that was previously identified using NMR spectroscopy and X-ray crystallography. Overlapping XPA-MBD- and ssDNA-binding sites on hRPA70(1-326) suggests that a competitive binding mechanism mediates the formation of the RPA-XPA complex. To determine whether a ternary complex could form between hRPA70(1-326), XPA-MBD and ssDNA, a (1)H-(15)N correlation spectrum was acquired for uniformly (15)N-labeled hRPA70(1-326) after the simultaneous addition of unlabeled XPA-MBD and ssDNA. In this experiment, the same chemical shift perturbations were observed for hRPA70(1-326) in the presence of XPA-MBD and ssDNA as was previously observed in the presence of ssDNA alone. The ability of ssDNA to compete with XPA-MBD for an overlapping binding site on hRPA70(1-326) suggests that any complex formation between RPA and XPA that involves the interaction between XPA-MBD and hRPA70(1-326) may be modulated by ssDNA.
Daughdrill, Gary W.; Buchko, Garry W.; Botuyan, Maria V.; Arrowsmith, Cheryl; Wold, Marc S.; Kennedy, Michael A.; Lowry, David F.
2003-01-01
Replication protein A (RPA) is a heterotrimeric single-stranded DNA- (ssDNA) binding protein that can form a complex with the xeroderma pigmentosum group A protein (XPA). This complex can preferentially recognize UV-damaged DNA over undamaged DNA and has been implicated in the stabilization of open complex formation during nucleotide excision repair. In this report, nuclear magnetic resonance (NMR) spectroscopy was used to investigate the interaction between a fragment of the 70 kDa subunit of human RPA, residues 1–326 (hRPA701–326), and a fragment of the human XPA protein, residues 98–219 (XPA-MBD). Intensity changes were observed for amide resonances in the 1H–15N correlation spectrum of uniformly 15N-labeled hRPA701–326 after the addition of unlabeled XPA-MBD. The intensity changes observed were restricted to an ssDNA-binding domain that is between residues 183 and 296 of the hRPA701–326 fragment. The hRPA701–326 residues with the largest resonance intensity reductions were mapped onto the structure of the ssDNA-binding domain to identify the binding surface with XPA-MBD. The XPA-MBD-binding surface showed significant overlap with an ssDNA-binding surface that was previously identified using NMR spectroscopy and X-ray crystallography. Overlapping XPA-MBD- and ssDNA-binding sites on hRPA701–326 suggests that a competitive binding mechanism mediates the formation of the RPA–XPA complex. To determine whether a ternary complex could form between hRPA701–326, XPA-MBD and ssDNA, a 1H–15N correlation spectrum was acquired for uniformly 15N-labeled hRPA701–326 after the simultaneous addition of unlabeled XPA-MBD and ssDNA. In this experiment, the same chemical shift perturbations were observed for hRPA701–326 in the presence of XPA-MBD and ssDNA as was previously observed in the presence of ssDNA alone. The ability of ssDNA to compete with XPA-MBD for an overlapping binding site on hRPA701–326 suggests that any complex formation between RPA and XPA that involves the interaction between XPA-MBD and hRPA701–326 may be modulated by ssDNA. PMID:12853635
Gong, Xin; Qian, Hongwu; Shao, Wei; Li, Jingxian; Wu, Jianping; Liu, Jun-Jie; Li, Wenqi; Wang, Hong-Wei; Espenshade, Peter; Yan, Nieng
2016-11-01
Sterol regulatory element-binding protein (SREBP) transcription factors are master regulators of cellular lipid homeostasis in mammals and oxygen-responsive regulators of hypoxic adaptation in fungi. SREBP C-terminus binds to the WD40 domain of SREBP cleavage-activating protein (SCAP), which confers sterol regulation by controlling the ER-to-Golgi transport of the SREBP-SCAP complex and access to the activating proteases in the Golgi. Here, we biochemically and structurally show that the carboxyl terminal domains (CTD) of Sre1 and Scp1, the fission yeast SREBP and SCAP, form a functional 4:4 oligomer and Sre1-CTD forms a dimer of dimers. The crystal structure of Sre1-CTD at 3.5 Å and cryo-EM structure of the complex at 5.4 Å together with in vitro biochemical evidence elucidate three distinct regions in Sre1-CTD required for Scp1 binding, Sre1-CTD dimerization and tetrameric formation. Finally, these structurally identified domains are validated in a cellular context, demonstrating that the proper 4:4 oligomeric complex formation is required for Sre1 activation.
Stapleton, Melanie; Haq, Ihtshamul; Hunt, Debbie M.; Arnvig, Kristine B.; Artymiuk, Peter J.; Buxton, Roger S.; Green, Jeffrey
2010-01-01
The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRPMt) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRPMt homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRPMt was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRPMt-binding sites (CRP1 at −58.5 and CRP2 at −37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRPMt concentrations in the absence of cAMP, is a repressing site. Binding of CRPMt to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRPMt to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP. PMID:20028978
NASA Astrophysics Data System (ADS)
Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W. W.
2010-06-01
Fluorescence studies on furosemide (FUR) binding to bovine serum albumin (BSA) showed the existence of three or four binding sites in the tertiary structure of the protein. Two of them are located in subdomain IIA, while the others in subdomains IB and/or IIIA. Furosemide binding in subdomain IB is postulated on the basis of run of Stern-Volmer plot indicating the existence of two populations of tryptophans involved in the interaction with FUR. In turn, the significant participation of tyrosil residues in complex formation leads to the consideration of the subdomain IIIA as furosemide low-affinity binding site. The effect of increasing concentration of fatty acid on FUR binding in all studied binding sites was also investigated and compared with the previous results obtained for human serum albumin (HSA). For BSA the lesser impact of fatty acid on affinity between drug and albumin was observed. This is probably a result of more significant role of tyrosines in the complex formation and different polarity of microenvironment of the fluorophores when compared HSA and BSA. The most distinct differences between FUR-BSA and FUR-HSA binding parameters are observed when third fatty acid molecule is bound with the protein and rotation of domains I and II occurs. However these structural changes mostly affect FUR low affinity binding sites.
Cross-activating c-Met/β1 integrin complex drives metastasis and invasive resistance in cancer
Jahangiri, Arman; Nguyen, Alan; Sidorov, Maxim K.; Yagnik, Garima; Rick, Jonathan; Han, Sung Won; Chen, William; Flanigan, Patrick M.; Schneidman-Duhovny, Dina; Mascharak, Smita; De Lay, Michael; Imber, Brandon; Park, Catherine C.; Matsumoto, Kunio; Lu, Kan; Bergers, Gabriele; Sali, Andrej; Weiss, William A.
2017-01-01
The molecular underpinnings of invasion, a hallmark of cancer, have been defined in terms of individual mediators but crucial interactions between these mediators remain undefined. In xenograft models and patient specimens, we identified a c-Met/β1 integrin complex that formed during significant invasive oncologic processes: breast cancer metastases and glioblastoma invasive resistance to antiangiogenic VEGF neutralizing antibody, bevacizumab. Inducing c-Met/β1 complex formation through an engineered inducible heterodimerization system promoted features crucial to overcoming stressors during metastases or antiangiogenic therapy: migration in the primary site, survival under hypoxia, and extravasation out of circulation. c-Met/β1 complex formation was up-regulated by hypoxia, while VEGF binding VEGFR2 sequestered c-Met and β1 integrin, preventing their binding. Complex formation promoted ligand-independent receptor activation, with integrin-linked kinase phosphorylating c-Met and crystallography revealing the c-Met/β1 complex to maintain the high-affinity β1 integrin conformation. Site-directed mutagenesis verified the necessity for c-Met/β1 binding of amino acids predicted by crystallography to mediate their extracellular interaction. Far-Western blotting and sequential immunoprecipitation revealed that c-Met displaced α5 integrin from β1 integrin, creating a complex with much greater affinity for fibronectin (FN) than α5β1. Thus, tumor cells adapt to microenvironmental stressors induced by metastases or bevacizumab by coopting receptors, which normally promote both cell migration modes: chemotaxis, movement toward concentrations of environmental chemoattractants, and haptotaxis, movement controlled by the relative strengths of peripheral adhesions. Tumor cells then redirect these receptors away from their conventional binding partners, forming a powerful structural c-Met/β1 complex whose ligand-independent cross-activation and robust affinity for FN drive invasive oncologic processes. PMID:28973887
Clima, Lilia; Ursu, Elena L; Cojocaru, Corneliu; Rotaru, Alexandru; Barboiu, Mihail; Pinteala, Mariana
2015-09-28
The complexes formed by DNA and polycations have received great attention owing to their potential application in gene therapy. In this study, the binding efficiency between double-stranded oligonucleotides (dsDNA) and branched polyethylenimine (B-PEI) has been quantified by processing of the images captured from the gel electrophoresis assays. The central composite experimental design has been employed to investigate the effects of controllable factors on the binding efficiency. On the basis of experimental data and the response surface methodology, a multivariate regression model has been constructed and statistically validated. The model has enabled us to predict the binding efficiency depending on experimental factors, such as concentrations of dsDNA and B-PEI as well as the initial pH of solution. The optimization of the binding process has been performed using simplex and gradient methods. The optimal conditions determined for polyplex formation have yielded a maximal binding efficiency close to 100%. In order to reveal the mechanism of complex formation at the atomic-scale, a molecular dynamic simulation has been carried out. According to the computation results, B-PEI amine hydrogen atoms have interacted with oxygen atoms from dsDNA phosphate groups. These interactions have led to the formation of hydrogen bonds between macromolecules, stabilizing the polyplex structure.
Slaughter, Brian D.; Bieber Urbauer, Ramona J.; Urbauer, Jeffrey L.; Johnson, Carey K.
2008-01-01
Calmodulin (CaM) binds to a domain near the C-terminus of the plasma-membrane Ca2+-ATPase (PMCA), causing the release of this domain and relief of its autoinhibitory function. We investigated the kinetics of dissociation and binding of Ca2+-CaM with a 28-residue peptide (C28W(1b)) corresponding to the CaM binding domain of isoform 1b of PMCA. CaM was labeled with a fluorescent probe on either the N-terminal domain at residue 34 or on the C-terminal domain at residue 110. Formation of complexes of CaM with C28W(1b) results in a decrease in the fluorescence yield of the fluorophore, allowing the kinetics of dissociation or binding to be detected. Using a maximum entropy method, we determined the minimum number and magnitudes of rate constants required to fit the data. Comparison of the fluorescence changes for CaM labeled on the C-terminal or N-terminal domain suggests sequential and ordered binding of the C-terminal and N-terminal domains of CaM with C28W(1b). For dissociation of C28W(1b) from CaM labeled on the N-terminal domain, we observed three time constants, indicating the presence of two intermediate states in the dissociation pathway. However, for CaM labeled on the C-terminal domain, we observed only two time constants, suggesting that the fluorescence label on the C-terminal domain was not sensitive to one of the kinetic steps. The results were modeled by a kinetic mechanism where an initial complex forms upon binding of the C-terminal domain of CaM to C28W(1b), followed by binding of the N-terminal domain, and then formation of a tight binding complex. Oxidation of methionine residues in CaM resulted in significant perturbations to the binding kinetics. The rate of formation of a tight binding complex was reduced, consistent with the lower effectiveness of oxidized CaM in activating the Ca2+ pump. PMID:17343368
Erlitzki, Noa; Huang, Kenneth; Xhani, Suela; Farahat, Abdelbasset A; Kumar, Arvind; Boykin, David W; Poon, Gregory M K
2017-12-01
Previous investigations of sequence-specific DNA binding by model minor groove-binding compounds showed that the ligand/DNA complex was destabilized in the presence of compatible co-solutes. Inhibition was interpreted in terms of osmotic stress theory as the uptake of significant numbers of excess water molecules from bulk solvent upon complex formation. Here, we interrogated the AT-specific DNA complex formed with the symmetric heterocyclic diamidine DB1976 as a model for minor groove DNA recognition using both ionic (NaCl) and non-ionic cosolutes (ethylene glycol, glycine betaine, maltose, nicotinamide, urea). While the non-ionic cosolutes all destabilized the ligand/DNA complex, their quantitative effects were heterogeneous in a cosolute- and salt-dependent manner. Perturbation with NaCl in the absence of non-ionic cosolute showed that preferential hydration water was released upon formation of the DB1976/DNA complex. As salt probes counter-ion release from charged groups such as the DNA backbone, we propose that the preferential hydration uptake in DB1976/DNA binding observed in the presence of osmolytes reflects the exchange of preferentially bound cosolute with hydration water in the environs of the bound DNA, rather than a net uptake of hydration waters by the complex. Copyright © 2017 Elsevier B.V. All rights reserved.
Fujita, Masaaki; Takada, Yoko K.; Takada, Yoshikazu
2013-01-01
Integrin αvβ3 plays a role in insulin-like growth factor 1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk) in non-transformed cells in anchorage-dependent conditions. We reported previously that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation in these conditions. The integrin-binding defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, whereas it still binds to IGF1R. We studied if IGF1 can induce signaling in anchorage-independent conditions in transformed Chinese hamster ovary cells that express αvβ3 (β3-CHO) cells. Here we describe that IGF1 signals were more clearly detectable in anchorage-independent conditions (polyHEMA-coated plates) than in anchorage-dependent conditions. This suggests that IGF signaling is masked by signals from cell-matrix interaction in anchorage-dependent conditions. IGF signaling required αvβ3 expression, and R36E/R37E was defective in inducing signals in polyHEMA-coated plates. These results suggest that αvβ3-IGF1 interaction, not αvβ3-extracellular matrix interaction, is essential for IGF signaling. Inhibitors of IGF1R, Src, AKT, and ERK1/2 did not suppress αvβ3-IGF-IGF1R ternary complex formation, suggesting that activation of these kinases are not required for ternary complex formation. Also, mutations of the β3 cytoplasmic tail (Y747F and Y759F) that block β3 tyrosine phosphorylation did not affect IGF1R phosphorylation or AKT activation. We propose a model in which IGF1 binding to IGF1R induces recruitment of integrin αvβ3 to the IGF-IGF1R complex and then β3 and IGF1R are phosphorylated. It is likely that αvβ3 should be together with the IGF1-IGF1R complex for triggering IGF signaling. PMID:23243309
Mapping of interaction domains between human repair proteins ERCC1 and XPF.
de Laat, W L; Sijbers, A M; Odijk, H; Jaspers, N G; Hoeijmakers, J H
1998-09-15
ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1.
Mapping of interaction domains between human repair proteins ERCC1 and XPF.
de Laat, W L; Sijbers, A M; Odijk, H; Jaspers, N G; Hoeijmakers, J H
1998-01-01
ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1. PMID:9722633
Lindow, Janet C; Dohrmann, Paul R; McHenry, Charles S
2015-07-03
Biophysical and structural studies have defined many of the interactions that occur between individual components or subassemblies of the bacterial replicase, DNA polymerase III holoenzyme (Pol III HE). Here, we extended our knowledge of residues and interactions that are important for the first step of the replicase reaction: the ATP-dependent formation of an initiation complex between the Pol III HE and primed DNA. We exploited a genetic selection using a dominant negative variant of the polymerase catalytic subunit that can effectively compete with wild-type Pol III α and form initiation complexes, but cannot elongate. Suppression of the dominant negative phenotype was achieved by secondary mutations that were ineffective in initiation complex formation. The corresponding proteins were purified and characterized. One class of mutant mapped to the PHP domain of Pol III α, ablating interaction with the ϵ proofreading subunit and distorting the polymerase active site in the adjacent polymerase domain. Another class of mutation, found near the C terminus, interfered with τ binding. A third class mapped within the known β-binding domain, decreasing interaction with the β2 processivity factor. Surprisingly, mutations within the β binding domain also ablated interaction with τ, suggesting a larger τ binding site than previously recognized. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Wolk, Arron B.; Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Mark A.
2013-06-01
Transition metal-based organometallic catalysts are a promising means of converting CO_{2} to transportable fuels. Ni(cyclam)^{2+}(cyclam = 1,4,8,11-tetraazacyclotetradecane), a Ni^{II} complex ligated by four nitrogen centers, has shown promise as a catalyst selective for CO_{2} reduction in aqueous solutions. The cyclam ligand has four NH hydrogen bond donors that can adopt five conformations, each offering distinct binding motifs for coordination of CO_{2} close to the metal center. To probe the ligand conformation and the role of hydrogen bonding in adduct binding, we extract Ni(cyclam)^{2+} complexes with the formate anion and some of its analogs from solution using electrospray ionization, and characterize their structures using cryogenic ion vibrational predissociation spectroscopy. Using the signature vibrational features of the embedded carboxylate anion and the NH groups as reporters, we compare the binding motifs of oxalate, benzoate, and formate anions to the Ni(cyclam)^{2+} framework. Finally, we comment on possible routes to generate the singly charged Ni(cyclam)^{+} complex, a key intermediate that has been invoked in the catalytic CO_{2} reduction cycle, but has never been isolated through ion processing techniques.
Takahashi, Kazuhide; Suzuki, Katsuo
2009-05-01
Membrane transport of WAVE2 that leads to lamellipodia formation requires a small GTPase Rac1, the motor protein kinesin, and microtubules. Here we explore the possibility of whether the Rac1-dependent and kinesin-mediated WAVE2 transport along microtubules is regulated by a p21-activated kinase Pak as a downstream effector of Rac1. We find that Pak1 constitutively binds to WAVE2 and is transported with WAVE2 to the leading edge by stimulation with hepatocyte growth factor (HGF). Concomitantly, phosphorylation of tubulin-bound stathmin/Op18 at serine 25 (Ser25) and Ser38, microtubule growth, and stathmin/Op18 binding to kinesin-WAVE2 complex were induced. The HGF-induced WAVE2 transport, lamellipodia formation, stathmin/Op18 phosphorylation at Ser38 and binding to kinesin-WAVE2 complex, but not stathmin/Op18 phosphorylation at Ser25 and microtubule growth, were abrogated by Pak1 inhibitor IPA-3 and Pak1 depletion with small interfering RNA (siRNA). Moreover, stathmin/Op18 depletion with siRNA caused significant inhibition of HGF-induced WAVE2 transport and lamellipodia formation, with HGF-independent promotion of microtubule growth. Collectively, it is suggested that Pak1 plays a critical role in HGF-induced WAVE2 transport and lamellipodia formation by directing Pak1-WAVE2-kinesin complex toward the ends of growing microtubules through phosphorylation and recruitment of tubulin-bound stathmin/Op18 to the complex.
Steere, Ashley N; Miller, Brendan F; Roberts, Samantha E; Byrne, Shaina L; Chasteen, N Dennis; Smith, Valerie C; MacGillivray, Ross T A; Mason, Anne B
2012-01-17
Efficient delivery of iron is critically dependent on the binding of diferric human serum transferrin (hTF) to its specific receptor (TFR) on the surface of actively dividing cells. Internalization of the complex into an endosome precedes iron removal. The return of hTF to the blood to continue the iron delivery cycle relies on the maintenance of the interaction between apohTF and the TFR after exposure to endosomal pH (≤6.0). Identification of the specific residues accounting for the pH-sensitive nanomolar affinity with which hTF binds to TFR throughout the cycle is important to fully understand the iron delivery process. Alanine substitution of 11 charged hTF residues identified by available structures and modeling studies allowed evaluation of the role of each in (1) binding of hTF to the TFR and (2) TFR-mediated iron release. Six hTF mutants (R50A, R352A, D356A, E357A, E367A, and K511A) competed poorly with biotinylated diferric hTF for binding to TFR. In particular, we show that Asp356 in the C-lobe of hTF is essential to the formation of a stable hTF-TFR complex: mutation of Asp356 in the monoferric C-lobe hTF background prevented the formation of the stoichiometric 2:2 (hTF:TFR monomer) complex. Moreover, mutation of three residues (Asp356, Glu367, and Lys511), whether in the diferric or monoferric C-lobe hTF, significantly affected iron release when in complex with the TFR. Thus, mutagenesis of charged hTF residues has allowed identification of a number of residues that are critical to formation of and release of iron from the hTF-TFR complex.
Daily, Neil J; Boswell, Kristin L; James, Declan J; Martin, Thomas F J
2010-11-12
CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca(2+)-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis.
Daily, Neil J.; Boswell, Kristin L.; James, Declan J.; Martin, Thomas F. J.
2010-01-01
CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca2+-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis. PMID:20826818
Binding thermodynamics of synthetic dye Allura Red with bovine serum albumin.
Lelis, Carini Aparecida; Hudson, Eliara Acipreste; Ferreira, Guilherme Max Dias; Ferreira, Gabriel Max Dias; da Silva, Luis Henrique Mendes; da Silva, Maria do Carmo Hespanhol; Pinto, Maximiliano Soares; Pires, Ana Clarissa Dos Santos
2017-02-15
The interaction between Allura Red and bovine serum albumin (BSA) was studied in vitro at pH 7.4. The fluorescence quenching was classified as static quenching due to the formation of AR-BSA complex, with binding constant (K) ranging from 3.26±0.09 to 8.08±0.0610(4)L.mol(-1), at the warfarin binding site of BSA. This complex formation was driven by increasing entropy. Isothermal titration calorimetric measurements also showed an enthalpic contribution. The Allura Red diffusion coefficient determined by the Taylor-Aris technique corroborated these results because it reduced with increasing BSA concentration. Interfacial tension measurements showed that the AR-BSA complex presented surface activity, since interfacial tension of the water-air interface decreased as the colorant concentration increased. This technique also provided a complexation stoichiometry similar to those obtained by fluorimetric experiments. This work contributes to the knowledge of interactions between BSA and azo colorants under physiological conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, So-Hee; Moon, Jeonghee; Lee, Myungkyu
2013-09-13
Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified asmore » a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.« less
Wang, Yong; Zhu, Ruirui; Ni, Yongnian; Kokot, Serge
2014-04-05
Interactions between the anti-carcinogens, bendamustine (BDM) and dexamethasone (DXM), with bovine serum albumin (BSA) were investigated with the use of fluorescence and UV-vis spectroscopies under pseudo-physiological conditions (Tris-HCl buffer, pH 7.4). The static mechanism was responsible for the fluorescence quenching during the interactions; the binding formation constant of the BSA-BDM complex and the binding number were 5.14×10(5)Lmol(-1) and 1.0, respectively. Spectroscopic studies for the formation of BDM-BSA complex were interpreted with the use of multivariate curve resolution - alternating least squares (MCR-ALS), which supported the complex formation. The BSA samples treated with site markers (warfarin - site I and ibuprofen - site II) were reacted separately with BDM and DXM; while both anti-carcinogens bound to site I, the binding constants suggested that DXM formed a more stable complex. Relative concentration profiles and the fluorescence spectra associated with BDM, DXM and BSA, were recovered simultaneously from the full fluorescence excitation-emission data with the use of the parallel factor analysis (PARAFAC) method. The results confirmed that on addition of DXM to the BDM-BSA complex, the BDM was replaced and the DXM-BSA complex formed; free BDM was released. This finding may have consequences for the transport of these drugs during any anti-cancer treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
Polyreactivity of natural antibodies: exchange by HL-fragments.
Sedykh, M A; Buneva, V N; Nevinsky, G A
2013-12-01
The polyreactivity of binding (formation of antibody (AB) complexes not only with specific but also with foreign antigens) is a widespread phenomenon that in some cases can be caused by a conformational lability of the antigen-binding sites of antibodies (which increases upon treatment with various destabilizing agents) and leads to AB binding with very different antigens. Some ABs exist as dimers of the initial ABs and their idiotypes (or anti-idiotypes) capable of producing intramolecular cyclic complexes with features of polyreactants. Another mechanism of binding polyreactivity is an exchange in blood by halves of IgG4 molecules (HL-fragments) against various antigens. Also, for the first time catalytic polyfunctionality of human milk ABs has been detected, which is caused by an exchange by HL-fragments between molecules of λ- and κ-IgG (IgG1-IgG4) and also by λ- and κ-sIgA against different antigens with formation of very different chimeric antibodies. This review considers all possible pathways of formation of polyspecific immunoglobulins and their biological functions described in the literature, as well as mechanisms of binding polyreactivity and catalytic polyfunctionality of natural antibodies.
Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin
Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less
Single-stranded nucleic acids promote SAMHD1 complex formation.
Tüngler, Victoria; Staroske, Wolfgang; Kind, Barbara; Dobrick, Manuela; Kretschmer, Stefanie; Schmidt, Franziska; Krug, Claudia; Lorenz, Mike; Chara, Osvaldo; Schwille, Petra; Lee-Kirsch, Min Ae
2013-06-01
SAM domain and HD domain-containing protein 1 (SAMHD1) is a dGTP-dependent triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs) thereby limiting the intracellular dNTP pool. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that mimics congenital viral infection and that phenotypically overlaps with the autoimmune disease systemic lupus erythematosus. Both disorders are characterized by activation of the antiviral cytokine interferon-α initiated by immune recognition of self nucleic acids. Here we provide first direct evidence that SAMHD1 associates with endogenous nucleic acids in situ. Using fluorescence cross-correlation spectroscopy, we demonstrate that SAMHD1 specifically interacts with ssRNA and ssDNA and establish that nucleic acid-binding and formation of SAMHD1 complexes are mutually dependent. Interaction with nucleic acids and complex formation do not require the SAM domain, but are dependent on the HD domain and the C-terminal region of SAMHD1. We finally demonstrate that mutations associated with AGS exhibit both impaired nucleic acid-binding and complex formation implicating that interaction with nucleic acids is an integral aspect of SAMHD1 function.
Allostery Mediates Ligand Binding to Grb2 Adaptor in a Mutually Exclusive Manner
McDonald, Caleb B.; El Hokayem, Jimmy; Zafar, Nawal; Balke, Jordan E.; Bhat, Vikas; Mikles, David C.; Deegan, Brian J.; Seldeen, Kenneth L.; Farooq, Amjad
2012-01-01
Allostery plays a key role in dictating the stoichiometry and thermodynamics of multi-protein complexes driving a plethora of cellular processes central to health and disease. Herein, using various biophysical tools, we demonstrate that although Sos1 nucleotide exchange factor and Gab1 docking protein recognize two non-overlapping sites within the Grb2 adaptor, allostery promotes the formation of two distinct pools of Grb2-Sos1 and Grb2-Gab1 binary signaling complexes in concert in lieu of a composite Sos1-Grb2-Gab1 ternary complex. Of particular interest is the observation that the binding of Sos1 to the nSH3 domain within Grb2 sterically blocks the binding of Gab1 to the cSH3 domain and vice versa in a mutually exclusive manner. Importantly, the formation of both the Grb2-Sos1 and Grb2-Gab1 binary complexes is governed by a stoichiometry of 2:1, whereby the respective SH3 domains within Grb2 homodimer bind to Sos1 and Gab1 via multivalent interactions. Collectively, our study sheds new light on the role of allostery in mediating cellular signaling machinery. PMID:23334917
Investigating intermolecular forces associated with thrombus initiation using optical tweezers
NASA Astrophysics Data System (ADS)
Arya, Maneesh; Lopez, Jose A.; Romo, Gabriel M.; Dong, Jing-Fei; McIntire, Larry V.; Moake, Joel L.; Anvari, Bahman
2002-05-01
Thrombus formation occurs when a platelet membrane receptor, glycoprotein (GP) Ib-IX-V complex, binds to its ligand, von Willebrand factor (vWf), in the subendothelium or plasma. To determine which GP Ib-IX-V amino acid sequences are critical for bond formation, we have used optical tweezers to measure forces involved in the binding of vWf to GP Ib-IX-V variants. Inasmuch as GP Ib(alpha) subunit is the primary component in human GP Ib-IX-V complex that binds to vWf, and that canine GP Ib(alpha) , on the other hand, does not bind to human vWf, we progressively replaced human GP Ib(alpha) amino acid sequences with canine GP Ib(alpha) sequences to determine the sequences essential for vWf/GP Ib(alpha) binding. After measuring the adhesive forces between optically trapped, vWf-coated beads and GP Ib(alpha) variants expressed on mammalian cells, we determined that leucine- rich repeat 2 of GP Ib(alpha) was necessary for vWf/GP Ib-IX- V bond formation. We also found that deletion of the N- terminal flanking sequence and leucine-rich repeat 1 reduced adhesion strength to vWf but did not abolish binding. While divalent cations are known to influence binding of vWf, addition of 1mM CaCl2 had no effect on measured vWf/GP Ib(alpha) bond strengths.
Stegmann, Cora; Abdellatif, Mohamed E. A.; Laib Sampaio, Kerstin; Walther, Paul
2016-01-01
ABSTRACT The glycoprotein O (gO) is betaherpesvirus specific. Together with the viral glycoproteins H and L, gO forms a covalent trimeric complex that is part of the viral envelope. This trimer is crucial for cell-free infectivity of human cytomegalovirus (HCMV) but dispensable for cell-associated spread. We hypothesized that the amino acids that are conserved among gOs of different cytomegaloviruses are important for the formation of the trimeric complex and hence for efficient virus spread. In a mutational approach, nine peptide sites, containing all 13 highly conserved amino acids, were analyzed in the context of HCMV strain TB40-BAC4 with regard to infection efficiency and formation of the gH/gL/gO complex. Mutation of amino acids (aa) 181 to 186 or aa 193 to 198 resulted in the loss of the trimer and a complete small-plaque phenotype, whereas mutation of aa 108 or aa 249 to 254 caused an intermediate phenotype. While individual mutations of the five conserved cysteines had little impact, their relevance was revealed in a combined mutation, which abrogated both complex formation and cell-free infectivity. C343 was unique, as it was sufficient and necessary for covalent binding of gO to gH/gL. Remarkably, however, C218 together with C167 rescued infectivity in the absence of detectable covalent complex formation. We conclude that all highly conserved amino acids contribute to the function of gO to some extent but that aa 181 to 198 and cysteines 343, 218, and 167 are particularly relevant. Surprisingly, covalent binding of gO to gH/gL is required neither for its incorporation into virions nor for proper function in cell-free infection. IMPORTANCE Like all herpesviruses, the widespread human pathogen HCMV depends on glycoproteins gB, gH, and gL for entry into target cells. Additionally, gH and gL have to bind gO in a trimeric complex for efficient cell-free infection. Homologs of gO are shared by all cytomegaloviruses, with 13 amino acids being highly conserved. In a mutational approach we analyzed these amino acids to elucidate their role in the function of gO. All conserved amino acids contributed either to formation of the trimeric complex or to cell-free infection. Notably, these two phenotypes were not inevitably linked as the mutation of a charged cluster in the center of gO abrogated cell-free infection while trimeric complexes were still being formed. Cysteine 343 was essential for covalent binding of gO to gH/gL; however, noncovalent complex formation in the absence of cysteine 343 also allowed for cell-free infectivity. PMID:27795411
Wendland, M F; Stevens, T H; Buttlaire, D H; Everett, G W; Himes, R H
1983-02-15
Using nuclear magnetic resonance techniques, we have measured the internuclear distances separating the nucleotide-bound metal from the carbon and hydrogen nuclei of formate as well as the carbon of methylammonium cation when bound to formyltetrahydrofolate synthetase. Measurements were made of the paramagnetic effect on the spin-lattice relaxation rates (1/T1) of 13C and 1H nuclei arising from the replacement of Mg2+ with Mn2+, which binds to the enzyme in the form of a metal-nucleotide complex. Distances from Mn2+ to the formate carbon and proton were found to be 6.3 and 7.4 A, respectively, in the E . ATP . Mn2+ . formate complex and 6.0 and 7.1 A, respectively, in the E . ADP . Mn2+ . formate complex. When tetrahydrofolate was added to the latter complex, the exchange of formate was greatly reduced and became rate limiting for relaxation. These results are consistent with substantial conformational effects produced by the binding of the cofactor. The distance from Mn2+ to the methylammonium carbon in the E . ADP . Mn2+ . CH3NH+3, E . ADP . Mn2+ . formate . CH3NH3+, and E . ADP . Mn2+ . tetrahydrofolate . CH3NH3+ complexes was estimated to be in the range of 7.4-12 A. However, in the E . ADP . Mn2+ formate . tetrahydrofolate . CH3NH3+ complex, the data suggest that exchange of cation contributes significantly to relaxation. These results, combined with other known features of the enzyme, suggest that there may be a monovalent cation site within the active site of the enzyme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaru-ampornpan, Peera, E-mail: peera.jar@biotec.or.th; Narkpuk, Jaraspim; Wanitchang, Asawin
Highlights: •FluB nucleoprotein (BNP) can bind to FluA nucleoprotein (ANP). •BNP–ANP interaction inhibits FluA polymerase activity. •BNP binding prevents ANP from forming a functional FluA polymerase complex. •Nuclear localization of BNP is necessary for FluA polymerase inhibition. •Viral RNA is not required for the BNP–ANP interaction. -- Abstract: Upon co-infection with influenza B virus (FluB), influenza A virus (FluA) replication is substantially impaired. Previously, we have shown that the nucleoprotein of FluB (BNP) can inhibit FluA polymerase machinery, retarding the growth of FluA. However, the molecular mechanism underlying this inhibitory action awaited further investigation. Here, we provide evidence that BNPmore » hinders the proper formation of FluA polymerase complex by competitively binding to the nucleoprotein of FluA. To exert this inhibitory effect, BNP must be localized in the nucleus. The interaction does not require the presence of the viral RNA but needs an intact BNP RNA-binding motif. The results highlight the novel role of BNP as an anti-influenza A viral agent and provide insights into the mechanism of intertypic interference.« less
Fox, B G; Liu, Y; Dege, J E; Lipscomb, J D
1991-01-05
Kinetic, spectroscopic, and chemical evidence for the formation of specific catalytically essential complexes between the three protein components of the soluble form of methane monooxygenase from Methylosinus trichosporium OB3b is reported. The effects of the concentrations of the reductase and component B on the hydroxylation activity of the reconstituted enzyme system has been numerically simulated based on a kinetic model which assumes formation of multiple high affinity complexes with the hydroxylase component during catalysis. The formation of several of these complexes has been directly demonstrated. By using EPR spectroscopy, the binding of approximately 2 mol of component B/mol of hydroxylase (subunit structure (alpha beta gamma)2) is shown to significantly change the electronic environment of the mu-(H/R)-oxo-bridged binuclear iron cluster of the hydroxylase in both the mixed valent (Fe(II).Fe(III)) and fully reduced (Fe(II).Fe(II)) states. Protein-protein complexes between the reductase and component B as well as between the reductase and hydroxylase have been shown to form by monitoring quenching of the tryptophan fluorescence spectrum of either the component B (KD approximately 0.4 microM) or hydroxylase (two binding sites, KDa approximately 10 nM, KDb approximately 8 microM). The observed KD values are in agreement with the best fit values from the kinetic simulation. Through the use of the covalent zero length cross-linking reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), the binding sites of the component B and reductase were shown to be on the hydroxylase alpha and beta subunits, respectively. The alpha and beta subunits of the hydroxylase are cross-linked by EDC suggesting that they are juxtaposed. EDC also caused the rapid loss of the ability of the monomeric component B to stimulate the hydroxylation reaction suggesting that cross-linking of reactive groups on the protein surface had occurred. This effect was inhibited by the presence of hydroxylase and was accompanied by a loss of the ability of the component B to bind to the hydroxylase. Thus, formation of a component B-hydroxylase complex is apparently required for effective catalysis linked to NADH oxidation. When present in concentrations greater than required to saturate the initial hydroxylase complex, component B inhibited both the rate of the enzymic reaction and the cross-linking of the reductase to the hydroxylase. This suggests that a second complex involving component B can form that negatively regulates catalysis by preventing formation of the reductase-hydroxylase complex.
Trimeric Association of Hox and TALE Homeodomain Proteins Mediates Hoxb2 Hindbrain Enhancer Activity
Jacobs, Yakop; Schnabel, Catherine A.; Cleary, Michael L.
1999-01-01
Pbx/exd proteins modulate the DNA binding affinities and specificities of Hox proteins and contribute to the execution of Hox-dependent developmental programs in arthropods and vertebrates. Pbx proteins also stably heterodimerize and bind DNA with Meis and Pknox1-Prep1, additional members of the TALE (three-amino-acid loop extension) superclass of homeodomain proteins that function on common genetic pathways with a subset of Hox proteins. In this study, we demonstrated that Pbx and Meis bind DNA as heterotrimeric complexes with Hoxb1 on a genetically defined Hoxb2 enhancer, r4, that mediates the cross-regulatory transcriptional effects of Hoxb1 in vivo. The DNA binding specificity of the heterotrimeric complex for r4 is mediated by a Pbx-Hox site in conjunction with a distal Meis site, which we showed to be required for ternary complex formation and Meis-enhanced transcription. Formation of heterotrimeric complexes in which all three homeodomains bind their cognate DNA sites is topologically facilitated by the ability of Pbx and Meis to interact through their amino termini and bind DNA without stringent half-site orientation and spacing requirements. Furthermore, Meis site mutation in the Hoxb2 enhancer phenocopies Pbx-Hox site mutation to abrogate enhancer-directed expression of a reporter transgene in the murine embryonic hindbrain, demonstrating that DNA binding by all three proteins is required for trimer function in vivo. Our data provide in vitro and in vivo evidence for the combinatorial regulation of Hox and TALE protein functions that are mediated, in part, by their interdependent DNA binding activities as ternary complexes. As a consequence, Hoxb1 employs Pbx and Meis-related proteins, as a pair of essential cofactors in a higher-order molecular complex, to mediate its transcriptional effects on an endogenous Hox response element. PMID:10373562
Price-Schiavi, Shari A; Jepson, Scott; Li, Peter; Arango, Maria; Rudland, Philip S; Yee, Lisa; Carraway, Kermit L
2002-06-20
Muc4 (also called sialomucin complex), the rat homolog of human MUC4, is a heterodimeric glycoprotein complex that consists of a peripheral O-glycosylated mucin subunit, ASGP-1, tightly but noncovalently linked to a N-glycosylated transmembrane subunit, ASGP-2. The complex is expressed in a number of normal, vulnerable epithelial tissues, including mammary gland, uterus, colon, cornea and trachea. Muc4/SMC is also overexpressed or aberrantly expressed on a number of human tumors including breast tumors. Overexpression of Muc4/SMC has been shown to block cell-cell and cell-matrix interactions, protect tumor cells from immune surveillance and promote metastasis. In addition, as a ligand for ErbB2, Muc4/SMC can potentiate phosphorylation of ErbB2 and potentially alter signals generated from this receptor. Using A375 human melanoma cells and MCF7 human breast adenocarcinoma cells stably transfected with tetracycline regulatable Muc4, we have investigated whether overexpression of Muc4/SMC can repress antibody binding to cell surface-expressed ErbB2. Overexpression of Muc4/SMC does not affect the level of ErbB2 expression in either cell line, but it does reduce binding of a number of anti-ErbB2 antibodies, including Herceptin. Interestingly, overexpression of ErbB2 does not block binding of other unrelated antibodies of the same isotype, suggesting that the reduction in ErbB2 antibody binding is due to complex formation of Muc4/SMC and ErbB2. Furthermore, capping of Muc4/SMC with anti-Muc4/SMC antibodies reduces antibody binding to ErbB2 instead of increasing binding, again suggesting that reduced antibody binding to ErbB2 is due to steric hindrance from complex formation of Muc4/SMC and ErbB2. Thus, overexpression of Muc4/SMC on tumor cells may have both prognostic and therapeutic relevance. Copyright 2002 Wiley-Liss, Inc.
Heyduk, E; Baichoo, N; Heyduk, T
2001-11-30
The alpha-subunit of Escherichia coli RNA polymerase plays an important role in the activity of many promoters by providing a direct protein-DNA contact with a specific sequence (UP element) located upstream of the core promoter sequence. To obtain insight into the nature of thermodynamic forces involved in the formation of this protein-DNA contact, the binding of the alpha-subunit of E. coli RNA polymerase to a fluorochrome-labeled DNA fragment containing the rrnB P1 promoter UP element sequence was quantitatively studied using fluorescence polarization. The alpha dimer and DNA formed a 1:1 complex in solution. Complex formation at 25 degrees C was enthalpy-driven, the binding was accompanied by a net release of 1-2 ions, and no significant specific ion effects were observed. The van't Hoff plot of temperature dependence of binding was linear suggesting that the heat capacity change (Deltac(p)) was close to zero. Protein footprinting with hydroxyradicals showed that the protein did not change its conformation upon protein-DNA contact formation. No conformational changes in the DNA molecule were detected by CD spectroscopy upon protein-DNA complex formation. The thermodynamic characteristics of the binding together with the lack of significant conformational changes in the protein and in the DNA suggested that the alpha-subunit formed a rigid body-like contact with the DNA in which a tight complementary recognition interface between alpha-subunit and DNA was not formed.
Shamsi, Anas; Ahmed, Azaj; Khan, Mohd Shahnawaz; Husain, Fohad Mabood; Amani, Samreen; Bano, Bilqees
2018-05-16
In our present study, binding between an important anti renal cancer drug temsirolimus and human transferrin (hTF) was investigated employing spectroscopic and molecular docking approach. In the presence of temsirolimus, hyper chromaticity is observed in hTF in UV spectroscopy suggestive of complex formation between hTF and temsirolimus. Fluorescence spectroscopy revealed the occurrence of quenching in hTF in the presence of temsirolimus implying complex formation taking place between hTF and temsirolimus. Further, the mode of interaction between hTF and temsirolimus was revealed to be static by fluorescence quenching analysis at 3 different temperatures. Binding constant values obtained employing fluorescence spectroscopy depicts strong interaction between hTF and temsirolimus; temsirolimus binds to hTF at 298 K with a binding constant of .32 × 10 4 M -1 implying the strength of this interaction. The negative Gibbs free energy obtained through quenching experiments is evident of the fact that the binding is spontaneous. CD spectra of hTF also showed a downward shift in the presence of temsirolimus as compared with free hTF implying complex formation between hTF and temsirolimus. Molecular docking was performed with a view to find out which residues are key players in this interaction. The importance of our study stems from the fact it will provide an insight into binding pattern of commonly administered renal cancer drug with an important protein that plays a pivotal role in many physiological processes. Copyright © 2018 John Wiley & Sons, Ltd.
Money, Tracy; Barrett, Jason; Dixon, Ray; Austin, Sara
2001-01-01
The enhancer binding protein NIFA and the sensor protein NIFL from Azotobacter vinelandii comprise an atypical two-component regulatory system in which signal transduction occurs via complex formation between the two proteins rather than by the phosphotransfer mechanism, which is characteristic of orthodox systems. The inhibitory activity of NIFL towards NIFA is stimulated by ADP binding to the C-terminal domain of NIFL, which bears significant homology to the histidine protein kinase transmitter domains. Adenosine nucleotides, particularly MgADP, also stimulate complex formation between NIFL and NIFA in vitro, allowing isolation of the complex by cochromatography. Using limited proteolysis of the purified proteins, we show here that changes in protease sensitivity of the Q linker regions of both NIFA and NIFL occurred when the complex was formed in the presence of MgADP. The N-terminal domain of NIFA adjacent to the Q linker was also protected by NIFL. Experiments with truncated versions of NIFA demonstrate that the central domain of NIFA is sufficient to cause protection of the Q linker of NIFL, although in this case, stable protein complexes are not detectable by cochromatography. PMID:11157949
Yang, Mingling; Wu, Yue; Li, Jinbing; Zhou, Haibo; Wang, Xiaoyong
2013-07-24
This work studied the influences of formation of BSA/ι-carrageenan complexes on the binding, stability, and antioxidant activity of curcumin. In the presence of BSA and ι-carrageenan, curcumin gives higher intensities of absorption and fluorescence than free curcumin and curcumin only combined with BSA. The added ι-carrageenan is observed to promote curcumin for quenching the instrinsic fluorescence of BSA. These results are explained in terms of the formation of BSA/ι-carrageenan complexes, which help to stabilize the folded structure of BSA for providing curcumin with a more hydrophobic microenvironment. The small difference in anisotropy values of curcumin with BSA alone and of BSA/ι-carrageenan complexes suggests that ι-carrageenan acts as outer stretch conformation in BSA/ι-carrageenan complexes but does not directly disturb the hydrophobic pockets inside BSA, where curcumin is hydrophobically located. The determined values of the binding constant are higher for curcumin with BSA/ι-carrageenan complexes than with BSA alone. Moreover, BSA/ι-carrageenan complexes are found to be superior to single BSA for enhancing the stability and DPPH radical-scavenging ability of curcumin.
Duda, David M.; van Waardenburg, Robert C. A. M.; Borg, Laura A.; McGarity, Sierra; Nourse, Amanda; Waddell, M. Brett; Bjornsti, Mary-Ann; Schulman, Brenda A.
2007-01-01
Summary The SUMO ubiquitin-like proteins play regulatory roles in cell division, transcription, DNA repair, and protein subcellular localization. Paralleling other ubiquitin-like proteins, SUMO proteins are proteolytically processed to maturity, conjugated to targets by E1-E2-E3 cascades, and subsequently recognized by specific downstream effectors containing a SUMO-binding motif (SBM). SUMO and its E2 from the budding yeast S. cerevisiae, Smt3p and Ubc9p, are encoded by essential genes. Here we describe the 1.9 Å resolution crystal structure of a noncovalent Smt3p–Ubc9p complex. Unexpectedly, a heterologous portion of the crystallized complex derived from the expression construct mimics an SBM, and binds Smt3p in a manner resembling SBM binding to human SUMO family members. In the complex, Smt3p binds a surface distal from Ubc9's catalytic cysteine. The structure implies that a single molecule of Smt3p cannot bind concurrently to both the noncovalent binding site and the catalytic cysteine of a single Ubc9p molecule. However, formation of higher-order complexes can occur, where a single Smt3p covalently linked to one Ubc9p's catalytic cysteine also binds noncovalently to another molecule of Ubc9p. Comparison with other structures from the SUMO pathway suggests that formation of the noncovalent Smt3p–Ubc9p complex occurs mutually exclusively with many other Smt3p and Ubc9p interactions in the conjugation cascade. By contrast, high-resolution insights into how Smt3p–Ubc9p can also interact with downstream recognition machineries come from contacts with the SBM mimic. Interestingly, the overall architecture of the Smt3p–Ubc9p complex is strikingly similar to recent structures from the ubiquitin pathway. The results imply that noncovalent ubiquitin-like protein–E2 complexes are conserved platforms, which function as parts of larger assemblies involved many protein post-translational regulatory pathways. PMID:17475278
Li, Yun; Wang, Shen; Li, Tianzhi; Zhu, Le; Xu, Yuanyuan; Ma, Cong
2017-01-01
The Ca2+ sensor synaptotagmin-1 (Syt1) plays an essential function in synaptic exocytosis. Recently, Syt1 has been implicated in synaptic vesicle priming, a maturation step prior to Ca2+-triggered membrane fusion that is believed to involve formation of the ternary SNARE complex and require priming proteins Munc18-1 and Munc13-1. However, the mechanisms of Syt1 in synaptic vesicle priming are still unclear. In this study, we found that Syt1 stimulates the transition from the Munc18-1/syntaxin-1 complex to the ternary SNARE complex catalyzed by Munc13-1. This stimulation can be further enhanced in a membrane-containing environment. Further, we showed that Syt1, together with Munc18-1 and Munc13-1, stimulates trans ternary SNARE complex formation on membranes in a manner resistant to disassembly factors NSF and α-SNAP. Disruption of a proposed Syt1/SNARE binding interface strongly abrogated the stimulation function of Syt1. Our results suggest that binding of Syt1 to an intermediate SNARE assembly with Munc18-1 and Munc13-1 is critical for the stimulation function of Syt1 in ternary SNARE complex formation, and this stimulation may underlie the priming function of Syt1 in synaptic exocytosis. PMID:28860966
“Turn-On” Protein Fluorescence: In Situ Formation of Cyanine Dyes
2015-01-01
Protein reengineering of cellular retinoic acid binding protein II (CRABPII) has yielded a genetically addressable system, capable of binding a profluorophoric chromophore that results in fluorescent protein/chromophore complexes. These complexes exhibit far-red emission, with high quantum efficiencies and brightness and also exhibit excellent pH stability spanning the range of 2–11. In the course of this study, it became evident that single mutations of L121E and R59W were most effective in improving the fluorescent characteristics of CRABPII mutants as well as the kinetics of complex formation. The readily crystallizable nature of these proteins was invaluable to provide clues for the observed spectroscopic behavior that results from single mutation of key residues. PMID:25534273
"Turn-on" protein fluorescence: in situ formation of cyanine dyes.
Yapici, Ipek; Lee, Kin Sing Stephen; Berbasova, Tetyana; Nosrati, Meisam; Jia, Xiaofei; Vasileiou, Chrysoula; Wang, Wenjing; Santos, Elizabeth M; Geiger, James H; Borhan, Babak
2015-01-28
Protein reengineering of cellular retinoic acid binding protein II (CRABPII) has yielded a genetically addressable system, capable of binding a profluorophoric chromophore that results in fluorescent protein/chromophore complexes. These complexes exhibit far-red emission, with high quantum efficiencies and brightness and also exhibit excellent pH stability spanning the range of 2-11. In the course of this study, it became evident that single mutations of L121E and R59W were most effective in improving the fluorescent characteristics of CRABPII mutants as well as the kinetics of complex formation. The readily crystallizable nature of these proteins was invaluable to provide clues for the observed spectroscopic behavior that results from single mutation of key residues.
“Turn-On” Protein Fluorescence: In Situ Formation of Cyanine Dyes
Yapici, Ipek; Lee, Kin Sing Stephen; Berbasova, Tetyana; ...
2014-12-22
Protein reengineering of cellular retinoic acid binding protein II (CRABPII) has yielded a genetically addressable system, capable of binding a profluorophoric chromophore that results in fluorescent protein/chromophore complexes. These complexes exhibit far-red emission, with high quantum efficiencies and brightness and also exhibit excellent pH stability spanning the range of 2$-$11. In the course of this study, it became evident that single mutations of L121E and R59W were most effective in improving the fluorescent characteristics of CRABPII mutants as well as the kinetics of complex formation. The readily crystallizable nature of these proteins was invaluable to provide clues for the observedmore » spectroscopic behavior that results from single mutation of key residues.« less
Keyamura, Kenji; Fujikawa, Norie; Ishida, Takuma; Ozaki, Shogo; Su’etsugu, Masayuki; Fujimitsu, Kazuyuki; Kagawa, Wataru; Yokoyama, Shigeyuki; Kurumizaka, Hitoshi; Katayama, Tsutomu
2007-01-01
Escherichia coli DiaA is a DnaA-binding protein that is required for the timely initiation of chromosomal replication during the cell cycle. In this study, we determined the crystal structure of DiaA at 1.8 Å resolution. DiaA forms a homotetramer consisting of a symmetrical pair of homodimers. Mutational analysis revealed that the DnaA-binding activity and formation of homotetramers are required for the stimulation of initiation by DiaA. DiaA tetramers can bind multiple DnaA molecules simultaneously. DiaA stimulated the assembly of multiple DnaA molecules on oriC, conformational changes in ATP–DnaA-specific initiation complexes, and unwinding of oriC duplex DNA. The mutant DiaA proteins are defective in these stimulations. DiaA associated also with ADP–DnaA, and stimulated the assembly of inactive ADP–DnaA–oriC complexes. Specific residues in the putative phosphosugar-binding motif of DiaA were required for the stimulation of initiation and formation of ATP–DnaA-specific–oriC complexes. Our data indicate that DiaA regulates initiation by a novel mechanism, in which DiaA tetramers most likely bind to multiple DnaA molecules and stimulate the assembly of specific ATP–DnaA–oriC complexes. These results suggest an essential role for DiaA in the promotion of replication initiation in a cell cycle coordinated manner. PMID:17699754
Electrocatalytic Oxidation of Formate by [Ni(P R 2N R' 2) 2(CH 3CN)] 2+ Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Brandon R.; Schöffel, Julia; Linehan, John C.
2011-08-17
[Ni(P R 2N R' 2) 2(CH 3CN)] 2+ complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P R 2N R' 2)(P R" 2N R' 2)(CH 3CN)] 2+ with R = Cy, R' = Ph, R" = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO 2, protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ~0.04 M (34 equiv). At concentrationsmore » above ~0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s –1 at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η 1-OC(O)CH 3 binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO 2 liberation. Finally, the pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe) 2] 2+ (depe = 1,2-bis(diethylphosphino)ethane) complex.« less
Electrocatalytic oxidation of formate by [Ni(P(R)2N(R')2)2(CH3CN)]2+ complexes.
Galan, Brandon R; Schöffel, Julia; Linehan, John C; Seu, Candace; Appel, Aaron M; Roberts, John A S; Helm, Monte L; Kilgore, Uriah J; Yang, Jenny Y; DuBois, Daniel L; Kubiak, Clifford P
2011-08-17
[Ni(P(R)(2)N(R')(2))(2)(CH(3)CN)](2+) complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P(R)(2)N(R')(2))(P(R''(2))N(R'(2)))(CH(3)CN)](2+) with R = Cy, R' = Ph, R'' = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO(2), protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ∼0.04 M (34 equiv). At concentrations above ∼0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s(-1) at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η(1)-OC(O)CH(3) binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO(2) liberation. The pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe)(2)](2+) (depe = 1,2-bis(diethylphosphino)ethane) complex.
14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia
Xu, Jennifer; Steele-Ogus, Melissa; Alas, Germain C. M.
2017-01-01
ABSTRACT The phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin; this function has been previously attributed to sequestration of phosphorylated cofilin. 14-3-3 was identified as an actin-associated protein in the deep-branching eukaryote Giardia lamblia; however, Giardia lacks cofilin and all other canonical actin-binding proteins (ABPs). Thus, the role of G. lamblia 14-3-3 (Gl-14-3-3) in actin regulation was unknown. Gl-14-3-3 depletion resulted in an overall disruption of actin organization characterized by ectopically distributed short actin filaments. Using phosphatase and kinase inhibitors, we demonstrated that actin phosphorylation correlated with destabilization of the actin network and increased complex formation with 14-3-3, while blocking actin phosphorylation stabilized actin filaments and attenuated complex formation. Giardia’s sole Rho family GTPase, Gl-Rac, modulates Gl-14-3-3’s association with actin, providing the first connection between Gl-Rac and the actin cytoskeleton in Giardia. Giardia actin (Gl-actin) contains two putative 14-3-3 binding motifs, one of which (S330) is conserved in mammalian actin. Mutation of these sites reduced, but did not completely disrupt, the association with 14-3-3. Native gels and overlay assays indicate that intermediate proteins are required to support complex formation between 14-3-3 and actin. Overall, our results support a role for 14-3-3 as a regulator of actin; however, the presence of multiple 14-3-3–actin complexes suggests a more complex regulatory relationship than might be expected for a minimalistic parasite. IMPORTANCE Giardia lacks canonical actin-binding proteins. Gl-14-3-3 was identified as an actin interactor, but the significance of this interaction was unknown. Loss of Gl-14-3-3 results in ectopic short actin filaments, indicating that Gl-14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that Gl-14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia’s sole Rho family GTPase, Gl-Rac. This result provides the first mechanistic connection between Gl-Rac and Gl-actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between Gl-14-3-3 and Gl-actin, suggesting that Gl-14-3-3 is regulating multiple Gl-actin complexes. PMID:28932813
Schiffmann, D A; White, J H; Cooper, A; Nutley, M A; Harding, S E; Jumel, K; Solari, R; Ray, K P; Gay, N J
1999-09-07
In Drosophila, the Toll receptor signaling pathway is required for embryonic dorso-ventral patterning and at later developmental stages for innate immune responses. It is thought that dimerization of the receptor by binding of the ligand spätzle causes the formation of a postreceptor activation complex at the cytoplasmic surface of the membrane. Two components of this complex are the adaptor tube and protein kinase pelle. These proteins both have "death domains", protein interaction motifs found in a number of signaling pathways, particularly those involved in apoptotic cell death. It is thought that pelle is bound by tube during formation of the activation complexes, and that this interaction is mediated by the death domains. In this paper, we show using the yeast two-hybrid system that the wild-type tube and pelle death domains bind together. Mutant tube proteins which do not support signaling in the embryo are also unable to bind pelle in the 2-hybrid assay. We have purified proteins corresponding to the death domains of tube and pelle and show that these form corresponding heterodimeric complexes in vitro. Partial proteolysis reveals a smaller core consisting of the minimal death domain sequences. We have studied the tube/pelle interaction with the techniques of surface plasmon resonance, analytical ultracentrifugation and isothermal titration calorimetry. These measurements produce a value of K(d) for the complex of about 0.5 microM.
Chen, Fanbo; Wang, Yunhua; Yang, Miao; Yin, Jianyuan; Meng, Qin; Bu, Fengquan; Sun, Dandan; Liu, Jihua
2016-07-01
The interaction of the ginsenosides (GS) including ginsenoside Rg1, Rb1 and Re with κ-casein and the effects of GS inhibiting amyloid fibril formation by κ-casein have been investigated in vitro by fluorescence and ultraviolet spectra. Results showed that Rg1 and Rb1 had dose-dependent inhibitory effects on reduced and carboxymethylated κ-casein (RCMκ-CN) fibril formation, while Re resulted in an increase in the rate of fibril formation. The enhancement in RLS intensity was attributed to the formation of new complex between GS and RCMκ-CN, and the corresponding thermodynamic parameters (ΔH, ΔS and ΔG) were assayed. The steady-state ultraviolet-visible absorption spectra had also been tested to observe if the ground-state complex formed, and it showed the same result as RLS spectra. The binding constants and the number of binding sites between GS and RCMκ-CN at different temperatures had been evaluated from relevant fluorescence data. According to the Förster non-radiation energy transfer theory, the binding distance between RCMκ-CN and GS was calculated. The fluorescence lifetime of RCMκ-CN was longer in the presence of GS than in absence of GS, which was evident that the hydrophobic interaction plays a major role in the binding of GS to RCMκ-CN. From the results of synchronous fluorescence, it could be deduced that the polarity around RCMκ-CN Trp97 residue decreased and the hydrophobicity increased after addition of Rg1 or Rb1. Based on all the above results, it is explained that Rg1 and Rb1 inhibited amyloid fibril formation by κ-casein because the molecular spatial conformation and physical property of κ-casein changed causing by the complex formation between GS and κ-casein. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Mishra, P. C.; Suhai, S.
Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the other strongly carcinogenic methylating agents.
