Sample records for binding constant kd

  1. Volatile anesthetics compete for common binding sites on bovine serum albumin: a 19F-NMR study.

    PubMed Central

    Dubois, B W; Cherian, S F; Evers, A S

    1993-01-01

    There is controversy as to the molecular nature of volatile anesthetic target sites. One proposal is that volatile anesthetics bind directly to hydrophobic binding sites on certain sensitive target proteins. Consistent with this hypothesis, we have previously shown that a fluorinated volatile anesthetic, isoflurane, binds saturably [Kd (dissociation constant) = 1.4 +/- 0.2 mM, Bmax = 4.2 +/- 0.3 sites] to fatty acid-displaceable domains on serum albumin. In the current study, we used 19F-NMR T2 relaxation to examine whether other volatile anesthetics bind to the same sites on albumin and, if so, whether they vary in their affinity for these sites. We show that three other fluorinated volatile anesthetics bind with varying affinity to fatty acid-displaceable domains on serum albumin: halothane, Kd = 1.3 +/- 0.2 mM; methoxyflurane, Kd = 2.6 +/- 0.3 mM; and sevoflurane, Kd = 4.5 +/- 0.6 mM. These three anesthetics inhibit isoflurane binding in a competitive manner: halothane, K(i) (inhibition constant) = 1.3 +/- 0.2 mM; methoxyflurane, K(i) = 2.5 +/- 0.4 mM; and sevoflurane, K(i) = 5.4 +/- 0.7 mM--similar to each anesthetic's respective Kd of binding to fatty acid displaceable sites. These results illustrate that a variety of volatile anesthetics can compete for binding to specific sites on a protein. PMID:8341659

  2. Quantifying Protein-Ligand Binding Constants using Electrospray Ionization Mass Spectrometry: A Systematic Binding Affinity Study of a Series of Hydrophobically Modified Trypsin Inhibitors

    NASA Astrophysics Data System (ADS)

    Cubrilovic, Dragana; Biela, Adam; Sielaff, Frank; Steinmetzer, Torsten; Klebe, Gerhard; Zenobi, Renato

    2012-10-01

    NanoESI-MS is used for determining binding strengths of trypsin in complex with two different series of five congeneric inhibitors, whose binding affinity in solution depends on the size of the P3 substituent. The ligands of the first series contain a 4-amidinobenzylamide as P1 residue, and form a tight complex with trypsin. The inhibitors of the second series have a 2-aminomethyl-5-chloro-benzylamide as P1 group, and represent a model system for weak binders. The five different inhibitors of each group are based on the same scaffold and differ only in the length of the hydrophobic side chain of their P3 residue, which modulates the interactions in the S3/4 binding pocket of trypsin. The dissociation constants (KD) for high affinity ligands investigated by nanoESI-MS ranges from 15 nM to 450 nM and decreases with larger hydrophobic P3 side chains. Collision-induced dissociation (CID) experiments of five trypsin and benzamidine-based complexes show a correlation between trends in KD and gas-phase stability. For the second inhibitor series we could show that the effect of imidazole, a small stabilizing additive, can avoid the dissociation of the complex ions and as a result increases the relative abundance of weakly bound complexes. Here the KD values ranging from 2.9 to 17.6 μM, some 1-2 orders of magnitude lower than the first series. For both ligand series, the dissociation constants (KD) measured via nanoESI-MS were compared with kinetic inhibition constants (Ki) in solution.

  3. Multi-site binding of epigallocatechin gallate to human serum albumin measured by NMR and isothermal titration calorimetry

    PubMed Central

    Eaton, Joshua D.

    2017-01-01

    The affinity of epigallocatechin gallate (EGCG) for human serum albumin (HSA) was measured in physiological conditions using NMR and isothermal titration calorimetry (ITC). NMR estimated the Ka (self-dissociation constant) of EGCG as 50 mM. NMR showed two binding events: strong (n1=1.8 ± 0.2; Kd1 =19 ± 12 μM) and weak (n2∼20; Kd2 =40 ± 20 mM). ITC also showed two binding events: strong (n1=2.5 ± 0.03; Kd1 =21.6 ± 4.0 μM) and weak (n2=9 ± 1; Kd2 =22 ± 4 mM). The two techniques are consistent, with an unexpectedly high number of bound EGCG. The strong binding is consistent with binding in the two Sudlow pockets. These results imply that almost all EGCG is transported in the blood bound to albumin and explains the wide tissue distribution and chemical stability of EGCG in vivo. PMID:28424370

  4. 'Decoy peptide' region (RIFLKRMPSI) of prorenin prosegment plays a crucial role in prorenin binding to the (pro)renin receptor.

    PubMed

    Nabi, A H M Nurun; Biswas, Kazal Boron; Nakagawa, Tsutomu; Ichihara, Atsuhiro; Inagami, Tadashi; Suzuki, Fumiaki

    2009-07-01

    This study investigated a role of decoy peptide region (R10PIFLKRMPSI19P) in prorenin prosegment for prorenin binding to the (pro)renin receptor using the surface plasmon resonance technique. Three kinds of anti-receptor antibodies labeled as anti-107/121, anti-221/235 and anti-His tag antibody were prepared. The respective antigens D107SVANSIHSLFSEET121 (close to the N-terminal side of receptor), E221IGKRYGEDSEQFRD235 (N-terminal side of the transmembrane part of receptor) and 10xHis sequence (C-terminus) were designed based on the sequence of the receptor. These antibodies were immobilized on the CM5 sensor chip by amine coupling and allowed to bind to the receptor. Human prorenin, renin and the decoy bound to the receptor associated with antibodies. Their association (ka) and dissociation (kd) rate constants were measured and the dissociation constants (KD) were determined using Langmuir 1:1 kinetic binding model. The KD for interaction of prorenin and receptor associated to anti-107/121, anti-221/235 and anti-His tag antibodies were 2.9, 1.2 and 7.8 nM, respectively and for renin they were 9.3, 4.4 and 7.1 nM. The decoy bound to the respective immobilized receptor-antibody complexes at KD's of 6.2, 3.5 and 15.2 nM. Prorenin, renin and decoy had lower KD at the nanomolar ranges compared to those of L1PPTD4P in the prorenin prosegment and A248KKRLFDYVV257 in the C-domain of mature renin. The decoy reduced the binding of not only prorenin but also renin to (P)RR. These data are direct evidence that prorenin, renin and the peptides bind to (P)RR and the decoy reduces prorenin binding, supporting our hypothesis that decoy peptide region has a crucial role in prorenin binding.

  5. Organic additives stabilize RNA aptamer binding of malachite green.

    PubMed

    Zhou, Yubin; Chi, Hong; Wu, Yuanyuan; Marks, Robert S; Steele, Terry W J

    2016-11-01

    Aptamer-ligand binding has been utilized for biological applications due to its specific binding and synthetic nature. However, the applications will be limited if the binding or the ligand is unstable. Malachite green aptamer (MGA) and its labile ligand malachite green (MG) were found to have increasing apparent dissociation constants (Kd) as determined through the first order rate loss of emission intensity of the MGA-MG fluorescent complex. The fluorescent intensity loss was hypothesized to be from the hydrolysis of MG into malachite green carbinol base (MGOH). Random screening organic additives were found to reduce or retain the fluorescence emission and the calculated apparent Kd of MGA-MG binding. The protective effect became more apparent as the percentage of organic additives increased up to 10% v/v. The mechanism behind the organic additive protective effects was primarily from a ~5X increase in first order rate kinetics of MGOH→MG (kMGOH→MG), which significantly changed the equilibrium constant (Keq), favoring the generation of MG, versus MGOH without organic additives. A simple way has been developed to stabilize the apparent Kd of MGA-MG binding over 24h, which may be beneficial in stabilizing other triphenylmethane or carbocation ligand-aptamer interactions that are susceptible to SN1 hydrolysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. DNA binding specificity of the basic-helix-loop-helix protein MASH-1.

    PubMed

    Meierhan, D; el-Ariss, C; Neuenschwander, M; Sieber, M; Stackhouse, J F; Allemann, R K

    1995-09-05

    Despite the high degree of sequence similarity in their basic-helix-loop-helix (BHLH) domains, MASH-1 and MyoD are involved in different biological processes. In order to define possible differences between the DNA binding specificities of these two proteins, we investigated the DNA binding properties of MASH-1 by circular dichroism spectroscopy and by electrophoretic mobility shift assays (EMSA). Upon binding to DNA, the BHLH domain of MASH-1 underwent a conformational change from a mainly unfolded to a largely alpha-helical form, and surprisingly, this change was independent of the specific DNA sequence. The same conformational transition could be induced by the addition of 20% 2,2,2-trifluoroethanol. The apparent dissociation constants (KD) of the complexes of full-length MASH-1 with various oligonucleotides were determined from half-saturation points in EMSAs. MASH-1 bound as a dimer to DNA sequences containing an E-box with high affinity KD = 1.4-4.1 x 10(-14) M2). However, the specificity of DNA binding was low. The dissociation constant for the complex between MASH-1 and the highest affinity E-box sequence (KD = 1.4 x 10(-14) M2) was only a factor of 10 smaller than for completely unrelated DNA sequences (KD = approximately 1 x 10(-13) M2). The DNA binding specificity of MASH-1 was not significantly increased by the formation of an heterodimer with the ubiquitous E12 protein. MASH-1 and MyoD displayed similar binding site preferences, suggesting that their different target gene specificities cannot be explained solely by differential DNA binding. An explanation for these findings is provided on the basis of the known crystal structure of the BHLH domain of MyoD.

  7. Quantitative Comparison of Human Parainfluenza Virus Hemagglutinin-Neuraminidase Receptor Binding and Receptor Cleavage

    PubMed Central

    Tappert, Mary M.; Porterfield, J. Zachary; Mehta-D'Souza, Padmaja; Gulati, Shelly

    2013-01-01

    The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN′s two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galβ1-4GlcNAc bind HN with Kd values in the 10 to 100 μM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146–12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high. PMID:23740997

  8. All human Na(+)-K(+)-ATPase alpha-subunit isoforms have a similar affinity for cardiac glycosides.

    PubMed

    Wang, J; Velotta, J B; McDonough, A A; Farley, R A

    2001-10-01

    Three alpha-subunit isoforms of the sodium pump, which is the receptor for cardiac glycosides, are expressed in human heart. The aim of this study was to determine whether these isoforms have distinct affinities for the cardiac glycoside ouabain. Equilibrium ouabain binding to membranes from a panel of different human tissues and cell lines derived from human tissues was compared by an F statistic to determine whether a single population of binding sites or two populations of sites with different affinities would better fit the data. For all tissues, the single-site model fit the data as well as the two-site model. The mean equilibrium dissociation constant (K(d)) for all samples calculated using the single-site model was 18 +/- 6 nM (mean +/- SD). No difference in K(d) was found between nonfailing and failing human heart samples, although the maximum number of binding sites in failing heart was only approximately 50% of the number of sites in nonfailing heart. Measurement of association rate constants and dissociation rate constants confirmed that the binding affinities of the different human alpha-isoforms are similar to each other, although calculated K(d) values were lower than those determined by equilibrium binding. These results indicate both that the affinity of all human alpha-subunit isoforms for ouabain is similar and that the increased sensitivity of failing human heart to cardiac glycosides is probably due to a reduction in the number of pumps in the heart rather than to a selective inhibition of a subset of pumps with different affinities for the drugs.

  9. Modulation of the platelet serotonin transporter by thermal balneotherapy: a study in healthy subjects.

    PubMed

    Baroni, S; Marazziti, D; Consoli, G; Picchetti, M; Catena-Dell'Osso, M; Galassi, A

    2012-05-01

    Although the beneficial effects of balneotherapy have been recognized since a long time, a few information is available on the biological mechanisms underlying them and the subjective feelings of increased well-being and mood. The links between the serotonin (5-HT) system and mood prompted us to investigate the 5-HT platelet transporter (SERT), which is considered a reliable, peripheral marker of the same structure present in presynaptic neurons, in 30 healthy volunteers before (t0) and 30 minutes after (t1) thermal balneotherapy with ozonized water, as compared with a similar group who underwent a bath in non-mineral water. MATERIALS AN METHODS: The SERT was evaluated by means of the specific binding of 3H-paroxetine (3H-Par) to platelet membranes. Equilibrium-saturation binding data, the maximal binding capacity (Bmax) and the dissociation constant (Kd), were obtained by means of the Scatchard analysis. The results showed that, while Bmax values did not change in both groups, the Kd values decreased significantly at t1 only in those subjects who bathed in ozonized water. The results of this study, while showing a decrease of the dissociation constant (Kd) which is the inverse of affinity constant, of 3H-Par binding to SERT in all subjects after balneotherapy and not in those bathing in normal water, suggest that SERT modifications may be related to a specific effect of ozonized water and, perhaps, also to the increased sense of well-being.

  10. Thermal balneotherapy induces changes of the platelet serotonin transporter in healthy subjects.

    PubMed

    Marazziti, Donatella; Baroni, Stefano; Giannaccini, Gino; Catena Dell'Osso, Mario; Consoli, Giorgio; Picchetti, Michela; Carlini, Marina; Massimetti, Gabriele; Provenzano, Serafina; Galassi, Antonio

    2007-10-01

    Although the beneficial effects of balneotherapy have been recognized since a long time, a few information is available on the biological mechanisms underlying them and the subjective feelings of increased well-being and mood. The links between the serotonin (5-HT) system and mood prompted us to investigate the 5-HT platelet transporter (SERT), which is considered a reliable, peripheral marker of the same structure present in presynaptic neurons, in 20 healthy volunteers before (t0) and 30 min after (t1) thermal balneotherapy with ozonized water of Montecatini spa, as compared with a similar group who underwent a bath in non-mineral water. The SERT was evaluated by means of the specific binding of (3)H-paroxetine ((3)H-Par) to platelet membranes. Equilibrium-saturation binding data, the maximal binding capacity (Bmax) and the dissociation constant (Kd), were obtained by means of the Scatchard analysis. The results showed that, while Bmax values did not change in both groups, the Kd values decreased significantly at t1 only in those subjects who bathed in ozonized water. The results of this study, while showing a decrease of the dissociation constant (Kd) which is the inverse of affinity constant, of (3)H-Par binding to SERT in all subjects after balneotherapy and not in those bathing in normal water, suggest that SERT modifications may be related to a specific effect of ozonized water and, perhaps, also to the increased sense of well-being.

  11. Quantification of transcription factor-DNA binding affinity in a living cell

    PubMed Central

    Belikov, Sergey; Berg, Otto G.; Wrange, Örjan

    2016-01-01

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. PMID:26657626

  12. Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants.

    PubMed

    Rohrback, Suzanne E; Wheatly, Michele G; Gillen, Christopher M

    2015-01-01

    Sarcoplasmic calcium binding protein (SCP) is a high-affinity calcium buffering protein expressed in muscle of crayfish and other invertebrates. In previous work, we identified three splice variants of Procambarus clarkii SCP (pcSCP1a, pcSCP1b, and pcSCP1c) that differ in a 37 amino acid region that lies mainly between the 2nd and 3ed EF-hand calcium binding domain. To evaluate the function of the proteins encoded by the pcSCP1 transcripts, we produced recombinant pcSCP1 and used tryptophan fluorescence to characterize calcium binding. Tryptophan fluorescence of pcSCP1a decreased in response to increased calcium, while tryptophan fluorescence of the pcSCP1b and pcSCP1c variants increased. We estimated calcium binding constants and Hill coefficients with two different equations: the standard Hill equation and a modified Hill equation that accounts for contributions from two different tryptophans. The approaches gave similar results. Steady-state calcium binding constants (Kd) ranged from 2.7±0.7×10(-8)M to 5.6±0.1×10(-7)M, consistent with previous work. Variants displayed significantly different apparent calcium affinities, which were decreased in the presence of magnesium. Calcium Kd was lowest for pcSCP1a and highest for pcSCP1c. Site-directed mutagenesis of pcSCP1c residues to the amino acids of pcSCP1b decreased the calcium Kd, identifying residues outside the EF-hand domains that contribute to calcium binding in crayfish SCP. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Characterization studies on cadmium-mycophosphatin from the mushroom Agaricus macrosporus.

    PubMed Central

    Meisch, H U; Schmitt, J A

    1986-01-01

    A low molecular weight Cd-binding phosphoglycoprotein, cadmium-mycophosphatin, has been isolated from the mushroom Agaricus macrosporus. This protein has a molecular weight of 12,000 dalton and contains no sulfur but a high amount of acid amino acids (Glu, Asp), and carbohydrates (glucose, galactose). Cadmium-mycophosphatin has an isoelectric point less than pH 2, binds cadmium with a dissociation constant of KD = 1.59 X 10 M (pKD = 6.8) and is saturated with 13.5 mole Cd/mole, all Cd-binding sites being equivalent. It is suggested that Cd is bound by phosphoserine groups, similar relations being known from calcium-binding proteins in animals. From A. macrosporus four other low-molecular weight glycoproteins have been isolated which contain sulfur and bind cadmium and copper. The biological significance of these Cd-binding proteins is discussed. PMID:3709455

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, G.F.; Marks, B.H.

    This study examines the beta adrenergic receptors of the rabbit detrusor smooth muscle, employing (/sup 125/I)iodocyanopindolol (ICYP) as a ligand for the binding of beta adrenergic receptors. Saturation binding experiments on the isolated membrane fraction yielded a KD for ICYP of 14.7 pM and a maximum binding of 147.6 fmol/mg of protein. Displacement of labeled ICYP by a series of beta adrenergic agents yielded the following KD values for the combined high and low affinity binding sites: I-propranolol, 0.76 nM; ICI 118,551, 1.7 nM; zinterol, 38.0 nM; metoprolol, 3.5 microM; and practolol, 61.4 microM. When these displacement experimental results weremore » compared to KD values from other reported binding studies with ICYP for beta adrenoreceptors, both the order of potency and the KD values indicated primarily beta-2 adrenergic receptor subtypes. Computer program Scatfit analysis of the displacement curves indicated a single slope and affinity constant for all five beta adrenergic agents. Hofstee plots for zinterol, ICI 118,551 and metoprolol, however, were not linear and indicated that minor populations of beta-1 adrenoreceptors were also present as both high and low affinity binding sites could be defined. It is concluded that the primary receptor population is beta-2 and that this tissue is heterogenous with a small population of beta-1 adrenoreceptors representing approximately 13 to 23% of the total beta adrenoreceptor population.« less

  15. Alpha-amylase inhibitor, CS-1036 binds to serum amylase in a concentration-dependent and saturable manner.

    PubMed

    Honda, Tomohiro; Kaneno-Urasaki, Yoko; Ito, Takashi; Kimura, Takako; Matsushima, Nobuko; Okabe, Hiromi; Yamasaki, Atsushi; Izumi, Takashi

    2014-03-01

    (2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036), which is an α-amylase inhibitor, exhibited biphasic and sustained elimination with a long t1/2 (18.4-30.0 hours) in rats and monkeys, but exhibited a short t1/2 (3.7-7.9 hours) in humans. To clarify the species differences in the t1/2, the plasma protein binding of CS-1036 was evaluated by ultrafiltration. A concentration-dependent and saturable plasma protein binding of CS-1036 was observed in rats and monkeys with the dissociation rate constant (KD) of 8.95 and 27.2 nM, and maximal binding capacity (Bmax) of 52.8 and 22.1 nM, respectively. By the assessments of the recombinant amylase and immunoprecipitation, the major binding protein of CS-1036 in rats was identified as salivary amylase (KD 5.64 nM). CS-1036 also showed concentration-dependent and saturable binding to human salivary and pancreatic amylase, with similar binding affinity in rats. However, the protein binding of CS-1036 was constant in human plasma (≤10.2%) due to the lower serum amylase level compared with rats and monkeys. From the calculation of the unbound fraction (fu) in plasma based on in vitro KD and Bmax, the dose-dependent increase in fu after oral administration is speculated to lead to a dose-dependent increase in total body clearance and a high area under the curve/dose at lower doses, such as 0.3 mg/kg in rats.

  16. Identification and quantification of human kidney atrial natriuretic peptide receptors.

    PubMed

    Kahana, L; Yechiely, H; Mecz, Y; Lurie, A

    1995-04-01

    The present study determined 125I-label atrial natriuretic peptide (ANP) binding sites in human kidney glomerular and papillary membranes. The membranes were prepared from non-malignant renal tissue obtained at nephrectomy of patients with renal carcinoma. To evaluate the proportion of ANP receptor classes ANP-R1 (ANPR-A, -B) versus ANP-R2 (ANPR-C), competitive binding studies were performed using [125I]-ANP in the presence of increasing concentrations of ANP or an internally ring-deleted analog, des(Gln116, Ser117, Gly118, Leu119, Gly120)ANP(102-121), called C-ANP, which binds selectively to ANPR-C receptors. Analysis of the competitive binding curve with ANP in glomerular membranes suggested the presence of one group of high-affinity receptors with dissociation constant Kd = 26 +/- 12 pmol/l and density Bmax = 101 +/- 47 nmol/kg protein. A decrease of 10-30% in Bmax with no change in Kd was obtained in the presence of excess (10(-6) mol/l) C-ANP, suggesting the existence of a small amount of a second class of receptors, the ANPR-C class. The densities of ANPR-A, -B versus ANPR-C receptors in human glomeruli, calculated from competitive inhibition experiments, were 75 +/- 42 and 22 +/- 16 nmol/kg protein (N = 8). Autoradiography of the sodium dodecyl sulfate polyacrylamide gel electrophoresis under reducing conditions showed two bands: a highly labeled 130kD band and a weakly labeled 66 kD band, both displaced by ANP. Only the 66-kD band was displaced by the C-ANP analog. Human papilla membrane, as shown by competition binding studies and SDS gel electrophoresis, presented only one class of receptors with Kd = 40 +/- 23 pmol/l (mean +/- SD, N = 3) and Bmax = 17 +/- 6.3 nmol/kg protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Quantitative In Vivo Fluorescence Cross-Correlation Analyses Highlight the Importance of Competitive Effects in the Regulation of Protein-Protein Interactions

    PubMed Central

    Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki

    2014-01-01

    Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)–Ras–extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. PMID:24958104

  18. Principal component analysis of chemical shift perturbation data of a multiple-ligand-binding system for elucidation of respective binding mechanism.

    PubMed

    Konuma, Tsuyoshi; Lee, Young-Ho; Goto, Yuji; Sakurai, Kazumasa

    2013-01-01

    Chemical shift perturbations (CSPs) in NMR spectra provide useful information about the interaction of a protein with its ligands. However, in a multiple-ligand-binding system, determining quantitative parameters such as a dissociation constant (K(d) ) is difficult. Here, we used a method we named CS-PCA, a principal component analysis (PCA) of chemical shift (CS) data, to analyze the interaction between bovine β-lactoglobulin (βLG) and 1-anilinonaphthalene-8-sulfonate (ANS), which is a multiple-ligand-binding system. The CSP on the binding of ANS involved contributions from two distinct binding sites. PCA of the titration data successfully separated the CSP pattern into contributions from each site. Docking simulations based on the separated CSP patterns provided the structures of βLG-ANS complexes for each binding site. In addition, we determined the K(d) values as 3.42 × 10⁻⁴ M² and 2.51 × 10⁻³ M for Sites 1 and 2, respectively. In contrast, it was difficult to obtain reliable K(d) values for respective sites from the isothermal titration calorimetry experiments. Two ANS molecules were found to bind at Site 1 simultaneously, suggesting that the binding occurs cooperatively with a partial unfolding of the βLG structure. On the other hand, the binding of ANS to Site 2 was a simple attachment without a significant conformational change. From the present results, CS-PCA was confirmed to provide not only the positions and the K(d) values of binding sites but also information about the binding mechanism. Thus, it is anticipated to be a general method to investigate protein-ligand interactions. Copyright © 2012 Wiley Periodicals, Inc.

  19. 3- and 4-O-sulfoconjugated and methylated dopamine: highly reduced binding affinity to dopamine D2 receptors in rat striatal membranes.

    PubMed

    Werle, E; Lenz, T; Strobel, G; Weicker, H

    1988-07-01

    The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off

  20. A rigorous multiple independent binding site model for determining cell-based equilibrium dissociation constants.

    PubMed

    Drake, Andrew W; Klakamp, Scott L

    2007-01-10

    A new 4-parameter nonlinear equation based on the standard multiple independent binding site model (MIBS) is presented for fitting cell-based ligand titration data in order to calculate the ligand/cell receptor equilibrium dissociation constant and the number of receptors/cell. The most commonly used linear (Scatchard Plot) or nonlinear 2-parameter model (a single binding site model found in commercial programs like Prism(R)) used for analysis of ligand/receptor binding data assumes only the K(D) influences the shape of the titration curve. We demonstrate using simulated data sets that, depending upon the cell surface receptor expression level, the number of cells titrated, and the magnitude of the K(D) being measured, this assumption of always being under K(D)-controlled conditions can be erroneous and can lead to unreliable estimates for the binding parameters. We also compare and contrast the fitting of simulated data sets to the commonly used cell-based binding equation versus our more rigorous 4-parameter nonlinear MIBS model. It is shown through these simulations that the new 4-parameter MIBS model, when used for cell-based titrations under optimal conditions, yields highly accurate estimates of all binding parameters and hence should be the preferred model to fit cell-based experimental nonlinear titration data.

  1. [Cell-ELA-based determination of binding affinity of DNA aptamer against U87-EGFRvIII cell].

    PubMed

    Tan, Yan; Liang, Huiyu; Wu, Xidong; Gao, Yubo; Zhang, Xingmei

    2013-05-01

    A15, a DNA aptamer with binding specificity for U87 glioma cells stably overexpressing the epidermal growth factor receptor variant III (U87-EGFRvIII), was generated by cell systematic evolution of ligands by exponential enrichment (cell-SELEX) using a random nucleotide library. Subsequently, we established a cell enzyme-linked assay (cell-ELA) to detect the affinity of A15 compared to an EGFR antibody. We used A15 as a detection probe and cultured U87-EGFRvIII cells as targets. Our data indicate that the equilibrium dissociation constants (K(d)) for A15 were below 100 nmol/L and had similar affinity compared to an EGFR antibody for U87-EGFRvIII. We demonstrated that the cell-ELA was a useful method to determine the equilibrium dissociation constants (K(d)) of aptamers generated by cell-SELEX.

  2. Isomer-Specific Binding Affinity of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA) to Serum Proteins.

    PubMed

    Beesoon, Sanjay; Martin, Jonathan W

    2015-05-05

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are among the most prominent contaminants in human serum, and these were historically manufactured as technical mixtures of linear and branched isomers. The isomers display unique pharmacokinetics in humans and in animal models, but molecular mechanisms underlying isomer-specific PFOS and PFOA disposition have not previously been studied. Here, ultrafiltration devices were used to examine (i) the dissociation constants (Kd) of individual PFOS and PFOA isomers with human serum albumin (HSA) and (ii) relative binding affinity of isomers in technical mixtures spiked to whole calf serum and human serum. Measurement of HSA Kd's demonstrated that linear PFOS (Kd=8(±4)×10(-8) M) was much more tightly bound than branched PFOS isomers (Kd range from 8(±1)×10(-5) M to 4(±2)×10(-4) M). Similarly, linear PFOA (Kd=1(±0.9)×10(-4) M) was more strongly bound to HSA compared to branched PFOA isomers (Kd range from 4(±2)×10(-4) M to 3(±2)×10(-4) M). The higher binding affinities of linear PFOS and PFOA to total serum protein were confirmed when both calf serum and human serum were spiked with technical mixtures. Overall, these data provide a mechanistic explanation for the longer biological half-life of PFOS in humans, compared to PFOA, and for the higher transplacental transfer efficiencies and renal clearance of branched PFOS and PFOA isomers, compared to the respective linear isomer.

  3. Multiple sup 3 H-oxytocin binding sites in rat myometrial plasma membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crankshaw, D.; Gaspar, V.; Pliska, V.

    1990-01-01

    The affinity spectrum method has been used to analyse binding isotherms for {sup 3}H-oxytocin to rat myometrial plasma membranes. Three populations of binding sites with dissociation constants (Kd) of 0.6-1.5 x 10(-9), 0.4-1.0 x 10(-7) and 7 x 10(-6) mol/l were identified and their existence verified by cluster analysis based on similarities between Kd, binding capacity and Hill coefficient. When experimental values were compared to theoretical curves constructed using the estimated binding parameters, good fits were obtained. Binding parameters obtained by this method were not influenced by the presence of GTP gamma S (guanosine-5'-O-3-thiotriphosphate) in the incubation medium. The bindingmore » parameters agree reasonably well with those found in uterine cells, they support the existence of a medium affinity site and may allow for an explanation of some of the discrepancies between binding and response in this system.« less

  4. Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis

    PubMed Central

    Pan, Yuchen; Sackmann, Eric K.; Wypisniak, Karolina; Hornsby, Michael; Datwani, Sammy S.; Herr, Amy E.

    2016-01-01

    High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality – the binding affinity – is quantified through the dissociation constant (KD) of each recombinant antibody and the target antigen. To characterize the KD of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The KD for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization. PMID:28008969

  5. Quantitative in vivo fluorescence cross-correlation analyses highlight the importance of competitive effects in the regulation of protein-protein interactions.

    PubMed

    Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki; Aoki, Kazuhiro

    2014-09-01

    Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. The mechanism and high-free-energy transition state of lac repressor–lac operator interaction

    PubMed Central

    Sengupta, Rituparna; Capp, Michael W.; Shkel, Irina A.