Budnik, Ivan; Shenkman, Boris; Savion, Naphtali
2016-09-01
Effective platelet function requires formation of a physical link between fibrin(ogen), integrin αIIbβ3, and cytoplasmic actin filaments. We investigated the role of the Gαq, Gαi, and Gα12/13 families of heterotrimeric GTP-binding proteins (G proteins) in the assembly of a ligand-αIIbβ3-actin cytoskeleton complex. Selective and combined activation of the G proteins was achieved by using combinations of various platelet agonists and inhibitors. Formation and stability of fibrinogen-αIIbβ3 interaction were evaluated by the extent of platelet aggregation and the rate of eptifibatide-induced platelet disaggregation; association of αIIbβ3 with the cytoskeleton was analyzed by western blot. Formation of the fibrin-αIIbβ3-actin cytoskeleton complex was evaluated by rotational thromboelastometry assay in which clot formation was induced by the mixture of reptilase and factor XIIIa. We demonstrated that involvement of heterotrimeric G proteins in the formation of the ligand-αIIbβ3-cytoskeleton complex depends on whether fibrinogen or fibrin serves as the integrin ligand. Formation of the fibrinogen-αIIbβ3-cytoskeleton complex requires combined activation of at least two G protein pathways while the maximal αIIbβ3-cytoskeleton association and the strongest αIIbβ3-fibrinogen binding supporting irreversible platelet aggregation require combined activation of all three-Gαq, Gαi, and Gα12/13-G protein families. In contrast, formation of the fibrin-αIIbβ3-cytoskeleton complex mediating clot retraction is critically dependent on the activation of the Gαi family, especially on the activation of Gαz.
The signaling adapter Gab1 regulates cell polarity by acting as a PAR protein scaffold
Yang, Ziqiang; Xue, Bin; Umitsu, Masataka; Ikura, Mitsuhiko; Muthuswamy, Senthil K.; Neel, Benjamin G.
2012-01-01
Summary Cell polarity plays a key role in development and is disrupted in tumors, yet the molecules and mechanisms that regulate polarity remain poorly defined. We found that the scaffolding adaptor GAB1 interacts with two polarity proteins, PAR1 and PAR3. GAB1 binds PAR1 and enhances its kinase activity. GAB1 brings PAR1 and PAR3 into a transient complex, stimulating PAR3 phosphorylation by PAR1. GAB1 and PAR6 bind the PAR3 PDZ1 domain and thereby compete for PAR3 binding. Consequently, GAB1 depletion causes PAR3 hypo-phosphorylation and increases PAR3/PAR6 complex formation, resulting in accelerated and enhanced tight junction formation, increased trans-epithelial resistance and lateral domain shortening. Conversely, GAB1 over-expression, in a PAR1/PAR3-dependent manner, disrupts epithelial apical-basal polarity, promotes multi-lumen cyst formation, and enhances growth factor-induced epithelial cell scattering. Our results identify GAB1 as a novel negative regulator of epithelial cell polarity that functions as a scaffold for modulating PAR protein complexes on the lateral membrane. PMID:22883624
Piekarska, B; Konieczny, L; Rybarska, J; Stopa, B; Zemanek, G; Szneler, E; Król, M; Nowak, M; Roterman, I
2001-11-01
Moderate heating (40-50 degrees C) of immunoglobulins makes them accessible for binding with Congo Red and some related highly associated dyes. The binding is specific and involves supramolecular dye ligands presenting ribbon-like micellar bodies. The L chain lambda dimer, which upon heating disclosed the same binding requirement with respect to supramolecular dye ligands, was used in this work to identify the site of their attachment. Two clearly defined dye-protein (L lambda chain) complexes arise upon heating, here called complex I and complex II. The first is formed at low temperatures (up to 40-45 degrees C) and hence by a still native protein, while the formation of the second one is associated with domain melting above 55 degrees C. They contain 4 and 8 dye molecules bound per L chain monomer, respectively. Complex I also forms efficiently at high dye concentration even at ambient temperature. Complex I and its formation was the object of the present studies. Three structural events that could make the protein accessible to penetration by the large dye ligand were considered to occur in L chains upon heating: local polypeptide chain destabilization, VL-VL domain incoherence, and protein melting. Of these three possibilities, local low-energy structural alteration was found to correlate best with the formation of complex I. It was identified as decreased packing stability of the N-terminal polypeptide chain fragment, which as a result made the V domain accessible for dye penetration. The 19-amino acid N-terminal fragment becomes susceptible to proteolytic cleavage after being replaced by the dye at its packing locus. Its splitting from the dye-protein complex was proved by amino acid sequence analysis. The emptied packing locus, which becomes the site that holds the dye, is bordered by strands of amino acids numbered 74-80 and 105-110, as shown by model analysis. The character of the temperature-induced local polypeptide chain destabilization and its possible role in intramolecular antibody signaling is discussed. Copyright 2001 John Wiley & Sons, Inc.
Kahle, Claudia; Holzgrabe, Ulrike
2004-10-01
Cyclodextrins are well known for their ability to separate enantiomers of drugs, natural products, and other chiral substances using HPLC, GC, or CE. The resolution of the enantiomers is due to the formation of diastereomeric complexes between the cyclodextrin and the pairs of enantiomers. The aim of this study was to determine the binding constants of the complexes between alpha- and beta-cyclodextrin and the enantiomers of a series of aliphatic and aromatic amino acids, and dipeptides, using a potentiometric titration method. The results of this method are compared to other methods, and correlated to findings in cyclodextrin-modified capillary electrophoresis and possible complex structures. Potentiometric titration was found to be an appropriate tool to determine the binding constants of cyclodextrin inclusion complexes.
ERIC Educational Resources Information Center
Porta, Angela R.
2003-01-01
Presents a laboratory experiment demonstrating the binding of calcium/calmodulin to calmodulin kinase II, which is important in the metabolic and physiological activities of the cell. Uses SDS polyacrylamide gel electrophoresis (PAGE). (YDS)
NASA Astrophysics Data System (ADS)
Shityakov, Sergey; Salmas, Ramin Ekhteiari; Durdagi, Serdar; Roewer, Norbert; Förster, Carola; Broscheit, Jens
2017-04-01
In this study, we investigated curcumin (CUR) solubility profiles and hydration/desolvation effects of this substance formulated with γ-cyclodextrin (γ-CD) and hydroxypropyl-γ-cyclodextrin (HP-γ-CD) excipients. The CUR/HP-γ-CD complex was found to be more stable in solution with the highest apparent stability constant for CUR/HP-γ-CD (Kc = 1.58*104 M-1) as the more soluble form in distilled water. The in silico calculations, including molecular docking, Monte Carlo (MC), and molecular dynamics (MD) simulations, indicated that water molecules play an important role in host-guest complexation mediating the CUR binding to cyclodextrins via hydrogen bond formations. The CUR hydration/desolvation effects contributed to the complex formation by elevating the CUR binding affinity to both CDs. The CUR/HP-γ-CD complex after the CUR hydration was determined with a minimal Gibbs free energy of binding (ΔGbind = -9.93 kcal*mol-1) due to the major hydrophobic (vdW) forces. Overall, the results of this study can aid a development of cyclodextrin-based drug delivery vectors, signifying the importance of water molecules during the formulation processes.
High-resolution NMR structures of the domains of Saccharomyces cerevisiae Tho1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, Julian O. B.; Allen, Mark D.; Freund, Stefan M. V.
2016-05-23
In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and the C-terminal RNA-binding domain of S. cerevisiae Tho1 have been determined. THO is a multi-protein complex involved in the formation of messenger ribonuclear particles (mRNPs) by coupling transcription with mRNA processing and export. THO is thought to be formed from five subunits, Tho2p, Hpr1p, Tex1p, Mft1p and Thp2p, and recent work has determined a low-resolution structure of the complex [Poulsen et al. (2014 ▸), PLoS One, 9, e103470]. A number of additional proteins are thought to be involved in the formation of mRNP in yeast, including Tho1,more » which has been shown to bind RNA in vitro and is recruited to actively transcribed chromatin in vivo in a THO-complex and RNA-dependent manner. Tho1 is known to contain a SAP domain at the N-terminus, but the ability to suppress the expression defects of the hpr1Δ mutant of THO was shown to reside in the RNA-binding C-terminal region. In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and C-terminal RNA-binding domain have been determined.« less
Pessêgo, Márcia; Basílio, Nuno; Muñiz, M Carmen; García-Río, Luis
2016-07-06
Counterion competitive complexation is a background process currently ignored by using ionic hosts. Consequently, guest binding constants are strongly affected by the design of the titration experiments in such a way that the results are dependent on the guest concentration and on the presence of added salts, usually buffers. In the present manuscript we show that these experimental difficulties can be overcome by just considering the counterion competitive complexation. Moreover a single titration allows us to obtain not only the true binding constants but also the stoichiometry of the complex showing the formation of 1 : 1 : 1 (host : guest : counterion) complexes. The detection of high stoichiometry complexes is not restricted to a single titration experiment but also to a displacement assay where both competitive and competitive-cooperative complexation models are taken into consideration.
Zhang, Lin; Sun, Yan
2014-04-29
Platelet adhesion on a collagen surface through integrin α2β1 has been proven to be significant for the formation of arterial thrombus. However, the molecular determinants mediating the integrin-collagen complex remain unclear. In the present study, the dynamics of integrin-collagen binding and molecular interactions were investigated using molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction is identified as the major driving force for the formation of the integrin-collagen complex. On the basis of the MD simulation and MM-PBSA results, an affinity binding model (ABM) of integrin for collagen is constructed; it is composed of five residues, including Y157, N154, S155, R288, and L220. The ABM has been proven to capture the major binding motif contributing 84.8% of the total binding free energy. On the basis of the ABM, we expect to establish a biomimetic design strategy of platelet adhesion inhibitors, which would be beneficial for the development of potent peptide-based drugs for thrombotic diseases.
Cell proteins bind to multiple sites within the 5' untranslated region of poliovirus RNA.
del Angel, R M; Papavassiliou, A G; Fernández-Tomás, C; Silverstein, S J; Racaniello, V R
1989-01-01
The 5' noncoding region of poliovirus RNA contains sequences necessary for translation and replication. These functions are probably carried out by recognition of poliovirus RNA by cellular and/or viral proteins. Using a mobility-shift electrophoresis assay and 1,10-phenanthroline/Cu+ footprinting, we demonstrate specific binding of cytoplasmic factors with a sequence from nucleotides 510-629 within the 5' untranslated region (UTR). Complex formation was also observed with a second sequence (nucleotides 97-182) within the 5' UTR. These two regions of the 5' UTR appear to be recognized by distinct cell factors as determined by competition analysis and the effects of ionic strength on complex formation. However, both complexes contain eukaryotic initiation factor 2 alpha, as revealed by their reaction with specific antibody. Images PMID:2554308
Gülfen, Mustafa; Özdemir, Abdil; Lin, Jung-Lee; Chen, Chung-Hsuan
2017-10-01
In this study, the dissociation and formation equilibrium constants of Na(I)-insulin and K(I)-insulin complexes have been calculated after the quantifying them on ESI mass spectrometer. The ESI-MS spectra of the complexes were measured by using the solvents as 50% MeOH in water and 100% water. The effect of pH on the Na(I)-insulin and K(I)-insulin complex formation were examined. Serial binding of Na(I) and K(I) ions to the insulin molecule were observed in the ESI-MS measurements. The first formation equilibrium constants were calculated as K f1 : 5.48×10 3 1/M for Na(I)-insulin complex and K f1 : 4.87×10 3 1/M for K(I)-insulin in water. The binding capability of Na(I) ions to insulin molecule is higher than the capability of K(I) ions. In case of a comparison together with Ca(II)-insulin and Mg(II)-insulin, the formation equilibrium constants (K f1 ) are in order of Ca(II)-insulin>Mg(II)-insulin>Na(I)-insulin>K(I)-insulin in water. The results showed that Na(I) and K(I) ions are involved in the formation of the non-covalent complexes with insulin molecule, since high extracellular and intracellular concentrations of them in the body. Copyright © 2017 Elsevier B.V. All rights reserved.
Contessa, Gian Marco; Orsale, Maria; Melino, Sonia; Torre, Vincent; Paci, Maurizio; Desideri, Alessandro; Cicero, Daniel O
2005-03-01
The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs.
Siebert, Matthias; Böhme, Mathias A; Driller, Jan H; Babikir, Husam; Mampell, Malou M; Rey, Ulises; Ramesh, Niraja; Matkovic, Tanja; Holton, Nicole; Reddy-Alla, Suneel; Göttfert, Fabian; Kamin, Dirk; Quentin, Christine; Klinedinst, Susan; Andlauer, Till Fm; Hell, Stefan W; Collins, Catherine A; Wahl, Markus C; Loll, Bernhard; Sigrist, Stephan J
2015-08-14
Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes.
[Interaction of trivaline with single-stranded polyribonucleotides].
Strel'tsov, S A; Lysov, Iu P; Semenov, T E; Vengerov, Iu Iu; Khorlin, A A; Surovaia, A N; Gurskiĭ, G V
1991-01-01
Binding of tripeptide H-Val3-(NH)2-Dns (TVP) to polyribonucleotides was studied by fluorescence methods, circular and flow linear dichroism, equilibrium dialysis and electron microscopy. It was found that TVP binds to poly(U) in monomer, dimer and tetramer forms with binding constants of about 10(3), 40, 18.10(4) M, respectively. The cooperativity parameter for peptide dimer binding is 2000. The peptide forms tetramer complexes with poly(A), poly(C), poly(G) also. The formation of a complex between the peptide tetramer and nucleic acid is accompanied by a significant increase in the fluorescence intensity. The cooperative binding of TVP dimers to poly(U), poly(A), poly(C) is accompanied by a dramatic decrease in the flexibility of polynucleotide chains. However, it has a small effect (if any) on the flexibility of the poly(G) chain. The observed similarity of thermodynamic, optical and hydrodynamic++ properties of TVP complexes with single-stranded and double-stranded nucleic acids may reflect a similarity in the geometries of peptide complexes with nucleic acids. Electron microscopy studies show that peptide binding to poly(U) and dsDNA leads to compactization of the nucleic acids caused by interaction between the peptide tetramers bound to a nucleic acid. At the first stage of the compactization process the well-organized rod-like particles are formed, each consisting of one or more single-stranded polynucleotide fibers. Increasing the peptide concentration stimulates a side-by-side association and folding of the rods with the formation of macromolecular "leech-like" structures with the thickness of 20-50 nm.
On the role of electrostatics in protein-protein interactions
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Witham, Shawn; Alexov, Emil
2011-06-01
The role of electrostatics in protein-protein interactions and binding is reviewed in this paper. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and the basic electrostatic effects occurring upon the formation of the complex are discussed. The effect of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated which indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartments. The similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity.
On the role of electrostatics on protein-protein interactions
Zhang, Zhe; Witham, Shawn; Alexov, Emil
2011-01-01
The role of electrostatics on protein-protein interactions and binding is reviewed in this article. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and basic electrostatic effects occurring upon the formation of the complex are discussed. The role of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated and indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartment. At the end, the similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity. PMID:21572182
Dynamics of Fos-Jun-NFAT1 complexes
Ramirez-Carrozzi, Vladimir R.; Kerppola, Tom K.
2001-01-01
Transcription initiation in eukaryotes is controlled by nucleoprotein complexes formed through cooperative interactions among multiple transcription regulatory proteins. These complexes may be assembled via stochastic collisions or defined pathways. We investigated the dynamics of Fos-Jun-NFAT1 complexes by using a multicolor fluorescence resonance energy transfer assay. Fos-Jun heterodimers can bind to AP-1 sites in two opposite orientations, only one of which is populated in mature Fos-Jun-NFAT1 complexes. We studied the reversal of Fos-Jun binding orientation in response to NFAT1 by measuring the efficiencies of energy transfer from donor fluorophores linked to opposite ends of an oligonucleotide to an acceptor fluorophore linked to one subunit of the heterodimer. The reorientation of Fos-Jun by NFAT1 was not inhibited by competitor oligonucleotides or heterodimers. The rate of Fos-Jun reorientation was faster than the rate of heterodimer dissociation at some binding sites. The facilitated reorientation of Fos-Jun heterodimers therefore can enhance the efficiency of Fos-Jun-NFAT1 complex formation. We also examined the influence of the preferred orientation of Fos-Jun binding on the stability and transcriptional activity of Fos-Jun-NFAT1 complexes. Complexes formed at sites where Fos-Jun favored the same binding orientation in the presence and absence of NFAT1 exhibited an 8-fold slower dissociation rate than complexes formed at sites where Fos-Jun favored the opposite binding orientation. Fos-Jun-NFAT1 complexes also exhibited greater transcription activation at promoter elements that favored the same orientation of Fos-Jun binding in the presence and absence of NFAT1. Thus, the orientation of heterodimer binding can influence both the dynamics and promoter selectivity of multiprotein transcription regulatory complexes. PMID:11320240
Dynamics of Fos-Jun-NFAT1 complexes.
Ramirez-Carrozzi, V R; Kerppola, T K
2001-04-24
Transcription initiation in eukaryotes is controlled by nucleoprotein complexes formed through cooperative interactions among multiple transcription regulatory proteins. These complexes may be assembled via stochastic collisions or defined pathways. We investigated the dynamics of Fos-Jun-NFAT1 complexes by using a multicolor fluorescence resonance energy transfer assay. Fos-Jun heterodimers can bind to AP-1 sites in two opposite orientations, only one of which is populated in mature Fos-Jun-NFAT1 complexes. We studied the reversal of Fos-Jun binding orientation in response to NFAT1 by measuring the efficiencies of energy transfer from donor fluorophores linked to opposite ends of an oligonucleotide to an acceptor fluorophore linked to one subunit of the heterodimer. The reorientation of Fos-Jun by NFAT1 was not inhibited by competitor oligonucleotides or heterodimers. The rate of Fos-Jun reorientation was faster than the rate of heterodimer dissociation at some binding sites. The facilitated reorientation of Fos-Jun heterodimers therefore can enhance the efficiency of Fos-Jun-NFAT1 complex formation. We also examined the influence of the preferred orientation of Fos-Jun binding on the stability and transcriptional activity of Fos-Jun-NFAT1 complexes. Complexes formed at sites where Fos-Jun favored the same binding orientation in the presence and absence of NFAT1 exhibited an 8-fold slower dissociation rate than complexes formed at sites where Fos-Jun favored the opposite binding orientation. Fos-Jun-NFAT1 complexes also exhibited greater transcription activation at promoter elements that favored the same orientation of Fos-Jun binding in the presence and absence of NFAT1. Thus, the orientation of heterodimer binding can influence both the dynamics and promoter selectivity of multiprotein transcription regulatory complexes.
Miotto, Marco C; Pavese, Mayra D; Quintanar, Liliana; Zweckstetter, Markus; Griesinger, Christian; Fernández, Claudio O
2017-09-05
Alterations in the levels of copper in brain tissue and formation of α-synuclein (αS)-copper complexes might play a key role in the amyloid aggregation of αS and the onset of Parkinson's disease (PD). Recently, we demonstrated that formation of the high-affinity Cu(I) complex with the N-terminally acetylated form of the protein αS substantially increases and stabilizes local conformations with α-helical secondary structure and restricted motility. In this work, we performed a detailed NMR-based structural characterization of the Cu(I) complexes with the full-length acetylated form of its homologue β-synuclein (βS), which is colocalized with αS in vivo and can bind copper ions. Our results show that, similarly to αS, the N-terminal region of βS constitutes the preferential binding interface for Cu(I) ions, encompassing two independent and noninteractive Cu(I) binding sites. According to these results, βS binds the metal ion with higher affinity than αS, in a coordination environment that involves the participation of Met-1, Met-5, and Met-10 residues (site 1). Compared to αS, the shift of His from position 50 to 65 in the N-terminal region of βS does not change the Cu(I) affinity features at that site (site 2). Interestingly, the formation of the high-affinity βS-Cu(I) complex at site 1 in the N-terminus promotes a short α-helix conformation that is restricted to the 1-5 segment of the AcβS sequence, which differs with the substantial increase in α-helix conformations seen for N-terminally acetylated αS upon Cu(I) complexation. Our NMR data demonstrate conclusively that the differences observed in the conformational transitions triggered by Cu(I) binding to AcαS and AcβS find a correlation at the level of their backbone dynamic properties; added to the potential biological implications of these findings, this fact opens new avenues of investigations into the bioinorganic chemistry of PD.
NASA Astrophysics Data System (ADS)
Asadi, Mozaffar; Asadi, Zahra; Zarei, Leila; Sadi, Somaye Barzegar; Amirghofran, Zahra
2014-12-01
Metal Schiff-base complexes show biological activity but they are usually insoluble in water so four new water-soluble metal Schiff base complexes of Na2[M(5-SO3-1,2-salben]; (5-SO3-1,2-salben denoted N,N";-bis(5-sulphosalicyliden)-1,2-diaminobenzylamine and M = Mg, Mn, Cu, Zn) were synthesized and characterized. The formation constants of the metal complexes were determined by UV-Vis absorption spectroscopy. The interaction of these complexes with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Type of quenching, binding constants, number of binding sites and binding stoichiometries were determined by fluorescence quenching method. The results showed that the mentioned complexes strongly bound to BSA. Thermodynamic parameters indicated that hydrophobic association was the major binding force and that the interaction was entropy driven and enthalpically disfavoured. The displacement experiment showed that these complexes could bind to the subdomain IIA (site I) of albumin. Furthermore the synchronous fluorescence spectra showed that the microenvironment of the tryptophan residues was not apparently changed. Based on the Förster theory of non-radiation energy transfer, the distance between the donor (Trp residues) and the acceptor metal complexes was obtained. The growth inhibitory effect of complexes toward the K562 cancer cell line was measured.
Volod'ko, A V; Davydova, V N; Glazunov, V P; Likhatskaya, G N; Yermak, I M
2016-03-01
The polyelectrolyte complexes (PEC) of carrageenans (CG)-κ-, κ/β-, λ-and x-CG with chitosan were obtained. The formation of PEC was detected by Fourier-transform infrared (FTIR) spectroscopy and by centrifugation in a Percoll gradient. The influence of the structural peculiarities of CG on its interaction with chitosan was studied. The results of centrifugation showed that x-CG with a high degree of sulphation (SD) was completely bound to chitosan, unlike low SD κ-CG and κ/β-CG. Binding constant values showed there was a high affinity of CG for chitosan. CG with flexible macromolecule conformation and high SD exhibited the greatest binding affinity for chitosan. The full-atomic 3D-structures of the PEC κ-CG: chitosan in solution have been obtained by the experiments in silico for the first time. The amino groups of chitosan make the largest contribution to the energy of the complex formation by means of hydrogen and ionic bonds. The most probable complexes have stoichiometries of 1:1 and 1:1.5. Copyright © 2015 Elsevier B.V. All rights reserved.
Jain, Rinku; Hao, Bing; Liu, Ren-Peng; Chan, Michael K
2005-04-06
E. coli peptide deformylase (PDF) catalyzes the deformylation of nascent polypeptides generated during protein synthesis. While PDF was originally thought to be a zinc enzyme, subsequent studies revealed that the active site metal is iron. In an attempt to understand this unusual metal preference, high-resolution structures of Fe-, Co-, and Zn-PDF were determined in complex with its deformylation product, formate. In all three structures, the formate ion binds the metal and forms hydrogen-bonding interactions with the backbone nitrogen of Leu91, the amide side chain of Gln50, and the carboxylate side chain of Glu133. One key difference, however, is how the formate binds the metal. In Fe-PDF and Co-PDF, formate binds in a bidentate fashion, while in Zn-PDF, it binds in a monodentate fashion. Importantly, these structural results provide the first clues into the origins of PDF's metal-dependent activity differences. On the basis of these structures, we propose that the basis for the higher activity of Fe-PDF stems from the better ability of iron to bind and activate the tetrahedral transition state required for cleavage of the N-terminal formyl group.
ESI-MS measurements for the equilibrium constants of copper(II)-insulin complexes.
Gülfen, Mustafa; Özdemir, Abdil; Lin, Jung-Lee; Chen, Chung-Hsuan
2018-06-01
Trace elements regulate many biological reactions in the body. Copper(II) is known as one of trace elements and capable of binding to proteins. Insulin is a blood glucose-lowering peptide hormone and it is secreted by the pancreatic β-cells. In this study, Cu(II)-insulin complexes were investigated by using ESI-MS method. Insulin molecule gives ESI-MS peaks at +4, +5, +6 and +7 charged states. Cu(II)-insulin complexes can be monitored and quantified on the ESI-MS spectra as the shifted peaks according to insulin peaks. The solutions of Cu(II)-insulin complexes at different pHs and mole ratios of Cu(II) ions to insulin molecule were measured on the ESI-MS. The highest complex formation ratio for Cu(II)-insulin were found at pH 7. The multiple bindings of Cu(II) ions to insulin molecule was observed. The formation equilibrium constants of Cu(II)-insulin complexes were calculated as Kf 1 : 3.34 × 10 4 , Kf 2 : 2.99 × 10 4 , Kf 3 : 7.00 × 10 3 and Kf 4 :2.86 × 10 3 . The specific binding property of Cu(II) ions was controlled by using different spray ion sources including electrospray and nano-electrospray. The binding property of Cu(II) also investigated by MS/MS fragmentation. It was concluded from the ESI-MS measurements that Cu(II) ion has a high affinity to insulin molecules to form stable complexes. Copyright © 2018 Elsevier B.V. All rights reserved.
Hrs regulates early endosome fusion by inhibiting formation of an endosomal SNARE complex
Sun, Wei; Yan, Qing; Vida, Thomas A.; Bean, Andrew J.
2003-01-01
Movement through the endocytic pathway occurs principally via a series of membrane fusion and fission reactions that allow sorting of molecules to be recycled from those to be degraded. Endosome fusion is dependent on SNARE proteins, although the nature of the proteins involved and their regulation has not been fully elucidated. We found that the endosome-associated hepatocyte responsive serum phosphoprotein (Hrs) inhibited the homotypic fusion of early endosomes. A region of Hrs predicted to form a coiled coil required for binding the Q-SNARE, SNAP-25, mimicked the inhibition of endosome fusion produced by full-length Hrs, and was sufficient for endosome binding. SNAP-25, syntaxin 13, and VAMP2 were bound from rat brain membranes to the Hrs coiled-coil domain. Syntaxin 13 inhibited early endosomal fusion and botulinum toxin/E inhibition of early endosomal fusion was reversed by addition of SNAP-25(150–206), confirming a role for syntaxin 13, and establishing a role for SNAP-25 in endosomal fusion. Hrs inhibited formation of the syntaxin 13–SNAP-25–VAMP2 complex by displacing VAMP2 from the complex. These data suggest that SNAP-25 is a receptor for Hrs on early endosomal membranes and that the binding of Hrs to SNAP-25 on endosomal membranes inhibits formation of a SNARE complex required for homotypic endosome fusion. PMID:12847087
ERIC Educational Resources Information Center
de Morais, Camilo de L. M.; Silva, Se´rgio R. B.; Vieira, Davi S.; Lima, Ka´ssio M. G.
2016-01-01
The binding constant and stoichiometry ratio for the formation of iron(II)-(1,10-phenanthroline) or iron(II)-o-phenanthroline complexes has been determined by a combination of a low-cost analytical method using a smartphone and a molecular modeling method as a laboratory experiment designed for analytical and physical chemistry courses. Intensity…
Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya
2014-02-15
The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Satheshkumar, Angupillai; Elango, Kuppanagounder P
2014-09-15
The spectral techniques such as UV-Vis, (1)H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3×10(8) L mol(-1). Based on the Forster's theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol(-1), which is comparable to our experimental free energy of binding (-49 kJ mol(-1)) obtained from fluorescence study. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Satheshkumar, Angupillai; Elango, Kuppanagounder P.
2014-09-01
The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.
Neighbor effect in complexation of a conjugated polymer.
Sosorev, Andrey; Zapunidi, Sergey
2013-09-19
Charge-transfer complex (CTC) formation between a conjugated polymer and low-molecular-weight organic acceptor is proposed to be driven by the neighbor effect. Formation of a CTC on the polymer chain results in an increased probability of new CTC formation near the existing one. We present an analytical model for CTC distribution considering the neighbor effect, based on the principles of statistical mechanics. This model explains the experimentally observed threshold-like dependence of the CTC concentration on the acceptor content in a polymer:acceptor blend. It also allows us to evaluate binding energies of the complexes.
Nanoparticle-protein complexes mimicking corona formation in ocular environment.
Jo, Dong Hyun; Kim, Jin Hyoung; Son, Jin Gyeong; Dan, Ki Soon; Song, Sang Hoon; Lee, Tae Geol; Kim, Jeong Hun
2016-12-01
Nanoparticles adsorb biomolecules to form corona upon entering the biological environment. In this study, tissue-specific corona formation is provided as a way of controlling protein interaction with nanoparticles in vivo. In the vitreous, the composition of the corona was determined by the electrostatic and hydrophobic properties of the associated proteins, regardless of the material (gold and silica) or size (20- and 100-nm diameter) of the nanoparticles. To control protein adsorption, we pre-incubate 20-nm gold nanoparticles with 5 selectively enriched proteins from the corona, formed in the vitreous, to produce nanoparticle-protein complexes. Compared to bare nanoparticles, nanoparticle-protein complexes demonstrate improved binding to vascular endothelial growth factor (VEGF) in the vitreous. Furthermore, nanoparticle-protein complexes retain in vitro anti-angiogenic properties of bare nanoparticles. In particular, priming the nanoparticles (gold and silica) with tissue-specific corona proteins allows nanoparticle-protein complexes to exert better in vivo therapeutic effects by higher binding to VEGF than bare nanoparticles. These results suggest that controlled corona formation that mimics in vivo processes may be useful in the therapeutic use of nanomaterials in local environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Update of the ATTRACT force field for the prediction of protein-protein binding affinity.
Chéron, Jean-Baptiste; Zacharias, Martin; Antonczak, Serge; Fiorucci, Sébastien
2017-06-05
Determining the protein-protein interactions is still a major challenge for molecular biology. Docking protocols has come of age in predicting the structure of macromolecular complexes. However, they still lack accuracy to estimate the binding affinities, the thermodynamic quantity that drives the formation of a complex. Here, an updated version of the protein-protein ATTRACT force field aiming at predicting experimental binding affinities is reported. It has been designed on a dataset of 218 protein-protein complexes. The correlation between the experimental and predicted affinities reaches 0.6, outperforming most of the available protocols. Focusing on a subset of rigid and flexible complexes, the performance raises to 0.76 and 0.69, respectively. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Alkoxy bridged binuclear rhenium (I) complexes as a potential sensor for β-amyloid aggregation.
Sathish, Veerasamy; Babu, Eththilu; Ramdass, Arumugam; Lu, Zong-Zhan; Velayudham, Murugesan; Thanasekaran, Pounraj; Lu, Kuang-Lieh; Rajagopal, Seenivasan
2014-12-01
Alkoxy bridged binuclear rhenium(I) complexes are used as a probe for the selective and sensitive detection of aggregation of β-amyloid fibrils that are consorted with Alzheimer's disease (AD). The strong binding of the complexes is affirmed by the fluorescence enhancement and calculated binding constant value in the order of 10(5)M(-1) is obtained from the Scatchard plots. The binding of β-amyloid can be attributed to π-π stacking interaction of naphthalene moiety present in rhenium(I) complexes, and it is supported by docking studies. The selectivity is quite high towards other proteins and the formation of fibrils can be observed in the range of 30-40 nm through the AFM and TEM techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Interaction of an Fe derivative of TMAP (Fe(TMAP)OAc) with DNA in comparison with free-base TMAP.
Ghaderi, Masoumeh; Bathaie, S Zahra; Saboury, Ali-Akbar; Sharghi, Hashem; Tangestaninejad, Shahram
2007-07-01
We investigated the interaction of meso-tetrakis (N-para-methylanilium) porphyrin (TMAP) in its free base and Fe(II) form (Fe(TMAP)OAc) as a new derivative, with high molecular weight DNA at different ionic strengths, using various spectroscopic methods and microcalorimetry. The data obtained by spectrophotometery, circular dichroism (CD), fluorescence quenching and resonance light scattering (RLS) have demonstrated that TMAP association with DNA is via outside binding with self-stacking manner, which is accompanied with the "end-on" type complex formation in low ionic strength. However, in the case of Fe(TMAP)OAc, predominant mode of interaction is groove binding and after increasing in DNA concentration, unstable stacking-type aggregates are formed. In addition, isothermal titration calorimetric measurements have indicated the exothermic process of porphyrins binding to DNA, but the exothermisity in metal derivative of porphyrin is less than the free base. It confirmed the formation of a more organized aggregate of TMAP on DNA surface. Interactions of both porphyrins with DNA show high sensitivity to ionic strength. By addition of salt, the downfield CD signal of TMAP aggregates is shifted to a higher wavelength, which indicates some changes in the aggregates position. In the case of Fe(TMAP)OAc, addition of salt leads to changes in the mode of binding from groove binding to outside binding with self-stacking, which is accompanied with major changes in CD spectra, possibly indicating the formation of "face-on" type complex.
NASA Astrophysics Data System (ADS)
Ganesh, K.; Balraj, C.; Satheshkumar, A.; Elango, K. P.
2012-06-01
UV-vis, 1H NMR, FT-IR, mass and fluorescence spectral techniques were employed to investigate the mechanism of interaction of albendazole and trimethoprim with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and to characterize the reaction products. The interaction of DDQ with trimethoprim (TMP) and albenadazole (ALB) were found to proceed through the formation of donor-acceptor complex, containing DDQ radical anion and its conversion to the product. Fluorescence quenching studies indicated that the interaction between the donors and the acceptor are spontaneous and the interaction of TMP-DDQ (binding constant = 2.9 × 105) is found to be stronger than that the ALB-DDQ (binding constant = 3 × 103) system. Also, the binding constant increased with an increase in polarity of the medium indicating the involvement of radical anion as intermediate.
Ternary borate-nucleoside complex stabilization by Ribonuclease A demonstrates phosphate mimicry
Gabel, Scott A.; London, Robert E.
2010-01-01
Phosphate esters play a central role in cellular energetics, biochemical activation, signal transduction and conformational switching. The structural homology of the borate anion with phosphate, combined with its ability to spontaneously esterify hydroxyl groups, suggested that phosphate-ester recognition sites on proteins might exhibit significant affinity for non-enzymatically formed borate esters. 11B NMR studies and activity measurements on ribonuclease A in the presence of borate and several cytidine analogs demonstrate the formation of a stable ternary RNase A•3′-deoxycytidine-2′-borate ternary complex that mimics the complex formed between RNase A and a 2′-cytidine monophosphate (2′-CMP) inhibitor. Alternatively, no slowly exchanging borate resonance is observed for a ternary RNase A, borate, 2′-deoxycytidine mixture, demonstrating the critical importance of the 2′-hydroxyl group for complex formation. Titration of the ternary complex with 2′-CMP shows that it can displace the bound borate ester with a binding constant that is close to the reported inhibition constant of RNase A by 2′CMP. RNase A binding of a cyclic cytidine-2′,3′-borate ester, which is a structural homolog of the cytidine-2′,3′-cyclic phosphate substrate, could also be demonstrated. The apparent dissociation constant for the cytidine-2′,3′-borate•RNase A complex is 0.8 mM, which compares with a Michaelis constant of 11 mM for cCMP at pH 7, indicating considerably stronger binding. However, the value is 1000-fold larger than the reported dissociation constant of the RNase A complex with uridine-vanadate. These results are consistent with recent reports suggesting that in situ formation of borate esters that mimic the corresponding phosphate esters support enzyme catalysis. PMID:17957392
Prediction of Protein-Protein Interaction Sites Using Electrostatic Desolvation Profiles
Fiorucci, Sébastien; Zacharias, Martin
2010-01-01
Abstract Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. PMID:20441756
Formation of monofunctional cisplatin-DNA adducts in carbonate buffer.
Binter, Alexandra; Goodisman, Jerry; Dabrowiak, James C
2006-07-01
Carbonate in its various forms is an important component in blood and the cytosol. Since, under conditions that simulate therapy, carbonate reacts with cisplatin to form carbonato complexes, one of which is taken up and/or modified by the cell [C.R. Centerwall, J. Goodisman, D.J. Kerwood, J. Am. Chem. Soc., 127 (2005) 12768-12769], cisplatin-carbonato complexes may be important in the mechanism of action of cisplatin. In this report we study the binding of cisplatin to pBR322 DNA in two different buffers, using gel electrophoresis. In 23.8mM HEPES, N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, 5mM NaCl, pH 7.4 buffer, cisplatin produces aquated species, which react with DNA to unwind supercoiled Form I DNA, increasing its mobility, and reducing the binding of ethidium to DNA. This behavior is consistent with the formation of the well-known intrastrand crosslink on DNA. In 23.8mM carbonate buffer, 5mM NaCl, pH 7.4, cisplatin forms carbonato species that produce DNA-adducts which do not significantly change supercoiling but enhance binding of ethidium to DNA. This behavior is consistent with the formation of a monofunctional cisplatin adduct on DNA. These results show that aquated cisplatin and carbonato complexes of cisplatin produce different types of lesions on DNA and they underscore the importance of carrying out binding studies with cisplatin and DNA using conditions that approximate those found in the cell.
Transition States and transition state analogue interactions with enzymes.
Schramm, Vern L
2015-04-21
Enzymatic transition states have lifetimes of a few femtoseconds (fs). Computational analysis of enzyme motions leading to transition state formation suggests that local catalytic site motions on the fs time scale provide the mechanism to locate transition states. An experimental test of protein fs motion and its relation to transition state formation can be provided by isotopically heavy proteins. Heavy enzymes have predictable mass-altered bond vibration states without altered electrostatic properties, according to the Born-Oppenheimer approximation. On-enzyme chemistry is slowed in most heavy proteins, consistent with altered protein bond frequencies slowing the search for the transition state. In other heavy enzymes, structural changes involved in reactant binding and release are also influenced. Slow protein motions associated with substrate binding and catalytic site preorganization are essential to allow the subsequent fs motions to locate the transition state and to facilitate the efficient release of products. In the catalytically competent geometry, local groups move in stochastic atomic motion on the fs time scale, within transition state-accessible conformations created by slower protein motions. The fs time scale for the transition state motions does not permit thermodynamic equilibrium between the transition state and stable enzyme states. Isotopically heavy enzymes provide a diagnostic tool for fast coupled protein motions to transition state formation and mass-dependent conformational changes. The binding of transition state analogue inhibitors is the opposite in catalytic time scale to formation of the transition state but is related by similar geometries of the enzyme-transition state and enzyme-inhibitor interactions. While enzymatic transition states have lifetimes as short as 10(-15) s, transition state analogues can bind tightly to enzymes with release rates greater than 10(3) s. Tight-binding transition state analogues stabilize the rare but evolved enzymatic geometry to form the transition state. Evolution to efficient catalysis optimized this geometry and its stabilization by a transition state mimic results in tight binding. Release rates of transition state analogues are orders of magnitude slower than product release in normal catalytic function. During catalysis, product release is facilitated by altered chemistry. Compared to the weak associations found in Michaelis complexes, transition state analogues involve strong interactions related to those in the transition state. Optimum binding of transition state analogues occurs when the complex retains the system motions intrinsic to transition state formation. Conserved dynamic motion retains the entropic components of inhibitor complexes, improving the thermodynamics of analogue binding.
Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany; ...
2017-01-31
The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less
Samuele, Alberta; Facchini, Marcella; Rotili, Dante; Mai, Antonello; Artico, Marino; Armand-Ugón, Mercedes; Esté, José A; Maga, Giovanni
2008-09-01
We recently reported the synthesis and biological evaluation of a novel series of 5-alkyl-2-(N,N-disubstituted)amino-6-(2,6-difluorophenylalkyl)-3,4-dihydropyrimidin-4(3H)-ones (F(2)-N,N-DABOs). These compounds are highly active against both wild-type HIV-1 and the K103N, Y181C, and Y188L mutant strains. Herein we present novel 6-(2-chloro-6-fluorophenylalkyl)-N,N-DABO (2-Cl-6-F-N,N-DABO) derivatives and investigate the molecular basis for their high-affinity binding to HIV-1 reverse transcriptase (RT). Our results show that the new compounds display higher association rates than the difluoro derivatives toward wild-type HIV-1 RT or drug-resistant RT mutant forms. We also show that they preferentially associate to either the free enzyme or the enzyme-nucleic acid binary complex, and that this binding is stabilized upon formation of the ternary complex between HIV-1 RT and both the nucleic acid and nucleotide substrates. Interestingly, one compound showed dissociation rates from the ternary complex with RT mutants K103N and Y181I 10-20-fold slower than from the corresponding complex with wild-type RT.
Emerman, Amy B; Blower, Michael
2018-06-14
RNA-binding proteins (RBPs) are critical regulators of gene expression. Recent studies have uncovered hundreds of mRNA-binding proteins that do not contain annotated RNA-binding domains and have well-established roles in other cellular processes. Investigation of these nonconventional RBPs is critical for revealing novel RNA-binding domains and may disclose connections between RNA regulation and other aspects of cell biology. Endosomal sorting complex required for transport II (ESCRT-II) is a nonconventional RNA-binding complex that has a canonical role in multivesicular body formation. ESCRT-II previously has been identified as an RNA-binding complex in Drosophila oocytes, but whether its RNA-binding properties extend beyond Drosophila is unknown. In this study, we found that the RNA-binding properties of ESCRT-II are conserved in Xenopus eggs, where ESCRT-II interacted with hundreds of mRNAs. Using a UV-crosslinking approach, we demonstrated that ESCRT-II binds directly to RNA through its subunit Vps25. UV-crosslinking and immunoprecipitation (CLIP)-Seq revealed that Vps25 specifically recognizes a polypurine (i.e. GA-rich) motif in RNA. Using purified components, we could reconstitute the selective Vps25-mediated binding of the polypurine motif in vitro. Our results provide insight into the mechanism by which ESCRT-II selectively binds to mRNAs and also suggest an unexpected link between endosome biology and RNA regulation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Edler, Eileen; Stein, Matthias
2017-10-25
The small GTPase Rab5 is the key regulator of early endosomal fusion. It is post-translationally modified by covalent attachment of two geranylgeranyl (GG) chains to adjacent cysteine residues of the C-terminal hypervariable region (HVR). The GDP dissociation inhibitor (GDI) recognizes membrane-associated Rab5(GDP) and serves to release it into the cytoplasm where it is kept in a soluble state. A detailed new structural and dynamic model for human Rab5(GDP) recognition and binding with human GDI at the early endosome membrane and in its dissociated state is presented. In the cytoplasm, the GDI protein accommodates the GG chains in a transient hydrophobic binding pocket. In solution, two different binding modes of the isoprenoid chains inserted into the hydrophobic pocket of the Rab5(GDP):GDI complex can be identified. This equilibrium between the two states helps to stabilize the protein-protein complex in solution. Interprotein contacts between the Rab5 switch regions and characteristic patches of GDI residues from the Rab binding platform (RBP) and the C-terminus coordinating region (CCR) reveal insight on the formation of such a stable complex. GDI binding to membrane-anchored Rab5(GDP) is initially mediated by the solvent accessible switch regions of the Rab-specific RBP. Formation of the membrane-associated Rab5(GDP):GDI complex induces a GDI reorientation to establish additional interactions with the Rab5 HVR. These results allow to devise a detailed structural model for the process of extraction of GG-Rab5(GDP) by GDI from the membrane and the dissociation from targeting factors and effector proteins prior to GDI binding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jingzhi; Qian, Xinguo; Hu, Junbin
2010-11-03
The preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away,more » and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading.« less
The measles virus N(TAIL)-XD complex: an illustrative example of fuzziness.
Longhi, Sonia
2012-01-01
In this chapter, I focus on the biochemical and structural characterization of the complex between the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (N(TAIL)) and the C-terminal X domain (XD) of the viral phosphoprotein (P). I summarize the main experimental data available so far pointing out the prevalently disordered nature of N(TAIL) even after complex formation and the role of the flexible C-terminal appendage in the binding reaction. I finally discuss the possible functional role of these residual disordered regions within the complex in terms of their ability to capture other regulatory, binding partners.
Antony, Lizamma; van der Schoor, Freek; Dalrymple, Susan L.; Isaacs, John T.
2016-01-01
INTRODUCTION Physiologic testosterone continuously stimulates prostate stromal cell secretion of paracrine growth factors (PGFs), which if unopposed would induce hyperplastic overgrowth of normal prostate epithelial cells (PrECs). METHODS Lentiviral shRNA stable knock down of c-MYC, β-catenin, or TCF-4 completely inhibits normal (i.e., non-transformed) human PrECs growth. c-MYC enhancer driven reporter expression and growth is inhibited by two chemically distinct molecules, which prevent β-catenin signaling either by blocking TCF-4 binding (i.e., toxoflavin) or by stimulating degradation (i.e., AVX939). Recombinant DKK1 protein at a dose, which inhibits activation of canonical Wnt signaling does not inhibit PrEC growth. Nuclear β-catenin translocation and PrEC growth is prevented by both lack of PGFs or Akt inhibitor-I. Growth inhibition induced by lack of PGFs, toxoflavin, or Akt inhibitor-I is overcome by constitutive c-MYC transcription. RESULTS In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen binding to AR suppressing c-MYC transcription, resulting in G0 arrest/terminal differentiation independent of Rb, p21, p27, FoxP3, or down regulation of growth factors receptors and instead involves androgen-induced formation of AR/β-catenin/TCF-4 complexes, which suppress c-MYC transcription. Such suppression does not occur when AR is mutated in its zinc-finger binding domain. DISCUSSION Proliferation of non-transformed human PrECs is dependent upon c-MYC transcription via formation/binding of β-catenin/TCF-4 complexes at both 5′ and 3′ c-MYC enhancers stimulated by Wnt-independent, PGF induced Akt signaling. In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen-induced formation of AR/β-catenin/TCF-4 complexes, which retains binding to 3′ c-MYC enhancer, but now suppresses c-MYC transcription. PMID:24913829
Chammas, Oliver; Bonass, William A; Thomson, Neil H
2017-05-01
The influence of heparin and heparan sulphate (HepS) on the appearance and analysis of open promoter complex (RP o ) formation by E. coli RNA polymerase (RNAP) holoenzyme (σ 70 RNAP) on linear DNA using ex situ imaging by atomic force microscopy (AFM) has been investigated. Introducing heparin or HepS into the reaction mix significantly reduces non-specific interactions of the σ 70 RNAP and RNAP after RP o formation allowing for better interpretation of complexes shown within AFM images, particularly on DNA templates containing more than one promoter. Previous expectation was that negatively charged polysaccharides, often used as competitive inhibitors of σRNAP binding and RP o formation, would also inhibit binding of the DNA template to the mica support surface and thereby lower the imaging yield of active RNAP-DNA complexes. We found that the reverse of this was true, and that the yield of RP o formation detected by AFM, for a simple tandem gene model containing two λ PR promoters, increased. Moreover and unexpectedly, HepS was more efficient than heparin, with both of them having a dispersive effect on the sample, minimising unwanted RNAP-RNAP interactions as well as non-specific interactions between the RNAP and DNA template. The success of this method relied on the observation that E. coli RNAP has the highest affinity for the mica surface of all the molecular components. For our system, the affinity of the three constituent biopolymers to muscovite mica was RNAP>Heparin or HepS>DNA. While we observed that heparin and HepS can inhibit DNA binding to the mica, the presence of E. coli RNAP overcomes this effect allowing a greater yield of RP o s for AFM analysis. This method can be extended to other DNA binding proteins and enzymes, which have an affinity to mica higher than DNA, to improve sample preparation for AFM studies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Hwang, M-S; Schwall, C T; Pazarentzos, E; Datler, C; Alder, N N; Grimm, S
2014-01-01
Massive Ca2+ influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca2+ influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca2+-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca2+ binding. Cardiolipin is known to associate with complex II and upon Ca2+ binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca2+ binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction. PMID:24948011
Insight into Temperature Dependence of GTPase Activity in Human Guanylate Binding Protein-1
Rahman, Safikur; Deep, Shashank; Sau, Apurba Kumar
2012-01-01
Interferon-γ induced human guanylate binding protein-1(hGBP1) belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1. PMID:22859948
Monti, Maria C; Hernández-Arriaga, Ana M; Kamphuis, Monique B; López-Villarejo, Juan; Heck, Albert J R; Boelens, Rolf; Díaz-Orejas, Ramón; van den Heuvel, Robert H H
2007-01-01
The parD operon of Escherichia coli plasmid R1 encodes a toxin-antitoxin system, which is involved in plasmid stabilization. The toxin Kid inhibits cell growth by RNA degradation and its action is neutralized by the formation of a tight complex with the antitoxin Kis. A fascinating but poorly understood aspect of the kid-kis system is its autoregulation at the transcriptional level. Using macromolecular (tandem) mass spectrometry and DNA binding assays, we here demonstrate that Kis pilots the interaction of the Kid-Kis complex in the parD regulatory region and that two discrete Kis-binding regions are present on parD. The data clearly show that only when the Kis concentration equals or exceeds the Kid concentration a strong cooperative effect exists between strong DNA binding and Kid2-Kis2-Kid2-Kis2 complex formation. We propose a model in which transcriptional repression of the parD operon is tuned by the relative molar ratio of the antitoxin and toxin proteins in solution. When the concentration of the toxin exceeds that of the antitoxin tight Kid2-Kis2-Kid2 complexes are formed, which only neutralize the lethal activity of Kid. Upon increasing the Kis concentration, (Kid2-Kis2)n complexes repress the kid-kis operon.
Enyedy, Eva Anna; Horváth, László; Gajda-Schrantz, Krisztina; Galbács, Gábor; Kiss, Tamás
2006-12-01
The speciations of some potent insulin-mimetic zinc(II) complexes of bidentate ligands: maltol and 1,2-dimethyl-3-hydroxypyridinone with (O,O) and picolinic acid with (N,O) coordination modes, were studied via solution equilibrium investigations of the ternary complex formation in the presence of small relevant bioligands of the blood serum such as cysteine, histidine and citric acid. Results show that formation of the ternary complexes, especially with cysteine, is favoured at physiological pH range in almost all systems studied. Besides these low molecular mass binders, serum proteins among others albumin and transferrin can bind zinc(II) or its complexes. Accordingly, the distribution of zinc(II) between the small and high molecular mass fractions of the serum was also studied by ultrafiltration. Modelling calculations relating to the distribution of zinc(II), using the stability constants of the ternary complexes studied and those of the serum proteins reported in the literature, confirmed the ultrafiltration results, namely, the primary role of albumin in zinc(II) binding among the low and high molecular mass components of the serum.
Kišonaitė, Miglė; Zubrienė, Asta; Čapkauskaitė, Edita; Smirnov, Alexey; Smirnovienė, Joana; Kairys, Visvaldas; Michailovienė, Vilma; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas
2014-01-01
The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA) isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthio)acetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation. PMID:25493428
Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan
2016-08-12
Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan
2016-01-01
Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778
The binding of Varp to VAMP7 traps VAMP7 in a closed, fusogenically inactive conformation
Schäfer, Ingmar B.; Hesketh, Geoffrey G.; Bright, Nicholas A.; Gray, Sally R.; Pryor, Paul R.; Evans, Philip R; Luzio, J. Paul; Owen, David J.
2012-01-01
SNAREs provide energy and specificity to membrane fusion events. Fusogenic trans-SNARE complexes are assembled from Q-SNAREs embedded in one membrane and an R–SNARE embedded in the other. Regulation of membrane fusion events is crucial for intracellular trafficking. We identify the endosomal protein Varp as an R-SNARE-binding regulator of SNARE complex formation. Varp co-localises with and binds to VAMP7, an R-SNARE involved in both endocytic and secretory pathways. We present the structure of the second ankyrin repeat domain of mammalian Varp in complex with the cytosolic portion of VAMP7. The VAMP7 SNARE motif is trapped between Varp and the VAMP7 longin domain and hence Varp kinetically inhibits VAMP7’s ability to form SNARE complexes. This inhibition will be increased when Varp can also bind to other proteins present on the same membrane as the VAMP7 such as Rab32:GTP. PMID:23104059
In vitro assessment of phthalate acid esters-trypsin complex formation.
Chi, Zhenxing; Zhao, Jing; Li, Weiguo; Araghi, Arash; Tan, Songwen
2017-10-01
In this work, interactions of three phthalate acid esters (PAEs), including dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP), with trypsin have been studied in vitro, under simulated physiological conditions using multi-spectroscopic techniques and molecular modeling. The results show that these PAEs can bind to the trypsin, forming trypsin-PAEs complexes, mainly via hydrophobic interactions, with the affinity order of DMP > DEP > DBP. Binding to the PAEs is found to result in molecular deformation of trypsin. The modeling results suggest that only DBP can bind with the amino acid residues of the catalytic triad and S1 binding pocket of trypsin, leading to potential competitive enzyme inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nair, Maya S; D'Mello, Samar; Pant, Rashmi; Poluri, Krishna Mohan
2017-05-01
Interactions of a natural stilbene compound, resveratrol with two DNA sequences containing AATT/TTAA segments have been studied. Resveratrol is found to interact with both the sequences. The mode of interaction has been studied using absorption, steady state fluorescence and circular dichroism spectroscopic techniques. UV-visible absorption and fluorescence studies provided the information regarding the binding constants and the stoichiometry of binding, whereas circular dichroism studies depicted the structural changes in DNA upon resveratrol binding. Our results evidenced that, though resveratrol showed similar affinity to both the sequences, the mode of interactions was different. The binding constants of resveratrol to AATT/TTAA sequences were found to be 7.55×10 5 M -1 and 5.42×10 5 M -1 respectively. Spectroscopic data evidenced for a groove binding interaction. Melting studies showed that the binding of resveratrol induces differential stability to the DNA sequences d(CGTTAACG) 2 and d(CGAATTCG) 2 . Fluorescence data showed a stoichiometry of 1:1 for d(CGAATTCG) 2 -resveratrol complex and 1:4 for d(CGTTAACG) 2 -resveratrol complex. Molecular docking studies demonstrated that resveratrol binds to the minor groove region of both the sequences to form stable complexes with varied atomic contacts to the DNA bases or backbone. Both the complexes are stabilized by hydrogen bond formation. Our results evidenced that modulation of DNA sequence within the same bases can greatly alter the binding geometry and stability of the complex upon binding to small molecule inhibitor compounds like resveratrol. Copyright © 2017 Elsevier B.V. All rights reserved.
BLM and RMI1 alleviate RPA inhibition of TopoIIIα decatenase activity.
Yang, Jay; Bachrati, Csanad Z; Hickson, Ian D; Brown, Grant W
2012-01-01
RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIα complex. We investigated the effect of RPA on the ssDNA decatenase activity of topoisomerase IIIα. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIα. Complex formation between BLM, TopoIIIα, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species-specific interactions between RPA and BLM-TopoIIIα-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIα and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIα activity, promoting decatenation in the presence of RPA.
Shi, Shuyun; Zhang, Yuping; Chen, Xiaoqin; Peng, Mijun
2011-10-12
The effects of 1:1 flavonoid-Cu(2+) complexes of four flavonoids with different C-ring substituents, quercetin (QU), luteolin (LU), taxifolin (TA), and (+)-catechin (CA), on bovine serum albumin (BSA) were investigated and compared with corresponding free flavonoids by spectroscopic analysis in an attempt to characterize the chemical association taking place. The results indicated that all of the quenching mechanisms were based on static quenching combined with nonradiative energy transfer. Cu(2+) chelation changed the binding constants for BSA depending on the structures of flavonoids and the detected concentrations. The reduced hydroxyl groups, increased steric hindrance, and hydrophilicity of Cu(2+) chelation may be the main reasons for the reduced binding constants, whereas the formation of stable flavonoid-Cu(2+) complexes and synergistic action could increase the binding constants. The changed trends of critical energy transfer distance (R(0)) for Cu(2+) chelation were contrary to those of binding constants.
Mencarelli, Chiara; Bode, Gerard H.; Losen, Mario; Kulharia, Mahesh; Molenaar, Peter C.; Veerhuis, Robert; Steinbusch, Harry W. M.; De Baets, Marc H.; Nicolaes, Gerry A. F.; Martinez-Martinez, Pilar
2012-01-01
Serum amyloid P component (SAP) is a non-fibrillar glycoprotein belonging to the pentraxin family of the innate immune system. SAP is present in plasma, basement membranes, and amyloid deposits. This study demonstrates, for the first time, that the Goodpasture antigen-binding protein (GPBP) binds to human SAP. GPBP is a nonconventional Ser/Thr kinase for basement membrane type IV collagen. Also GPBP is found in plasma and in the extracellular matrix. In the present study, we demonstrate that GPBP specifically binds SAP in its physiological conformations, pentamers and decamers. The START domain in GPBP is important for this interaction. SAP and GPBP form complexes in blood and partly colocalize in amyloid plaques from Alzheimer disease patients. These data suggest the existence of complexes of SAP and GPBP under physiological and pathological conditions. These complexes are important for understanding basement membrane, blood physiology, and plaque formation in Alzheimer disease. PMID:22396542
Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3)
Koymans, Kirsten J.; Feitsma, Louris J.; Brondijk, T. Harma C.; Aerts, Piet C.; Lukkien, Eddie; Lössl, Philip; van Kessel, Kok P. M.; de Haas, Carla J. C.; van Strijp, Jos A. G.; Huizinga, Eric G.
2015-01-01
Toll-like receptors (TLRs) are crucial in innate recognition of invading micro-organisms and their subsequent clearance. Bacteria are not passive bystanders and have evolved complex evasion mechanisms. Staphylococcus aureus secretes a potent TLR2 antagonist, staphylococcal superantigen-like protein 3 (SSL3), which prevents receptor stimulation by pathogen-associated lipopeptides. Here, we present crystal structures of SSL3 and its complex with TLR2. The structure reveals that formation of the specific inhibitory complex is predominantly mediated by hydrophobic contacts between SSL3 and TLR2 and does not involve interaction of TLR2–glycans with the conserved LewisX binding site of SSL3. In the complex, SSL3 partially covers the entrance to the lipopeptide binding pocket in TLR2, reducing its size by ∼50%. We show that this is sufficient to inhibit binding of agonist Pam2CSK4 effectively, yet allows SSL3 to bind to an already formed TLR2–Pam2CSK4 complex. The binding site of SSL3 overlaps those of TLR2 dimerization partners TLR1 and TLR6 extensively. Combined, our data reveal a robust dual mechanism in which SSL3 interferes with TLR2 activation at two stages: by binding to TLR2, it blocks ligand binding and thus inhibits activation. Second, by interacting with an already formed TLR2–lipopeptide complex, it prevents TLR heterodimerization and downstream signaling. PMID:26283364
Mutschler, Hannes; Reinstein, Jochen; Meinhart, Anton
2010-07-09
The pneumococcal epsilon zeta antitoxin toxin (PezAT) system is a chromosomally encoded, class II toxin antitoxin system from the human pathogen Streptococcus pneumnoniae. Neutralization of the bacteriotoxic protein PezT is carried out by complex formation with its cognate antitoxin PezA. Here we study the stability of the inhibitory complex in vivo and in vitro. We found that toxin release is impeded in Escherichia coli and Bacillus subtilis due to the proteolytic resistance of PezA once bound to PezT. These findings are supported by in vitro experiments demonstrating a strong thermodynamic stabilization of both proteins upon binding. A detailed kinetic analysis of PezAT assembly revealed that these particular features of PezAT are based on a strong, electrostatically guided binding mechanism leading to a stable toxin antitoxin complex with femtomolar affinity. Our data show that PezAT complex formation is distinct to all other conventional toxin antitoxin modules and a controlled mode of toxin release is required for activation.
Myosin 7 and its adaptors link cadherins to actin.
Yu, I-Mei; Planelles-Herrero, Vicente J; Sourigues, Yannick; Moussaoui, Dihia; Sirkia, Helena; Kikuti, Carlos; Stroebel, David; Titus, Margaret A; Houdusse, Anne
2017-06-29
Cadherin linkages between adjacent stereocilia and microvilli are essential for mechanotransduction and maintaining their organization. They are anchored to actin through interaction of their cytoplasmic domains with related tripartite complexes consisting of a class VII myosin and adaptor proteins: Myo7a/SANS/Harmonin in stereocilia and Myo7b/ANKS4B/Harmonin in microvilli. Here, we determine high-resolution structures of Myo7a and Myo7b C-terminal MyTH4-FERM domain (MF2) and unveil how they recognize harmonin using a novel binding mode. Systematic definition of interactions between domains of the tripartite complex elucidates how the complex assembles and prevents possible self-association of harmonin-a. Several Myo7a deafness mutants that map to the surface of MF2 disrupt harmonin binding, revealing the molecular basis for how they impact the formation of the tripartite complex and disrupt mechanotransduction. Our results also suggest how switching between different harmonin isoforms can regulate the formation of networks with Myo7a motors and coordinate force sensing in stereocilia.
Kazemi, Zahra; Amiri Rudbari, Hadi; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Kajani, Abolghasem Abbasi; Azimi, Gholamhassan
2017-07-28
The reaction of a racemic mixture of Schiff base tridentate ligand with vanadium(V) affords homochiral vanadium complex, (VO(R-L)) 2 O and (VO(S-L)) 2 O due to ligand "self-recognition" process. The formation of homochiral vanadium complex was confirmed by 1 H NMR, 13 C NMR and X-ray diffraction. The HSA- and DNA-binding of the resultant complex is assessed by absorption, fluorescence and circular dichroism (CD) spectroscopy methods. Based on the results, the HSA- and DNA-binding constant, K b , were found to be 8.0 × 10 4 and 1.9 × 10 5 M -1 , respectively. Interestingly, in vitro cytotoxicity assay revealed the potent anticancer activity of this complex on two prevalent cancer cell lines of MCF-7 (IC50 value of 14 μM) and HeLa (IC50 value of 36 μM), with considerably low toxicity on normal human fibroblast cells. The maximum cell mortality of 12.3% obtained after 48 h incubation of fibroblast cells with 100 μM of the complex. Additionally, the specific DNA- and HSA-binding was also shown using molecular docking method. The synthesized complex displayed high potential for biomedical applications especially for development of novel and efficient anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Spectroscopic Study of the Binding of Netropsin and Hoechst 33258 to Nucleic Acids
NASA Astrophysics Data System (ADS)
Vardevanyan, P. O.; Parsadanyan, M. A.; Antonyan, A. P.; Sahakyan, V. G.
2018-05-01
The interaction of groove binding compounds — peptide antibiotic (polyamide) netropsin and fluorescent dye (bisbenzimidazole) Hoechst 33258 — with the double-stranded DNA and synthetic double-stranded polynucleotide poly(rA)-poly(rU) has been studied by spectrophotometry. Absorption spectra of these ligand complexes with nucleic acids have been obtained. Spectral changes at the complexation of individual ligands with the mentioned nucleic acids reveal the similarity of binding of each of these ligands with both DNA and RNA. Based on the spectroscopic measurements, the binding parameters of netropsin and Hoechst 33258 binding to DNA and poly(rA)-poly(rU) - K and n, as well as the thermodynamic parameters ΔS, ΔG, and ΔH have been determined. It was found that the binding of Hoechst 33258 to both nucleic acids is accompanied by a positive change in enthalpy, while in the case of netropsin the change in enthalpy is negative. Moreover, the contribution of entropy to the formation of the complexes is more pronounced in the case of Hoechst 33258.
Shamsi, Anas; Ahmed, Azaj; Bano, Bilqees
2018-05-01
The binding interaction between temsirolimus, an important antirenal cancer drug, and HSA, an important carrier protein was scrutinized making use of UV and fluorescence spectroscopy. Hyper chromaticity observed in UV spectroscopy in the presence of temsirolimus as compared to free HSA suggests the formation of complex between HSA and temsirolimus. Fluorescence quenching experiments clearly showed quenching in the fluorescence of HSA in the presence of temsirolimus confirming the complex formation and also confirmed that static mode of interaction is operative for this binding process. Binding constant values obtained through UV and fluorescence spectroscopy reveal strong interaction; temsirolimus binds to HSA at 298 K with a binding constant of 2.9 × 10 4 M -1 implying the strength of interaction. The negative Gibbs free energy obtained through Isothermal titration calorimetry as well as quenching experiments suggests that binding process is spontaneous. Molecular docking further provides an insight of various residues that are involved in this binding process; showing the binding energy to be -12.9 kcal/mol. CD spectroscopy was retorted to analyze changes in secondary structure of HSA; increased intensity in presence of temsirolimus showing changes in secondary structure of HSA induced by temsirolimus. This study is of importance as it provides an insight into the binding mechanism of an important antirenal cancer drug with an important carrier protein. Once temsirolimus binds to HSA, it changes conformation of HSA which in turn can alter the functionality of this important carrier protein and this altered functionality of HSA can be highlighted in variety of diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luciakova, Katarina, E-mail: katarina.luciakova@savba.sk; Kollarovic, Gabriel; Kretova, Miroslava
2011-08-05
Highlights: {yields} TGF-{beta} induces the formation of unique nuclear NF1/Smad4 complexes that repress expression of the ANT-2 gene. {yields} Repression is mediated through an NF1-dependent repressor element in the promoter. {yields} The formation of NF1/Smad4 complexes and the repression of ANT2 are prevented by inhibitors of p38 kinase and TGF-{beta} RI. {yields} NF1/Smad complexes implicate novel role for NF1 and Smad proteins in the regulation of growth. -- Abstract: We earlier reported the formation of a unique nuclear NF1/Smad complex in serum-restricted fibroblasts that acts as an NF1-dependent repressor of the human adenine nucleotide translocase-2 gene (ANT2) [K. Luciakova, G.more » Kollarovic, P. Barath, B.D. Nelson, Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex, Biochem. J. 412 (2008) 123-130]. In the present study, we show that TGF-{beta}, like serum-restriction: (a) induces the formation of NF1/Smad repressor complexes, (b) increases binding of the complexes to the repressor elements (Go elements) in the ANT2 promoter, and (c) inhibits ANT2 expression. Repression of ANT2 by TGF-{beta} is eliminated by mutating the NF1 binding sites in the Go repressor elements. All of the above responses to TGF-{beta} are prevented by inhibitors of TGF-{beta} RI and MAPK p38. These inhibitors also prevent NF1/Smad4 repressor complex formation and repression of ANT2 expression in serum-restricted cells, suggesting that similar signaling pathways are initiated by TGF-{beta} and serum-restriction. The present finding that NF1/Smad4 repressor complexes are formed through TGF-{beta} signaling pathways suggests a new, but much broader, role for these complexes in the initiation or maintenance of the growth-inhibited state.« less
Tolerance of Sir1p/Origin Recognition Complex-Dependent Silencing for Enhanced Origin Firing at HMRa
McConnell, Kristopher H.; Müller, Philipp; Fox, Catherine A.
2006-01-01
The HMR-E silencer is a DNA element that directs the formation of silent chromatin at the HMRa locus in Saccharomyces cerevisiae. Sir1p is one of four Sir proteins required for silent chromatin formation at HMRa. Sir1p functions by binding the origin recognition complex (ORC), which binds to HMR-E, and recruiting the other Sir proteins (Sir2p to -4p). ORCs also bind to hundreds of nonsilencer positions distributed throughout the genome, marking them as replication origins, the sites for replication initiation. HMR-E also acts as a replication origin, but compared to many origins in the genome, it fires extremely inefficiently and late during S phase. One postulate to explain this observation is that ORC's role in origin firing is incompatible with its role in binding Sir1p and/or the formation of silent chromatin. Here we examined a mutant HMR-E silencer and fusions between robust replication origins and HMR-E for HMRa silencing, origin firing, and replication timing. Origin firing within HMRa and from the HMR-E silencer itself could be significantly enhanced, and the timing of HMRa replication during an otherwise normal S phase advanced, without a substantial reduction in SIR1-dependent silencing. However, although the robust origin/silencer fusions silenced HMRa quite well, they were measurably less effective than a comparable silencer containing HMR-E's native ORC binding site. PMID:16479013
Canela, Núria; Orzáez, Mar; Fucho, Raquel; Mateo, Francesca; Gutierrez, Ricardo; Pineda-Lucena, Antonio; Bachs, Oriol; Pérez-Payá, Enrique
2006-11-24
The protein-protein complexes formed between different cyclins and cyclin-dependent kinases (CDKs) are central to cell cycle regulation. These complexes represent interesting points of chemical intervention for the development of antineoplastic molecules. Here we describe the identification of an all d-amino acid hexapeptide, termed NBI1, that inhibits the kinase activity of the cyclin-dependent kinase 2 (cdk2)-cyclin A complex through selective binding to cyclin A. The mechanism of inhibition is non-competitive for ATP and non-competitive for protein substrates. In contrast to the existing CDKs peptide inhibitors, the hexapeptide NBI1 interferes with the formation of the cdk2-cyclin A complex. Furthermore, a cell-permeable derivative of NBI1 induces apoptosis and inhibits proliferation of tumor cell lines. Thus, the NBI1-binding site on cyclin A may represent a new target site for the selective inhibition of activity cdk2-cyclin A complex.
Prediction of protein-protein interaction sites using electrostatic desolvation profiles.
Fiorucci, Sébastien; Zacharias, Martin
2010-05-19
Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Energetics of drug-DNA interactions.
Chaires, J B
1997-01-01
Understanding the thermodynamics of drug binding to DNA is of both practical and fundamental interest. The practical interest lies in the contribution that thermodynamics can make to the rational design process for the development of new DNA targeted drugs. Thermodynamics offer key insights into the molecular forces that drive complex formation that cannot be obtained by structural or computational studies alone. The fundamental interest in these interactions lies in what they can reveal about the general problems of parsing and predicting ligand binding free energies. For these problems, drug-DNA interactions offer several distinct advantages, among them being that the structures of many drug-DNA complexes are known at high resolution and that such structures reveal that in many cases the drug acts as a rigid body, with little conformational change upon binding. Complete thermodynamic profiles (delta G, delta H, delta S, delta Cp) for numerous drug-DNA interactions have been obtained, with the help of high-sensitivity microcalorimetry. The purpose of this article is to offer a perspective on the interpretation of these thermodynamics parameters, and in particular how they might be correlated with known structural features. Obligatory conformational changes in the DNA to accommodate intercalators and the loss of translational and rotational freedom upon complex formation both present unfavorable free energy barriers for binding. Such barriers must be overcome by favorable free energy contributions from the hydrophobic transfer of ligand from solution into the binding site, polyelectrolyte contributions from coupled ion release, and molecular interactions (hydrogen and ionic bonds, van der Waals interactions) that form within the binding site. Theoretical and semiempirical tools that allow estimates of these contributions to be made will be discussed, and their use in dissecting experimental data illustrated. This process, even at the current level of approximation, can shed considerable light on the drug-DNA binding process.
Belotserkovskii, Boris P; Hanawalt, Philip C
2015-11-01
Peptide Nucleic Acids (PNAs) are artificial DNA mimics with superior nucleic acid binding capabilities. T7 RNA polymerase (T7 RNAP) transcription upon encountering PNA bound to the non-template DNA strand was studied in vitro. A characteristic pattern of blockage signals was observed, extending downstream from the PNA binding site, similar to that produced by G-rich homopurine-homopyrimidine (hPu-hPy) sequences and likely caused by R-loop formation. Since blocked transcription complexes in association with stable R-loops may interfere with replication and in some cases trigger apoptosis, targeted R-loop formation might be employed to inactivate selected cells, such as those in tumors, based upon their unique complement of expressed genes. © 2014 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.
Enyedy, Éva A; Mészáros, János P; Dömötör, Orsolya; Hackl, Carmen M; Roller, Alexander; Keppler, Bernhard K; Kandioller, Wolfgang
2015-11-01
Complex formation equilibrium processes of the (N,N) donor containing 2,2'-bipyridine (bpy) and ethylenediamine (en) with (η(5)-pentamethylcyclopentadienyl)rhodium(III) were investigated in aqueous solution via pH-potentiometry, (1)H NMR spectroscopy, and UV-vis spectrophotometry in the absence and presence of chloride ions. The structure of [RhCp*(en)Cl]ClO4 (Cp*, pentamethylcyclopentadienyl) was also studied by single-crystal X-ray diffraction. pKa values of 8.56 and 9.58 were determined for [RhCp*(bpy)(H2O)](2+) and [RhCp*(en)(H2O)](2+), respectively resulting in the formation of negligible amount of mixed hydroxido complexes at pH 7.4. Stability and the H2O/Cl(-) co-ligand exchange constants of bpy and en complexes considerably exceed those of the bidentate O-donor deferiprone. The strong affinity of the bpy and en complexes to chloride ions most probably contributes to their low antiproliferative effect. Interactions between human serum albumin (HSA) and [RhCp*(H2O)3](2+), its complexes formed with deferiprone, bpy and en were also monitored by (1)H NMR spectroscopy, ultrafiltration/UV-vis and spectrofluorometry. Numerous binding sites (≥ 8) are available for [RhCp*(H2O)3](2+); and the interaction takes place most probably via covalent bonds through the imidazole nitrogen of His. According to the various fluorescence studies [RhCp*(H2O)3](2+) binds on sites I and II, and coordination of surface side chain donor atoms of the protein is also feasible. The binding of the bpy and en complex is weaker and slower compared to that of [RhCp*(H2O)3](2+), and formation of ternary HSA-RhCp*-ligand adducts was proved. In the case of the deferiprone complex, the RhCp* fragment is cleaved off when HSA is loaded with low equivalents of the compound.
Ferulic acid enhances IgE binding to peanut allergens in western blots.
USDA-ARS?s Scientific Manuscript database
Phenolic compounds at high concentrations are known to form insoluble complexes with proteins. We hypothesized that this complex formation could interfere with Western blot and ELISA assays for peanut allergens. To verify this, three simple phenolic compounds (ferulic, caffeic, and chlorogenic acids...
NASA Astrophysics Data System (ADS)
Jug, Mario; Mennini, Natascia; Melani, Fabrizio; Maestrelli, Francesca; Mura, Paola
2010-11-01
A novel method, which simultaneously exploits experimental (NMR) and theoretically calculated data obtained by a molecular modelling technique, was proposed, to obtain deeper insight into inclusion geometry and possible stereoselective binding of bupivacaine hydrochloride with selected cyclodextrin derivatives. Sulphobuthylether-β-cyclodextrin and water soluble polymeric β-cyclodextrin demonstrated to be the best complexing agents for the drug, resulting in formation of the most stable inclusion complexes with the highest increase in aqueous drug solubility. The drug-carrier binding modes with these cyclodextrins and phenomena which may be directly related to the higher stability and better aqueous solubility of complexes formed were discussed in details.
Yoshimura, Etsuro; Kohdr, Hicham; Mori, Satoshi; Hider, Robert C
2011-08-01
The phytosiderophores, mugineic acid (MA) and epi-hydroxymugineic acid (HMA), together with a related compound, nicotianamine (NA), were investigated for their ability to bind Al(III). Potentiometric titration analysis demonstrated that MA and HMA bind Al(III), in contrast to NA which does not under normal physiological conditions. With MA and HMA, in addition to the Al complex (AlL), the protonated (AlLH) and deprotonated (AlLH(-1)) complexes were identified from an analysis of titration curves, where L denotes the phytosiderophore form in which all the carboxylate functions are ionized. The equilibrium formation constants of the Al(III) phytosiderophore complexes are much smaller than those of the corresponding Fe(III) complexes. The higher selectivity of phytosiderophores for Fe(III) over Al(III) facilitates Fe(III) acquisition in alkaline conditions where free Al(III) levels are higher than free Fe(III) levels.
Complexes of dipolar excitons in layered quasi-two-dimensional nanostructures
NASA Astrophysics Data System (ADS)
Bondarev, Igor V.; Vladimirova, Maria R.
2018-04-01
We discuss neutral and charged complexes (biexcitons and trions) formed by indirect excitons in layered quasi-two-dimensional semiconductor heterostructures. Indirect excitons—long-lived neutral Coulomb-bound pairs of electrons and holes of different layers—have been known for semiconductor coupled quantum wells and have recently been reported for van der Waals heterostructures such as double bilayer graphene and transition-metal dichalcogenides. Using the configuration space approach, we derive the analytical expressions for the trion and biexciton binding energies as a function of interlayer distance. The method captures essential kinematics of complex formation to reveal significant binding energies, up to a few tens of meV for typical interlayer distances ˜3 -5 Å , with the trion binding energy always being greater than that of the biexciton. Our results can contribute to the understanding of more complex many-body phenomena such as exciton Bose-Einstein condensation and Wigner-like electron-hole crystallization in layered semiconductor heterostructures.
Srinivasan, S; Griffiths, K R; McGuire, V; Champion, A; Williams, K L; Alexander, S
2000-08-01
The terminal event of spore differentiation in the cellular slime mould Dictyostelium discoideum is the assembly of the spore coat, which surrounds the dormant amoeba and allows the organism to survive during extended periods of environmental stress. The spore coat is a polarized extracellular matrix composed of glycoproteins and cellulose. The process of spore coat formation begins by the regulated secretion of spore coat proteins from the prespore vesicles (PSVs). Four of the major spore coat proteins (SP96, PsB/SP85, SP70 and SP60) exist as a preassembled multiprotein complex within the PSVs. This complete complex has an endogenous cellulose-binding activity. Mutant strains lacking either the SP96 or SP70 proteins produce partial complexes that do not have cellulose-binding activity, while mutants lacking SP60 produce a partial complex that retains this activity. Using a combination of immunofluorescence microscopy and biochemical methods we now show that the lack of cellulose-binding activity in the SP96 and SP70 mutants results in abnormally assembled spore coats and spores with greatly reduced viability. In contrast, the SP60 mutant, in which the PsB complex retains its cellulose-binding activity, produces spores with apparently unaltered structure and viability. Thus, it is the loss of the cellulose-binding activity of the PsB complex, rather than the mere loss of individual spore coat proteins, that results in compromised spore coat structure. These results support the idea that the cellulose-binding activity associated with the complete PsB complex plays an active role in the assembly of the spore coat.
Exosites in the substrate specificity of blood coagulation reactions.
Bock, P E; Panizzi, P; Verhamme, I M A
2007-07-01
The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.
Ma, Yingqun; Lin, Chuxia
2012-05-30
Chemical, XRD, SEM, RS, FTIR and XPS techniques were used to investigate arsenate immobilization associated with microbial Fe(2+) oxidation in a complex acid sulfate water system consisting of a modified 9 K solution (pH 2.0) plus As, Cu, Cd, Pb, Zn and Mn. At a 1:12.5:70 molar ratio of As:Fe:S, schweretmannite formation was impeded. This was in contrast with the predominant presence of schwertmannite when the heavy metals were absent, suggesting that a schwertmannite binding model is not valid for explaining arsenate immobilization in the complex system. In this study, arsenate was initially immobilized through co-precipitation with non-Fe metals and phosphate. Subsequently when sufficient Fe(3+) was produced from Fe(2+) oxidation, formation of a mixed iron, arsenate and phosphate phase predominated. The last stage involved surface complexation of arsenate species. Pb appeared to play an insignificant role in arsenate immobilization due to its strong affinity for sulfate to form anglesite. Phosphate strongly competed with arsenate for the available binding sites. However, As exhibited an increased capacity to compete with P and S for available binding sites from the co-precipitation to surface complexation stage. Adsorbed As tended to be in HAsO(4)(2-) form. The scavenged arsenate species was relatively stable after 2464-h aging. Copyright © 2012 Elsevier B.V. All rights reserved.
Simple method for determining binding energies of fullerene and complex atomic negative ions
NASA Astrophysics Data System (ADS)
Felfli, Zineb; Msezane, Alfred
2017-04-01
A robust potential which embeds fully the vital core polarization interaction has been used in the Regge pole method to explore low-energy electron scattering from C60, Eu and Nb through the total cross sections (TCSs) calculations. From the characteristic dramatically sharp resonances in the TCSs manifesting negative ion formation in these systems, we extracted the binding energies for the C60, Euand Nbanions they are found to be in outstanding agreement with the measured electron affinities of C60, Eu and Nb. Common among these considered systems, including the standard atomic Au is the formation of their ground state negative ions at the second Ramsauer-Townsend (R-T) minima of their TCSs. Indeed, this is a signature of all the fullerenes and complex atoms considered thus far. Shape resonances, R-T minima and binding energies of the resultant anions are presented. This work was supported by U.S. DOE, Basic Energy Sciences, Office of Energy Research.
Krystek, S; Stouch, T; Novotny, J
1993-12-05
An empirical function was used to calculate free energy change (delta G) of complex formation between the following inhibitors and enzymes: Kunitz inhibitor (BPTI) with trypsin, trypsinogen and kallikrein; turkey ovomucoid 3rd domain (OMTKY3) with alpha-chymotrypsin and the Streptomyces griseus protease B; the potato chymotrypsin inhibitor with the protease B; and the barely chymotrypsin inhibitor and eglin-c with subtilisin and thermitase. Using X-ray coordinates of the nine complexes, we estimated the contributions that hydrophobic effect, electrostatic interactions and side-chain conformational entropy make towards the stability of the complexes. The calculated delta G values showed good agreement with the experimentally measured ones, the only exception being the kallikrein/BPTI complex whose X-ray structure was solved at an exceptionally low pH. In complexes with different enzymes, the same inhibitor residues contributed identically towards complex formation (delta G(residue) Spearman rank correlation coefficient 0.7 to 1.0). The most productive enzyme-contacting residues in OMTKY3, eglin-c, and the chymotrypsin inhibitors were found in analogous positions on their respective binding loops; thus, our calculations identified a functional (energetic) motif that parallels the well-known structural similarity of the binding loops. The delta G values calculated for BPTI complexed with trypsin (-21.7 kcal) and trypsinogen (-23.4 kcal) were similar and close to the experimental delta G value of the trypsin/BPTI complex (-18.1 kcal), lending support to the suggestion that the 10(7) difference in the observed stabilities (KA) of these two complexes reflects the energetic cost of conformational changes induced in trypsinogen during the pre-equilibrium stages of complex formation. In almost all of the complexes studied, the stabilization free energy contributed by the inhibitors was larger than that donated by the enzymes. In the trypsin-BPTI complex, the calculated delta G contribution of the amino group from the BPTI residue Lys15 (9.7 kcal) was somewhat higher than that arrived at in experiments with semisynthetic inhibitor analogs (7.5 kcal). In OMTKY3, different binding loop residues are known to affect differently the binding (delta delta G) to alpha-chymotrypsin and protease B; a good qualitative agreement was found between the calculated delta G(residue) estimates and the experimental delta delta G data (correlation coefficient 0.7). Large variations were observed in local surface complementarity and related interfacial volume in the two OMTKY3 complexes (by 20 to 60% for some side-chains).(ABSTRACT TRUNCATED AT 400 WORDS)
Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone.
Hurd, P J; Whitmarsh, A J; Baldwin, G S; Kelly, S M; Waltho, J P; Price, N C; Connolly, B A; Hornby, D P
1999-02-19
DNA duplexes in which the target cytosine base is replaced by 2-H pyrimidinone have previously been shown to bind with a significantly greater affinity to C5-cytosine DNA methyltransferases than unmodified DNA. Here, it is shown that 2-H pyrimidinone, when incorporated into DNA duplexes containing the recognition sites for M.HgaI-2 and M.MspI, elicits the formation of inhibitory covalent nucleoprotein complexes. We have found that although covalent complexes are formed between 2-H pyrimidinone-modified DNA and both M.HgaI-2 and M.MspI, the kinetics of complex formation are quite distinct in each case. Moreover, the formation of a covalent complex is still observed between 2-H pyrimidinone DNA and M.MspI in which the active-site cysteine residue is replaced by serine or threonine. Covalent complex formation between M.MspI and 2-H pyrimidinone occurs as a direct result of nucleophilic attack by the residue at the catalytic position, which is enhanced by the absence of the 4-amino function in the base. The substitution of the catalytic cysteine residue by tyrosine or chemical modification of the wild-type enzyme with N-ethylmaleimide, abolishes covalent interaction. Nevertheless the 2-H pyrimidinone-substituted duplex still binds to M.MspI with a greater affinity than a standard cognate duplex, since the 2-H pyrimidinone base is mis-paired with guanine. Copyright 1999 Academic Press.
Kachhap, Sangita; Priyadarshini, Pragya; Singh, Balvinder
2017-05-01
Aristaless (Al) and clawless (Cll) homeodomains that are involved in leg development in Drosophila melanogaster are known to bind cooperatively to 5'-(T/C)TAATTAA(T/A)(T/A)G-3' DNA sequence, but the mechanism of their binding to DNA is unknown. Molecular dynamics (MD) studies have been carried out on binary, ternary, and reconstructed protein-DNA complexes involving Al, Cll, and DNA along with binding free energy analysis of these complexes. Analysis of MD trajectories of Cll-3A01, binary complex reveals that C-terminal end of helixIII of Cll, unwind in the absence of Al and remains so in reconstructed ternary complex, Cll-3A01-Al. In addition, this change in secondary structure of Cll does not allow it to form protein-protein interactions with Al in the ternary reconstructed complex. However, secondary structure of Cll and its interactions are maintained in other reconstructed ternary complex, Al-3A01-Cll where Cll binds to Al-3A01, binary complex to form ternary complex. These interactions as observed during MD simulations compare well with those observed in ternary crystal structure. Thus, this study highlights the role of helixIII of Cll and protein-protein interactions while proposing likely mechanism of recognition in ternary complex, Al-Cll-DNA.
Parallel Force Assay for Protein-Protein Interactions
Aschenbrenner, Daniela; Pippig, Diana A.; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E.
2014-01-01
Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay. PMID:25546146
Parallel force assay for protein-protein interactions.
Aschenbrenner, Daniela; Pippig, Diana A; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E
2014-01-01
Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prywer, Jolanta, E-mail: jolanta.prywer@p.lodz.pl; Olszynski, Marcin; Mielniczek-Brzóska, Ewa
2015-11-15
Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation ofmore » carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca{sup 2+} ions and causes the formation of CaCit{sup −} and Ca{sub 10}(PO{sub 4}){sub 6}CO{sub 3} complexes. Trisodium citrate binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed. - Highlights: • Trisodium citrate (TC) increases induction time of carbonate apatite (CA) formation. • TC decreases the efficiency of CA precipitation. • The inhibitory effect of TC is explained in base of chemical speciation analysis. • The inhibitory effect is mainly related with the fact that TC binds Ca{sup 2+} ions. • TC binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which CA is formed.« less
NASA Astrophysics Data System (ADS)
Rubinstein, A.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Khoynezhad, A.
2010-08-01
Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
Rubinstein, A; Sabirianov, R F; Mei, W N; Namavar, F; Khoynezhad, A
2010-08-01
Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
Webster, R O; Lawrence, D A
1979-01-01
The cytophilic binding of immune complexes by peritoneal exudate cells (PEC) from adjuvant-stimulated guinea-pigs was studied using 125I-labelled guinea-pig IgG1, IgG2 and IgM antibodies to the dinitrophenyl (DNP) group. The influence of hapten density upon cytophilic activity was studied by the addition of DNP-conjugated antigens to antibody in 2-200 molar ratios of DNP:antibody. Only IgG2 binding was enhanced by immune complex formation, and the increased binding of IgG2 anti-DNP was dependent on the number of DNP determinants per antigen molecule. Cytophilic activity with epsilon-DNP-L-lysine (DNP-LYS), alpha,epsilon-di-DNP-L-lysine (DNP-LYS-DNP), or DNP1-8-BSA was no greater than that seen in the absence of hapten. Increased cytophilic binding was noted only with DNP20-41-BSA. The binding of IgG2 and IgG2 anti-DNP:DNP-bovine serum albumin (BSA) complexes was inhibited by monomeric IgG2. The relative cytophilic capacities of guinea-pig immunoglobulins appeared as follows: IgG greater than IgG1 greater than IgM. IgG1 and IgM binding of DNP conjugates did not enhance their cytophilic activity; therefore, IgG1 and IgM cytophilic binding to PEC was considered biologically insignificant. This investigation provides further evidence that cytophilic binding of immune complexes to macrophages is due to the co-operative action of multiple Fc sites rather than a conformational change in the IgG2 antibodies, and serum proteins, notably complement components, can alter the binding and/or phagocytosis of IgG2 anti-DNP:DNP-BSA complexes. PMID:86509
Single-Molecule Interactions of a Monoclonal Anti-DNA Antibody with DNA
Nevzorova, Tatiana A.; Zhao, Qingze; Lomakin, Yakov A.; Ponomareva, Anastasia A.; Mukhitov, Alexander R.; Purohit, Prashant K.; Weisel, John W.; Litvinov, Rustem I.
2017-01-01
Interactions of DNA with proteins are essential for key biological processes and have both a fundamental and practical significance. In particular, DNA binding to anti-DNA antibodies is a pathogenic mechanism in autoimmune pathology, such as systemic lupus erythematosus. Here we measured at the single-molecule level binding and forced unbinding of surface-attached DNA and a monoclonal anti-DNA antibody MRL4 from a lupus erythematosus mouse. In optical trap-based force spectroscopy, a microscopic antibodycoated latex bead is trapped by a focused laser beam and repeatedly brought into contact with a DNA-coated surface. After careful discrimination of non-specific interactions, we showed that the DNA-antibody rupture force spectra had two regimes, reflecting formation of weaker (20–40 pN) and stronger (>40 pN) immune complexes that implies the existence of at least two bound states with different mechanical stability. The two-dimensional force-free off-rate for the DNA-antibody complexes was ~2.2 × 10−3 s−1, the transition state distance was ~0.94 nm, the apparent on-rate was ~5.26 s−1, and the stiffness of the DNA-antibody complex was characterized by a spring constant of 0.0021 pN/nm, suggesting that the DNA-antibody complex is a relatively stable, but soft and deformable macromolecular structure. The stretching elasticity of the DNA molecules was characteristic of single-stranded DNA, suggesting preferential binding of the MRL4 antibody to one strand of DNA. Collectively, the results provide fundamental characteristics of formation and forced dissociation of DNA-antibody complexes that help to understand principles of DNA-protein interactions and shed light on the molecular basis of autoimmune diseases accompanied by formation of anti-DNA antibodies. PMID:29104846
Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple-turnover
Rawlings, Renata A.; Krishnan, Vishalakshi; Walter, Nils G.
2011-01-01
RNA interference (RNAi) is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response against viruses and retrotransposons. During viral infection, the RNase III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs), 21–24 nucleotides in length, and helps load them into the RNA-induced silencing complex (RISC) to guide cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressor (RSS) proteins that tightly, and presumably quantitatively, bind siRNAs to thwart RNAi-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus (CIRV), as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding ((1.69 ± 0.07)×108 M−1s−1) and marked dissociation (koff = 0.062 ± 0.002 s−1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple-turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. PMID:21354178
Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.
Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G
2011-04-29
RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.
Monti, Maria C.; Hernández-Arriaga, Ana M.; Kamphuis, Monique B.; López-Villarejo, Juan; Heck, Albert J. R.; Boelens, Rolf; Díaz-Orejas, Ramón; van den Heuvel, Robert H. H.
2007-01-01
The parD operon of Escherichia coli plasmid R1 encodes a toxin–antitoxin system, which is involved in plasmid stabilization. The toxin Kid inhibits cell growth by RNA degradation and its action is neutralized by the formation of a tight complex with the antitoxin Kis. A fascinating but poorly understood aspect of the kid–kis system is its autoregulation at the transcriptional level. Using macromolecular (tandem) mass spectrometry and DNA binding assays, we here demonstrate that Kis pilots the interaction of the Kid–Kis complex in the parD regulatory region and that two discrete Kis-binding regions are present on parD. The data clearly show that only when the Kis concentration equals or exceeds the Kid concentration a strong cooperative effect exists between strong DNA binding and Kid2–Kis2–Kid2–Kis2 complex formation. We propose a model in which transcriptional repression of the parD operon is tuned by the relative molar ratio of the antitoxin and toxin proteins in solution. When the concentration of the toxin exceeds that of the antitoxin tight Kid2–Kis2–Kid2 complexes are formed, which only neutralize the lethal activity of Kid. Upon increasing the Kis concentration, (Kid2–Kis2)n complexes repress the kid–kis operon. PMID:17317682
Mechanism of opening a sliding clamp
Douma, Lauren G.; Yu, Kevin K.; England, Jennifer K.
2017-01-01
Abstract Clamp loaders load ring-shaped sliding clamps onto DNA where the clamps serve as processivity factors for DNA polymerases. In the first stage of clamp loading, clamp loaders bind and stabilize clamps in an open conformation, and in the second stage, clamp loaders place the open clamps around DNA so that the clamps encircle DNA. Here, the mechanism of the initial clamp opening stage is investigated. Mutations were introduced into the Escherichia coli β-sliding clamp that destabilize the dimer interface to determine whether the formation of an open clamp loader–clamp complex is dependent on spontaneous clamp opening events. In other work, we showed that mutation of a positively charged Arg residue at the β-dimer interface and high NaCl concentrations destabilize the clamp, but neither facilitates the formation of an open clamp loader–clamp complex in experiments presented here. Clamp opening reactions could be fit to a minimal three-step ‘bind-open-lock’ model in which the clamp loader binds a closed clamp, the clamp opens, and subsequent conformational rearrangements ‘lock’ the clamp loader–clamp complex in a stable open conformation. Our results support a model in which the E. coli clamp loader actively opens the β-sliding clamp. PMID:28973453
NASA Astrophysics Data System (ADS)
Dong, Peng; Wang, Rong; Yu, Xuegong; Chen, Lin; Ma, Xiangyang; Yang, Deren
2017-07-01
We have quantitatively investigated the formation kinetics of metastable vacancy-dioxygen (VO2) complex in a structure of [VO + Oi], where a VO complex is trapped in a next-neighbor position to an interstitial oxygen atom (Oi). It is found that the VO annihilation is accompanied by the generation of metastable [VO + Oi] complex during annealing in the temperature range of 220-250 °C. The activation energy for [VO + Oi] generation appears at around 0.48 eV, which is much lower than the counterpart of stable VO2 complex. This indicates that the formation of [VO + Oi] complex originates from the reaction between VO and Oi. The ab initio calculations show that the formation energy of [VO + Oi] complex is larger than that of VO2 complex, which means that [VO + Oi] complex is thermodynamically unfavorable as compared to VO2 complex. However, the binding energy of [VO + Oi] complex is positive, indicating that [VO + Oi] complex is stable against decomposition of VO and Oi in silicon. It is believed that [VO + Oi] complex serves as the intermediate for VO to VO2 conversion.
Kroeger Smith, M. B.; Rouzer, C. A.; Taneyhill, L. A.; Smith, N. A.; Hughes, S. H.; Boyer, P. L.; Janssen, P. A.; Moereels, H.; Koymans, L.; Arnold, E.
1995-01-01
Computer modeling studies have been carried out on three nonnucleoside inhibitors complexed with human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), using crystal coordinate data from a subset of the protein surrounding the binding pocket region. Results from the minimizations of solvated complexes of 2-cyclopropyl-4-methyl-5,11-dihydro-5H-dipyrido[3,2-b :2',3'-e][1,4] diazepin-6-one (nevirapine), alpha-anilino-2, 6-dibromophenylacetamide (alpha-APA), and 8-chloro-tetrahydro-imidazo(4,5,1-jk)(1,4)-benzodiazepin-2(1H)-thi one (TIBO) show that all three inhibitors maintain a very similar conformational shape, roughly overlay each other in the binding pocket, and appear to function as pi-electron donors to aromatic side-chain residues surrounding the pocket. However, side-chain residues adapt to each bound inhibitor in a highly specific manner, closing down around the surface of the drug to make tight van der Waals contacts. Consequently, the results from the calculated minimizations reveal that only when the inhibitors are modeled in a site constructed from coordinate data obtained from their particular RT complex can the calculated binding energies be relied upon to predict the correct orientation of the drug in the pocket. In the correct site, these binding energies correlate with EC50 values determined for all three inhibitors in our laboratory. Analysis of the components of the binding energy reveals that, for all three inhibitors, solvation of the drug is endothermic, but solvation of the protein is exothermic, and the sum favors complex formation. In general, the protein is energetically more stable and the drug less stable in their complexes as compared to the reactant conformations. For all three inhibitors, interaction with the protein in the complex is highly favorable. Interactions of the inhibitors with individual residues correlate with crystallographic and site-specific mutational data. pi-Stacking interactions are important in binding and correlate with drug HOMO RHF/6-31G* energies. Modeling results are discussed with respect to the mechanism of complex formation and the design of nonnucleoside inhibitors that will be more effective against mutants of HIV-1 RT that are resistant to the currently available drugs. PMID:8535257
Antibody-mediated cofactor-driven reactions
Schultz, Peter G.
1993-01-01
Chemical reactions capable of being rate-enhanced by auxiliary species which interact with the reactants but do not become chemically bound to them in the formation of the final product are performed in the presence of antibodies which promote the reactions. The antibodies contain regions within their antigen binding sites which recognize the auxiliary species in a conformation which promotes the reaction. The antigen binding site frequently recognizes a particular transition state complex or other high energy complex along the reaction coordinate, thereby promoting the progress of the reaction along the desired route as opposed to other less favorable routes. Various classes of reaction together with appropriate antigen binding site specificities tailored for each are disclosed.
Li, Zhen; Li, Zhigang; Yang, Lingling; Xie, Yuanzhe; Shi, Jie; Wang, Ruiyong; Chang, Junbiao
2015-03-01
In this paper, the interactions of pepsin with CYD (cytidine) or nucleoside analogs, including FNC (2'-deoxy-2'-β-fluoro-4'-azidocytidine) and CMP (cytidine monophosphate), were investigated by fluorescence, UV-visible absorption and synchronous fluorescence spectroscopy under mimic physiological conditions. The results indicated that FNC (CYD/CMP) caused the fluorescence quenching by the formation of complex. The binding constants and thermo-dynamic parameters at three different temperatures were obtained. The hydrophobic and electrostatic interactions were the predominant intermolecular forces to stabilize the complex. The F atom in FNC might weaken the binding of nucleoside analog to pepsin. Results showed that CYD was the strongest quencher and bound to pepsin with higher affinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltz, S.M.; Swanson, M.L.; Wemmie, J.A.
1988-05-03
Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional ..cap alpha beta.. heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state. The membrane-bound ..cap alpha beta.. heterodimeric complex displayed similar curvilinear /sup 125/I-IGF-1 equilibrium binding compared to the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric complex. /sup 125/I-IGF-1 binding to both the isolated ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta..more » heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of ..cap alpha beta.. heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an ..cap alpha beta.. heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the ..cap alpha beta.. heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state.« less
Ribosome binding induces repositioning of the signal recognition particle receptor on the translocon
Kuhn, Patrick; Draycheva, Albena; Vogt, Andreas; Petriman, Narcis-Adrian; Sturm, Lukas; Drepper, Friedel; Warscheid, Bettina; Wintermeyer, Wolfgang
2015-01-01
Cotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear. By using photo-cross-linking and fluorescence resonance energy transfer measurements, we show that FtsY–SecY complex formation is guanosine triphosphate independent but requires a phospholipid environment. Binding of an SRP–RNC complex exposing a hydrophobic transmembrane segment induces a rearrangement of the SecY–FtsY complex, which allows the subsequent contact between SecY and ribosomal protein uL23. These results suggest that direct RNC transfer to the translocon is guided by the interaction between SRP and translocon-bound FtsY in a quaternary targeting complex. PMID:26459600
Multivalent DNA-binding properties of the HMG-1 proteins.
Maher, J F; Nathans, D
1996-01-01
HMG-I proteins are DNA-binding proteins thought to affect the formation and function of transcription complexes. Each protein contains three DNA-binding motifs, known as AT-hooks, that bind in the minor groove of AT tracts in DNA. Multiple AT-hooks within a polypeptide chain should contact multiple AT tracts, but the rules governing these interactions have not been defined. In this study, we demonstrate that high-affinity binding uses two or three appropriately spaced AT tracts as a single multivalent binding site. These principles have implications for binding to regulatory elements such as the interferon beta enhancer, TATA boxes, and serum response elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692884
A non-canonical mechanism for Crm1-export cargo complex assembly.
Fischer, Ute; Schäuble, Nico; Schütz, Sabina; Altvater, Martin; Chang, Yiming; Faza, Marius Boulos; Panse, Vikram Govind
2015-04-21
The transport receptor Crm1 mediates the export of diverse cargos containing leucine-rich nuclear export signals (NESs) through complex formation with RanGTP. To ensure efficient cargo release in the cytoplasm, NESs have evolved to display low affinity for Crm1. However, mechanisms that overcome low affinity to assemble Crm1-export complexes in the nucleus remain poorly understood. In this study, we reveal a new type of RanGTP-binding protein, Slx9, which facilitates Crm1 recruitment to the 40S pre-ribosome-associated NES-containing adaptor Rio2. In vitro, Slx9 binds Rio2 and RanGTP, forming a complex. This complex directly loads Crm1, unveiling a non-canonical stepwise mechanism to assemble a Crm1-export complex. A mutation in Slx9 that impairs Crm1-export complex assembly inhibits 40S pre-ribosome export. Thus, Slx9 functions as a scaffold to optimally present RanGTP and the NES to Crm1, therefore, triggering 40S pre-ribosome export. This mechanism could represent one solution to the paradox of weak binding events underlying rapid Crm1-mediated export.
Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation.
Edwards, Thomas E; Robinson, Bruce H; Sigurdsson, Snorri Th
2005-03-01
The Tat protein and the transactivation responsive (TAR) RNA form an essential complex in the HIV lifecycle, and mutations in the basic region of the Tat protein alter this RNA-protein molecular recognition. Here, EPR spectroscopy was used to identify amino acids, flanking an essential arginine of the Tat protein, which contribute to specific and rigid TAR-Tat complex formation by monitoring changes in the mobility of nitroxide spin-labeled TAR RNA nucleotides upon binding. Arginine to lysine N-terminal mutations did not affect TAR RNA interfacial dynamics. In contrast, C-terminal point mutations, R56 in particular, affected the mobility of nucleotides U23 and U38, which are involved in a base-triple interaction in the complex. This report highlights the role of dynamics in specific molecular complex formation and demonstrates the ability of EPR spectroscopy to study interfacial dynamics of macromolecular complexes.
WAVE2 serves a functional partner of IRSp53 by regulating its interaction with Rac.
Miki, Hiroaki; Takenawa, Tadaomi
2002-04-26
We previously reported that IRSp53 binds both Rac and WAVE2, inducing formation of Rac/IRSp53/WAVE2 complex that is important for membrane ruffling. However, recent reports noted a specific interaction between IRSp53 and Cdc42 but not Rac, which led us to re-examine the binding of IRSp53 to Rac. Immunoprecipitation analysis and pull-down assay reveal that full-length IRSp53 binds Rac much less efficiently than the N-terminal fragment, which may be caused by intramolecular interaction. Interestingly, the intramolecular interaction is interrupted by the binding of WAVE2 and full-length IRSp53 associates with Rac in the presence of WAVE2. We also report that IRSp53 induces spreading and neurite formation of N1E-115 cells, which presumably reflect functional cooperation with Rac.
Frädrich, Claudia; March, Anika; Fiege, Kerstin; Hartmann, Anja; Jahn, Dieter
2012-01-01
Bacillus subtilis forms acetoin under anaerobic fermentative growth conditions and as a product of the aerobic carbon overflow metabolism. Acetoin formation from pyruvate requires α-acetolactate synthase and acetolactate decarboxylase, both encoded by the alsSD operon. The alsR gene, encoding the LysR-type transcriptional regulator AlsR, was found to be essential for the in vivo expression of alsSD in response to anaerobic acetate accumulation, the addition of acetate, low pH, and the aerobic stationary phase. The expressions of the alsSD operon and the alsR regulatory gene were independent of other regulators of the anaerobic regulatory network, including ResDE, Fnr, and ArfM. A negative autoregulation of alsR was observed. In vitro transcription from the alsSD promoter using purified B. subtilis RNA polymerase required AlsR. DNA binding studies with purified recombinant AlsR in combination with promoter mutagenesis experiments identified a 19-bp high-affinity palindromic binding site (TAAT-N11-ATTA) at positions −76 to −58 (regulatory binding site [RBS]) and a low-affinity site (AT-N11-AT) at positions −41 to −27 (activator binding site [ABS]) upstream of the transcriptional start site of alsSD. The RBS and ABS were found to be essential for in vivo alsSD transcription. AlsR binding to both sites induced the formation of higher-order, transcription-competent complexes. The AlsR protein carrying the S100A substitution at the potential coinducer binding site still bound to the RBS and ABS. However, AlsR(S100A) failed to form the higher-order complex and to initiate in vivo and in vitro transcription. A model for AlsR promoter binding and transcriptional activation was deduced. PMID:22178965
Qiao, Huan; May, James M.
2013-01-01
SVCT2 is the major transporter mediating vitamin C uptake in most organs. Its expression is driven by two promoters (CpG-poor exon 1a promoter and CpG-rich exon 1b promoter). In this work we mapped discrete elements within the proximal CpG-poor promoter responsible for the exon 1a transcription. We identified two E boxes for USF binding and one Y box for NF-Y binding. We further show that the formation of an NFY/USF complex on the exon 1a promoter amplifies each other's ability to bind to the promoter in a cooperativity-dependent manner and is absolutely required for the full activity of the exon 1a promoter. The analysis of the CpG site located at the upstream USF binding site in the promoter showed a strong correlation between expression and demethylation. It was also shown that the exon 1a transcription was induced in cell culture treated with demethylating agent decitabine. The specific methylation of this CpG site impaired both the binding of USF and the formation of the functional NF-Y/USF complex as well as promoter activity, suggesting its importance for the cell-specific transcription. Thus CpG methylation at the upstream USF binding site functions in establishing and maintaining cell-specific transcription from the CpG-poor SVCT2 exon 1a promoter. PMID:21770893
NASA Astrophysics Data System (ADS)
Prywer, Jolanta; Olszynski, Marcin; Mielniczek-Brzóska, Ewa
2015-11-01
Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation of carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca2+ ions and causes the formation of CaCit- and Ca10(PO4)6CO3 complexes. Trisodium citrate binds Ca2+ ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in
2015-07-28
Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging themore » ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.« less
Chakraborty, Madhurima; Paul, Somnath; Mitra, Ishani; Bardhan, Munmun; Bose, Mridul; Saha, Abhijit; Ganguly, Tapan
2018-01-01
The nature of interactions between heme protein human hemoglobin (HHb) and gold nanoparticles of two different morphologies that is GNP (spherical) and GNS (star-shaped) have been investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, resonance light scattering (RLS), time resolved fluorescence, FT-IR, and circular dichroism (CD) techniques under physiological condition of pH ~7 at ambient and different temperatures. Analysis of the steady state fluorescence quenching of HHb in aqueous solution in the presence of GNP and GNS suggests that the nature of the quenching is of static type. The static nature of the quenching is also confirmed from time resolved data. The static type of quenching also indicates the possibility of formation of ground state complex for both HHb-GNP and HHb-GNS systems. From the measurements of Stern-Volmer (SV) constants K SV and binding constants, K A and number of binding sites it appears that HHb forms stronger binding with GNP relative to GNS. Analysis of the thermodynamic parameters indicates that the formation of HHb-GNP and HHb-GNS complexes are spontaneous molecular interaction processes (∆G<0). In both cases hydrogen bonding and van der Waals interactions play a dominant role (∆H<0, ∆S<0). Synchronous fluorescence spectroscopy further reveals that the ground state complex formations of HHb-GNP and HHb-GNS preferably occur by binding with the amino acid tyrosine through hydrogen bonding interactions. Moreover the α-helicity contents of the proteins as obtained from the circular dichroism (CD) spectra appears to be marginally reduced by increasing concentrations of GNP and GNS and the α-helical structures of HHb retain its identity as native secondary structure in spite of complex formations with GNP or GNS. These findings demonstrate the efficiency of biomedical applications of GNP and GNS nanoparticles as well as in elucidating their mechanisms of action as drugs or drug delivery systems in human. Copyright © 2017 Elsevier B.V. All rights reserved.
Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somanath, Sangeeta; Partridge, Christopher J.; Marshall, Catriona
Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the SNAP-25 accessory protein, snapin, C-terminal H2 domain binds SNAP-25 through its N-terminal Sn-1 domain. Interestingly whilst snapin binds SNAP-25, there is only modest binding of this complex with syntaxin-1A under resting conditions. Instead synataxin-1A appears to be recruited in response to secretory stimulation.more » These results indicate that snapin plays a role in tethering insulin granules to the plasma membrane through coiled coil interaction of snapin with SNAP-25, with full granule fusion competency only resulting after subsequent syntaxin-1A recruitment triggered by secretory stimulation. - Highlights: • Snapin mediates granule docking. • Snapin binds SNAP-25. • SNARE complex forms downstream.« less
Drakou, Christina E; Tsitsanou, Katerina E; Potamitis, Constantinos; Fessas, Dimitrios; Zervou, Maria; Zographos, Spyros E
2017-01-01
Anopheles gambiae Odorant Binding Protein 1 in complex with the most widely used insect repellent DEET, was the first reported crystal structure of an olfactory macromolecule with a repellent, and paved the way for OBP1-structure-based approaches for discovery of new host-seeking disruptors. In this work, we performed STD-NMR experiments to directly monitor and verify the formation of a complex between AgamOBP1 and Icaridin, an efficient DEET alternative. Furthermore, Isothermal Titration Calorimetry experiments provided evidence for two Icaridin-binding sites with different affinities (Kd = 0.034 and 0.714 mM) and thermodynamic profiles of ligand binding. To elucidate the binding mode of Icaridin, the crystal structure of AgamOBP1•Icaridin complex was determined at 1.75 Å resolution. We found that Icaridin binds to the DEET-binding site in two distinct orientations and also to a novel binding site located at the C-terminal region. Importantly, only the most active 1R,2S-isomer of Icaridin's equimolar diastereoisomeric mixture binds to the AgamOBP1 crystal, providing structural evidence for the possible contribution of OBP1 to the stereoselectivity of Icaridin perception in mosquitoes. Structural analysis revealed two ensembles of conformations differing mainly in spatial arrangement of their sec-butyl moieties. Moreover, structural comparison with DEET indicates a common recognition mechanism for these structurally related repellents. Ligand interactions with both sites and binding modes were further confirmed by 2D 1 H- 15 N HSQC NMR spectroscopy. The identification of a novel repellent-binding site in AgamOBP1 and the observed structural conservation and stereoselectivity of its DEET/Icaridin-binding sites open new perspectives for the OBP1-structure-based discovery of next-generation insect repellents.
Baum, Bernhard; Muley, Laveena; Smolinski, Michael; Heine, Andreas; Hangauer, David; Klebe, Gerhard
2010-04-09
Additivity of functional group contributions to protein-ligand binding is a very popular concept in medicinal chemistry as the basis of rational design and optimized lead structures. Most of the currently applied scoring functions for docking build on such additivity models. Even though the limitation of this concept is well known, case studies examining in detail why additivity fails at the molecular level are still very scarce. The present study shows, by use of crystal structure analysis and isothermal titration calorimetry for a congeneric series of thrombin inhibitors, that extensive cooperative effects between hydrophobic contacts and hydrogen bond formation are intimately coupled via dynamic properties of the formed complexes. The formation of optimal lipophilic contacts with the surface of the thrombin S3 pocket and the full desolvation of this pocket can conflict with the formation of an optimal hydrogen bond between ligand and protein. The mutual contributions of the competing interactions depend on the size of the ligand hydrophobic substituent and influence the residual mobility of ligand portions at the binding site. Analysis of the individual crystal structures and factorizing the free energy into enthalpy and entropy demonstrates that binding affinity of the ligands results from a mixture of enthalpic contributions from hydrogen bonding and hydrophobic contacts, and entropic considerations involving an increasing loss of residual mobility of the bound ligands. This complex picture of mutually competing and partially compensating enthalpic and entropic effects determines the non-additivity of free energy contributions to ligand binding at the molecular level. (c) 2010 Elsevier Ltd. All rights reserved.
Binding of Thyrotropin-Releasing Hormone to Plasma Membranes of Bovine Anterior Pituitary Gland
Labrie, Fernand; Barden, Nicholas; Poirier, Guy; De Lean, Andre
1972-01-01
An assay for the binding of [3H]thyrotropin-releasing hormone ([3H]TRH) is described. Plasma membranes isolated from bovine anterior pituitary gland bind about 600 femtomoles of this hormone per mg of protein, as compared to 15 femtomoles per mg of protein in the total adenohypophyseal homogenate (40-fold purification). The equilibrium constant of membrane receptor-[3H]TRH binding at 0°C is 4.3 × 107 L·M-1, or a half-maximal binding of this hormone at 23 nM. The binding is time-dependent; addition of unlabeled hormone induces dissociation of the receptor-[3H]TRH complex with a half-life of 14 min. The binding of TRH is not altered by 10 μM melanocyte-stimulating hormone-release inhibiting hormone, lysine-vasopressin, adrenocorticotropin, growth hormone, prolactin, luteinizing hormone, insulin, glucagon, L-thyroxine, or L-triiodothyronine. K+ and Mg++ increase formation of the receptor-TRH complex at optimal concentrations of 5-25 mM and 0.5-2.5 mM, respectively, with inhibition at higher concentrations. Ca++ inhibits binding of TRH at all concentrations tested. PMID:4621548
Griffin, Brittany L.; Chasovskikh, Sergey; Dritschilo, Anatoly
2014-01-01
ABSTRACT The circular genome and antigenome RNAs of hepatitis delta virus (HDV) form characteristic unbranched, quasi-double-stranded RNA secondary structures in which short double-stranded helical segments are interspersed with internal loops and bulges. The ribonucleoprotein complexes (RNPs) formed by these RNAs with the virus-encoded protein hepatitis delta antigen (HDAg) perform essential roles in the viral life cycle, including viral replication and virion formation. Little is understood about the formation and structure of these complexes and how they function in these key processes. Here, the specific RNA features required for HDAg binding and the topology of the complexes formed were investigated. Selective 2′OH acylation analyzed by primer extension (SHAPE) applied to free and HDAg-bound HDV RNAs indicated that the characteristic secondary structure of the RNA is preserved when bound to HDAg. Notably, the analysis indicated that predicted unpaired positions in the RNA remained dynamic in the RNP. Analysis of the in vitro binding activity of RNAs in which internal loops and bulges were mutated and of synthetically designed RNAs demonstrated that the distinctive secondary structure, not the primary RNA sequence, is the major determinant of HDAg RNA binding specificity. Atomic force microscopy analysis of RNPs formed in vitro revealed complexes in which the HDV RNA is substantially condensed by bending or wrapping. Our results support a model in which the internal loops and bulges in HDV RNA contribute flexibility to the quasi-double-stranded structure that allows RNA bending and condensing by HDAg. IMPORTANCE RNA-protein complexes (RNPs) formed by the hepatitis delta virus RNAs and protein, HDAg, perform critical roles in virus replication. Neither the structures of these RNPs nor the RNA features required to form them have been characterized. HDV RNA is unusual in that it forms an unbranched quasi-double-stranded structure in which short base-paired segments are interspersed with internal loops and bulges. We analyzed the role of the HDV RNA sequence and secondary structure in the formation of a minimal RNP and visualized the structure of this RNP using atomic force microscopy. Our results indicate that HDAg does not recognize the primary sequence of the RNA; rather, the principle contribution of unpaired bases in HDV RNA to HDAg binding is to allow flexibility in the unbranched quasi-double-stranded RNA structure. Visualization of RNPs by atomic force microscopy indicated that the RNA is significantly bent or condensed in the complex. PMID:24741096
Moriwaki, Kenta; Shinzaki, Shinichiro; Miyoshi, Eiji
2011-01-01
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors. PMID:22027835
NASA Astrophysics Data System (ADS)
Samanta, Sudipta; Mukherjee, Sanchita
2017-10-01
The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.
The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation
Palioura, Sotiria; Sherrer, R. Lynn; Steitz, Thomas A.; Söll, Dieter; Simonović, Miljan
2010-01-01
Selenocysteine is the only genetically encoded amino acid in humans whose biosynthesis occurs on its cognate transfer RNA (tRNA). O-Phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS) catalyzes the final step of selenocysteine formation by a poorly understood tRNA-dependent mechanism. The crystal structure of human tRNASec in complex with SepSecS, phosphoserine, and thiophosphate, together with in vivo and in vitro enzyme assays, supports a pyridoxal phosphate–dependent mechanism of Sec-tRNASec formation. Two tRNASec molecules, with a fold distinct from other canonical tRNAs, bind to each SepSecS tetramer through their 13–base pair acceptor-TΨC arm (where Ψ indicates pseudouridine). The tRNA binding is likely to induce a conformational change in the enzyme’s active site that allows a phosphoserine covalently attached to tRNASec, but not free phosphoserine, to be oriented properly for the reaction to occur. PMID:19608919
TIA-1 RRM23 binding and recognition of target oligonucleotides
Waris, Saboora; García-Mauriño, Sofía M.; Sivakumaran, Andrew; Beckham, Simone A.; Loughlin, Fionna E.; Gorospe, Myriam; Díaz-Moreno, Irene; Wilce, Matthew C.J.
2017-01-01
Abstract TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Å resolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression. PMID:28184449
TIA-1 RRM23 binding and recognition of target oligonucleotides.