    2017-01-01

    Abstract Significant, otherwise-unavailable information about mechanisms and transition states (TS) of protein folding and binding is obtained from solute effects on rate constants. Here we characterize TS for lac repressor(R)–lac operator(O) binding by analyzing effects of RO-stabilizing and RO-destabilizing solutes on association (ka) and dissociation (kd) rate constants. RO-destabilizing solutes (urea, KCl) reduce ka comparably (urea) or more than (KCl) they increase kd, demonstrating that they destabilize TS relative to reactants and RO, and that TS exhibits most of the Coulombic interactions between R and O. Strikingly, three solutes which stabilize RO by favoring burial/dehydration of amide oxygens and anionic phosphate oxygens all reduce kd without affecting ka significantly. The lack of stabilization of TS by these solutes indicates that O phosphates remain hydrated in TS and that TS preferentially buries aromatic carbons and amide nitrogens while leaving amide oxygens exposed. In our proposed mechanism, DNA-binding-domains (DBD) of R insert in major grooves of O pre-TS, forming most Coulombic interactions of RO and burying aromatic carbons. Nucleation of hinge helices creates TS, burying sidechain amide nitrogens. Post-TS, hinge helices assemble and the DBD-hinge helix-O-DNA module docks on core repressor, partially dehydrating phosphate oxygens and tightening all interfaces to form RO. PMID:29036376

  7. Thermodynamic Characterization of Binding Oxytricha nova Single Strand Telomere DNA with the Alpha Protein N-terminal Domain

    PubMed Central

    Buczek, Pawel; Horvath, Martin P.

    2010-01-01

    The Oxytricha nova telomere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (ΔH), entropy (ΔS), and dissociation constant (KD-DNA) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T2G4), d(T4G4), d(G3T4G4), and d(G4T4G4) each formed monovalent protein complexes. In the case of d(T4G4T4G4), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity “A site” has a dissociation constant, KD-DNA(A)=13(±4) nM, while the low-affinity “B site” is characterized by KD-DNA(B)=5600(±600) nM at 25 °C. Nucleotide substitution variants verified that the A site corresponds principally with the 3′-terminal portion of d(T4G4T4G4). The relative contributions of entropy (ΔS) and enthalpy (ΔH) for binding reactions were DNA length-dependent as was heat capacity (ΔCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA–protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology. PMID:16678852

  8. Spectroscopic analyses and studies on respective interaction of cyanuric acid and uric acid with bovine serum albumin and melamine

    NASA Astrophysics Data System (ADS)

    Chen, Dandan; Wu, Qiong; Wang, Jun; Wang, Qi; Qiao, Heng

    2015-01-01

    In this work, the fluorescence quenching was used to study the interaction of cyanuric acid (CYA) and uric acid (UA) with bovine serum albumin (BSA) at two different temperatures (283 K and 310 K). The bimolecular quenching constant (Kq), apparent quenching constant (Ksv), effective binding constant (KA) and corresponding dissociation constant (KD), binding site number (n) and binding distance (r) were calculated by adopting Stern-Volmer, Lineweaver-Burk, Double logarithm and overlap integral equations. The results show that CYA and UA are both able to obviously bind to BSA, but the binding strength order is BSA + CYA < BSA + UA. And then, the interactions of CYA and UA with melamine (MEL) under the same conditions were also studied by using similar methods. The results indicates that both CYA and UA can bind together closely with melamine (MEL). It is wished that these research results would facilitate the understanding the formation of kidney stones and gout in the body after ingesting excess MEL.

  9. Structural changes in calcium-binding allergens: use of circular dichroism to study binding characteristics.

    PubMed

    Hebenstreit, D; Ferreira, F

    2005-09-01

    Several studies showed that calcium-binding proteins have a fixed place in the spectrum of allergenic substances. Often the binding of a calcium ion induces conformational changes and affects immunoglobulin E-binding to the allergen. Hence, the quantitative characterization of the binding to calcium is of importance to understand both the biologic and allergenic activity of these proteins. In the present study we describe a procedure for determining the stoichiometry and dissociation constant (K(D)) of calcium-binding allergens using circular dichroism (CD) techniques. For the experiments, we used recombinant Bet v 4, a two EF-hand allergen from birch pollen. Solutions of Bet v 4 were titrated with calcium and the change in molar ellipticity at 222 nm was monitored with a CD spectropolarimeter. The determination of the binding stoichiometry as well as of the K(D) for one EF-hand (4 microM) demonstrated the applicability of the method. CD-monitored calcium-titration of protein solutions represents a fast and easy method for determining the binding characteristics of calcium-binding allergens.

  10. Investigation of the effect of mutations of rat albumin on the binding affinity to the alpha(4)beta(1) integrin antagonist, 4-[1-[3-chloro-4-[N'-(2-methylphenyl)ureido]phenylacetyl]-(4S)-fluoro-(2S)-pyrrolidine-2-yl]methoxybenzoic acid (D01-4582), using recombinant rat albumins.

    PubMed

    Ito, Takashi; Takahashi, Masayuki; Okazaki, Osamu; Sugiyama, Yuichi

    2010-08-02

    The authors reported previously rat strain differences in plasma protein binding to alpha(4)beta(1) antagonist D01-4582, resulting in a great strain difference in its pharmacokinetics (19-fold differences in the AUC). The previous study suggested that amino acid changes of V238L and/or T293I in albumin reduced the binding affinity. In order to elucidate the relative significance of these mutations, an expression system was developed to obtain recombinant rat albumins (rRSA) using Pichia pastoris, followed by a binding analysis of four rRSAs by the ultracentrifugation method. The equilibrium dissociation constant (K(d)) of wild-type rRSA was 210 nM, while K(d) of rRSA that carried both V238L and T293I mutations was 974 nM. K(d) of artificial rRSA that carried only V238L was 426 nM, and K(d) of artificial rRSA that carried only T293I was 191 nM. These results suggested that V238L would be more important in the alteration of K(d). However, since none of the single mutations were sufficient to explain the reduction of affinity, the possibility was also suggested that T293I interacted cooperatively to reduce the binding affinity of rat albumin to D01-4582. Further investigation is required to elucidate the mechanism of the possible cooperative interaction.

  11. Analysis of Protein Interactions with Picomolar Binding Affinity by Fluorescence-Detected Sedimentation Velocity

    PubMed Central

    2014-01-01

    The study of high-affinity protein interactions with equilibrium dissociation constants (KD) in the picomolar range is of significant interest in many fields, but the characterization of stoichiometry and free energy of such high-affinity binding can be far from trivial. Analytical ultracentrifugation has long been considered a gold standard in the study of protein interactions but is typically applied to systems with micromolar KD. Here we present a new approach for the study of high-affinity interactions using fluorescence detected sedimentation velocity analytical ultracentrifugation (FDS-SV). Taking full advantage of the large data sets in FDS-SV by direct boundary modeling with sedimentation coefficient distributions c(s), we demonstrate detection and hydrodynamic resolution of protein complexes at low picomolar concentrations. We show how this permits the characterization of the antibody–antigen interactions with low picomolar binding constants, 2 orders of magnitude lower than previously achieved. The strongly size-dependent separation and quantitation by concentration, size, and shape of free and complex species in free solution by FDS-SV has significant potential for studying high-affinity multistep and multicomponent protein assemblies. PMID:24552356

  12. Quartz crystal microbalance for the cardiac markers/antibodies binding kinetic measurements in the plasma samples

    NASA Astrophysics Data System (ADS)

    Agafonova, L. E.; Shumyantseva, V. V.; Archakov, A. I.

    2014-06-01

    The quartz crystal microbalance (QCM) was exploited for cardiac markers detection and kinetic studies of immunochemical reaction of cardiac troponin I (cTnI) and human heart fatty acid binding protein (H-FABP) with the corresponding monoclonal antibodies in undiluted plasma (serum) and standard solutions. The QCM technique allowed to dynamically monitor the kinetic differences in specific interactions and nonspecific sorption, without multiple labeling procedures and separation steps. The affinity binding process was characterized by the association (ka) and the dissociation (kd) kinetic constants and the equilibrium association (K) constant, all of which were obtained from experimental data.

  13. Synthesis, characterization, and sol-gel entrapment of a crown ether-styryl fluoroionophore

    PubMed Central

    Sui, Zhijie; Hanan, Nathan J.; Phimphivong, Sam; Wysocki, Ronald J.; Saavedra, S. Scott

    2011-01-01

    The synthesis and initial evaluation of a new dye-functionalized crown-ether, 2-[2-(2,3,5,6,8,9,11,12,14,15-decahydro-1,4,7,10.13.16-benzohexaoxacyclooctadecin)ethenyl]-3-methyl benzothiazolium iodide (denoted BSD), is reported. This molecule contains a benzyl 18-crown-6 moiety as the ionophore and a benzothiazolium to spectrally transduce ion binding. Binding of K+ to BSD in methanol causes shifts in the both absorbance and fluorescence emission maxima, as well as changes in the molar absorptivity and the emission intensity. Apparent dissociation constants (Kd) in the range of 30 – 65 μM were measured. In water and neutral buffer, Kd values were approximately 1 mM. BSD was entrapped in sol-gel films composed of methyltriethoxysilane (MTES) and tetraethylorthosilicate (TEOS) with retention of its spectral properties and minimal leaching. K+ binding to BSD in sol-gels films immersed in pH 7.4 buffer causes significant fluorescence quenching, with an apparent response time of approximately 2 min and an apparent Kd of 1.5 mM. PMID:19253273

  14. Direct Measurement of Equilibrium Constants for High-Affinity Hemoglobins

    PubMed Central

    Kundu, Suman; Premer, Scott A.; Hoy, Julie A.; Trent, James T.; Hargrove, Mark S.

    2003-01-01

    The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (KD ≪ 1 μM) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and ∼100 μM−1 respectively, indicate that they are not capable of facilitating oxygen transport. PMID:12770899

  15. Identification of a β-lactamase inhibitory protein variant that is a potent inhibitor of Staphylococcus PC1 β-lactamase

    PubMed Central

    Yuan, Ji; Chow, Dar-Chone; Huang, Wanzhi; Palzkill, Timothy

    2011-01-01

    The β-lactamase inhibitory protein (BLIP) binds and inhibits a diverse collection of class A β-lactamases. Widespread resistance to β-lactam antibiotics currently limits treatment strategies for Staphylococcus infections. The goal of this study was to determine the binding affinity of BLIP for S. aureus PC1 β-lactamase and to identify mutants that alter binding affinity. The BLIP inhibition constant (Ki) for the PC1 β-lactamase was measured at 350 nM and isothermal titration calorimetry (ITC) experiments indicated a binding constant (Kd) of 380 nM. A total of 23 residue positions in BLIP that contact β-lactamase were randomized and phage display was used to sort the libraries for tight binders to immobilized PC1 β-lactamase. The BLIP K74G mutant was the dominant clone selected and it was found to inhibit the PC1 β-lactamase with a Ki of 42 nM while calorimetry indicated a Kd of 26 nM. Molecular modeling studies suggested BLIP binds weakly to the PC1 β-lactamase due to the presence of alanine at position 104 of PC1. This position is occupied by glutamate in the TEM-1 enzyme where it forms a salt bridge with BLIP residue Lys74 that is important for the stability of the complex. This hypothesis was confirmed by showing that the A104E PC1 enzyme binds BLIP with 15-fold greater affinity than wild type PC1 β-lactamase. Kinetic measurements indicated similar association rates for all complexes with the variation in affinity due to altered dissociation rate constants suggesting changes in short-range interactions are responsible for the altered binding properties of the mutants. PMID:21238457

  16. Choline Uptake in Agrobacterium tumefaciens by the High-Affinity ChoXWV Transporter▿

    PubMed Central

    Aktas, Meriyem; Jost, Kathinka A.; Fritz, Christiane; Narberhaus, Franz

    2011-01-01

    Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called “Venus flytrap mechanism” of substrate binding. PMID:21803998

  17. Computational design of nanoparticle drug delivery systems for selective targeting

    NASA Astrophysics Data System (ADS)

    Duncan, Gregg A.; Bevan, Michael A.

    2015-09-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues. Electronic supplementary information (ESI) available: Movie showing simulation renderings of targeted (ρL = 1820/μm2, KD = 120 μM) nanoparticle selective binding to cancer (ρR = 256/μm2) vs. healthy (ρR = 64/μm2) cell surfaces. Target membrane proteins have linear color scale depending on binding energy ranging from white when unbound (URL = 0) to red when tightly bound (URL = UM). See DOI: 10.1039/c5nr03691g

  18. Enhanced biodegradation of mixed PAHs by mutated naphthalene 1,2-dioxygenase encoded by Pseudomonas putida strain KD6 isolated from petroleum refinery waste.

    PubMed

    Dutta, Kunal; Shityakov, Sergey; Das, Prangya P; Ghosh, Chandradipa

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental pollutant that are given top priority to maintain water and soil quality to the most amenable standard. Biodegradation of PAHs by bacteria is the convenient option for decontamination on site or off site. The aim of the present study was to isolate and identify naturally occurring bacteria having mixed PAHs biodegradation ability. The newly isolated Pseudomonas putida strain KD6 was found to efficiently degrade 97.729% of 1500 mg L -1 mixed PAHs within 12 days in carbon-deficient minimal medium (CSM). The half-life ( t 1/2 ) and degradation rate constant ( k ) were estimated to be 3.2 and 0.2165 days, respectively. The first-order kinetic parameters in soil by strain KD6 had shown efficient biodegradation potency with the higher concentration of total PAHs (1500 mg kg -1 soil), t 1/2  = 10.44 days -1 . However, the biodegradation by un-inoculated control soil was found slower ( t 1/2  = 140 days -1 ) than the soil inoculated with P. putida strain KD6. The enzyme kinetic constants are also in agreement with chemical data obtained from the HPLC analysis. In addition, the sequence analysis and molecular docking studies showed that the strain KD6 encodes a mutant version of naphthalene 1,2-dioxygenase which have better Benzpyrene binding energy (-9.90 kcal mol -1 ) than wild type (-8.18 kcal mol -1 ) enzyme (chain A, 1NDO), respectively, with 0.00 and 0.08 RMSD values. The mutated naphthalene 1,2-dioxygenase nah Ac has six altered amino acid residues near to the ligand binding site. The strain KD6 could be a good bioresource for in situ or ex situ biodegradation of polycyclic aromatic hydrocarbon.

  19. Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin

    NASA Astrophysics Data System (ADS)

    Pîrnău, Adrian; Mic, Mihaela; Neamţu, Silvia; Floare, Călin G.; Bogdan, Mircea

    2018-02-01

    A quantitative analysis of the interaction between zidovudine (AZT) and human serum albumin (HSA) was achieved using Isothermal titration calorimetry (ITC) in combination with fluorescence and 1H NMR spectroscopy. ITC directly measure the heat during a biomolecular binding event and gave us thermodynamic parameters and the characteristic association constant. By fluorescence quenching, the binding parameters of AZT-HSA interaction was determined and location to binding site I of HSA was confirmed. Via T1 NMR selective relaxation time measurements the drug-protein binding extent was evaluated as dissociation constants Kd and the involvement of azido moiety of zidovudine in molecular complex formation was put in evidence. All three methods indicated a very weak binding interaction. The association constant determined by ITC (3.58 × 102 M- 1) is supported by fluorescence quenching data (2.74 × 102 M- 1). The thermodynamic signature indicates that at least hydrophobic and electrostatic type interactions played a main role in the binding process.

  20. The Kinetic Mechanism of Phenylalanine Hydroxylase: Intrinsic Binding and Rate Constants from Single Turnover Experiments†

    PubMed Central

    Roberts, Kenneth M.; Pavon, Jorge Alex; Fitzpatrick, Paul F.

    2013-01-01

    Phenylalanine hydroxylase (PheH) catalyzes the key step in the catabolism of dietary phenylalanine, its hydroxylation to tyrosine using tetrahydrobiopterin (BH4) and O2. A complete kinetic mechanism for PheH was determined by global analysis of single turnover data in the reaction of PheHΔ117, a truncated form of the enzyme lacking the N-terminal regulatory domain. Formation of the productive PheHΔ117-BH4-phenylalanine complex begins with the rapid binding of BH4 (Kd = 65 µM). Subsequent addition of phenylalanine to the binary complex to form the productive ternary complex (Kd = 130 µM) is approximately ten-fold slower. Both substrates can also bind to the free enzyme to form inhibitory binary complexes. O2 rapidly binds to the productive ternary complex; this is followed by formation of an unidentified intermediate, detectable as a decrease in absorbance at 340 nm, with a rate constant of 140 s−1. Formation of the 4a-hydroxypterin and Fe(IV)O intermediates is ten-fold slower and is followed by the rapid hydroxylation of the amino acid. Product release is the rate-determining step and largely determines kcat. Similar reactions using 6-methyltetrahydropterin indicate a preference for the physiological pterin during hydroxylation. PMID:23327364

  1. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.

    PubMed

    Angulo, Jesús; Enríquez-Navas, Pedro M; Nieto, Pedro M

    2010-07-12

    The direct evaluation of dissociation constants (K(D)) from the variation of saturation transfer difference (STD) NMR spectroscopy values with the receptor-ligand ratio is not feasible due to the complex dependence of STD intensities on the spectral properties of the observed signals. Indirect evaluation, by competition experiments, allows the determination of K(D), as long as a ligand of known affinity is available for the protein under study. Herein, we present a novel protocol based on STD NMR spectroscopy for the direct measurements of receptor-ligand dissociation constants (K(D)) from single-ligand titration experiments. The influence of several experimental factors on STD values has been studied in detail, confirming the marked impact on standard determinations of protein-ligand affinities by STD NMR spectroscopy. These factors, namely, STD saturation time, ligand residence time in the complex, and the intensity of the signal, affect the accumulation of saturation in the free ligand by processes closely related to fast protein-ligand rebinding and longitudinal relaxation of the ligand signals. The proposed method avoids the dependence of the magnitudes of ligand STD signals at a given saturation time on spurious factors by constructing the binding isotherms using the initial growth rates of the STD amplification factors, in a similar way to the use of NOE growing rates to estimate cross relaxation rates for distance evaluations. Herein, it is demonstrated that the effects of these factors are cancelled out by analyzing the protein-ligand association curve using STD values at the limit of zero saturation time, when virtually no ligand rebinding or relaxation takes place. The approach is validated for two well-studied protein-ligand systems: the binding of the saccharides GlcNAc and GlcNAcbeta1,4GlcNAc (chitobiose) to the wheat germ agglutinin (WGA) lectin, and the interaction of the amino acid L-tryptophan to bovine serum albumin (BSA). In all cases, the experimental K(D) measured under different experimental conditions converged to the thermodynamic values. The proposed protocol allows accurate determinations of protein-ligand dissociation constants, extending the applicability of the STD NMR spectroscopy for affinity measurements, which is of particular relevance for those proteins for which a ligand of known affinity is not available.

  2. Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study.

    PubMed

    Jule, Eduardo; Nagasaki, Yukio; Kataoka, Kazunori

    2003-01-01

    Lactose molecules were installed on the surface of poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) block copolymer micelles in the scope of seeking specific recognition by cell surface receptors at hepatic sites. This, in turn, is expected to result in the formation of a complex displaying prolonged retention times and thus enhanced cellular internalization by receptor-mediated endocytosis. The so-obtained particles based on a block copolymer of molecular weight 9400 g/mol (4900/4500 g/mol for the PEG and PLA blocks, respectively) were found to have an average hydrodynamic diameter of 31.8 nm, as measured by dynamic light scattering. Further, the particle size distribution (micro(2)/Gamma(2)) was found to be lower than 0.08. Lactose-PEG-PLA micelles (Lac-micelles) were then injected over a gold surface containing Ricinus communis agglutinin lectins simulating the aforementioned glycoreceptors, and their interaction was studied by surface plasmon resonance. Then, a kinetic evaluation was carried out, by fitting the observed data mathematically. It appears that Lac-micelles bind in a multivalent manner to the lectin protein bed, which logically results in low dissociation constants. Micelles bearing a ligand density of 80% (Lac-micelles 80%: 80 lactose molecules per 100 copolymer chains) exhibit fast association phases (k(a1) = 3.2 x 10(4) M(-)(1) s(-)(1)), but also extremely slow dissociation phases (k(d1) = 1.3 x 10(-)(4) s(-)(1)). Recorded sensorgrams were fitted with a trivalent model, conveying a calculated equilibrium dissociation constant (K(D1) = k(d1)/k(a1)) of about 4 nM. The importance of cooperative binding was also assessed, by preparing Lac-micelles bearing different ligand densities, and by discussing the influence of the latter on kinetic constants. Interestingly enough, whereas Lac-micelles 80% bind in a trivalent manner to the protein bed, Lac-micelles 20% are still capable of forming bivalent complexes with the same protein bed (K(D1) = 1360 nM). Therefore, despite enhanced kinetic values brought about by a supplementary bond, lower ligand densities appear to be more effective on a molecular basis.

  3. Renal receptors for atrial and C-type natriuretic peptides in the rat.

    PubMed

    Brown, J; Zuo, Z

    1992-07-01

    Receptors for alpha-atrial natriuretic peptide (alpha-ANP) and C-type natriuretic peptide [CNP-(1-22)] were quantified in kidneys from adult Wistar rats by in vitro autoradiography. 125I-labeled alpha-ANP (100 pM) bound reversibly to glomeruli, outer medullary vasa recta, and inner medulla with an apparent dissociation constant (Kd) of 3-6 nM. The presence of 10 microM des-[Gln18,Ser19,Gly20,Leu21,Gly22]ANP-(4- 23) (C-ANP), a specific ligand of the ANPR-C subtype of alpha-ANP receptor, inhibited approximately 50% of the glomerular binding of 125I-alpha-ANP, and this moiety of glomerular binding was also inhibited by CNP-(1-22) with an apparent inhibitory constant (Ki) of 10.47 +/- 7.59 nM. C-ANP and CNP-(1-22) showed little affinity for the medullary binding sites of alpha-ANP. 125I-[Tyr0]CNP-(1-22) (110 pM) bound solely to glomeruli and was competitively displaced by increasing concentrations of [Tyr0]CNP-(1-22) with an apparent Kd of 1.42 +/- 0.48 nM. Binding of increasing concentrations (25 pM to 1 nM) of 125I-[Tyr0]CNP-(1-22) in the presence or absence of 1 microM [Tyr0]CNP-(1-22) also demonstrated a high affinity (Kd of 0.41 +/- 0.07 nM) for the glomerular binding of 125I-[Tyr0]CNP-(1-22). Bound 125I-[Tyr0]CNP-(1-22) could be displaced by excess alpha-ANP and excess CNP-(1-22), both with high affinities. The glomerular binding of 125I-[Tyr0]CNP-(1-22) was also prevented by 10 microM C-ANP. Guanosine 3',5'-cyclic monophosphate produced by isolated glomeruli was measured by radioimmunoassay.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Calorimetric and spectroscopic investigation of the interaction between the C-terminal domain of Enzyme I and its ligands

    PubMed Central

    Yun, Young-Joo; Suh, Jeong-Yong

    2012-01-01

    Enzyme I initiates a series of phosphotransfer reactions during sugar uptake in the bacterial phosphotransferase system. Here, we have isolated a stable recombinant C-terminal domain of Enzyme I (EIC) of Escherichia coli and characterized its interaction with the N-terminal domain of Enzyme I (EIN) and also with various ligands. EIC can phosphorylate EIN, but their binding is transient regardless of the presence of phosphoenolpyruvate (PEP). Circular dichroism and NMR indicate that ligand binding to EIC induces changes near aromatic groups but not in the secondary structure of EIC. Binding of PEP to EIC is an endothermic reaction with the equilibrium dissociation constant (KD) of 0.28 mM, whereas binding of the inhibitor oxalate is an exothermic reaction with KD of 0.66 mM from calorimetry. The binding thermodynamics of EIC and PEP compared to that of Enzyme I (EI) and PEP reveals that domain–domain motion in EI can contribute as large as ∼−3.2 kcal/mol toward PEP binding. PMID:22936614

  5. Fusicoccin-Binding Proteins in Arabidopsis thaliana (L.) Heynh. 1

    PubMed Central

    Meyer, Christiane; Feyerabend, Martin; Weiler, Elmar W.

    1989-01-01

    Using the novel radioligand, [3H]-9′-nor-fusicoccin-8′-alcohol, high affinity binding sites for fusicoccin were characterized in preparations from leaves of Arabidopsis thaliana (L.) Heynh. The binding site copartitioned with the plasmalemma marker, vanadate-sensitive K+, Mg2+-ATPase, when microsomal fractions were further purified by aqueous two-phase partitioning in polyethylene glycol-dextran phase systems and sedimented at an equilibrium density of 1.17 grams per cubic centimeter in continuous sucrose density gradients, as did the ATPase marker. The binding of [3H]-9′-nor-fusicoccin-8′-alcohol was saturable and Scatchard analysis revealed a biphasic plot with two apparent dissociation constants (KD), KD1 = 1.5 nanomolar and KD2 = 42 nanomolar, for the radioligand. Binding was optimal at pH 6, thermolabile, and was reduced by 70% when the membrane vesicles were pretreated with trypsin. The data are consistent with the presence of one or several binding proteins for fusicoccin at the plasma membrane of A. thaliana. Binding of the radioligand was unaffected by pretreatment of the sites with various alkylating and reducing agents, but was reduced by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, diethylpyrocarbonate, chloramine T, and periodate. A number of detergents were tested to find optimum conditions for solubilization. Nonanoyl-N-methylglucamide (50 millimolar) solubilized 70% of the radioligand-binding protein complex in undissociated form. Photoaffinity labeling of membrane preparations with a tritiated azido analog of fusicoccin resulted in the labeling of a 34 ± 1 kilodalton polypeptide. Labeling of this polypeptide, presumably the fusicoccin-binding protein, was severely reduced in the presence of unlabeled fusicoccin. PMID:16666603

  6. Affinity, Avidity, and Kinetics of Target Sequence Binding to LC8 Dynein Light Chain Isoforms*

    PubMed Central

    Radnai, László; Rapali, Péter; Hódi, Zsuzsa; Süveges, Dániel; Molnár, Tamás; Kiss, Bence; Bécsi, Bálint; Erdödi, Ferenc; Buday, László; Kardos, József; Kovács, Mihály; Nyitray, László

    2010-01-01

    LC8 dynein light chain (DYNLL) is a highly conserved eukaryotic hub protein with dozens of binding partners and various functions beyond being a subunit of dynein and myosin Va motor proteins. Here, we compared the kinetic and thermodynamic parameters of binding of both mammalian isoforms, DYNLL1 and DYNLL2, to two putative consensus binding motifs (KXTQTX and XG(I/V)QVD) and report only subtle differences. Peptides containing either of the above motifs bind to DYNLL2 with micromolar affinity, whereas a myosin Va peptide (lacking the conserved Gln) and the noncanonical Pak1 peptide bind with Kd values of 9 and 40 μm, respectively. Binding of the KXTQTX motif is enthalpy-driven, although that of all other peptides is both enthalpy- and entropy-driven. Moreover, the KXTQTX motif shows strikingly slower off-rate constant than the other motifs. As most DYNLL partners are homodimeric, we also assessed the binding of bivalent ligands to DYNLL2. Compared with monovalent ligands, a significant avidity effect was found as follows: Kd values of 37 and 3.5 nm for a dimeric myosin Va fragment and a Leu zipper dimerized KXTQTX motif, respectively. Ligand binding kinetics of DYNLL can best be described by a conformational selection model consisting of a slow isomerization and a rapid binding step. We also studied the binding of the phosphomimetic S88E mutant of DYNLL2 to the dimeric myosin Va fragment, and we found a significantly lower apparent Kd value (3 μm). We conclude that the thermodynamic and kinetic fine-tuning of binding of various ligands to DYNLL could have physiological relevance in its interaction network. PMID:20889982

  7. Modeling the Concentrations and Efficiencies for the Interacting Species of Pyropheophorbide Methyl Ester-Copper Association

    NASA Astrophysics Data System (ADS)

    Al-Omari, S.

    2013-07-01

    The interaction between pyropheophorbide methyl ester (PPME) and Cu2+ was investigated using UV-vis and fluorescence spectrscopy. Study of the binding interaction between PPME and Cu2+ could contribute to understanding of its pharmacokinetics and pharmacodynamics. Parameters of the static and dynamic fluorescence quenching of PPME-Cu2+ association were calculated at different temperatures. For binding site of 1:1 at 299 K, the static binding constant (kS), the static isosbestic concentration (CS{ iso}), the dynamic binding constant (kD), and the dynamic isosbestic concentration (CD{ iso }) are, respectively, 61 M-1, 0.0164 M, 75 M-1, and 0.0133 M. The concentrations and efficiencies of the intermediates species were modeled. Satisfactory correspondence between the experimental and calculated results was found.

  8. Kinetic study of the effects of calcium ions on cationic artichoke (Cynara scolymus L.) peroxidase: calcium binding, steady-state kinetics and reactions with hydrogen peroxide.

    PubMed

    Hiner, Alexander N P; Sidrach, Lara; Chazarra, Soledad; Varón, Ramón; Tudela, José; García-Cánovas, Francisco; Rodríguez-López, José Neptuno

    2004-01-01

    The apparent catalytic constant (k(cat)) of artichoke (Cynara scolymus L.) peroxidase (AKPC) with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) increased 130-fold in the presence of calcium ions (Ca2+) but the affinity (K(m)) of the enzyme for ABTS was 500 times lower than for Ca2+-free AKPC. AKPC is known to exhibit an equilibrium between 6-aquo hexa-coordinate and penta-coordinate forms of the haem iron that is modulated by Ca2+ and affects compound I formation. Measurements of the Ca2+ dissociation constant (K(D)) were complicated by the water-association/dissociation equilibrium yielding a global value more than 1000 times too high. The value for the Ca2+ binding step alone has now been determined to be K(D) approximately 10 nM. AKPC-Ca2+ was more resistant to inactivation by hydrogen peroxide (H(2)O(2)) and exhibited increased catalase activity. An analysis of the complex H(2)O(2) concentration dependent kinetics of Ca2+-free AKPC is presented.