Waris, Saboora; García-Mauriño, Sofía M; Sivakumaran, Andrew; Beckham, Simone A; Loughlin, Fionna E; Gorospe, Myriam; Díaz-Moreno, Irene; Wilce, Matthew C J; Wilce, Jacqueline A
2017-05-05
TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Å resolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Xu, Binjie; Soukup, Randal J; Jones, Christopher J; Fishel, Richard; Wozniak, Daniel J
2016-10-01
During late stages of cystic fibrosis pulmonary infections, Pseudomonas aeruginosa often overproduces the exopolysaccharide alginate, protecting the bacterial community from host immunity and antimicrobials. The transcription of the alginate biosynthesis operon is under tight control by a number of factors, including AmrZ, the focus of this study. Interestingly, multiple transcription factors interact with the far-upstream region of this promoter (PalgD), in which one AmrZ binding site has been identified previously. The mechanisms of AmrZ binding and subsequent activation remain unclear and require more-detailed investigation. In this study, in-depth examinations elucidated four AmrZ binding sites, and their disruption eliminated AmrZ binding and promoter activation. Furthermore, our in vitro fluorescence resonance energy transfer experiments suggest that AmrZ holds together multiple binding sites in PalgD and thereafter induces the formation of higher-order DNA-AmrZ complexes. To determine the importance of interactions between those AmrZ oligomers in the cell, a DNA phasing experiment was performed. PalgD transcription was significantly impaired when the relative phase between AmrZ binding sites was reversed (5 bp), while a full-DNA-turn insertion (10 bp) restored promoter activity. Taken together, the investigations presented here provide a deeper mechanistic understanding of AmrZ-mediated binding to PalgD IMPORTANCE: Overproduction of the exopolysaccharide alginate provides protection to Pseudomonas aeruginosa against antimicrobial treatments and is associated with chronic P. aeruginosa infections in the lungs of cystic fibrosis patients. In this study, we combined a variety of microbiological, genetic, biochemical, and biophysical approaches to investigate the activation of the alginate biosynthesis operon promoter by a key transcription factor named AmrZ. This study has provided important new information on the mechanism of activation of this extremely complex promoter. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Delmas, Olivier; Assenberg, Rene; Grimes, Jonathan M; Bourhy, Hervé
2010-01-01
The phosphoprotein P of non-segmented negative-sense RNA viruses is an essential component of the replication and transcription complex and acts as a co-factor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. We have obtained the structure of the C-terminal domain of P of Mokola virus (MOKV), a lyssavirus that belongs to the Rhabdoviridae family and mapped at the amino acid level the crucial positions involved in interaction with N and in the formation of the viral replication complex. Comparison of the N-RNA binding domains of P solved to date suggests that the N-RNA binding domains are structurally conserved among paramyxoviruses and rhabdoviruses in spite of low sequence conservation. We also review the numerous other functions of this domain and more generally of the phosphoprotein.
Ren, Hao; Zhang, Yu; Guo, Sibei; ...
2017-10-31
The aggregation of amyloid beta (Aβ) peptides plays a crucial role in the pathology and etiology of Alzheimer's disease. Experimental evidence shows that copper ion is an aggregation-prone species with the ability to coordinately bind to Aβ and further induce the formation of neurotoxic Aβ oligomers. However, the detailed structures of Cu(II)–Aβ complexes have not been illustrated, and the kinetics and dynamics of the Cu(II) binding are not well understood. Two Cu(II)–Aβ complexes have been proposed to exist under physiological conditions, and another two might exist at higher pH values. By using ab initio simulations for the spontaneous resonance Ramanmore » and time domain stimulated resonance Raman spectroscopy signals, we obtained the characteristic Raman vibronic features of each complex. Finally, these signals contain rich structural information with high temporal resolution, enabling the characterization of transient states during the fast Cu–Aβ binding and interconversion processes.« less
Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C
2016-08-02
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidmann, Chase A.; Qiu, Chen; Arvola, René M.
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation byDrosophilaPumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that aremore » not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulatedin vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less
Jeřábek, Petr; Florián, Jan; Stiborová, Marie; Martínek, Václav
2014-10-28
Formation of transient complexes of cytochrome P450 (P450) with another protein of the endoplasmic reticulum membrane, cytochrome b5 (cyt b5), dictates the catalytic activities of several P450s. Therefore, we examined formation and binding modes of the complex of human P450 1A2 with cyt b5. Docking of soluble domains of these proteins was performed using an information-driven flexible docking approach implemented in HADDOCK. Stabilities of the five unique binding modes of the P450 1A2-cyt b5 complex yielded by HADDOCK were evaluated using explicit 10 ns molecular dynamics (MD) simulations in aqueous solution. Further, steered MD was used to compare the stability of the individual P450 1A2-cyt b5 binding modes. The best binding mode was characterized by a T-shaped mutual orientation of the porphyrin rings and a 10.7 Å distance between the two redox centers, thus satisfying the condition for a fast electron transfer. Mutagenesis studies and chemical cross-linking, which, in the absence of crystal structures, were previously used to deduce specific P450-cyt b5 interactions, indicated that the negatively charged convex surface of cyt b5 binds to the positively charged concave surface of P450. Our simulations further elaborate structural details of this interface, including nine ion pairs between R95, R100, R138, R362, K442, K455, and K465 side chains of P450 1A2 and E42, E43, E49, D65, D71, and heme propionates of cyt b5. The universal heme-centric system of internal coordinates was proposed to facilitate consistent classification of the orientation of the two porphyrins in any protein complex.
Translational autocontrol of the Escherichia coli hfq RNA chaperone gene.
Vecerek, Branislav; Moll, Isabella; Bläsi, Udo
2005-06-01
The conserved bacterial RNA chaperone Hfq has been shown to play an important role in post-transcriptional regulation. Here, we demonstrate that Hfq synthesis is autoregulated at the translational level. We have mapped two Hfq binding sites in the 5'-untranslated region of hfq mRNA and show that Hfq binding inhibits formation of the translation initiation complex. In vitro translation and in vivo studies further revealed that Hfq binding to both sites is required for efficient translational repression of hfq mRNA.
Cristofari, G; Gabus, C; Ficheux, D; Bona, M; Le Grice, S F; Darlix, J L
1999-12-17
Human immunodeficiency virus (HIV) and the distantly related yeast Ty3 retrotransposon encode reverse transcriptase (RT) and a nucleic acid-binding protein designated nucleocapsid protein (NCp) with either one or two zinc fingers, required for HIV-1 replication and Ty3 transposition, respectively. In vitro binding of HIV-1 NCp7 to viral 5' RNA and primer tRNA(3)(Lys) catalyzes formation of nucleoprotein complexes resembling the virion nucleocapsid. Nucleocapsid complex formation functions in viral RNA dimerization and tRNA annealing to the primer binding site (PBS). RT is recruited in these nucleoprotein complexes and synthesizes minus-strand cDNA initiated at the PBS. Recent results on yeast Ty3 have shown that the homologous NCp9 promotes annealing of primer tRNA(i)(Met) to a 5'-3' bipartite PBS, allowing RNA:tRNA dimer formation and initiation of cDNA synthesis at the 5' PBS (). To compare specific cDNA synthesis in a retrotransposon and HIV-1, we have established a Ty3 model system comprising Ty3 RNA with the 5'-3' PBS, primer tRNA(i)(Met), NCp9, and for the first time, highly purified Ty3 RT. Here we report that Ty3 RT is as active as retroviral HIV-1 or murine leukemia virus RT using a synthetic template-primer system. Moreover, and in contrast to what was found with retroviral RTs, retrotransposon Ty3 RT was unable to direct cDNA synthesis by self-priming. We also show that Ty3 nucleoprotein complexes were formed in vitro and that the N terminus of NCp9, but not the zinc finger, is required for complex formation, tRNA annealing to the PBS, RNA dimerization, and primer tRNA-directed cDNA synthesis by Ty3 RT. These results indicate that NCp9 chaperones bona fide cDNA synthesis by RT in the yeast Ty3 retrotransposon, as illustrated for NCp7 in HIV-1, reinforcing the notion that Ty3 NCp9 is an ancestor of HIV-1 NCp7.
NASA Astrophysics Data System (ADS)
Rafiquee, M. Z. A.; Siddiqui, Masoom R.; Ali, Mohd. Sajid; Al-Lohedan, Hamad A.
The cobalt(II)histidine complex binds molecular oxygen reversibly to form an oxygen adduct complex, μ-dioxytetrakis-(histidinato)dicobalt(II). The molecular oxygen can be released from the oxygenated complex by heating it or by passing N2, He or Ar gas through its solution. μ-Dioxytetrakis-(histidinato)dicobalt(II) complex oxidizes adrenaline into leucoadrenochrome at 25 °C while at higher temperature (>40 °C) adrenochrome with λmax at 490 nm is formed. The rate of formation of leucoadrenochrome was found to be independent of [bis(histidinato)cobalt(II)]. The rate of reaction for the formation of leucoadrenochrome and adrenochrome increased with the increase in [adrenaline] at its lower concentration but become independent at higher concentration. Similarly, the rate of formation of both leucoadrenochrome and adrenochrome was linearly dependent upon [NaOH]. The values of activation parameters i.e. ΔEa, ΔH‡ and ΔS‡ for the formation of leucoadrenochrome are reported.
Clifton, Matthew C.; Simon, Michael J.; Erramilli, Satchal K.; Zhang, Huide; Zaitseva, Jelena; Hermodson, Mark A.; Stauffacher, Cynthia V.
2015-01-01
Bacterial ATP-binding cassette (ABC) importers are primary active transporters that are critical for nutrient uptake. Based on structural and functional studies, ABC importers can be divided into two distinct classes, type I and type II. Type I importers follow a strict alternating access mechanism that is driven by the presence of the substrate. Type II importers accept substrates in a nucleotide-free state, with hydrolysis driving an inward facing conformation. The ribose transporter in Escherichia coli is a tripartite complex consisting of a cytoplasmic ATP-binding cassette protein, RbsA, with fused nucleotide binding domains; a transmembrane domain homodimer, RbsC2; and a periplasmic substrate binding protein, RbsB. To investigate the transport mechanism of the complex RbsABC2, we probed intersubunit interactions by varying the presence of the substrate ribose and the hydrolysis cofactors, ATP/ADP and Mg2+. We were able to purify a full complex, RbsABC2, in the presence of stable, transition state mimics (ATP, Mg2+, and VO4); a RbsAC complex in the presence of ADP and Mg2+; and a heretofore unobserved RbsBC complex in the absence of cofactors. The presence of excess ribose also destabilized complex formation between RbsB and RbsC. These observations suggest that RbsABC2 shares functional traits with both type I and type II importers, as well as possessing unique features, and employs a distinct mechanism relative to other ABC transporters. PMID:25533465
Myosin 7 and its adaptors link cadherins to actin
Yu, I-Mei; Planelles-Herrero, Vicente J.; Sourigues, Yannick; Moussaoui, Dihia; Sirkia, Helena; Kikuti, Carlos; Stroebel, David; Titus, Margaret A.; Houdusse, Anne
2017-01-01
Cadherin linkages between adjacent stereocilia and microvilli are essential for mechanotransduction and maintaining their organization. They are anchored to actin through interaction of their cytoplasmic domains with related tripartite complexes consisting of a class VII myosin and adaptor proteins: Myo7a/SANS/Harmonin in stereocilia and Myo7b/ANKS4B/Harmonin in microvilli. Here, we determine high-resolution structures of Myo7a and Myo7b C-terminal MyTH4-FERM domain (MF2) and unveil how they recognize harmonin using a novel binding mode. Systematic definition of interactions between domains of the tripartite complex elucidates how the complex assembles and prevents possible self-association of harmonin-a. Several Myo7a deafness mutants that map to the surface of MF2 disrupt harmonin binding, revealing the molecular basis for how they impact the formation of the tripartite complex and disrupt mechanotransduction. Our results also suggest how switching between different harmonin isoforms can regulate the formation of networks with Myo7a motors and coordinate force sensing in stereocilia. PMID:28660889
NASA Astrophysics Data System (ADS)
Mrugalla, Florian; Kast, Stefan M.
2016-09-01
Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.
Mrugalla, Florian; Kast, Stefan M
2016-09-01
Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.
Jung, Goeh; Remmert, Kirsten; Wu, Xufeng; Volosky, Joanne M.; III, John A. Hammer
2001-01-01
Fusion proteins containing the Src homology (SH)3 domains of Dictyostelium myosin IB (myoB) and IC (myoC) bind a 116-kD protein (p116), plus nine other proteins identified as the seven member Arp2/3 complex, and the α and β subunits of capping protein. Immunoprecipitation reactions indicate that myoB and myoC form a complex with p116, Arp2/3, and capping protein in vivo, that the myosins bind to p116 through their SH3 domains, and that capping protein and the Arp2/3 complex in turn bind to p116. Cloning of p116 reveals a protein dominated by leucine-rich repeats and proline-rich sequences, and indicates that it is a homologue of Acan 125. Studies using p116 fusion proteins confirm the location of the myosin I SH3 domain binding site, implicate NH2-terminal sequences in binding capping protein, and show that a region containing a short sequence found in several G-actin binding proteins, as well as an acidic stretch, can activate Arp2/3-dependent actin nucleation. p116 localizes along with the Arp2/3 complex, myoB, and myoC in dynamic actin-rich cellular extensions, including the leading edge of cells undergoing chemotactic migration, and dorsal, cup-like, macropinocytic extensions. Cells lacking p116 exhibit a striking defect in the formation of these macropinocytic structures, a concomitant reduction in the rate of fluid phase pinocytosis, a significant decrease in the efficiency of chemotactic aggregation, and a decrease in cellular F-actin content. These results identify a complex that links key players in the nucleation and termination of actin filament assembly with a ubiquitous barbed end–directed motor, indicate that the protein responsible for the formation of this complex is physiologically important, and suggest that previously reported myosin I mutant phenotypes in Dictyostelium may be due, at least in part, to defects in the assembly state of actin. We propose that p116 and Acan 125, along with homologues identified in Caenorhabditis elegans, Drosophila, mouse, and man, be named CARMIL proteins, for capping protein, Arp2/3, and myosin I linker. PMID:11425877
Sluvko, A L
1976-10-01
Comparative data on production of complement-binding and hemagglutinating antibodies in the process of the antigenic effect of benzylpenicillin under experimental conditions are presented. 30 rabbit antisera and 3 sera of intact animals were studied. The hemagglutinating antibodies were determined in 19 antisera, high and reliable titers of the antipenicillin hemagglutinating antibodies being found only in 8 antisera. The antipenicillin complement-binding antibodies using complex antibiotic antibodies were also found in 19 antisera. The process of antibody production was more pronounced in the complement-binding reaction (CBR). Both types of the antibodies were detected simultaneously in 14 antisera. It is concluded that the CBR with the use of the penicillin complex antigenes on the stroma of the erythrocytes and in combination with the blood serum is a rather sensitive reaction for detection of antipenicillin antibodies.
UV damage-specific DNA-binding protein in xeroderma pigmentosum complementation group E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, H.; Fujiwara, Y.
1991-03-29
The gel mobility shift assay method revealed a specifically ultraviolet (UV) damage recognizing, DNA-binding protein in nuclear extracts of normal human cells. The resulted DNA/protein complexes caused the two retarded mobility shifts. Four xeroderma pigmentosum complementation group E (XPE) fibroblast strains derived from unrelated Japanese families were not deficient in such a DNA damage recognition/binding protein because of the normal complex formation and gel mobility shifts, although we confirmed the reported lack of the protein in the European XPE (XP2RO and XP3RO) cells. Thus, the absence of this binding protein is not always commonly observed in all the XPE strains,more » and the partially repair-deficient and intermediately UV-hypersensitive phenotype of XPE cells are much similar whether or not they lack the protein.« less
Discrete structural features among interface residue-level classes.
Sowmya, Gopichandran; Ranganathan, Shoba
2015-01-01
Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs.
Discrete structural features among interface residue-level classes
2015-01-01
Background Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Results Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Conclusions Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs. PMID:26679043
Kinoshita, Kengo; Murakami, Yoichi; Nakamura, Haruki
2007-07-01
We have developed a method to predict ligand-binding sites in a new protein structure by searching for similar binding sites in the Protein Data Bank (PDB). The similarities are measured according to the shapes of the molecular surfaces and their electrostatic potentials. A new web server, eF-seek, provides an interface to our search method. It simply requires a coordinate file in the PDB format, and generates a prediction result as a virtual complex structure, with the putative ligands in a PDB format file as the output. In addition, the predicted interacting interface is displayed to facilitate the examination of the virtual complex structure on our own applet viewer with the web browser (URL: http://eF-site.hgc.jp/eF-seek).
Dadashev, S Ia; Gorach, G G; Kolomiets, O L
1994-01-01
Male mice were immunized with the suspension of synaptonemal complexes (SC) isolated from mouse spermatocytes nuclei. The indirect immunofluorescent analysis showed the active binding of sera obtained from immunized mice to SC of mouse spermatocyte spreads. At early and mid-pachytene, SC can be clearly identified in 19 autosome bivalents and in sex chromosome bivalent. According to the electron microscopic analysis, all structural elements of SC bind antibodies. Metaphase chromosomes were not stained with the immune sera. Specificity of interaction between SC components and antibodies was confirmed in a series of control experiments. Analysis of sera obtained from mice after their syngeneic immunization with isolated SC fraction suggested that certain mouse SC components induce the formation of autoantibodies. This, in turn, suggests that these SC components are meiosis-specific.
Effect of PEG and mPEG-anthracene on tRNA aggregation and particle formation.
Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A
2012-01-09
Poly(ethylene glycol) (PEG) and its derivatives are synthetic polymers with major applications in gene and drug delivery systems. Synthetic polymers are also used to transport miRNA and siRNA in vitro. We studied the interaction of tRNA with several PEGs of different compositions, such as PEG 3350, PEG 6000, and mPEG-anthracene under physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the PEG binding mode, the binding constant, and the effects of polymer complexation on tRNA stability, aggregation, and particle formation. Structural analysis showed that PEG-tRNA interaction occurs via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(PEG 3350-tRNA)= 1.9 (±0.5) × 10(4) M(-1), K(PEG 6000-tRNA) = 8.9 (±1) × 10(4) M(-1), and K(mPEG-anthracene)= 1.2 (±0.40) × 10(3) M(-1) show stronger polymer-RNA complexation by PEG 6000 and by PEG 3350 than the mPEG-anthracene. AFM imaging showed that PEG complexes contain on average one tRNA with PEG 3350, five tRNA with PEG 6000, and ten tRNA molecules with mPEG-anthracene. tRNA aggregation and particle formation occurred at high polymer concentrations, whereas it remains in A-family structure.
NASA Astrophysics Data System (ADS)
Rubinstein, Alexander; Sabirianov, Renat
2011-03-01
Using a non-local electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an low-dielectric interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
Fong, Yu Hang; Wong, Ho Chun; Yuen, Man Hon; Lau, Pak Ho; Chen, Yu Wai; Wong, Kam-Bo
2013-01-01
Urease is a metalloenzyme essential for the survival of Helicobacter pylori in acidic gastric environment. Maturation of urease involves carbamylation of Lys219 and insertion of two nickel ions at its active site. This process requires GTP hydrolysis and the formation of a preactivation complex consisting of apo-urease and urease accessory proteins UreF, UreH, and UreG. UreF and UreH form a complex to recruit UreG, which is a SIMIBI class GTPase, to the preactivation complex. We report here the crystal structure of the UreG/UreF/UreH complex, which illustrates how UreF and UreH facilitate dimerization of UreG, and assembles its metal binding site by juxtaposing two invariant Cys66-Pro67-His68 metal binding motif at the interface to form the (UreG/UreF/UreH)2 complex. Interaction studies revealed that addition of nickel and GTP to the UreG/UreF/UreH complex releases a UreG dimer that binds a nickel ion at the dimeric interface. Substitution of Cys66 and His68 with alanine abolishes the formation of the nickel-charged UreG dimer. This nickel-charged UreG dimer can activate urease in vitro in the presence of the UreF/UreH complex. Static light scattering and atomic absorption spectroscopy measurements demonstrated that the nickel-charged UreG dimer, upon GTP hydrolysis, reverts to its monomeric form and releases nickel to urease. Based on our results, we propose a mechanism on how urease accessory proteins facilitate maturation of urease. PMID:24115911
Probing the Energetics of Antigen-Antibody Recognition by Titration Microcalorimetry
Jelesarov; Leder; Bosshard
1996-06-01
Our understanding of the energetics that govern antigen-antibody recognition lags behind the increasingly rapid accumulation of structural information on antigen-antibody complexes. Thanks to the development of highly sensitive microcalorimeters, the thermodynamic parameters of antigen-antibody interactions can now be measured with precision and using only nanomole quantities of protein. The method of choice is isothermal titration calorimetry, in which a solution of the antibody (or antigen) is titrated with small aliquots of the antigen (or antibody) and the heat change accompanying the formation of the antigen-antibody complex is measured with a sensitivity as high as 0.1 μcal s-1. The free energy of binding (DeltaG), the binding enthalpy (DeltaH), and the binding entropy (DeltaS) are usually obtained from a single experiment, and no spectroscopic or radioactive label must be introduced into the antigen or antibody. The often large and negative change in heat capacity (DeltaCp) accompanying the formation of an antigen-antibody complex is obtained from DeltaH measured at different temperatures. The basic theory and the principle of the measurements are reviewed and illustrated by examples. The thermodynamic parameters relate to the dynamic physical forces that govern the association of the freely moving antigen and antibody into a well-structured and unique complex. This information complements the static picture of the antigen-antibody complex that results from X-ray diffraction analysis. Attempts to correlate dynamic and static aspects are discussed briefly.
Moreno, Renata; Hernández-Arranz, Sofía; La Rosa, Ruggero; Yuste, Luis; Madhushani, Anjana; Shingler, Victoria; Rojo, Fernando
2015-01-01
The Crc protein is a global regulator that has a key role in catabolite repression and optimization of metabolism in Pseudomonads. Crc inhibits gene expression post-transcriptionally, preventing translation of mRNAs bearing an AAnAAnAA motif [the catabolite activity (CA) motif] close to the translation start site. Although Crc was initially believed to bind RNA by itself, this idea was recently challenged by results suggesting that a protein co-purifying with Crc, presumably the Hfq protein, could account for the detected RNA-binding activity. Hfq is an abundant protein that has a central role in post-transcriptional gene regulation. Herein, we show that the Pseudomonas putida Hfq protein can recognize the CA motifs of RNAs through its distal face and that Crc facilitates formation of a more stable complex at these targets. Crc was unable to bind RNA in the absence of Hfq. However, pull-down assays showed that Crc and Hfq can form a co-complex with RNA containing a CA motif in vitro. Inactivation of the hfq or the crc gene impaired catabolite repression to a similar extent. We propose that Crc and Hfq cooperate in catabolite repression, probably through forming a stable co-complex with RNAs containing CA motifs to result in inhibition of translation initiation. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Neuweiler, Hannes; Scheffler, Silvia; Sauer, Markus
2005-08-01
The development of reliable methods for the detection of minute amounts of antibodies directly in homogeneous solution represents one of the major tasks in the current research field of molecular diagnostics. We demonstrate the potential of fluorescence correlation spectroscopy (FCS) in combination with quenched peptide-based fluorescence probes for sensitive detection of p53 antibodies directly in homogeneous solution. Single tryptophan (Trp) residues in the sequences of short, synthetic peptide epitopes of the human p53 protein efficiently quench the fluorescence of an oxazine fluorophore attached to the amino terminal ends of the peptides. The fluorescence quenching mechanism is thought to be a photoinduced electron transfer reaction from Trp to the dye enabled by the formation of intramolecular complexes between dye and Trp. Specific recognition of the epitope by the antibody confines the conformational flexibility of the peptide. Consequently, complex formation between dye and Trp is abolished and fluorescence is recovered. Using fluorescence correlation spectroscopy (FCS), antibody binding can be monitored observing two parameters simultaneously: the diffusional mobility of the peptide as well as the quenching amplitude induced by the conformational flexibility of the peptide change significantly upon antibody binding. Our data demonstrate that FCS in combination with fluorescence-quenched peptide epitopes opens new possibilities for the reliable detection of antibody binding events in homogeneous solution.
Free energy component analysis for drug design: a case study of HIV-1 protease-inhibitor binding.
Kalra, P; Reddy, T V; Jayaram, B
2001-12-06
A theoretically rigorous and computationally tractable methodology for the prediction of the free energies of binding of protein-ligand complexes is presented. The method formulated involves developing molecular dynamics trajectories of the enzyme, the inhibitor, and the complex, followed by a free energy component analysis that conveys information on the physicochemical forces driving the protein-ligand complex formation and enables an elucidation of drug design principles for a given receptor from a thermodynamic perspective. The complexes of HIV-1 protease with two peptidomimetic inhibitors were taken as illustrative cases. Four-nanosecond-level all-atom molecular dynamics simulations using explicit solvent without any restraints were carried out on the protease-inhibitor complexes and the free proteases, and the trajectories were analyzed via a thermodynamic cycle to calculate the binding free energies. The computed free energies were seen to be in good accord with the reported data. It was noted that the net van der Waals and hydrophobic contributions were favorable to binding while the net electrostatics, entropies, and adaptation expense were unfavorable in these protease-inhibitor complexes. The hydrogen bond between the CH2OH group of the inhibitor at the scissile position and the catalytic aspartate was found to be favorable to binding. Various implicit solvent models were also considered and their shortcomings discussed. In addition, some plausible modifications to the inhibitor residues were attempted, which led to better binding affinities. The generality of the method and the transferability of the protocol with essentially no changes to any other protein-ligand system are emphasized.
Interactions of chloride and formate at the donor and the acceptor side of photosystem II.
Jajoo, Anjana; Bharti, Sudhakar; Kawamori, Asako
2005-02-01
Chloride is required for the maximum activity of the oxygen evolving complex (OEC) while formate inhibits the function of OEC. On the basis of the measurements of oxygen evolution rates and the S(2) state multiline EPR signal, an interaction between the action of chloride and formate at the donor side of PS II has been suggested. Moreover, the Fe(2)+Q-A EPR signals were measured to investigate a common binding site of both these anions at the PS II acceptor side. Other monovalent anions like bromide, nitrate etc. could influence the effects of formate to a small extent at the donor side of PS II, but not significantly at the acceptor side of PS II. The results presented in this paper clearly suggest a competitive binding of formate and chloride at the PS II acceptor side.
Tran, N L; Bohrer, F I; Trogler, W C; Kummel, A C
2009-05-28
Density functional theory (DFT) simulations were used to determine the binding strength of 12 electron-donating analytes to the zinc metal center of a zinc phthalocyanine molecule (ZnPc monomer). The analyte binding strengths were compared to the analytes' enthalpies of complex formation with boron trifluoride (BF(3)), which is a direct measure of their electron donating ability or Lewis basicity. With the exception of the most basic analyte investigated, the ZnPc binding energies were found to correlate linearly with analyte basicities. Based on natural population analysis calculations, analyte complexation to the Zn metal of the ZnPc monomer resulted in limited charge transfer from the analyte to the ZnPc molecule, which increased with analyte-ZnPc binding energy. The experimental analyte sensitivities from chemiresistor ZnPc sensor data were proportional to an exponential of the binding energies from DFT calculations consistent with sensitivity being proportional to analyte coverage and binding strength. The good correlation observed suggests DFT is a reliable method for the prediction of chemiresistor metallophthalocyanine binding strengths and response sensitivities.
Khodthong, Chuenchanok; Kabachinski, Greg; James, Declan J; Martin, Thomas F J
2011-08-03
Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis. Copyright © 2011 Elsevier Inc. All rights reserved.
Dual inhibition of chaperoning process by taxifolin: molecular dynamics simulation study.
Verma, Sharad; Singh, Amit; Mishra, Abha
2012-07-01
Hsp90 (heat shock protein 90), a molecular chaperone, stabilizes more than 200 mutated and over expressed oncogenic proteins in cancer development. Cdc37 (cell division cycle protein 37), a co-chaperone of Hsp90, has been found to facilitate the maturation of protein kinases by acting as an adaptor and load these kinases onto the Hsp90 complex. Taxifolin (a natural phytochemical) was found to bind at ATP-binding site of Hsp90 and stabilized the inactive "open" or "lid-up" conformation as evidenced by molecular dynamic simulation. Furthermore, taxifolin was found to bind to interface of Hsp90 and Cdc37 complex and disrupt the interaction of residues of both proteins which were essential for the formation of active super-chaperone complex. Thus, taxifolin was found to act as an inhibitor of chaperoning process and may play a potential role in the cancer chemotherapeutics. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Hao; Zhang, Yu; Guo, Sibei
The aggregation of amyloid beta (Aβ) peptides plays a crucial role in the pathology and etiology of Alzheimer's disease. Experimental evidence shows that copper ion is an aggregation-prone species with the ability to coordinately bind to Aβ and further induce the formation of neurotoxic Aβ oligomers. However, the detailed structures of Cu(II)–Aβ complexes have not been illustrated, and the kinetics and dynamics of the Cu(II) binding are not well understood. Two Cu(II)–Aβ complexes have been proposed to exist under physiological conditions, and another two might exist at higher pH values. By using ab initio simulations for the spontaneous resonance Ramanmore » and time domain stimulated resonance Raman spectroscopy signals, we obtained the characteristic Raman vibronic features of each complex. Finally, these signals contain rich structural information with high temporal resolution, enabling the characterization of transient states during the fast Cu–Aβ binding and interconversion processes.« less
Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors.
Ducrot, Cécile; Lefebvre, Olivier; Landrieux, Emilie; Guirouilh-Barbat, Josée; Sentenac, André; Acker, Joel
2006-04-28
Transcription factor TFIIIC is a multisubunit complex required for promoter recognition and transcriptional activation of class III genes. We describe here the reconstitution of complete recombinant yeast TFIIIC and the molecular characterization of its two DNA-binding domains, tauA and tauB, using the baculovirus expression system. The B block-binding module, rtauB, was reconstituted with rtau138, rtau91, and rtau60 subunits. rtau131, rtau95, and rtau55 formed also a stable complex, rtauA, that displayed nonspecific DNA binding activity. Recombinant rTFIIIC was functionally equivalent to purified yeast TFIIIC, suggesting that the six recombinant subunits are necessary and sufficient to reconstitute a transcriptionally active TFIIIC complex. The formation and the properties of rTFIIIC-DNA complexes were affected by dephosphorylation treatments. The combination of complete recombinant rTFIIIC and rTFIIIB directed a low level of basal transcription, much weaker than with the crude B'' fraction, suggesting the existence of auxiliary factors that could modulate the yeast RNA polymerase III transcription system.
A gallium(III) Schiff base-curcumin complex that binds to amyloid-β plaques.
Lange, Jaclyn L; Hayne, David J; Roselt, Peter; McLean, Catriona A; White, Jonathan M; Donnelly, Paul S
2016-09-01
Gallium-68 is a positron-emitting isotope that can be used in positron-emission tomography imaging agents. Alzheimer's disease is associated with the formation of plaques in the brain primarily comprised of aggregates of a 42 amino acid protein called amyloid-β. With the goal of synthesising charge neutral, low molecular weight, lipophilic gallium complexes with the potential to cross the blood-brain barrier and bind to Aβ plaques we have used an ancillary tetradentate N 2 O 2 Schiff base ligand and the β-diketone curcumin as a bidentate ligand to give a six-coordinate Ga 3+ complex. The tetradentate Schiff base ligand adopts the cis-β configuration with deprotonated curcumin acting as a bidentate ligand. The complex binds to amyloid-β plaques in human brain tissue and it is possible that extension of this chemistry to positron-emitting gallium-68 could provide useful imaging agents for Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Weidmann, Alyson G.; Barton, Jacqueline K.
2015-01-01
We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh—O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA non-classically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors. PMID:26397309
Structural Basis and Function of XRN2-Binding by XTB Domains
Richter, Hannes; Katic, Iskra; Gut, Heinz; Großhans, Helge
2016-01-01
The ribonuclease XRN2 is an essential player in RNA metabolism. In Caenorhabditis elegans, XRN2 functions with PAXT-1, which shares a putative XRN2-binding domain (XTBD) with otherwise unrelated mammalian proteins. Here, we characterize structure and function of an XTBD – XRN2 complex. Although XTBD stably interconnects two XRN2 domains through numerous interacting residues, mutation of a single critical residue suffices to disrupt XTBD – XRN2 complexes in vitro, and recapitulates paxt-1 null mutant phenotypes in vivo. Demonstrating conservation of function, vertebrate XTBD-containing proteins bind XRN2 in vitro, and human CDKN2AIPNL (C2AIL) can substitute for PAXT-1 in vivo. In vertebrates, where three distinct XTBD-containing proteins exist, XRN2 may partition to distinct stable heterodimeric complexes, likely differing in subcellular localization or function. In C. elegans, complex formation with the unique PAXT-1 serves to preserve the stability of XRN2 in the absence of substrate. PMID:26779609
Weidmann, Alyson G; Barton, Jacqueline K
2015-10-05
We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh-O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA nonclassically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and it triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Ming; Li, Jingzhi; Sha, Bingdong
2013-01-16
Sil1 functions as a NEF (nucleotide-exchange factor) for the ER (endoplasmic reticulum) Hsp70 (heat-shock protein of 70 kDa) Bip in eukaryotic cells. Sil1 may catalyse the ADP release from Bip by interacting directly with the ATPase domain of Bip. In the present study we show the complex crystal structure of the yeast Bip and the NEF Sil1 at the resolution of 2.3 {angstrom} (1 {angstrom} = 0.1 nm). In the Sil1-Bip complex structure, the Sil1 molecule acts as a 'clamp' which binds lobe IIb of the Bip ATPase domain. The binding of Sil1 causes the rotation of lobe IIb {approx}more » 13.5{sup o} away from the ADP-binding pocket. The complex formation also induces lobe Ib to swing in the opposite direction by {approx} 3.7{sup o}. These conformational changes open up the nucleotide-binding pocket in the Bip ATPase domain and disrupt the hydrogen bonds between Bip and bound ADP, which may catalyse ADP release. Mutation of the Sil1 residues involved in binding the Bip ATPase domain compromise the binding affinity of Sil1 to Bip, and these Sil1 mutants also abolish the ability to stimulate the ATPase activity of Bip.« less
Mechanism of host-guest complexation by cucurbituril.
Márquez, César; Hudgins, Robert R; Nau, Werner M
2004-05-12
The factors affecting host-guest complexation between the molecular container compound cucurbit[6]uril (CB6) and various guests in aqueous solution are studied, and a detailed complexation mechanism in the presence of cations is derived. The formation of the supramolecular complex is studied in detail for cyclohexylmethylammonium ion as guest. The kinetics and thermodynamics of complexation is monitored by NMR as a function of temperature, salt concentration, and cation size. The binding constants and the ingression rate constants decrease with increasing salt concentration and cation-binding constant, in agreement with a competitive binding of the ammonium site of the guest and the metal cation with the ureido carbonyl portals of CB6. Studies as a function of guest size indicate that the effective container volume of the CB6 cavity is approximately 105 A(3). It is suggested that larger guests are excluded for two reasons: a high activation barrier for ingression imposed by the tight CB6 portals and a destabilization of the complex due to steric repulsion inside. For example, in the case of the nearly spherical azoalkane homologues 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH, volume ca. 96 A(3)) and 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO, volume ca. 110 A(3)), the former forms the CB6 complex promptly with a sizable binding constant (1300 M(-1)), while the latter does not form a complex even after several months at optimized complexation conditions. Molecular mechanics calculations are performed for several CB6/guest complexes. A qualitative agreement is found between experimental and calculated activation energies for ingression as a function of both guest size and state of protonation. The potential role of constrictive binding by CB6 is discussed.
The structure and protein binding of amyloid-specific dye reagents.
Stopa, Barbara; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Spólnik, Paweł; Zemanek, Grzegorz; Roterman, Irena; Król, Marcin
2003-01-01
The self-assembling tendency and protein complexation capability of dyes related to Congo red and also some dyes of different structure were compared to explain the mechanism of Congo red binding and the reason for its specific affinity for beta-structure. Complexation with proteins was measured directly and expressed as the number of dye molecules bound to heat-aggregated IgG and to two light chains with different structural stability. Binding of dyes to rabbit antibodies was measured indirectly as the enhancement effect of the dye on immune complex formation. Self-assembling was tested using dynamic light scattering to measure the size of the supramolecular assemblies. In general the results show that the supramolecular form of a dye is the main factor determining its complexation capability. Dyes that in their compact supramolecular organization are ribbon-shaped may adhere to polypeptides of beta-conformation due to the architectural compatibility in this unique structural form. The optimal fit in complexation seems to depend on two contradictory factors involving, on the one hand, the compactness of the non-covalently stabilized supramolecular ligand, and the dynamic character producing its plasticity on the other. As a result, the highest protein binding capability is shown by dyes with a moderate self-assembling tendency, while those arranging into either very rigid or very unstable supramolecular entities are less able to bind.
Exact model reduction of combinatorial reaction networks
Conzelmann, Holger; Fey, Dirk; Gilles, Ernst D
2008-01-01
Background Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models. Results We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs) to a model with 87 ODEs. Conclusion The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks. PMID:18755034
Tang, Ning; Skibsted, Leif H
2017-10-04
Aqueous solubility of zinc phytate (K sp = (2.6 ± 0.2) × 10 -47 mol 7 /L 7 ), essential for zinc bioavailability from plant foods, was found to decrease with increasing temperature corresponding to ΔH dis of -301 ± 22 kJ/mol and ΔS dis of -1901 ± 72 J/(mol K). Binding of zinc to phytate was found to be exothermic for the stronger binding site and endothermic for the weaker binding site. The solubility of the slightly soluble zinc citrate and insoluble zinc phytate was found to be considerably enhanced by the food components with oxygen donor, nitrogen donor, and sulfur donor ligands. The driving force for the enhanced solubility is mainly due to the complex formation between zinc and the investigated food components rather than ligand exchange and ternary complex formation as revealed by quantum mechanical calculations and isothermal titration calorimetry. Histidine and citrate are promising ligands for improving zinc absorption from phytate-rich foods.
Golovina, G V; Ol'shevskaia, V A; Kalinina, V N; Shtil', A A; Kuz'min, V A
2011-01-01
The spectral characteristics of the photosensitizer pyropheophorbide a (PPP) complexes with its carriers, that is, serum albumin and low density lipoproteins, were investigated in aqueous solutions at pH 7.4 and 5.0. The acidic pH had no effect on the quantitative parameters of PPP binding to lipoproteins but reduces its affinity for albumin. Differential role of acidification in the binding of PPP to biomacromolecules should be considered in the design of PPP-based drugs given that pH is frequently lowered in the sites of the disease.
Melnikova, Larisa; Kostyuchenko, Margarita; Parshikov, Alexander; Georgiev, Pavel; Golovnin, Anton
2018-01-01
Su(Hw) belongs to the class of proteins that organize chromosome architecture and boundaries/insulators between regulatory domains. This protein contains a cluster of 12 zinc finger domains most of which are responsible for binding to three different modules in the consensus site. Su(Hw) forms a complex with CP190 and Mod(mdg4)-67.2 proteins that binds to well-known Drosophila insulators. To understand how Su(Hw) performs its activities and binds to specific sites in chromatin, we have examined the previously described su(Hw)f mutation that disrupts the 10th zinc finger (ZF10) responsible for Su(Hw) binding to the upstream module. The results have shown that Su(Hw)f loses the ability to interact with CP190 in the absence of DNA. In contrast, complete deletion of ZF10 does not prevent the interaction between Su(Hw)Δ10 and CP190. Having studied insulator complex formation in different mutant backgrounds, we conclude that both association with CP190 and Mod(mdg4)-67.2 partners and proper organization of DNA binding site are essential for the efficient recruitment of the Su(Hw) complex to chromatin insulators.
Walker, Ryan G; Angerman, Elizabeth B; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B
2015-03-20
Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Walker, Ryan G.; Angerman, Elizabeth B.; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B.
2015-01-01
Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. PMID:25657005
Romes, Erin M.; Tripathy, Ashutosh; Slep, Kevin C.
2012-01-01
The nuclear pore complex gates nucleocytoplasmic transport through a massive, eight-fold symmetric channel capped by a nucleoplasmic basket and structurally unique, cytoplasmic fibrils whose tentacles bind and regulate asymmetric traffic. The conserved Nup82 complex, composed of Nsp1, Nup82, and Nup159, forms the unique cytoplasmic fibrils that regulate mRNA nuclear export. Although the nuclear pore complex plays a fundamental, conserved role in nuclear trafficking, structural information about the cytoplasmic fibrils is limited. Here, we investigate the structural and biochemical interactions between Saccharomyces cerevisiae Nup159 and the nucleoporin, Dyn2. We find that Dyn2 is predominantly a homodimer and binds arrayed sites on Nup159, promoting the Nup159 parallel homodimerization. We present the first structure of Dyn2, determined at 1.85 Å resolution, complexed with a Nup159 target peptide. Dyn2 resembles homologous metazoan dynein light chains, forming homodimeric composite substrate binding sites that engage two independent 10-residue target motifs, imparting a β-strand structure to each peptide via antiparallel extension of the Dyn2 core β-sandwich. Dyn2 recognizes a highly conserved QT motif while allowing sequence plasticity in the flanking residues of the peptide. Isothermal titration calorimetric analysis of the comparative binding of Dyn2 to two Nup159 target sites shows similar affinities (18 and 13 μm), but divergent thermal binding modes. Dyn2 homodimers are arrayed in the crystal lattice, likely mimicking the arrayed architecture of Dyn2 on the Nup159 multivalent binding sites. Crystallographic interdimer interactions potentially reflect a cooperative basis for Dyn2-Nup159 complex formation. Our data highlight the determinants that mediate oligomerization of the Nup82 complex and promote a directed, elongated cytoplasmic fibril architecture. PMID:22411995
Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B
2018-04-01
Human papillomaviruses (HPVs) encompass a large family of viruses that range from benign to highly carcinogenic. The crucial differences between benign and carcinogenic types of HPV remain unknown, except that the two HPV types differ in the frequency of DNA replication. We have systematically analyzed the mechanism of HPV DNA replication initiation in low-risk and high-risk HPVs. Our results demonstrate that HPV-encoded E2 initiator protein and its four binding sites in the replication origin play pivotal roles in determining the destiny of the HPV-infected cell. We have identified strain-specific single nucleotide variations in E2 binding sites found only in the high-risk HPVs. We have demonstrated that these variations result in attenuated formation of the E2-DNA complex. E2 binding to these sites is linked to the activation of the DNA replication origin as well as initiation of DNA replication. Both electrophoretic mobility shift assay and atomic force microscopy studies demonstrated that binding of E2 from either low- or high-risk HPVs with variant binding sequences lacked multimeric E2-DNA complex formation in vitro. These results provided a molecular basis of differential DNA replication in the two types of HPVs and pointed to a correlation with the development of cancer. Copyright © 2017. Published by Elsevier B.V.
Voloshin, Olga; Bakhrat, Anya; Herrmann, Sharon; Raveh, Dina
2012-01-01
The F-box protein, Ufo1, recruits Ho endonuclease to the SCFUfo1 complex for ubiquitylation. Both ubiquitylated Ho and Ufo1 are transferred by the UbL-UbA protein, Ddi1, to the 19S Regulatory Particle (RP) of the proteasome for degradation. The Ddi1-UbL domain binds Rpn1 of the 19S RP, the Ddi1-UbA domain binds ubiquitin chains on the degradation substrate. Here we used complex reconstitution in vitro to identify stages in the transfer of Ho and Ufo1 from the SCFUfo1 complex to the proteasome. We report SCFUfo1 complex at the proteasome formed in the presence of Ho. Subsequently Ddi1 is recruited to this complex by interaction between the Ddi1-UbL domain and Ufo1. The core of Ddi1 binds both Ufo1 and Rpn1; this interaction confers specificity of SCFUfo1 for Ddi1. The substrate-shield model predicts that Ho would protect Ufo1 from degradation and we find that Ddi1 binds Ho, Ufo1, and Rpn1 simultaneously forming a complex for transfer of Ho to the 19S RP. In contrast, in the absence of Ho, Rpn1 displaces Ufo1 from Ddi1 indicating a higher affinity of the Ddi1-UbL for the 19S RP. However, at high Rpn1 levels there is synergistic binding of Ufo1 to Ddi1 that is dependent on the Ddi1-UbA domain. Our interpretation is that in the absence of substrate, the Ddi1-UbL binds Rpn1 while the Ddi1-UbA binds ubiquitin chains on Ufo1. This would promote degradation of Ufo1 and disassembly of SCFUfo1 complexes. PMID:22815701
Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor
2014-02-03
The noncovalent analogues of antitumor polynuclear platinum complexes represent a structurally discrete class of platinum drugs. Their chemical and biological properties differ significantly from those of most platinum chemotherapeutics, which bind to DNA in a covalent manner by formation of Pt-DNA adducts. In spite of the fact that these noncovalent polynuclear platinum complexes contain no leaving groups, they have been shown to bind to DNA with high affinity. We report here on the DNA condensation properties of a series of noncovalent analogues of antitumor polynuclear platinum complexes described by biophysical and biochemical methods. The results demonstrate that these polynuclear platinum compounds are capable of inducing DNA condensation at more than 1 order of magnitude lower concentrations than conventional spermine. Atomic force microscopy studies of DNA condensation confined to a mica substrate have revealed that the DNA morphologies become more compact with increasing concentration of the platinum complexes. Moreover, we also found that the noncovalent polynuclear platinum complex [{Pt(NH3)3}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](6+) (TriplatinNC-A) binds to DNA in a sequence-dependent manner, namely, to A/T-rich sequences and A-tract regions, and that noncovalent polynuclear platinum complexes protect DNA from enzymatic cleavage by DNase I. The results suggest that mechanisms of antitumor and cytotoxic activities of these complexes may be associated with their unique ability to condense DNA along with their sequence-specific DNA binding. Owing to their high cellular accumulation, it is also reasonable to suggest that their mechanism of action is based on the competition with naturally occurring DNA condensing agents, such as polyamines spermine, spermidine, and putrescine, for intracellular binding sites, resulting in the disturbance of the correct binding of regulatory proteins initiating the onset of apoptosis.
Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu
2017-01-19
A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.
NASA Astrophysics Data System (ADS)
Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu
2017-01-01
A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Eun-Jung; Hur, Shin-Kyoung; Lee, Han-Sae
2011-12-16
Highlights: Black-Right-Pointing-Pointer The N-terminal domain of hIno80 is important for binding to the spindle. Black-Right-Pointing-Pointer The hIno80 N-terminal domain binds to tubulin and microtubule in vitro. Black-Right-Pointing-Pointer The E-hook of tubulin is critical for hIno80 binding to tubulin and microtubule. Black-Right-Pointing-Pointer Tip49a does not bind to microtubule and dispensable for spindle formation. -- Abstract: The human INO80 chromatin remodeling complex, comprising the Ino80 ATPase (hIno80) and the associated proteins such as Tip49a, has been implicated in a variety of nuclear processes other than transcription. We previously have found that hIno80 interacts with tubulin and co-localizes with the mitotic spindle andmore » is required for spindle formation. To better understand the role of hIno80 in spindle formation, we further investigated the interaction between hIno80 and microtubule. Here, we show that the N-terminal domain, dispensable for the nucleosome remodeling activity, is important for hIno80 to interact with tubulin and co-localize with the spindle. The hIno80 N-terminal domain binds to monomeric tubulin and polymerized microtubule in vitro, and the E-hook of tubulin, involved in the polymerization of microtubule, is critical for this binding. Tip49a, which has been reported to associate with the spindle, does not bind to microtubule in vitro and dispensable for spindle formation in vivo. These results suggest that hIno80 can play a direct role in the spindle assembly independent of its chromatin remodeling activity.« less
Mukherjee, Goutam; Pal, Arumay; Levy, Yaakov
2017-11-21
In prokaryotes, the RecA protein catalyzes the repair and strand exchange of double-stranded DNA. RecA binds to single-stranded DNA (ssDNA) and forms a presynaptic complex in which the protein polymerizes around the ssDNA to form a right-handed helical nucleoprotein filament structure. In the present work, the mechanism for the formation of the RecA-ssDNA filament structure is modeled using coarse-grained molecular dynamics simulations. Information from the X-ray structure was used to model the protein itself but not its interactions; the interactions between the protein and the ssDNA were modeled solely by electrostatic, aromatic, and repulsive energies. For the present study, the monomeric, dimeric, and trimeric units of RecA and 4, 8, and 11 NT-long ssDNA, respectively, were studied. Our results indicate that monomeric RecA is not sufficient for nucleoprotein filament formation; rather, dimeric RecA is the elementary binding unit, with higher multimeric units of RecA facilitating filament formation. Our results reveal that loop region flexibility at the primary binding site of RecA is essential for it to bind the incoming ssDNA, that the aromatic residues present in the loop region play an important role in ssDNA binding, and that ATP may play a role in guiding the ssDNA by changing the electrostatic potential of the RecA protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeste, Lesa R.; Chai, Geqing; Bielak, Magdalena
N{sup 10}-formyltetrahydrofolate synthetase (FTHFS) is a folate enzyme that catalyzes the formylation of tetrahydrofolate (THF) in an ATP dependent manner. Structures of FTHFS from the thermophilic homoacetogen, Moorella thermoacetica, complexed with (1) a catalytic intermediate-formylphosphate (XPO) and product-ADP; (2) with an inhibitory substrate analog-folate; (3) with XPO and an inhibitory THF analog, ZD9331, were used to analyze the enzyme mechanism. Nucleophilic attack of the formate ion on the gamma phosphate of ATP leads to the formation of XPO and the first product ADP. A channel that leads to the putative formate binding pocket allows for the binding of ATP andmore » formate in random order. Formate binding is due to interactions with the gamma-phosphate moiety of ATP and additionally to two hydrogen bonds from the backbone nitrogen of Ala276 and the side chain of Arg97. Upon ADP dissociation, XPO reorients and moves to the position previously occupied by the beta-phosphate of ATP. Conformational changes that occur due to the XPO presence apparently allow for the recruitment of the third substrate, THF, with its pterin moiety positioned between Phe384 and Trp412. This position overlaps with that of the bound nucleoside, which is consistent with a catalytic mechanism hypothesis that FTHFS works via a sequential ping-pong mechanism. More specifically, a random bi uni uni bi ping-pong ter ter mechanism is proposed. Additionally, the native structure originally reported at a 2.5 {angstrom} resolution was redetermined at a 2.2 {angstrom} resolution.« less
Weißenstein, Annike; Saha-Möller, Chantu R; Würthner, Frank
2018-06-04
The host-guest binding properties of a fluorescent perylene bisimide (PBI) receptor equipped with crown ether were studied in detail with a series of aromatic amino acids and dipeptides by UV/Vis, fluorescence and NMR spectroscopy. Fluorescence titration experiments showed that electron-rich aromatic amino acids and dipeptides strongly quench the fluorescence of the electron-poor PBI host molecule. Benesi-Hildebrand plots of fluorescence titration data confirmed the formation of host-guest complexes with 1:2 stoichiometry. Binding constants determined by global analysis of UV/Vis and fluorescence titration experiments revealed values between 10 3 m -1 and 10 5 m -1 in acetonitrile/methanol (9:1) at 23 °C. These data showed that amino acid l-Trp having an indole group and dipeptides containing this amino acid bind to the PBI receptor more strongly than other amino acids and dipeptides investigated here. For dipeptides containing l-Trp or l-Tyr, the binding strength is dependent on the distance between the ammonium group and the aromatic unit of the amino acids and dipeptides leading to a strong sensitivity for Ala-Trp dipeptide. 1D and 2D NMR experiments also corroborated 1:2 host-guest complexation and indicated formation of two diastereomeric species of host-guest complexes. The studies have shown that a properly functionalized PBI fluorophore functions as a molecular probe for the optical sensing of aromatic amino acids and dipeptides. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Paul, Hena; Sen, Buddhadeb; Mondal, Tapan Kumar; Chattopadhyay, Pabitra
2017-08-03
Two new ruthenium(II) complexes of Schiff base ligands (L) derived from cinnamaldehyde and ethylenediamine formulated as [Ru(L)(bpy) 2 ](ClO 4 ) 2 , where L 1 = N,N'-bis(4-nitrocinnamald-ehyde)ethylenediamine and L 2 = N,N'-bis(2-nitrocinnamaldehyde)-ethylenediamine for complex 1 and 2, respectively, were isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods. The electrochemical behavior of the complexes showed the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of the complexes with calf thymus DNA (CT-DNA) using absorption, emission spectral studies and electrochemical techniques have been used to determine the binding constant, K b and the linear Stern-Volmer quenching constant, K SV . The results indicate that the ruthenium(II) complexes interact with CT-DNA strongly in a groove binding mode. The interactions of bovine serum albumin (BSA) with the complexes were also investigated with the help of absorption and fluorescence spectroscopy tools. Absorption spectroscopy proved the formation of a ground state BSA-[Ru(L)(bpy) 2 ](ClO 4 ) 2 complex. The antibacterial study showed that the Ru(II) complexes (1 and 2) have better activity than the standard antibiotics but weak activity than the ligands.
Elghobashi-Meinhardt, Nadia
2014-10-21
Niemann-Pick Type C disease is characterized by disrupted lipid trafficking within the late endosomal (LE)/lysosomal (Lys) cellular compartments. Cholesterol transport within the LE/Lys is believed to take place via a concerted hand-off mechanism in which a small (131aa) soluble cholesterol binding protein, NPC2, transfers cholesterol to the N-terminal domain (NTD) of a larger (1278aa) membrane-bound protein, NPC1(NTD). The transfer is thought to occur through the formation of a stable intermediate complex NPC1(NTD)-NPC2, in which the sterol apertures of the two proteins align to allow passage of the cholesterol molecule. In the working model of the NPC1(NTD)-NPC2 complex, the sterol apertures are aligned, but the binding pockets are bent with respect to one another. In order for cholesterol to slide from one binding pocket to the other, a conformational change must occur in the proteins, in the ligand, or in both. Here, we investigate the possibility that the ligand undergoes a conformational change, or isomerization, to accommodate the bent transfer pathway. To understand what structural factors influence the isomerization rate, we calculate the energy barrier to cholesterol isomerization in both the NPC1(NTD) and NPC2 binding pockets. Here, we use a combined quantum mechanical/molecular mechanical (QM/MM) energy function to calculate the isomerization barrier within the native NPC1(NTD) and NPC2 binding pockets before protein-protein docking as well as in the binding pockets of the NPC1(NTD)-NPC2 complex after docking has occurred. The results indicate that cholesterol isomerization in the NPC2 binding pocket is energetically favorable, both before and after formation of the NPC1(NTD)-NPC2 complex. The NPC1(NTD) binding pocket is energetically unfavorable to conformational rearrangement of the hydrophobic ligand because it contains more water molecules near the ligand tail and amino acids with polar side chains. For three NPC1(NTD) mutants investigated, L175Q/L176Q, L175A/L176A, and E191A/Y192A, the isomerization barriers were all found to be higher than the barrier calculated in the NPC2 binding pocket. Our results indicate that cholesterol isomerization in the NPC2 binding pocket, either before or after docking, may ensure an efficient transfer of cholesterol to NPC1(NTD).
A non-canonical mechanism for Crm1-export cargo complex assembly
Fischer, Ute; Schäuble, Nico; Schütz, Sabina; Altvater, Martin; Chang, Yiming; Boulos Faza, Marius; Panse, Vikram Govind
2015-01-01
The transport receptor Crm1 mediates the export of diverse cargos containing leucine-rich nuclear export signals (NESs) through complex formation with RanGTP. To ensure efficient cargo release in the cytoplasm, NESs have evolved to display low affinity for Crm1. However, mechanisms that overcome low affinity to assemble Crm1-export complexes in the nucleus remain poorly understood. In this study, we reveal a new type of RanGTP-binding protein, Slx9, which facilitates Crm1 recruitment to the 40S pre-ribosome-associated NES-containing adaptor Rio2. In vitro, Slx9 binds Rio2 and RanGTP, forming a complex. This complex directly loads Crm1, unveiling a non-canonical stepwise mechanism to assemble a Crm1-export complex. A mutation in Slx9 that impairs Crm1-export complex assembly inhibits 40S pre-ribosome export. Thus, Slx9 functions as a scaffold to optimally present RanGTP and the NES to Crm1, therefore, triggering 40S pre-ribosome export. This mechanism could represent one solution to the paradox of weak binding events underlying rapid Crm1-mediated export. DOI: http://dx.doi.org/10.7554/eLife.05745.001 PMID:25895666
Bazzicalupi, Carla; Ferraroni, Marta; Papi, Francesco; Massai, Lara; Bertrand, Benoît; Messori, Luigi; Gratteri, Paola; Casini, Angela
2016-03-18
The dicarbene gold(I) complex [Au(9-methylcaffein-8-ylidene)2 ]BF4 is an exceptional organometallic compound of profound interest as a prospective anticancer agent. This gold(I) complex was previously reported to be highly cytotoxic toward various cancer cell lines in vitro and behaves as a selective G-quadruplex stabilizer. Interactions of the gold complex with various telomeric DNA models have been analyzed by a combined ESI MS and X-ray diffraction (XRD) approach. ESI MS measurements confirmed formation of stable adducts between the intact gold(I) complex and Tel 23 DNA sequence. The crystal structure of the adduct formed between [Au(9-methylcaffein-8-ylidene)2 ](+) and Tel 23 DNA G-quadruplex was solved. Tel 23 maintains a characteristic propeller conformation while binding three gold(I) dicarbene moieties at two distinct sites. Stacking interactions appear to drive noncovalent binding of the gold(I) complex. The structural basis for tight gold(I) complex/G-quadruplex recognition and its selectivity are described. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Miskolczy, Zsombor; Biczók, László
2009-07-01
A clinically important natural isoquinoline alkaloid, berberine, was used as a fluorescent probe to study the encapsulation of 1-alkyl-3-methylimidazolium (C nMIm +) type ionic liquids in 4-sulfonato-substituted calix[4]arene (SCX4) and calix[6]arene (SCX6) at pH 2. Addition of ionic liquids to the aqueous solution of berberine-SCXn inclusion complexes brought about considerable fluorescence intensity diminution due to the extrusion of berberine from the macrocycle into the aqueous phase by the competitive inclusion of C nMIm + cation. The lengthening of the aliphatic side chain of the imidazolium moiety diminished the equilibrium constant of complexation with SCX4, but enhanced the stability of SCX6 complexes. Larger binding strength was found for SCX4.
NASA Astrophysics Data System (ADS)
Xue, L.; Tang, D. H.; Qu, X. D.; Sun, L. Z.; Lu, Wei; Zhong, J. X.