  9. Spectroscopic analyses on interaction of o-Vanillin- D-Phenylalanine, o-Vanillin- L-Tyrosine and o-Vanillin- L-Levodopa Schiff Bases with bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin- D-Phenylalanine (o-VDP), o-Vanillin- L-Tyrosine (o-VLT) and o-Vanillin- L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant ( Kq), apparent quenching constant ( Ksv), effective binding constant ( KA) and corresponding dissociation constant ( KD) as well as binding site number ( n) were obtained. In addition, the binding distance ( r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA > o-VLT-BSA > o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues.

  10. Spectroscopic analyses on interaction of o-Vanillin-D-Phenylalanine, o-Vanillin-L-Tyrosine and o-Vanillin-L-Levodopa Schiff Bases with bovine serum albumin (BSA).

    PubMed

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin-D-Phenylalanine (o-VDP), o-Vanillin-L-Tyrosine (o-VLT) and o-Vanillin-L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant (K(q)), apparent quenching constant (K(sv)), effective binding constant (K(A)) and corresponding dissociation constant (K(D)) as well as binding site number (n) were obtained. In addition, the binding distance (r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA>o-VLT-BSA>o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. p-( sup 125 I)iodoclonidine is a partial agonist at the alpha 2-adrenergic receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhardt, M.A.; Wade, S.M.; Neubig, R.R.

    1990-08-01

    The binding properties of p-(125I)iodoclonidine (( 125I)PIC) to human platelet membranes and the functional characteristics of PIC are reported. (125I)PIC bound rapidly and reversibly to platelet membranes, with a first-order association rate constant (kon) at room temperature of 8.0 +/- 2.7 x 10(6) M-1 sec-1 and a dissociation rate constant (koff) of 2.0 +/- 0.8 x 10(-3) sec-1. Scatchard plots of specific (125I)PIC binding (0.1-5 nM) were linear, with a Kd of 1.2 +/- 0.1 nM. (125I)PIC bound to the same number of high affinity sites as the alpha 2-adrenergic receptor (alpha 2-AR) full agonist (3H) bromoxidine (UK14,304), which representedmore » approximately 40% of the sites bound by the antagonist (3H)yohimbine. Guanosine 5'-(beta, gamma-imido)triphosphate greatly reduced the amount of (125I)PIC bound (greater than 80%), without changing the Kd of the residual binding. In competition experiments, the alpha 2-AR-selective ligands yohimbine, bromoxidine, oxymetazoline, clonidine, p-aminoclonidine, (-)-epinephrine, and idazoxan all had Ki values in the low nanomolar range, whereas prazosin, propranolol, and serotonin yielded Ki values in the micromolar range. Epinephrine competition for (125I)PIC binding was stereoselective. Competition for (3H)bromoxidine binding by PIC gave a Ki of 1.0 nM (nH = 1.0), whereas competition for (3H)yohimbine could be resolved into high and low affinity components, with Ki values of 3.7 and 84 nM, respectively. PIC had minimal agonist activity in inhibiting adenylate cyclase in platelet membranes, but it potentiated platelet aggregation induced by ADP with an EC50 of 1.5 microM. PIC also inhibited epinephrine-induced aggregation, with an IC50 of 5.1 microM. Thus, PIC behaves as a partial agonist in a human platelet aggregation assay. (125I)PIC binds to the alpha 2B-AR in NG-10815 cell membranes with a Kd of 0.5 +/- 0.1 nM.« less

  12. Affinity of hemoglobin for the cytoplasmic fragment of human erythrocyte membrane band 3. Equilibrium measurements at physiological pH using matrix-bound proteins: the effects of ionic strength, deoxygenation and of 2,3-diphosphoglycerate.

    PubMed

    Chétrite, G; Cassoly, R

    1985-10-05

    The cytoplasmic fragment of band 3 protein isolated from the human erythrocyte membrane was linked to a CNBr-activated Sepharose matrix in an attempt to measure, in batch experiments, its equilibrium binding constant with oxy- and deoxyhemoglobin at physiological pH and ionic strength values and in the presence or the absence of 2,3-diphosphoglycerate. All the experiments were done at pH 7.2, and equilibrium constants were computed on the basis of one hemoglobin tetramer bound per monomer of fragment. In 10 mM-phosphate buffer, a dissociation constant KD = 2 X 10(-4)M was measured for oxyhemoglobin and was shown to increase to 8 X 10(-4)M in the presence of 50 mM-NaCl. Association could not be demonstrated at higher salt concentrations. Diphosphoglycerate-stripped deoxyhemoglobin was shown to associate more strongly with the cytoplasmic fragment of band 3. In 10 mM-bis-Tris (pH 7.2) and in the presence of 120 mM-NaCl, a dissociation constant KD = 4 X 10(-4)M was measured. Upon addition of increasing amounts of 2,3-diphosphoglycerate, the complex formed between deoxyhemoglobin and the cytoplasmic fragment of band 3 was dissociated. On the reasonable assumption that the hemoglobin binding site present on band 3 fragment was not modified upon linking the protein to the Sepharose matrix, the results indicated that diphosphoglycerate-stripped deoxyhemoglobin or partially liganded hemoglobin tetramers in the T state could bind band 3 inside the intact human red blood cell.

  13. Titration calorimetry of anesthetic-protein interaction: negative enthalpy of binding and anesthetic potency.

    PubMed

    Ueda, I; Yamanaka, M

    1997-04-01

    Anesthetic potency increases at lower temperatures. In contrast, the transfer enthalpy of volatile anesthetics from water to macromolecules is usually positive. The transfer decreases at lower temperature. It was proposed that a few selective proteins bind volatile anesthetics with negative delta H, and these proteins are involved in signal transduction. There has been no report on direct estimation of binding delta H of anesthetics to proteins. This study used isothermal titration calorimetry to analyze chloroform binding to bovine serum albumin. The calorimetrically measured delta H cal was -10.37 kJ.mol-1. Thus the negative delta H of anesthetic binding is not limited to signal transduction proteins. The binding was saturable following Fermi-Dirac statistics and is characterized by the Langmuir adsorption isotherms, which is interfacial. The high-affinity association constant, K, was 2150 +/- 132 M-1 (KD = 0.47 mM) with the maximum binding number, Bmax = 3.7 +/- 0.2. The low-affinity K was 189 +/- 3.8 M-1 (KD = 5.29 mM), with a Bmax of 13.2 +/- 0.3. Anesthetic potency is a function of the activity of anesthetic molecules, not the concentration. Because the sign of delta H determines the temperature dependence of distribution of anesthetic molecules, it is irrelevant to the temperature dependence of anesthetic potency.

  14. Titration calorimetry of anesthetic-protein interaction: negative enthalpy of binding and anesthetic potency.

    PubMed Central

    Ueda, I; Yamanaka, M

    1997-01-01

    Anesthetic potency increases at lower temperatures. In contrast, the transfer enthalpy of volatile anesthetics from water to macromolecules is usually positive. The transfer decreases at lower temperature. It was proposed that a few selective proteins bind volatile anesthetics with negative delta H, and these proteins are involved in signal transduction. There has been no report on direct estimation of binding delta H of anesthetics to proteins. This study used isothermal titration calorimetry to analyze chloroform binding to bovine serum albumin. The calorimetrically measured delta H cal was -10.37 kJ.mol-1. Thus the negative delta H of anesthetic binding is not limited to signal transduction proteins. The binding was saturable following Fermi-Dirac statistics and is characterized by the Langmuir adsorption isotherms, which is interfacial. The high-affinity association constant, K, was 2150 +/- 132 M-1 (KD = 0.47 mM) with the maximum binding number, Bmax = 3.7 +/- 0.2. The low-affinity K was 189 +/- 3.8 M-1 (KD = 5.29 mM), with a Bmax of 13.2 +/- 0.3. Anesthetic potency is a function of the activity of anesthetic molecules, not the concentration. Because the sign of delta H determines the temperature dependence of distribution of anesthetic molecules, it is irrelevant to the temperature dependence of anesthetic potency. PMID:9083685

  15. Calcium ion binding properties and the effect of phosphorylation on the intrinsically disordered Starmaker protein.

    PubMed

    Wojtas, Magdalena; Hołubowicz, Rafał; Poznar, Monika; Maciejewska, Marta; Ożyhar, Andrzej; Dobryszycki, Piotr

    2015-10-27

    Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins.

  16. Insights into the complex association of bovine factor Va with acidic-lipid-containing synthetic membranes.

    PubMed Central

    Cutsforth, G A; Koppaka, V; Krishnaswamy, S; Wu, J R; Mann, K G; Lentz, B R

    1996-01-01

    The mechanism of binding of blood coagulation cofactor factor Va to acidic-lipid-containing membranes has been addressed. Binding isotherms were generated at room temperature using the change in fluorescence anisotropy of pyrene-labeled bovine factor Va to detect binding to sonicated membrane vesicles containing either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-3-sn-phosphatidylglycerol (DOPG) in combination with 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC). The composition of the membranes was varied from 0 to 40 mol% for PS/POPC and from 0 to 65 mol % for DOPG/POPC membranes. Fitting the data to a classical Langmuir adsorption model yielded estimates of the dissociation constant (Kd) and the stoichiometry of binding. The values of Kd defined in this way displayed a maximum at low acidic lipid content but were nearly constant at intermediate to high fractions of acidic lipid. Fitting the binding isotherms to a two-process binding model (nonspecific adsorption in addition to binding of acidic lipids to sites on the protein) suggested a significant acidic-lipid-independent binding affinity in addition to occupancy of three protein sites that bind PS in preference to DOPG. Both analyses indicated that interaction of factor Va with an acidic-lipid-containing membrane is much more complex than those of factor Xa or prothrombin. Furthermore, a change in the conformation of bound pyrene-labeled factor Va with surface concentration of acidic lipid was implied by variation of both the saturating fluorescence anisotropy and the binding parameters with the acidic lipid content of the membrane. Finally, the results cannot support the contention that binding occurs through nonspecific adsorption to a patch or domain of acidic lipids in the membrane. Factor Va is suggested to associate with membranes by a complex process that includes both acidic-lipid-specific and acidic-lipid-independent sites and a protein structure change induced by occupancy of acidic-lipid-specific sites on the factor Va molecule. Images FIGURE 5 PMID:8744332

  17. Non-Markovian effects in the first-passage dynamics of obstructed tracer particle diffusion in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Forsling, Robin; Sanders, Lloyd P.; Ambjörnsson, Tobias; Lizana, Ludvig

    2014-09-01

    The standard setup for single-file diffusion is diffusing particles in one dimension which cannot overtake each other, where the dynamics of a tracer (tagged) particle is of main interest. In this article, we generalize this system and investigate first-passage properties of a tracer particle when flanked by identical crowder particles which may, besides diffuse, unbind (rebind) from (to) the one-dimensional lattice with rates koff (kon). The tracer particle is restricted to diffuse with rate kD on the lattice and the density of crowders is constant (on average). The unbinding rate koff is our key parameter and it allows us to systematically study the non-trivial transition between the completely Markovian case (koff ≫ kD) to the non-Markovian case (koff ≪ kD) governed by strong memory effects. This has relevance for several quasi one-dimensional systems. One example is gene regulation where regulatory proteins are searching for specific binding sites on a crowded DNA. We quantify the first-passage time distribution, f (t) (t is time), numerically using the Gillespie algorithm, and estimate f (t) analytically. In terms of koff (keeping kD fixed), we study the transition between the two known regimes: (i) when koff ≫ kD the particles may effectively pass each other and we recover the single particle result f (t) ˜ t-3/2, with a reduced diffusion constant; (ii) when koff ≪ kD unbinding is rare and we obtain the single-file result f (t) ˜ t-7/4. The intermediate region displays rich dynamics where both the characteristic f (t) - peak and the long-time power-law slope are sensitive to koff.

  18. Dual-emitting biosensors for glucose and glutamine from genertically engineered E. coli binding proteins

    NASA Astrophysics Data System (ADS)

    Tolosa, Leah; Ge, Xudong; Kostov, Yordan; Lakowicz, Joseph R.; Rao, Govind

    2003-07-01

    Glucose is the major source of carbon, and glutamine is the major source of nitrogen in cell culture media. Thus, glucose and glutamine monitoring are important in maintaining optimal conditions in industrial bioprocesses. Here we report reagentless glucose and glutamine sensors using the E. coli glucose binding protein (GBP) and the glutamine binding protein (GlnBP). Both of these proteins are derived from the permease system of the gram-negative bacteria. The Q26C variant of GBP was labeled at the 26-position with anilino-naphthalene sulfonate (ANS), while the S179C variant of GlnBP was labeled at the 179-position with acrylodan. The ANS and acrylodan emissions are quenched in the presence of glucose and glutamine, respectively. The acrylodan-labeled GlnBP was labeled at the N-terminal with ruthenium bis-(2,2"-bipyridyl)-1,10-phenanthroline-9-isothiocyanate. The ruthenium acts as a non-responsive long-lived reference. The apparent binding constant, Kd", of 8.0 μM glucose was obtained from the decrease in intensity of ANS in GBP. The reliability of the method in monitoring glucose during yeast fermentation was determined by comparison with the YSI Biochemistry Analyzer. The apparent binding constant, Kd", of 0.72 μM glutamine was calculated from the ratio of emission intensities of acrylodan and ruthenium (I515/I610) in GlnBP. The presence of the long-lived ruthenium allowed for modulation sensing at lower frequencies (1-10 MHz) approaching an accuracy of +/- 0.02 μM. The conversion of the GBP into a similar ratiometric sensor was described.

  19. Tungsten Transport Protein A (WtpA) in Pyrococcus furiosus: the First Member of a New Class of Tungstate and Molybdate Transporters

    PubMed Central

    Bevers, Loes E.; Hagedoorn, Peter-Leon; Krijger, Gerard C.; Hagen, Wilfred R.

    2006-01-01

    A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [KD] of 17 ± 7 pM) and molybdate (KD of 11 ± 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low KD values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein. PMID:16952940

  20. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate.more » Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.« less

  1. Nanopore Force Spectroscopy of Aptamer–Ligand Complexes

    PubMed Central

    Arnaut, Vera; Langecker, Martin; Simmel, Friedrich C.

    2013-01-01

    The stability of aptamer–ligand complexes is probed in nanopore-based dynamic force spectroscopy experiments. Specifically, the ATP-binding aptamer is investigated using a backward translocation technique, in which the molecules are initially pulled through an α-hemolysin nanopore from the cis to the trans side of a lipid bilayer membrane, allowed to refold and interact with their target, and then translocated back in the trans–cis direction. From these experiments, the distribution of bound and unbound complexes is determined, which in turn allows determination of the dissociation constant Kd ≈ 0.1 mM of the aptamer and of voltage-dependent unfolding rates. The experiments also reveal differences in binding of the aptamer to AMP, ADP, or ATP ligands. Investigation of an aptamer variant with a stabilized ATP-binding site indicates fast conformational switching of the original aptamer before ATP binding. Nanopore force spectroscopy is also used to study binding of the thrombin-binding aptamer to its target. To detect aptamer–target interactions in this case, the stability of the ligand-free aptamer—containing G-quadruplexes—is tuned via the potassium content of the buffer. Although the presence of thrombin was detected, limitations of the method for aptamers with strong secondary structures and complexes with nanomolar Kd were identified. PMID:24010663

  2. Binding of fluoresceinated epidermal growth factor to A431 cell sub-populations studied using a model-independent analysis of flow cytometric fluorescence data.

    PubMed Central

    Chatelier, R C; Ashcroft, R G; Lloyd, C J; Nice, E C; Whitehead, R H; Sawyer, W H; Burgess, A W

    1986-01-01

    A method is developed for determining ligand-cell association parameters from a model-free analysis of data obtained with a flow cytometer. The method requires measurement of the average fluorescence per cell as a function of ligand and cell concentration. The analysis is applied to data obtained for the binding of fluoresceinated epidermal growth factor to a human epidermoid carcinoma cell line, A431. The results indicate that the growth factor binds to two classes of sites on A431 cells: 4 X 10(4) sites with a dissociation constant (KD) of less than or equal to 20 pM, and 1.5 X 10(6) sites with a KD of 3.7 nM. A derived plot of the average fluorescence per cell versus the average number of bound ligands per cell is used to construct binding isotherms for four sub-populations of A431 cells fractionated on the basis of low-angle light scatter. The four sub-populations bind the ligand with equal affinity but differ substantially in terms of the number of binding sites per cell. We also use this new analysis to critically evaluate the use of 'Fluorotrol' as a calibration standard in flow cytometry. PMID:3015587

  3. Binding mode of cytochalasin B to F-actin is altered by lateral binding of regulatory proteins.

    PubMed

    Suzuki, N; Mihashi, K

    1991-01-01

    The binding of cytochalasin B (CB) to F-actin was studied using a trace amount of [3H]-cytochalasin B. F-Actin-bound CB was separated from free CB by ultracentrifugation and the amount of F-actin-bound CB was determined by comparing the radioactivity both in the supernatant and in the precipitate. A filament of pure F-actin possessed one high-affinity binding site for CB (Kd = 5.0 nM) at the B-end. When the filament was bound to native tropomyosin (complex of tropomyosin and troponin), two low-affinity binding sites for CB (Kd = 230 nM) were created, while the high-affinity binding site was reserved (Kd = 3.4 nM). It was concluded that the creation of low-affinity binding sites was primarily due to binding of tropomyosin to F-actin, as judged from the following two observations: (1) a filament of F-actin/tropomyosin complex possessed one high-affinity binding site (Kd = 3.9 nM) plus two low-affinity binding sites (Kd = 550 nM); (2) the Ca2(+)-receptive state of troponin C in F-actin/native tropomyosin complex did not affect CB binding.

  4. Erythroblast transferrin receptors and transferrin kinetics in iron deficiency and various anemias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muta, K.; Nishimura, J.; Ideguchi, H.

    1987-06-01

    To clarify the role of transferrin receptors in cases of altered iron metabolism in clinical pathological conditions, we studied: number of binding sites; affinity; and recycling kinetics of transferrin receptors on human erythroblasts. Since transferrin receptors are mainly present on erythroblasts, the number of surface transferrin receptors was determined by assay of binding of /sup 125/I-transferrin and the percentage of erythroblasts in bone marrow mononuclear cells. The number of binding sites on erythroblasts from patients with an iron deficiency anemia was significantly greater than in normal subjects. Among those with an aplastic anemia, hemolytic anemia, myelodysplastic syndrome, and polycythemia veramore » compared to normal subjects, there were no considerable differences in the numbers of binding sites. The dissociation constants (Kd) were measured using Scatchard analysis. The apparent Kd was unchanged (about 10 nmol/L) in patients and normal subjects. The kinetics of endocytosis and exocytosis of /sup 125/I-transferrin, examined by acid treatment, revealed no variations in recycling kinetics among the patients and normal subjects. These data suggest that iron uptake is regulated by modulation of the number of surface transferrin receptors, thereby reflecting the iron demand of the erythroblast.« less

  5. The promiscuous protein binding ability of erythrosine B studied by metachromasy (metachromasia).

    PubMed

    Ganesan, Lakshmi; Buchwald, Peter

    2013-04-01

    The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly-iodinated xanthene dye and an FDA-approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein-protein interactions (PPIs) with a remarkably consistent median inhibitory concentration (IC50 ) in the 5- to 30-μM range. Because ErB exhibits metachromasy, that is, color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd ) and stoichiometry (nb ) using spectrophotometric methods. Binding was reversible, and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 μM for BSA and CD40L, respectively) were in good agreement with that expected from the PPI inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5-6 and 8-9 for BSA and CD40L, respectively), indicating the possibility of nonspecific binding of the flat and rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding. Copyright © 2013 John Wiley & Sons, Ltd.

  6. The Promiscuous Protein Binding Ability of Erythrosine B Studied by Metachromasy (Metachromasia)

    PubMed Central

    Ganesan, Lakshmi; Buchwald, Peter

    2013-01-01

    The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly-iodinated xanthene dye and an FDA-approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein–protein interactions (PPI) with a remarkably consistent median inhibitory concentration (IC50) in the 5–30 µM range. Because ErB exhibits metachromasy, i.e., color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd) and stoichiometry (nb) using spectrophotometric methods. Binding was reversible and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 µM for BSA and CD40L, respectively) were in good agreement with that expected from the protein–protein interaction (PPI) inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5–6 and 8–9 for BSA and CD40L, respectively) indicating the possibility of nonspecific binding of the flat an rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding. PMID:23456742

  7. Use of synthetic peptide libraries for the H-2Kd binding motif identification.

    PubMed

    Quesnel, A; Casrouge, A; Kourilsky, P; Abastado, J P; Trudelle, Y

    1995-01-01

    To identify Kd-binding peptides, an approach based on small peptide libraries has been developed. These peptide libraries correspond to all possible single-amino acid variants of a particular Kd-binding peptide, SYIPSAEYI, an analog of the Plasmodium berghei 252-260 antigenic peptide SYIPSAEKI. In the parent sequence, each position is replaced by all the genetically encoded amino acids (except cysteine). The multiple analog syntheses are performed either by the Divide Couple and Recombine method or by the Single Resin method and generate mixtures containing 19 peptides. The present report deals with the synthesis, the purification, the chemical characterization by amino acid analysis and electrospray mass spectrometry (ES-MS), and the application of such mixtures in binding tests with a soluble, functionally empty, single-chain H-2Kd molecule denoted SC-Kd. For each mixture, bound peptides were eluted and analyzed by sequencing. Since the binding tests were realized in noncompetitive conditions, our results show that a much broader set of peptides bind to Kd than expected from previous studies. This may be of practical importance when looking for low affinity peptides such as tumor peptides capable of eliciting protective immune response.

  8. Effect of N-benzoyl-D-phenylalanine and metformin on insulin receptors in neonatal streptozotocin-induced diabetic rats: studies on insulin binding to erythrocytes.

    PubMed

    Ashokkumar, N; Pari, L; Rao, Ch Appa

    2006-07-01

    In the present study, we focused on the insulin-receptor binding in circulating erythrocytes of N-benzoyl-D-phenylalanine (NBDP) and metformin in neonatal streptozotocin (nSTZ)-induced male Wistar rats. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors in NBDP and metformin-treated diabetic rats. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (53.0 +/- 3.1%) than in NBDP (62.0 +/- 3.1%), metformin (66.0 +/- 3.3%) and NBDP and metformin combination-treated (72.0 +/- 4.2%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with NBDP and metformin-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from NBDP and metformin-treated diabetic rats having NBDP 2.0 +/- 0.10 x 10(-10) M(-1) (Kd1); 12.0 +/- 0.85 x 10(-8) M(-1) (Kd2), Metformin 2.1 +/- 0.15 x 10(-10) M(-1) (Kd1); 15.0 +/- 0.80 x 10(-8) M(-1) (Kd2), NBDP and metformin 2.7 +/- 0.10 x 10(-10) M(-1) (Kd1); 20.0 +/- 1.2 x 10(-8) M(-1) (Kd2) compared with 0.9 +/- 0.06 x 10(-10) M(-1) (Kd1); 6.0 +/- 0.30 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in nSTZ induced diabetic control rats. Treatment with NBDP along with metformin significantly improved specific insulin binding, with receptor number and affinity binding reaching almost normal non-diabetic levels. The data presented here show that NBDP along with metformin increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.

  9. Interaction of Trypanosoma evansi with the plasminogen-plasmin system.

    PubMed

    Acosta, Héctor; Rondón-Mercado, Rocío; Avilán, Luisana; Concepción, Juan Luis

    2016-08-15

    Trypanosoma evansi is a widely-distributed haemoflagellated parasite of veterinary importance that infects a variety of mammals including horses, mules, camels, buffalos, cattle and deer. It is the causal agent of a trypanosomiasis known as Surra which produces epidemics of great economic importance in Africa, Asia and South America. The main pathology includes an enlarged spleen with hypertrophy of lymphoid follicles, congested lungs, neuronal degeneration and meningoencephalitis, where migration of the parasites from the blood to the tissues is essential. Most cells, including pathogenic cells, use diverse strategies for tissue invasion, such as the expression of surface receptors to bind plasminogen or plasmin. In this work, we show that T. evansi is able to bind plasminogen and plasmin on its surface. The analysis of this binding revealed a high affinity dissociation constant (Kd of 0.080±0.009μM) and 1×10(5) plasminogen binding sites per cell. Also a second population of receptors with a Kd of 0.255±0.070μM and 3.2×10(4) plasminogen binding sites per cell was determined. Several proteins with molecular masses between ∼18 and ∼70kDa are responsible for this binding. This parasite-plasminogen interaction may be important in the establishment of the infection in the vertebrate host, where the physiological concentration of available plasminogen is around 2μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Identification and characterization of the sodium-binding site of activated protein C.

    PubMed

    He, X; Rezaie, A R

    1999-02-19

    Activated protein C (APC) requires both Ca2+ and Na+ for its optimal catalytic function. In contrast to the Ca2+-binding sites, the Na+-binding site(s) of APC has not been identified. Based on a recent study with thrombin, the 221-225 loop is predicted to be a potential Na+-binding site in APC. The sequence of this loop is not conserved in trypsin. We engineered a Gla domainless form of protein C (GDPC) in which the 221-225 loop was replaced with the corresponding loop of trypsin. We found that activated GDPC (aGDPC) required Na+ (or other alkali cations) for its amidolytic activity with dissociation constant (Kd(app)) = 44.1 +/- 8.6 mM. In the presence of Ca2+, however, the requirement for Na+ by aGDPC was eliminated, and Na+ stimulated the cleavage rate 5-6-fold with Kd(app) = 2.3 +/- 0.3 mM. Both cations were required for efficient factor Va inactivation by aGDPC. In the presence of Ca2+, the catalytic function of the mutant was independent of Na+. Unlike aGDPC, the mutant did not discriminate among monovalent cations. We conclude that the 221-225 loop is a Na+-binding site in APC and that an allosteric link between the Na+ and Ca2+ binding loops modulates the structure and function of this anticoagulant enzyme.

  11. Structural and thermodynamic characterization of the recognition of the S100-binding peptides TRTK12 and p53 by calmodulin

    PubMed Central

    Wafer, Lucas N; Tzul, Franco O; Pandharipande, Pranav P; McCallum, Scott A; Makhatadze, George I

    2014-01-01

    Calmodulin (CaM) is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells in a calcium-dependent manner. CaM has been proposed to be functionally distinct from the S100 proteins, a related family of eukaryotic calcium-binding proteins. Previously, it was demonstrated that peptides derived from the actin-capping protein, TRTK12, and the tumor-suppressor protein, p53, interact with multiple members of the S100 proteins. To test the specificity of these peptides, they were screened using isothermal titration calorimetry against 16 members of the human S100 protein family, as well as CaM, which served as a negative control. Interestingly, both the TRTK12 and p53 peptides were found to interact with CaM. These interactions were further confirmed by both fluorescence and nuclear magnetic resonance spectroscopies. These peptides have distinct sequences from the known CaM target sequences. The TRTK12 peptide was found to independently interact with both CaM domains and bind with a stoichiometry of 2:1 and dissociations constants Kd,C-term = 2 ± 1 µM and Kd,N-term = 14 ± 1 µM. In contrast, the p53 peptide was found to interact only with the C-terminal domain of CaM, Kd,C-term =2 ± 1 µM, 25°C. Using NMR spectroscopy, the locations of the peptide binding sites were mapped onto the structure of CaM. The binding sites for both peptides were found to overlap with the binding interface for previously identified targets on both domains of CaM. This study demonstrates the plasticity of CaM in target binding and may suggest a possible overlap in target specificity between CaM and the S100 proteins. PMID:24947426

  12. Avidity of the Immunoglobulin G Response to a Neisseria meningitidis Group C Polysaccharide Conjugate Vaccine as Measured by Inhibition and Chaotropic Enzyme-Linked Immunosorbent Assays▿

    PubMed Central

    Harris, Shannon L.; Tsao, How; Ashton, Lindsey; Goldblatt, David; Fernsten, Philip

    2007-01-01

    Antibody avidity, the strength of the multivalent interaction between antibodies and their antigens, is an important characteristic of protective immune responses. We have developed an inhibition enzyme-linked immunosorbent assay (ELISA) to measure antibody avidity for the capsular polysaccharide (PS) of Neisseria meningitidis group C (MnC) and determined the avidity constants (KDs) for 100 sera from children immunized with an MnC PS conjugate vaccine. The avidity constants were compared to the avidity indices (AI) obtained for the same sera using a chaotropic ELISA protocol. After the primary immunization series, the geometric mean (GM) KD was 674 nM and did not change in the months following immunization. However, the GM avidity did increase after the booster dose (GM KD, 414 nM 1 month after booster immunization). In contrast, the GM AI increased from an initial value of 118 after the primary immunization series to 147 6 months after the completion of the primary immunization series and then further increased to 178 after booster immunization. At the individual subject level, the avidity constant and AI correlated after the primary immunization series and after booster immunization but not prior to boosting. This work suggests that the AI, as measured by the chaotropic ELISA, in contrast to the KD, reflects changes that render antibody populations less susceptible to disruption by chaotropic agents without directly affecting the strength of the binding interactions. PMID:17287312

  13. Effect of Scoparia dulcis extract on insulin receptors in streptozotocin induced diabetic rats: studies on insulin binding to erythrocytes.