2011-09-01
Using first-principles method within the framework of the density functional theory, we study the formation energies and the binding energies of multiple hydrogen-mercury vacancy complex impurities (nH-VHg, n = 1,2,3,4) in Hg0.75Cd0.25Te. We find that, when mercury vacancies exist in Hg0.75Cd0.25Te, the formation of the complex impurity between H and VHg (1H-VHg) is easy and its binding energy is up to 0.56 eV. In this case, the deep acceptor level of mercury vacancy is passivated. As the hydrogen concentration increases, we find that the complex impurity between VHg and two hydrogen atoms (2H-VHg) is more stable than 1H-VHg. This complex passivates both the two acceptor levels introduced by mercury vacancy and neutralizes the p-type dopant characteristics of VHg in Hg0.75Cd0.25Te. Moreover, we find that the complex impurities formed by one VHg and three or four H atoms (3H-VHg, 4H-VHg) are still stable in Hg0.75Cd0.25Te, changing the VHg doped p-type Hg0.75Cd0.25Te to n-type material.
Wu, Jia Wei; Krawitz, Ariel R; Chai, Jijie; Li, Wenyu; Zhang, Fangjiu; Luo, Kunxin; Shi, Yigong
2002-11-01
The Ski family of nuclear oncoproteins represses TGF-beta signaling through interactions with the Smad proteins. The crystal structure of the Smad4 binding domain of human c-Ski in complex with the MH2 domain of Smad4 reveals specific recognition of the Smad4 L3 loop region by a highly conserved interaction loop (I loop) from Ski. The Ski binding surface on Smad4 significantly overlaps with that required for binding of the R-Smads. Indeed, Ski disrupts the formation of a functional complex between the Co- and R-Smads, explaining how it could lead to repression of TGF-beta, activin, and BMP responses. Intriguingly, the structure of the Ski fragment, stabilized by a bound zinc atom, resembles the SAND domain, in which the corresponding I loop is responsible for DNA binding.
Phosphorylation-regulated Binding of RNA Polymerase II to Fibrous Polymers of Low Complexity Domains
Xiang, Siheng; Wu, Leeju; Theodoropoulos, Pano; Mirzaei, Hamid; Han, Tina; Xie, Shanhai; Corden, Jeffry L.; McKnight, Steven L.
2014-01-01
SUMMARY The low complexity (LC) domains of the products of the fused in sarcoma (FUS), Ewings sarcoma (EWS) and TAF15 genes are translocated onto a variety of different DNA-binding domains and thereby assist in driving the formation of cancerous cells. In the context of the translocated fusion proteins, these LC sequences function as transcriptional activation domains. Here we show that polymeric fibers formed from these LC domains directly bind the C-terminal domain (CTD) of RNA polymerase II in a manner reversible by phosphorylation of the iterated, heptad repeats of the CTD. Mutational analysis indicates that the degree of binding between the CTD and the LC domain polymers correlates with the strength of transcriptional activation. These studies offer a simple means of conceptualizing how RNA polymerase II is recruited to active genes in its unphosphorylated state, and released for elongation following phosphorylation of the CTD. PMID:24267890
Fröhlich, Daniel R; Kremleva, Alena; Rossberg, André; Skerencak-Frech, Andrej; Koke, Carsten; Krüger, Sven; Rösch, Notker; Panak, Petra J
2017-06-19
The complexation of Am(III) with formate in aqueous solution is studied as a function of the pH value using a combination of extended X-ray absorption fine structure (EXAFS) spectroscopy, iterative transformation factor analysis (ITFA), and quantum chemical calculations. The Am L III -edge EXAFS spectra are analyzed to determine the molecular structure (coordination numbers; Am-O and Am-C distances) of the formed Am(III)-formate species and to track the shift of the Am(III) speciation with increasing pH. The experimental data are compared to predictions from density functional calculations. The results indicate that formate binds to Am(III) in a monodentate fashion, in agreement with crystal structures of lanthanide formates. Furthermore, the investigations are complemented by thermodynamic speciation calculations to verify further the results obtained.
Studies of the Escherichia coli Rsd-sigma70 complex.
Westblade, Lars F; Ilag, Leopold L; Powell, Andrew K; Kolb, Annie; Robinson, Carol V; Busby, Stephen J W
2004-01-16
Escherichia coli Rsd protein was previously identified on the basis of its binding to the RNA polymerase sigma(70) subunit. The Rsd-sigma(70) complex has been studied using different methods. Our data show that Rsd associates with sigma(70) to form a complex with a stoichiometry of 1:1. Alanine scanning and deletion mutagenesis were used to locate regions of sigma(70) that are required for the formation of the Rsd-sigma(70) complex.
Computation of pH-Dependent Binding Free Energies
Kim, M. Olivia; McCammon, J. Andrew
2015-01-01
Protein-ligand binding accompanies changes in the surrounding electrostatic environments of the two binding partners and may lead to changes in protonation upon binding. In cases where the complex formation results in a net transfer of protons, the binding process is pH-dependent. However, conventional free energy computations or molecular docking protocols typically employ fixed protonation states for the titratable groups in both binding partners set a priori, which are identical for the free and bound states. In this review, we draw attention to these important yet largely ignored binding-induced protonation changes in protein-ligand association by outlining physical origins and prevalence of the protonation changes upon binding. Following a summary of various theoretical methods for pKa prediction, we discuss the theoretical framework to examine the pH dependence of protein-ligand binding processes. PMID:26202905
The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways.
Cohen, Philip; Strickson, Sam
2017-07-01
The adaptor protein MyD88 is required for signal transmission by toll-like receptors and receptors of the interleukin-1 family of cytokines. MyD88 signalling triggers the formation of Lys63-linked and Met1-linked ubiquitin (K63-Ub, M1-Ub) chains within minutes. The K63-Ub chains, which are formed by the E3 ubiquitin ligases TRAF6, Pellino1 and Pellino2, activate TAK1, the master kinase that switches on mitogen-activated protein (MAP) kinase cascades and initiates activation of the canonical IκB kinase (IKK) complex. The M1-Ub chains, which are formed by the linear ubiquitin chain assembly complex (LUBAC), bind to the NEMO (NF-κB essential modulator) component of the IKK complex and are required for TAK1 to activate IKKs, but not MAP kinases. An essential E3 ligase-independent role of TRAF6 is to recruit LUBAC into the MyD88 signalling complex, where it recognises preformed K63-Ub chains attached to protein components of these complexes, such as IRAK1 (IL-1 receptor-associated kinase), producing ubiquitin chains containing both types of linkage, termed K63/M1-Ub hybrids. The formation of K63/M1-Ub hybrids, which is a feature of several innate immune signalling pathways, permits the co-recruitment of proteins that interact with either K63-Ub or M1-Ub chains. Two likely roles for K63/M1-Ub hybrids are to facilitate the TAK1-dependent activation of the IKK complex and to prevent the hyperactivation of these kinases by recruiting A20 and A20-binding inhibitor of NF-κB1 (ABIN1). These proteins restrict activation of the TAK1 and IKK complexes, probably by competing with them for binding to K63/M1-Ub hybrids. The formation of K63/M1-Ub hybrids may also regulate the rate at which the ubiquitin linkages in these chains are hydrolysed. The IKK-catalysed phosphorylation of some of its substrates permits their recognition by the E3 ligase SCF βTRCP , leading to their Lys48-linked ubiquitylation and proteasomal degradation. Innate immune signalling is therefore controlled by the formation and destruction of three different types of ubiquitin linkage.
The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways
Cohen, Philip; Strickson, Sam
2017-01-01
The adaptor protein MyD88 is required for signal transmission by toll-like receptors and receptors of the interleukin-1 family of cytokines. MyD88 signalling triggers the formation of Lys63-linked and Met1-linked ubiquitin (K63-Ub, M1-Ub) chains within minutes. The K63-Ub chains, which are formed by the E3 ubiquitin ligases TRAF6, Pellino1 and Pellino2, activate TAK1, the master kinase that switches on mitogen-activated protein (MAP) kinase cascades and initiates activation of the canonical IκB kinase (IKK) complex. The M1-Ub chains, which are formed by the linear ubiquitin chain assembly complex (LUBAC), bind to the NEMO (NF-κB essential modulator) component of the IKK complex and are required for TAK1 to activate IKKs, but not MAP kinases. An essential E3 ligase-independent role of TRAF6 is to recruit LUBAC into the MyD88 signalling complex, where it recognises preformed K63-Ub chains attached to protein components of these complexes, such as IRAK1 (IL-1 receptor-associated kinase), producing ubiquitin chains containing both types of linkage, termed K63/M1-Ub hybrids. The formation of K63/M1-Ub hybrids, which is a feature of several innate immune signalling pathways, permits the co-recruitment of proteins that interact with either K63-Ub or M1-Ub chains. Two likely roles for K63/M1-Ub hybrids are to facilitate the TAK1-dependent activation of the IKK complex and to prevent the hyperactivation of these kinases by recruiting A20 and A20-binding inhibitor of NF-κB1 (ABIN1). These proteins restrict activation of the TAK1 and IKK complexes, probably by competing with them for binding to K63/M1-Ub hybrids. The formation of K63/M1-Ub hybrids may also regulate the rate at which the ubiquitin linkages in these chains are hydrolysed. The IKK-catalysed phosphorylation of some of its substrates permits their recognition by the E3 ligase SCFβTRCP, leading to their Lys48-linked ubiquitylation and proteasomal degradation. Innate immune signalling is therefore controlled by the formation and destruction of three different types of ubiquitin linkage. PMID:28475177
Kong, Lingbao; Fujimoto, Akira; Nakamura, Mariko; Aoyagi, Haruyo; Matsuda, Mami; Watashi, Koichi; Suzuki, Ryosuke; Arita, Minetaro; Yamagoe, Satoshi; Dohmae, Naoshi; Suzuki, Takehiro; Sakamaki, Yuriko; Ichinose, Shizuko; Suzuki, Tetsuro; Wakita, Takaji
2016-01-01
ABSTRACT It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication compartment is not understood. We screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis, followed by screening with small interfering RNA. We identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. PREB is induced by HCV infection and recruited into the replication complex by interaction with NS4B. Recruited PREB promotes HCV RNA replication by participating in the formation of the membranous HCV replication compartment. To our knowledge, the effect of NS4B-binding protein on the formation of the membranous HCV replication compartment is newly described in this report. Our findings are expected to provide new insights into HCV host cofactors. PMID:26739056
Khachatoorian, Ronik; Ganapathy, Ekambaram; Ahmadieh, Yasaman; Wheatley, Nicole; Sundberg, Christopher; Jung, Chun-Ling; Arumugaswami, Vaithilingaraja; Raychaudhuri, Santanu; Dasgupta, Asim; French, Samuel W
2014-04-01
We previously identified HSP70 and HSC70 in complex with NS5A in a proteomic screen. Here, coimmunoprecipitation studies confirmed NS5A/HSC70 complex formation during infection, and immunofluorescence studies showed NS5A and HSC70 to colocalize. Unlike HSP70, HSC70 knockdown did not decrease viral protein levels. Rather, intracellular infectious virion assembly was significantly impaired by HSC70 knockdown. We also discovered that both HSC70 nucleotide binding and substrate binding domains directly bind NS5A whereas only the HSP70 nucleotide binding domain does. Knockdown of both HSC70 and HSP70 demonstrated an additive reduction in virus production. This data suggests that HSC70 and HSP70 play discrete roles in the viral life cycle. Investigation of these different functions may facilitate developing of novel strategies that target host proteins to treat HCV infection. Copyright © 2014 Elsevier Inc. All rights reserved.
Loss of Drosophila Vps16A enhances autophagosome formation through reduced Tor activity.
Takáts, Szabolcs; Varga, Ágnes; Pircs, Karolina; Juhász, Gábor
2015-01-01
The HOPS tethering complex facilitates autophagosome-lysosome fusion by binding to Syx17 (Syntaxin 17), the autophagosomal SNARE. Here we show that loss of the core HOPS complex subunit Vps16A enhances autophagosome formation and slows down Drosophila development. Mechanistically, Tor kinase is less active in Vps16A mutants likely due to impaired endocytic and biosynthetic transport to the lysosome, a site of its activation. Tor reactivation by overexpression of Rheb suppresses autophagosome formation and restores growth and developmental timing in these animals. Thus, Vps16A reduces autophagosome numbers both by indirectly restricting their formation rate and by directly promoting their clearance. In contrast, the loss of Syx17 blocks autophagic flux without affecting the induction step in Drosophila.
Substrate Binding and Catalytic Mechanism of Human Choline Acetyltransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim,A.; Rylett, J.; Shilton, B.
2006-01-01
Choline acetyltransferase (ChAT) catalyzes the synthesis of the neurotransmitter acetylcholine from choline and acetyl-CoA, and its presence is a defining feature of cholinergic neurons. We report the structure of human ChAT to a resolution of 2.2 {angstrom} along with structures for binary complexes of ChAT with choline, CoA, and a nonhydrolyzable acetyl-CoA analogue, S-(2-oxopropyl)-CoA. The ChAT-choline complex shows which features of choline are important for binding and explains how modifications of the choline trimethylammonium group can be tolerated by the enzyme. A detailed model of the ternary Michaelis complex fully supports the direct transfer of the acetyl group from acetyl-CoAmore » to choline through a mechanism similar to that seen in the serine hydrolases for the formation of an acyl-enzyme intermediate. Domain movements accompany CoA binding, and a surface loop, which is disordered in the unliganded enzyme, becomes localized and binds directly to the phosphates of CoA, stabilizing the complex. Interactions between this surface loop and CoA may function to lower the K{sub M} for CoA and could be important for phosphorylation-dependent regulation of ChAT activity.« less
Sekhar, Ashok; Nagesh, Jayashree; Rosenzweig, Rina; Kay, Lewis E
2017-11-01
The Hsp70 chaperone system plays a critical role in cellular homeostasis by binding to client protein molecules. We have recently shown by methyl-TROSY NMR methods that the Escherichia coli Hsp70, DnaK, can form multiple bound complexes with a small client protein, hTRF1. In an effort to characterize the interactions further we report here the results of an NMR-based titration study of hTRF1 and DnaK, where both molecular components are monitored simultaneously, leading to a binding model. A central finding is the formation of a previously undetected 3:1 hTRF1-DnaK complex, suggesting that under heat shock conditions, DnaK might be able to protect cytosolic proteins whose net concentrations would exceed that of the chaperone. Moreover, these results provide new insight into the heterogeneous ensemble of complexes formed by DnaK chaperones and further emphasize the unique role of NMR spectroscopy in obtaining information about individual events in a complex binding scheme by exploiting a large number of probes that report uniquely on distinct binding processes. © 2017 The Protein Society.
Mondal, Samiran; Begum, Nasim A; Hu, Wenjun; Honjo, Tasuku
2016-03-15
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID's structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions.
Vanin, A F
1998-07-01
The physicochemical properties, mechanisms of synthesis and decomposition of dinitrosyl iron complexes (DNICs) with thiol-containing ligands and of S-nitrosothiols (RS-NO), and the potential role of these compounds in storage and transport of NO in biological systems are reviewed. Special attention is given to the phenomenon of mutual transformation of DNIC and RS-NO catalyzed by Fe2+. Each Fe2+ binds two neutral NO molecules in the DNICs, catalyzes their mutual oxidation--reduction with formation of nitrous oxide and nitrosonium ions appearing in the DNICs. These ions S-nitrosate thiol-compounds with RS-NO formation. Fe2+ binds two RS-NO molecules and catalyzes their mutual oxidation--reduction followed by decomposition of the resulting molecules. Mutual conversion of DNICs and RS-NO regulated by iron, thiol, and NO levels is suggested to provide NO transport in cells and tissues.
Mondal, Samiran; Begum, Nasim A.; Hu, Wenjun; Honjo, Tasuku
2016-01-01
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID’s structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions. PMID:26929374
Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin.
Nielsen, A D; Borch, K; Westh, P
2000-06-15
The specific binding to bovine serum albumin (BSA) of anionic and non-ionic surfactants with C12 acyl chains has been studied by high sensitivity isothermal titration calorimetry. This method proved particularly effective in resolving the binding of anionic surfactants into separate classes of sites with different affinity. For sodium dodecylsulfate (SDS) the measured binding curves could be rationalized as association to two classes (high affinity/low affinity) of sites comprising, respectively, three and six similar (i.e. thermodynamically equivalent), independent sites. Changes in the thermodynamic functions enthalpy, standard free energy, standard entropy and heat capacity could be discerned for each class of binding site, as well as for micelle formation. These data suggest that binding to low affinity sites (in analogy with micelle formation) exhibits energetic parameters; in particular, a large negative change in heat capacity, which is characteristic of hydrophobic interactions. The thermodynamics of high affinity binding, on the other hand, is indicative of other dominant forces; most likely electrostatic interactions. Other anionic ligands investigated (laurate and dodecyl benzylsulfonate) showed a behavior similar to SDS, the most significant difference being the high affinity binding of the alkylbenzyl sulfonate. For this ligand, the thermodynamic data is indicative of a more loosely associated complex than for SDS and laurate. BSA was found to bind one or two of the non-ionic surfactants (NIS) hepta- or penta(ethylene glycol) monododecyl ether (C12EO7 and C12EO5) with binding constants about three orders of magnitude lower than for SDS. Hence, the free energy of the surfactant in the weakly bound BSA-NIS complex is only slightly favored over the micellar state. The binding process is characterized by very large exothermic enthalpy changes (larger than for the charged surfactants) and a large, positive increment in heat capacity. These observations cannot be reconciled with a molecular picture based on simple hydrophobic condensation onto non-polar patches on the protein surface.
2017-01-01
Virtually all biological processes depend on the interaction between proteins at some point. The correct prediction of biomolecular binding free-energies has many interesting applications in both basic and applied pharmaceutical research. While recent advances in the field of molecular dynamics (MD) simulations have proven the feasibility of the calculation of protein–protein binding free energies, the large conformational freedom of proteins and complex free energy landscapes of binding processes make such calculations a difficult task. Moreover, convergence and reversibility of resulting free-energy values remain poorly described. In this work, an easy-to-use, yet robust approach for the calculation of standard-state protein–protein binding free energies using perturbed distance restraints is described. In the binding process the conformations of the proteins were restrained, as suggested earlier. Two approaches to avoid end-state problems upon release of the conformational restraints were compared. The method was evaluated by practical application to a small model complex of ubiquitin and the very flexible ubiquitin-binding domain of human DNA polymerase ι (UBM2). All computed free energy differences were closely monitored for convergence, and the calculated binding free energies had a mean unsigned deviation of only 1.4 or 2.5 kJ·mol–1 from experimental values. Statistical error estimates were in the order of thermal noise. We conclude that the presented method has promising potential for broad applicability to quantitatively describe protein–protein and various other kinds of complex formation. PMID:28898077
Enhancing the efficiency of sortase-mediated ligations through nickel-peptide complex formation.
David Row, R; Roark, Travis J; Philip, Marina C; Perkins, Lorena L; Antos, John M
2015-08-14
A modified sortase A recognition motif containing a masked Ni(2+)-binding peptide was employed to boost the efficiency of sortase-catalyzed ligation reactions. Deactivation of the Ni(2+)-binding peptide using a Ni(2+) additive improved reaction performance at low to equimolar ratios of the glycine amine nucleophile and sortase substrate. The success of this approach was demonstrated with both peptide and protein substrates.
RNA Seeds Higher Order Assembly of FUS Protein
Schwartz, Jacob C.; Wang, Xueyin; Podell, Elaine R.; Cech, Thomas R.
2014-01-01
SUMMARY The abundant nuclear RNA-binding protein FUS binds the CTD of RNA polymerase II in an RNA-dependent manner, affecting Ser2 phosphorylation and transcription. Here we examine the mechanism of this process and find that RNA binding nucleates the formation of higher order FUS RNP assemblies that bind the CTD. Both the low-complexity domain and the RGG domain of FUS contribute to assembly. The assemblies appear fibrous by electron microscopy and have characteristics of beta-zipper structures. These results support the emerging view that the pathologic protein aggregation seen in neurodegenerative diseases such as ALS may occur by exaggeration of functionally important assemblies of RNA-binding proteins. PMID:24268778
NASA Astrophysics Data System (ADS)
Wani, Tanveer A.; Bakheit, Ahmed H.; Abounassif, M. A.; Zargar, Seema
2018-03-01
Binding of therapeutic agents to plasma proteins, particularly to serum albumin, provides valuable information in the drug development. This study was designed to evaluate the binding interaction of neratinib with bovine serum albumin (BSA). Neratinib blocks HER2 signaling and is effective in trastuzumab-resistant breast cancer treatment. Spectrofluorometric, UV spectrophotometric, and fourier transform infrared (FT-IR) and molecular docking experiments were performed to study this interaction. The fluorescence of BSA is attributed to the presence of tryptophan (Trp) residues. The fluorescence of BSA in presence of neratinib was studied using the excitation wavelength of 280 nm and the emission was measured at 300-500 nm at three different temperatures. Neratinib quenched the BSA intrinsic fluorescence by static mechanism. A complex formation occurred due to the interaction leading to BSA absorption shift. The fluorescence, UV- absorption, three dimensional fluorescence and FT-IR data showed conformational changes occurred in BSA after interaction with neratinib. The binding constant values decreased as the temperature increased suggesting an instable complex formation at high temperature. Site I (sub-domain IIA) was observed as the principal binding site for neratinib. Hydrogen bonding and Van der Waals forces were suggested to be involved in the BSA-neratinib interaction due to the negative values of entropy and enthalpy changes.
Wani, Tanveer A; Bakheit, Ahmed H; Abounassif, M A; Zargar, Seema
2018-01-01
Binding of therapeutic agents to plasma proteins, particularly to serum albumin, provides valuable information in the drug development. This study was designed to evaluate the binding interaction of neratinib with bovine serum albumin (BSA). Neratinib blocks HER2 signaling and is effective in trastuzumab-resistant breast cancer treatment. Spectrofluorometric, UV spectrophotometric, and fourier transform infrared (FT-IR) and molecular docking experiments were performed to study this interaction. The fluorescence of BSA is attributed to the presence of tryptophan (Trp) residues. The fluorescence of BSA in presence of neratinib was studied using the excitation wavelength of 280 nm and the emission was measured at 300-500 nm at three different temperatures. Neratinib quenched the BSA intrinsic fluorescence by static mechanism. A complex formation occurred due to the interaction leading to BSA absorption shift. The fluorescence, UV- absorption, three dimensional fluorescence and FT-IR data showed conformational changes occurred in BSA after interaction with neratinib. The binding constant values decreased as the temperature increased suggesting an instable complex formation at high temperature. Site I (sub-domain IIA) was observed as the principal binding site for neratinib. Hydrogen bonding and Van der Waals forces were suggested to be involved in the BSA-neratinib interaction due to the negative values of entropy and enthalpy changes.
Wani, Tanveer A.; Bakheit, Ahmed H.; Abounassif, M. A.; Zargar, Seema
2018-01-01
Binding of therapeutic agents to plasma proteins, particularly to serum albumin, provides valuable information in the drug development. This study was designed to evaluate the binding interaction of neratinib with bovine serum albumin (BSA). Neratinib blocks HER2 signaling and is effective in trastuzumab-resistant breast cancer treatment. Spectrofluorometric, UV spectrophotometric, and fourier transform infrared (FT-IR) and molecular docking experiments were performed to study this interaction. The fluorescence of BSA is attributed to the presence of tryptophan (Trp) residues. The fluorescence of BSA in presence of neratinib was studied using the excitation wavelength of 280 nm and the emission was measured at 300-500 nm at three different temperatures. Neratinib quenched the BSA intrinsic fluorescence by static mechanism. A complex formation occurred due to the interaction leading to BSA absorption shift. The fluorescence, UV- absorption, three dimensional fluorescence and FT-IR data showed conformational changes occurred in BSA after interaction with neratinib. The binding constant values decreased as the temperature increased suggesting an instable complex formation at high temperature. Site I (sub-domain IIA) was observed as the principal binding site for neratinib. Hydrogen bonding and Van der Waals forces were suggested to be involved in the BSA-neratinib interaction due to the negative values of entropy and enthalpy changes. PMID:29564326
Balhara, Vinod; Deshmukh, Sasmit S.; Kálmán, László; Kornblatt, Jack A.
2014-01-01
The enolase from Streptococcus pyogenes (Str enolase F137L/E363G) is a homo-octamer shaped like a donut. Plasminogen (Pgn) is a monomeric protein composed of seven discrete separated domains organized into a lock washer. The enolase is known to bind Pgn. In past work we searched for conditions in which the two proteins would bind to one another. The two native proteins in solution would not bind under any of the tried conditions. We found that if the structures were perturbed binding would occur. We stated that only the non-native Str enolase or Pgn would interact such that we could detect binding. We report here the results of a series of dual polarization interferometry (DPI) experiments coupled with atomic force microscopy (AFM), isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and fluorescence. We show that the critical condition for forming stable complexes of the two native proteins involves Str enolase binding to a surface. Surfaces that attract Str enolase are a sufficient condition for binding Pgn. Under certain conditions, Pgn adsorbed to a surface will bind Str enolase. PMID:24520380
Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.
2015-01-01
Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123
Wang, Yucai; Han, Xiao; Wu, Fangming; Leung, Justin W; Lowery, Megan G; Do, Huong; Chen, Junjie; Shi, Chaowei; Tian, Changlin; Li, Lei; Gong, Weimin
2013-01-01
The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. PMID:23999858
Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.
2012-01-01
Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924
RNA–protein binding kinetics in an automated microfluidic reactor
Ridgeway, William K.; Seitaridou, Effrosyni; Phillips, Rob; Williamson, James R.
2009-01-01
Microfluidic chips can automate biochemical assays on the nanoliter scale, which is of considerable utility for RNA–protein binding reactions that would otherwise require large quantities of proteins. Unfortunately, complex reactions involving multiple reactants cannot be prepared in current microfluidic mixer designs, nor is investigation of long-time scale reactions possible. Here, a microfluidic ‘Riboreactor’ has been designed and constructed to facilitate the study of kinetics of RNA–protein complex formation over long time scales. With computer automation, the reactor can prepare binding reactions from any combination of eight reagents, and is optimized to monitor long reaction times. By integrating a two-photon microscope into the microfluidic platform, 5-nl reactions can be observed for longer than 1000 s with single-molecule sensitivity and negligible photobleaching. Using the Riboreactor, RNA–protein binding reactions with a fragment of the bacterial 30S ribosome were prepared in a fully automated fashion and binding rates were consistent with rates obtained from conventional assays. The microfluidic chip successfully combines automation, low sample consumption, ultra-sensitive fluorescence detection and a high degree of reproducibility. The chip should be able to probe complex reaction networks describing the assembly of large multicomponent RNPs such as the ribosome. PMID:19759214
NASA Astrophysics Data System (ADS)
Raman, Natarajan; Selvaganapathy, Muthusamy; Radhakrishnan, Srinivasan
2014-06-01
The 4-aminoantipyrine derivatives (sbnd NO2, sbnd OCH3) and their mixed-ligand complexes with amino acids have been synthesized and investigated for their binding with CT DNA using UV-visible spectroscopy, cyclic voltammetry, and viscosity measurements under physiological conditions of pH (stomach 4.7; blood 7.4). The results from all techniques i.e. binding constant (Kb), and free energy change (ΔG) were in good agreement and inferred spontaneous compound-DNA complexes formation via intercalation. Among all the compounds 1 and 4 showed comparatively greater binding at pH 7.4 as evident from its greater Kb values. All the complexes exhibit oxidative cleavage of supercoiled (SC) pBR322 plasmid DNA in the presence of H2O2 as an activator. It is remarkable that at 25 μM concentration 1 and 4 completely degrade SC DNA into undetectable minor fragments and thus they act as efficient chemical nucleases. Among the new complexes, complexes 1 and 4 have highest potential against all the microorganisms tested. The results of the above biological experiments also reveal that the choice of different metal ions has little influence on the DNA binding, DNA cleavage and antimicrobial assay.
Translational autocontrol of the Escherichia coli hfq RNA chaperone gene
VEČEREK, BRANISLAV; MOLL, ISABELLA; BLÄSI, UDO
2005-01-01
The conserved bacterial RNA chaperone Hfq has been shown to play an important role in post-transcriptional regulation. Here, we demonstrate that Hfq synthesis is autoregulated at the translational level. We have mapped two Hfq binding sites in the 5′-untranslated region of hfq mRNA and show that Hfq binding inhibits formation of the translation initiation complex. In vitro translation and in vivo studies further revealed that Hfq binding to both sites is required for efficient translational repression of hfq mRNA. PMID:15872186
Binding Modes of Phthalocyanines to Amyloid β Peptide and Their Effects on Amyloid Fibril Formation.
Valiente-Gabioud, Ariel A; Riedel, Dietmar; Outeiro, Tiago F; Menacho-Márquez, Mauricio A; Griesinger, Christian; Fernández, Claudio O
2018-03-13
The inherent tendency of proteins to convert from their native states into amyloid aggregates is associated with a range of human disorders, including Alzheimer's and Parkinson's diseases. In that sense, the use of small molecules as probes for the structural and toxic mechanism related to amyloid aggregation has become an active area of research. Compared with other compounds, the structural and molecular basis behind the inhibitory interaction of phthalocyanine tetrasulfonate (PcTS) with proteins such as αS and tau has been well established, contributing to a better understanding of the amyloid aggregation process in these proteins. We present here the structural characterization of the binding of PcTS and its Cu(II) and Zn(II)-loaded forms to the amyloid β-peptide (Aβ) and the impact of these interactions on the peptide amyloid fibril assembly. Elucidation of the PcTS binding modes to Aβ 40 revealed the involvement of specific aromatic and hydrophobic interactions in the formation of the Aβ 40 -PcTS complex, ascribed to a binding mode in which the planarity and hydrophobicity of the aromatic ring system in the phthalocyanine act as main structural determinants for the interaction. Our results demonstrated that formation of the Aβ 40 -PcTS complex does not interfere with the progression of the peptide toward the formation of amyloid fibrils. On the other hand, conjugation of Zn(II) but not Cu(II) at the center of the PcTS macrocyclic ring modified substantially the binding profile of this phthalocyanine to Aβ 40 and became crucial to reverse the effects of metal-free PcTS on the fibril assembly of the peptide. Overall, our results provide a firm basis to understand the structural rules directing phthalocyanine-protein interactions and their implications on the amyloid fibril assembly of the target proteins; in particular, our results contradict the hypothesis that PcTS might have similar mechanisms of action in slowing the formation of a variety of pathological aggregates. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Seidel, Gerald; Diel, Marco; Fuchsbauer, Norbert; Hillen, Wolfgang
2005-05-01
The phosphoproteins HPrSerP and CrhP are the main effectors for CcpA-mediated carbon catabolite regulation (CCR) in Bacillus subtilis. Complexes of CcpA with HPrSerP or CrhP regulate genes by binding to the catabolite responsive elements (cre). We present a quantitative analysis of HPrSerP and CrhP interaction with CcpA by surface plasmon resonance (SPR) revealing small and similar equilibrium constants of 4.8 +/- 0.4 microm for HPrSerP-CcpA and 19.1 +/- 2.5 microm for CrhP-CcpA complex dissociation. Forty millimolar fructose-1,6-bisphosphate (FBP) or glucose-6-phosphate (Glc6-P) increases the affinity of HPrSerP to CcpA at least twofold, but have no effect on CrhP-CcpA binding. Saturation of binding of CcpA to cre as studied by fluorescence and SPR is dependent on 50 microm of HPrSerP or > 200 microm CrhP. The rate constants of HPrSerP-CcpA-cre complex formation are k(a) = 3 +/- 1 x 10(6) m(-1).s(-1) and k(d) = 2.0 +/- 0.4 x 10(-3).s(-1), resulting in a K(D) of 0.6 +/- 0.3 nm. FBP and Glc6-P stimulate CcpA-HPrSerP but not CcpA-CrhP binding to cre. Maximal HPrSerP-CcpA-cre complex formation in the presence of 10 mm FBP requires about 10-fold less HPrSerP. These data suggest a specific role for FBP and Glc6-P in enhancing only HPrSerP-mediated CCR.
NASA Astrophysics Data System (ADS)
Zhao, Yuejie; Singh, Arunima; Xu, Yongmei; Zong, Chengli; Zhang, Fuming; Boons, Geert-Jan; Liu, Jian; Linhardt, Robert J.; Woods, Robert J.; Amster, I. Jonathan
2017-01-01
Fibroblast growth factors (FGFs) regulate several cellular developmental processes by interacting with cell surface heparan proteoglycans and transmembrane cell surface receptors (FGFR). The interaction of FGF with heparan sulfate (HS) is known to induce protein oligomerization, increase the affinity of FGF towards its receptor FGFR, promoting the formation of the HS-FGF-FGFR signaling complex. Although the role of HS in the signaling pathways is well recognized, the details of FGF oligomerization and formation of the ternary signaling complex are still not clear, with several conflicting models proposed in literature. Here, we examine the effect of size and sulfation pattern of HS upon FGF1 oligomerization, binding stoichiometry and conformational stability, through a combination of ion mobility (IM) and theoretical modeling approaches. Ion mobility-mass spectrometry (IMMS) of FGF1 in the presence of several HS fragments ranging from tetrasaccharide (dp4) to dodecasaccharide (dp12) in length was performed. A comparison of the binding stoichiometry of variably sulfated dp4 HS to FGF1 confirmed the significance of the previously known high-affinity binding motif in FGF1 dimerization, and demonstrated that certain tetrasaccharide-length fragments are also capable of inducing dimerization of FGF1. The degree of oligomerization was found to increase in the presence of dp12 HS, and a general lack of specificity for longer HS was observed. Additionally, collision cross-sections (CCSs) of several FGF1-HS complexes were calculated, and were found to be in close agreement with experimental results. Based on the (CCSs) a number of plausible binding modes of 2:1 and 3:1 FGF1-HS are proposed.
Tonkin, Michelle L.; Beck, Josh R.; Bradley, Peter J.; Boulanger, Martin J.
2014-01-01
Toxoplasma gondii, an apicomplexan parasite prevalent in developed nations, infects up to one-third of the human population. The success of this parasite depends on several unique structures including an inner membrane complex (IMC) that lines the interior of the plasma membrane and contains proteins important for gliding motility and replication. Of these proteins, the IMC sub-compartment proteins (ISPs) have recently been shown to play a role in asexual T. gondii daughter cell formation, yet the mechanism is unknown. Complicating mechanistic characterization of the ISPs is a lack of sequence identity with proteins of known structure or function. In support of elucidating the function of ISPs, we first determined the crystal structures of representative members TgISP1 and TgISP3 to a resolution of 2.10 and 2.32 Å, respectively. Structural analysis revealed that both ISPs adopt a pleckstrin homology fold often associated with phospholipid binding or protein-protein interactions. Substitution of basic for hydrophobic residues in the region that overlays with phospholipid binding in related pleckstrin homology domains, however, suggests that ISPs do not retain phospholipid binding activity. Consistent with this observation, biochemical assays revealed no phospholipid binding activity. Interestingly, mapping of conserved surface residues combined with crystal packing analysis indicates that TgISPs have functionally repurposed the phospholipid-binding site likely to coordinate protein partners. Recruitment of larger protein complexes may also be aided through avidity-enhanced interactions resulting from multimerization of the ISPs. Overall, we propose a model where TgISPs recruit protein partners to the IMC to ensure correct progression of daughter cell formation. PMID:24675080
Liang, Shide; Li, Liwei; Hsu, Wei-Lun; Pilcher, Meaghan N.; Uversky, Vladimir; Zhou, Yaoqi; Dunker, A. Keith; Meroueh, Samy O.
2009-01-01
The significant work that has been invested toward understanding protein–protein interaction has not translated into significant advances in structure-based predictions. In particular redesigning protein surfaces to bind to unrelated receptors remains a challenge, partly due to receptor flexibility, which is often neglected in these efforts. In this work, we computationally graft the binding epitope of various small proteins obtained from the RCSB database to bind to barnase, lysozyme, and trypsin using a previously derived and validated algorithm. In an effort to probe the protein complexes in a realistic environment, all native and designer complexes were subjected to a total of nearly 400 ns of explicit-solvent molecular dynamics (MD) simulation. The MD data led to an unexpected observation: some of the designer complexes were highly unstable and decomposed during the trajectories. In contrast, the native and a number of designer complexes remained consistently stable. The unstable conformers provided us with a unique opportunity to define the structural and energetic factors that lead to unproductive protein–protein complexes. To that end we used free energy calculations following the MM-PBSA approach to determine the role of nonpolar effects, electrostatics and entropy in binding. Remarkably, we found that a majority of unstable complexes exhibited more favorable electrostatics than native or stable designer complexes, suggesting that favorable electrostatic interactions are not prerequisite for complex formation between proteins. However, nonpolar effects remained consistently more favorable in native and stable designer complexes reinforcing the importance of hydrophobic effects in protein–protein binding. While entropy systematically opposed binding in all cases, there was no observed trend in the entropy difference between native and designer complexes. A series of alanine scanning mutations of hot-spot residues at the interface of native and designer complexes showed less than optimal contacts of hot-spot residues with their surroundings in the unstable conformers, resulting in more favorable entropy for these complexes. Finally, disorder predictions revealed that secondary structures at the interface of unstable complexes exhibited greater disorder than the stable complexes. PMID:19113835
Falconer, Robert J
2016-10-01
Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or dissociation of molecular complexes. Over the last 5 years, much work has been published on the interpretation of isothermal titration calorimetry (ITC) data for single binding and multiple binding sites. As over 80% of ITC papers are on macromolecules of biological origin, this interpretation is challenging. Some researchers have attempted to link the thermodynamics constants to events at the molecular level. This review highlights work carried out using binding sites characterized using x-ray crystallography techniques that allow speculation about individual bond formation and the displacement of individual water molecules during ligand binding and link these events to the thermodynamic constants for binding. The review also considers research conducted with synthetic binding partners where specific binding events like anion-π and π-π interactions were studied. The revival of assays that enable both thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly, published criticism of ITC research from a physical chemistry perspective is appraised and practical advice provided for researchers unfamiliar with thermodynamics and its interpretation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Nagula, Narsimha; Kunche, Sudeepa; Jaheer, Mohmed; Mudavath, Ravi; Sivan, Sreekanth; Ch, Sarala Devi
2018-01-01
Some novel transition metal [Cu (II), Ni (II) and Co (II)] complexes of nalidixic acid hydrazone have been prepared and characterized by employing spectro-analytical techniques viz: elemental analysis, 1 H-NMR, Mass, UV-Vis, IR, TGA-DTA, SEM-EDX, ESR and Spectrophotometry studies. The HyperChem 7.5 software was used for geometry optimization of title compound in its molecular and ionic forms. Quantum mechanical parameters, contour maps of highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) and corresponding binding energy values were computed using semi empirical single point PM3 method. The stoichiometric equilibrium studies of metal complexes carried out spectrophotometrically using Job's continuous variation and mole ratio methods inferred formation of 1:2 (ML 2 ) metal complexes in respective systems. The title compound and its metal complexes screened for antibacterial and antifungal properties, exemplified improved activity in metal complexes. The studies of nuclease activity for the cleavage of CT- DNA and MTT assay for in vitro cytotoxic properties involving metal complexes exhibited high activity. In addition, the DNA binding properties of Cu (II), Ni (II) and Co (II) complexes investigated by electronic absorption and fluorescence measurements revealed their good binding ability and commended agreement of K b values obtained from both the techniques. Molecular docking studies were also performed to find the binding affinity of synthesized compounds with DNA (PDB ID: 1N37) and "Thymidine phosphorylase from E.coli" (PDB ID: 4EAF) protein targets.
Singh, Prafull Kumar; Roukounakis, Aristomenis; Frank, Daniel O.; Kirschnek, Susanne; Das, Kushal Kumar; Neumann, Simon; Madl, Josef; Römer, Winfried; Zorzin, Carina; Borner, Christoph; Haimovici, Aladin; Garcia-Saez, Ana; Weber, Arnim; Häcker, Georg
2017-01-01
The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-XL, recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim–Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-XL inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy. PMID:28982759
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, C.; Gratson, A.A.; Evans, J.C.
2010-03-05
Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent enzyme that catalyzes the transfer of a methyl group from glycine betaine (Bet) to homocysteine (Hcy) to form dimethylglycine (DMG) and methionine (Met). Previous studies in other laboratories have indicated that catalysis proceeds through the formation of a ternary complex, with a transition state mimicked by the inhibitor S-({delta}-carboxybutyl)-l-homocysteine (CBHcy). Using changes in intrinsic tryptophan fluorescence to determine the affinity of human BHMT for substrates, products, or CBHcy, we now demonstrate that the enzyme-substrate complex reaches its transition state through an ordered bi-bi mechanism in which Hcy is the first substrate to bind andmore » Met is the last product released. Hcy, Met, and CBHcy bind to the enzyme to form binary complexes with K{sub d} values of 7.9, 6.9, and 0.28 {micro}M, respectively. Binary complexes with Bet and DMG cannot be detected with fluorescence as a probe, but Bet and DMG bind tightly to BHMT-Hcy to form ternary complexes with K{sub d} values of 1.1 and 0.73 {micro}M, respectively. Mutation of each of the seven tryptophan residues in human BHMT provides evidence that the enzyme undergoes two distinct conformational changes that are reflected in the fluorescence of the enzyme. The first is induced when Hcy binds, and the second, when Bet binds. As predicted by the crystal structure of BHMT, the amino acids Trp44 and Tyr160 are involved in binding Bet, and Glu159 in binding Hcy. Replacing these residues by site-directed mutagenesis significantly reduces the catalytic efficiency (V{sub max}/K{sub m}) of the enzyme. Replacing Tyr77 with Phe abolishes enzyme activity.« less
Rudling, Axel; Orro, Adolfo; Carlsson, Jens
2018-02-26
Water plays a major role in ligand binding and is attracting increasing attention in structure-based drug design. Water molecules can make large contributions to binding affinity by bridging protein-ligand interactions or by being displaced upon complex formation, but these phenomena are challenging to model at the molecular level. Herein, networks of ordered water molecules in protein binding sites were analyzed by clustering of molecular dynamics (MD) simulation trajectories. Locations of ordered waters (hydration sites) were first identified from simulations of high resolution crystal structures of 13 protein-ligand complexes. The MD-derived hydration sites reproduced 73% of the binding site water molecules observed in the crystal structures. If the simulations were repeated without the cocrystallized ligands, a majority (58%) of the crystal waters in the binding sites were still predicted. In addition, comparison of the hydration sites obtained from simulations carried out in the absence of ligands to those identified for the complexes revealed that the networks of ordered water molecules were preserved to a large extent, suggesting that the locations of waters in a protein-ligand interface are mainly dictated by the protein. Analysis of >1000 crystal structures showed that hydration sites bridged protein-ligand interactions in complexes with different ligands, and those with high MD-derived occupancies were more likely to correspond to experimentally observed ordered water molecules. The results demonstrate that ordered water molecules relevant for modeling of protein-ligand complexes can be identified from MD simulations. Our findings could contribute to development of improved methods for structure-based virtual screening and lead optimization.
Pauker, Maor H; Hassan, Nirit; Noy, Elad; Reicher, Barak; Barda-Saad, Mira
2012-04-24
Protein-protein interactions regulate and control many cellular functions. A multimolecular complex consisting of the adaptor proteins SLP-76 (Src homology 2 domain-containing leukocyte protein of 76 kD), Nck, and the guanine nucleotide exchange factor Vav1 is recruited to the T cell side of the interface with an antigen-presenting cell during initial T cell activation. This complex is crucial for regulation of the actin machinery, antigen recognition, and signaling in T cells. We studied the interactions between these proteins as well as the dynamics of their recruitment into a complex that governs cytoskeletal reorganization. We developed a triple-color Förster resonance energy transfer (3FRET) system to observe the dynamics of the formation of this trimolecular signaling complex in live human T cells and to follow the three molecular interactions in parallel. Using the 3FRET system, we demonstrated that dimers of Nck and Vav1 were constitutively formed independently of both T cell activation and the association between SLP-76 and Nck. After T cell receptor stimulation, SLP-76 was phosphorylated, which enabled the binding of Nck. A point mutation in the proline-rich site of Vav1, which abolishes its binding to Nck, impaired actin rearrangement, suggesting that Nck-Vav1 dimers play a critical role in regulation of the actin machinery. We suggest that these findings revise the accepted model of the formation of a complex of SLP-76, Nck, and Vav1 and demonstrate the use of 3FRET as a tool to study signal transduction in live cells.
Free energy decomposition of protein-protein interactions.
Noskov, S Y; Lim, C
2001-08-01
A free energy decomposition scheme has been developed and tested on antibody-antigen and protease-inhibitor binding for which accurate experimental structures were available for both free and bound proteins. Using the x-ray coordinates of the free and bound proteins, the absolute binding free energy was computed assuming additivity of three well-defined, physical processes: desolvation of the x-ray structures, isomerization of the x-ray conformation to a nearby local minimum in the gas-phase, and subsequent noncovalent complex formation in the gas phase. This free energy scheme, together with the Generalized Born model for computing the electrostatic solvation free energy, yielded binding free energies in remarkable agreement with experimental data. Two assumptions commonly used in theoretical treatments; viz., the rigid-binding approximation (which assumes no conformational change upon complexation) and the neglect of vdW interactions, were found to yield large errors in the binding free energy. Protein-protein vdW and electrostatic interactions between complementary surfaces over a relatively large area (1400--1700 A(2)) were found to drive antibody-antigen and protease-inhibitor binding.
Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C
2016-01-01
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics. DOI: http://dx.doi.org/10.7554/eLife.17096.001 PMID:27482653
Weidmann, Chase A.; Qiu, Chen; Arvola, René M.; ...
2016-08-02
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAsmore » that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidmann, Chase A.; Qiu, Chen; Arvola, René M.
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAsmore » that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less
Nakayama, Youhei; Nakajima, Yu; Kato, Naoko; Takai, Hideki; Kim, Dong-Soon; Arai, Masato; Mezawa, Masaru; Araki, Shouta; Sodek, Jaro; Ogata, Yorimasa
2006-08-01
Insulin-like growth factor-I (IGF-I) promotes bone formation by stimulating proliferation and differentiation of osteoblasts. Bone sialoprotein (BSP), is thought to function in the initial mineralization of bone, is selectively expressed by differentiated osteoblast. To determine the molecular mechanism of IGF-I regulation of osteogenesis, we analyzed the effects of IGF-I on the expression of BSP in osteoblast-like Saos2 and in rat stromal bone marrow (RBMC-D8) cells. IGF-I (50 ng/ml) increased BSP mRNA levels at 12 h in Saos2 cells. In RBMC-D8 cells, IGF-I increased BSP mRNA levels at 3 h. From transient transfection assays, a twofold increase in transcription by IGF-I was observed at 12 h in pLUC3 construct that included the promoter sequence from -116 to +60. Effect of IGF-I was abrogated by 2-bp mutations in either the FGF2 response element (FRE) or homeodomain protein-binding site (HOX). Gel shift analyses showed that IGF-I increased binding of nuclear proteins to the FRE and HOX elements. Notably, the HOX-protein complex was supershifted by Smad1 antibody, while the FRE-protein complex was shifted by Smad1 and Cbfa1 antibodies. Dlx2 and Dlx5 antibodies disrupted the formation of the FRE- and HOX-protein complexes. The IGF-I effects on the formation of FRE-protein complexes were abolished by tyrosine kinase inhibitor herbimycin A (HA), PI3-kinase/Akt inhibitor LY249002, and MAP kinase kinase inhibitor U0126, while IGF-I effects on HOX-protein complexes were abolished by HA and LY249002. These studies demonstrate that IGF-I stimulates BSP transcription by targeting the FRE and HOX elements in the proximal promoter of BSP gene.
Agarwal, Shweta; Tyagi, Gunjan; Chadha, Deepti; Mehrotra, Ranjana
2017-01-01
Chloroethyl nitrosourea derivatives (CENUs) represent an important family of anticancer chemotherapeutic agents, which are used in the treatment of different types of cancer such as brain tumors, resistant or relapsed Hodgkin's disease, small cell lung cancer and malignant melanoma. This work focuses towards understanding the interaction of chloroethyl nitrosourea derivatives; lomustine, nimustine and semustine with tRNA using spectroscopic approach in order to elucidate their auxiliary anticancer action mechanism inside the cell. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), Fourier transform infrared difference spectroscopy, circular dichroism spectroscopy and UV-visible spectroscopy were employed to investigate the binding parameters of tRNA-CENUs complexation. Results of present study demonstrate that all CENUs, studied here, interact with tRNA through guanine nitrogenous base residues and possibly further crosslink cytosine residues in paired region of tRNA. Moreover, spectral data collected for nimustine-tRNA and semustine-tRNA complex formation indicates towards the groove-directed-alkylation as their anti-malignant action, which involves the participation of uracil moiety located in major groove of tRNA. Besides this, tRNA-CENUs adduct formation did not alter the native conformation of biopolymer and tRNA remains in A-form after its interaction with all three nitrosourea derivatives studied. The binding constants (K a ) estimated for tRNA complexation with lomustine, nimustine and semustine are 2.55×10 2 M -1 , 4.923×10 2 M -1 and 4.223×10 2 M -1 respectively, which specify weak type of CENU's binding with tRNA. Moreover, molecular modeling simulations were also performed to predict preferential binding orientation of CENUs with tRNA that corroborates well with spectral outcomes. The findings, presented here, recognize tRNA binding properties of CENUs that can further help in rational designing of more specific and efficient RNA targeted chemotherapeutic agents. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Terekhova, Irina V.; Chislov, Mikhail V.; Brusnikina, Maria A.; Chibunova, Ekaterina S.; Volkova, Tatyana V.; Zvereva, Irina A.; Proshin, Alexey N.
2017-03-01
Study of complex formation of cyclodextrins with 1,2,4-thiadiazole derivatives intended for Alzheimer's disease treatment was carried out using 1H NMR, ITC and phase solubility methods. Structure of cyclodextrins and thiadiazoles affects the binding mode and thermodynamics of complexation. The larger cavity of β- and γ-cyclodextrins is more appropriate for deeper insertion of 1,2,4-thiadiazole derivatives which is accompanied by intensive dehydration and solvent reorganization. Benzene ring of the thiadiazoles is located inside macrocyclic cavity while piperidine ring is placed outside the cavity and can form H-bonds with cyclodextrin exterior. Complexation with cyclodextrins induces the enhancement of aqueous solubility of 1,2,4-thiadiazole derivatives.
Kivi, Rait; Solovjova, Karina; Haljasorg, Tõiv; Arukuusk, Piret; Järv, Jaak
2016-12-01
The allosteric influence of adenosine triphosphate (ATP) on the binding effectiveness of a series of peptide inhibitors with the catalytic subunit of 3'5'-cyclic adenosine monophosphate dependent protein kinase was investigated, and the dependence of this effect on peptide structure was analyzed. The allosteric effect was calculated as ratio of peptide binding effectiveness with the enzyme-ATP complex and with the free enzyme, quantified by the competitive inhibition of the enzyme in the presence of ATP excess, and by the enzyme-peptide complex denaturation assay, respectively It was found that the principle "better binding-stronger allostery" holds for interactions of the studied peptides with the enzyme, indicating that allostery and peptide binding with the free enzyme are governed by the same specificity pattern. This means that the allosteric regulation does not include new ligand-protein interactions, but changes the intensity (strength) of the interatomic forces that govern the complex formation in the case of each individual ligand. We propose that the allosteric regulation can be explained by the alteration of the intrinsic dynamics of the protein by ligand binding, and that this phenomenon, in turn, modulates the ligand off-rate from its binding site as well as the binding affinity. The positive allostery could therefore be induced by a reduction in the enzyme's overall intrinsic dynamics.
Pnicogen bonds between X═PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases.
Alkorta, Ibon; Sánchez-Sanz, Goar; Elguero, José; Del Bene, Janet E
2014-02-27
Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the pnicogen bonded complexes formed between the acids O═PH3, S═PH3, HN═PH3, and H2C═PH3 and the bases NH3, NCH, N2, PH3, and PCH. All nitrogen and phosphorus bases form complexes in which the bases are lone pair electron donors. The binding energies of complexes involving the stronger bases NH3, NCH, and PH3 differentiate among the acids, but the binding energies of complexes with the weaker bases do not. These complexes are stabilized by charge transfer from the lone pair orbital of N or P to the σ*P═A orbital of X═PH3, where A is the atom of X directly bonded to P. PCH also forms complexes with the X═PH3 acids as a π electron donor to the σ*P═A orbital. The binding energies and the charge-transfer energies of the π complexes are greater than those of the complexes in which PCH is a lone pair donor. Whether the positive charge on P increases, decreases, or remains the same upon complex formation, the chemical shieldings of (31)P decrease in the complexes relative to the corresponding monomers. (1p)J(P-N) and (1p)J(P-P) values correlate best with the corresponding P-N and P-P distances as a function of the nature of the base. (1)J(P-A) values do not correlate with P-A distances. Rather, the absolute values of (1)J(P-O), (1)J(P-S), and (1)J(P-N) decrease upon complexation. Decreasing (1)J(P-A) values correlate linearly with increasing complex binding energies. In contrast, (1)J(P-C) values increase upon complexation and correlate linearly with increasing binding energies.
A dual switch controls bacterial enhancer-dependent transcription
Wiesler, Simone C.; Burrows, Patricia C.; Buck, Martin
2012-01-01
Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ54 factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation. PMID:22965125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yen-Chen; Naveen, Vankadari; Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
During DNA replication, bacterial helicase is recruited as a complex in association with loader proteins to unwind the parental duplex. Previous structural studies have reported saturated 6:6 helicase-loader complexes with different conformations. However, structural information on the sub-stoichiometric conformations of these previously-documented helicase-loader complexes remains elusive. Here, with the aid of single particle electron-microscopy (EM) image reconstruction, we present the Geobacillus kaustophilus HTA426 helicase-loader (DnaC-DnaI) complex with a 6:2 binding stoichiometry in the presence of ATPγS. In the 19 Å resolution EM map, the undistorted and unopened helicase ring holds a robust loader density above the C-terminal RecA-like domain. Meanwhile, themore » path of the central DNA binding channel appears to be obstructed by the reconstructed loader density, implying its potential role as a checkpoint conformation to prevent the loading of immature complex onto DNA. Our data also reveals that the bound nucleotides and the consequently induced conformational changes in the helicase hexamer are essential for active association with loader proteins. These observations provide fundamental insights into the formation of the helicase-loader complex in bacteria that regulates the DNA replication process. - Highlights: • Helicase-loader complex structure with 6:2 sub-stoichiometry is resolved by EM. • Helicase hexamer in 6:2 sub-stoichiometry is constricted and un-opened. • 6:2 binding ratio of helicase-loader complex could act as a DNA loading checkpoint. • Nucleotides stabilize helicase-loader complex at low protein concentrations.« less
2018-01-01
We report the synthesis and characterization of four neutral organometallic tethered complexes, [Ru(η6-Ph(CH2)3-ethylenediamine-N-R)Cl], where R = methanesulfonyl (Ms, 1), toluenesulfonyl (Ts, 2), 4-trifluoromethylbenzenesulfonyl (Tf, 3), and 4-nitrobenzenesulfonyl (Nb, 4), including their X-ray crystal structures. These complexes exhibit moderate antiproliferative activity toward human ovarian, lung, hepatocellular, and breast cancer cell lines. Complex 2 in particular exhibits a low cross-resistance with cisplatin. The complexes show potent catalytic activity in the transfer hydrogenation of NAD+ to NADH with formate as hydride donor in aqueous solution (310 K, pH 7). Substituents on the chelated ligand decreased the turnover frequency in the order Nb > Tf > Ts > Ms. An enhancement of antiproliferative activity (up to 22%) was observed on coadministration with nontoxic concentrations of sodium formate (0.5–2 mM). Complex 2 binds to nucleobase guanine (9-EtG), but DNA appears not to be the target, as little binding to calf thymus DNA or bacterial plasmid DNA was observed. In addition, complex 2 reacts rapidly with glutathione (GSH), which might hamper transfer hydrogenation reactions in cells. Complex 2 induced a dose-dependent G1 cell cycle arrest after 24 h exposure in A2780 human ovarian cancer cells while promoting an increase in reactive oxygen species (ROS), which is likely to contribute to its antiproliferative activity.
Polyphenol-rich pomegranate juice reduces IgE binding to cashew nut allergens.
Li, Yichen; Mattison, Christopher P
2018-03-01
Food allergy negatively impacts quality of life and can be life-threatening. Cashew nuts can cause severe reactions in very small amounts, and they are included in a group of foods most commonly responsible for causing food allergy. Polyphenols and polyphenol-rich juices have been demonstrated to complex with peanut allergens. Here, the interaction between cashew nut allergens and polyphenol-rich juices is evaluated biochemically and immunologically. Various juices, including pomegranate (POM), blueberry (BB), and concord grape (CG) juices, were evaluated for polyphenol content and formation of polyphenol-cashew allergen complexes. Among the various juices studied, POM juice showed a greater capacity to form complexes with cashew proteins. Dynamic light scattering (DLS) demonstrated a sharp increase in cashew protein extract particle size to around 3580 nm, and fewer cashew proteins were resolved by electrophoresis after treatment with POM juice. Immunoassays demonstrated reduced IgG and IgE binding to cashew allergens due to allergen precipitation by POM juice. These observations support the formation of complexes between polyphenol and cashew proteins that can prevent antibody recognition of cashew allergens through allergen precipitation. POM juice treatment of cashew extract effectively reduces antibody binding through allergen precipitation, and these findings could be applied to the development of less allergenic cashew nut products and oral immunotherapy. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Yun, Won Ju; Kim, Yea Woon; Kang, Yujin; Lee, Jungbae; Dean, Ann; Kim, AeRi
2014-01-01
TAL1 is a key hematopoietic transcription factor that binds to regulatory regions of a large cohort of erythroid genes as part of a complex with GATA-1, LMO2 and Ldb1. The complex mediates long-range interaction between the β-globin locus control region (LCR) and active globin genes, and although TAL1 is one of the two DNA-binding complex members, its role is unclear. To explore the role of TAL1 in transcription activation of the human γ-globin genes, we reduced the expression of TAL1 in erythroid K562 cells using lentiviral short hairpin RNA, compromising its association in the β-globin locus. In the TAL1 knockdown cells, the γ-globin transcription was reduced to 35% and chromatin looping of the Gγ-globin gene with the LCR was disrupted with decreased occupancy of the complex member Ldb1 and LMO2 in the locus. However, GATA-1 binding, DNase I hypersensitive site formation and several histone modifications were largely maintained across the β-globin locus. In addition, overexpression of TAL1 increased the γ-globin transcription and increased interaction frequency between the Gγ-globin gene and LCR. These results indicate that TAL1 plays a critical role in chromatin loop formation between the γ-globin genes and LCR, which is a critical step for the transcription of the γ-globin genes. PMID:24470145
Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription.
Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko
2016-06-07
Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.