    PubMed

    Pari, Leelavinothan; Latha, Muniappan; Rao, Chippada Appa

    2004-01-01

    We investigated the insulin-receptor-binding effect of Scoparia dulcis plant extract in streptozotocin (STZ)-induced male Wistar rats, using circulating erythrocytes (ER) as a model system. An aqueous extract of S dulcis plant (SPEt) (200 mg/kg body weight) was administered orally. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors. Glibenclamide was used as standard reference drug. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (55.0 +/- 2.8%) than in SPEt-treated (70.0 +/- 3.5%)- and glibenclamide-treated (65.0 +/- 3.3%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with SPEt- and glibenclamide-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from SPEt and glibenclamide treated diabetic rats having 2.5 +/- 0.15 x 10(10) M(-1) (Kd1); 17.0 +/- 1.0 x 10(-8) M(-1) (Kd2), and 2.0 +/- 0.1 x 10(-10) M(-1) (Kd1); 12.3 +/- 0.9 x 10(-8) M(-1) (Kd2) compared with 1.0 +/- 0.08 x 10(-10) M(-1) (Kd1); 2.7 +/- 0.25 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in STZ-induced diabetic rats. Treatment with SPEt and glibenclamide significantly improved specific insulin binding, with receptor number and affinity binding (p < 0.001) reaching almost normal non-diabetic levels. The data presented here show that SPEt and glibenclamide increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.

  14. Imino proton exchange and base-pair kinetics in the AMP-RNA aptamer complex.

    PubMed

    Nonin, S; Jiang, F; Patel, D J

    1997-05-02

    We report on the dynamics of base-pair opening in the ATP-binding asymmetric internal loop and flanking base-pairs of the AMP-RNA aptamer complex by monitoring the exchange characteristics of the extremely well resolved imino protons in the NMR spectrum of the complex. The kinetics of imino proton exchange as a function of basic pH or added ammonia catalyst are used to measure the apparent base-pair dissociation constants and lifetimes of Watson-Crick and mismatched base-pairs, as well as the solvent accessibility of the unpaired imino protons in the complex. The exchange characteristics of the imino protons identify the existence of four additional hydrogen bonds stabilizing the conformation of the asymmetric ATP-binding internal loop that were not detected by NOEs and coupling constants alone, but are readily accommodated in the previously reported solution structure of the AMP-RNA aptamer complex published from our laboratory. The hydrogen exchange kinetics of the non-Watson-Crick pairs in the asymmetric internal loop of the AMP-RNA aptamer complex have been characterized and yield apparent dissociation constants (alphaKd) that range from 10(-2) to 10(-7). Surprisingly, three of these alphaKd values are amongst the lowest measured for all base-pairs in the AMP-RNA aptamer complex. Comparative studies of hydrogen exchange of the imino protons in the free RNA aptamer and the AMP-RNA aptamer complex establish that complexation stabilizes not only the bases within the ATP-binding asymmetric internal loop, but also the flanking stem base-pairs (two pairs on either side) of the binding site. We also outline some preliminary results related to the exchange properties of a sugar 2'-hydroxyl proton of a guanosine residue involved in a novel hydrogen bond that has been shown to contribute to the immobilization of the bound AMP by the RNA aptamer, and whose resonance is narrow and downfield shifted in the spectrum.

  15. Calcium-buffering effects of gluconate and nucleotides, as determined by a novel fluorimetric titration method.

    PubMed

    Woehler, Andrew; Lin, Kun-Han; Neher, Erwin

    2014-11-15

    Significantly more Ca(2+) influx is required for eliciting release of neurotransmitter during whole cell patch clamp recording in the Calyx of Held, when gluconate with 3 mm free ATP is used as pipette filling solution, as compared to a methanesulfonate-based solution with excess Mg(2+). This reduction in efficiency of Ca(2+) in eliciting release is due to low-affinity Ca(2+) binding of both gluconate and ATP(2-) anions. To study these effects we developed a simple fluorimeteric titration procedure, which reports the dissociation constant, KD, of a given Ca(2+) indicator dye, multiplied by 1 plus the sum of Ca(2+) binding ratios of any anions, which act as low-affinity Ca(2+) ligands. For solutions without Ca(2+) binding anions we find KD values for Fura2FF ranging from 11.5 ± 1.7 to 15.6 ± 7.47 μm depending on the dominant anion used. For Fura6F and KCl-based solutions we find KD = 17.8 ± 1.3 μm. For solutions with gluconate as the main anion and for solutions that contain nucleotides, such as ATP and GTP, we find much higher values for the product. Assuming that the KD of the indicator dye is equal to that of KCl-based solutions we calculate the summed Ca(2+) binding ratios and find a value of 3.55 for a solution containing 100 mm potassium gluconate and 4 mm ATP. Gluconate contributes a value of 1.75 to this number, while the contribution of ATP depends strongly on the presence of Mg(2+) and varies from 0.8 (with excess Mg(2+)) to 13.8 (in the presence of 3 mm free ATP). Methanesulfonate has negligible Ca(2+) binding capacity. These results explain the reduced efficiency of Ca(2+) influx in the presence of gluconate or nucleotides, as these anions are expected to intercept Ca(2+) ions at short distance. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  16. Evaluation of the binding interaction between bovine serum albumin and dimethyl fumarate, an anti-inflammatory drug by multispectroscopic methods

    NASA Astrophysics Data System (ADS)

    Jattinagoudar, Laxmi; Meti, Manjunath; Nandibewoor, Sharanappa; Chimatadar, Shivamurti

    2016-03-01

    The information of the quenching reaction of bovine serum albumin with dimethyl fumarate is obtained by multi-spectroscopic methods. The number of binding sites, n and binding constants, KA were determined at different temperatures. The effect of increasing temperature on Stern-Volmer quenching constants (KD) indicates that a dynamic quenching mechanism is involved in the interaction. The analysis of thermodynamic quantities namely, ∆H° and ∆S° suggested hydrophobic forces playing a major role in the interaction between dimethyl fumarate and bovine serum albumin. The binding site of dimethyl fumarate on bovine serum albumin was determined by displacement studies, using the site probes viz., warfarin, ibuprofen and digitoxin. The determination of magnitude of the distance of approach for molecular interactions between dimethyl fumarate and bovine serum albumin is calculated according to the theory of Förster energy transfer. The CD, 3D fluorescence spectra, synchronous fluorescence measurements and FT-IR spectral results were indicative of the change in secondary structure of the protein. The influence of some of the metal ions on the binding interaction was also studied.

  17. Peroxidative oxidation of halides catalysed by myeloperoxidase. Effect of fluoride on halide oxidation.

    PubMed

    Zgliczyński, J M; Stelmaszyńska, T; Olszowska, E; Krawczyk, A; Kwasnowska, E; Wróbel, J T

    1983-01-01

    It was found that all halides can compete with cyanide for binding with myeloperoxidase. The lower is the pH, the higher is the affinity of halides. The apparent dissociation constants (Kd) of myeloperoxidase-cyanide complex were determined in the presence of F-, Cl-, Br- and I- in the pH range of 4 to 7. In slightly acidic pH (4 - 6) fluoride and chloride exhibit a higher affinity towards the enzyme than bromide and iodide. Taking into account competition between cyanide and halides for binding with myeloperoxidase the dissociation constants of halide-myeloperoxidase complexes were calculated. All halides except fluoride can be oxidized by H2O2 in the presence of myeloperoxidase. However, since fluoride can bind with myeloperoxidase, it can competitively inhibit the oxidation of other halides. Fluoride was a competitive inhibitor with respect to other halides as well as to H2O2. Inhibition constants (Ki) for fluoride as a competitive inhibitor with respect to H2O2 increased from iodide oxidation through bromide to chloride oxidation.

  18. Functional identification and characterization of sodium binding sites in Na symporters

    PubMed Central

    Loo, Donald D. F.; Jiang, Xuan; Gorraitz, Edurne; Hirayama, Bruce A.; Wright, Ernest M.

    2013-01-01

    Sodium cotransporters from several different gene families belong to the leucine transporter (LeuT) structural family. Although the identification of Na+ in binding sites is beyond the resolution of the structures, two Na+ binding sites (Na1 and Na2) have been proposed in LeuT. Na2 is conserved in the LeuT family but Na1 is not. A biophysical method has been used to measure sodium dissociation constants (Kd) of wild-type and mutant human sodium glucose cotransport (hSGLT1) proteins to identify the Na+ binding sites in hSGLT1. The Na1 site is formed by residues in the sugar binding pocket, and their mutation influences sodium binding to Na1 but not to Na2. For the canonical Na2 site formed by two –OH side chains, S392 and S393, and three backbone carbonyls, mutation of S392 to cysteine increased the sodium Kd by sixfold. This was accompanied by a dramatic reduction in the apparent sugar and phlorizin affinities. We suggest that mutation of S392 in the Na2 site produces a structural rearrangement of the sugar binding pocket to disrupt both the binding of the second Na+ and the binding of sugar. In contrast, the S393 mutations produce no significant changes in sodium, sugar, and phlorizin affinities. We conclude that the Na2 site is conserved in hSGLT1, the side chain of S392 and the backbone carbonyl of S393 are important in the first Na+ binding, and that Na+ binding to Na2 promotes binding to Na1 and also sugar binding. PMID:24191006

  19. Native ESI Mass Spectrometry Can Help to Avoid Wrong Interpretations from Isothermal Titration Calorimetry in Difficult Situations

    NASA Astrophysics Data System (ADS)

    Wolff, Philippe; Da Veiga, Cyrielle; Ennifar, Eric; Bec, Guillaume; Guichard, Gilles; Burnouf, Dominique; Dumas, Philippe

    2017-02-01

    We studied by native ESI-MS the binding of various DNA-polymerase-derived peptides onto DNA-polymerase processivity rings from Escherichia coli, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. These homodimeric rings present two equivalent specific binding sites, which leads to successive formation during a titration experiment of singly- and doubly occupied rings. By using the ESI-MS free-ring spectrum as a ruler, we derived by robust linear regression the fractions of the different ring species at each step of a titration experiment. These results led to accurate Kd values (from 0.03 to 0.5 μM) along with the probability of peptide loss due to gas phase dissociation (GPD). We show that this good quality is due to the increased information content of a titration experiment with a homodimer. Isothermal titration calorimetry (ITC) led with the same binding model to Kd(ITC) values systematically higher than their ESI-MS counterparts and, often, to poor fit of the ITC curves. A processing with two competing modes of binding on the same site requiring determination of two (Kd, ΔH) pairs greatly improved the fits and yielded a second Kd(ITC) close to Kd(ESI-MS). The striking features are: (1) ITC detected a minor binding mode ( 20%) of `low-affinity' that did not appear with ESI-MS; (2) the simplest processing of ITC data with only one (Kd, ΔH) pair led wrongly to the Kd of the low-affinity binding mode but to the ΔH of the high-affinity binding mode. Analogous misleading results might well exist in published data based on ITC experiments.

  20. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis.

    PubMed

    Seidel, Gerald; Diel, Marco; Fuchsbauer, Norbert; Hillen, Wolfgang

    2005-05-01

    The phosphoproteins HPrSerP and CrhP are the main effectors for CcpA-mediated carbon catabolite regulation (CCR) in Bacillus subtilis. Complexes of CcpA with HPrSerP or CrhP regulate genes by binding to the catabolite responsive elements (cre). We present a quantitative analysis of HPrSerP and CrhP interaction with CcpA by surface plasmon resonance (SPR) revealing small and similar equilibrium constants of 4.8 +/- 0.4 microm for HPrSerP-CcpA and 19.1 +/- 2.5 microm for CrhP-CcpA complex dissociation. Forty millimolar fructose-1,6-bisphosphate (FBP) or glucose-6-phosphate (Glc6-P) increases the affinity of HPrSerP to CcpA at least twofold, but have no effect on CrhP-CcpA binding. Saturation of binding of CcpA to cre as studied by fluorescence and SPR is dependent on 50 microm of HPrSerP or > 200 microm CrhP. The rate constants of HPrSerP-CcpA-cre complex formation are k(a) = 3 +/- 1 x 10(6) m(-1).s(-1) and k(d) = 2.0 +/- 0.4 x 10(-3).s(-1), resulting in a K(D) of 0.6 +/- 0.3 nm. FBP and Glc6-P stimulate CcpA-HPrSerP but not CcpA-CrhP binding to cre. Maximal HPrSerP-CcpA-cre complex formation in the presence of 10 mm FBP requires about 10-fold less HPrSerP. These data suggest a specific role for FBP and Glc6-P in enhancing only HPrSerP-mediated CCR.

  1. Rapid characterization of a novel taspine derivative-HMQ1611 binding to EGFR by a cell membrane chromatography method.

    PubMed

    Du, Hui; Lv, Nan; Wang, Sicen; He, Langchong

    2013-05-01

    A new high-expression endothelial growth factor receptor (EGFR) cell membrane chromatography (CMC) method was applied to recognize the ligands acting on EGFR specifically, and investigate the affinity of gefitinib/HMQ1611 to EGFR. In the self and direct competitive assay, gefitinib/HMQ1611 was used as a competitor in the mobile phase to evaluate the effect of the competitor's concentrations on the retention of the ligands, respectively, and the competition between gefitinib and HMQ1611 binding to EGFR was also been examined. The retention behavior indicated that gefitinib had one type of binding sites on the EGFR, and the equilibrium dissociation constant (K(D)) was (9.11 ± 1.89) × 10(-6) M; HMQ1611 had two major binding regions on the EGFR, and the K(D) values obtained from the model were (2.39 ± 0.33) × 10(-7) and (3.87 ± 0.93) × 10(-5) M for HMQ1611 at the high- and low-affinity sites, respectively. The competition between gefitinib and HMQ1611 occurred at the low-affinity sites on the EGFR. The low-affinity sites were of higher concentrations and contributed to a much larger part of retention of HMQ1611. The results suggested that gefitinib and HMQ1611 competed for the common binding sites on the EGFR, no matter the ligand was used as an analyte or a competitor.

  2. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    PubMed Central

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates. Conclusions Investigating the low affinity site of α4β2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches. PMID:22112852

  3. Human blood-brain barrier insulin-like growth factor receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.

    1988-02-01

    Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefoldmore » greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of /sup 125/I-IGF-1, /sup 125/I-IGF-2, and /sup 125/I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin.« less

  4. [Radiolabelling and assay of Chinese agkistrodon acutus venom with carrier-free Na 125I].

    PubMed

    Gong, Y; Deng, C; Li, S; Li, L; Guan, J

    1995-03-01

    Chinese agkistroden acutus venom (CAAV) was radiolabelled with carrier-free Na 125I by the method of Iodogen. The specific activity and radiochemical purity for radiolabelled products were 4236.5 x 10(10) Bq/mmol and 98%, respectively. Each CAAV molecule carried 0.52 125I atom. Physical and chemical characterization of radiolabelled CAAV was similar to unradiolabelled CAAV. Binding analysis showed that 125I-CAAV was bound to platelet in a saturable manner. Binding sites per platelet were 13,255 +/- 6292/platelet. The dissociation constant (Kd) was 3.2 +/- 0.69 x 10(-10) mol/L. These results are similar to binding sites of other snake venom on platelet. The investigation showed that radiolabelled CAAV made by our laboratory was useful for radioligand binding assay.

  5. Contributions of residues of pancreatic phospholipase A2 to interfacial binding, catalysis, and activation.

    PubMed

    Yu, B Z; Rogers, J; Tsai, M D; Pidgeon, C; Jain, M K

    1999-04-13

    Primary rate and equilibrium parameters for 60 site-directed mutants of bovine pancreatic phospholipase A2 (PLA2) are analyzed so incremental contributions of the substitution of specific residues can be evaluated. The magnitude of the change is evaluated so a functional role in the context of the N- and C-domains of PLA2 can be assigned, and their relationship to the catalytic residues and to the i-face that makes contact with the interface. The effect of substitutions and interfacial charge is characterized by the equilibrium dissociation constant for dissociation of the bound enzyme from the interface (Kd), the dissociation constant for dissociation of a substrate mimic from the active site of the bound enzyme (KL), and the interfacial Michaelis constants, KM and kcat. Activity is lost (>99.9%) on the substitution of H48 and D49, the catalytic residues. A more than 95% decrease in kcat is seen with the substitution of F5, I9, D99, A102, or F106, which form the substrate binding pocket. Certain residues, which are not part of the catalytic site or the substrate binding pocket, also modulate kcat. Interfacial anionic charge lowers Kd, and induces kcat activation through K56, K53, K119, or K120. Significant changes in KL are seen by the substitution of N6, I9, F22, Y52, K53, N71, Y73, A102, or A103. Changes in KM [=(k2+k-1)/k1] are attributed to kcat (=k2) and KL (=k-1/k1). Some substitutions change more than one parameter, implying an allosteric effect of the binding to the interface on KS, and the effect of the interfacial anionic charge on kcat. Interpreted in the context of the overall structure, results provide insights into the role of segments and domains in the microscopic events of catalytic turnover and processivity, and their allosteric regulation. We suggest that the interfacial recognition region (i-face) of PLA2, due to the plasticity of certain segments and domains, exercises an allosteric control on the substrate binding and chemical step.

  6. Two classes of binding sites for [3H]substance P in rat cerebral cortex.

    PubMed

    Geraghty, D P; Burcher, E

    1993-01-22

    The binding characteristics of [3H]substance P ([3H]SP) were investigated in membranes prepared from rat cerebral cortex. Binding of [3H]SP reached equilibrium after 50 min at 25 degrees C and was saturable at 8 nM. Saturation data could be resolved into high affinity (equilibrium dissociation constant, Kd, 0.22 nM) and low affinity sites (Kd, 2.65 nM). The low affinity sites were more numerous than the high affinity sites, with a ratio of 4:1. The non-hydrolyzable GTP analogue GppNHp had no effect on binding, indicating that the high and low affinity sites are not guanine nucleotide-regulated states of the same (NK-1) receptor. The low affinity sites are unlikely to represent NK-3 receptors since coincubation with the selective NK-3 receptor agonist senktide did not alter the biphasic nature of [3H]SP binding. The rank order of potency for inhibition of [3H]SP (2 nM) binding was SP > or = [Sar9, Met(O2)11]-SP > or = physalaemin > SP(3-11) > NP gamma = [Ala3]-SP > or = SP(4-11) > or = NPK > or = SP(5-11) > or = NKB approximately NKA > SP(1-9), compatible with binding to an NK-1 site. N-terminal fragments and non-amidated analogues were ineffective competitors for [3H]SP binding. However, competition data for several peptides including substance P (SP) and the NK-1 selective agonist [Sar9, Met(O2)11]-SP could be resolved into two components.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew, E.; Parfitt, A.G.; Sugden, D.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects ofmore » diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.« less

  8. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus.

    PubMed

    Duan, Nuo; Wu, Shijia; Chen, Xiujuan; Huang, Yukun; Wang, Zhouping

    2012-04-25

    A whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX) method was applied to a combinatorial library of FAM-labeled single-stranded DNA molecules to identify DNA aptamers demonstrating specific binding to Vibrio parahemolyticus . FAM-labeled aptamer sequences with high binding affinity to V. parahemolyticus were identified by flow cytometric analysis. Aptamer A3P, which showed a particularly high binding affinity in preliminary studies, was chosen for further characterization. This aptamer displayed a dissociation constant (K(d)) of 16.88 ± 1.92 nM. Binding assays to assess the specificity of aptamer A3P showed a high binding affinity (76%) for V. parahemolyticus and a low apparent binding affinity (4%) for other bacteria. Whole-bacterium SELEX is a promising technique for the design of aptamer-based molecular probes for microbial pathogens that does not require the labor-intensive steps of isolating and purifying complex markers or targets.

  9. Surface Plasmon Resonance Biosensor Method for Palytoxin Detection Based on Na+,K+-ATPase Affinity

    PubMed Central

    Alfonso, Amparo; Pazos, María-José; Fernández-Araujo, Andrea; Tobio, Araceli; Alfonso, Carmen; Vieytes, Mercedes R.; Botana, Luis M.

    2013-01-01

    Palytoxin (PLTX), produced by dinoflagellates from the genus Ostreopsis was first discovered, isolated, and purified from zoanthids belonging to the genus Palythoa. The detection of this toxin in contaminated shellfish is essential for human health preservation. A broad range of studies indicate that mammalian Na+,K+-ATPase is a high affinity cellular receptor for PLTX. The toxin converts the pump into an open channel that stimulates sodium influx and potassium efflux. In this work we develop a detection method for PLTX based on its binding to the Na+,K+-ATPase. The method was developed by using the phenomenon of surface plasmon resonance (SPR) to monitor biomolecular reactions. This technique does not require any labeling of components. The interaction of PLTX over immobilized Na+,K+-ATPase is quantified by injecting different concentrations of toxin in the biosensor and checking the binding rate constant (kobs). From the representation of kobs versus PLTX concentration, the kinetic equilibrium dissociation constant (KD) for the PLTX-Na+,K+-ATPase association can be calculated. The value of this constant is KD = 6.38 × 10−7 ± 6.67 × 10−8 M PLTX. In this way the PLTX-Na+,K+-ATPase association was used as a suitable method for determination of the toxin concentration in a sample. This method represents a new and useful approach to easily detect the presence of PLTX-like compounds in marine products using the mechanism of action of these toxins and in this way reduce the use of other more expensive and animal based methods. PMID:24379088

  10. Surface plasmon resonance biosensor method for palytoxin detection based on Na+,K+-ATPase affinity.

    PubMed

    Alfonso, Amparo; Pazos, María-José; Fernández-Araujo, Andrea; Tobio, Araceli; Alfonso, Carmen; Vieytes, Mercedes R; Botana, Luis M

    2013-12-27

    Palytoxin (PLTX), produced by dinoflagellates from the genus Ostreopsis was first discovered, isolated, and purified from zoanthids belonging to the genus Palythoa. The detection of this toxin in contaminated shellfish is essential for human health preservation. A broad range of studies indicate that mammalian Na+,K+-ATPase is a high affinity cellular receptor for PLTX. The toxin converts the pump into an open channel that stimulates sodium influx and potassium efflux. In this work we develop a detection method for PLTX based on its binding to the Na+,K+-ATPase. The method was developed by using the phenomenon of surface plasmon resonance (SPR) to monitor biomolecular reactions. This technique does not require any labeling of components. The interaction of PLTX over immobilized Na+,K+-ATPase is quantified by injecting different concentrations of toxin in the biosensor and checking the binding rate constant (Kobs). From the representation of Kobs versus PLTX concentration, the kinetic equilibrium dissociation constant (K(D)) for the PLTX-Na+,K+-ATPase association can be calculated. The value of this constant is K(D) = 6.38 × 10-7 ± 6.67 × 10-8 M PLTX. In this way the PLTX-Na+,K+-ATPase association was used as a suitable method for determination of the toxin concentration in a sample. This method represents a new and useful approach to easily detect the presence of PLTX-like compounds in marine products using the mechanism of action of these toxins and in this way reduce the use of other more expensive and animal based methods.

  11. Platelet GpIbα Binding to von Willebrand Factor Under Fluid Shear: Contributions of the D'D3‐Domain, A1‐Domain Flanking Peptide and O‐Linked Glycans

    PubMed Central

    Madabhushi, Sri R.; Zhang, Changjie; Kelkar, Anju; Dayananda, Kannayakanahalli M.; Neelamegham, Sriram

    2014-01-01

    Background Von Willebrand Factor (VWF) A1‐domain binding to platelet receptor GpIbα is an important fluid‐shear dependent interaction that regulates both soluble VWF binding to platelets, and platelet tethering onto immobilized VWF. We evaluated the roles of different structural elements at the N‐terminus of the A1‐domain in regulating shear dependent platelet binding. Specifically, the focus was on the VWF D′D3‐domain, A1‐domain N‐terminal flanking peptide (NFP), and O‐glycans on this peptide. Methods and Results Full‐length dimeric VWF (ΔPro‐VWF), dimeric VWF lacking the D′D3 domain (ΔD′D3‐VWF), and ΔD′D3‐VWF variants lacking either the NFP (ΔD′D3NFP─‐VWF) or just O‐glycans on this peptide (ΔD′D3OG─‐VWF) were expressed. Monomeric VWF‐A1 and D′D3‐A1 were also produced. In ELISA, the apparent dissociation constant (KD) of soluble ΔPro‐VWF binding to immobilized GpIbα (KD≈100 nmol/L) was 50‐ to 100‐fold higher than other proteins lacking the D′D3 domain (KD~0.7 to 2.5 nmol/L). Additionally, in surface plasmon resonance studies, the on‐rate of D′D3‐A1 binding to immobilized GpIbα (kon=1.8±0.4×104 (mol/L)−1·s−1; KD=1.7 μmol/L) was reduced compared with the single VWF‐A1 domain (kon=5.1±0.4×104 (mol/L)−1·s−1; KD=1.2 μmol/L). Thus, VWF‐D′D3 primarily controls soluble VWF binding to GpIbα. In contrast, upon VWF immobilization, all molecular features regulated A1‐GpIbα binding. Here, in ELISA, the number of apparent A1‐domain sites available for binding GpIbα on ΔPro‐VWF was ≈50% that of the ΔD′D3‐VWF variants. In microfluidics based platelet adhesion measurements on immobilized VWF and thrombus formation assays on collagen, human platelet recruitment varied as ΔPro‐VWF<ΔD′D3‐VWF<ΔD′D3NFP─‐VWF<ΔD′D3OG─‐VWF. Conclusions Whereas VWF‐D′D3 is the major regulator of soluble VWF binding to platelet GpIbα, both the D′D3‐domain and N‐terminal peptide regulate platelet translocation and thrombus formation. PMID:25341886

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiberi, M.; Magnan, J.

    The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid (3H)D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid (3H)D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid (3H)U69593 (Kd = 3.31 nM, Rmore » = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by (3H)U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan (3H)ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, (3H)ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of (3H)ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with (3H)U69593. Saturation studies using the nonselective opioid (3H)bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue).« less

  13. Binding of manganese(II) to a tertiary stabilized hammerhead ribozyme as studied by electron paramagnetic resonance spectroscopy

    PubMed Central

    KISSELEVA, NATALIA; KHVOROVA, ANASTASIA; WESTHOF, ERIC; SCHIEMANN, OLAV

    2005-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is used to study the binding of MnII ions to a tertiary stabilized hammer-head ribozyme (tsHHRz) and to compare it with the binding to the minimal hammerhead ribozyme (mHHRz). Continuous wave EPR measurements show that the tsHHRz possesses a single high-affinity MnII binding site with a KD of ≤10 nM at an NaCl concentration of 0.1 M. This dissociation constant is at least two orders of magnitude smaller than the KD determined previously for the single high-affinity MnII site in the mHHRz. In addition, whereas the high-affinity MnII is displaced from the mHHRz upon binding of the aminoglycoside antibiotic neomycin B, it is not from the tsHHRz. Despite these pronounced differences in binding, a comparison between the electron spin echo envelope modulation and hyperfine sublevel correlation spectra of the minimal and tertiary stabilized HHRz demonstrates that the structure of both binding sites is very similar. This suggests that the MnII is located in both ribozymes between the bases A9 and G10.1 of the sheared G · A tandem base pair, as shown previously and in detail for the mHHRz. Thus, the much stronger MnII binding in the tsHHRz is attributed to the interaction between the two external loops, which locks in the RNA fold, trapping the MnII in the tightly bound conformation, whereas the absence of long-range loop–loop interactions in the mHHRz leads to more dynamical and open conformations, decreasing MnII binding. PMID:15611296

  14. The involvement of the sodium-potassium pump in postjunctional supersensitivity of the guinea-pig vas deferens as assessed by [3H]ouabain binding.

    PubMed

    Wong, S K; Westfall, D P; Fedan, J S; Fleming, W W

    1981-10-01

    Previous evidence has suggested that postjunctional supersensitivity of the guinea-pig vas deferens results, in part, from partial depolarization of the cell membrane. The depolarization is believed to result from a reduction in the activity of the Na-K pump. Indeed, the Na, K+ -adenosine triphosphatase activity of subcellular fractions from supersensitive vas deferens is reduced. In order to determine whether the biochemical alteration seen in subcellular fractions correlate with Na-K pump sites in intact tissues, we have studied the binding of [3H] ouabain to intact vas deferens. [3H]ouabain binds to membrane sites which have the characteristics expected of Na+, K+ - adenosine triphosphatase. Specific binding was saturable and reversible. Scatchard analysis of ouabain-binding in control tissues yielded a single class of binding sites with a dissociation constant (KD) of 156 +/- 7 nM and a maximum number of binding sites (Bmax) of 558.7 +/- 15.6 fmol/mg wet wt. [3H]Ouabain binding was displaceable by several cardiac glycosides and aglycones, but not by steroid hormones or sodium vanadate. Alteration of concentrations of Na+ and K+ markedly affected ouabain binding. Denervation (with 6-hydroxydopamine), decentralization or reserpine treatment for 1 day, which do not produce supersensitivity, did not alter the Bmax, whereas 5 to 7 days after these procedures, when supersensitivity was present, the Bmax was significantly reduced by 20 to 40%. The KD was not changed by any of the treatments. These data provide additional support for the concept that a reduction in the NaK pump sites contributes to postjunctional supersensitivity.

  15. Binding of /sup 125/I-hCG to rainbow trout (Salmo gairdneri) testis in vitro. [Human Chorionic Gonadotropin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaghecke, R.