Yun, Won Ju; Kim, Yea Woon; Kang, Yujin; Lee, Jungbae; Dean, Ann; Kim, AeRi
2014-04-01
TAL1 is a key hematopoietic transcription factor that binds to regulatory regions of a large cohort of erythroid genes as part of a complex with GATA-1, LMO2 and Ldb1. The complex mediates long-range interaction between the β-globin locus control region (LCR) and active globin genes, and although TAL1 is one of the two DNA-binding complex members, its role is unclear. To explore the role of TAL1 in transcription activation of the human γ-globin genes, we reduced the expression of TAL1 in erythroid K562 cells using lentiviral short hairpin RNA, compromising its association in the β-globin locus. In the TAL1 knockdown cells, the γ-globin transcription was reduced to 35% and chromatin looping of the (G)γ-globin gene with the LCR was disrupted with decreased occupancy of the complex member Ldb1 and LMO2 in the locus. However, GATA-1 binding, DNase I hypersensitive site formation and several histone modifications were largely maintained across the β-globin locus. In addition, overexpression of TAL1 increased the γ-globin transcription and increased interaction frequency between the (G)γ-globin gene and LCR. These results indicate that TAL1 plays a critical role in chromatin loop formation between the γ-globin genes and LCR, which is a critical step for the transcription of the γ-globin genes.
Ahour, F; Ahsani, M K
2016-12-15
In this work, we tactfully constructed a novel label-free electrochemical aptasensor for rapid and facile detection of thrombin using graphene oxide (GO) and thrombin binding aptamer (TBA). The strategy relies on the preferential adsorption of single-stranded DNA (ssDNA) to GO over aptamer-target complexes. The TBA-thrombin complex formation was monitored by differential pulse voltammetry (DPV) using the guanine oxidation signal. In the absence of thrombin, the aptamers adsorbed onto the surface of GO leading to a strong background guanine oxidation signal. Conversely, in the presence of thrombin, the conformational transformation of TBA after incubating with the thrombin solution and formation of the aptamer-thrombin complexes which had weak binding ability to GO, leads to the desorption of TBA-thrombin complex from electrode surface and significant oxidation signal decrease. The selectivity of the biosensor was studied using other biological substances. The biosensor's signal was proportional to the thrombin concentration from 0.1 to 10nM with a detection limit of 0.07nM. Particularly, the proposed method could be widely applied to the aptamer-based determination of other target analytes. Copyright © 2016 Elsevier B.V. All rights reserved.
Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N
2018-06-19
Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.
Narayan, Vikram; Pion, Emmanuelle; Landré, Vivien; Müller, Petr; Ball, Kathryn L.
2011-01-01
Characteristically for a regulatory protein, the IRF-1 tumor suppressor turns over rapidly with a half-life of between 20–40 min. This allows IRF-1 to reach new steady state protein levels swiftly in response to changing environmental conditions. Whereas CHIP (C terminus of Hsc70-interacting protein), appears to chaperone IRF-1 in unstressed cells, formation of a stable IRF-1·CHIP complex is seen under specific stress conditions. Complex formation, in heat- or heavy metal-treated cells, is accompanied by a decrease in IRF-1 steady state levels and an increase in IRF-1 ubiquitination. CHIP binds directly to an intrinsically disordered domain in the central region of IRF-1 (residues 106–140), and this site is sufficient to form a stable complex with CHIP in cells and to compete in trans with full-length IRF-1, leading to a reduction in its ubiquitination. The study reveals a complex relationship between CHIP and IRF-1 and highlights the role that direct binding or “docking” of CHIP to its substrate(s) can play in its mechanism of action as an E3 ligase. PMID:20947504
Vancomycin: ligand recognition, dimerization and super-complex formation.
Jia, ZhiGuang; O'Mara, Megan L; Zuegg, Johannes; Cooper, Matthew A; Mark, Alan E
2013-03-01
The antibiotic vancomycin targets lipid II, blocking cell wall synthesis in Gram-positive bacteria. Despite extensive study, questions remain regarding how it recognizes its primary ligand and what is the most biologically relevant form of vancomycin. In this study, molecular dynamics simulation techniques have been used to examine the process of ligand binding and dimerization of vancomycin. Starting from one or more vancomycin monomers in solution, together with different peptide ligands derived from lipid II, the simulations predict the structures of the ligated monomeric and dimeric complexes to within 0.1 nm rmsd of the structures determined experimentally. The simulations reproduce the conformation transitions observed by NMR and suggest that proposed differences between the crystal structure and the solution structure are an artifact of the way the NMR data has been interpreted in terms of a structural model. The spontaneous formation of both back-to-back and face-to-face dimers was observed in the simulations. This has allowed a detailed analysis of the origin of the cooperatively between ligand binding and dimerization and suggests that the formation of face-to-face dimers could be functionally significant. The work also highlights the possible role of structural water in stabilizing the vancomycin ligand complex and its role in the manifestation of vancomycin resistance. © 2013 The Authors Journal compilation © 2013 FEBS.
Khan, Meraj H; Salomaa, Siiri I; Jacquemet, Guillaume; Butt, Umar; Miihkinen, Mitro; Deguchi, Takahiro; Kremneva, Elena; Lappalainen, Pekka; Humphries, Martin J; Pouwels, Jeroen
2017-09-15
Sharpin, a multifunctional adaptor protein, regulates several signalling pathways. For example, Sharpin enhances signal-induced NF-κB signalling as part of the linear ubiquitin assembly complex (LUBAC) and inhibits integrins, the T cell receptor, caspase 1 and PTEN. However, despite recent insights into Sharpin and LUBAC function, a systematic approach to identify the signalling pathways regulated by Sharpin has not been reported. Here, we present the first 'Sharpin interactome', which identifies a large number of novel potential Sharpin interactors in addition to several known ones. These data suggest that Sharpin and LUBAC might regulate a larger number of biological processes than previously identified, such as endosomal trafficking, RNA processing, metabolism and cytoskeleton regulation. Importantly, using the Sharpin interactome, we have identified a novel role for Sharpin in lamellipodium formation. We demonstrate that Sharpin interacts with Arp2/3, a protein complex that catalyses actin filament branching. We have identified the Arp2/3-binding site in Sharpin and demonstrate using a specific Arp2/3-binding deficient mutant that the Sharpin-Arp2/3 interaction promotes lamellipodium formation in a LUBAC-independent fashion.This article has an associated First Person interview with the first author of the paper. © 2017. Published by The Company of Biologists Ltd.
Zhang, Liwen; Xu, Hua; Chen, Chwen-Lih; Green-Church, Kari B.; Freitas, Michael A.; Chen, Yeong-Renn
2008-01-01
Protein thiols with regulatory functions play a critical role in maintaining the homeostasis of the redox state in mitochondria. One major host of regulatory cysteines in mitochondria is complex I, with the thiols primarily located on its 51 kDa FMN-binding subunit. In response to oxidative stress, these thiols are expected to form intra-molecular disulfide bridges as one of their oxidative post-translational modifications. Here, to test this hypothesis and gain insights into the molecular pattern of disulfide in complex I, the isolated bovine complex I was prepared. Superoxide (O2•−) is generated by complex I under the conditions of enzyme turnover. O2•−-induced intra-molecular disulfide formation at the 51 kDa subunit was determined by tandem mass spectrometry and database searching, with the latter accomplished by adaptation of the in-house developed database search engine, MassMatrix [Xu H., et. al J. Proteome Res. (2008) 7, 138–44]. LC/MS/MS analysis of tryptic/chymotryptic digests of the 51 kDa subunit from alkylated complex I revealed that four specific cysteines (C125, C142, C187, and C206) of the 51 kDa subunit were involved in the formation of mixed intra-molecular disulfide linkages. In all, three cysteine pairs were observed: C125/C142, C187/C206, and C142/C206. The formation of disulfide bond was subsequently inhibited by superoxide dismutase, indicating the involvement of O2•−. These results elucidated by mass spectrometry indicates that the residues of C125, C142, C187, and C206 are the specific regulatory cysteines of complex I, and they participate in the oxidative modification with disulfide formation under the physiological or pathophysiological conditions of oxidative stress. PMID:18789718
Transthyretin Sequesters Amyloid β Protein and Prevents Amyloid Formation
NASA Astrophysics Data System (ADS)
Schwarzman, Alexander L.; Gregori, Luisa; Vitek, Michael P.; Lyubski, Sergey; Strittmatter, Warren J.; Enghilde, Jan J.; Bhasin, Ramaninder; Silverman, Josh; Weisgraber, Karl H.; Coyle, Patricia K.; Zagorski, Michael G.; Talafous, Joseph; Eisenberg, Moises; Saunders, Ann M.; Roses, Allen D.; Goldgaber, Dmitry
1994-08-01
The cardinal pathological features of Alzheimer disease are depositions of aggregated amyloid β protein (Aβ) in the brain and cerebrovasculature. However, the Aβ is found in a soluble form in cerebrospinal fluid in healthy individuals and patients with Alzheimer disease. We postulate that sequestration of Aβ precludes amyloid formation. Failure to sequester Aβ in Alzheimer disease may result in amyloidosis. When we added Aβ to cerebrospinal fluid of patients and controls it was rapidly sequestered into stable complexes with transthyretin. Complexes with apolipoprotein E, which has been shown to bind Aβ in vitro, were not observed in cerebrospinal fluid. Additional in vitro studies showed that both purified transthyretin and apolipoprotein E prevent amyloid formation.
Salamon, Z; Wang, Y; Soulages, J L; Brown, M F; Tollin, G
1996-01-01
Surface plasmon resonance (SPR) spectroscopy can provide useful information regarding average structural properties of membrane films supported on planar solid substrates. Here we have used SPR spectroscopy for the first time to monitor the binding and activation of G-protein (transducin or Gt) by bovine rhodopsin incorporated into an egg phosphatidylcholine bilayer deposited on a silver film. Rhodopsin incorporation into the membrane, performed by dilution of a detergent solution of the protein, proceeds in a saturable manner. Before photolysis, the SPR data show that Gt binds tightly (Keq approximately equal to 60 nM) and with positive cooperativity to rhodopsin in the lipid layer to form a closely packed film. A simple multilayer model yields a calculated average thickness of about 57 A, in good agreement with the structure of Gt. The data also demonstrate that Gt binding saturates at a Gt/rhodopsin ratio of approximately 0.6. Moreover, upon visible light irradiation, characteristic changes occur in the SPR spectrum, which can be modeled by a 6 A increase in the average thickness of the lipid/protein film caused by formation of metarhodopsin II (MII). Upon subsequent addition of GTP, further SPR spectral changes are induced. These are interpreted as resulting from dissociation of the alpha-subunit of Gt, formation of new MII-Gt complexes, and possible conformational changes of Gt as a consequence of complex formation. The above results clearly demonstrate the ability of SPR spectroscopy to monitor interactions among the proteins associated with signal transduction in membrane-bound systems. Images FIGURE 1 PMID:8804611
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Ren; H Seo; G Blobel
The export of mRNAs is a multistep process, involving the packaging of mRNAs into messenger ribonucleoprotein particles (mRNPs), their transport through nuclear pore complexes, and mRNP remodeling events prior to translation. Ribonucleic acid export 1 (Rae1) and Nup98 are evolutionarily conserved mRNA export factors that are targeted by the vesicular stomatitis virus matrix protein to inhibit host cell nuclear export. Here, we present the crystal structure of human Rae1 in complex with the Gle2-binding sequence (GLEBS) of Nup98 at 1.65 {angstrom} resolution. Rae1 forms a seven-bladed {beta}-propeller with several extensive surface loops. The Nup98 GLEBS motif forms an {approx}50-{angstrom}-long hairpinmore » that binds with its C-terminal arm to an essentially invariant hydrophobic surface that extends over the entire top face of the Rae1 {beta}-propeller. The C-terminal arm of the GLEBS hairpin is necessary and sufficient for Rae1 binding, and we identify a tandem glutamate element in this arm as critical for complex formation. The Rae1 {center_dot} Nup98{sup GLEBS} surface features an additional conserved patch with a positive electrostatic potential, and we demonstrate that the complex possesses single-stranded RNA-binding capability. Together, these data suggest that the Rae1 {center_dot} Nup98 complex directly binds to the mRNP at several stages of the mRNA export pathway.« less
Molecular mechanism of transcription inhibition by phage T7 gp2 protein.
Mekler, Vladimir; Minakhin, Leonid; Sheppard, Carol; Wigneshweraraj, Sivaramesh; Severinov, Konstantin
2011-11-11
Escherichia coli T7 bacteriophage gp2 protein is a potent inhibitor of host RNA polymerase (RNAP). gp2 inhibits formation of open promoter complex by binding to the β' jaw, an RNAP domain that interacts with downstream promoter DNA. Here, we used an engineered promoter with an optimized sequence to obtain and characterize a specific promoter complex containing RNAP and gp2. In this complex, localized melting of promoter DNA is initiated but does not propagate to include the point of the transcription start. As a result, the complex is transcriptionally inactive. Using a highly sensitive RNAP beacon assay, we performed quantitative real-time measurements of specific binding of the RNAP-gp2 complex to promoter DNA and various promoter fragments. In this way, the effect of gp2 on RNAP interaction with promoters was dissected. As expected, gp2 greatly decreased RNAP affinity to downstream promoter duplex. However, gp2 also inhibited RNAP binding to promoter fragments that lacked downstream promoter DNA that interacts with the β' jaw. The inhibition was caused by gp2-mediated decrease of the RNAP binding affinity to template and non-template strand segments of the transcription bubble downstream of the -10 promoter element. The inhibition of RNAP interactions with single-stranded segments of the transcription bubble by gp2 is a novel effect, which may occur via allosteric mechanism that is set in motion by the gp2 binding to the β' jaw. Copyright © 2011 Elsevier Ltd. All rights reserved.
The ‘active life’ of Hsp90 complexes☆
Prodromou, Chrisostomos
2012-01-01
Hsp90 forms a variety of complexes differing both in clientele and co-chaperones. Central to the role of co-chaperones in the formation of Hsp90 complexes is the delivery of client proteins and the regulation of the ATPase activity of Hsp90. Determining the mechanisms by which co-chaperones regulate Hsp90 is essential in understanding the assembly of these complexes and the activation and maturation of Hsp90's clientele. Mechanistically, co-chaperones alter the kinetics of the ATP-coupled conformational changes of Hsp90. The structural changes leading to the formation of a catalytically active unit involve all regions of the Hsp90 dimer. Their complexity has allowed different orthologues of Hsp90 to evolve kinetically in slightly different ways. The interaction of the cytosolic Hsp90 with a variety of co-chaperones lends itself to a complex set of different regulatory mechanisms that modulate Hsp90's conformation and ATPase activity. It also appears that the conformational switches of Hsp90 are not necessarily coupled under all circumstances. Here, I described different co-chaperone complexes and then discuss in detail the mechanisms and role that specific co-chaperones play in this. I will also discuss emerging evidence that post-translational modifications also affect the ATPase activity of Hsp90, and thus complex formation. Finally, I will present evidence showing how Hsp90's active site, although being highly conserved, can be altered to show resistance to drug binding, but still maintain ATP binding and ATPase activity. Such changes are therefore unlikely to significantly alter Hsp90's interactions with client proteins and co-chaperones. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90) PMID:21840346
Dual Function of Phosphoubiquitin in E3 Activation of Parkin*
Walinda, Erik; Morimoto, Daichi; Sugase, Kenji; Shirakawa, Masahiro
2016-01-01
Mutations in the gene encoding parkin, an auto-inhibited E3 ubiquitin ligase that functions in the clearance of damaged mitochondria, are the most common cause of autosomal recessive juvenile Parkinsonism. The mechanism regulating parkin activation remains poorly understood. Here we show, by using isothermal titration calorimetry, solution NMR, and fluorescence spectroscopy, that parkin can bind ubiquitin and phosphomimetic ubiquitin by recognizing the canonical hydrophobic patch and C terminus of ubiquitin. The affinity of parkin for both phosphomimetic and unmodified ubiquitin is markedly enhanced upon removal of the ubiquitin-like (UBL) domain of parkin. This suggests that the agonistic binding of ubiquitin to parkin in trans is counterbalanced by the antagonistic activity of the parkin UBL domain in cis. Intriguingly, UBL binding is enthalpy-driven, whereas ubiquitin binding is driven by an increase in the total entropy of the system. These thermodynamic differences are explained by different chemistry in the ubiquitin- and UBL-binding pockets of parkin and, as shown by molecular dynamics simulations, are not a consequence of changes in protein conformational entropy. Indeed, comparison of conformational fluctuations reveals that the RING1-IBR element becomes considerably more rigid upon complex formation. A model of parkin activation is proposed in which E2∼Ub binding triggers large scale diffusional motion of the RING2 domain toward the ubiquitin-stabilized RING1-IBR assembly to complete formation of the active parkin-E2∼Ub transfer complex. Thus, ubiquitin plays a dual role in parkin activation by competing with the inhibitory UBL domain and stabilizing the active form of parkin. PMID:27284007
Dimer formation through domain swapping in the crystal structure of the Grb2-SH2-Ac-pYVNV complex.
Schiering, N; Casale, E; Caccia, P; Giordano, P; Battistini, C
2000-11-07
Src homology 2 (SH2) domains are key modules in intracellular signal transduction. They link activated cell surface receptors to downstream targets by binding to phosphotyrosine-containing sequence motifs. The crystal structure of a Grb2-SH2 domain-phosphopeptide complex was determined at 2.4 A resolution. The asymmetric unit contains four polypeptide chains. There is an unexpected domain swap so that individual chains do not adopt a closed SH2 fold. Instead, reorganization of the EF loop leads to an open, nonglobular fold, which associates with an equivalent partner to generate an intertwined dimer. As in previously reported crystal structures of canonical Grb2-SH2 domain-peptide complexes, each of the four hybrid SH2 domains in the two domain-swapped dimers binds the phosphopeptide in a type I beta-turn conformation. This report is the first to describe domain swapping for an SH2 domain. While in vivo evidence of dimerization of Grb2 exists, our SH2 dimer is metastable and a physiological role of this new form of dimer formation remains to be demonstrated.
Kosturko, L D; Daub, E; Murialdo, H
1989-01-01
The interaction of E. coli's integration Host Factor (IHF) with fragments of lambda DNA containing the cos site has been studied by gel-mobility retardation and electron microscopy. The cos fragment used in the mobility assays is 398 bp and spans a region from 48,298 to 194 on the lambda chromosome. Several different complexes of IHF with this fragment can be distinguished by their differential mobility on polyacrylamide gels. Relative band intensities indicate that the formation of a complex between IHF and this DNA fragment has an equilibrium binding constant of the same magnitude as DNA fragments containing lambda's attP site. Gel-mobility retardation and electron microscopy have been employed to show that IHF sharply bends DNA near cos and to map the bending site. The protein-induced bend is near an intrinsic bend due to DNA sequence. The position of the bend suggests that IHF's role in lambda DNA packaging may be the enhancement of terminase binding/cos cutting by manipulating DNA structure. Images PMID:2521383
Brender, Jeffrey R.; Zhang, Yang
2015-01-01
The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies. PMID:26506533
Chakravarti, Ananya; Camp, Kyle; McNabb, David S.
2017-01-01
Candida albicans is the most frequently encountered fungal pathogen in humans, capable of causing mucocutaneous and systemic infections in immunocompromised individuals. C. albicans virulence is influenced by multiple factors. Importantly, iron acquisition and avoidance of the immune oxidative burst are two critical barriers for survival in the host. Prior studies using whole genome microarray expression data indicated that the CCAAT-binding factor is involved in the regulation of iron uptake/utilization and the oxidative stress response. This study examines directly the role of the CCAAT-binding factor in regulating the expression of oxidative stress genes in response to iron availability. The CCAAT-binding factor is a heterooligomeric transcription factor previously shown to regulate genes involved in respiration and iron uptake/utilization in C. albicans. Since these pathways directly influence the level of free radicals, it seemed plausible the CCAAT-binding factor regulates genes necessary for the oxidative stress response. In this study, we show the CCAAT-binding factor is involved in regulating some oxidative stress genes in response to iron availability, including CAT1, SOD4, GRX5, and TRX1. We also show that CAT1 expression and catalase activity correlate with the survival of C. albicans to oxidative stress, providing a connection between iron obtainability and the oxidative stress response. We further explore the role of the various CCAAT-binding factor subunits in the formation of distinct protein complexes that modulate the transcription of CAT1 in response to iron. We find that Hap31 and Hap32 can compensate for each other in the formation of an active transcriptional complex; however, they play distinct roles in the oxidative stress response during iron limitation. Moreover, Hap43 was found to be solely responsible for the repression observed under iron deprivation. PMID:28122000
NASA Astrophysics Data System (ADS)
Barman, Siti; Barman, Biraj Kumar; Roy, Mahendra Nath
2018-03-01
The supramolecular interaction of metoclopramide hydrochloride (MP) with α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) has been inspected by ultraviolet-visible (UV-vis) light, infra-red (IR) light, fluorescence and 1H NMR spectroscopy. The formation of an inclusion complex greatly affects the physical-chemical properties of the guest molecules, such as solubility, chemical reactivity and the spectroscopic and electrochemical properties. Thus the changes in the spectral properties and physico-chemical properties confirm the inclusion complex formation. Surface tension, conductivity studies and Job's plot indicate a 1: 1 stoichiometry of the MP:CD host-guest inclusion complexes. The binding/association constants have been evaluated by both UV-Vis and fluorescence spectroscopic study indicating a higher degree of encapsulation for β-cyclodextrin (β-CD). Furthermore, the negative value of thermodynamic parameter (ΔG°) of the host-guest system suggests that the inclusion process proceeded spontaneously at 298.15 K. Based on the NMR data, the plausible mode of interaction of MP:α-CD and MP:β-CD complexes were proposed, which suggested that lipophilic aromatic ring of the MP entered into the cavity of CDs from the wider side, with the amide (sbnd CONH) and methoxy (-OMe) residues inside the CD cavity.
Hu, Jingjing; Fang, Min; Cheng, Yiyun; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen
2010-06-03
In the present study, we investigated the host-guest chemistry of dendrimer/guanosine monophosphate (GMP) and present an in-depth look into the binding/encapsulation of GMP by dendrimers using NMR studies. (1)H NMR spectra showed a significant downfield shift of methylene protons in the outmost layer of the G5 dendrimer, indicating the formation of ion pairs between cationic amine groups of dendrimer and anionic phosphate groups of GMP. Chemical shift titration results showed that the binding constant between G5 dendrimer and GMP is 17,400 M(-1) and each G5 dendrimer has 107 binding sites. The binding of GMP to dendrimers prevents its aggregation in aqueous solutions and thereby enhances its stability. Nuclear Overhauser effect measurements indicated that a GMP binding and encapsulation balance occurs on the surface and in the interior of dendrimer. The binding/encapsulation transitions can be easily tailored by altering the surface and interior charge densities of the dendrimer. All these findings provide a new insight into the host-guest chemistry of dendrimer/guest complexes and may play important roles in the study of dendrimer/DNA aggregates by a "bottom-up" strategy.
Effect of PDGF-B aptamer on PDGFRβ/PDGF-B interaction: Molecular dynamics study.
Vu, Cong Quang; Rotkrua, Pichayanoot; Soontornworajit, Boonchoy; Tantirungrotechai, Yuthana
2018-06-01
PDGFRβ/PDGF-B interaction plays a role in angiogenesis, and is mandatory in wound healing and cancer treatment. It has been reported that the PDGF-B aptamer was able to bind to PDGF-B, thus regulating the angiogenesis. However, the binding interaction between the aptamer and the growth factor, including the binding sites, has not been well investigated. This study applied a molecular dynamics (MD) simulation to investigate the aptamer-growth factor interaction in the presence or absence of a receptor (PDGFRβ). Characterization of the structure of an aptamer-growth factor complex revealed binding sites from each section in the complex. Upon the complex formation, PDGF-B and its aptamer exhibited less flexibility in their molecular movement, as indicated by the minimum values of RMSD, RMSF, loop-to-loop distance, and the summation of PCA eigenvalues. Our study of residue pairwise interaction demonstrated that the binding interaction was mainly contributed by electrostatic interaction between the positively-charged amino acid and the negatively-charged phosphate backbone. The role of the PDGF-B aptamer in PDGFRβ/PDGF-B interaction was also investigated. We demonstrated that the stability of the Apt-PDGF-B complex could prevent the presence of a competitor, of PDGFRβ, interrupting the binding process. Because the aptamer was capable of binding with PDGF-B, and blocking the growth factor from the PDGFRβ, it could down regulate the consequent signaling pathway. We provide evidence that the PDGF-BB aptamer is a promising molecule for regulation of angiogenesis. The MD study provides a molecular understanding to modification of the aptamer binding interaction, which could be used in a number of medical applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Blocquel, David; Habchi, Johnny; Costanzo, Stéphanie; Doizy, Anthony; Oglesbee, Michael; Longhi, Sonia
2012-10-01
The intrinsically disordered C-terminal domain (N(TAIL) ) of the measles virus (MeV) nucleoprotein undergoes α-helical folding upon binding to the C-terminal X domain (XD) of the phosphoprotein. The N(TAIL) region involved in binding coupled to folding has been mapped to a conserved region (Box2) encompassing residues 489-506. In the previous studies published in this journal, we obtained experimental evidence supporting a K(D) for the N(TAIL) -XD binding reaction in the nM range and also showed that an additional N(TAIL) region (Box3, aa 517-525) plays a role in binding to XD. In striking contrast with these data, studies published in this journal by Kingston and coworkers pointed out a much less stable complex (K(D) in the μM range) and supported lack of involvement of Box3 in complex formation. The objective of this study was to critically re-evaluate the role of Box3 in N(TAIL) -XD binding. Since our previous studies relied on N(TAIL) -truncated forms possessing an irrelevant Flag sequence appended at their C-terminus, we, herein, generated an N(TAIL) devoid of Box3 and any additional C-terminal residues, as well as a form encompassing only residues 482-525. We then used isothermal titration calorimetry to characterize the binding reactions between XD and these N(TAIL) forms. Results effectively argue for the presence of a single XD-binding site located within Box2, in agreement with the results by Kingston et al., while providing clear experimental support for a high-affinity complex. Altogether, the present data provide mechanistic insights into the replicative machinery of MeV and clarify a hitherto highly debated point. Copyright © 2012 The Protein Society.
Blocquel, David; Habchi, Johnny; Costanzo, Stéphanie; Doizy, Anthony; Oglesbee, Michael; Longhi, Sonia
2012-01-01
The intrinsically disordered C-terminal domain (NTAIL) of the measles virus (MeV) nucleoprotein undergoes α-helical folding upon binding to the C-terminal X domain (XD) of the phosphoprotein. The NTAIL region involved in binding coupled to folding has been mapped to a conserved region (Box2) encompassing residues 489–506. In the previous studies published in this journal, we obtained experimental evidence supporting a KD for the NTAIL–XD binding reaction in the nM range and also showed that an additional NTAIL region (Box3, aa 517–525) plays a role in binding to XD. In striking contrast with these data, studies published in this journal by Kingston and coworkers pointed out a much less stable complex (KD in the μM range) and supported lack of involvement of Box3 in complex formation. The objective of this study was to critically re-evaluate the role of Box3 in NTAIL–XD binding. Since our previous studies relied on NTAIL-truncated forms possessing an irrelevant Flag sequence appended at their C-terminus, we, herein, generated an NTAIL devoid of Box3 and any additional C-terminal residues, as well as a form encompassing only residues 482–525. We then used isothermal titration calorimetry to characterize the binding reactions between XD and these NTAIL forms. Results effectively argue for the presence of a single XD-binding site located within Box2, in agreement with the results by Kingston et al., while providing clear experimental support for a high-affinity complex. Altogether, the present data provide mechanistic insights into the replicative machinery of MeV and clarify a hitherto highly debated point. PMID:22887965
Conformational Transitions upon Ligand Binding: Holo-Structure Prediction from Apo Conformations
Seeliger, Daniel; de Groot, Bert L.
2010-01-01
Biological function of proteins is frequently associated with the formation of complexes with small-molecule ligands. Experimental structure determination of such complexes at atomic resolution, however, can be time-consuming and costly. Computational methods for structure prediction of protein/ligand complexes, particularly docking, are as yet restricted by their limited consideration of receptor flexibility, rendering them not applicable for predicting protein/ligand complexes if large conformational changes of the receptor upon ligand binding are involved. Accurate receptor models in the ligand-bound state (holo structures), however, are a prerequisite for successful structure-based drug design. Hence, if only an unbound (apo) structure is available distinct from the ligand-bound conformation, structure-based drug design is severely limited. We present a method to predict the structure of protein/ligand complexes based solely on the apo structure, the ligand and the radius of gyration of the holo structure. The method is applied to ten cases in which proteins undergo structural rearrangements of up to 7.1 Å backbone RMSD upon ligand binding. In all cases, receptor models within 1.6 Å backbone RMSD to the target were predicted and close-to-native ligand binding poses were obtained for 8 of 10 cases in the top-ranked complex models. A protocol is presented that is expected to enable structure modeling of protein/ligand complexes and structure-based drug design for cases where crystal structures of ligand-bound conformations are not available. PMID:20066034
Heterochromatin assembly by interrupted Sir3 bridges across neighboring nucleosomes
Behrouzi, Reza; Lu, Chenning; Currie, Mark A; Jih, Gloria; Iglesias, Nahid; Moazed, Danesh
2016-01-01
Heterochromatin is a conserved feature of eukaryotic chromosomes with central roles in regulation of gene expression and maintenance of genome stability. Heterochromatin formation involves spreading of chromatin-modifying factors away from initiation points over large DNA domains by poorly understood mechanisms. In Saccharomyces cerevisiae, heterochromatin formation requires the SIR complex, which contains subunits with histone-modifying, histone-binding, and self-association activities. Here, we analyze binding of the Sir proteins to reconstituted mono-, di-, tri-, and tetra-nucleosomal chromatin templates and show that key Sir-Sir interactions bridge only sites on different nucleosomes but not sites on the same nucleosome, and are therefore 'interrupted' with respect to sites on the same nucleosome. We observe maximal binding affinity and cooperativity to unmodified di-nucleosomes and propose that nucleosome pairs bearing unmodified histone H4-lysine16 and H3-lysine79 form the fundamental units of Sir chromatin binding and that cooperative binding requiring two appropriately modified nucleosomes mediates selective Sir recruitment and spreading. DOI: http://dx.doi.org/10.7554/eLife.17556.001 PMID:27835568
Prajapati, Ranjit Kumar; Sengupta, Shreya; Rudra, Paulami; Mukhopadhyay, Jayanta
2016-01-15
Most bacterial RNA polymerases (RNAP) contain five conserved subunits, viz. 2α, β, β', and ω. However, in many Gram-positive bacteria, especially in fermicutes, RNAP is associated with an additional factor, called δ. For over three decades since its identification, it had been thought that δ functioned as a subunit of RNAP to enhance the level of transcripts by recycling RNAP. In support of the previous observations, we also find that δ is involved in recycling of RNAP by releasing the RNA from the ternary complex. We further show that δ binds to RNA and is able to recycle RNAP when the length of the nascent RNA reaches a critical length. However, in this work we decipher a new function of δ. Performing biochemical and mutational analysis, we show that Bacillus subtilis δ binds to DNA immediately upstream of the promoter element at A-rich sequences on the abrB and rrnB1 promoters and facilitates open complex formation. As a result, δ facilitates RNAP to initiate transcription in the second scale, compared with minute scale in the absence of δ. Using transcription assay, we show that δ-mediated recycling of RNAP cannot be the sole reason for the enhancement of transcript yield. Our observation that δ does not bind to RNAP holo enzyme but is required to bind to DNA upstream of the -35 promoter element for transcription activation suggests that δ functions as a transcriptional regulator. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence
2014-01-01
Background The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. Findings This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. Conclusions In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle. PMID:25379053
The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence.
Uzunova, Sonya Dimitrova; Zarkov, Alexander Stefanov; Ivanova, Anna Marianova; Stoynov, Stoyno Stefanov; Nedelcheva-Veleva, Marina Nedelcheva
2014-01-01
The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle.
[Energetics of complex formation of the DNA hairpin structure d(GCGAAGC) with aromatic ligands].
Kostiukov, V V
2011-01-01
The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantron and the mutagens ethidium and proflavine have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the DNA pairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable.
Chen, Xia; Liu, Liu; Chen, Yong; Yang, Yuting; Yang, Chao-Yie; Guo, Tianyue; Lei, Ming; Sun, Haiying; Wang, Shaomeng
2018-05-10
Telomeric repeat binding factor 2 (TRF2) is a telomere-associated protein that plays an important role in the formation of the 3' single strand DNA overhang and the "T loop", two structures critical for the stability of the telomeres. Apollo is a 5'-exonuclease recruited by TRF2 to the telomere and contributes to the formation of the 3' single strand DNA overhang. Knocking down of Apollo can induce DNA damage response similar to that caused by the knocking down of TRF2. In this Letter, we report the design and synthesis of a class of cyclic peptidic mimetics of the TRFH binding motif of Apollo (Apollo TBM ). We found conformational control of the C terminal residues of Apollo TBM can effectively improve the binding affinity. We have obtained a crystal structure of a cyclic peptidic Apollo peptide mimetic ( 34 ) complexed with TRF2, which provides valuable guidance to the future design of TRF2 inhibitors.
Stephen, Andrew G; Datta, Siddhartha A K; Worthy, Karen M; Bindu, Lakshman; Fivash, Matthew J; Turner, Kevin B; Fabris, Daniele; Rein, Alan; Fisher, Robert J
2007-09-01
The interaction of the HIV Gag polyprotein with nucleic acid is a critical step in the assembly of viral particles. The Gag polyprotein is composed of the matrix (MA), capsid (CA), and nucleocapsid (NC) domains. The NC domain is required for nucleic acid interactions, and the CA domain is required for Gag-Gag interactions. Previously, we have investigated the binding of the NC protein to d(TG)(n) oligonucleotides using surface plasmon resonance (SPR) spectroscopy. We found a single NC protein is able to bind to more than one immobilized oligonucleotide, provided that the oligonucleotides are close enough together. As NC is believed to be the nucleic acid binding domain of Gag, we might expect Gag to show the same complex behavior. We wished to analyze the stoichiometry of Gag binding to oligonucleotides without this complication due to tertiary complex formation. We have therefore analyzed Gag binding to extremely low oligonucleotide density on SPR chips. Such low densities of oligonucleotides are difficult to accurately quantitate. We have determined by Fourier transform ion cyclotron (FTICR) mass spectrometry that four molecules of NC bind to d(TG)(10) (a 20-base oligonucleotide). We developed a method of calibrating low-density surfaces using NC calibration injections. Knowing the maximal response and the stoichiometry of binding, we can precisely determine the amount of oligonucleotide immobilized at these very-low-density surfaces (<1 Response Unit). Using this approach, we have measured the binding of Gag to d(TG)(10). Gag binds to a 20-mer with a stoichiometry of greater than 4. This suggests that once Gag is bound to the immobilized oligonucleotide, additional Gag molecules can bind to this complex.
The reaction mechanism of methyl-coenzyme M reductase: How an enzyme enforces strict binding order
Wongnate, Thanyaporn; Ragsdale, Stephen W.
2015-02-17
Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB 7SH) to CH 4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM)more » is productive whereas the other (MCR·CoB 7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB 7SH complex is highly disfavored ( Kd = 56 mM). However, binding of CoB 7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB 7SH·MCR(Ni I)·CH 3SCoM) is highly favored ( Kd = 79 μM). Only then can the chemical reaction occur ( kobs = 20 s -1 at 25 °C), leading to rapid formation and dissociation of CH 4 leaving the binary product complex (MCR(Ni II)·CoB 7S -·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. In conclusion, this first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates.« less
Gunasekaran, D; Sridhar, J; Suryanarayanan, V; Manimaran, N C; Singh, Sanjeev Kumar
2017-06-01
Nicotinic acetylcholine receptors (nAChRs) are neuromuscular proteins responsible for muscle contraction upon binding with chemical stimulant acetylcholine (ACh). The α-neurotoxins of snake mimic the structure of ACh and attacks nAChRs, which block the flow of ACh and leads to numbness and paralysis. The toxin-binding site of alpha subunit in the nAChRs is highly conserved throughout chordate lineages with few exceptions in resistance organisms. In this study, we have analyzed the sequence and structures of toxin-binding/resistant nAChRs and their interaction stability with toxins through molecular docking and molecular dynamics simulation (MDS). We have reported the potential glycosylation residues within the toxin-binding cleft adding sugar moieties through N-linked glycosylation in resistant organisms. Residue variations at key positions alter the secondary structure of binding cleft, which might interfere with toxin binding and it could be one of the possible explanations for the resistance to snake venoms. Analysis of nAChR-α-neurotoxin complexes has confirmed the key interacting residues. In addition, drastic variation in the binding stability of Mongoose nAChR-α-Bungarotoxin (α-BTX) and human nAChR-α-BTX complexes were found at specific phase of MDS. Our findings suggest that specific mutations in the binding site of toxin are potentially preventing the formation of stable complex of receptor-toxin, which might lead to mechanism of resistance. This in silico study on the binding cleft of nAChR and the findings of interacting residues will assist in designing potential inhibitors as therapeutic targets.
Clarithromycin and tetracycline binding to soil humic acid in the absence and presence of calcium
NASA Astrophysics Data System (ADS)
Christl, Iso; Ruiz, Mercedes; Schmidt, J. R.; Pedersen, Joel A.
2017-04-01
Many organic micropollutants including antibiotics contain positively charged moieties and are present as organic cations or zwitterions at environmentally relevant pH conditions. In this study, we investigated the pH-, ionic strength-, and concentration-dependent binding of the two antibiotics clarithromycin and tetracycline to dissolved humic acid in the absence and presence of Ca2+. The investigated compounds strongly differ in their chemical speciation. Clarithromycin can be present as neutral and cationic species, only. But tetracycline can form cations, zwitterions as well as anions and is able to form various calcium complexes. The pH-dependence of binding to soil humic acid was observed to be strongly linked to the protonation behavior for both antibiotics. The presence of Ca2+ decreased clarithromycin binding to soil humic acid, but increased tetracycline binding with increasing Ca2+ concentration. The experimental observations were well described with the NICA-Donnan model considering the complete aqueous speciation of antibiotics and allowing for binding of cationic and zwitterionic species to soil humic acid. Our results indicate that clarithromycin is subject to competition with Ca2+ for binding to soil humic acid and that the electrostatic interaction of positively charged tetracycline-Ca complexes with humic acid enhances tetracycline binding in presence of Ca2+ rather than the formation of ternary complexes, except at very low tetracycline concentrations. We conclude that for the description of ionizable organic micropollutant binding to dissolved natural organic matter, the complete speciation of both sorbate and sorbent has to be considered.
Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu
2017-01-01
A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer. PMID:28102286
Atomic features of an autoantigen in heparin-induced thrombocytopenia (HIT).
Cai, Zheng; Zhu, Zhiqiang; Greene, Mark I; Cines, Douglas B
2016-07-01
Autoantigen development is poorly understood at the atomic level. Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by antibodies to an antigen composed of platelet factor 4 (PF4) and heparin or cellular glycosaminoglycans (GAGs). In solution, PF4 exists as an equilibrium among monomers, dimers and tetramers. Structural studies of these interacting components helped delineate a multi-step process involved in the pathogenesis of HIT. First, heparin binds to the 'closed' end of the PF4 tetramer and stabilizes its conformation; exposing the 'open' end. Second, PF4 arrays along heparin/GAG chains, which approximate tetramers, form large antigenic complexes that enhance antibody avidity. Third, pathogenic HIT antibodies bind to the 'open' end of stabilized PF4 tetramers to form an IgG/PF4/heparin ternary immune complex and also to propagate the formation of 'ultralarge immune complexes' (ULCs) that contain multiple IgG antibodies. Fourth, ULCs signal through FcγRIIA receptors, activating platelets and monocytes directly and generating thrombin, which transactivates hematopoietic and endothelial cells. A non-pathogenic anti-PF4 antibody prevents tetramer formation, binding of pathogenic antibody, platelet activation and thrombosis, providing a new approach to manage HIT. An improved understanding of the pathogenesis of HIT may lead to novel diagnostics and therapeutics for this autoimmune disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Selective Anion Binding by a Cofacial Binuclear Zinc Complex of a Schiff-Base Pyrrole Macrocycle
Devoille, Aline M. J.; Richardson, Patricia; Bill, Nathan; Sessler, Jonathan L.; Love, Jason B.
2011-01-01
The synthesis of the new cofacial binuclear zinc complex [Zn2(L)] of a Schiff-base pyrrole macrocycle is reported. It was discovered that the binuclear microenvironment between the two metals of [Zn2(L)] is suited for the encapsulation of anions, leading to the formation of [K(THF)6][Zn2(μ-Cl)(L)].2THF and [Bun4N][Zn2(μ-OH)(L)] which were characterized by X-ray crystallography. Unusually obtuse Zn-X-Zn angles (X=Cl: 150.54(9)° and OH: 157.4(3)°) illustrate the weak character of these interactions and the importance of the cleft pre-organization to stabilize the host. In the absence of added anion, aggregation of [Zn2(L)] was inferred and investigated by successive dilutions and by the addition of coordinating solvents to [Zn2(L)] solutions using NMR spectroscopy as well as isothermal microcalorimetry (ITC). On anion addition, evidence for de-aggregation of [Zn2(L)], combined with the formation of the 1:1 host-guest complex, was observed by NMR spectroscopy and ITC titrations. Furthermore, [Zn2(L)] binds to Cl− selectively in THF as deduced from the ITC analyses, while other halides induce only de-aggregation. These conclusions were reinforced by DFT calculations, which indicated that the binding energies of OH− and Cl− were significantly greater than for the other halides. PMID:21391550
Antonysamy, Stephen; Condon, Bradley; Druzina, Zhanna; Bonanno, Jeffrey B.; Gheyi, Tarun; Zhang, Feiyu; MacEwan, Iain; Zhang, Aiping; Ashok, Sheela; Rodgers, Logan; Russell, Marijane; Gately Luz, John
2013-01-01
The enhancer-of-zeste homolog 2 (EZH2) gene product is an 87 kDa polycomb group (PcG) protein containing a C-terminal methyltransferase SET domain. EZH2, along with binding partners, i.e., EED and SUZ12, upon which it is dependent for activity forms the core of the polycomb repressive complex 2 (PRC2). PRC2 regulates gene silencing by catalyzing the methylation of histone H3 at lysine 27. Both overexpression and mutation of EZH2 are associated with the incidence and aggressiveness of various cancers. The novel crystal structure of the SET domain was determined in order to understand disease-associated EZH2 mutations and derive an explanation for its inactivity independent of complex formation. The 2.00 Å crystal structure reveals that, in its uncomplexed form, the EZH2 C-terminus folds back into the active site blocking engagement with substrate. Furthermore, the S-adenosyl-L-methionine (SAM) binding pocket observed in the crystal structure of homologous SET domains is notably absent. This suggests that a conformational change in the EZH2 SET domain, dependent upon complex formation, must take place for cofactor and substrate binding activities to be recapitulated. In addition, the data provide a structural context for clinically significant mutations found in the EZH2 SET domain. PMID:24367637
Fujimoto, Zui; Suzuki, Rintaro; Shiotsuki, Takahiro; Tsuchiya, Wataru; Tase, Akira; Momma, Mitsuru; Yamazaki, Toshimasa
2013-01-01
Juvenile hormones (JHs) control a diversity of crucial life events in insects. In Lepidoptera which major agricultural pests belong to, JH signaling is critically controlled by a species-specific high-affinity, low molecular weight JH-binding protein (JHBP) in hemolymph, which transports JH from the site of its synthesis to target tissues. Hence, JHBP is expected to be an excellent target for the development of novel specific insect growth regulators (IGRs) and insecticides. A better understanding of the structural biology of JHBP should pave the way for the structure-based drug design of such compounds. Here, we report the crystal structure of the silkworm Bombyx mori JHBP in complex with two molecules of 2-methyl-2,4-pentanediol (MPD), one molecule (MPD1) bound in the JH-binding pocket while the other (MPD2) in a second cavity. Detailed comparison with the apo-JHBP and JHBP-JH II complex structures previously reported by us led to a number of intriguing findings. First, the JH-binding pocket changes its size in a ligand-dependent manner due to flexibility of the gate α1 helix. Second, MPD1 mimics interactions of the epoxide moiety of JH previously observed in the JHBP-JH complex, and MPD can compete with JH in binding to the JH-binding pocket. We also confirmed that methoprene, which has an MPD-like structure, inhibits the complex formation between JHBP and JH while the unepoxydated JH III (methyl farnesoate) does not. These findings may open the door to the development of novel IGRs targeted against JHBP. Third, binding of MPD to the second cavity of JHBP induces significant conformational changes accompanied with a cavity expansion. This finding, together with MPD2-JHBP interaction mechanism identified in the JHBP-MPD complex, should provide important guidance in the search for the natural ligand of the second cavity. PMID:23437107
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany
The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less
NOTCH1 Inhibits Activation of ATM by Impairing the Formation of an ATM-FOXO3a-KAT5/Tip60 Complex.
Adamowicz, Marek; Vermezovic, Jelena; d'Adda di Fagagna, Fabrizio
2016-08-23
The DNA damage response (DDR) signal transduction pathway is responsible for sensing DNA damage and further relaying this signal into the cell. ATM is an apical DDR kinase that orchestrates the activation and the recruitment of downstream DDR factors to induce cell-cycle arrest and repair. We have previously shown that NOTCH1 inhibits ATM activation upon DNA damage, but the underlying mechanism remains unclear. Here, we show that NOTCH1 does not impair ATM recruitment to DNA double-strand breaks (DSBs). Rather, NOTCH1 prevents binding of FOXO3a and KAT5/Tip60 to ATM through a mechanism in which NOTCH1 competes with FOXO3a for ATM binding. Lack of FOXO3a binding to ATM leads to the loss of KAT5/Tip60 association with ATM. Moreover, expression of NOTCH1 or depletion of ATM impairs the formation of the FOXO3a-KAT5/Tip60 protein complex. Finally, we show that pharmacological induction of FOXO3a nuclear localization sensitizes NOTCH1-driven cancers to DNA-damage-induced cell death. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Budnik, Ivan; Shenkman, Boris; Savion, Naphtali
2015-01-01
Thrombus formation in the injured vessel wall is a highly complex process involving various blood-born components that go through specific temporal and spatial changes as observed by intravital videomicroscopy. Platelets bind transiently to the developing thrombus and may either become stably incorporated into or disengage from the thrombus. The aim of the present study was to reveal the processes involved in the formation of a stable thrombus. Platelet-rich plasma and washed platelets were studied by the aggregometer. The aggregate stability was challenged by eptifibatide. Platelet Triton-insoluble fraction was prepared and the actin and αIIb content in the cytoskeleton was analyzed by western blot. Maximal actin polymerization is achieved 1min after platelet activation while maximal αIIbβ3-actin cytoskeleton association requires 5 to 10min of activation and fibrinogen-mediated platelet-to-platelet bridging. Thus, actin polymerization is dependent on platelet activation and requires neither αIIbβ3 integrin occupation nor platelet aggregation. Formation of a stable aggregate requires platelet activation for more than 1min, complete increase in actin cytoskeleton fraction and partial association of αIIbβ3 with the actin cytoskeleton. However, direct αIIbβ3 activation is not sufficient for cytoskeleton complex formation. Thus, stable αIIbβ3-fibrinogen interaction, representing stable aggregate, is achieved after more than 1min agonist activation, involving inside-out and outside-in signaling but not after direct integrin activation, involving only outside-in signaling. Formation of a stable fibrinogen-αIIbβ3-actin cytoskeleton complex is the result of the combined effect of platelet stimulation by soluble agonists, activation of αIIbβ3, fibrinogen binding and platelet-to-platelet bridging. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Conan K.; Wacklin, Hanna P.; Craik, David J.
2012-01-01
Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities. PMID:23129773
Dai, Huaien; Hiromasa, Yasuaki; Takahashi, Daisuke; VanderVelde, David; Fabrick, Jeffrey A; Kanost, Michael R; Krishnamoorthi, Ramaswamy
2013-01-08
In response to invading microorganisms, insect β-1,3-glucan recognition protein (βGRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Here we report on the nuclear magnetic resonance (NMR) solution structure of the N-terminal domain of βGRP (N-βGRP) from Indian meal moth (Plodia interpunctella), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. NMR and isothermal calorimetric titrations of N-βGRP with laminarihexaose, a glucose hexamer containing β-1,3 links, suggest a weak binding of the ligand. However, addition of laminarin, a glucose polysaccharide (~6 kDa) containing β-1,3 and β-1,6 links that activates the proPO pathway, to N-βGRP results in the loss of NMR cross-peaks from the backbone (15)N-(1)H groups of the protein, suggesting the formation of a large complex. Analytical ultracentrifugation (AUC) studies of formation of the N-βGRP-laminarin complex show that ligand binding induces self-association of the protein-carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (~102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to submicromolar concentrations. The structural model thus derived from this study for the N-βGRP-laminarin complex in solution differs from the one in which a single N-βGRP molecule has been proposed to bind to a triple-helical form of laminarin on the basis of an X-ray crystallographic structure of the N-βGRP-laminarihexaose complex [Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N., and Yamaguchi, Y. (2011) J. Biol. Chem. 286, 29158-29165]. AUC studies and phenoloxidase activation measurements conducted with the designed mutants of N-βGRP indicate that electrostatic interactions involving Asp45, Arg54, and Asp68 between the ligand-bound protein molecules contribute in part to the stability of the N-βGRP-laminarin macro complex and that a decreased stability is accompanied by a reduced level of activation of the proPO pathway. An increased level of β-1,6 branching in laminarin also results in destabilization of the macro complex. These novel findings suggest that ligand-induced self-association of the βGRP-β-1,3-glucan complex may form a platform on a microbial surface for recruitment of downstream proteases, as a means of amplification of the initial signal of pathogen recognition for the activation of the proPO pathway.
Arunachalam, M; Ghosh, Pradyut
2010-02-01
A bowl-shaped tripodal receptor with an appropriately positioned amide functionality on the benzene platform and electron-withdrawing p-nitrophenyl terminals (L(1)) has been designed, synthesized, and studied for the anion binding properties. The single-crystal X-ray crystallographic analysis on crystals of L(1) with tetrabutylammonium salts of nitrate (1), acetate (2), fluoride (3), and chloride (4) obtained in moist dioxane medium showed encapsulation of two NO(3)(-), [(AcO)(2)(H(2)O)(4)](2-), [F(2)(H(2)O)(6)](2-), and [Cl(2)(H(2)O)(4)](2-) respectively as the anionic guests inside the staggered dimeric capsular assembly of L(1). The p-nitro substitution in the aryl terminals assisted the formation of dimeric capsular assembly of L(1) exclusively upon binding/encapsulating above different guests. Though L(1) demonstrates capsule formation upon anion or hydrated anion complexation for all of the anions studied here, its positional isomer with the o-nitro-substituted tripodal triamide receptor L(2) selectively formed the dimeric capsular assembly upon encapsulation of [F(2)(H(2)O)(6)](2-) and noncapsular aggregates in the cases of other anions such as Cl(-), NO(3)(-), and AcO(-). Interestingly, structural investigations upon anion exchange of the complexes revealed that both isomers have selectivity toward the formation of a [F(2)(H(2)O)(6)](2-) encapsulated dimeric capsule. In contrast, solution-state (1)H NMR titration studies of L(1) and L(2) in DMSO-d(6) with AcO(-) indicated 1:3 (host:guest) binding.
Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors
Lakatos, Lóránt; Csorba, Tibor; Pantaleo, Vitantonio; Chapman, Elisabeth J; Carrington, James C; Liu, Yu-Ping; Dolja, Valerian V; Calvino, Lourdes Fernández; López-Moya, Juan José; Burgyán, József
2006-01-01
RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA- and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation. PMID:16724105
Molecular determinants of orexin receptor-arrestin-ubiquitin complex formation.
Jaeger, Werner C; Seeber, Ruth M; Eidne, Karin A; Pfleger, Kevin D G
2014-01-01
The orexin system regulates a multitude of key physiological processes, particularly involving maintenance of metabolic homeostasis. Consequently, there is considerable potential for pharmaceutical development for the treatment of disorders from narcolepsy to metabolic syndrome. It acts through the hormonal activity of two endogenous peptides, orexin A binding to orexin receptors 1 and 2 (OX₁ and OX₂) with similar affinity, and orexin B binding to OX₂ with higher affinity than OX₁ receptors. We have previously revealed data differentiating orexin receptor subtypes with respect to their relative stability in forming orexin receptor-arrestin-ubiquitin complexes measured by BRET. Recycling and cellular signalling distinctions were also observed. Here, we have investigated, using BRET, the molecular determinants involved in providing OX₂ receptors with greater β-arrestin-ubiquitin complex stability. The contribution of the C-terminal tail of the OX receptors was investigated by bulk substitution and site-specific mutagenesis using BRET and inositol phosphate assays. Replacement of the OX₁ receptor C-terminus with that of the OX₂ receptor did not result in the expected gain of function, indicating a role for intracellular domain configuration in addition to primary structure. Furthermore, two out of the three putative serine/threonine clusters in the C-terminus were found to be involved in OX₂ receptor-β-arrestin-ubiquitin complex formation. This study provides fundamental insights into the molecular elements that influence receptor-arrestin-ubiquitin complex formation. Understanding how and why the orexin receptors can be functionally differentiated brings us closer to exploiting these receptors as drug targets. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.
Mudedla, Sathish Kumar; Azhagiya Singam, Ettayapuram Ramaprasad; Balamurugan, Kanagasabai; Subramanian, Venkatesan
2015-11-11
The complexation of small interfering RNA (siRNA) with positively charged gold nanoclusters has been studied in the present investigation with the help of classical molecular dynamics and steered molecular dynamics simulations accompanied by free energy calculations. The results show that gold nanoclusters form a stable complex with siRNA. The wrapping of siRNA around the gold nanocluster depends on the size and charge on the surface of the gold cluster. The binding pattern of the gold nanocluster with siRNA is also influenced by the presence of another cluster. The interaction between the positively charged amines in the gold nanocluster and the negatively charged phosphate group in the siRNA is responsible for the formation of complexes. The binding free energy value increases with the size of the gold cluster and the number of positive charges present on the surface of the gold nanocluster. The results reveal that the binding energy of small gold nanoclusters increases in the presence of another gold nanocluster while the binding of large gold nanoclusters decreases due to the introduction of another gold nanocluster. Overall, the findings have clearly demonstrated the effect of size and charge of gold nanoclusters on their interaction pattern with siRNA.
A Simplified Representation of the Chemical Nature and Reactions of Soil Humus.
ERIC Educational Resources Information Center
Stevenson, F. J.; Olsen, R. A.
1989-01-01
Presented is a comprehensible structural representation of humic substances. A number of important roles of soil organic matter, including contribution to the cation-exchange capacity, binding of pesticides, and formation of complexes with micronutrient cations, are illustrated. (Author/CW)
Molecular dynamics studies on the DNA-binding process of ERG.
Beuerle, Matthias G; Dufton, Neil P; Randi, Anna M; Gould, Ian R
2016-11-15
The ETS family of transcription factors regulate gene targets by binding to a core GGAA DNA-sequence. The ETS factor ERG is required for homeostasis and lineage-specific functions in endothelial cells, some subset of haemopoietic cells and chondrocytes; its ectopic expression is linked to oncogenesis in multiple tissues. To date details of the DNA-binding process of ERG including DNA-sequence recognition outside the core GGAA-sequence are largely unknown. We combined available structural and experimental data to perform molecular dynamics simulations to study the DNA-binding process of ERG. In particular we were able to reproduce the ERG DNA-complex with a DNA-binding simulation starting in an unbound configuration with a final root-mean-square-deviation (RMSD) of 2.1 Å to the core ETS domain DNA-complex crystal structure. This allowed us to elucidate the relevance of amino acids involved in the formation of the ERG DNA-complex and to identify Arg385 as a novel key residue in the DNA-binding process. Moreover we were able to show that water-mediated hydrogen bonds are present between ERG and DNA in our simulations and that those interactions have the potential to achieve sequence recognition outside the GGAA core DNA-sequence. The methodology employed in this study shows the promising capabilities of modern molecular dynamics simulations in the field of protein DNA-interactions.
NASA Astrophysics Data System (ADS)
Prabu, Samikannu; Swaminathan, Meenakshisundaram; Sivakumar, Krishnamoorthy; Rajamohan, Rajaram
2015-11-01
The formation through supramolecular interaction of a host-guest inclusion complex of caffeine (CA) with nano-hydrophobic cavity beta-cyclodextrin (β-CD) is achieved by a physical mixture, a kneading method and a co-precipitation method. The formation of the inclusion complex of CA with β-CD in solution state is confirmed by UV-visible spectrophotometer, fluorescence spectrophotometer and time-resolved fluorescence spectrophotometer. The stoichiometry of the inclusion complex is 1:1; the imidazole ring and pyrimidine ring of caffeine is deeply entrapped in the beta-cyclodextrin as confirmed by spectral shifts. The Benesi-Hildebrand plot is used to calculate the binding constant of the inclusion complex of CA with β-CD at room temperature. The Gibbs free energy change of the inclusion complex process is calculated and the process is found to be spontaneous. The thermal stability of the inclusion complex of CA with β-CD is analyzed using differential scanning calorimetry. The crystal structure modification of a solid inclusion complex is confirmed by scanning electron microscopy image analysis. The formation of the inclusion complex of CA with β-CD in the solid phase is also confirmed by FT-IR and XRD. The formation of the inclusion complex between CA and β-CD, as confirmed by molecular docking studies, is in good relationship with the results obtained through different experimental methods.
Bratkowski, Matthew; Unarta, Ilona Christy; Zhu, Lizhe; Shubbar, Murtada; Huang, Xuhui; Liu, Xin
2018-02-02
Functional cross-talk between the promoter and terminator of a gene has long been noted. Promoters and terminators are juxtaposed to form gene loops in several organisms, and gene looping is thought to be involved in transcriptional regulation. The general transcription factor IIB (TFIIB) and the C-terminal domain phosphatase Ssu72, essential factors of the transcription preinitiation complex and the mRNA processing and polyadenylation complex, respectively, are important for gene loop formation. TFIIB and Ssu72 interact both genetically and physically, but the molecular basis of this interaction is not known. Here we present a crystal structure of the core domain of TFIIB in two new conformations that differ in the relative distance and orientation of the two cyclin-like domains. The observed extraordinary conformational plasticity may underlie the binding of TFIIB to multiple transcription factors and promoter DNAs that occurs in distinct stages of transcription, including initiation, reinitiation, and gene looping. We mapped the binding interface of the TFIIB-Ssu72 complex using a series of systematic, structure-guided in vitro binding and site-specific photocross-linking assays. Our results indicate that Ssu72 competes with acidic activators for TFIIB binding and that Ssu72 disrupts an intramolecular TFIIB complex known to impede transcription initiation. We also show that the TFIIB-binding site on Ssu72 overlaps with the binding site of symplekin, a component of the mRNA processing and polyadenylation complex. We propose a hand-off model in which Ssu72 mediates a conformational transition in TFIIB, accounting for the role of Ssu72 in transcription reinitiation, gene looping, and promoter-terminator cross-talk. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Skalicky, Jack J.; Arii, Jun; Wenzel, Dawn M.; Stubblefield, William-May B.; Katsuyama, Angela; Uter, Nathan T.; Bajorek, Monika; Myszka, David G.; Sundquist, Wesley I.
2012-01-01
The endosomal sorting complex required for transport (ESCRT) pathway remodels membranes during multivesicular body biogenesis, the abscission stage of cytokinesis, and enveloped virus budding. The ESCRT-III and VPS4 ATPase complexes catalyze the membrane fission events associated with these processes, and the LIP5 protein helps regulate their interactions by binding directly to a subset of ESCRT-III proteins and to VPS4. We have investigated the biochemical and structural basis for different LIP5-ligand interactions and show that the first microtubule-interacting and trafficking (MIT) module of the tandem LIP5 MIT domain binds CHMP1B (and other ESCRT-III proteins) through canonical type 1 MIT-interacting motif (MIM1) interactions. In contrast, the second LIP5 MIT module binds with unusually high affinity to a novel MIM element within the ESCRT-III protein CHMP5. A solution structure of the relevant LIP5-CHMP5 complex reveals that CHMP5 helices 5 and 6 and adjacent linkers form an amphipathic “leucine collar” that wraps almost completely around the second LIP5 MIT module but makes only limited contacts with the first MIT module. LIP5 binds MIM1-containing ESCRT-III proteins and CHMP5 and VPS4 ligands independently in vitro, but these interactions are coupled within cells because formation of stable VPS4 complexes with both LIP5 and CHMP5 requires LIP5 to bind both a MIM1-containing ESCRT-III protein and CHMP5. Our studies thus reveal how the tandem MIT domain of LIP5 binds different types of ESCRT-III proteins, promoting assembly of active VPS4 enzymes on the polymeric ESCRT-III substrate. PMID:23105106
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.
2012-11-01
The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF{sup FBW7} complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains themore » basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.
Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding sitemore » are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.« less
Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L
2015-06-05
Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Structural basis for the recognition of Asef by adenomatous polyposis coli
Zhang, Zhenyi; Chen, Leyi; Gao, Lei; Lin, Kui; Zhu, Liang; Lu, Yang; Shi, Xiaoshan; Gao, Yuan; Zhou, Jing; Xu, Ping; Zhang, Jian; Wu, Geng
2012-01-01
Adenomatous polyposis coli (APC) regulates cell-cell adhesion and cell migration through activating the APC-stimulated guanine nucleotide-exchange factor (GEF; Asef), which is usually autoinhibited through the binding between its Src homology 3 (SH3) and Dbl homology (DH) domains. The APC-activated Asef stimulates the small GTPase Cdc42, which leads to decreased cell-cell adherence and enhanced cell migration. In colorectal cancers, truncated APC constitutively activates Asef and promotes cancer cell migration and angiogenesis. Here, we report crystal structures of the human APC/Asef complex. We find that the armadillo repeat domain of APC uses a highly conserved surface groove to recognize the APC-binding region (ABR) of Asef, conformation of which changes dramatically upon binding to APC. Key residues on APC and Asef for the complex formation were mutated and their importance was demonstrated by binding and activity assays. Structural superimposition of the APC/Asef complex with autoinhibited Asef suggests that the binding between APC and Asef might create a steric clash between Asef-DH domain and APC, which possibly leads to a conformational change in Asef that stimulates its GEF activity. Our structures thus elucidate the molecular mechanism of Asef recognition by APC, as well as provide a potential target for pharmaceutical intervention against cancers. PMID:21788986
Mechanism of curcumin-induced trypsin inhibition: Computational and experimental studies
NASA Astrophysics Data System (ADS)
Wang, Yan-Qing; Zhang, Hong-Mei; Kang, Yi-Jun; Gu, Yun-Lan; Cao, Jian
2016-03-01
In the present study, the experimental and theoretical methods were used to analyze the binding interaction of food dye, curcumin with trypsin. The results of fluorescence spectroscopic measurements indicated that curcumin binding resulted in the obviously intrinsic fluorescence quenching with the increase concentration of curcumin. This binding interaction is a spontaneous process with the estimated enthalpy and entropy changes being -15.70 kJ mol-1 and 40.25 J mol-1 K-1, respectively. Hydrogen bonds and hydrophobic forces played an important role in the complex formation between curcumin and trypsin. Moreover, curcumin could enter into the primary substrate-binding pocket and makes the activity of trypsin decrease remarkably with the increasing concentration of curcumin.
Cardozo, Marcos J.; Massazza, Diego A.; Parkinson, John S.; Studdert, Claudia A.
2017-01-01
Summary During chemotactic signaling by Escherichia coli, the small cytoplasmic CheW protein couples the histidine kinase CheA to chemoreceptor control. Although essential for assembly and operation of receptor signaling complexes, CheW in stoichiometric excess disrupts chemotactic behavior. To explore the mechanism of the CheW excess effect, we measured the physiological consequences of high cellular levels of wild-type CheW and of several CheW variants with reduced or enhanced binding affinities for receptor molecules. We found that high levels of CheW interfered with trimer assembly, prevented CheA activation, blocked cluster formation, disrupted chemotactic ability, and elevated receptor methylation levels. The severity of these effects paralleled the receptor binding affinities of the CheW variants. Because trimer formation may be an obligate step in the assembly of ternary signaling complexes and higher-order receptor arrays, we suggest that all CheW excess effects stem from disruption of trimer assembly. We propose that the CheW-binding sites in receptor dimers overlap their trimer contact sites and that high levels of CheW saturate the receptor binding sites, preventing trimer assembly. The CheW-trapped receptor dimers seem to be improved substrates for methyltransferase reactions, but cannot activate CheA or assemble into clusters, processes that are essential for chemotactic signaling. PMID:20487303
Kristie, T M; LeBowitz, J H; Sharp, P A
1989-01-01
The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions. Images PMID:2556266
Kristie, T M; LeBowitz, J H; Sharp, P A
1989-12-20
The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions.
Very Strong Binding for a Neutral Calix[4]pyrrole Receptor Displaying Positive Allosteric Binding.
Duedal, Troels; Nielsen, Kent A; Olsen, Gunnar; Rasmussen, Charlotte B G; Kongsted, Jacob; Levillain, Eric; Breton, Tony; Miyazaki, Eigo; Takimiya, Kazuo; Bähring, Steffen; Jeppesen, Jan O
2017-02-17
The dual-analyte responsive behavior of tetraTTF-calix[4]pyrrole receptor 1 has been shown to complex electron-deficient planar guests in a 2:1 fashion by adopting a so-called 1,3-alternate conformation. However, stronger 1:1 complexes have been demonstrated with tetraalkylammonium halide salts that defer receptor 1 to its cone conformation. Herein, we report the complexation of an electron-deficient planar guest, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA, 2) that champions the complexation with 1, resulting in a high association constant K a = 3 × 10 10 M -2 . The tetrathiafulvalene (TTF) subunits in the tetraTTF-calix[4]pyrrole receptor 1 present a near perfect shape and electronic complementarity to the NTCDA guest, which was confirmed by X-ray crystal structure analysis, DFT calculations, and electron density surface mapping. Moreover, the complexation of these species results in the formation of a charge transfer complex (2 2 ⊂1) as visualized by a readily apparent color change from yellow to brown.
Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu
2008-11-14
TGF-{beta} activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-{beta} enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-{beta} type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smadmore » complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.« less
Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes.
Wang, Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu
2008-11-14
TGF-beta activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-beta enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-beta type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smad complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.
Khan, Ishaat M; Ahmad, Afaq; Ullah, M F
2011-04-04
A proton-transfer (charge transfer) complex formed on the reaction between 2,6-diaminopyridine (donor) and picric acid (acceptor) was synthesized and characterized by FTIR, (1)H NMR, thermal and elemental analysis. The crystal structure determined by single-crystal X-ray diffraction indicates that cation and anion are joined together by strong N(+)-H- -O(-) type hydrogen bonds. The hydrogen-bonded charge transfer (HBCT) complex was screened for its pharmacology such as antimicrobial activity against various fungal and bacterial strains and Calf thymus DNA-binding. The results showed that HBCT complex (100μg/ml) exhibited good antibacterial antifungal activity as that of standard antibiotics Tetracycline and Nystatin. A molecular frame work through H-bonding interactions between neighboring moieties is found to be responsible for high melting point of resulting complex. This has been attributed to the formation of 1:1 HBCT complex. Copyright © 2011 Elsevier B.V. All rights reserved.
Singh, Prafull Kumar; Roukounakis, Aristomenis; Frank, Daniel O; Kirschnek, Susanne; Das, Kushal Kumar; Neumann, Simon; Madl, Josef; Römer, Winfried; Zorzin, Carina; Borner, Christoph; Haimovici, Aladin; Garcia-Saez, Ana; Weber, Arnim; Häcker, Georg
2017-09-01
The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-X L , recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim-Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-X L inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy. © 2017 Singh et al.; Published by Cold Spring Harbor Laboratory Press.
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.
NASA Astrophysics Data System (ADS)
Gonzalez, D.
2017-12-01
Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins to better reflect human lung fluids.
CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis.
Zitouni, Sihem; Francia, Maria E; Leal, Filipe; Montenegro Gouveia, Susana; Nabais, Catarina; Duarte, Paulo; Gilberto, Samuel; Brito, Daniela; Moyer, Tyler; Kandels-Lewis, Steffi; Ohta, Midori; Kitagawa, Daiju; Holland, Andrew J; Karsenti, Eric; Lorca, Thierry; Lince-Faria, Mariana; Bettencourt-Dias, Mónica
2016-05-09
Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Prasad, Rajendra; Prasad, Surendra
2009-01-01
The formation constant of iron(III) complex with glycine (Gly) ligand in aqueous acidic medium (0.2 M HNO[subscript 3], I = 0.2 M at 28 plus or minus 1 degree C) was determined spectrophotometrically in which a competing color reaction between Fe(III) and SCN[superscript -] was used as an indicator reaction. Under the specified conditions Fe(III)…
Bai, Fang; Morcos, Faruck; Cheng, Ryan R; Jiang, Hualiang; Onuchic, José N
2016-12-13
Protein-protein interactions play a central role in cellular function. Improving the understanding of complex formation has many practical applications, including the rational design of new therapeutic agents and the mechanisms governing signal transduction networks. The generally large, flat, and relatively featureless binding sites of protein complexes pose many challenges for drug design. Fragment docking and direct coupling analysis are used in an integrated computational method to estimate druggable protein-protein interfaces. (i) This method explores the binding of fragment-sized molecular probes on the protein surface using a molecular docking-based screen. (ii) The energetically favorable binding sites of the probes, called hot spots, are spatially clustered to map out candidate binding sites on the protein surface. (iii) A coevolution-based interface interaction score is used to discriminate between different candidate binding sites, yielding potential interfacial targets for therapeutic drug design. This approach is validated for important, well-studied disease-related proteins with known pharmaceutical targets, and also identifies targets that have yet to be studied. Moreover, therapeutic agents are proposed by chemically connecting the fragments that are strongly bound to the hot spots.
Comparison of Nerve Growth Factor Receptor Binding Models Using Heterodimeric Muteins
Mehta, Hrishikesh M.; Woo, Sang B.; Neet, Kenneth E.
2013-01-01
Nerve growth factor (NGF) is a homodimer that binds to two distinct receptor types, TrkA and p75, to support survival and differentiation of neurons. The high-affinity binding on the cell surface is believed to involve a heteroreceptor complex, but its exact nature is unclear. We developed a heterodimer (heteromutein) of two NGF muteins that can bind p75 and TrkA on opposite sides of the heterodimer, but not two TrkA receptors. Previously described muteins are Δ9/13 that is TrkA negative and 7-84-103 that is signal selective through TrkA. The heteromutein (Htm1) was used to study the heteroreceptor complex formation and function, in the putative absence of NGF-induced TrkA dimerization. Cellular binding assays indicated that Htm1 does not bind TrkA as efficiently as wild-type (wt) NGF but has better affinity than either homodimeric mutein. Htm1, 7-84-103, and Δ9/13 were each able to compete for cold-temperature, cold-chase stable binding on PC12 cells, indicating that binding to p75 was required for a portion of this high-affinity binding. Survival, neurite outgrowth, and MAPK signaling in PC12 cells also showed a reduced response for Htm1, compared with wtNGF, but was better than the parent muteins in the order wtNGF > Htm1 > 7-84-103 >> Δ9/13. Htm1 and 7-84-103 demonstrated similar levels of survival on cells expressing only TrkA. In the longstanding debate on the NGF receptor binding mechanism, our data support the ligand passing of NGF from p75 to TrkA involving a transient heteroreceptor complex of p75-NGF-TrkA. PMID:22903500
Fleischer, Candace C; Kumar, Umesh; Payne, Christine K
2013-09-01
Nanoparticles used in biological applications encounter a complex mixture of extracellular proteins. Adsorption of these proteins on the nanoparticle surface results in the formation of a "protein corona," which can dominate the interaction of the nanoparticle with the cellular environment. The goal of this research was to determine how nanoparticle composition and surface modification affect the cellular binding of protein-nanoparticle complexes. We examined the cellular binding of a collection of commonly used anionic nanoparticles: quantum dots, colloidal gold nanoparticles, and low-density lipoprotein particles, in the presence and absence of extracellular proteins. These experiments have the advantage of comparing different nanoparticles under identical conditions. Using a combination of fluorescence and dark field microscopy, flow cytometry, and spectroscopy, we find that cellular binding of these anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition or surface modification. We expect these results will aid in the design of nanoparticles for in vivo applications.
Hora, Manuel; Carballo-Pacheco, Martin; Weber, Benedikt; Morris, Vanessa K.; Wittkopf, Antje; Buchner, Johannes; Strodel, Birgit; Reif, Bernd
2017-01-01
Antibody light chain amyloidosis is a rare disease caused by fibril formation of secreted immunoglobulin light chains (LCs). The huge variety of antibody sequences puts a serious challenge to drug discovery. The green tea polyphenol epigallocatechin-3-gallate (EGCG) is known to interfere with fibril formation in general. Here we present solution- and solid-state NMR studies as well as MD simulations to characterise the interaction of EGCG with LC variable domains. We identified two distinct EGCG binding sites, both of which include a proline as an important recognition element. The binding sites were confirmed by site-directed mutagenesis and solid-state NMR analysis. The EGCG-induced protein complexes are unstructured. We propose a general mechanistic model for EGCG binding to a conserved site in LCs. We find that EGCG reacts selectively with amyloidogenic mutants. This makes this compound a promising lead structure, that can handle the immense sequence variability of antibody LCs. PMID:28128355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie
The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core tomore » position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.« less
NASA Technical Reports Server (NTRS)
Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep
2002-01-01
Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.
Inhibition of amyloid peptide fibril formation by gold-sulfur complexes.
Wang, Wenji; Zhao, Cong; Zhu, Dengsen; Gong, Gehui; Du, Weihong
2017-06-01
Amyloid-related diseases are characterized by protein conformational change and amyloid fibril deposition. Metal complexes are potential inhibitors of amyloidosis. Nitrogen-coordinated gold complexes have been used to disaggregate prion neuropeptide (PrP106-126) and human islet amyloid polypeptide (hIAPP). However, the roles of metal complexes in peptide fibril formation and related bioactivity require further exploration. In this work, we investigated the interactions of amyloid peptides PrP106-126 and hIAPP with two tetracoordinated gold-sulfur complexes, namely, dichloro diethyl dithiocarbamate gold complex and dichloro pyrrolidine dithiocarbamate gold complex. We also determined the effects of these complexes on peptide-induced cytotoxicity. Thioflavin T assay, morphological characterization, and particle size analysis indicated that the two gold-sulfur complexes effectively inhibited the fibrillation of the amyloid peptides, which led to the formation of nanoscale particles. The complexes reduced the cytotoxicity induced by the amyloid peptides. Intrinsic fluorescence, nuclear magnetic resonance, and mass spectrometry revealed that the complexes interacted with PrP106-126 and hIAPP via metal coordination and hydrophobic interaction, which improved the inhibition and binding of the two gold-sulfur compounds. Our study provided new insights into the use of tetracoordinated gold-sulfur complexes as drug candidates against protein conformational disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Mekler, Vladimir; Minakhin, Leonid; Semenova, Ekaterina; Kuznedelov, Konstantin; Severinov, Konstantin
2016-01-01
CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR–Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs. We find that Cas9 and isolated sgRNAs form the effector complex efficiently and rapidly. Yet, the assembly process is sensitive to the presence of moderate concentrations of non-specific RNA competitors, which considerably delay the Cas9/sgRNA complex formation, while not significantly affecting already formed complexes. This observation suggests that the rate of sgRNA loading into Cas9 in cells can be determined by competition between sgRNA and intracellular RNA molecules for the binding to Cas9. Non-specific RNAs exerted particularly large inhibitory effects on formation of Cas9 complexes with sgRNAs bearing shortened 3′-terminal segments. This result implies that the 3′-terminal segment confers sgRNA the ability to withstand competition from non-specific RNA and at least in part may explain the fact that use of sgRNAs truncated for the 3′-terminal stem loops leads to reduced activity during genomic editing. PMID:26945042
Electrostatic forces govern the binding mechanism of intrinsically disordered histone chaperones
Liu, Chuanbo; Wang, Tianshu; Bai, Yawen; Wang, Jin
2017-01-01
A unified picture to understand the protein recognition and function must include the native binding complex structure ensembles and the underlying binding mechanisms involved in specific biological processes. However, quantifications of both binding complex structures and dynamical mechanisms are still challenging for IDP. In this study, we have investigated the underlying molecular mechanism of the chaperone Chz1 and histone H2A.Z-H2B association by equilibrium and kinetic stopped-flow fluorescence spectroscopy. The dependence of free energy and kinetic rate constant on electrolyte mean activity coefficient and urea concentration are uncovered. Our results indicate a previous unseen binding kinetic intermediate. An initial conformation selection step of Chz1 is also revealed before the formation of this intermediate state. Based on these observations, a mixed mechanism of three steps including both conformation selection and induced fit is proposed. By combination of the ion- and denaturant-induced experiments, we demonstrate that electrostatic forces play a dominant role in the recognition of bipolar charged intrinsically disordered protein Chz1 to its preferred partner H2A.Z-H2B. Both the intra-chain and inter-chain electrostatic interactions have direct impacts on the native collapsed structure and binding mechanism. PMID:28552960
The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth.
Brehm, A; Nielsen, S J; Miska, E A; McCance, D J; Reid, J L; Bannister, A J; Kouzarides, T
1999-05-04
E7 is the main transforming protein of human papilloma virus type 16 (HPV16) which is implicated in the formation of cervical cancer. The transforming activity of E7 has been attributed to its interaction with the retinoblastoma (Rb) tumour suppressor. However, Rb binding is not sufficient for transformation by E7. Mutations within a zinc finger domain, which is dispensable for Rb binding, also abolish E7 transformation functions. Here we show that HPV16 E7 associates with histone deacetylase in vitro and in vivo, via its zinc finger domain. Using a genetic screen, we identify Mi2beta, a component of the recently identified NURD histone deacetylase complex, as a protein that binds directly to the E7 zinc finger. A zinc finger point mutant which is unable to bind Mi2beta and histone deacetylase but is still able to bind Rb fails to overcome cell cycle arrest in osteosarcoma cells. Our results suggest that the binding to a histone deacetylase complex is an important parameter for the growthpromoting activity of the human papilloma virus E7 protein. This provides the first indication that viral oncoproteins control cell proliferation by targeting deacetylation pathways.
Robinson, Clifford R.; Sligar, Stephen G.
1998-01-01
Restriction endonucleases such as EcoRI bind and cleave DNA with great specificity and represent a paradigm for protein–DNA interactions and molecular recognition. Using osmotic pressure to induce water release, we demonstrate the participation of bound waters in the sequence discrimination of substrate DNA by EcoRI. Changes in solvation can play a critical role in directing sequence-specific DNA binding by EcoRI and are also crucial in assisting site discrimination during catalysis. By measuring the volume change for complex formation, we show that at the cognate sequence (GAATTC) EcoRI binding releases about 70 fewer water molecules than binding at an alternate DNA sequence (TAATTC), which differs by a single base pair. EcoRI complexation with nonspecific DNA releases substantially less water than either of these specific complexes. In cognate substrates (GAATTC) kcat decreases as osmotic pressure is increased, indicating the binding of about 30 water molecules accompanies the cleavage reaction. For the alternate substrate (TAATTC), release of about 40 water molecules accompanies the reaction, indicated by a dramatic acceleration of the rate when osmotic pressure is raised. These large differences in solvation effects demonstrate that water molecules can be key players in the molecular recognition process during both association and catalytic phases of the EcoRI reaction, acting to change the specificity of the enzyme. For both the protein–DNA complex and the transition state, there may be substantial conformational differences between cognate and alternate sites, accompanied by significant alterations in hydration and solvent accessibility. PMID:9482860
Treuter, E; Johansson, L; Thomsen, J S; Wärnmark, A; Leers, J; Pelto-Huikko, M; Sjöberg, M; Wright, A P; Spyrou, G; Gustafsson, J A
1999-03-05
Transcriptional activation by nuclear receptors (NRs) involves the concerted action of coactivators, chromatin components, and the basal transcription machinery. Crucial NR coactivators, which target primarily the conserved ligand-regulated activation (AF-2) domain, include p160 family members, such as TIF2, as well as p160-associated coactivators, such as CBP/p300. Because these coactivators possess intrinsic histone acetyltransferase activity, they are believed to function mainly by regulating chromatin-dependent transcriptional activation. Recent evidence suggests the existence of an additional NR coactivator complex, referred to as the thyroid hormone receptor-associated protein (TRAP) complex, which may function more directly as a bridging complex to the basal transcription machinery. TRAP220, the 220-kDa NR-binding subunit of the complex, has been identified in independent studies using both biochemical and genetic approaches. In light of the functional differences identified between p160 and TRAP coactivator complexes in NR activation, we have attempted to compare interaction and functional characteristics of TIF 2 and TRAP220. Our findings imply that competition between the NR-binding subunits of distinct coactivator complexes may act as a putative regulatory step in establishing either a sequential activation cascade or the formation of independent coactivator complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niyogi, S.K.; Ratrie, H. III; Datta, A.K.
E. coli DNA binding protein strongly inhibits the transcription of single-stranded rather than double-stranded phage M13 DNA by E. coli RNA polymerase. This inhibition cannot be significantly overcome by increasing the concentration of RNA polymerase. Nor does the order of addition of binding protein affect its inhibitory property: inhibition is evident whether binding protein is added before or after the formation of the RNA polymerase--DNA complex. Inhibition is also observed if binding protein is added at various times after initiation of RNA synthesis. Maximal inhibition occurs at a binding protein-to-DNA ratio (w/w) of about 8:1. This corresponds to one bindingmore » protein molecule covering about 30 nucleotides, in good agreement with values obtained by physical measurements.« less
The TubR-centromere complex adopts a double-ring segrosome structure in Type III partition systems.
Martín-García, Bárbara; Martín-González, Alejandro; Carrasco, Carolina; Hernández-Arriaga, Ana M; Ruíz-Quero, Rubén; Díaz-Orejas, Ramón; Aicart-Ramos, Clara; Moreno-Herrero, Fernando; Oliva, María A
2018-05-14
In prokaryotes, the centromere is a specialized segment of DNA that promotes the assembly of the segrosome upon binding of the Centromere Binding Protein (CBP). The segrosome structure exposes a specific surface for the interaction of the CBP with the motor protein that mediates DNA movement during cell division. Additionally, the CBP usually controls the transcriptional regulation of the segregation system as a cell cycle checkpoint. Correct segrosome functioning is therefore indispensable for accurate DNA segregation. Here, we combine biochemical reconstruction and structural and biophysical analysis to bring light to the architecture of the segrosome complex in Type III partition systems. We present the particular features of the centromere site, tubC, of the model system encoded in Clostridium botulinum prophage c-st. We find that the split centromere site contains two different iterons involved in the binding and spreading of the CBP, TubR. The resulting nucleoprotein complex consists of a novel double-ring structure that covers part of the predicted promoter. Single molecule data provides a mechanism for the formation of the segrosome structure based on DNA bending and unwinding upon TubR binding.
Taylor, Cooper A; Miller, Bill R; Shah, Soleil S; Parish, Carol A
2017-02-01
Mutations in the amyloid precursor protein (APP) are responsible for the formation of amyloid-β peptides. These peptides play a role in Alzheimer's and other dementia-related diseases. The cargo binding domain of the kinesin-1 light chain motor protein (KLC1) may be responsible for transporting APP either directly or via interaction with C-jun N-terminal kinase-interacting protein 1 (JIP1). However, to date there has been no direct experimental or computational assessment of such binding at the atomistic level. We used molecular dynamics and free energy estimations to gauge the affinity for the binary complexes of KLC1, APP, and JIP1. We find that all binary complexes (KLC1:APP, KLC1:JIP1, and APP:JIP1) contain conformations with favorable binding free energies. For KLC1:APP the inclusion of approximate entropies reduces the favorability. This is likely due to the flexibility of the 42-residue APP protein. In all cases we analyze atomistic/residue driving forces for favorable interactions. Proteins 2017; 85:221-234. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lu, Defen; Shang, Guijun; Zhang, Heqiao; Yu, Qian; Cong, Xiaoyan; Yuan, Jupeng; He, Fengjuan; Zhu, Chunyuan; Zhao, Yanyu; Yin, Kun; Chen, Yuanyuan; Hu, Junqiang; Zhang, Xiaodan; Yuan, Zenglin; Xu, Sujuan; Hu, Wei; Cang, Huaixing; Gu, Lichuan
2014-06-01
The opportunistic pathogen Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to deliver the muramidase Tse3 into the periplasm of rival bacteria to degrade their peptidoglycan (PG). Concomitantly, P. aeruginosa uses the periplasm-localized immunity protein Tsi3 to prevent potential self-intoxication caused by Tse3, and thus gains an edge over rival bacteria in fierce niche competition. Here, we report the crystal structures of Tse3 and the Tse3-Tsi3 complex. Tse3 contains an annexin repeat-like fold at the N-terminus and a G-type lysozyme fold at the C-terminus. One loop in the N-terminal domain (Loop 12) and one helix (α9) from the C-terminal domain together anchor Tse3 and the Tse3-Tsi3 complex to membrane in a calcium-dependent manner in vitro, and this membrane-binding ability is essential for Tse3's activity. In the C-terminal domain, a Y-shaped groove present on the surface likely serves as the PG binding site. Two calcium-binding motifs are also observed in the groove and these are necessary for Tse3 activity. In the Tse3-Tsi3 structure, three loops of Tsi3 insert into the substrate-binding groove of Tse3, and three calcium ions present at the interface of the complex are indispensable for the formation of the Tse3-Tsi3 complex. © 2014 John Wiley & Sons Ltd.
Mehio, Nada; Johnson, J. Casey; Dai, Sheng; ...
2015-10-28
Poly(acrylamidoxime)-based fibers bearing random mixtures of carboxylate and amidoxime groups are the most widely utilized materials for extracting uranium from seawater. However, the competition between uranyl (UO 2 2+) and vanadium ions poses a significant challenge to the industrial mining of uranium from seawater using the current generation of adsorbents. To design more selective adsorbents, a detailed understanding of how major competing ions interact with carboxylate and amidoxime ligands is required. In this work, we employ density functional theory (DFT) and wave-function methods to investigate potential binding motifs of the dioxovanadium ion, VO 2 +, with water, formate, and formamidoximatemore » ligands. Employing higher level of theory calculations (CCSD(T)) resolve the existing controversy between the experimental results and previous DFT calculations for the structure of the hydrated VO 2 + ion. Consistent with the EXAFS data, CCSD(T) calculations predict higher stability of the distorted octahedral geometry of VO 2 +(H 2O) 4 compared to the five-coordinate complex with a single water molecule in the second hydration shell, while all seven tested DFT methods yield the reverse stability of the two conformations. Analysis of the relative stabilities of formate-VO 2 + complexes indicates that both monodentate and bidentate forms may coexist in thermodynamic equilibrium in solution, with the equilibrium balance leaning more towards the formation of monodentate species. Investigations of VO 2 + coordination with the formamidoximate anion has revealed the existence of seven possible binding motifs, four of which are within ~ 4.0 kcal/mol of each other. Calculations establish that the most stable binding motif entails the coordination of oxime oxygen and amide nitrogen atoms via a tautomeric rearrangement of amidoxime to imino hydroxylamine. Lastly, the difference in the most stable VO 2 + and UO 2 2+ binding conformation has important implications for the design of more selective UO 2 2+ ligands.« less
Cheng, Li-Yang; Fang, Min; Bai, Ai-Min; Ouyang, Yu; Hu, Yan-Jun
2017-08-01
In this study, fluorescence spectroscopy and molecular modeling approaches were employed to investigate the binding of methotrexate to human serum albumin (HSA) under physiological conditions. From the mechanism, it was demonstrated that fluorescence quenching of HSA by methotrexate results from the formation of a methotrexate/HSA complex. Binding parameters calculated using the Stern-Volmer method and the Scatchard method showed that methotrexate binds to HSA with binding affinities in the order 10 4 L·mol -1 . Thermodynamic parameter studies revealed that the binding reaction is spontaneous, and that hydrogen bonds and van der Waals interactions play a major role in the reaction. Site marker competitive displacement experiments and a molecular modeling approach demonstrated that methotrexate binds with appropriate affinity to site I (subdomain IIA) of HSA. Furthermore, we discuss some factors that influence methotrexate binding to HSA. Copyright © 2017 John Wiley & Sons, Ltd.
Supramolecular Complexes Formed in Systems Bile Salt-Bilirubin-Silica
NASA Astrophysics Data System (ADS)
Vlasova, N. N.; Severinovskaya, O. V.; Golovkova, L. P.
The formation of supramolecular complexes between bilirubin and primary micelles of bile salts has been studied. The association constants of bile salts and binding of bilirubin with these associates have been determined. The adsorption of bilirubin and bile salts from individual and mixed aqueous solutions onto hydrophobic silica surfaces has been investigated. The interaction of bilirubin with primary bile salt micelles and the strong retention in mixed micelles, which are supramolecular complexes, result in the adsorption of bilirubin in free state only.
Tereshchenkov, A G; Shishkina, A V; Karpenko, V V; Chertkov, V A; Konevega, A L; Kasatsky, P S; Bogdanov, A A; Sumbatyan, N V
2016-10-01
Novel fluorescent derivatives of macrolide antibiotics related to tylosin bearing rhodamine, fluorescein, Alexa Fluor 488, BODIPY FL, and nitrobenzoxadiazole (NBD) residues were synthesized. The formation of complexes of these compounds with 70S E. coli ribosomes was studied by measuring the fluorescence polarization depending on the ribosome amount at constant concentration of the fluorescent substance. With the synthesized fluorescent tylosin derivatives, the dissociation constants for ribosome complexes with several known antibiotics and macrolide analogs previously obtained were determined. It was found that the fluorescent tylosin derivatives containing BODIPY FL and NBD groups could be used to screen the binding of novel antibiotics to bacterial ribosomes in the macrolide-binding site.
Dual Function of Phosphoubiquitin in E3 Activation of Parkin.
Walinda, Erik; Morimoto, Daichi; Sugase, Kenji; Shirakawa, Masahiro
2016-08-05
Mutations in the gene encoding parkin, an auto-inhibited E3 ubiquitin ligase that functions in the clearance of damaged mitochondria, are the most common cause of autosomal recessive juvenile Parkinsonism. The mechanism regulating parkin activation remains poorly understood. Here we show, by using isothermal titration calorimetry, solution NMR, and fluorescence spectroscopy, that parkin can bind ubiquitin and phosphomimetic ubiquitin by recognizing the canonical hydrophobic patch and C terminus of ubiquitin. The affinity of parkin for both phosphomimetic and unmodified ubiquitin is markedly enhanced upon removal of the ubiquitin-like (UBL) domain of parkin. This suggests that the agonistic binding of ubiquitin to parkin in trans is counterbalanced by the antagonistic activity of the parkin UBL domain in cis Intriguingly, UBL binding is enthalpy-driven, whereas ubiquitin binding is driven by an increase in the total entropy of the system. These thermodynamic differences are explained by different chemistry in the ubiquitin- and UBL-binding pockets of parkin and, as shown by molecular dynamics simulations, are not a consequence of changes in protein conformational entropy. Indeed, comparison of conformational fluctuations reveals that the RING1-IBR element becomes considerably more rigid upon complex formation. A model of parkin activation is proposed in which E2∼Ub binding triggers large scale diffusional motion of the RING2 domain toward the ubiquitin-stabilized RING1-IBR assembly to complete formation of the active parkin-E2∼Ub transfer complex. Thus, ubiquitin plays a dual role in parkin activation by competing with the inhibitory UBL domain and stabilizing the active form of parkin. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Batra, Jyotica; Soares, Alexei S; Mehner, Christine; Radisky, Evette S
2013-01-01
Matrix metalloproteinases (MMPs) play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.
Esteves, Catarina V; Esteban-Gómez, David; Platas-Iglesias, Carlos; Tripier, Raphaël; Delgado, Rita
2018-05-11
The triethylbenzene-bis-cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) compound (tbmce) was designed with an imposed structural rigidity at the m-xylyl spacer to be compared to a less restrained and known parent compound (bmce). The framework of both compounds differs only in the substituents of the m-xylyl spacer. The study was centered in the differences observed in the acid-base reactions of both compounds, their copper(II) and zinc(II) complexation behaviors, as well as in the uptake of phosphate and polyphosphate anions (HPPi 3- , ATP 4- , ADP 3- , AMP 2- , PhPO 4 2- , and HPO 4 2- ). On the one hand, the acid-base reactions showed lower values for the third and fourth protonation constants of tbmce than for bmce, suggesting that the ethyl groups of the spacer in tbmce force the two cyclen units to more conformational restricted positions. On the other hand, the stability constant values for copper(II) and zinc(II) complexes revealed that bmce is a better chelator than tbmce pointing out to additional conformational restraints imposed by the triethylbenzene spacer. The binding studies of phosphates by the dinuclear copper(II) and zinc(II) complexes showed much smaller effective association constants for the dicopper complexes. Single-crystal X-ray and computational (density functional theory) studies suggest that anion binding promotes the formation of tetranuclear entities in which anions are bridging the metal centers. Our studies also revealed the dinuclear zinc(II) complex of bmce as a promising receptor for phosphate anions, with the largest effective association constant of 5.94 log units being observed for the formation of [Zn 2 bmce(HPPi)] + . Accordingly, a colorimetric study via an indicator displacement assay to detect phosphates in aqueous solution found that the [Zn 2 bmce] 4+ complex acts as the best receptor for pyrophosphate displaying a detection limit of 2.5 nM by changes visible to naked eye.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teplova, Marianna; Farazi, Thalia A.; Tuschl, Thomas
Abstract RNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. Thesemore » studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutationsin vivo.« less
Mills, Jeffrey L; Liu, Gaohua; Skerra, Arne; Szyperski, Thomas
2009-08-11
The NMR structure of the 21 kDa lipocalin FluA, which was previously obtained by combinatorial design, elucidates a reshaped binding site specific for the dye fluorescein resulting from 21 side chain replacements with respect to the parental lipocalin, the naturally occurring bilin-binding protein (BBP). As expected, FluA exhibits the lipocalin fold of BBP, comprising eight antiparallel beta-strands forming a beta-barrel with an alpha-helix attached to its side. Comparison of the NMR structure of free FluA with the X-ray structures of BBP.biliverdin IX(gamma) and FluA.fluorescein complexes revealed significant conformational changes in the binding pocket, which is formed by four loops at the open end of the beta-barrel as well as adjoining beta-strand segments. An "induced fit" became apparent for the side chain conformations of Arg 88 and Phe 99, which contact the bound fluorescein in the complex and undergo concerted rearrangement upon ligand binding. Moreover, slower internal motional modes of the polypeptide backbone were identified by measuring transverse (15)N backbone spin relaxation times in the rotating frame for free FluA and also for the FluA.fluorescein complex. A reduction in the level of such motions was detected upon complex formation, indicating rigidification of the protein structure and loss of conformational entropy. This hypothesis was confirmed by isothermal titration calorimetry, showing that ligand binding is enthalpy-driven, thus overcompensating for the negative entropy associated with both ligand binding per se and rigidification of the protein. Our investigation of the solution structure and dynamics as well as thermodynamics of lipocalin-ligand interaction not only provides insight into the general mechanism of small molecule accommodation in the deep and narrow cavity of this abundant class of proteins but also supports the future design of corresponding binding proteins with novel specificities, so-called "anticalins".
Lactoferrin binding protein B – a bi-functional bacterial receptor protein
Ostan, Nicholas K. H.; Yu, Rong-Hua; Ng, Dixon; Lai, Christine Chieh-Lin; Sarpe, Vladimir; Schriemer, David C.
2017-01-01
Lactoferrin binding protein B (LbpB) is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf) receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB), there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf. In this study, a combination of crosslinking and deuterium exchange coupled to mass spectrometry, information-driven computational docking, bio-layer interferometry, and site-directed mutagenesis was used to probe LbpB:hLf complexes. The formation of a 1:1 complex of iron-loaded Lf and LbpB involves an interaction between the Lf C-lobe and LbpB N-lobe, comparable to TbpB, consistent with a potential role in iron acquisition. The Lf N-lobe is also capable of binding to negatively charged regions of the LbpB C-lobe and possibly other sites such that a variety of higher order complexes are formed. Our results are consistent with LbpB serving dual roles focused primarily on iron acquisition when exposed to limited levels of iron-loaded Lf on the mucosal surface and effectively binding apo Lf when exposed to high levels at sites of inflammation. PMID:28257520
Structure of photosystem II and substrate binding at room temperature.
Young, Iris D; Ibrahim, Mohamed; Chatterjee, Ruchira; Gul, Sheraz; Fuller, Franklin; Koroidov, Sergey; Brewster, Aaron S; Tran, Rosalie; Alonso-Mori, Roberto; Kroll, Thomas; Michels-Clark, Tara; Laksmono, Hartawan; Sierra, Raymond G; Stan, Claudiu A; Hussein, Rana; Zhang, Miao; Douthit, Lacey; Kubin, Markus; de Lichtenberg, Casper; Long Vo, Pham; Nilsson, Håkan; Cheah, Mun Hon; Shevela, Dmitriy; Saracini, Claudio; Bean, Mackenzie A; Seuffert, Ina; Sokaras, Dimosthenis; Weng, Tsu-Chien; Pastor, Ernest; Weninger, Clemens; Fransson, Thomas; Lassalle, Louise; Bräuer, Philipp; Aller, Pierre; Docker, Peter T; Andi, Babak; Orville, Allen M; Glownia, James M; Nelson, Silke; Sikorski, Marcin; Zhu, Diling; Hunter, Mark S; Lane, Thomas J; Aquila, Andy; Koglin, Jason E; Robinson, Joseph; Liang, Mengning; Boutet, Sébastien; Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Moriarty, Nigel W; Liebschner, Dorothee; Afonine, Pavel V; Waterman, David G; Evans, Gwyndaf; Wernet, Philippe; Dobbek, Holger; Weis, William I; Brunger, Axel T; Zwart, Petrus H; Adams, Paul D; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Sauter, Nicholas K; Kern, Jan; Yachandra, Vittal K; Yano, Junko
2016-12-15
Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn 4 CaO 5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S 0 to S 4 ), in which S 1 is the dark-stable state and S 3 is the last semi-stable state before O-O bond formation and O 2 evolution. A detailed understanding of the O-O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S 1 ), two-flash illuminated (2F; S 3 -enriched), and ammonia-bound two-flash illuminated (2F-NH 3 ; S 3 -enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S 1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn 4 CaO 5 cluster in the S 2 and S 3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms.
Recent evidence has established a role for the small GTPase RAB25, as well as related effector proteins, in enacting both pro-oncogenic and anti-oncogenic phenotypes in specific cellular contexts. Here we report the development of all-hydrocarbon stabilized peptides derived from the RAB-binding FIP-family of proteins to target RAB25. Relative to unmodified peptides, optimized stapled peptides exhibit increased structural stability, binding affinity, cell permeability, and inhibition of RAB25:FIP complex formation.
2013-03-01
Deletion analyses mapped the ERα binding domain to the phosphotyrosine binding domain 2. Ectopic Fe65 increased the transcriptional activity of the...ERα in a PTB2 dependent manner in reporter assays. Fe65 knockdown decreased and its stable expression increased the activity of endogenous ERα in...Furthermore, Fe65 expression decreased the antagonistic activity of tamoxifen, suggesting a potential role for Fe65 in tamoxifen resistance. While a role of
The trehalose/maltose-binding protein as the sensitive element of a glucose biosensor
NASA Astrophysics Data System (ADS)
Fonin, A. V.; Povarova, O. I.; Staiano, M.; D'Auria, S.; Turoverov, K. K.; Kuznetsova, I. M.
2014-08-01
The promising direction of the development of a modern glucometer is the construction of sensing element on the basis of stained (dyed) protein which changes its fluorescence upon glucose binding. One of the proteins that can be used for this purpose is the D-trehalose/D-maltose-binding protein (TMBP) from the thermophilic bacteria Thermococcus litoralis. We investigated the physical-chemical properties of the protein and evaluated its stability to the denaturing action of GdnHCl and heating. It was confirmed that TMBP is an extremely stable protein. In vivo, the intrinsic ligands of TMBP are trehalose and maltose, but TMBP can also bind glucose. The dissociation constant of the TMBP-glucose complex is in the range of 3-8 mM. The binding of glucose does not noticeably change the intrinsic fluorescence of the TMBP. To register protein-glucose binding, we used the fluorescence of the thiol-reactive dye BADAN attached to TMBP. Because the fluorescence of BADAN attached to the cysteine Cys182 of TMBP does not change upon glucose binding, the mutant forms ТМВР/C182S/X_Cys were created. In these mutant proteins, Cys182 is replaced by Ser, removing intrinsic binding site of BADAN and a new dye binding sites were introduced. The largest increase (by 1.4 times) in the intensity of the dye fluorescence was observed upon TMBP/C182S/A14C-BADAN-Glc complex formation. The dissociation constant of this complex is 3.4 ± 0.1 mM. We consider TMBP/C182S/A14C mutant form with attached fluorescent dye BADAN as a good basis for further research aimed to develop of series of TMBP mutant forms with different affinities to glucose labeled with fluorescent dyes.
Fang, Fang; Pan, Dong-Qi; Qiu, Min-Jie; Liu, Ting-Ting; Jiang, Min; Wang, Qi; Shi, Jie-Hua
2016-09-01
To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA-BSA complex. The number of binding sites (n) and the binding constant for MPA-BSA complex are ~1 and 4.6 × 10(3) M(-1) at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG(0) , ΔH(0) and ΔS(0) in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II'') of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α-helix structure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Study of DNA-emodin interaction by FTIR and UV-vis spectroscopy.
Saito, Samuel T; Silva, Givaldo; Pungartnik, Cristina; Brendel, Martin
2012-06-04
Emodin, a plant- and fungus-derived anthraquinone, exerts genotoxic and antioxidative effects and shows promise in antitumor and antibacterial therapies. The aim of this study was to examine the molecular interactions of emodin with DNA in aqueous solution at physiological pH using spectroscopic methods. Fourier Transform Infrared (FTIR) Spectroscopy and UV absorption spectra were used to determine the structural features, the binding mode and the association constants. Our UV-spectroscopic results indicate that emodin interacts with DNA by intercalation and by external binding. FTIR results suggest that emodin interaction occurs preferably via adenine and thymine base pairs and also weakly with the phosphate backbone of the DNA double helix. The binding constant for emodin-DNA complex formation is estimated to be K=5.59×10(3)M(-1). No significant changes of DNA conformation were observed upon emodin-DNA complexation. Copyright © 2012 Elsevier B.V. All rights reserved.
Naik, Subhashchandra; Brock, Susan; Akkaladevi, Narahari; Tally, Jon; Mcginn-Straub, Wesley; Zhang, Na; Gao, Phillip; Gogol, E. P.; Pentelute, B. L.; Collier, R. John; Fisher, Mark T.
2013-01-01
Domain 2 of the anthrax protective antigen (PA) prepore heptamer unfolds and refolds during endosome acidification to generate an extended 100 Å beta barrel pore that inserts into the endosomal membrane. The PA pore facilitates the pH dependent unfolding and translocation of bound toxin enzymic components, lethal factor (LF) and/or edema factor (EF), from the endosome into the cytoplasm. We constructed immobilized complexes of the prepore with the PA-binding domain of LF (LFN) to monitor the real-time prepore to pore kinetic transition using surface plasmon resonance (SPR) and bio-layer interferometry (BLI). The kinetics of this transition increased as the solution pH was decreased from pH 7.5 to pH 5.0, mirroring acidification of the endosome. Once transitioned, the LFN-PA pore complex was removed from the BLI biosensor tip and deposited onto EM grids, where the PA pore formation was confirmed by negative stain electron microscopy. When the soluble receptor domain (ANTRX2/CMG2) binds the immobilized PA prepore, the transition to the pore state was observed only after the pH was lowered to early or late endosomal pH conditions (5.5 to 5.0 respectively). Once the pore formed, the soluble receptor readily dissociated from the PA pore. Separate binding experiments with immobilized PA pores and soluble receptor indicate that the receptor has a weakened propensity to bind to the transitioned pore. This immobilized anthrax toxin platform can be used to identify or validate potential antimicrobial lead compounds capable of regulating and/or inhibiting anthrax toxin complex formation or pore transitions. PMID:23964683
Naik, Subhashchandra; Brock, Susan; Akkaladevi, Narahari; Tally, Jon; McGinn-Straub, Wesley; Zhang, Na; Gao, Phillip; Gogol, E P; Pentelute, B L; Collier, R John; Fisher, Mark T
2013-09-17
Domain 2 of the anthrax protective antigen (PA) prepore heptamer unfolds and refolds during endosome acidification to generate an extended 100 Å β barrel pore that inserts into the endosomal membrane. The PA pore facilitates the pH-dependent unfolding and translocation of bound toxin enzymic components, lethal factor (LF) and/or edema factor, from the endosome to the cytoplasm. We constructed immobilized complexes of the prepore with the PA-binding domain of LF (LFN) to monitor the real-time prepore to pore kinetic transition using surface plasmon resonance and biolayer interferometry (BLI). The kinetics of this transition increased as the solution pH was decreased from 7.5 to 5.0, mirroring acidification of the endosome. Once it had undergone the transition, the LFN-PA pore complex was removed from the BLI biosensor tip and deposited onto electron microscopy grids, where PA pore formation was confirmed by negative stain electron microscopy. When the soluble receptor domain (ANTRX2/CMG2) binds the immobilized PA prepore, the transition to the pore state was observed only after the pH was lowered to early (pH 5.5) or late (pH 5.0) endosomal pH conditions. Once the pore formed, the soluble receptor readily dissociated from the PA pore. Separate binding experiments with immobilized PA pores and the soluble receptor indicate that the receptor has a weakened propensity to bind to the transitioned pore. This immobilized anthrax toxin platform can be used to identify or validate potential antimicrobial lead compounds capable of regulating and/or inhibiting anthrax toxin complex formation or pore transitions.
How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation.
Wu, Wen-Jin; Su, Mei-I; Wu, Jian-Li; Kumar, Sandeep; Lim, Liang-Hin; Wang, Chun-Wei Eric; Nelissen, Frank H T; Chen, Ming-Chuan Chad; Doreleijers, Jurgen F; Wijmenga, Sybren S; Tsai, Ming-Daw
2014-04-02
A dogma for DNA polymerase catalysis is that the enzyme binds DNA first, followed by MgdNTP. This mechanism contributes to the selection of correct dNTP by Watson-Crick base pairing, but it cannot explain how low-fidelity DNA polymerases overcome Watson-Crick base pairing to catalyze non-Watson-Crick dNTP incorporation. DNA polymerase X from the deadly African swine fever virus (Pol X) is a half-sized repair polymerase that catalyzes efficient dG:dGTP incorporation in addition to correct repair. Here we report the use of solution structures of Pol X in the free, binary (Pol X:MgdGTP), and ternary (Pol X:DNA:MgdGTP with dG:dGTP non-Watson-Crick pairing) forms, along with functional analyses, to show that Pol X uses multiple unprecedented strategies to achieve the mutagenic dG:dGTP incorporation. Unlike high fidelity polymerases, Pol X can prebind purine MgdNTP tightly and undergo a specific conformational change in the absence of DNA. The prebound MgdGTP assumes an unusual syn conformation stabilized by partial ring stacking with His115. Upon binding of a gapped DNA, also with a unique mechanism involving primarily helix αE, the prebound syn-dGTP forms a Hoogsteen base pair with the template anti-dG. Interestingly, while Pol X prebinds MgdCTP weakly, the correct dG:dCTP ternary complex is readily formed in the presence of DNA. H115A mutation disrupted MgdGTP binding and dG:dGTP ternary complex formation but not dG:dCTP ternary complex formation. The results demonstrate the first solution structural view of DNA polymerase catalysis, a unique DNA binding mode, and a novel mechanism for non-Watson-Crick incorporation by a low-fidelity DNA polymerase.
Thangsunan, Patcharapong; Tateing, Suriya; Hannongbua, Supa; Suree, Nuttee
2016-07-01
Protein kinase C (PKC) isozymes are important regulatory enzymes that have been implicated in many diseases, including cancer, Alzheimer's disease, and in the eradication of HIV/AIDS. Given their potential clinical ramifications, PKC modulators, e.g. phorbol esters and bryostatin, are also of great interest in the drug development. However, structural details on the binding between PKC and its modulators, especially bryostatin - the highly potent and non-tumor promoting activator for PKCs, are still lacking. Here, we report the first comparative molecular dynamics study aimed at gaining structural insight into the mechanisms by which the PKC delta cys2 activator domain is used in its binding to phorbol ester and bryostatin-1. As anticipated in the phorbol ester binding, hydrogen bonds are formed through the backbone atoms of Thr242, Leu251, and Gly253 of PKC. However, the opposition of H-bond formation between Thr242 and Gly253 may cause the phorbol ester complex to become less stable when compared with the bryostatin binding. For the PKC delta-bryostatin complex, hydrogen bonds are formed between the Gly253 backbone carbonyl and the C30 carbomethoxy substituent of the ligand. Additionally, the indole Nε1 of the highly homologous Trp252 also forms an H-bond to the C20 ester group on bryostatin. Backbone fluctuations also suggest that this latter H-bond formation may abrogate the transient interaction between Trp252 and His269, thus dampening the fluctuations observed on the nearby Zn(2+)-coordinating residues. This new dynamic fluctuation dampening model can potentially benefit future design of new PKC modulators.
Lysines in the RNA Polymerase II C-Terminal Domain Contribute to TAF15 Fibril Recruitment.
Janke, Abigail M; Seo, Da Hee; Rahmanian, Vahid; Conicella, Alexander E; Mathews, Kaylee L; Burke, Kathleen A; Mittal, Jeetain; Fawzi, Nicolas L
2018-05-01
Many cancer-causing chromosomal translocations result in transactivating protein products encoding FET family (FUS, EWSR1, TAF15) low-complexity (LC) domains fused to a DNA binding domain from one of several transcription factors. Recent work demonstrates that higher-order assemblies of FET LC domains bind the carboxy-terminal domain of the large subunit of RNA polymerase II (RNA pol II CTD), suggesting FET oncoproteins may mediate aberrant transcriptional activation by recruiting RNA polymerase II to promoters of target genes. Here we use nuclear magnetic resonance (NMR) spectroscopy and hydrogel fluorescence microscopy localization and fluorescence recovery after photobleaching to visualize atomic details of a model of this process, interactions of RNA pol II CTD with high-molecular weight TAF15 LC assemblies. We report NMR resonance assignments of the intact degenerate repeat half of human RNA pol II CTD alone and verify its predominant intrinsic disorder by molecular simulation. By measuring NMR spin relaxation and dark-state exchange saturation transfer, we characterize the interaction of RNA pol II CTD with amyloid-like hydrogel fibrils of TAF15 and hnRNP A2 LC domains and observe that heptads far from the acidic C-terminal tail of RNA pol II CTD bind TAF15 fibrils most avidly. Mutation of CTD lysines in heptad position 7 to consensus serines reduced the overall level of TAF15 fibril binding, suggesting that electrostatic interactions contribute to complex formation. Conversely, mutations of position 7 asparagine residues and truncation of the acidic tail had little effect. Thus, weak, multivalent interactions between TAF15 fibrils and heptads throughout RNA pol II CTD collectively mediate complex formation.
Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur
2018-01-24
Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.
Srivatsan, Anjana; Bowen, Nikki; Kolodner, Richard D.
2014-01-01
DNA mismatch repair is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation, and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3, and +4 insertion/deletions and CC, AA, and possibly GG mispairs, whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair, and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent mismatch repair in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6, and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand-separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions. PMID:24550389
Srivatsan, Anjana; Bowen, Nikki; Kolodner, Richard D
2014-03-28
DNA mismatch repair is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation, and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3, and +4 insertion/deletions and CC, AA, and possibly GG mispairs, whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair, and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent mismatch repair in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6, and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand-separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions.
Infrared and density functional theory studies of isoprene-water complexes in noble gas matrices
NASA Astrophysics Data System (ADS)
Ito, Fumiyuki
2017-11-01
The interaction of 2-methyl-1,3-butadiene (isoprene) with a H2O molecule in low-temperature noble gas matrices (Ar or Kr) was investigated using infrared absorption spectroscopy. Vibrational peaks arising from 1:1 isoprene-H2O adducts were assigned and compared with the results of quantum chemical calculations. The comparison led to the conclusion that the H2O molecule in the complex preferentially H-bonds to one of the two unsaturated Cdbnd C bonds, and that the binding energy of the complex is comparable to that of the C6H6-H2O complex. The present study suggests that the change in the charge distribution of isoprene due to the formation of a complex with H2O may lead to alteration of the reactivity with respect to the insertion of OH radicals, thereby influencing the formation of aerosols in the atmosphere.
NASA Astrophysics Data System (ADS)
Rusu, Victor H.; da Silva, João Bosco P.; Ramos, Mozart N.
2009-04-01
MP2/6-31++G(d,p) and B3LYP/6-31++G(d,p) theoretical calculations have been employed to investigate the hydrogen bonding formation involving the vic-, cis- and trans-C 2H 2F 2 isomers and hydrogen fluoride. Our calculations have revealed for each isomer the preferential existence of two possible hydrogen-bonded complexes: a non-cyclic complex and a cyclic complex. For all the three isomers the binding energies for the non-cyclic and cyclic hydrogen complexes are essentially equal using both the MP2 and B3LYP calculations, being that the cyclic structure is slightly more stable. For instance, the binding energies including BSSE and ZPE corrections for the non-cyclic and cyclic structures of cis-C 2H 2F···HF are 8.7 and 9.0 kJ mol -1, respectively, using B3LYP calculations. The cyclic complex formation reduces the polarity, in contrast to what occurs with the non-cyclic complex. This result is more accentuated in vic-C 2H 2F 2···HF. In this latter, Δ μ(cyclic) is -3.07 D, whereas Δ μ(non-cyclic) is +1.92 D using B3LYP calculations. Their corresponding MP2 values are +0.44 D and -1.89 D, respectively. As expected, the complexation produces an H sbnd F stretching frequency downward shift, whereas its IR intensity is enhanced. On the other hand, the vibrational modes of the vic-, cis- and trans-C 2H 2F 2 isomers are little affected by complexation. The new vibrational modes due to hydrogen bonding formation show several interesting features, in particular the HF bending modes which are pure rotations in the free molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Amit; Gerlits, Oksana O.; Parks, Jerry M.
The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg 2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg 2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg 2+ binds first to the M1 site as a complex with ATP and is followed by Mg 2+ binding to themore » M2 site. Furthermore, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. In conclusion, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.« less
Das, Amit; Gerlits, Oksana O.; Parks, Jerry M.; ...
2015-11-12
The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg 2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg 2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg 2+ binds first to the M1 site as a complex with ATP and is followed by Mg 2+ binding to themore » M2 site. Furthermore, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. In conclusion, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.« less
Vander Meulen, Kirk A.; Saecker, Ruth M.; Record, M. Thomas
2008-01-01
To characterize driving forces and driven processes in formation of a large-interface, wrapped protein-DNA complex analogous to the nucleosome, we have investigated the thermodynamics of binding the 34 bp H′ DNA sequence to the E. coli DNA-remodeling protein Integration Host Factor (IHF). Isothermal titration calorimetry (ITC) and fluorescence resonance energy transfer (FRET) are applied to determine effects of salt concentration (KCl, KF, KGlutamate (KGlu)), and of the excluded solute glycine betaine, on the binding thermodynamics at 20°C. Both the binding constant Kobs and enthalpy ΔH°obs depend strongly on [salt] and anion identity. Formation of the wrapped complex is enthalpy-driven, especially at low [salt] (e.g. ΔH°obs = −20.2 kcal · mol−1 in 0.04 M KCl). ΔH°obs increases linearly with [salt] with a slope (dΔH°obs/d[salt]) which is much larger in KCl (38 ± 3 kcal · mol−1M−1) than in KF or KGlu (average 11 ± 2 kcal · mol−1M−1). At 0.33 M [salt], Kobs is approximately 30-fold larger in KGlu or KF than in KCl, and the [salt] derivative SKobs = dlnKobs/dln[salt] is almost twice as large in magnitude in KCl (−8.8 ± 0.7) as in KF or KGlu (average −4.7 ± 0.6). A novel analysis of the large effects of anion identity on Kobs, SKobs and on ΔH°obs dissects coulombic, Hofmeister and osmotic contributions to these quantities. This analysis attributes anion-specific differences in Kobs, SKobs and ΔH°obs to (i) displacement of a large number of waters of hydration (estimated to be 1.0 (± 0.2) × 103) from the 5340 Å2 of IHF and H′ DNA surface buried in complex formation, and (ii) significant local exclusion of F− and Glu− from this hydration water, relative to the situation with Cl−, which we propose is randomly distributed. To quantify net water release from anionic surface (22% of the surface buried in complexation, mostly from DNA phosphates), we determined the stabilizing effect of glycine betaine (GB) on Kobs: dlnKobs/d[GB] = 2.7 ± 0.4 at constant KCl activity, indicating the net release of 150 H2O from anionic surface. PMID:18237740
Emerging role of ILK and ELMO2 in the integration of adhesion and migration pathways
Ho, Ernest; Dagnino, Lina
2012-01-01
Integrins and their associated proteins are essential components of the cellular machinery that modulates adhesion and migration. In particular, integrin-linked kinase (ILK), which binds to the cytoplasmic tail of β1 integrins, is required for migration in a variety of cell types. We previously identified engulfment and motility 2 (ELMO2) as an ILK-binding protein in epidermal keratinocytes. Recently, we investigated the biological role of the ILK/ELMO2 complexes, and found that they exist in the cytoplasm. ILK/ELMO2 species are recruited by active RhoG to the plasma membrane, where they induce Rac1 activation and formation of lamellipodia at the leading edge of migrating cells. A large number of growth factors and cytokines induce keratinocyte migration. However, we found that formation of RhoG/ELMO2/ILK complexes occurs selectively upon stimulation by epidermal growth factor, but not by transforming growth factor-β1 or keratinocyte growth factor. Herein we discuss the relevance of these complexes to our understanding of the molecular mechanisms involved in cell migration, as well as their potential functions in morphogenesis and tissue regeneration following injury. PMID:22568984
Emerging role of ILK and ELMO2 in the integration of adhesion and migration pathways.