    1983-02-01

    Homogenates of maturing rainbow trout testes show specific binding sites for /sup 125/I-labeled hCG (. /sup 125/I-labeled hCG). The binding is competitively inhibited by unlabeled hCG and by a hypophyseal extract of rainbow trout. It could be demonstrated that the tissue /sup 125/I-hCG binding specificity is restricted to the gonadal preparation. The trout testis was characterized by determining affinity and capacity from Scatchard plot analysis giving a high constant of dissociation Kd 3.65 x 10(-10)/M and a low binding capacity of 0.88 x 10(-15) M/mg tissue. The test system is markedly dependent on temperature, incubation-time, and pH. The maximum bindingmore » was found at 37 degrees during 2 hr of incubation in a buffer of pH 7.5.« less

  16. The complex of hypericin with β-lactoglobulin has antimicrobial activity with potential applications in dairy industry.

    PubMed

    Rodríguez-Amigo, Beatriz; Delcanale, Pietro; Rotger, Gabriel; Juárez-Jiménez, Jordi; Abbruzzetti, Stefania; Summer, Andrea; Agut, Montserrat; Luque, F Javier; Nonell, Santi; Viappiani, Cristiano

    2015-01-01

    Using a combination of molecular modeling and spectroscopic experiments, the naturally occurring, pharmacologically active hypericin compound is shown to form a stable complex with the dimeric form of β-lactoglobulin (β-LG). Binding is predicted to occur at the narrowest cleft found at the interface between monomers in the dimeric β-LG. The complex is able to preserve the fluorescence and singlet oxygen photosensitizing properties of the dye. The equilibrium constant for hypericin binding has been determined as Ka=1.40±0.07µM(-1), equivalent to a dissociation constant, Kd=0.71±0.03µM. The complex is active against Staphylococcus aureus bacteria. Overall, the results are encouraging for pursuing the potential application of the complex between hypericin and β-LG as a nanodevice with bactericidal properties for disinfection. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. In silico studies and fluorescence binding assays of potential anti-prion compounds reveal an important binding site for prion inhibition from PrP(C) to PrP(Sc).

    PubMed

    Pagadala, Nataraj S; Perez-Pineiro, Rolando; Wishart, David S; Tuszynski, Jack A

    2015-02-16

    To understand the pharmacophore properties of 2-aminothiazoles and design novel inhibitors against the prion protein, a highly predictive 3D quantitative structure-activity relationship (QSAR) has been developed by performing comparative molecular field analysis (CoMFA) and comparative similarity analysis (CoMSIA). Both CoMFA and CoMSIA maps reveal the presence of the oxymethyl groups in meta and para positions on the phenyl ring of compound 17 (N-[4-(3,4-dimethoxyphenyl)-1,3-thiazol-2-yl]quinolin-2-amine), is necessary for activity while electro-negative nitrogen of quinoline is highly favorable to enhance activity. The blind docking results for these compounds show that the compound with quinoline binds with higher affinity than isoquinoline and naphthalene groups. Out of 150 novel compounds retrieved using finger print analysis by pharmacophoric model predicted based on five test sets of compounds, five compounds with diverse scaffolds were selected for biological evaluation as possible PrP inhibitors. Molecular docking combined with fluorescence quenching studies show that these compounds bind to pocket-D of SHaPrP near Trp145. The new antiprion compounds 3 and 6, which bind with the interaction energies of -12.1 and -13.2 kcal/mol, respectively, show fluorescence quenching with binding constant (Kd) values of 15.5 and 44.14 μM, respectively. Further fluorescence binding assays with compound 5, which is similar to 2-aminothiazole as a positive control, also show that the molecule binds to the pocket-D with the binding constant (Kd) value of 84.7 μM. Finally, both molecular docking and a fluorescence binding assay of noscapine as a negative control reveals the same binding site on the surface of pocket-A near a rigid loop between β2 and α2 interacting with Arg164. This high level of correlation between molecular docking and fluorescence quenching studies confirm that these five compounds are likely to act as inhibitors for prion propagation while noscapine might act as a prion accelerator from PrP(C) to PrP(Sc). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Characterization of WY 14,643 and its Complex with Aldose Reductase

    PubMed Central

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi; Rath, Nigam P.; Cascio, Duilio; Balendiran, Ganesaratnam K.

    2016-01-01

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such as WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR. PMID:27721416

  19. Fatty acids bind tightly to the N-terminal domain of angiopoietin-like protein 4 and modulate its interaction with lipoprotein lipase.

    PubMed

    Robal, Terje; Larsson, Mikael; Martin, Miina; Olivecrona, Gunilla; Lookene, Aivar

    2012-08-24

    Angiopoietin-like protein 4 (Angptl4), a potent regulator of plasma triglyceride metabolism, binds to lipoprotein lipase (LPL) through its N-terminal coiled-coil domain (ccd-Angptl4) inducing dissociation of the dimeric enzyme to inactive monomers. In this study, we demonstrate that fatty acids reduce the inactivation of LPL by Angptl4. This was the case both with ccd-Angptl4 and full-length Angptl4, and the effect was seen in human plasma or in the presence of albumin. The effect decreased in the sequence oleic acid > palmitic acid > myristic acid > linoleic acid > linolenic acid. Surface plasmon resonance, isothermal titration calorimetry, fluorescence, and chromatography measurements revealed that fatty acids bind with high affinity to ccd-Angptl4. The interactions were characterized by fast association and slow dissociation rates, indicating formation of stable complexes. The highest affinity for ccd-Angptl4 was detected for oleic acid with a subnanomolar equilibrium dissociation constant (K(d)). The K(d) values for palmitic and myristic acid were in the nanomolar range. Linoleic and linolenic acid bound with much lower affinity. On binding of fatty acids, ccd-Angptl4 underwent conformational changes resulting in a decreased helical content, weakened structural stability, dissociation of oligomers, and altered fluorescence properties of the Trp-38 residue that is located close to the putative LPL-binding region. Based on these results, we propose that fatty acids play an important role in modulating the effects of Angptl4.

  20. Structural and Biochemical Basis for Ubiquitin Ligase Recruitment by Arrestin-related Domain-containing Protein-3 (ARRDC3)*

    PubMed Central

    Qi, Shiqian; O'Hayre, Morgan; Gutkind, J. Silvio; Hurley, James H.

    2014-01-01

    After protracted stimulation, the β2-adrenergic receptor and many other G-protein-coupled receptors are ubiquitinated and down-regulated. Arrestin-related domain-containing protein-3 (ARRDC3) has been proposed to recruit the ubiquitin ligase Nedd4 to the β2-adrenergic receptor. ARRDC3 contains two PPXY motifs that could potentially interact with any of the four WW domains of Nedd4. Here we dissect the interaction determinants. ARRDC3 PPXY-Nedd4 WW dissociation constants vary from unmeasurable to Kd = 3 μm for the third WW domain of Nedd4 binding to the first PPXY motif of ARRDC3. Structures of the uncomplexed and PPXY1-bound WW3 domain were determined at 1.1 and 1.7 Å resolution. The structures revealed conformational changes upon binding and the hydrogen bonding network in exquisite detail. Tight packing of ARRDC3 Val-352′, part of a 310 helix at the C terminus of PPXY1, is important for high affinity binding to WW3. Although no single WW domain is strictly essential for the binding of Nedd4 and ARRDC3 expressed in HEK293 cells, high affinity binding of full-length ARRDC3 and Nedd4 is driven by the avid interaction of both PPXY motifs with either the WW2-WW3 or WW3-WW4 combinations, with Kd values as low as 300 nm. PMID:24379409

  1. Structural and biochemical basis for ubiquitin ligase recruitment by arrestin-related domain-containing protein-3 (ARRDC3).

    PubMed

    Qi, Shiqian; O'Hayre, Morgan; Gutkind, J Silvio; Hurley, James H

    2014-02-21

    After protracted stimulation, the β2-adrenergic receptor and many other G-protein-coupled receptors are ubiquitinated and down-regulated. Arrestin-related domain-containing protein-3 (ARRDC3) has been proposed to recruit the ubiquitin ligase Nedd4 to the β2-adrenergic receptor. ARRDC3 contains two PPXY motifs that could potentially interact with any of the four WW domains of Nedd4. Here we dissect the interaction determinants. ARRDC3 PPXY-Nedd4 WW dissociation constants vary from unmeasurable to Kd = 3 μM for the third WW domain of Nedd4 binding to the first PPXY motif of ARRDC3. Structures of the uncomplexed and PPXY1-bound WW3 domain were determined at 1.1 and 1.7 Å resolution. The structures revealed conformational changes upon binding and the hydrogen bonding network in exquisite detail. Tight packing of ARRDC3 Val-352', part of a 310 helix at the C terminus of PPXY1, is important for high affinity binding to WW3. Although no single WW domain is strictly essential for the binding of Nedd4 and ARRDC3 expressed in HEK293 cells, high affinity binding of full-length ARRDC3 and Nedd4 is driven by the avid interaction of both PPXY motifs with either the WW2-WW3 or WW3-WW4 combinations, with Kd values as low as 300 nM.

  2. Identification of Critical Residues Involved in Ligand Binding and G Protein Signaling in Human Somatostatin Receptor Subtype 2

    PubMed Central

    Parry, Jesse J.; Chen, Ronald; Andrews, Rebecca; Lears, Kimberly A.

    2012-01-01

    G protein signaling through human somatostatin receptor subtype 2 (SSTR2) is well known, but the amino acids involved in stimulation of intracellular responses upon ligand binding have not been characterized. We constructed a series of point mutants in SSTR2 at amino acid positions 89, 139, and 140 in attempts to disrupt G protein signaling upon ligand binding. The aspartic acid changes at position 89 to either Ala, Leu, or Arg generated mutant receptors with varying expression profiles and a complete inability to bind somatostatin-14 (SST). Mutations to Asp 139 and Arg 140 also led to varying expression profiles with some mutants maintaining their affinity for SST. Mutation of Arg 140 to Ala resulted in a mutated receptor that had a Bmax and dissociation constant (Kd) similar to wild-type receptor but was still coupled to the G protein as determined in both a cAMP assay and a calcium-release assay. In contrast, mutation of Asp 139 to Asn resulted in a mutated receptor with Bmax and Kd values that were similar to wild type but was uncoupled from G protein-mediated cAMP signaling, but not calcium release. Thus, we identified mutations in SSTR2 that result in either receptor expression levels that are similar to wild type but is completely ablated for ligand binding or a receptor that maintains affinity for SST and is uncoupled from G protein-mediated cAMP signaling. PMID:22495673

  3. YC-1 BINDING TO THE BETA SUBUNIT OF SOLUBLE GUANYLYL CYCLASE OVERCOMES ALLOSTERIC INHIBITION BY THE ALPHA SUBUNIT

    PubMed Central

    Purohit, Rahul; Fritz, Bradley G.; The, Juliana; Issaian, Aaron; Weichsel, Andrzej; David, Cynthia L.; Campbell, Eric; Hausrath, Andrew C.; Rassouli-Taylor, Leida; Garcin, Elsa D.; Gage, Matthew J.; Montfort, William R.

    2014-01-01

    Soluble guanylate cyclase (sGC) is a heterodimeric heme protein and the primary nitric oxide receptor. NO binding stimulates cyclase activity, leading to regulation of cardiovascular physiology and making sGC an attractive target for drug discovery. YC-1 and related compounds stimulate sGC both independently and synergistically with NO and CO binding; however, where the compounds bind and how they work remains unknown. Using linked-equilibria binding measurements, surface plasmon resonance, and domain truncations in Manduca sexta and bovine sGC, we demonstrate that YC-1 binds near or directly to the heme-containing domain of the beta subunit. In the absence of CO, YC-1 binds with Kd = 9–21 μM, depending on construct. In the presence of CO, these values decrease to 0.6–1.1 μM. Pfizer compound 25 bound ~10-fold weaker than YC-1 in the absence of CO whereas compound BAY 41–2272 bound particularly tightly in the presence of CO (Kd = 30–90 nM). Additionally, we found that CO binding is much weaker to heterodimeric sGC proteins (Kd = 50–100 μM) than to the isolated heme domain (Kd = 0.2 μM for Manduca beta H-NOX/PAS). YC-1 greatly enhanced CO binding to heterodimeric sGC, as expected (Kd = ~1 μM). These data indicate the alpha subunit induces a heme pocket conformation with lower affinity for CO and NO. YC-1 family compounds bind near the heme domain, overcoming the alpha subunit effect and inducing a heme pocket conformation with high affinity. We propose this high-affinity conformation is required for the full-length protein to achieve high catalytic activity. PMID:24328155

  4. Low density and high affinity of platelet [3H]paroxetine binding in women with bulimia nervosa.

    PubMed

    Ekman, Agneta; Sundblad-Elverfors, Charlotta; Landén, Mikael; Eriksson, Tomas; Eriksson, Elias

    2006-06-15

    Impaired serotonin transmission has been suggested to be implicated in the pathophysiology of bulimia nervosa. As an indirect measure of brain serotonergic activity, the binding of tritiated ligands to platelet serotonin transporters has been studied in bulimia nervosa as well as in other putatively serotonin-related psychiatric disorders. In this study, the density and affinity of platelet serotonin transporters were assessed in 20 women meeting the DSM-IV criteria for bulimia nervosa and in 14 controls without previous or ongoing eating disorder using [(3)H]paroxetine as a ligand. In comparison to controls, women with bulimia nervosa had a significantly reduced number of platelet binding sites (B(max) = 721 +/- 313 vs. 1145 +/- 293 fmol/mg protein) and an increase in the affinity for the ligand demonstrated by a lower dissociaton constant (K(d) = 33 +/- 10 vs. 44 +/- 10 pM). A significant correlation between B(max) and K(d) values was found in patients but not in controls. Our results support the notion that bulimia nervosa is associated with a reduction in platelet serotonin transporter density. In addition, our study is the first to report that this reduced transporter density in women with bulimia nervosa is accompanied by an increase in the affinity of the transporter for the ligand.

  5. The Periplasmic Cyclodextrin Binding Protein CymE from Klebsiella oxytoca and Its Role in Maltodextrin and Cyclodextrin Transport

    PubMed Central

    Pajatsch, Markus; Gerhart, Maria; Peist, Ralf; Horlacher, Reinhold; Boos, Winfried; Böck, August

    1998-01-01

    Klebsiella oxytoca M5a1 has the capacity to transport and to metabolize α-, β- and γ-cyclodextrins. Cyclodextrin transport is mediated by the products of the cymE, cymF, cymG, cymD, and cymA genes, which are functionally homologous to the malE, malF, malG, malK, and lamB gene products of Escherichia coli. CymE, which is the periplasmic binding protein, has been overproduced and purified. By substrate-induced fluorescence quenching, the binding of ligands was analyzed. CymE bound α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin, with dissociation constants (Kd) of 0.02, 0.14 and 0.30 μM, respectively, and linear maltoheptaose, with a Kd of 70 μM. In transport experiments, α-cyclodextrin was taken up by the cym system of K. oxytoca three to five times less efficiently than maltohexaose by the E. coli maltose system. Besides α-cyclodextrin, maltohexaose was also taken up by the K. oxytoca cym system, but because of the inability of maltodextrins to induce the cym system, growth of E. coli mal mutants on linear maltodextrin was not observed when the cells harbored only the cym uptake system. Strains which gained this capacity by mutation could easily be selected, however. PMID:9573146

  6. 2-(/sup 125/I)iodomelatonin binding sites in hamster brain membranes: pharmacological characteristics and regional distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, M.J.; Takahashi, J.S.; Dubocovich, M.L.

    1988-05-01

    Studies in a variety of seasonally breeding mammals have shown that melatonin mediates photoperiodic effects on reproduction. Relatively little is known, however, about the site(s) or mechanisms of action of this hormone for inducing reproductive effects. Although binding sites for (3H)melatonin have been reported previously in bovine, rat, and hamster brain, the pharmacological selectivity of these sites was never demonstrated. In the present study, we have characterized binding sites for a new radioligand, 2-(125I)iodomelatonin, in brains from a photoperiodic species, the Syrian hamster. 2-(125I)Iodomelatonin labels a high affinity binding site in hamster brain membranes. Specific binding of 2-(125I)iodomelatonin is rapid,more » stable, saturable, and reversible. Saturation studies demonstrated that 2-(125I)iodomelatonin binds to a single class of sites with an affinity constant (Kd) of 3.3 +/- 0.5 nM and a total binding capacity (Bmax) of 110.2 +/- 13.4 fmol/mg protein (n = 4). The Kd value determined from kinetic analysis (3.1 +/- 0.9 nM; n = 5) was very similar to that obtained from saturation experiments. Competition experiments showed that the relative order of potency of a variety of indoles for inhibition of 2-(125I)iodomelatonin binding site to hamster brain membranes was as follows: 6-chloromelatonin greater than or equal to 2-iodomelatonin greater than N-acetylserotonin greater than or equal to 6-methoxymelatonin greater than or equal to melatonin greater than 6-hydroxymelatonin greater than or equal to 6,7-dichloro-2-methylmelatonin greater than 5-methoxytryptophol greater than 5-methoxytryptamine greater than or equal to 5-methoxy-N,N-dimethyltryptamine greater than N-acetyltryptamine greater than serotonin greater than 5-methoxyindole (inactive).« less

  7. Kinetic analysis of central ( sup 11 C)raclopride binding to D2-dopamine receptors studied by PET--a comparison to the equilibrium analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farde, L.; Eriksson, L.; Blomquist, G.

    1989-10-01

    (11C)Raclopride binding to central D2-dopamine receptors in humans has previously been examined by positron emission tomography (PET). Based on the rapid occurrence of binding equilibrium, a saturation analysis has been developed for the determination of receptor density (Bmax) and affinity (Kd). For analysis of PET measurements obtained with other ligands, a kinetic three-compartment model has been used. In the present study, the brain uptake of (11C)raclopride was analyzed further by applying both a kinetic and an equilibrium analysis to data obtained from four PET experiments in each of three healthy subjects. First regional CBV was determined. In the second andmore » third experiment, (11C)-raclopride with high and low specific activity was used. In a fourth experiment, the (11C)raclopride enantiomer (11C)FLB472 was used to examine the concentration of free radioligand and nonspecific binding in brain. Radio-activity in arterial blood was measured using an automated blood sampling system. Bmax and Kd values for (11C)raclopride binding could be determined also with the kinetic analysis. As expected theoretically, those values were similar to those obtained with the equilibrium analysis. In addition, the kinetic analysis allowed separate determination of the association and dissociation rate constants, kon and koff, respectively. Examination of (11C)raclopride and (11C)FLB472 uptake in brain regions devoid of specific D2-dopamine receptor binding indicated a fourth compartment in which uptake was reversible, nonstereoselective, and nonsaturable in the dose range studied.« less

  8. Transient state kinetics of transcription elongation by T7 RNA polymerase.

    PubMed

    Anand, Vasanti Subramanian; Patel, Smita S

    2006-11-24

    The single subunit DNA-dependent RNA polymerase (RNAP) from bacteriophage T7 catalyzes both promoter-dependent transcription initiation and promoter-independent elongation. Using a promoter-free substrate, we have dissected the kinetic pathway of single nucleotide incorporation during elongation. We show that T7 RNAP undergoes a slow conformational change (0.01-0.03 s(-1)) to form an elongation competent complex with the promoter-free substrate (dissociation constant (Kd) of 96 nM). The complex binds to a correct NTP (Kd of 80 microM) and incorporates the nucleoside monophosphate (NMP) into RNA primer very efficiently (220 s(-1) at 25 degrees C). An overall free energy change (-5.5 kcal/mol) and internal free energy change (-3.7 kcal/mol) of single NMP incorporation was calculated from the measured equilibrium constants. In the presence of inorganic pyrophosphate (PPi), the elongation complex catalyzes the reverse pyrophosphorolysis reaction at a maximum rate of 0.8 s(-1) with PPi Kd of 1.2 mM. Several experiments were designed to investigate the rate-limiting step in the pathway of single nucleotide addition. Acid-quench and pulse-chase kinetics indicated that an isomerization step before chemistry is rate-limiting. The very similar rate constants of sequential incorporation of two nucleotides indicated that the steps after chemistry are fast. Based on available data, we propose that the preinsertion to insertion isomerization of NTP observed in the crystallographic studies of T7 RNAP is a likely candidate for the rate-limiting step. The studies here provide a kinetic framework to investigate structure-function and fidelity of RNA synthesis and to further explore the role of the conformational change in nucleotide selection during RNA synthesis.

  9. Using nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) for simultaneous determination of concentration and equilibrium constant.

    PubMed

    Kanoatov, Mirzo; Galievsky, Victor A; Krylova, Svetlana M; Cherney, Leonid T; Jankowski, Hanna K; Krylov, Sergey N

    2015-03-03

    Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) is a versatile tool for studying affinity binding. Here we describe a NECEEM-based approach for simultaneous determination of both the equilibrium constant, K(d), and the unknown concentration of a binder that we call a target, T. In essence, NECEEM is used to measure the unbound equilibrium fraction, R, for the binder with a known concentration that we call a ligand, L. The first set of experiments is performed at varying concentrations of T, prepared by serial dilution of the stock solution, but at a constant concentration of L, which is as low as its reliable quantitation allows. The value of R is plotted as a function of the dilution coefficient, and dilution corresponding to R = 0.5 is determined. This dilution of T is used in the second set of experiments in which the concentration of T is fixed but the concentration of L is varied. The experimental dependence of R on the concentration of L is fitted with a function describing their theoretical dependence. Both K(d) and the concentration of T are used as fitting parameters, and their sought values are determined as the ones that generate the best fit. We have fully validated this approach in silico by using computer-simulated NECEEM electropherograms and then applied it to experimental determination of the unknown concentration of MutS protein and K(d) of its interactions with a DNA aptamer. The general approach described here is applicable not only to NECEEM but also to any other method that can determine a fraction of unbound molecules at equilibrium.

  10. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives

    PubMed Central

    Jaynes, William F.; Zartman, Richard E.

    2011-01-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725

  11. Aflatoxin toxicity reduction in feed by enhanced binding to surface-modified clay additives.

    PubMed

    Jaynes, William F; Zartman, Richard E

    2011-06-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (K(d) = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (K(d) = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (K(d) = 13,800) and carnitine (K(d) = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (K(d) = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (K(d) = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (K(d) = 1340) or the untreated montmorillonite (K(d) = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity.

  12. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase.

    PubMed

    Swainsbury, David J K; Zhou, Liang; Oldroyd, Giles E D; Bornemann, Stephen

    2012-09-04

    A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.

  13. Increased ability of tirofiban to maintain its inhibitory effects on the binding of fibrinogen to platelets in blood from patients with and without diabetes mellitus.

    PubMed

    Schneider, David J; Keating, Friederike K; Baumann, Patricia Q; Whitaker, Deborah A; Sobel, Burton E

    2006-02-01

    Both tirofiban and eptifibatide release rapidly from glycoprotein IIb-IIIa but have different dissociation constants (KD of tirofiban=15 nmol/l, of eptifibatide=120 nmol/l). Binding of fibrinogen to glycoprotein IIb-IIIa is biphasic, forming an initial reversible complex (KD=155-180 nmol/l) and a second more stable complex (KD=20-70 nmol/l). Diabetes is known to alter platelet function. To determine the influence of affinity on inhibitory effects in blood from patients with (n=20) and without (n=20) diabetes mellitus, we characterized the extent of inhibition as a function of time. Blood was added to reaction tubes containing tirofiban 100 ng/ml or eptifibatide 1.7 microg/ml (concentrations previously defined to be optimal) plus a platelet agonist (1 micromol/l adenosine diphosphate or 25 micromol/l thrombin receptor agonist peptide), and fluorochrome-labeled fibrinogen before analysis by flow cytometry. The extent of inhibition early on (30 s to 3 min) was similar (>85%) with either agent in blood from those with and without diabetes mellitus, whereas the extent of inhibition 10-15 min later was maintained more effectively with tirofiban than with eptifibatide (difference in slope P<0.01). After 15 min, the extent of inhibition in response to adenosine diphosphate in those with diabetes mellitus was 95+/-6% for tirofiban and 70+/-15% for eptifibatide (P<0.001); in those without diabetes mellitus, it was 91+/-9% for tirofiban and 73+/-19% for eptifibatide (P<0.001). For glycoprotein IIb-IIIa antagonists with a rapid rate of release, the biphasic binding of fibrinogen influences to a similar extent their ability to maintain inhibitory effects in blood from patients with and without diabetes mellitus.

  14. High Affinity Binding of Indium and Ruthenium Ions by Gastrins

    PubMed Central

    Baldwin, Graham S.; George, Graham N.; Pushie, M. Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10−7 and 1.1 x 10−6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10−15 and 1.7 x 10−7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10−13 and 1.2 x 10−5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0–3.3 Å, the Ru complex clearly demonstrated a short range Ru—Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy. PMID:26457677

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Y.; Kawai, R.; McManaway, M.

    (3H)Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB);more » estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using (18F)CF and positron emission tomography.« less

  16. Pathophysiologic insights into motor axonal function in Kennedy disease.

    PubMed

    Vucic, Steve; Kiernan, Matthew C

    2007-11-06

    Kennedy disease (KD), or spinobulbomuscular atrophy, is a slowly progressive inherited neurodegenerative disorder, marked by prominent fasciculations that typically precede the development of other symptoms. Although the genetic basis of KD relates to triplet (CAG) repeat expansion in the androgen receptor (AR) gene on the X chromosome, the mechanisms underlying the clinical presentation in KD have yet to be established. Consequently, the present study applied axonal excitability techniques to investigate the pathophysiologic mechanisms associated with KD. Peripheral nerve excitability studies were undertaken in 7 patients with KD with compound muscle action potentials (CMAP) recorded from the right abductor pollicis brevis. Strength-duration time constant (KD 0.54 +/- 0.03 msec; controls, 0.41 +/- 0.02 msec, p < 0.01) and the hyperpolarizing current/threshold gradient (KD 0.42 +/- 0.01; controls, 0.37 +/- 0.01, p < 0.05) were significantly increased in KD. Strength-duration time constant correlated with the CMAP amplitude (R = 0.68) and the fasciculation frequency (R = 0.62). Threshold electrotonus revealed greater changes in response to subthreshold depolarizing (KD TEd [90 to 100 msec], 50.75 +/- 1.98%; controls TEd [90 to 100 msec], 45.67 +/- 0.67%, p < 0.01) and hyperpolarizing (KD TEh [90 to 100 msec], 128.5 +/- 6.9%; controls TEh [90 to 100 msec], 120.5 +/- 2.4%) conditioning pulses. Measurements of refractoriness, superexcitability, and late subexcitability changed appropriately for axonal hyperpolarization, perhaps reflecting the effects of increased ectopic activity. In total, the increase in the strength-duration time constant may be the primary event, occurring early in course of the disease, contributing to the development of axonal hyperexcitability in Kennedy disease, and thereby to the generation of fasciculations, a characteristic hallmark of the disease.

  17. Temperature-sensitive high affinity (/sup 3/H)serotonin binding: characterization and effects of antidepressant treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmeste, D.M.; Tang, S.W.

    1984-08-13

    Characterization of temperature-sensitive (/sup 3/H)serotonin (5-HT) binding sites (1 and 4 nM Kd sites) revealed complex inhibition by neuroleptics and serotonin antagonists. There was no simple correlation with affinities for S/sub 1/ and S/sub 2/ receptors. In vivo pretreatment (48 h before) with mianserin did not alter B/sub max/ or Kd for the 1 nM Kd (/sup 3/H)5-HT site, although (/sup 3/H)ketanserin (S/sub 2/) densities were decreased by 50%. This suggested that possible S/sub 2/ components of (/sup 3/H)5-HT binding must be negligible, even though ketanserin competed with high affinity (IC/sub 50/ = 3 nM) for a portion of themore » 1 nM Kd (/sup 3/H)5-HT site. Low concentrations of mianserin inhibited the 1 nM Kd (/sup 3/H)5-HT site in a non-competitive manner, as shown by a decrease in B/sub max/ with no change in Kd after in vitro incubation. The complex inhibition data may therefore represent indirect interactions through another site.« less

  18. Altered binding of /sup 125/I-labeled calmodulin to a 46. 5-kilodalton protein in skin fibroblasts cultured from patients with cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallant, E.A.; Wallace, R.W.

    1987-02-01

    The levels of calmodulin and calmodulin-binding proteins have been determined in cultured skin fibroblasts from patients with cystic fibrosis (CF) and age- and sex-matched controls. Calmodulin ranged from 0.20 to 0.76 microgram/mg protein; there was no difference between calmodulin concentration in fibroblasts from CF patients and controls. Calmodulin-binding proteins of 230, 212, 204, 164, 139, 70, 59, 46.5, and 41 kD were identified. A protein with a mobility identical to the 59-kD calmodulin-binding protein was labeled by antiserum against calmodulin-dependent phosphatase. Although Ca/sup 2 +//calmodulin-dependent phosphatase activity was detected, there was no different in activity between control and CF fibroblastsmore » or in the level of phosphatase protein as determined by radioimmunoassay. Lower amounts of /sup 125/I-calmodulin were bound to the 46.5-kD calmodulin-binding protein in CF fibroblasts as compared with controls. The 46.5-kD calmodulin-binding protein may be reduced in CF fibroblasts or its structure may be altered resulting in a reduced binding capacity and/or affinity for calmodulin and perhaps reflecting, either directly or indirectly, the genetic defect responsible for cystic fibrosis.« less

  19. Immunological Characterization and Neutralizing Ability of Monoclonal Antibodies Directed Against Botulinum Neurotoxin Type H

    PubMed Central

    Fan, Yongfeng; Barash, Jason R.; Lou, Jianlong; Conrad, Fraser; Marks, James D.; Arnon, Stephen S.

    2016-01-01

    Background. Only Clostridium botulinum strain IBCA10-7060 produces the recently described novel botulinum neurotoxin type H (BoNT/H). BoNT/H (N-terminal two-thirds most homologous to BoNT/F and C-terminal one-third most homologous to BoNT/A) requires antitoxin to toxin ratios ≥1190:1 for neutralization by existing antitoxins. Hence, more potent and safer antitoxins against BoNT/H are needed. Methods. We therefore evaluated our existing monoclonal antibodies (mAbs) to BoNT/A and BoNT/F for BoNT/H binding, created yeast-displayed mutants to select for higher-affinity-binding mAbs by using flow cytometry, and evaluated the mAbs' ability to neutralize BoNT/H in the standard mouse bioassay. Results. Anti-BoNT/A HCC-binding mAbs RAZ1 and CR2 bound BoNT/H with high affinity. However, only 1 of 6 BoNT/F mAbs (4E17.2A) bound BoNT/H but with an affinity >800-fold lower (equilibrium dissociation binding constant [KD] = 7.56 × 10−8 M) than its BoNT/F affinity (KD = 9.1 × 10−11 M), indicating that the N-terminal two-thirds of BoNT/H is immunologically unique. The affinity of 4E17.2A for BoNT/H was increased >500-fold to KD = 1.48 × 10−10 M (mAb 4E17.2D). A combination of mAbs RAZ1, CR2, and 4E17.2D completely protected mice challenged with 280 mouse median lethal doses of BoNT/H at a mAb dose as low as 5 µg of total antibody. Conclusions. This 3-mAb combination potently neutralized BoNT/H and represents a potential human antitoxin that could be developed for the prevention and treatment of type H botulism. PMID:26936913

  20. Binding of polarity-sensitive hydrophobic ligands to erythroid and nonerythroid spectrin: fluorescence and molecular modeling studies.

    PubMed

    Patra, Malay; Mitra, Madhurima; Chakrabarti, Abhijit; Mukhopadhyay, Chaitali

    2014-01-01

    We have used three polarity-sensitive fluorescence probes, 6-propionyl 2-(N,N-dimethyl-amino) naphthalene (Prodan), pyrene and 8-anilino 1-naphthalene sulphonic acid, to study their binding with erythroid and nonerythroid spectrin, using fluorescence spectroscopy. We have found that both bind to prodan and pyrene with high affinities with apparent dissociation constants (Kd) of .50 and .17 μM, for prodan, and .04 and .02 μM, for pyrene, respectively. The most striking aspect of these bindings have been that the binding stoichiometry have been equal to 1 in erythroid spectrin, both in dimeric and tetrameric form, and in tetrameric nonerythroid spectrin. From an estimate of apparent dielectric constants, the polarity of the binding site in both erythroid and nonerythroid forms have been found to be extremely hydrophobic. Thermodynamic parameters associated with such binding revealed that the binding is favored by positive change in entropy. Molecular docking studies alone indicate that both prodan and pyrene bind to the four major structural domains, following the order in the strength of binding to the Ankyrin binding domain > SH3 domain > Self-association domain > N-terminal domain of α-spectrin of both forms of spectrin. The binding experiments, particularly with the tetrameric nonerythroid spectrin, however, indicate more toward the self association domain in offering the unique binding site, since the binding stoichiometry have been 1 in all forms of dimeric and tetrameric spectrin, so far studied by us. Further studies are needed to characterize the hydrophobic binding sites in both forms of spectrin.

  1. Characterization of WY 14,643 and its Complex with Aldose Reductase

    DOE PAGES

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi; ...

    2016-10-10

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such asmore » WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR.« less

  2. Characterization of WY 14,643 and its Complex with Aldose Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such asmore » WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR.« less

  3. [Glutamate-binding membrane proteins from human platelets].

    PubMed

    Gurevich, V S; Popov, Iu G; Gorodinskiĭ, A I; Dambinova, S A

    1991-09-01

    Solubilization of the total membrane fraction of human platelets in a 2% solution of sodium deoxycholate and subsequent affinity chromatography on glutamate agarose resulted in two protein fractions possessing a glutamate-binding activity. As can be evidenced from radioligand binding data, the first fraction contains two types of binding sites (Kd1 = 1 microM, Bmax 1 = 100 pmol/mg of protein; Kd2 = 9.3 microMm Bmax2 = 395 pmol/mg of protein). The second fraction has only one type of binding sites (Kd = 1 microM, Bmax = = 110 pmol/mg of protein). SDS-PAAG electrophoresis revealed the presence in the first fraction of proteins with Mr of 14, 24, 56 and 155 kDa, whereas the second fraction was found to contain 14, 46, 71 and 155 kDa proteins. Solid phase immunoenzymatic analysis using poly- and monoclonal specific antibodies against mammalian brain glutamate-binding proteins revealed a marked immunochemical similarity of the isolated protein fractions with human brain synaptic membrane glutamate-binding proteins.

  4. Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents.

    PubMed

    Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar

    2015-03-01

    We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔG(bind, pred)) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔG(bind, expt) (calculated from the Kd value) are consistent with the predicted value of ΔG(bind, pred) calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further toxicological evaluation. Treatment of mice with a daily dose of 300 mg/kg and a single dose of 600 mg/kg indicates that the compound does not induce detectable pathological abnormalities in normal tissues. Also there were no significant differences in hematological parameters between the treated and untreated groups. Hence, the newly designed noscapinoid, 5e is an orally bioavailable, safe and effective anticancer agent with a potential for the treatment of cancer and might be a candidate for clinical evaluation.

  5. Fluorescence emission and polarization analyses for evaluating binding of ruthenium metalloglycocluster to lectin and tetanus toxin c-fragment

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Minoura, Norihiko

    2010-02-01

    We have developed a fluorescent ruthenium metalloglycocluster as a powerful molecular probe for evaluating a binding event between carbohydrates and lectins by fluorescence emission (FE) and fluorescence polarization (FP) analysis. The fluorescent ruthenium metalloglycoclusters, [Ru(bpy-2Gal)3] and [Ru(bpy-2Glc)3], possess clustered galactose and glucose surrounding the ruthenium center. Changes in FE and FP of these metalloglycoclusters were measured by adding each lectin (Peanut agglutinin (PNA), Ricinus communis agglutinin 120 (RCA), Concanavalin A (ConA), or Wheat germ agglutinin (WGA)) or tetanus toxin c-fragment (TCF). Following the addition of PNA, the FE spectrum of [Ru(bpy- 2Gal)3] showed new emission peak and the FP value of [Ru(bpy-2Gal)3] increased. Similarly, the FE spectrum of [Ru(bpy-2Glc)3] showed new emission peak and the FP value increased following the addition of ConA. Since other combinations of the metalloglycoclusters and lectin caused little change, specific bindings of galactose to PNA and glucose to ConA were proved by the FE and FP measurement. From nonlinear least-squares fitting, dissociation constants (Kd) of [Ru(bpy-2Gal)3] to PNA was 6.1 μM, while the Kd values of [Ru(bpy)2(bpy-2Gal)] to PNA was ca. 10-4 M. Therefore, the clustered carbohydrates were proved to increase affinity to lectins. Furthermore, the FP measurements proved specific binding of [Ru(bpy-2Gal)3] to TCF.

  6. Differential processing of the two subunits of human choriogonadotropin (hCG) by granulosa cells. I. Preparation and characterization of selectively labeled hCG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landefeld, T.D.; Byrne, M.D.; Campbell, K.L.

    1981-12-01

    The alpha- and beta-subunits of hCG were radioiodinated and recombined with unlabeled complementary subunits. The resultant recombined hormones, selectively labeled in either the alpha- or beta-subunit, were separated from unrecombined subunit by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, extracted with Triton X-100, and characterized by binding analysis. The estimates of maximum binding (active fraction) of the two resultant selectively labeled, recombined hCG preparations, determined with excess receptor were 0.41 and 0.59. These values are similar to those obtained when hCG is labeled as an intact molecule. The specific activities of the recombined preparations were estimated by four different methods, and themore » resulting values were used in combination with the active fraction estimates to determine the concentrations of active free and bound hormone. Binding analyses were run using varying concentrations of both labeled and unlabeled hormone. Estimates of the equilibrium dissociation binding constant (Kd) and receptor capacity were calculated in three different ways. The mean estimates of capacity (52.6 and 52.7 fmol/mg tissue) and Kd (66.6 and 65.7 pM) for the two preparations were indistinguishable. Additionally, these values were similar to values reported previously for hCG radioiodinated as an intact molecule. The availability of well characterized, selectively labeled hCG preparations provides new tools for studying the mechanism of action and the target cell processing of the subunits of this hormone.« less

  7. Immobilized metal ion affinity electrophoresis. A study with several model proteins containing histidine.

    PubMed

    Goubran-Botros, H; Nanak, E; Abdul Nour, J; Birkenmeir, G; Vijayalakshmi, M A

    1992-04-24

    Immobilized metal ion affinity electrophoresis (IMA-Elec) is one among the many methods derived from the immobilized metal ion affinity chromatography. Two approaches for incorporating the metal ligand, were studied. One was in the form of insoluble particulate material based on Sepharose 6B and the other in the form of soluble polymer based on polyethylene glycol (PEG) 5000. Both the polymers coupled with iminodiacetate and metallized with copper or zinc were used as ligands, incorporated into soluble agarose as the electrophoretic gel. Several histidine-containing model proteins were studied with both the systems and their metal binding strengths were determined as the dissociation constants, Kd. The results clearly demonstrated that the mechanism of protein recognition by immobilized copper or zinc via the accessible histidyl residues was maintained in the IMA-Elec system. Proteins with increasing numbers of histidine residues showed increasing binding strength (lower Kd values). While this basic mechanism was conserved, the supporting polymers (Sepharose 6B and the PEG 5000) showed significant differences in the metal binding to the protein. The polysaccharide Sepharose 6B enhanced the binding strength compared with PEG 5000. The optimum electrophoretic parameters were determined to be current intensities up to 20 mA and pH ca. 7.0. At pH greater than 8.0, a significant decrease in the affinity was observed, this decrease being greater with PEG 5000 than Sepharose 6B as supporting material.

  8. Inhibition of kinesin-driven microtubule motility by monoclonal antibodies to kinesin heavy chains

    PubMed Central

    1988-01-01

    We have prepared and characterized seven mouse monoclonal antibodies (SUK 1-7) to the 130-kD heavy chain of sea urchin egg kinesin. On immunoblots, SUK 3 and SUK 4 cross-reacted with Drosophila embryo 116- kD heavy chains, and SUK 4, SUK 5, SUK 6, and SUK 7 bound to the 120-kD heavy chains of bovine brain kinesin. Three out of seven monoclonal antikinesins (SUK 4, SUK 6, and SUK 7) caused a dose-dependent inhibition of sea urchin egg kinesin-induced microtubule translocation, whereas the other four monoclonal antibodies had no detectable effect on this motility. The inhibitory monoclonal antibodies (SUK 4, SUK 6, and SUK 7) appear to bind to spatially related sites on an ATP- sensitive microtubule binding 45-kD chymotryptic fragment of the 130-kD heavy chain, whereas SUK 2 binds to a spatially distinct site. None of the monoclonal antikinesins inhibited the microtubule activated MgATPase activity of kinesin, suggesting that SUK 4, SUK 6, and SUK 7 uncouple this MgATPase activity from motility. PMID:2974459

  9. Identification of new ligands for the methionine biosynthesis transcriptional regulator (MetJ) by FAC-MS.

    PubMed

    Martí-Arbona, Ricardo; Teshima, Munehiro; Anderson, Penelope S; Nowak-Lovato, Kristy L; Hong-Geller, Elizabeth; Unkefer, Clifford J; Unkefer, Pat J

    2012-01-01

    We have developed a high-throughput approach using frontal affinity chromatography coupled to mass spectrometry (FAC-MS) for the identification and characterization of the small molecules that modulate transcriptional regulator (TR) binding to TR targets. We tested this approach using the methionine biosynthesis regulator (MetJ). We used effector mixtures containing S-adenosyl-L-methionine (SAM) and S-adenosyl derivatives as potential ligands for MetJ binding. The differences in the elution time of different compounds allowed us to rank the binding affinity of each compound. Consistent with previous results, FAC-MS showed that SAM binds to MetJ with the highest affinity. In addition, adenine and 5'-deoxy-5'-(methylthio)adenosine bind to the effector binding site on MetJ. Our experiments with MetJ demonstrate that FAC-MS is capable of screening complex mixtures of molecules and identifying high-affinity binders to TRs. In addition, FAC-MS experiments can be used to discriminate between specific and nonspecific binding of the effectors as well as to estimate the dissociation constant (K(d)) for effector-TR binding. Copyright © 2012 S. Karger AG, Basel.

  10. Characterization of Clostridium botulinum Type B Neurotoxin Associated with Infant Botulism in Japan

    PubMed Central

    Kozaki, Shunji; Kamata, Yoichi; Nishiki, Tei-ichi; Kakinuma, Hiroaki; Maruyama, Hiromi; Takahashi, Hiroaki; Karasawa, Tadahiro; Yamakawa, Kiyotaka; Nakamura, Shinichi

    1998-01-01

    The neurotoxin of strain 111 (111/NT) associated with type B infant botulism showed antigenic and biological properties different from that (Okra/NT) produced by a food-borne botulism-related strain, Okra. The specific toxicity of 111/NT was found to be about 10 times lower than that of Okra/NT. The monoclonal antibodies recognizing the light chain cross-reacted with both neurotoxins, whereas most of the antibodies recognizing the carboxyl-terminal half of the heavy chain of Okra/NT did not react to 111/NT. Binding experiments with rat brain synaptosomes revealed that 125I-labeled 111/NT bound to a single binding site with a dissociation constant (Kd) of 2.5 nM; the value was rather lower than that (0.42 nM) of 125I-Okra/NT for the high-affinity binding site. In the lipid vesicles reconstituted with ganglioside GT1b, 125I-Okra/NT interacted with the amino-terminal domain of synaptotagmin 1 (Stg1N) or synaptotagmin 2 (Stg2N), fused with the maltose-binding protein, in the same manner as the respective full-length synaptotagmins, and the Kd values accorded with those of the low- and high-affinity binding sites in synaptosomes. However, 125I-111/NT only exhibited a low capacity for binding to the lipid vesicles containing Stg2N, but not Stg1N, in the presence of ganglioside GT1b. Moreover, synaptobrevin-2, an intracellular target protein, was digested to the same extent by the light chains of both neurotoxins in a concentration-dependent manner. These findings indicate that the 111/NT molecule possesses the receptor-recognition site structurally different from Okra/NT, probably causing a decreased specific toxicity. PMID:9746583

  11. Effect of Dioxygen on Copper(II) Binding to α-Synuclein

    PubMed Central

    Lucas, Heather R.; Lee, Jennifer C.

    2010-01-01

    Using the fluorescent amino acid tryptophan (Trp), we have characterized the copper(II) binding of F4W α-synuclein in the presence and absence of dioxygen at neutral pH. Variations in Trp fluorescence indicate that copper(II) binding is enhanced by the presence of dioxygen, with the apparent dissociation constant (Kd(app)) changing from 100 nM (anaerobic) to 10 nM (aerobic). To investigate the possible role of methionine oxidation, complementary work focused on synthetic peptide models of the N-terminal Cu(II)-α-syn site, MDV(F/W) and M*DV(F/W), where M*= methionine sulfoxide. Furthermore, we employed circular dichroism (CD) spectroscopy to demonstrate that the phenyl-to-indole (F→W) substitution does not alter copper(II) binding properties and to confirm the 1:1 metal-peptide binding stoichiometry. CD comparisons also revealed that Met1 oxidation does not affect the copper-peptide conformation and further suggested the possible existence of a CuII-Trp/Phe (cation-π) interaction. PMID:20064662

  12. The OmpL37 surface-exposed protein is expressed by pathogenic Leptospira during infection and binds skin and vascular elastin.

    PubMed

    Pinne, Marija; Choy, Henry A; Haake, David A

    2010-09-07

    Pathogenic Leptospira spp. shed in the urine of reservoir hosts into freshwater can be transmitted to a susceptible host through skin abrasions or mucous membranes causing leptospirosis. The infection process involves the ability of leptospires to adhere to cell surface and extracellular matrix components, a crucial step for dissemination and colonization of host tissues. Therefore, the elucidation of novel mediators of host-pathogen interaction is important in the discovery of virulence factors involved in the pathogenesis of leptospirosis. In this study, we assess the functional roles of transmembrane outer membrane proteins OmpL36 (LIC13166), OmpL37 (LIC12263), and OmpL47 (LIC13050), which we recently identified on the leptospiral surface. We determine the capacity of these proteins to bind to host tissue components by enzyme-linked immunosorbent assay. OmpL37 binds elastin preferentially, exhibiting dose-dependent, saturating binding to human skin (K(d), 104±19 nM) and aortic elastin (K(d), 152±27 nM). It also binds fibrinogen (K(d), 244±15 nM), fibrinogen fragment D (K(d), 132±30 nM), plasma fibronectin (K(d), 359±68 nM), and murine laminin (K(d), 410±81 nM). The binding to human skin elastin by both recombinant OmpL37 and live Leptospira interrogans is specifically enhanced by rabbit antiserum for OmpL37, suggesting the involvement of OmpL37 in leptospiral binding to elastin and also the possibility that host-generated antibodies may promote rather than inhibit the adherence of leptospires to elastin-rich tissues. Further, we demonstrate that OmpL37 is recognized by acute and convalescent leptospirosis patient sera and also by Leptospira-infected hamster sera. Finally, OmpL37 protein is detected in pathogenic Leptospira serovars and not in saprophytic Leptospira. Thus, OmpL37 is a novel elastin-binding protein of pathogenic Leptospira that may be promoting attachment of Leptospira to host tissues.

  13. Occupational allergy to flowers: immunoblot analysis of allergens in freesia, gerbera and chrysanthemum pollen.

    PubMed

    van Toorenenbergen, A W

    2014-10-01

    High exposure to pollen from ornamental flowers can induce an IgE-mediated occupational allergy in florists and horticulture workers. We investigated IgE-binding antigens in chrysanthemum, freesia and gerbera pollen by immunoblot analysis and analysed the cross-reactivity of these pollen with birch, grass and mugwort pollen. In immunoblots with chrysanthemum pollen, major IgE-binding structures were seen with a molecular weight (MW) of approximately 25, 45 and 65 kD. In the immunoblots with freesia pollen, IgE from freesia pollen was directed against two proteins with an MW of approximately 15 kD. Most sera showed IgE binding to an approximately 15 kD band in gerbera pollen; with some sera additional bands were seen in the range of 30-50 kD. IgE binding to chrysanthemum pollen was inhibited by mugwort pollen only, whereas IgE binding to freesia pollen was suppressed by birch, grass and mugwort pollen. The inhibitory activity of birch and grass pollen extract on IgE binding to gerbera pollen extract was serum dependent and ranged from no inhibition to complete inhibition. Occupational exposure to many different flowers induced IgE against all three types of pollen. Exposure in greenhouses to gerbera flowers elicited mainly IgE against gerbera pollen. Mugwort pollen extract inhibited IgE binding to pollen from all three flowers. © 2014 John Wiley & Sons Ltd.

  14. Absolute configuration of acremoxanthone C, a potent calmodulin inhibitor from Purpureocillium lilacinum.

    PubMed

    Madariaga-Mazón, Abraham; González-Andrade, Martín; González, María Del Carmen; Glenn, Anthony E; Cerda-García-Rojas, Carlos M; Mata, Rachel

    2013-08-23

    Bioassay-guided fractionation of an extract prepared from the culture medium and mycelium of Purpureocillium lilacinum allowed the isolation of two calmodulin (CaM) inhibitors, namely, acremoxanthone C (1) and acremonidin A (2). The absolute configuration of 1 was established as 2R, 3R, 1'S, 11'S, and 14'R through extensive NMR spectroscopy and molecular modeling calculations at the DFT B3LYP/DGDZVP level, which included the comparison between theoretical and experimental specific rotation, ³J(C,H), and ³J(H,H) values. Compounds 1 and 2 bind to the human calmodulin (hCaM) biosensor hCaM M124C-mBBr, with dissociation constants (Kd) of 18.25 and 19.40 nM, respectively, 70-fold higher than that of chlorpromazine (Kd = 1.24 μM), used as positive control. Docking analysis using AutoDock 4.2 predicted that 1 and 2 bind to CaM at a similar site to that which KAR-2 binds, which is unusual. Furthermore, a novel, sensible, and specific fluorescent biosensor of hCaM, i.e., hCaM T110C-mBBr, was constructed; this device is labeled at a site where classical inhibitors do not interact and was successfully applied to measure the interaction of 1 with CaM. This is the first report of xanthone-anthraquinone heterodimers in species of Paecilomyces or Purpureocillium genera.

  15. Photoaffinity labelling of the cardiac calcium channel. (-)-[3H]azidopine labels a 165 kDa polypeptide, and evidence against a [3H]-1,4-dihydropyridine-isothiocyanate being a calcium-channel-specific affinity ligand.

    PubMed

    Ferry, D R; Goll, A; Glossmann, H

    1987-04-01

    The arylazide 1,4-dihydropyridine (-)-[3H]azidopine binds to a saturable population of sites in guinea-pig heart membranes with a dissociation constant (KD) of 30 +/- 7 pM and a density (Bmax.) of 670 +/- 97 fmol/mg of protein. This high-affinity binding site is assumed to reside on voltage-operated calcium channels because reversible binding is blocked stereoselectively by 1,4-dihydropyridine channel blockers and by the enantiomers of Bay K 8644. A low-affinity (KD 25 +/- 7 nM) high-capacity (Bmax. 21.6 +/- 9 pmol/mg of protein) site does not bind (-)- or (+)-Bay K 8644, but is blocked by high concentrations (greater than 500 nM) of dihydro-2,6-dimethyl-4-(2-isothiocyanatophenyl)-3,5-pyridinedicarboxy lic acid dimethyl ester (1,4-DHP-isothiocyanate) or, e.g., (+/-)-nicardipine. (-)-[3H]Azidopine was photoincorporated covalently into bands of 165 +/- 8, 39 +/- 2 and 35 +/- 3 kDa, as determined by SDS/polyacrylamide-gel electrophoresis. Labelling of the 165 kDa band is protected stereoselectively by 1,4-dihydropyridine enantiomers at low (nM) concentrations and by (-)- and (+)-Bay K 8644, whereas the lower-Mr bands are not. Thus, only the 165 kDa band is the calcium-channel-linked 1,4-dihydropyridine receptor. Photolabelling of the 39 or 35 kDa bands was only blocked by 10 microM-1,4-DHP-isothiocyanate or 50 microM-(+/-)-nicardipine but not by 10 microM-(-)-Bay K 8644. [3H]-1,4-DHP-isothiocyanate binds to guinea-pig heart membranes with a KD of 0.35 nM and dissociates with a k-1 of 0.2 min-1 at 30 degrees C. [3H]-1,4 DHP-isothiocyanate irreversibly labels bands of 39 and 35 kDa which are protected by greater than 10 microM-(+/-)-nicardipine or unlabelled ligand but not by 10 microM-(-)-Bay K 8644. Thus, [3H]-1,4-DHP-isothiocyanate is not an affinity probe for the calcium channel.

  16. High-Affinity Binding of Remyelinating Natural Autoantibodies to Myelin-Mimicking Lipid Bilayers Revealed by Nanohole Surface Plasmon Resonance

    PubMed Central

    Wittenberg, Nathan J.; Im, Hyungsoon; Xu, Xiaohua; Wootla, Bharath; Watzlawik, Jens; Warrington, Arthur E.; Rodriguez, Moses; Oh, Sang-Hyun

    2012-01-01

    Multiple sclerosis is a progressive neurological disorder that results in the degradation of myelin sheaths that insulate axons in the central nervous system. Therefore promotion of myelin repair is a major thrust of multiple sclerosis treatment research. Two mouse monoclonal natural autoantibodies, O1 and O4, promote myelin repair in several mouse models of multiple sclerosis. Natural autoantibodies are generally polyreactive and predominantly of the IgM isotype. The prevailing paradigm is that because they are polyreactive, these antibodies bind antigens with low affinities. Despite their wide use in neuroscience and glial cell research, however, the affinities and kinetic constants of O1 and O4 antibodies have not been measured to date. In this work, we developed a membrane biosensing platform based on surface plasmon resonance in gold nanohole arrays with a series of surface modification techniques to form myelin-mimicking lipid bilayer membranes to measure both the association and dissociation rate constants for O1 and O4 antibodies binding to their myelin lipid antigens. The ratio of rate constants shows that O1 and O4 bind to galactocerebroside and sulfated galactocerebroside, respectively, with unusually small apparent dissociation constants (KD ~0.9 nM) for natural autoantibodies. This is approximately one to two orders of magnitude lower than typically observed for the highest affinity natural autoantibodies. We propose that the unusually high affinity of O1 and O4 to their targets in myelin contributes to the mechanism by which they signal oligodendrocytes and induce central nervous system repair. PMID:22762372

  17. Effects of calcium and magnesium ions on the interaction of corticosterone with rat brain cytosol receptor(s).

    PubMed

    Nakai, T; Ueda, M; Takeda, R

    1978-01-01

    The apparent maximum corticosterone binding (B max) with rat brain cytosol and the apparent dissociation constant of this steroid-receptor binding (Kd) estimated with a Scatchard plot was 2.9 X 10(-13) moles/mg cytosol protein and 4.0 X 10(-9) M, respectively. When increasing amounts of CaCl2 or MgCl2 up to 5.0 mM were added, a specific [3H] corticosterone binding increased 4-fold by CaCl2 at concentrations of 1.0-2.0 mM and 1.5-fold by MgCl2 at concentrations of 0.5-5.0 mM. The addition of MnCl2 and KCl did not affect this binding. Binding of corticosterone with rat brain cytosol receptor(s) were decreased by increasing amounts of EGTA and complete inhibition was observed at concentrations equal to and greater than 2.5 mM. Inhibition of this binding by EDTA was less than by EGTA. Either theophylline or dibutyryl cyclic AMP had no effect on this binding.

  18. Amyloid tracers detect multiple binding sites in Alzheimer's disease brain tissue.

    PubMed

    Ni, Ruiqing; Gillberg, Per-Göran; Bergfors, Assar; Marutle, Amelia; Nordberg, Agneta

    2013-07-01

    Imaging fibrillar amyloid-β deposition in the human brain in vivo by positron emission tomography has improved our understanding of the time course of amyloid-β pathology in Alzheimer's disease. The most widely used amyloid-β imaging tracer so far is (11)C-Pittsburgh compound B, a thioflavin derivative but other (11)C- and (18)F-labelled amyloid-β tracers have been studied in patients with Alzheimer's disease and cognitively normal control subjects. However, it has not yet been established whether different amyloid tracers bind to identical sites on amyloid-β fibrils, offering the same ability to detect the regional amyloid-β burden in the brains. In this study, we characterized (3)H-Pittsburgh compound B binding in autopsied brain regions from 23 patients with Alzheimer's disease and 20 control subjects (aged 50 to 88 years). The binding properties of the amyloid tracers FDDNP, AV-45, AV-1 and BF-227 were also compared with those of (3)H-Pittsburgh compound B in the frontal cortices of patients with Alzheimer's disease. Saturation binding studies revealed the presence of high- and low-affinity (3)H-Pittsburgh compound B binding sites in the frontal cortex (K(d1): 3.5 ± 1.6 nM; K(d2): 133 ± 30 nM) and hippocampus (K(d1):5.6 ± 2.2 nM; K(d2): 181 ± 132 nM) of Alzheimer's disease brains. The relative proportion of high-affinity to low-affinity sites was 6:1 in the frontal cortex and 3:1 in the hippocampus. One control showed both high- and low-affinity (3)H-Pittsburgh compound B binding sites (K(d1): 1.6 nM; K(d2): 330 nM) in the cortex while the others only had a low-affinity site (K(d2): 191 ± 70 nM). (3)H-Pittsburgh compound B binding in Alzheimer's disease brains was higher in the frontal and parietal cortices than in the caudate nucleus and hippocampus, and negligible in the cerebellum. Competitive binding studies with (3)H-Pittsburgh compound B in the frontal cortices of Alzheimer's disease brains revealed high- and low-affinity binding sites for BTA-1 (Ki: 0.2 nM, 70 nM), florbetapir (1.8 nM, 53 nM) and florbetaben (1.0 nM, 65 nM). BF-227 displaced 83% of (3)H-Pittsburgh compound B binding, mainly at a low-affinity site (311 nM), whereas FDDNP only partly displaced (40%). We propose a multiple binding site model for the amyloid tracers (binding sites 1, 2 and 3), where AV-45 (florbetapir), AV-1 (florbetaben), and Pittsburgh compound B, all show nanomolar affinity for the high-affinity site (binding site 1), as visualized by positron emission tomography. BF-227 shows mainly binding to site 3 and FDDNP shows only some binding to site 2. Different amyloid tracers may provide new insight into the pathophysiological mechanisms in the progression of Alzheimer's disease.

  19. Pharmacokinetics and microbiodistribution of 64Cu-labeled collagen binding peptides in chronic myocardial infarction

    PubMed Central

    Kim, Heejung; Lee, Sung-Jin; Kim, Jin Su; Davies-Venn, Cynthia; Cho, Hong-Jun; Won, Samuel Jaeyoon; Dejene, Eden; Yao, Zhengsheng; Kim, Insook; Paik, Chang H.; Bluemke, David A.