Ho, Ernest; Dagnino, Lina
2012-01-01
Integrins and their associated proteins are essential components of the cellular machinery that modulates adhesion and migration. In particular, integrin-linked kinase (ILK), which binds to the cytoplasmic tail of β1 integrins, is required for migration in a variety of cell types. We previously identified engulfment and motility 2 (ELMO2) as an ILK-binding protein in epidermal keratinocytes. Recently, we investigated the biological role of the ILK/ELMO2 complexes, and found that they exist in the cytoplasm. ILK/ELMO2 species are recruited by active RhoG to the plasma membrane, where they induce Rac1 activation and formation of lamellipodia at the leading edge of migrating cells. A large number of growth factors and cytokines induce keratinocyte migration. However, we found that formation of RhoG/ELMO2/ILK complexes occurs selectively upon stimulation by epidermal growth factor, but not by transforming growth factor-β1 or keratinocyte growth factor. Herein we discuss the relevance of these complexes to our understanding of the molecular mechanisms involved in cell migration, as well as their potential functions in morphogenesis and tissue regeneration following injury.
Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx.
Romano, Christine A; Zhou, Mowei; Song, Yang; Wysocki, Vicki H; Dohnalkova, Alice C; Kovarik, Libor; Paša-Tolić, Ljiljana; Tebo, Bradley M
2017-09-29
Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase in Bacillus sp. PL-12, Mnx, is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins, MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. Here, we show that native mass spectrometry defines the subunit topology and copper binding of Mnx, while high-resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for understanding Mn biomineralization by such unexplored enzymes.Significant challenges exist for structural characterization of enzymes responsible for biomineralization. Here the authors show that native mass spectrometry and high resolution electron microscopy can define the subunit topology and copper binding of a manganese oxidizing complex, and describe early stage formation of its mineral products.
Mondal, Soma; Jana, Jagannath; Sengupta, Pallabi; Jana, Samarjit; Chatterjee, Subhrangsu
2016-07-19
The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics. We have studied the interaction of myricetin, a plant flavonoid and a putative anticancer agent, with human telomeric G-quadruplex TTAGGG(TTAGGG)3 DNA. Reverse transcription PCR data revealed significant repression in hTERT expression in MCF-7 breast cancer cells upon increasing the concentration of myricetin. Further, we conducted a telomeric repeat amplification protocol assay to confirm the inhibition of telomerase by myricetin. Optical spectroscopic techniques like circular dichroism, UV spectroscopy and fluorescence spectroscopy revealed the formation of a stable myricetin-G-quadruplex complex. The thermodynamic parameters of myricetin-G-quadruplex complex formation, presented through isothermal titration calorimetry studies, indicate the binding process to be thermodynamically favorable. In addition, high resolution NMR spectroscopy in conjunction with molecular dynamics simulation is employed to provide detailed mechanistic insights into the binding in the myricetin-G-quadruplex complex at the atomic level. Our results thus propose a new mode of action of myricetin as an anticancer agent via arresting telomeric G-quadruplex structure.
Cairo, Lucas V; Wozniak, Richard W
2016-03-15
The karyopherin (Kap) family of nuclear transport factors facilitates macromolecular transport through nuclear pore complexes (NPCs). The binding of Kaps to their cargos can also regulate, both temporally and spatially, the interactions of the cargo protein with interacting partners. Here, we show that the essential yeast Kap, Kap121, binds Dam1 and Duo1, components of the microtubule (MT)-associated Dam1 complex required for linking dynamic MT ends with kinetochores (KTs). Like mutations in the Dam1 complex, loss of Kap121 function compromises the formation of normal KT-MT attachments during mitosis. We show that the stability of the Dam1 complex in vivo is dependent on its association with Kap121. Furthermore, we show that the Kap121/Duo1 complex is maintained in the presence of RanGTP but Kap121 is released by the cooperative actions of RanGTP and tubulin. We propose that Kap121 stabilizes the Dam1 complex and participates in escorting it to spindle MTs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors.
Mould, A Paul; Craig, Susan E; Byron, Sarah K; Humphries, Martin J; Jowitt, Thomas A
2014-12-15
Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.
Piezoelectric affinity sensors for cocaine and cholinesterase inhibitors.
Halámek, Jan; Makower, Alexander; Knösche, Kristina; Skládal, Petr; Scheller, Frieder W
2005-01-30
We report here the development of piezoelectric affinity sensors for cocaine and cholinesterase inhibitors based on the formation of affinity complexes between an immobilized cocaine derivative and an anti-cocaine antibody or cholinesterase. For both binding reactions benzoylecgonine-1,8-diamino-3,4-dioxaoctane (BZE-DADOO) was immobilized on the surface of the sensor. For immobilization, pre-conjugated BZE-DADOO with 11-mercaptomonoundecanoic acid (MUA) via 2-(5-norbornen-2,3-dicarboximide)-1,1,3,3-tetramethyluronium-tetrafluoroborate (TNTU) allowed the formation of a chemisorbed monolayer on the piezosensor surface. The detection of cocaine was based on a competitive assay. The change of frequency measured after 300s of the binding reaction was used as the signal. The maximum binding of the antibody resulted in a frequency decrease of 35Hz (with an imprecision 3%, n = 3) while the presence of 100pmoll(-1) cocaine decreased the binding by 11%. The limit of detection was consequently below 100pmoll(-1) for cocaine. The total time of one analysis was 15min. This BZE-DADOO-modified sensor was adapted for the detection of organophosphates. BZE-DADOO - a competitive inhibitor - served as binding element for cholinesterase in a competitive assay.
Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions
NASA Technical Reports Server (NTRS)
Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.
1998-01-01
The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaki, Hana; Katoh, Tsuyoshi; Nakagawa, Ryoko
2016-09-02
Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr phosphatase that belongs to the PPM family. Growing evidence suggests that PPM phosphatases including CaMKP act as a complex with other proteins to regulate cellular functions. In this study, using the two-dimensional far-western blotting technique with digoxigenin-labeled CaMKP as a probe, in conjunction with peptide mass fingerprinting analysis, we identified neurofilament L (NFL) as a CaMKP-binding protein in a Triton-insoluble fraction of rat brain. We confirmed binding of fluorescein-labeled CaMKP (F-CaMKP) to NFL in solution by fluorescence polarization. The analysis showed that the dissociation constant of F-CaMKP for NFL is 73 ± 17 nMmore » (n = 3). Co-immunoprecipitation assay using a cytosolic fraction of NGF-differentiated PC12 cells showed that endogenous CaMKP and NFL form a complex in cells. Furthermore, the effect of CaMKP on self-assembly of NFL was examined. Electron microscopy revealed that CaMKP markedly prevented NFL from forming large filamentous aggregates, suggesting that CaMKP-binding to NFL inhibits its filament association. These findings may provide new insights into a novel mechanism for regulating network formation of neurofilaments during neuronal differentiation. - Highlights: • NFL was identified as a CaMKP-binding protein in an insoluble fraction of rat brain. • CaMKP bound to NFL in solution with a K{sub d} value of 73 ± 17 nM. • A CaMKP-NFL complex was found in NGF-differentiated PC12 cells. • CaMKP-binding to NFL inhibited its filament association. • CaMKP may regulate network formation of neurofilaments in neurons.« less
Coenzyme Q10 as a potent compound that inhibits Cdt1-geminin interaction.
Mizushina, Yoshiyuki; Takeuchi, Toshifumi; Takakusagi, Yoichi; Yonezawa, Yuko; Mizuno, Takeshi; Yanagi, Ken-Ichiro; Imamoto, Naoko; Sugawara, Fumio; Sakaguchi, Kengo; Yoshida, Hiromi; Fujita, Masatoshi
2008-02-01
A human replication initiation protein Cdt1 is a very central player in the cell cycle regulation of DNA replication, and geminin down-regulates Cdt1 function by directly binding to it. It has been demonstrated that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance, for example by geminin silencing with siRNA, induces DNA re-replication and eventual cell death in some cancer-derived cell lines. In the present study, we first established a high throughput screening system based on modified ELISA (enzyme linked immunosorbent assay) to identify compounds that interfere with human Cdt1-geminin binding. Using this system, we found that coenzyme Q(10) (CoQ(10)) can inhibit Cdt1-geminin interaction in vitro. CoQ compound is an isoprenoid quinine that functions as an electron carrier in the mitochondrial respiratory chain in eukaryotes. CoQ(10), having a longer isoprenoid chain, was the strongest inhibitor of Cdt1-geminin binding in the tested CoQs, with 50% inhibition observed at concentrations of 16.2 muM. Surface plasmon resonance analysis demonstrated that CoQ(10) bound selectively to Cdt1, but did not interact with geminin. Moreover, CoQ(10) had no influence on the interaction between Cdt1 and mini-chromosome maintenance (MCM)4/6/7 complexes. These results suggested that CoQ(10) inhibits Cdt1-geminin complex formation by binding to Cdt1 and thereby could liberate Cdt1 from inhibition by geminin. Using three-dimensional computer modeling analysis, CoQ(10) was considered to interact with the geminin interaction interface on Cdt1, and was assumed to make hydrogen bonds with the residue of Arg243 of Cdt1. CoQ(10) could prevent the growth of human cancer cells, although only at high concentrations, and it remains unclear whether such an inhibitory effect is associated with the interference with Cdt1-geminin binding. The application of inhibitors for the formation of Cdt1-geminin complex is discussed.
Barata, Teresa S.; Teo, Ian; Brocchini, Steve; Zloh, Mire; Shaunak, Sunil
2011-01-01
The crystal structure of the TLR4-MD-2-LPS complex responsible for triggering powerful pro-inflammatory cytokine responses has recently become available. Central to cell surface complex formation is binding of lipopolysaccharide (LPS) to soluble MD-2. We have previously shown, in biologically based experiments, that a generation 3.5 PAMAM dendrimer with 64 peripheral carboxylic acid groups acts as an antagonist of pro-inflammatory cytokine production after surface modification with 8 glucosamine molecules. We have also shown using molecular modelling approaches that this partially glycosylated dendrimer has the flexibility, cluster density, surface electrostatic charge, and hydrophilicity to make it a therapeutically useful antagonist of complex formation. These studies enabled the computational study of the interactions of the unmodified dendrimer, glucosamine, and of the partially glycosylated dendrimer with TLR4 and MD-2 using molecular docking and molecular dynamics techniques. They demonstrate that dendrimer glucosamine forms co-operative electrostatic interactions with residues lining the entrance to MD-2's hydrophobic pocket. Crucially, dendrimer glucosamine interferes with the electrostatic binding of: (i) the 4′phosphate on the di-glucosamine of LPS to Ser118 on MD-2; (ii) LPS to Lys91 on MD-2; (iii) the subsequent binding of TLR4 to Tyr102 on MD-2. This is followed by additional co-operative interactions between several of the dendrimer glucosamine's carboxylic acid branches and MD-2. Collectively, these interactions block the entry of the lipid chains of LPS into MD-2's hydrophobic pocket, and also prevent TLR4-MD-2-LPS complex formation. Our studies have therefore defined the first nonlipid-based synthetic MD-2 antagonist using both animal model-based studies of pro-inflammatory cytokine responses and molecular modelling studies of a whole dendrimer with its target protein. Using this approach, it should now be possible to computationally design additional macromolecular dendrimer based antagonists for other Toll Like Receptors. They could be useful for treating a spectrum of infectious, inflammatory and malignant diseases. PMID:21738462
Sarker, Rafiquel; Cha, Boyoung; Kovbasnjuk, Olga; Cole, Robert; Gabelli, Sandra; Tse, Chung Ming; Donowitz, Mark
2017-01-01
Casein kinase 2 (CK2) binds to the NHE3 C-terminus and constitutively phosphorylates a downstream site (S719) that accounts for 40% of basal NHE3 activity. The role of CK2 in regulation of NHE3 activity in polarized Caco-2/bbe cells was further examined by mutation of NHE3-S719 to A (not phosphorylated) or D (phosphomimetic). NHE3-S719A but not -S719D had multiple changes in NHE3 activity: 1) reduced basal NHE3 activity—specifically, inhibition of the PI3K/AKT-dependent component; 2) reduced acute stimulation of NHE3 activity by LPA/LPA5R stimulation; and 3) reduced acute inhibition of NHE3 activity—specifically, elevated Ca2+ related (carbachol/Ca2+ ionophore), but there was normal inhibition by forskolin and hyperosmolarity. The S719A mutant had reduced NHE3 complex size, reduced expression in lipid rafts, increased BB mobile fraction, and reduced binding to multiple proteins that bind throughout the NHE3 intracellular C-terminus, including calcineurin homologous protein, the NHERF family and SNX27 (related PDZ domains). These studies show that phosphorylation of the NHE3 at a single amino acid in the distal part of the C-terminus affects multiple aspects of NHE3 complex formation and changes the NHE3 lipid raft distribution, which cause changes in specific aspects of basal as well as acutely stimulated and inhibited Na+/H+ exchange activity. PMID:28495796
Functions and ATP-binding responses of the twelve histidine residues in the TF1-ATPase beta subunit.
Tozawa, K; Yagi, H; Hisamatsu, K; Ozawa, K; Yoshida, M; Akutsu, H
2001-10-01
The C2 proton signals of all (twelve) histidine residues of the TF1 beta subunit in the 1H-NMR spectrum have been identified and assigned by means of pH change experiments and site-directed substitution of histidines by glutamines. pH and ligand titration experiments were carried out for these signals. Furthermore, the ATPase activity of the reconstituted alpha3beta3gamma complex was examined for the twelve mutant beta subunits. Two of three conserved histidines, namely, His-119 and 324, were found to be important for expression of the ATPase activity. The former fixes the N-terminal domain to the central domain. His-324 is involved in the formation of the interface essential for the alpha3beta3gamma complex assembly. The other conserved residue, His-363, showed a very low pK(a), suggesting that it is involved in the tertiary structure formation. On the binding of a nucleotide, only the signals of His-173, 179, 200, and 324 shifted. These histidines are located in the hinge region, and its proximity, of the beta subunit. This observation provided further support for the conformational change of the beta monomer from the open to the closed form on the binding of a nucleotide proposed by us [Yagi et al. (1999) Biophys. J. 77, 2175-2183]. This conformational change should be one of the essential driving forces in the rotation of the alpha3beta3gamma complex.
Probing the role of intercalating protein sidechains for kink formation in DNA
Sandmann, Achim
2018-01-01
Protein binding can induce DNA kinks, which are for example important to enhance the specificity of the interaction and to facilitate the assembly of multi protein complexes. The respective proteins frequently exhibit amino acid sidechains that intercalate between the DNA base steps at the site of the kink. However, on a molecular level there is only little information available about the role of individual sidechains for kink formation. To unravel structural principles of protein-induced DNA kinking we have performed molecular dynamics (MD) simulations of five complexes that varied in their architecture, function, and identity of intercalated residues. Simulations were performed for the DNA complexes of wildtype proteins (Sac7d, Sox-4, CcpA, TFAM, TBP) and for mutants, in which the intercalating residues were individually or combined replaced by alanine. The work revealed that for systems with multiple intercalated residues, not all of them are necessarily required for kink formation. In some complexes (Sox-4, TBP), one of the residues proved to be essential for kink formation, whereas the second residue has only a very small effect on the magnitude of the kink. In other systems (e.g. Sac7d) each of the intercalated residues proved to be individually capable of conferring a strong kink suggesting a partially redundant role of the intercalating residues. Mutation of the key residues responsible for kinking either resulted in stable complexes with reduced kink angles or caused conformational instability as evidenced by a shift of the kink to an adjacent base step. Thus, MD simulations can help to identify the role of individual inserted residues for kinking, which is not readily apparent from an inspection of the static structures. This information might be helpful for understanding protein-DNA interactions in more detail and for designing proteins with altered DNA binding properties in the future. PMID:29432448
Probing the role of intercalating protein sidechains for kink formation in DNA.
Sandmann, Achim; Sticht, Heinrich
2018-01-01
Protein binding can induce DNA kinks, which are for example important to enhance the specificity of the interaction and to facilitate the assembly of multi protein complexes. The respective proteins frequently exhibit amino acid sidechains that intercalate between the DNA base steps at the site of the kink. However, on a molecular level there is only little information available about the role of individual sidechains for kink formation. To unravel structural principles of protein-induced DNA kinking we have performed molecular dynamics (MD) simulations of five complexes that varied in their architecture, function, and identity of intercalated residues. Simulations were performed for the DNA complexes of wildtype proteins (Sac7d, Sox-4, CcpA, TFAM, TBP) and for mutants, in which the intercalating residues were individually or combined replaced by alanine. The work revealed that for systems with multiple intercalated residues, not all of them are necessarily required for kink formation. In some complexes (Sox-4, TBP), one of the residues proved to be essential for kink formation, whereas the second residue has only a very small effect on the magnitude of the kink. In other systems (e.g. Sac7d) each of the intercalated residues proved to be individually capable of conferring a strong kink suggesting a partially redundant role of the intercalating residues. Mutation of the key residues responsible for kinking either resulted in stable complexes with reduced kink angles or caused conformational instability as evidenced by a shift of the kink to an adjacent base step. Thus, MD simulations can help to identify the role of individual inserted residues for kinking, which is not readily apparent from an inspection of the static structures. This information might be helpful for understanding protein-DNA interactions in more detail and for designing proteins with altered DNA binding properties in the future.
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371
Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori
2013-01-01
The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1+, two temperature-sensitive mcb1 gene mutants (mcb1ts) were isolated. Extensive genetic analysis showed that the mcb1ts mutants were suppressed by a mcm5+ multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1ts mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1ts mutants. Furthermore, the mcb1ts mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex. PMID:23322785
Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori
2013-03-08
The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1(+), two temperature-sensitive mcb1 gene mutants (mcb1(ts)) were isolated. Extensive genetic analysis showed that the mcb1(ts) mutants were suppressed by a mcm5(+) multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1(ts) mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1(ts) mutants. Furthermore, the mcb1(ts) mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.
Physicochemical characterization of native and modified sodium caseinate- Vitamin A complexes.
Gupta, Chitra; Arora, Sumit; Syama, M A; Sharma, Apurva
2018-04-01
Native and modified sodium caseinate- Vitamin A complexes {Sodium caseinate- Vit A complex by stirring (NaCas-VA ST), succinylated sodium caseinate- Vit A complex by stirring (SNaCas-VA ST), reassembled sodium caseinate- Vit A complex (RNaCas-VA) and reassembled succinylated sodium caseinate- Vit A complex (RSNaCas-VA)} were prepared and characterized for their physicochemical characteristics e.g. particle size, zeta potential, turbidity analysis and tryptophan intensities which confirmed structural modification of both native (NaCas-VA ST) and modified (SNaCas-VA ST, RNaCas-VA and RSNaCas- VA) proteins upon complex formation with vitamin A. Binding of vitamin A to milk protein reduced the turbidity caused by vitamin A, however, the particle size and zeta potential of milk protein increased after complexation. Microstructure details of NaCas (spray dried) showed uniform spherical structure, however, other milk proteins and milk protein- Vit A complexes (freeze dried) showed broken glass and flaky structures. Tiny particles were observed on the surface of reassembled protein and reassembled protein- Vit A complexes. Binding of vitamin A to milk protein did not have an influence on the electrophoretic mobility and elution profile (RP-HPLC). Copyright © 2018 Elsevier Ltd. All rights reserved.
The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex.
Sekino, Saki; Kashiwagi, Yuriko; Kanazawa, Hitoshi; Takada, Kazuki; Baba, Takashi; Sato, Seiichi; Inoue, Hiroki; Kojima, Masaki; Tani, Katsuko
2015-10-01
Abl interactor (Abi) family proteins play significant roles in actin cytoskeleton organization through participation in the WAVE complex. Mammals possess three Abi proteins: Abi-1, Abi-2, and NESH/Abi-3. Abi-1 and Abi-2 were originally identified as Abl tyrosine kinase-binding proteins. It has been disclosed that Abi-1 acts as a bridge between c-Abl and WAVE2, and c-Abl-mediated WAVE2 phosphorylation promotes actin remodeling. We showed previously that NESH/Abi-3 is present in the WAVE2 complex, but neither binds to c-Abl nor promotes c-Abl-mediated phosphorylation of WAVE2. In this study, we characterized NESH/Abi-3 in more detail, and compared its properties with those of Abi-1 and Abi-2. NESH/Abi-3 was ectopically expressed in NIH3T3 cells, in which Abi-1, but not NESH/Abi-3, is expressed. The expression of NESH/Abi-3 caused degradation of endogenous Abi-1, which led to the formation of a NESH/Abi-3-based WAVE2 complex. When these cells were plated on fibronectin-coated dishes, the translocation of WAVE2 to the plasma membrane was significantly reduced and the formation of peripheral lamellipodial structures was disturbed, suggesting that the NESH/Abi-3-based WAVE2 complex was unable to help produce lamellipodial protrusions. Next, Abi-1, Abi-2, or NESH/Abi-3 was expressed in v-src-transformed NIH3T3 cells. Only in NESH/Abi-3-expressed cells did treatment with an Abl kinase inhibitor, imatinib mesylate, or siRNA-mediated knockdown of c-Abl promote the formation of invadopodia, which are ventral membrane protrusions with extracellular matrix degradation activity. Structural studies showed that a linker region between the proline-rich regions and the Src homology 3 (SH3) domain of Abi-1 is crucial for its interaction with c-Abl and c-Abl-mediated phosphorylation of WAVE2. The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based one, and NESH/Abi-3 may be involved in the formation of ventral protrusions under certain conditions.
Guo, Y; Bozic, D; Malashkevich, V N; Kammerer, R A; Schulthess, T; Engel, J
1998-01-01
The potential storage and delivery function of cartilage oligomeric matrix protein (COMP) for cell signaling molecules was explored by binding hydrophobic compounds to the recombinant five-stranded coiled-coil domain of COMP. Complex formation with benzene, cyclohexane, vitamin D3 and elaidic acid was demonstrated through increases in denaturation temperatures of 2-10 degreesC. For all-trans retinol and all-trans retinoic acid, an equilibrium dissociation constant KD = 0.6 microM was evaluated by fluorescence titration. Binding of benzene and all-trans retinol into the hydrophobic axial pore of the COMP coiled-coil domain was proven by the X-ray crystal structures of the corresponding complexes at 0.25 and 0.27 nm resolution, respectively. Benzene binds with its plane perpendicular to the pore axis. The binding site is between the two internal rings formed by Leu37 and Thr40 pointing into the pore of the COMP coiled-coil domain. The retinol beta-ionone ring is positioned in a hydrophobic environment near Thr40, and the 1.1 nm long isoprene tail follows a completely hydrophobic region of the pore. Its terminal hydroxyl group complexes with a ring of the five side chains of Gln54. A mutant in which Gln54 is replaced by Ile binds all-trans retinol with affinity similar to the wild-type, demonstrating that hydrophobic interactions are predominant. PMID:9736606
The hydroxyl-functionalized magnetic particles for purification of glycan-binding proteins.
Sun, Xiuxuan; Yang, Ganglong; Sun, Shisheng; Quan, Rui; Dai, Weiwei; Li, Bin; Chen, Chao; Li, Zheng
2009-12-01
Glycan-protein interactions play important biological roles in biological processes. Although there are some methods such as glycan arrays that may elucidate recognition events between carbohydrates and protein as well as screen the important glycan-binding proteins, there is a lack of simple effectively separate method to purify them from complex samples. In proteomics studies, fractionation of samples can help to reduce their complexity and to enrich specific classes of proteins for subsequent downstream analyses. Herein, a rapid simple method for purification of glycan-binding proteins from proteomic samples was developed using hydroxyl-coated magnetic particles coupled with underivatized carbohydrate. Firstly, the epoxy-coated magnetic particles were further hydroxyl functionalized with 4-hydroxybenzhydrazide, then the carbohydrates were efficiently immobilized on hydroxyl functionalized surface of magnetic particles by formation of glycosidic bond with the hemiacetal group at the reducing end of the suitable carbohydrates via condensation. All conditions of this method were optimized. The magnetic particle-carbohydrate conjugates were used to purify the glycan-binding proteins from human serum. The fractionated glycan-binding protein population was displayed by SDS-PAGE. The result showed that the amount of 1 mg magnetic particles coupled with mannose in acetate buffer (pH 5.4) was 10 micromol. The fractionated glycan-binding protein population in human serum could be eluted from the magnetic particle-mannose conjugates by 0.1% SDS. The methodology could work together with the glycan microarrays for screening and purification of the important GBPs from complex protein samples.
NASA Technical Reports Server (NTRS)
Henry, R. L.; Green, P. D.; Wong, P. P.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)
1990-01-01
Development of a legume root nodule is a complex process culminating in a plant/bacterial symbiosis possessing the capacity for biological dinitrogen fixation. Formation of root nodules is initiated by the binding and stabilization of rhizobia to plant root hairs, mediated in part by a receptor/ligand recognition system composed of lectins on the plant root surface and lectin-binding sites on the rhizobial cell surface. The dinitrogen fixation activity of these root nodules may be an important feature of enclosed, space-based life support systems, and may provide an ecological method to recycle nitrogen for amino acid production. However, the effects on nodule development of varied gravitational fields, or of root nutrient delivery hardware, remain unknown. We have investigated the effects of microgravity on root nodule formation, with preliminary experiments focused upon the receptor/ligand component. Microgravity, obtained during parabolic flight aboard NASA 930, has no apparent effect on the binding of purified lectin to rhizobia, a result that will facilitate forthcoming experiments using intact root tissues.
Patel, Meera J; Bhatia, Lavesh; Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B
2017-09-01
DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~15Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication. Copyright © 2017 Elsevier B.V. All rights reserved.
Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides.
Wu, J W; Cocina, A E; Chai, J; Hay, B A; Shi, Y
2001-07-01
The inhibitor of apoptosis protein DIAP1 suppresses apoptosis in Drosophila, with the second BIR domain (BIR2) playing an important role. Three proteins, Hid, Grim, and Reaper, promote apoptosis, in part by binding to DIAP1 through their conserved N-terminal sequences. The crystal structures of DIAP1-BIR2 by itself and in complex with the N-terminal peptides from Hid and Grim reveal that these peptides bind a surface groove on DIAP1, with the first four amino acids mimicking the binding of the Smac tetrapeptide to XIAP. The next 3 residues also contribute to binding through hydrophobic interactions. Interestingly, peptide binding induces the formation of an additional alpha helix in DIAP1. Our study reveals the structural conservation and diversity necessary for the binding of IAPs by the Drosophila Hid/Grim/Reaper and the mammalian Smac proteins.
Water-Soluble Chlorophyll Protein (WSCP) Stably Binds Two or Four Chlorophylls.
Palm, Daniel M; Agostini, Alessandro; Tenzer, Stefan; Gloeckle, Barbara M; Werwie, Mara; Carbonera, Donatella; Paulsen, Harald
2017-03-28
Water-soluble chlorophyll proteins (WSCPs) of class IIa from Brassicaceae form tetrameric complexes containing one chlorophyll (Chl) per apoprotein but no carotenoids. The complexes are remarkably stable toward dissociation and protein denaturation even at 100 °C and extreme pH values, and the Chls are partially protected against photooxidation. There are several hypotheses that explain the biological role of WSCPs, one of them proposing that they function as a scavenger of Chls set free upon plant senescence or pathogen attack. The biochemical properties of WSCP described in this paper are consistent with the protein acting as an efficient and flexible Chl scavenger. At limiting Chl concentrations, the recombinant WSCP apoprotein binds substoichiometric amounts of Chl (two Chls per tetramer) to form complexes that are as stable toward thermal dissociation, denaturation, and photodamage as the fully pigmented ones. If more Chl is added, these two-Chl complexes can bind another two Chls to reach the fully pigmented state. The protection of WSCP Chls against photodamage has been attributed to the apoprotein serving as a diffusion barrier for oxygen, preventing its access to triplet excited Chls and, thus, the formation of singlet oxygen. By contrast, the sequential binding of Chls by WSCP suggests a partially open or at least flexible structure, raising the question of how WSCP photoprotects its Chls without the help of carotenoids.
Solution structure of the core SMN–Gemin2 complex
Sarachan, Kathryn L.; Valentine, Kathleen G.; Gupta, Kushol; Moorman, Veronica R.; Gledhill, John M.; Bernens, Matthew; Tommos, Cecilia; Wand, A. Joshua; Van Duyne, Gregory D.
2012-01-01
In humans, assembly of spliceosomal snRNPs (small nuclear ribonucleoproteins) begins in the cytoplasm where the multi-protein SMN (survival of motor neuron) complex mediates the formation of a seven-membered ring of Sm proteins on to a conserved site of the snRNA (small nuclear RNA). The SMN complex contains the SMN protein Gemin2 and several additional Gemins that participate in snRNP biosynthesis. SMN was first identified as the product of a gene found to be deleted or mutated in patients with the neurodegenerative disease SMA (spinal muscular atrophy), the leading genetic cause of infant mortality. In the present study, we report the solution structure of Gemin2 bound to the Gemin2-binding domain of SMN determined by NMR spectroscopy. This complex reveals the structure of Gemin2, how Gemin2 binds to SMN and the roles of conserved SMN residues near the binding interface. Surprisingly, several conserved SMN residues, including the sites of two SMA patient mutations, are not required for binding to Gemin2. Instead, they form a conserved SMN/Gemin2 surface that may be functionally important for snRNP assembly. The SMN–Gemin2 structure explains how Gemin2 is stabilized by SMN and establishes a framework for structure–function studies to investigate snRNP biogenesis as well as biological processes involving Gemin2 that do not involve snRNP assembly. PMID:22607171
NASA Astrophysics Data System (ADS)
Barbosa, Silvia; Taboada, Pablo; Mosquera, Victor
2005-04-01
The complexation process of the amphiphilic penicillins sodium cloxacillin and sodium dicloxacillin with the protein human serum albumin (HSA) in aqueous buffered solutions of pH 4.5 and 7.4 at 25 °C was investigated through isothermal titration calorimetry (ITC) and dynamic light scattering. ITC experiments were carried out in the very dilute regime and showed that although hydrophobic interactions are the leading forces for complexation, electrostatic interactions also play an important role. The possibility of the formation of hydrogen bonds is also deduced from experimental data. The thermodynamic quantities of the binding mechanism, i.e, the enthalpy, ΔHITCi, entropy, ΔSITCi, Gibbs energy, ΔGITCi, binding constant, KITCi and the number of binding sites, ni, were obtained. The binding was saturable and is characterised by Langmuir adsorption isotherms. From ITC data and following a theoretical model, the number of bound and free penicillin molecules was calculated. From Scatchard plots, KITCi and ni were obtained and compared with those from ITC data. The interaction potential between the HSA-penicillin complexes and their stability were determined at pH 7.4 from the dependence of the diffusion coefficients on protein concentration by application of the DLVO colloidal stability theory. The results indicate decreasing stability of the colloidal dispersion of the drug-protein complexes with increase in the concentration of added drug.
Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C
2009-12-01
The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure whilemore » gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.« less
Vatovec, Sabina; Kovanda, Anja; Rogelj, Boris
2014-10-01
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are devastating neurodegenerative diseases that form two ends of a complex disease spectrum. Aggregation of RNA binding proteins is one of the hallmark pathologic features of ALS and FTDL and suggests perturbance of the RNA metabolism in their etiology. Recent identification of the disease-associated expansions of the intronic hexanucleotide repeat GGGGCC in the C9ORF72 gene further substantiates the case for RNA involvement. The expanded repeat, which has turned out to be the single most common genetic cause of ALS and FTLD, may enable the formation of complex DNA and RNA structures, changes in RNA transcription, and processing and formation of toxic RNA foci, which may sequester and inactivate RNA binding proteins. Additionally, the transcribed expanded repeat can undergo repeat-associated non-ATG-initiated translation resulting in accumulation of a series of dipeptide repeat proteins. Understanding the basis of the proposed mechanisms and shared pathways, as well as interactions with known key proteins such as TAR DNA-binding protein (TDP-43) are needed to clarify the pathology of ALS and/or FTLD, and make possible steps toward therapy development. Copyright © 2014 Elsevier Inc. All rights reserved.
Kinetic mechanism of the dimeric ATP sulfurylase from plants
Ravilious, Geoffrey E.; Herrmann, Jonathan; Goo Lee, Soon; Westfall, Corey S.; Jez, Joseph M.
2013-01-01
In plants, sulfur must be obtained from the environment and assimilated into usable forms for metabolism. ATP sulfurylase catalyses the thermodynamically unfavourable formation of a mixed phosphosulfate anhydride in APS (adenosine 5′-phosphosulfate) from ATP and sulfate as the first committed step of sulfur assimilation in plants. In contrast to the multi-functional, allosterically regulated ATP sulfurylases from bacteria, fungi and mammals, the plant enzyme functions as a mono-functional, non-allosteric homodimer. Owing to these differences, here we examine the kinetic mechanism of soybean ATP sulfurylase [GmATPS1 (Glycine max (soybean) ATP sulfurylase isoform 1)]. For the forward reaction (APS synthesis), initial velocity methods indicate a single-displacement mechanism. Dead-end inhibition studies with chlorate showed competitive inhibition versus sulfate and non-competitive inhibition versus APS. Initial velocity studies of the reverse reaction (ATP synthesis) demonstrate a sequential mechanism with global fitting analysis suggesting an ordered binding of substrates. ITC (isothermal titration calorimetry) showed tight binding of APS to GmATPS1. In contrast, binding of PPi (pyrophosphate) to GmATPS1 was not detected, although titration of the E•APS complex with PPi in the absence of magnesium displayed ternary complex formation. These results suggest a kinetic mechanism in which ATP and APS are the first substrates bound in the forward and reverse reactions, respectively. PMID:23789618
Weissbach, Julia; Schikora, Franziska; Weber, Anja; Kessels, Michael
2016-01-01
The myocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF)-mediated gene expression. Activation of MRTF-A occurs in response to alterations in actin dynamics and critically requires the dissociation of repressive G-actin–MRTF-A complexes. However, the mechanism leading to the release of MRTF-A remains unclear. Here we show that WH2 domains compete directly with MRTF-A for actin binding. Actin nucleation-promoting factors, such as N-WASP and WAVE2, as well as isolated WH2 domains, including those of Spire2 and Cobl, activate MRTF-A independently of changes in actin dynamics. Simultaneous inhibition of Arp2-Arp3 or mutation of the CA region only partially reduces MRTF-A activation by N-WASP and WAVE2. Recombinant WH2 domains and the RPEL domain of MRTF-A bind mutually exclusively to cellular and purified G-actin in vitro. The competition by different WH2 domains correlates with MRTF-SRF activation. Following serum stimulation, nonpolymerizable actin dissociates from MRTF-A, and de novo formation of the G-actin–RPEL complex is impaired by a transferable factor. Our work demonstrates that WH2 domains activate MRTF-A and contribute to target gene regulation by a competitive mechanism, independently of their role in actin filament formation. PMID:26976641
Nolz, Jeffrey C.; Medeiros, Ricardo B.; Mitchell, Jason S.; Zhu, Peimin; Freedman, Bruce D.; Shimizu, Yoji; Billadeau, Daniel D.
2007-01-01
T-cell-receptor (TCR)-mediated integrin activation is required for T-cell-antigen-presenting cell conjugation and adhesion to extracellular matrix components. While it has been demonstrated that the actin cytoskeleton and its regulators play an essential role in this process, no mechanism has been established which directly links TCR-induced actin polymerization to the activation of integrins. Here, we demonstrate that TCR stimulation results in WAVE2-ARP2/3-dependent F-actin nucleation and the formation of a complex containing WAVE2, ARP2/3, vinculin, and talin. The verprolin-connecting-acidic (VCA) domain of WAVE2 mediates the formation of the ARP2/3-vinculin-talin signaling complex and talin recruitment to the immunological synapse (IS). Interestingly, although vinculin is not required for F-actin or integrin accumulation at the IS, it is required for the recruitment of talin. In addition, RNA interference of either WAVE2 or vinculin inhibits activation-dependent induction of high-affinity integrin binding to VCAM-1. Overall, these findings demonstrate a mechanism in which signals from the TCR produce WAVE2-ARP2/3-mediated de novo actin polymerization, leading to integrin clustering and high-affinity binding through the recruitment of vinculin and talin. PMID:17591693
Nolz, Jeffrey C; Medeiros, Ricardo B; Mitchell, Jason S; Zhu, Peimin; Freedman, Bruce D; Shimizu, Yoji; Billadeau, Daniel D
2007-09-01
T-cell-receptor (TCR)-mediated integrin activation is required for T-cell-antigen-presenting cell conjugation and adhesion to extracellular matrix components. While it has been demonstrated that the actin cytoskeleton and its regulators play an essential role in this process, no mechanism has been established which directly links TCR-induced actin polymerization to the activation of integrins. Here, we demonstrate that TCR stimulation results in WAVE2-ARP2/3-dependent F-actin nucleation and the formation of a complex containing WAVE2, ARP2/3, vinculin, and talin. The verprolin-connecting-acidic (VCA) domain of WAVE2 mediates the formation of the ARP2/3-vinculin-talin signaling complex and talin recruitment to the immunological synapse (IS). Interestingly, although vinculin is not required for F-actin or integrin accumulation at the IS, it is required for the recruitment of talin. In addition, RNA interference of either WAVE2 or vinculin inhibits activation-dependent induction of high-affinity integrin binding to VCAM-1. Overall, these findings demonstrate a mechanism in which signals from the TCR produce WAVE2-ARP2/3-mediated de novo actin polymerization, leading to integrin clustering and high-affinity binding through the recruitment of vinculin and talin.
Formic acid interaction with the uranyl(VI) ion: structural and photochemical characterization.
Lucks, Christian; Rossberg, André; Tsushima, Satoru; Foerstendorf, Harald; Fahmy, Karim; Bernhard, Gert
2013-10-07
Complex formation between the uranyl(VI) ion and formic acid was studied by infrared absorption (IR) and X-ray absorption (EXAFS) spectroscopy as well as density functional theory (DFT) calculations. In contrast to the acetate ion which forms exclusively a bidentate complex with uranyl(VI), the formate ion binds to uranyl(VI) in a unidentate fashion. The photochemistry of the uranyl(VI)-formic acid system was explored by DFT calculations and photoreduction of uranyl(VI) in the presence of formic acid was found to occur via an intermolecular process, that is, hydrogen abstraction from hydrogenformate by the photo-excited uranyl(VI). There is no photo-induced decarboxylation of uranyl(VI) formate via an intramolecular process, presumably due to lack of a C=C double bond.
Properties of complexes formed by Na(+), Mg(2+), and Fe(2+) binding with benzene molecules.
Kolakkandy, Sujitha; Pratihar, Subha; Aquino, Adelia J A; Wang, Hai; Hase, William L
2014-10-09
A theoretical investigation was performed to study cation-π interactions in complexes of benzene (Bz) with cations, that is, M(z+)(Bz)n for M(z+) = Na(+), Mg(2+), Fe(2+) and n = 1-3, using MP2 theory with the 6-31+G* and 6-311++G** basis sets and the DFT/(B3LYP and B3LYP-D)/6-311++G** methods. Binding energies and structures of the complexes are reported. The splitting between the quintet and single states of the Fe(2+) complexes was found to depend on the number of benzene molecules in the complex and the complex's structure. All of the M(z+)(Bz) complexes prefer a half-sandwich geometry. A geometry with the cation sandwiched between the two benzene rings was found for the M(z+)(Bz)2 complexes, with the benzene rings either in an eclipsed or staggered conformation. An approximate cyclic structure, with the cation at its center, was found for three benzene molecules interacting with the cation. The cation-benzene binding energy is substantial and equal to 22, 108, and 151 kcal/mol for the Na(+)(Bz), Mg(2+)(Bz), and Fe(2+)(Bz) complexes, respectively. The strength of the interaction of the cation with an individual benzene molecule decreases as the number of benzene molecules bound to the cation increases; for example, it is 108 kcal/mol for Mg(2+)(Bz), but only 71 kcal/mol for Mg(2+)(Bz)3. There is a range of values for the M(z+)(Bz)n intermolecular vibrational frequencies; for example, they are ∼230-360 and ∼10-330 cm(-1) for the Mg(2+)(Bz) and Mg(2+)(Bz)3 complexes, respectively. Binding of the cation to benzene both red and blue shifts the benzene vibrational frequencies. This shifting is larger for the Mg(2+) and Fe(2+) complexes, as compared to those for Na(+), as a result of the former's stronger cation-benzene binding. The present study is an initial step to understand the possible importance of cation-π interactions for polycyclic aromatic hydrocarbon aggregation processes during soot formation.
Human RAD50 makes a functional DNA-binding complex.
Kinoshita, Eri; van Rossum-Fikkert, Sari; Sanchez, Humberto; Kertokalio, Aryandi; Wyman, Claire
2015-06-01
The MRE11-RAD50-NBS1 (MRN) complex has several distinct functions in DNA repair including important roles in both non-homologous end-joining (NHEJ) and homologous recombination (HR). The biochemical activities of MR(N) have been well characterized implying specific functional roles for the components. The arrangement of proteins in the complex implies interdependence of their biochemical activities making it difficult to separate specific functions. We obtained purified human RAD50 and observed that it binds ATP, undergoes ATP-dependent conformational changes as well as having ATPase activity. Scanning force microscopy analysis clearly showed that RAD50 binds DNA although not as oligomers. RAD50 alone was not functional in tethering DNA molecules. ATP increased formation of RAD50 multimers which were however globular lacking extended coiled coils, in contrast to the MR complex where ATP induced oligomers have obvious coiled coils protruding from a central domain. These results suggest that MRE11 is important in maintaining the structural arrangement of RAD50 in the protein complex and perhaps has a role in reinforcing proper alignment of the coiled coils in the ATP-bound state. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Lifting DELLA repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling
USDA-ARS?s Scientific Manuscript database
DELLA repression of Arabidopsis seed germination can be lifted through the ubiquitin-proteasome pathway and proteolysis-independent GA signaling. GA-binding to the GID1 (GIBBERELLIN-INSENSITIVE DWARF1) GA receptors stimulates GID1-GA-DELLA complex formation which in turn triggers DELLA protein ubiq...
Jetha, Khushboo; Theißen, Günter; Melzer, Rainer
2014-01-01
The SEPALLATA (SEP) genes of Arabidopsis thaliana encode MADS-domain transcription factors that specify the identity of all floral organs. The four Arabidopsis SEP genes function in a largely yet not completely redundant manner. Here, we analysed interactions of the SEP proteins with DNA. All of the proteins were capable of forming tetrameric quartet-like complexes on DNA fragments carrying two sequence elements termed CArG-boxes. Distances between the CArG-boxes for strong cooperative DNA-binding were in the range of 4–6 helical turns. However, SEP1 also bound strongly to CArG-box pairs separated by smaller or larger distances, whereas SEP2 preferred large and SEP4 preferred small inter-site distances for binding. Cooperative binding of SEP3 was comparatively weak for most of the inter-site distances tested. All SEP proteins constituted floral quartet-like complexes together with the floral homeotic proteins APETALA3 (AP3) and PISTILLATA (PI) on the target genes AP3 and SEP3. Our results suggest an important part of an explanation for why the different SEP proteins have largely, but not completely redundant functions in determining floral organ identity: they may bind to largely overlapping, but not identical sets of target genes that differ in the arrangement and spacing of the CArG-boxes in their cis-regulatory regions. PMID:25183521
Sinars, Cindy R.; Cheung-Flynn, Joyce; Rimerman, Ronald A.; Scammell, Jonathan G.; Smith, David F.; Clardy, Jon
2003-01-01
The ability to bind immunosuppressive drugs such as cyclosporin and FK506 defines the immunophilin family of proteins, and the FK506-binding proteins form the FKBP subfamily of immunophilins. Some FKBPs, notably FKBP12 (the 12-kDa FK506-binding protein), have defined roles in regulating ion channels or cell signaling, and well established structures. Other FKBPs, especially the larger ones, participate in important biological processes, but their exact roles and the structural bases for these roles are poorly defined. FKBP51 (the 51-kDa FKBP) associates with heat shock protein 90 (Hsp90) and appears in functionally mature steroid receptor complexes. In New World monkeys, FKBP51 has been implicated in cortisol resistance. We report here the x-ray structures of human FKBP51, to 2.7 Å, and squirrel monkey FKBP51, to 2.8 Å, by using multiwavelength anomalous dispersion phasing. FKBP51 is composed of three domains: two consecutive FKBP domains and a three-unit repeat of the TPR (tetratricopeptide repeat) domain. This structure of a multi-FKBP domain protein clarifies the arrangement of these domains and their possible interactions with other proteins. The two FKBP domains differ by an insertion in the second that affects the formation of the progesterone receptor complex. PMID:12538866
Al-Khouri, Anna Maria; Paule, Marvin R.
2002-01-01
In the small, free-living amoeba Acanthamoeba castellanii, rRNA transcription requires, in addition to RNA polymerase I, a single DNA-binding factor, transcription initiation factor IB (TIF-IB). TIF-IB is a multimeric protein that contains TATA-binding protein (TBP) and four TBP-associated factors that are specific for polymerase I transcription. TIF-IB is required for accurate and promoter-specific initiation of rRNA transcription, recruiting and positioning the polymerase on the start site by protein-protein interaction. In A. castellanii, partially purified TIF-IB can form a persistent complex with the ribosomal DNA (rDNA) promoter while homogeneous TIF-IB cannot. An additional factor, TIF-IE, is required along with homogeneous TIF-IB for the formation of a stable complex on the rDNA core promoter. We show that TIF-IE by itself, however, does not bind to the rDNA promoter and thus differs in its mechanism from the upstream binding factor and upstream activating factor, which carry out similar complex-stabilizing functions in vertebrates and yeast, respectively. In addition to its presence in impure TIF-IB, TIF-IE is found in highly purified fractions of polymerase I, with which it associates. Renaturation of polypeptides excised from sodium dodecyl sulfate-polyacrylamide gels showed that a 141-kDa polypeptide possesses all the known activities of TIF-IE. PMID:11784852
Al-Khouri, Anna Maria; Paule, Marvin R
2002-02-01
In the small, free-living amoeba Acanthamoeba castellanii, rRNA transcription requires, in addition to RNA polymerase I, a single DNA-binding factor, transcription initiation factor IB (TIF-IB). TIF-IB is a multimeric protein that contains TATA-binding protein (TBP) and four TBP-associated factors that are specific for polymerase I transcription. TIF-IB is required for accurate and promoter-specific initiation of rRNA transcription, recruiting and positioning the polymerase on the start site by protein-protein interaction. In A. castellanii, partially purified TIF-IB can form a persistent complex with the ribosomal DNA (rDNA) promoter while homogeneous TIF-IB cannot. An additional factor, TIF-IE, is required along with homogeneous TIF-IB for the formation of a stable complex on the rDNA core promoter. We show that TIF-IE by itself, however, does not bind to the rDNA promoter and thus differs in its mechanism from the upstream binding factor and upstream activating factor, which carry out similar complex-stabilizing functions in vertebrates and yeast, respectively. In addition to its presence in impure TIF-IB, TIF-IE is found in highly purified fractions of polymerase I, with which it associates. Renaturation of polypeptides excised from sodium dodecyl sulfate-polyacrylamide gels showed that a 141-kDa polypeptide possesses all the known activities of TIF-IE.
Deciphering the binding behavior of flavonoids to the cyclin dependent kinase 6/cyclin D complex.
Zhang, Jingxiao; Zhang, Lilei; Xu, Yangcheng; Jiang, Shanshan; Shao, Yueyue
2018-01-01
Flavonoids, a class of natural compounds with variable phenolic structures, have been found to possess anti-cancer activities by modulating different enzymes and receptors like CDK6. To understand the binding behavior of flavonoids that inhibit the active CDK6, molecular dynamics (MD) simulations were performed on six inhibitors, chrysin (M01), fisetin (M03), galangin (M04), genistein (M05), quercetin (M06) and kaempferol (M07), complexed with CDK6/cyclin D. For all six flavonoids, the 3'-OH and 4'-OH of B-ring were found to be favorable for hydrogen bond formation, but the 3-OH on the C-ring and 5-OH on the A-ring were unfavorable, which were confirmed by the MD simulation results of the test molecule, 3', 4', 7-trihydroxyflavone (M15). The binding efficiencies of flavonoids against the CDK6/cyclin D complex were mainly through the electrostatic (especially the H-bond force) and vdW interactions with residues ILE19, VAL27, ALA41, GLU61, PHE98, GLN103, ASP163 and LEU152. The order of binding affinities of these flavonoids toward the CDK6/cyclin D was M03 > M01 > M07 > M15 > M06 > M05 > M04. It is anticipated that the binding features of flavonoid inhibitors studied in the present work may provide valuable insights for the development of CDK6 inhibitors.
Investigation of Non-Covalent Interactions of Aflatoxins (B1, B2, G1, G2, and M1) with Serum Albumin
Poór, Miklós; Bálint, Mónika; Hetényi, Csaba; Gődér, Beatrix; Kunsági-Máté, Sándor; Lemli, Beáta
2017-01-01
Aflatoxins are widely spread mycotoxins produced mainly by Aspergillus species. Consumption of aflatoxin-contaminated foods and drinks causes serious health risks for people worldwide. It is well-known that the reactive epoxide metabolite of aflatoxin B1 (AFB1) forms covalent adducts with serum albumin. However, non-covalent interactions of aflatoxins with human serum albumin (HSA) are poorly characterized. Thus, in this study the complex formation of aflatoxins was examined with HSA applying spectroscopic and molecular modelling studies. Our results demonstrate that aflatoxins form stable complexes with HSA as reflected by binding constants between 2.1 × 104 and 4.5 × 104 dm3/mol. A binding free energy value of −26.90 kJ mol−1 suggests a spontaneous binding process between AFB1 and HSA at room-temperature, while the positive entropy change of 55.1 JK−1 mol−1 indicates a partial decomposition of the solvation shells of the interacting molecules. Modeling studies and investigations with site markers suggest that Sudlow’s Site I of subdomain IIA is the high affinity binding site of aflatoxins on HSA. Interaction of AFB1 with bovine, porcine, and rat serum albumins was also investigated. Similar stabilities of the examined AFB1-albumin complexes were observed suggesting the low species differences of the albumin-binding of aflatoxins. PMID:29068381
Li, Yuesheng; Zhang, Yue; Sun, Shaofa; Zhang, Aiqing; Liu, Yi
2013-11-05
The interaction between Methylene Blue (MB)/TiO2 nanocomposites and bovine serum albumin (BSA) was investigated by resonance light scattering (RLS), fluorescence, three-dimension spectra and UV-vis absorbance spectroscopy. Several factors which may influence the RLS intensity were also investigated before characterizing MB/TiO2-BSA complex. It was proved that the mechanism of MB/TiO2 nanocomposites binding to BSA was mainly a result of the formation of MB/TiO2-BSA complex. The binding constant of MB/TiO2-BSA is 0.762 × 10(-5) L mol(-1) at 298K. By calculating the binding constant at different temperature, the thermodynamic parameters ΔH, ΔG, and ΔS can be observed and deduced that the hydrophobic interactions played an important role to stabilize the complex. The distance r (3.73 nm) between donor (BSA) and acceptor (MB/TiO2) was obtained according to fluorescence resonance energy transfer (FRET). The binding site for MB/TiO2 on BSA was mainly located in sub-domain IIA. The UV-vis absorbance, circular dichroism and three dimension fluorescence have also been used to investigate the effect of MB/TiO2 on the conformation of BSA. Copyright © 2013 Elsevier B.V. All rights reserved.
cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Rajesh; Xiang, Wenpei; Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
2012-06-22
Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1more » (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.« less
Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M
2016-03-14
Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.
Kundu, Pronab; Chattopadhyay, Nitin
2018-06-15
Molecular interactions and binding of probes/drugs with biomacromolecular systems are of fundamental importance in understanding the mechanism of action and hence designing of proactive drugs. In the present study, binding interactions of a biologically potent fluorophore, (E)-1,5-diphenyl-3-styryl-4,5-dihydro-1H-pyrazole (DSDP) with two serum transport proteins, human serum albumin and bovine serum albumin, have been investigated exploiting multi-spectroscopic techniques. The spectrophotometric and fluorometric studies together with fluorescence quenching, fluorescence anisotropy, urea induced denaturation studies and fluorescence lifetime measurements reveal strong binding of DSDP with both the plasma proteins. Going beyond the vast literature data mostly providing 1:1 probe-protein complexation, the present investigation portrays 2:1 probe-protein complex formation at higher relative probe concentration. A newer approach has been developed to have an estimate of the binding constants varying the concentration of the protein, instead of the usual practice of varying the probe. The binding constants for the 2:1 DSDP-protein complexes are determined to be 1.37 × 10 10 M -2 and 1.47 × 10 10 M -2 for HSA and BSA respectively, while those for the 1:1 complexation process come out to be 1.85 × 10 5 M -1 and 1.73 × 10 5 M -1 for DSDP-HSA and DSDP-BSA systems respectively. Thermodynamic analysis at different temperatures implies that the forces primarily involved in the binding process are hydrogen bonding and hydrophobic interactions. Competitive replacement studies with known site markers and molecular docking simulations direct to the possible locations and binding energies of DSDP with the two serum proteins, corroborating well with the experimental results. Copyright © 2018 Elsevier B.V. All rights reserved.
Das, Ranjita; Neese, Frank; van Gastel, Maurice
2016-09-21
In this work, a detailed quantum chemical study of the mechanism of [Ni(bdt)(dppf)] (Ni(II)L) catalyzed hydrogen formation [A. Gan, T. L. Groy, P. Tarakeshwar, S. K. S. Mazinani, J. Shearer, V. Mujica and A. K. Jones, J. Am. Chem. Soc., 2015, 137, 1109-1115] following an electro-chemical-electro-chemical (ECEC) pathway is reported. The complex exclusively catalyzes the reduction of protons to molecular hydrogen. The calculations suggest that the first one-electron reduction of the [Ni(II)L] catalyst is the rate limiting step of the catalytic cycle and hence, the buildup of detectable reaction intermediates is not expected. The catalytic activity of the [Ni(II)L] complex is facilitated by the flexibility of the ligand system, which allows the ligand framework to adapt to changes in the Ni oxidation state over the course of the reaction. Additionally, a comparison is made with the catalytic activity of [NiFe] hydrogenase. It is argued that the directionality of the reversible hydrogen formation reaction is controlled by the ligand field of the nickel ion and the possibility for side-on (η(2)) binding of H2: if the ligand framework does not allow for η(2) binding of H2, as is the case for [Ni(II)L], the catalyst irreversibly reduces protons. If the ligand field allows η(2) binding of H2, the catalyst can in principle work reversibly. The conditions for η(2) binding are discussed.
High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.
Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J
2013-01-01
Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2) g(-1) and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates.
High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation
Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.
2013-01-01
Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573
PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia.
Oikawa, Tsukasa; Yamaguchi, Hideki; Itoh, Toshiki; Kato, Masayoshi; Ijuin, Takeshi; Yamazaki, Daisuke; Suetsugu, Shiro; Takenawa, Tadaomi
2004-05-01
Polarized cell movement is triggered by the development of a PtdIns(3,4,5)P(3) gradient at the membrane, which is followed by rearrangement of the actin cytoskeleton. The WASP family verprolin homologous protein (WAVE) is essential for lamellipodium formation at the leading edge by activating the Arp2/3 complex downstream of Rac GTPase. Here, we report that WAVE2 binds to PtdIns(3,4,5)P(3) through its basic domain. The amino-terminal portion of WAVE2, which includes the PtdIns(3,4,5)P(3)-binding sequence, was localized at the leading edge of lamellipodia induced by an active form of Rac (RacDA) or by treatment with platelet-derived growth factor (PDGF). Production of PtdIns(3,4,5)P(3) at the cell membrane by myristoylated phosphatidylinositol-3-OH kinase (PI(3)K) is sufficient to recruit WAVE2 in the presence of dominant-negative Rac and latrunculin, demonstrating that PtdIns(3,4,5)P(3) alone is able to recruit WAVE2. Expression of a full-length mutant of WAVE2 that lacks the lipid-binding activity inhibited proper formation of lamellipodia induced by RacDA. These results suggest that one of the products of PI(3)K, PtdIns(3,4,5)P(3), recruits WAVE2 to the polarized membrane and that this recruitment is essential for lamellipodium formation at the leading edge.
AgI -Induced Switching of DNA Binding Modes via Formation of a Supramolecular Metallacycle.
Basak, Shibaji; Léon, J Christian; Ferranco, Annaleizle; Sharma, Renu; Hebenbrock, Marian; Lough, Alan; Müller, Jens; Kraatz, Heinz-Bernhard
2018-03-12
The histidine derivative L1 of the DNA intercalator naphthalenediimide (NDI) forms a triangular Ag I complex (C2). The interactions of L1 and of C2 with DNA were studied by circular dichroism (CD) and UV/Vis spectroscopy and by viscosity studies. Different binding modes were observed for L1 and for C2, as the Ag I complex C2 is too large in size to act as an intercalator. If Ag I is added to the NDI molecule that is already intercalated into a duplex, higher order complexes are formed within the DNA duplex and cause disruptions in the helical duplex structure, which leads to a significant decrease in the characteristic CD features of B-DNA. Thus, via addition of a metal we show how a classic and well-known organic intercalator unit can be turned into a partial metallo insertor. We also show how electrochemical impedance spectroscopy (EIS) can be used to probe DNA binding modes on DNA films that are immobilized on gold surfaces. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.