    2016-01-01

    Objectives To evaluate the pharmacokinetics and microbiodistribution of 64Cu-labeled collagen binding peptides. Method The affinity constant (KD), association (ka) and dissociation rate constant (kd) for the peptide collagelin or its analogue (named CRPA) binding to collagen were measured by bio-layer interferometric analysis. Rats (n = 4–5) with myocardial infarction or normal were injected IV with the 64Cu-labeled peptides or 64Cu-DOTA as a control. Dynamic PET imaging was performed for 60 min at 7- to 8-week post-infarct. [18F]FDG PET imaging was performed to identify the viable myocardium. To validate the PET images, slices of heart samples from the base to the apex were analyzed using autoradiography and histology. Result The peptides bound to collagen with KD of ~ 0.9 μM. The 64Cu-peptides and 64Cu-DOTA accumulated in the infarct area (confirmed by autoradiography and histology images) within 1 minute of injection and were excreted rapidly via the renal system. The blood clearance curves were bi-phasic with the elimination half-lives, 21.9 ± 2.4, 26.2 ± 4.6 and 21.2 ± 2.1 min for 64Cu-CRPA, 64Cu-collagelin and the control 64Cu-DOTA, respectively. The clearance half-lives from the focal fibrotic tissue (24.1 ± 1.5, 25.6 ± 8.0 and 21.4 ± 1.3 min, respectively) and remote myocardium (20.8 ± 0.7, 21.0 ± 5.5 and 19.1 ± 2.4 min, respectively) were not significantly different. The uptake ratios of infarct-to-remote myocardium (1.93 ± 0.18, 2.15 ± 0.38 and 1.88 ± 0.08, respectively) for 64Cu-CRPA, 64Cu-collagelin and 64Cu-DOTA remained stable for the time period between 10 to 60 min. Conclusion The distribution of the 64Cu-collagelin probes corresponds to the heterogeneous distribution of expanded extracellular space in the setting of myocardial infarction. The overall washout rate from the fibrous tissue was determined by the slow washout rate (t1/2, ≥ 20 min) of the peptides from the extracellular space to the vasculature, not by the dissociation rate (t1/2, ≤ 2 min) of the 64Cu-peptides from collagen. PMID:27623511

  20. Denervation does not alter the number of neuronal bungarotoxin binding sites on autonomic neurons in the frog cardiac ganglion.

    PubMed

    Sargent, P B; Bryan, G K; Streichert, L C; Garrett, E N

    1991-11-01

    The binding of neuronal bungarotoxin (n-BuTX; also known as bungarotoxin 3.1, kappa-bungarotoxin, and toxin F) was analyzed in normal and denervated parasympathetic cardiac ganglia of the frog Rana pipiens, n-BuTX blocks both EPSPs and ACh potentials at 5-20 nM, as determined by intracellular recording techniques. Scatchard analysis on homogenates indicates that cardiac ganglia have two classes of binding sites for 125I-n-BuTX: a high-affinity site with an apparent dissociation constant (Kd,app) of 1.7 nM and a Bmax (number of binding sites) of 3.8 fmol/ganglion and a low-affinity site with a Kd,app of 12 microM and a Bmax of 14 pmol/ganglion. alpha-Bungarotoxin does not appear to interfere with the binding of 125I-n-BuTX to either site. The high-affinity binding site is likely to be the functional nicotinic ACh receptor (AChR), given the similarity between its affinity for 125I-n-BuTX and the concentration of n-BuTX required to block AChR function. Light microscopic autoradiographic analysis of 125I-n-BuTX binding to the ganglion cell surface reveals that toxin binding is concentrated at synaptic sites, which were identified using a synaptic vesicle-specific antibody. Scatchard analysis of autoradiographic data reveals that 125I-n-BuTX binding to the neuronal surface is saturable and has a Kd,app similar to that of the high-affinity binding site characterized in homogenates. Surface binding of 125I-n-BuTX is blocked by nicotine, carbachol, and d-tubocurarine (IC50 less than 20 microM), but not by atropine (IC50 greater than 10 mM). Denervation of the heart increases the ACh sensitivity of cardiac ganglion cells but has no effect upon the number of high-affinity binding sites for 125I-n-BuTX in tissue homogenates. Moreover, autoradiographic analysis indicates that denervation does not alter the number of 125I-n-BuTX binding sites on the ganglion cell surface. n-BuTX is as effective in reducing ganglion cell responses to ACh in denervated ganglia as it is in normally innervated ganglia. These results suggest that denervation alters neither the total number of nicotinic AChRs in the cardiac ganglion nor the number found on the surface of ganglion cells. These autonomic neurons thus respond differently to denervation than do skeletal myofibers. The increase in ACh sensitivity displayed by cardiac ganglion cells upon denervation cannot be explained by changes in AChR number.

  1. Role of glutamate-104 in generating a transition state analogue inhibitor at the active site of cytidine deaminase.

    PubMed

    Carlow, D C; Short, S A; Wolfenden, R

    1996-01-23

    The 19F-NMR resonance of 5-[19F]fluoropyrimidin-2-one ribonucleoside moves upfield when it is bound by wild-type cytidine deaminase from Escherichia coli, in agreement with UV and X-ray spectroscopic indications that this inhibitor is bound as the rate 3,4-hydrated species 5-fluoro-3,4-dihydrouridine, a transition state analogue inhibitor resembling an intermediate in direct water attack on 5-fluorocytidine. Comparison of pKa values of model compounds indicates that the equilibrium constant for 3,4-hydration of this inhibitor in free solution is 3.5 x 10(-4) M, so that the corrected dissociation constant of 5-fluoro-3,4-dihydrouridine from the wild-type enzyme is 3.9 x 10(-11) M. Very different behavior is observed for a mutant enzyme in which alanine replaces Glu-104 at the active site, and kcat has been reduced by a factor of 10(8). 5-[19F]Fluoropyrimidin-2-one ribonucleoside is strongly fluorescent, making it possible to observe that the mutant enzyme binds this inhibitor even more tightly (Kd = 4.4 x 10(-8) M) than does the native enzyme (Kd = 1.1 x 10(-7) M). 19F-NMR indicates, however, that the E104A mutant enzyme binds the inhibitor without modification, in a form that resembles the substrate in the ground state. These results are consistent with a major role for Glu-104, not only in stabilizing the ES++ complex in the transition state, but also in destabilizing the ES complex in the ground state.

  2. Fragment screening of cyclin G-associated kinase by weak affinity chromatography.

    PubMed

    Meiby, Elinor; Knapp, Stefan; Elkins, Jonathan M; Ohlson, Sten

    2012-11-01

    Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K(D)) = mM - μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with K(D) < 200 μM were detected, including a few highly efficient GAK binders (K(D) of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential.

  3. [The role of Cd-binding proteins and phytochelatins in the formation of cadmium resistance in Nicotiana plumbaginifolia cell lines].

    PubMed

    Fenik, S I; Solodushko, V G; Kaliniak, T B; Blium, Ia B

    2007-01-01

    Nicotiana plumbaginifolia callus lines with the equal resistance to cadmium have been produced under different selective conditions--either without inhibition of the phytochelatin synthesis (line Cd-R) or in the presence of the inhibitor butionine sulfoximine (line Cd-Ri). The level of phytochelatin synthesis in the line Cd-R five-fold exceeded the control value and in the line Cd-Ri it was twice as much as in the control. It was shown that in the control line mainly three cadmium-binding proteins are expressed of the molecular weihgts 41, 34 and 19 kD. The common feature of the both resistant lines is the expression of the cadmium-binding proteins of 40, 37 and 19 kD. The resistant lines differ with respect to the synthesis of relatively low-molecular cadmium-binding proteins. The proteins of the molecular weights 12.5, 11.5 and 9 kD are expressed in the line Cd-R, while the proteins of 13 and 10 kD are expressed in the line Cd-Ri. It was supposed that both the phytochelatins and the Cd-binding proteins contribute to the resisitance of N. plumbaginifolia callus lines to cadmium and the lack of the phytochelatins can be equilibrated by the changes in the low-molecular Cd-binding protein synthesis.

  4. Fragment growing and linking lead to novel nanomolar lactate dehydrogenase inhibitors.

    PubMed

    Kohlmann, Anna; Zech, Stephan G; Li, Feng; Zhou, Tianjun; Squillace, Rachel M; Commodore, Lois; Greenfield, Matthew T; Lu, Xiaohui; Miller, David P; Huang, Wei-Sheng; Qi, Jiwei; Thomas, R Mathew; Wang, Yihan; Zhang, Sen; Dodd, Rory; Liu, Shuangying; Xu, Rongsong; Xu, Yongjin; Miret, Juan J; Rivera, Victor; Clackson, Tim; Shakespeare, William C; Zhu, Xiaotian; Dalgarno, David C

    2013-02-14

    Lactate dehydrogenase A (LDH-A) catalyzes the interconversion of lactate and pyruvate in the glycolysis pathway. Cancer cells rely heavily on glycolysis instead of oxidative phosphorylation to generate ATP, a phenomenon known as the Warburg effect. The inhibition of LDH-A by small molecules is therefore of interest for potential cancer treatments. We describe the identification and optimization of LDH-A inhibitors by fragment-based drug discovery. We applied ligand based NMR screening to identify low affinity fragments binding to LDH-A. The dissociation constants (K(d)) and enzyme inhibition (IC(50)) of fragment hits were measured by surface plasmon resonance (SPR) and enzyme assays, respectively. The binding modes of selected fragments were investigated by X-ray crystallography. Fragment growing and linking, followed by chemical optimization, resulted in nanomolar LDH-A inhibitors that demonstrated stoichiometric binding to LDH-A. Selected molecules inhibited lactate production in cells, suggesting target-specific inhibition in cancer cell lines.

  5. [Molecular organization of glutamate-sensitive chemoexcitatory membranes of nerve cells. Comparative analysis of glutamate-binding membrane proteins from the cerebral cortex of rats and humans].

    PubMed

    Dambinova, S A; Gorodinskiĭ, A I; Lekomtseva, T M; Koreshonkov, O N

    1987-10-01

    The kinetics of 3H-L-glutamate binding to human brain synaptic membranes revealed the existence of one type of binding sites with Kd and Vmax comparable with those for freshly isolated rat brain membranes. The fraction of glutamate-binding proteins (GBP) was shown to contain three components with Mr of 14, 60 and 280 kD whose stoichiometry is specific for human and rat brain. All fractions were found to bind the radiolabeled neurotransmitter and to dissociate into subunits with Mr of 14 kD after treatment with-potent detergents (with the exception of the 56-60 kD component). Study of association-dissociation of GBP protein subunits by high performance liquid chromatography confirmed the hypothesis on the oligomeric structure of glutamate receptors which are made up of low molecular weight glycoprotein-lipid subunits and which form ionic channels by way of repeated association. Despite the similarity of antigen determinants in the active center of glutamate receptors from human and rat brain, it was assumed that the stoichiometry of structural organization of receptor subunits isolated from different sources is different. The functional role of structural complexity of human brain glutamate receptors is discussed.

  6. Identification of candidate diagnostic serum biomarkers for Kawasaki disease using proteomic analysis

    PubMed Central

    Kimura, Yayoi; Yanagimachi, Masakatsu; Ino, Yoko; Aketagawa, Mao; Matsuo, Michie; Okayama, Akiko; Shimizu, Hiroyuki; Oba, Kunihiro; Morioka, Ichiro; Imagawa, Tomoyuki; Kaneko, Tetsuji; Yokota, Shumpei; Hirano, Hisashi; Mori, Masaaki

    2017-01-01

    Kawasaki disease (KD) is a systemic vasculitis and childhood febrile disease that can lead to cardiovascular complications. The diagnosis of KD depends on its clinical features, and thus it is sometimes difficult to make a definitive diagnosis. In order to identify diagnostic serum biomarkers for KD, we explored serum KD-related proteins, which differentially expressed during the acute and recovery phases of two patients by mass spectrometry (MS). We identified a total of 1,879 proteins by MS-based proteomic analysis. The levels of three of these proteins, namely lipopolysaccharide-binding protein (LBP), leucine-rich alpha-2-glycoprotein (LRG1), and angiotensinogen (AGT), were higher in acute phase patients. In contrast, the level of retinol-binding protein 4 (RBP4) was decreased. To confirm the usefulness of these proteins as biomarkers, we analyzed a total of 270 samples, including those collected from 55 patients with acute phase KD, by using western blot analysis and microarray enzyme-linked immunosorbent assays (ELISAs). Over the course of this experiment, we determined that the expression level of these proteins changes specifically in the acute phase of KD, rather than the recovery phase of KD or other febrile illness. Thus, LRG1 could be used as biomarkers to facilitate KD diagnosis based on clinical features. PMID:28262744

  7. Structural basis of clade-specific HIV-1 neutralization by humanized anti-V3 monoclonal antibody KD-247.

    PubMed

    Kirby, Karen A; Ong, Yee Tsuey; Hachiya, Atsuko; Laughlin, Thomas G; Chiang, Leslie A; Pan, Yun; Moran, Jennifer L; Marchand, Bruno; Singh, Kamalendra; Gallazzi, Fabio; Quinn, Thomas P; Yoshimura, Kazuhisa; Murakami, Toshio; Matsushita, Shuzo; Sarafianos, Stefan G

    2015-01-01

    Humanized monoclonal antibody KD-247 targets the Gly(312)-Pro(313)-Gly(314)-Arg(315) arch of the third hypervariable (V3) loop of the HIV-1 surface glycoprotein. It potently neutralizes many HIV-1 clade B isolates, but not of other clades. To understand the molecular basis of this specificity, we solved a high-resolution (1.55 Å) crystal structure of the KD-247 antigen binding fragment and examined the potential interactions with various V3 loop targets. Unlike most antibodies, KD-247 appears to interact with its target primarily through light chain residues. Several of these interactions involve Arg(315) of the V3 loop. To evaluate the role of light chain residues in the recognition of the V3 loop, we generated 20 variants of KD-247 single-chain variable fragments with mutations in the antigen-binding site. Purified proteins were assessed for V3 loop binding using AlphaScreen technology and for HIV-1 neutralization. Our data revealed that recognition of the clade-specificity defining residue Arg(315) of the V3 loop is based on a network of interactions that involve Tyr(L32), Tyr(L92), and Asn(L27d) that directly interact with Arg(315), thus elucidating the molecular interactions of KD-247 with its V3 loop target. © FASEB.

  8. Analysis of the Borrelia burgdorferi Cyclic-di-GMP-Binding Protein PlzA Reveals a Role in Motility and Virulence ▿

    PubMed Central

    Pitzer, Joshua E.; Sultan, Syed Z.; Hayakawa, Yoshihiro; Hobbs, Gerry; Miller, Michael R.; Motaleb, Md A.

    2011-01-01

    The cyclic-dimeric-GMP (c-di-GMP)-binding protein PilZ has been implicated in bacterial motility and pathogenesis. Although BB0733 (PlzA), the only PilZ domain-containing protein in Borrelia burgdorferi, was reported to bind c-di-GMP, neither its role in motility or virulence nor it's affinity for c-di-GMP has been reported. We determined that PlzA specifically binds c-di-GMP with high affinity (dissociation constant [Kd], 1.25 μM), consistent with Kd values reported for c-di-GMP-binding proteins from other bacteria. Inactivation of the monocistronically transcribed plzA resulted in an opaque/solid colony morphology, whereas the wild-type colonies were translucent. While the swimming pattern of mutant cells appeared normal, on swarm plates, mutant cells exhibited a significantly reduced swarm diameter, demonstrating a role of plzA in motility. Furthermore, the plzA mutant cells were significantly less infectious in experimental mice (as determined by 50% infectious dose [ID50]) relative to wild-type spirochetes. The mutant also had survival rates in fed ticks lower than those of the wild type. Consequently, plzA mutant cells failed to complete the mouse-tick-mouse infection cycle, indicating plzA is essential for the enzootic life cycle of B. burgdorferi. All of these defects were corrected when the mutant was complemented in cis. We propose that failure of plzA mutant cells to infect mice was due to altered motility; however, the possibility that an unidentified factor(s) contributed to interruption of the B. burgdorferi enzootic life cycle cannot yet be excluded. PMID:21357718

  9. The reaction mechanism of methyl-coenzyme M reductase: How an enzyme enforces strict binding order

    DOE PAGES

    Wongnate, Thanyaporn; Ragsdale, Stephen W.

    2015-02-17

    Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB 7SH) to CH 4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM)more » is productive whereas the other (MCR·CoB 7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB 7SH complex is highly disfavored ( Kd = 56 mM). However, binding of CoB 7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB 7SH·MCR(Ni I)·CH 3SCoM) is highly favored ( Kd = 79 μM). Only then can the chemical reaction occur ( kobs = 20 s -1 at 25 °C), leading to rapid formation and dissociation of CH 4 leaving the binary product complex (MCR(Ni II)·CoB 7S -·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. In conclusion, this first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates.« less

  10. Carbohydrate-dependent binding of langerin to SodC, a cell wall glycoprotein of Mycobacterium leprae.

    PubMed

    Kim, Hee Jin; Brennan, Patrick J; Heaslip, Darragh; Udey, Mark C; Modlin, Robert L; Belisle, John T

    2015-02-01

    Langerhans cells participate in the immune response in leprosy by their ability to activate T cells that recognize the pathogen, Mycobacterium leprae, in a langerin-dependent manner. We hypothesized that langerin, the distinguishing C-type lectin of Langerhans cells, would recognize the highly mannosylated structures in pathogenic Mycobacterium spp. The coding region for the extracellular and neck domain of human langerin was cloned and expressed to produce a recombinant active trimeric form of human langerin (r-langerin). Binding assays performed in microtiter plates, by two-dimensional (2D) Western blotting, and by surface plasmon resonance demonstrated that r-langerin possessed carbohydrate-dependent affinity to glycoproteins in the cell wall of M. leprae. This lectin, however, yielded less binding to mannose-capped lipoarabinomannan (ManLAM) and even lower levels of binding to phosphatidylinositol mannosides. However, the superoxide dismutase C (SodC) protein of the M. leprae cell wall was identified as a langerin-reactive ligand. Tandem mass spectrometry verified the glycosylation of a recombinant form of M. leprae SodC (rSodC) produced in Mycobacterium smegmatis. Analysis of r-langerin affinity by surface plasmon resonance revealed a carbohydrate-dependent affinity of rSodC (equilibrium dissociation constant [KD] = 0.862 μM) that was 20-fold greater than for M. leprae ManLAM (KD = 18.69 μM). These data strongly suggest that a subset of the presumptively mannosylated M. leprae glycoproteins act as ligands for langerin and may facilitate the interaction of M. leprae with Langerhans cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Carbohydrate-Dependent Binding of Langerin to SodC, a Cell Wall Glycoprotein of Mycobacterium leprae

    PubMed Central

    Kim, Hee Jin; Brennan, Patrick J.; Heaslip, Darragh; Udey, Mark C.; Modlin, Robert L.

    2014-01-01

    Langerhans cells participate in the immune response in leprosy by their ability to activate T cells that recognize the pathogen, Mycobacterium leprae, in a langerin-dependent manner. We hypothesized that langerin, the distinguishing C-type lectin of Langerhans cells, would recognize the highly mannosylated structures in pathogenic Mycobacterium spp. The coding region for the extracellular and neck domain of human langerin was cloned and expressed to produce a recombinant active trimeric form of human langerin (r-langerin). Binding assays performed in microtiter plates, by two-dimensional (2D) Western blotting, and by surface plasmon resonance demonstrated that r-langerin possessed carbohydrate-dependent affinity to glycoproteins in the cell wall of M. leprae. This lectin, however, yielded less binding to mannose-capped lipoarabinomannan (ManLAM) and even lower levels of binding to phosphatidylinositol mannosides. However, the superoxide dismutase C (SodC) protein of the M. leprae cell wall was identified as a langerin-reactive ligand. Tandem mass spectrometry verified the glycosylation of a recombinant form of M. leprae SodC (rSodC) produced in Mycobacterium smegmatis. Analysis of r-langerin affinity by surface plasmon resonance revealed a carbohydrate-dependent affinity of rSodC (equilibrium dissociation constant [KD] = 0.862 μM) that was 20-fold greater than for M. leprae ManLAM (KD = 18.69 μM). These data strongly suggest that a subset of the presumptively mannosylated M. leprae glycoproteins act as ligands for langerin and may facilitate the interaction of M. leprae with Langerhans cells. PMID:25422308

  12. Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents

    NASA Astrophysics Data System (ADS)

    Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar

    2015-03-01

    We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔGbind, pred) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔGbind, expt (calculated from the Kd value) are consistent with the predicted value of ΔGbind, pred calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further toxicological evaluation. Treatment of mice with a daily dose of 300 mg/kg and a single dose of 600 mg/kg indicates that the compound does not induce detectable pathological abnormalities in normal tissues. Also there were no significant differences in hematological parameters between the treated and untreated groups. Hence, the newly designed noscapinoid, 5e is an orally bioavailable, safe and effective anticancer agent with a potential for the treatment of cancer and might be a candidate for clinical evaluation.

  13. A Network of Hydrophobic Residues Impeding Helix αC Rotation Maintains Latency of Kinase Gcn2, Which Phosphorylates the α Subunit of Translation Initiation Factor 2▿

    PubMed Central

    Gárriz, Andrés; Qiu, Hongfang; Dey, Madhusudan; Seo, Eun-Joo; Dever, Thomas E.; Hinnebusch, Alan G.

    2009-01-01

    Kinase Gcn2 is activated by amino acid starvation and downregulates translation initiation by phosphorylating the α subunit of translation initiation factor 2 (eIF2α). The Gcn2 kinase domain (KD) is inert and must be activated by tRNA binding to the adjacent regulatory domain. Previous work indicated that Saccharomyces cerevisiae Gcn2 latency results from inflexibility of the hinge connecting the N and C lobes and a partially obstructed ATP-binding site in the KD. Here, we provide strong evidence that a network of hydrophobic interactions centered on Leu-856 also promotes latency by constraining helix αC rotation in the KD in a manner relieved during amino acid starvation by tRNA binding and autophosphorylation of Thr-882 in the activation loop. Thus, we show that mutationally disrupting the hydrophobic network in various ways constitutively activates eIF2α phosphorylation in vivo and bypasses the requirement for a key tRNA binding motif (m2) and Thr-882 in Gcn2. In particular, replacing Leu-856 with any nonhydrophobic residue activates Gcn2, while substitutions with various hydrophobic residues maintain kinase latency. We further provide strong evidence that parallel, back-to-back dimerization of the KD is a step on the Gcn2 activation pathway promoted by tRNA binding and autophosphorylation. Remarkably, mutations that disrupt the L856 hydrophobic network or enhance hinge flexibility eliminate the need for the conserved salt bridge at the parallel dimer interface, implying that KD dimerization facilitates the reorientation of αC and remodeling of the active site for enhanced ATP binding and catalysis. We propose that hinge remodeling, parallel dimerization, and reorientation of αC are mutually reinforcing conformational transitions stimulated by tRNA binding and secured by the ensuing autophosphorylation of T882 for stable kinase activation. PMID:19114556

  14. A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2.

    PubMed

    Gárriz, Andrés; Qiu, Hongfang; Dey, Madhusudan; Seo, Eun-Joo; Dever, Thomas E; Hinnebusch, Alan G

    2009-03-01

    Kinase Gcn2 is activated by amino acid starvation and downregulates translation initiation by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). The Gcn2 kinase domain (KD) is inert and must be activated by tRNA binding to the adjacent regulatory domain. Previous work indicated that Saccharomyces cerevisiae Gcn2 latency results from inflexibility of the hinge connecting the N and C lobes and a partially obstructed ATP-binding site in the KD. Here, we provide strong evidence that a network of hydrophobic interactions centered on Leu-856 also promotes latency by constraining helix alphaC rotation in the KD in a manner relieved during amino acid starvation by tRNA binding and autophosphorylation of Thr-882 in the activation loop. Thus, we show that mutationally disrupting the hydrophobic network in various ways constitutively activates eIF2alpha phosphorylation in vivo and bypasses the requirement for a key tRNA binding motif (m2) and Thr-882 in Gcn2. In particular, replacing Leu-856 with any nonhydrophobic residue activates Gcn2, while substitutions with various hydrophobic residues maintain kinase latency. We further provide strong evidence that parallel, back-to-back dimerization of the KD is a step on the Gcn2 activation pathway promoted by tRNA binding and autophosphorylation. Remarkably, mutations that disrupt the L856 hydrophobic network or enhance hinge flexibility eliminate the need for the conserved salt bridge at the parallel dimer interface, implying that KD dimerization facilitates the reorientation of alphaC and remodeling of the active site for enhanced ATP binding and catalysis. We propose that hinge remodeling, parallel dimerization, and reorientation of alphaC are mutually reinforcing conformational transitions stimulated by tRNA binding and secured by the ensuing autophosphorylation of T882 for stable kinase activation.

  15. Urodilatin: binding properties and stimulation of cGMP generation in rat kidney cells.

    PubMed

    Saxenhofer, H; Fitzgibbon, W R; Paul, R V

    1993-02-01

    Urodilatin (URO) [ANP-(95-126)] is an analogue of atrial natriuretic peptide (alpha-ANP) [ANP-(99-126)] that was first isolated from human urine. In rat mesangial cells, URO competed with high affinity for non-guanylate cyclase-coupled ANPR-C receptors [concentration at which 50% labeled ligand is displaced (IC50) approximately 70 pM], but with lesser affinity to the guanylate cyclase-linked ANPR-A receptors (IC50 approximately 800 pM). alpha-ANP bound to both receptors with similar affinity [dissociation constant (Kd) approximately 150 pM]. In papillary collecting duct homogenates, which possess only ANPR-A receptors, the apparent Kd value averaged 229 pM for alpha-ANP and 2.7 nM for URO. Intravenous URO was at least as potent and effective as alpha-ANP in inducing diuresis and natriuresis in anesthetized rats, but URO was approximately 10-fold less potent in stimulating guanosine 3',5'-cyclic monophosphate generation in mesangial and inner medullary collecting duct cells. We conclude that URO has a lesser affinity than alpha-ANP for guanylate cyclase-coupled ANP receptors in the kidney and that the relative natriuretic potency of URO in vivo cannot be directly attributed to its binding characteristics with ANPR-A receptors.

  16. The effects of the NMR shift-reagents Dy(PPP)2, Dy(TTHA) and Tm(DOTP) on developed pressure in isolated perfused rat hearts. The role of shift-reagent calcium complexes.

    PubMed

    Gaszner, B; Simor, T; Hild, G; Elgavish, G A

    2001-11-01

    The 23Na NMR shift-reagent complexes (Dy(PPP)2, Dy(TTHA), and Tm(DOTP)) bind stoichiometric amounts of Ca2+. Thus, in perfused rat heart systems, a supplementation of Ca2+ is required to maintain the requisite extracellular free calcium concentration ([Ca(o)]f) and to approximate a physiological level of contractile function. The amount of reagent-bound Ca2+ in a heart perfusate that contains a shift-reagent depends on: (1) Ca2+ binding by excess ligand used during the preparation of the shift-reagent; and (2) the Ca2+ binding affinity of the shift-reagent. To address point 1), we introduced a 1H and 31P NMR spectroscopic titration method to quantify directly the concentration of the excess ligand. We also used this method to minimize the amount of excess ligand (L) and thus the amount of Ca*L complex. To address point (2), we determined the stepwise Kd (microm) values of the Ca complexes of the three shift-reagents.: Dy(PPP)2, Kd=0.09, Kd2=7.9; Dy(TTHA), Kd1=10.66, Kd2=10.12; and Tm(DOTP), K(d1)=0.502, Kd2=4.98. The Kd values of the Ca complexes of the phosphonate and triphosphate based shift-reagents, Tm(DOTP) and Dy(PPP)2, respectively, are lower than those of the polyaminocarboxylate-based Dy(TTHA), indicating stronger Ca binding affinities for the former two types of complexes. We have also shown a positive correlation between [Ca(o)]f and left ventricular developed pressure (LVDP) in perfused rat hearts. Dy(TTHA) has shown no effect on LVDP v[Ca(o)]f. The LVDP values in the presence of the phosphonate and triphosphate based shift-reagents, however, were significantly higher than expected from the [Ca(o)]f levels alone. Thus a positive inotropic effect, independent of [Ca(o)]f, is evident in the presence of Tm(DOTP) or Dy(PPP)2. Copyright 2001 Academic Press.

  17. Biomolecular Interaction Analysis Using an Optical Surface Plasmon Resonance Biosensor: The Marquardt Algorithm vs Newton Iteration Algorithm

    PubMed Central

    Hu, Jiandong; Ma, Liuzheng; Wang, Shun; Yang, Jianming; Chang, Keke; Hu, Xinran; Sun, Xiaohui; Chen, Ruipeng; Jiang, Min; Zhu, Juanhua; Zhao, Yuanyuan

    2015-01-01

    Kinetic analysis of biomolecular interactions are powerfully used to quantify the binding kinetic constants for the determination of a complex formed or dissociated within a given time span. Surface plasmon resonance biosensors provide an essential approach in the analysis of the biomolecular interactions including the interaction process of antigen-antibody and receptors-ligand. The binding affinity of the antibody to the antigen (or the receptor to the ligand) reflects the biological activities of the control antibodies (or receptors) and the corresponding immune signal responses in the pathologic process. Moreover, both the association rate and dissociation rate of the receptor to ligand are the substantial parameters for the study of signal transmission between cells. A number of experimental data may lead to complicated real-time curves that do not fit well to the kinetic model. This paper presented an analysis approach of biomolecular interactions established by utilizing the Marquardt algorithm. This algorithm was intensively considered to implement in the homemade bioanalyzer to perform the nonlinear curve-fitting of the association and disassociation process of the receptor to ligand. Compared with the results from the Newton iteration algorithm, it shows that the Marquardt algorithm does not only reduce the dependence of the initial value to avoid the divergence but also can greatly reduce the iterative regression times. The association and dissociation rate constants, ka, kd and the affinity parameters for the biomolecular interaction, KA, KD, were experimentally obtained 6.969×105 mL·g-1·s-1, 0.00073 s-1, 9.5466×108 mL·g-1 and 1.0475×10-9 g·mL-1, respectively from the injection of the HBsAg solution with the concentration of 16ng·mL-1. The kinetic constants were evaluated distinctly by using the obtained data from the curve-fitting results. PMID:26147997

  18. Binding Interactions of Keratin-Based Hair Fiber Extract to Gold, Keratin, and BMP-2

    PubMed Central

    de Guzman, Roche C.; Tsuda, Shanel M.; Ton, Minh-Thi N.; Zhang, Xiao; Esker, Alan R.; Van Dyke, Mark E.

    2015-01-01

    Hair-derived keratin biomaterials composed mostly of reduced keratin proteins (kerateines) have demonstrated their utility as carriers of biologics and drugs for tissue engineering. Electrostatic forces between negatively-charged keratins and biologic macromolecules allow for effective drug retention; attraction to positively-charged growth factors like bone morphogenetic protein 2 (BMP-2) has been used as a strategy for osteoinduction. In this study, the intermolecular surface and bulk interaction properties of kerateines were investigated. Thiol-rich kerateines were chemisorbed onto gold substrates to form an irreversible 2-nm rigid layer for surface plasmon resonance analysis. Kerateine-to-kerateine cohesion was observed in pH-neutral water with an equilibrium dissociation constant (KD) of 1.8 × 10−4 M, indicating that non-coulombic attractive forces (i.e. hydrophobic and van der Waals) were at work. The association of BMP-2 to kerateine was found to be greater (KD = 1.1 × 10−7 M), within the range of specific binding. Addition of salts (phosphate-buffered saline; PBS) shortened the Debye length or the electrostatic field influence which weakened the kerateine-BMP-2 binding (KD = 3.2 × 10−5 M). BMP-2 in bulk kerateine gels provided a limited release in PBS (~ 10% dissociation in 4 weeks), suggesting that electrostatic intermolecular attraction was significant to retain BMP-2 within the keratin matrix. Complete dissociation between kerateine and BMP-2 occurred when the PBS pH was lowered (to 4.5), below the keratin isoelectric point of 5.3. This phenomenon can be attributed to the protonation of keratin at a lower pH, leading to positive-positive repulsion. Therefore, the dynamics of kerateine-BMP-2 binding is highly dependent on pH and salt concentration, as well as on BMP-2 solubility at different pH and molarity. The study findings may contribute to our understanding of the release kinetics of drugs from keratin biomaterials and allow for the development of better, more clinically relevant BMP-2-conjugated systems for bone repair and regeneration. PMID:26317522

  19. Lymphocyte and neuronal antigens in neuropsychiatric lupus: presence of an elutable, immunoprecipitable lymphocyte/neuronal 52 kd reactivity.

    PubMed Central

    Denburg, J A; Behmann, S A

    1994-01-01

    OBJECTIVE--To examine specific lymphocyte or neuronal antigens immuno-precipitated by systemic lupus erythematosus (SLE) sera. METHOD--SLE sera were screened for the presence of antibodies binding to surface antigens of CD4(+) HUT-78 or SK-N-SH and IMR-6 neuroblastoma cells using Western blotting or radioimmunoprecipitation. RESULTS--IgG eluates from both lymphocytes and neuroblastoma cells recognised a 52 kd band in HUT 78 cell lysates. Eight sera studied further using radioimmunoprecipitation also demonstrated binding to a 52 kd antigen (4/8 on HUT-78, 8/8 on SK-N-SH cells), partially depleted by absorption with viable HUT-78. CONCLUSION--A 52 kd antigen recognised by SLE sera on lymphocytes and neuronal cells may play a role in the pathogenesis of neuropsychiatric-SLE. Images PMID:8017983

  20. Anion responsive Europium (III) complexes for Optical Sensing and PARACEST MRI

    NASA Astrophysics Data System (ADS)

    Buttarazzi, Leandro Alfredo

    The Eu(III) complexes of 1-(acetyl-7-Methyl-4-(trifluoromethyl) quinolin-2(1H)-one)4,7,10 tris(2-hydroxypropyl)-1,4,7,10-tetraazacycladodecane (Eu(S-THPC)3+ ) and 1-(acetyl-dioctadecylamine)4,7,10 tris(hydroxypropyl)-1,4,7,10-tetraazacycladodecane (Eu(S-THMC)3+) were studied in order to develop complexes that are both optical sensors and MRI contrast agents that respond to biologically relevant anions. Both complexes are related to Eu(S-THP) where S-THP = (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane. Eu(III) excitation, emission and time resolved luminescence spectroscopy experiments were used to study binding of the anions. One complex, Eu(THPC)3+ has an appended carbostyril dye for sensitization of Eu(III) luminescence. Luminescence experiments were done on this complex in order to quantify the effectiveness of the energy transfer from the dye to the lanthanide and to obtain binding constants of the anions from the Eu(III) emission peaks. Emission spectra were obtained by exciting the chromophore at 340 nm. Our results suggest that phosphate binds with a dissociation constant (Kd) of 4.2mM and citrate binds with a Kd of 228 uM. The quantum yield for the complex was low compared to other reported complexes in literature. Eu(S-THMC) 3+, and Eu(S-THMAC)3+ containing long carbon chains for incorporation into liposomes were explored as an approach to develop complexes with increased sensitivity as CEST agents. CEST experiments with the complex incorporated into a liposome and as a micelle were carried out. Liposome formation was achieved but no CEST effect was observed with two different lanthanide complexes. Eu(S-THMC)3+ gave the most promising results by showing CEST in acetonitrile and 50/50 acetonitrile/H 2O. However further experiments with this complex in buffered aqueous solution failed. Yb(S-THMAC)3+ solubility was poor in both acetonitrile and in water and this likely prevented the observation of CEST spectra.

  1. A peptide sequence on carcinoembryonic antigen binds to a 80kD protein on Kupffer cells.

    PubMed

    Thomas, P; Petrick, A T; Toth, C A; Fox, E S; Elting, J J; Steele, G

    1992-10-30

    Clearance of carcinoembryonic antigen (CEA) from the circulation is by binding to Kupffer cells in the liver. We have shown that CEA binding to Kupffer cells occurs via a peptide sequence YPELPK representing amino acids 107-112 of the CEA sequence. This peptide sequence is located in the region between the N-terminal and the first immunoglobulin like loop domain. Using native CEA and peptides containing this sequence complexed with a heterobifunctional crosslinking agent and ligand blotting with biotinylated CEA and NCA we have shown binding to an 80kD protein on the Kupffer cell surface. This binding protein may be important in the development of hepatic metastases.

  2. Kinetic studies on strand displacement in de novo designed parallel heterodimeric coiled coils† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc05342h

    PubMed Central

    Groth, Mike C.; Rink, W. Mathis; Meyer, Nils F.

    2018-01-01

    Among the protein folding motifs, which are accessible by de novo design, the parallel heterodimeric coiled coil is most frequently used in bioinspired applications and chemical biology in general. This is due to the straightforward sequence-to-structure relationships, which it has in common with all coiled-coil motifs, and the heterospecificity, which allows control of association. Whereas much focus was laid on designing orthogonal coiled coils, systematic studies on controlling association, for instance by strand displacement, are rare. As a contribution to the design of dynamic coiled-coil-based systems, we studied the strand-displacement mechanism in obligate heterodimeric coiled coils to investigate the suitability of the dissociation constants (KD) as parameters for the prediction of the outcome of strand-displacement reactions. We use two sets of heterodimeric coiled coils, the previously reported N-AxBy and the newly characterized C-AxBy. Both comprise KD values in the μM to sub-nM regime. Strand displacement is explored by CD titration and a FRET-based kinetic assay and is proved to be an equilibrium reaction with half-lifes from a few seconds up to minutes. We could fit the displacement data by a competitive binding model, giving rate constants and overall affinities of the underlying association and dissociation reactions. The overall affinities correlate well with the ratios of KD values determined by CD-thermal denaturation experiments and, hence, support the dissociative mechanism of strand displacement in heterodimeric coiled coils. From the results of more than 100 different displacement reactions we are able to classify three categories of overall affinities, which allow for easy prediction of the equilibrium of strand displacement in two competing heterodimeric coiled coils. PMID:29780562

  3. Antigen Potency and Maximal Efficacy Reveal a Mechanism of Efficient T Cell Activation

    PubMed Central

    Wheeler, Richard J.; Zhang, Hao; Cordoba, Shaun-Paul; Peng, Yan-Chun; Chen, Ji-Li; Cerundolo, Vincenzo; Dong, Tao; Coombs, Daniel; van der Merwe, P. Anton

    2014-01-01

    T cell activation, a critical event in adaptive immune responses, follows productive interactions between T cell receptors (TCRs) and antigens, in the form of peptide-bound major histocompatibility complexes (pMHCs) on the surfaces of antigen-presenting-cells. Upon activation, T cells can lyse infected cells, secrete cytokines, such as interferon-γ (IFN-γ), and perform other effector functions with various efficiencies that directly depend on the binding parameters of the TCR-pMHC complex. The mechanism that relates binding parameters to the efficiency of activation of the T cell remains controversial; some studies suggest that the dissociation constant (KD) determines the response (the “affinity model”), whereas others suggest that the off-rate (koff) is critical (the “productive hit rate model”). Here, we used mathematical modeling to show that antigen potency, as determined by the EC50, the functional correlate that is used to support KD-based models, could not be used to discriminate between the affinity and productive hit rate models. Our theoretical work showed that both models predicted a correlation between antigen potency and KD, but only the productive hit rate model predicted a correlation between maximal efficacy (Emax) and koff. We confirmed the predictions made by the productive hit rate model in experiments with cytotoxic T cell clones and a panel of pMHC variants. Therefore, we suggest that the activity of an antigen is determined by both its potency and maximal efficacy. We discuss the implications of our findings to the practical evaluation of T cell activation, for example in adoptive immunotherapies, and relate our work to the pharmacological theory of dose-response. PMID:21653229

  4. Photolabeling of Tonoplast from Sugar Beet Cell Suspensions by [3H]5-(N-Methyl-N-Isobutyl)-Amiloride, an Inhibitor of the Vacuolar Na+/H+ Antiport 1

    PubMed Central

    Barkla, Bronwyn J.; Charuk, Jeffrey H. M.; Cragoe, Edward J.; Blumwald, Eduardo

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na+/H+ antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na+/H+ exchange in a competitive manner with a Ki of 2.5 and 5.9 micromolar for ΔpH-dependent 22Na+ influx in tonoplast vesicles and Na+-dependent H+ efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [3H]MIA to tonoplast membranes revealed a high affinity binding component with a Kd of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na+/H+ antiport. Photolabeling of the tonoplast with [3H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog. Images Figure 7 PMID:16667602

  5. Photolabeling of tonoplast from sugar beet cell suspensions by [h]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar na/h antiport.

    PubMed

    Barkla, B J; Charuk, J H; Cragoe, E J; Blumwald, E

    1990-07-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na(+)/H(+) antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na(+)/H(+) exchange in a competitive manner with a K(i) of 2.5 and 5.9 micromolar for DeltapH-dependent (22)Na(+) influx in tonoplast vesicles and Na(+)-dependent H(+) efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [(3)H]MIA to tonoplast membranes revealed a high affinity binding component with a K(d) of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na(+)/H(+) antiport. Photolabeling of the tonoplast with [(3)H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog.

  6. Use of 2-(/sup 125/I)iodomelatonin to characterize melatonin binding sites in chicken retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubocovich, M.L.; Takahashi, J.S.

    2-(/sup 125/I)Iodomelatonin binds with high affinity to a site possessing the pharmacological characteristics of a melatonin receptor in chicken retinal membranes. The specific binding of 2-(/sup 125/I)iodomelatonin is stable, saturable, and reversible. Saturation experiments indicated that 2-(/sup 125/I)iodomelatonin labeled a single class of sites with an affinity constant (Kd) of 434 +/- 56 pM and a total number of binding sites (Bmax) of 74.0 +/- 13.6 fmol/mg of protein. The affinity constant obtained from kinetic analysis was in close agreement with that obtained in saturation experiments. Competition experiments showed a monophasic reduction of 2-(/sup 125/I)iodomelatonin binding with a pharmacological ordermore » of indole amine affinities characteristic of a melatonin receptor: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-dichloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin much greater than N-acetyltryptamine greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine greater than 5-hydroxytryptamine (inactive). The affinities of these melatonin analogs in competing for 2-(/sup 125/I)iodomelatonin binding sites were correlated closely with their potencies for inhibition of the calcium-dependent release of (3H)dopamine from chicken and rabbit retinas, indicating association of the binding site with a functional response regulated by melatonin. The results indicate that 2-(/sup 125/I)iodomelatonin is a selective, high-affinity radioligand for the identification and characterization of melatonin receptor sites.« less

  7. ITC-derived binding affinity may be biased due to titrant (nano)-aggregation. Binding of halogenated benzotriazoles to the catalytic domain of human protein kinase CK2

    PubMed Central

    Winiewska, Maria; Bugajska, Ewa

    2017-01-01

    The binding of four bromobenzotriazoles to the catalytic subunit of human protein kinase CK2 was assessed by two complementary methods: Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC). New algorithm proposed for the global analysis of MST pseudo-titration data enabled reliable determination of binding affinities for two distinct sites, a relatively strong one with the Kd of the order of 100 nM and a substantially weaker one (Kd > 1 μM). The affinities for the strong binding site determined for the same protein-ligand systems using ITC were in most cases approximately 10-fold underestimated. The discrepancy was assigned directly to the kinetics of ligand nano-aggregates decay occurring upon injection of the concentrated ligand solution to the protein sample. The binding affinities determined in the reverse ITC experiment, in which ligands were titrated with a concentrated protein solution, agreed with the MST-derived data. Our analysis suggests that some ITC-derived Kd values, routinely reported together with PDB structures of protein-ligand complexes, may be biased due to the uncontrolled ligand (nano)-aggregation, which may occur even substantially below the solubility limit. PMID:28273138

  8. High-affinity 3H-substance P binding to longitudinal muscle membranes of the guinea pig small intestine.

    PubMed

    Buck, S H; Maurin, Y; Burks, T F; Yamamura, H I

    1984-01-30

    The binding of 3H-substance P (3H-SP) to longitudinal muscle membranes of the guinea pig small intestine has been characterized. The binding of 3H-SP exhibited a high affinity (Kd = 0.5nM). It was saturable (Bmax = 2 fmoles/mg tissue), reversible, and temperature-dependent. Kinetic studies and competition of 3H-SP binding by unlabeled SP yielded Kd and Ki values, respectively, which were in good agreement with the Kd calculated from saturation studies. The binding of 3H-SP appeared to be dependent on the presence of divalent cations in the incubation buffer. It was displaced by SP and various analogs and fragments in the rank order of SP greater than SP-(2-11) = SP-(3-11) greater than Nle11- SP = physalaemin greater than SP-(4-11) greater than SP-(5-11) greater than eledoisin much greater than SP-(7-11). Our results indicate that 3H-SP binds in longitudinal muscle of the guinea pig small intestine to a biologically relevant receptor which in many respects resembles the SP receptor characterized in the brain and the salivary gland of the rat.

  9. [Molecular organization of glutamate-sensitive chemoexcitatory membranes of nerve cells. Binding of L-[3H]glutamate to synaptic membranes of the rat cerebral cortex].

    PubMed

    Dambinova, S A; Gorodinskiĭ, A I

    1984-01-01

    The binding of L-[3H]glutamate to rat cerebral cortex synaptic membranes was investigated. Two types of binding sites, a Na+-independent (Kd = 140-160 nm; Bmax = 3.8-4.5 pmol-mg of protein) and a Na+-dependent (Kd = 2.0 microM; Bmax = 45-50 pmol/mg of protein) ones, were detected. The dependence of Na+-insensitive binding on time and temperature and membrane content in a sample was determined. Mono- and divalent cations (5-10 mM) potentiated specific binding by 2.1-3.3 times. The Na+-dependent binding is associated with active transport systems, while the Na+-independent one-with true receptor binding. The relationship between CNS glutamate receptors and Na+-independent binding sites is discussed.

  10. Binding of KATP channel modulators in rat cardiac membranes

    PubMed Central

    Löffler-Walz, Cornelia; Quast, Ulrich

    1998-01-01

    The binding of [3H]-P1075, a potent opener of adenosine-5′-triphosphate-(ATP)-sensitive K+ channels, was studied in a crude heart membrane preparation of the rat, at 37°C.Binding required MgATP. In the presence of an ATP-regenerating system, MgATP supported [3H]-P1075 binding with an EC50 value of 100 μM and a Hill coefficient of 1.4.In saturation experiments [3H]-P1075 binding was homogeneous with a KD value of 6±1 nM and a binding capacity (Bmax) of 33±3 fmol mg−1 protein.Upon addition of an excess of unlabelled P1075, the [3H]-P1075-receptor complex dissociated in a mono-exponential manner with a dissociation rate constant of 0.13±0.01 min−1. If a bi-molecular association mechanism was assumed, the dependence of the association kinetics on label concentration gave an association rate constant of 0.030±0.003 nM−1 min−1. From the kinetic experiments the KD value was calculated as 4.7±0.6 nM.Openers of the ATP-sensitive K+ channel belonging to different structural classes inhibited specific [3H]-P1075 binding in a monophasic manner to completion; an exception was minoxidil sulphate where maximum inhibition was 68%. The potencies of the openers in this assay agree with published values obtained in rat cardiocytes and are on average 3.5 times lower than those determined in rat aorta.Sulphonylureas, such as glibenclamide and glibornuride and the sulphonylurea-related carboxylate, AZ-DF 265, inhibited [3H]-P1075 binding with biphasic inhibition curves. The high affinity component comprised about 60% of the curves with the IC50 value of glibenclamide being ≈amp;90 nM; affinities for the low affinity component were in the μM concentration range. The fluorescein derivative, phloxine B, showed a monophasic inhibition curve with an IC50 value of 6 μM, a maximum inhibition of 94% and a Hill coefficient of 1.5.It is concluded that binding studies with [3H]-P1075 are feasible in rat heart membranes in the presence of MgATP and of an ATP-regenerating system. The pharmacological profile of the [3H]-P1075 binding sites in the cardiac preparation, which probably contains sulphonylurea receptors (SURs) from cardiac myocytes (SUR2A) and vascular smooth muscle cells (SUR2B), differs from that expected for SUR2A and SUR2B. PMID:9579735

  11. Evaluation of kinetic constants of biomolecular interaction on optical surface plasmon resonance sensor with Newton Iteration Method

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyuan; Jiang, Guoliang; Hu, Jiandong; Hu, Fengjiang; Wei, Jianguang; Shi, Liang

    2010-10-01

    In the immunology, there are two important types of biomolecular interaction: antigens-antibodies and receptors-ligands. Monitoring the response rate and affinity of biomolecular interaction can help analyze the protein function, drug discover, genomics and proteomics research. Moreover the association rate constant and dissociation rate constant of receptors-ligands are the important parameters for the study of signal transmission between cells. Recent advances in bioanalyzer instruments have greatly simplified the measurement of the kinetics of molecular interactions. Non-destructive and real-time monitoring the response to evaluate the parameters between antigens and antibodies can be performed by using optical surface plasmon resonance (SPR) biosensor technology. This technology provides a quantitative analysis that is carried out rapidly with label-free high-throughput detection using the binding curves of antigens-antibodies. Consequently, the kinetic parameters of interaction between antigens and antibodies can be obtained. This article presents a low cost integrated SPR-based bioanalyzer (HPSPR-6000) designed by ourselves. This bioanalyzer is mainly composed of a biosensor TSPR1K23, a touch-screen monitor, a microprocessor PIC24F128, a microflow cell with three channels, a clamp and a photoelectric conversion device. To obtain the kinetic parameters, sensorgrams may be modeled using one of several binding models provided with BIAevaluation software 3.0, SensiQ or Autolab. This allows calculation of the association rate constant (ka) and the dissociation rate constant (kd). The ratio of ka to kd can be used to estimate the equilibrium constant. Another kind is the analysis software OriginPro, which can process the obtained data by nonlinear fitting and then get some correlative parameters, but it can't be embedded into the bioanalyzer, so the bioanalyzer don't support the use of OriginPro. This paper proposes a novel method to evaluate the kinetic parameters of biomolecular interaction by using Newton Iteration Method and Least Squares Method. First, the pseudo first order kinetic model of biomolecular interaction was established. Then the data of molecular interaction of HBsAg and HBsAb was obtained by bioanalyzer. Finally, we used the optical SPR bioanalyzer software which was written by ourselves to make nonlinear fit about the association and dissociation curves. The correlation coefficient R-squared is 0.99229 and 0.99593, respectively. Furthermore, the kinetic parameters and affinity constants were evaluated using the obtained data from the fitting results.

  12. Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content.

    PubMed

    Benítez, Sonia; Villegas, Virtudes; Bancells, Cristina; Jorba, Oscar; González-Sastre, Francesc; Ordóñez-Llanos, Jordi; Sánchez-Quesada, José Luis

    2004-12-21

    The binding characteristics of electropositive [LDL(+)] and electronegative LDL [LDL(-)] subfractions to the LDL receptor (LDLr) were studied. Saturation kinetic studies in cultured human fibroblasts demonstrated that LDL(-) from normolipemic (NL) and familial hypercholesterolemic (FH) subjects had lower binding affinity than their respective LDL(+) fractions (P < 0.05), as indicated by higher dissociation constant (K(D)) values. FH-LDL(+) also showed lower binding affinity (P < 0.05) than NL-LDL(+) (K(D), sorted from lower to higher affinity: NL-LDL(-), 33.0 +/- 24.4 nM; FH-LDL(-), 24.4 +/- 7.1 nM; FH-LDL(+), 16.6 +/- 7.0 nM; NL-LDL(+), 10.9 +/- 5.7 nM). These results were confirmed by binding displacement studies. The impaired affinity binding of LDL(-) could be attributed to altered secondary and tertiary structure of apolipoprotein B, but circular dichroism (CD) and tryptophan fluorescence (TrpF) studies revealed no structural differences between LDL(+) and LDL(-). To ascertain the role of increased nonesterified fatty acids (NEFA) and lysophosphatidylcholine (LPC) content in LDL(-), LDL(+) was enriched in NEFA or hydrolyzed with secretory phospholipase A(2). Modification of LDL gradually decreased the affinity to LDLr in parallel to the increasing content of NEFA and/or LPC. Modified LDLs with a NEFA content similar to that of LDL(-) displayed similar affinity. ApoB structure studies of modified LDLs by CD and TrpF showed no difference compared to LDL(+) or LDL(-). Our results indicate that NEFA loading or phospholipase A(2) lipolysis of LDL leads to changes that affect the affinity of LDL to LDLr with no major effect on apoB structure. Impaired affinity to the LDLr shown by LDL(-) is related to NEFA and/or LPC content rather than to structural differences in apolipoprotein B.

  13. Binding Sequences for RdgB, a DNA Damage-Responsive Transcriptional Activator, and Temperature-Dependent Expression of Bacteriocin and Pectin Lyase Genes in Pectobacterium carotovorum subsp. carotovorum▿ †

    PubMed Central

    Yamada, Kazuteru; Kaneko, Jun; Kamio, Yoshiyuki; Itoh, Yoshifumi

    2008-01-01

    Pectobacterium carotovorum subsp. carotovorum strain Er simultaneously produces the phage tail-like bacteriocin carotovoricin (Ctv) and pectin lyase (Pnl) in response to DNA-damaging agents. The regulatory protein RdgB of the Mor/C family of proteins activates transcription of pnl through binding to the promoter. However, the optimal temperature for the synthesis of Ctv (23°C) differs from that for synthesis of Pnl (30°C), raising the question of whether RdgB directly activates ctv transcription. Here we report that RdgB directly regulates Ctv synthesis. Gel mobility shift assays demonstrated RdgB binding to the P0, P1, and P2 promoters of the ctv operons, and DNase I footprinting determined RdgB-binding sequences (RdgB boxes) on these and on the pnl promoters. The RdgB box of the pnl promoter included a perfect 7-bp inverted repeat with high binding affinity to the regulator (Kd [dissociation constant] = 150 nM). In contrast, RdgB boxes of the ctv promoters contained an imperfect inverted repeat with two or three mismatches that consequently reduced binding affinity (Kd = 250 to 350 nM). Transcription of the rdgB and ctv genes was about doubled at 23°C compared with that at 30°C. In contrast, the amount of pnl transcription tripled at 30°C. Thus, the inverse synthesis of Ctv and Pnl as a function of temperature is apparently controlled at the transcriptional level, and reduced rdgB expression at 30°C obviously affected transcription from the ctv promoters with low-affinity RdgB boxes. Pathogenicity toward potato tubers was reduced in an rdgB knockout mutant, suggesting that the RdgAB system contributes to the pathogenicity of this bacterium, probably by activating pnl expression. PMID:18689515

  14. Note: Four-port microfluidic flow-cell with instant sample switching

    NASA Astrophysics Data System (ADS)

    MacGriff, Christopher A.; Wang, Shaopeng; Tao, Nongjian

    2013-10-01

    A simple device for high-speed microfluidic delivery of liquid samples to a surface plasmon resonance sensor surface is presented. The delivery platform is comprised of a four-port microfluidic cell, two ports serve as inlets for buffer and sample solutions, respectively, and a high-speed selector valve to control the alternate opening and closing of the two outlet ports. The time scale of buffer/sample switching (or sample injection rise and fall time) is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement.

  15. A three-parameter two-state model of receptor function that incorporates affinity, efficacy, and signal amplification.

    PubMed

    Buchwald, Peter

    2017-06-01

    A generalized model of receptor function is proposed that relies on the essential assumptions of the minimal two-state receptor theory (i.e., ligand binding followed by receptor activation), but uses a different parametrization and allows nonlinear response (transduction) for possible signal amplification. For the most general case, three parameters are used: K d , the classic equilibrium dissociation constant to characterize binding affinity; ε , an intrinsic efficacy to characterize the ability of the bound ligand to activate the receptor (ranging from 0 for an antagonist to 1 for a full agonist); and γ , a gain (amplification) parameter to characterize the nonlinearity of postactivation signal transduction (ranging from 1 for no amplification to infinity). The obtained equation, E/Emax=εγLεγ+1-εL+Kd, resembles that of the operational (Black and Leff) or minimal two-state (del Castillo-Katz) models, E/Emax=τLτ+1L+Kd, with εγ playing a role somewhat similar to that of the τ efficacy parameter of those models, but has several advantages. Its parameters are more intuitive as they are conceptually clearly related to the different steps of binding, activation, and signal transduction (amplification), and they are also better suited for optimization by nonlinear regression. It allows fitting of complex data where receptor binding and response are measured separately and the fractional occupancy and response are mismatched. Unlike the previous models, it is a true generalized model as simplified forms can be reproduced with special cases of its parameters. Such simplified forms can be used on their own to characterize partial agonism, competing partial and full agonists, or signal amplification.

  16. Growth regulation of the mammalian ocular lens by vitreous humor.

    PubMed

    Banerjee, A; Parafina, J; Bagchi, M

    1992-05-01

    Experiments were performed in our laboratory to study the effects of a mammalian 8 kD vitreous humor (VH) factor on the DNA synthesis and mitosis of the epithelial cells of organ cultured rabbit lens. The 8 kD polypeptide factor was purified from mature rabbit vitreous humor by liquid chromatography. Proliferative activities of the epithelial cells of organ cultured lenses were stimulated by 3% rabbit serum. The data from our experiments depicted that the 8 kD VH factor effectively inhibits DNA synthesis and mitosis by the epithelial cells of the organ cultured lens. Our experiments also showed that this 8 kD VH factor can maintain its growth inhibitory activity even when heated for 3 min at 95 degrees C. The growth inhibitory effect of the 8 kD VH factor was dose dependent. Using iodinated vitreal proteins it was demonstrated that the VH proteins are able to enter or bind to lens epithelial cells. The growth inhibitory effect of the 8 kD VH factor was also tested on tissue cultured lens epithelial cells. These experiments showed that the 8 kD VH factor has no growth inhibitory effect on the tissue cultured lens epithelial cells. This experiment has been repeated many times using different concentrations of the factor. These observations suggest that the 8 kD VH factor may have receptors in the lens capsular material (extracellular matrix) and the factor-receptor binding is essential for the growth inhibitory effect.

  17. Carbon-11-cocaine binding compared at subpharmacological and pharmacological doses: A PET study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Fowler, J.S.; Logan, J.

    The authors have characterized cocaine binding in the brain to a high-affinity site on the dopamine transporter using PET and tracer doses of [{sup 11}C]cocaine in the baboon in vivo. The binding pattern, however, of cocaine at tracer (subpharmacological) doses may differ from that observed when the drug is taken in behaviorally active doses, particularly since in vitro studies have shown that cocaine also binds to low affinity binding sites. PET was used to compare and characterize [{sup 11}C]cocaine binding in the baboon brain at low subpharmacological (18 {mu}g average dose) and at pharmacological (8000 {mu}g) doses. Serial studies onmore » the same day in the same baboon were used to assess the reproducibility of repeated measures and to assess the effects of drugs which inhibit the dopamine, norepinephrine and serotonin transporters. Time-activity curves from brain and the arterial plasma input function were used to calculate the steady-state distribution volume (DV). At subpharmacological doses, [{sup 11}C]cocaine had a more homogeneous distribution. Bmax/Kd for sub-pharmacological [{sup 11}C]cocaine corresponded to 0.5-0.6 and for pharmacological [{sup 11}C]cocaine it corresponded to 0.1-0.2. Two-point Scatchard analysis gave Bmax = 2300 pmole/g and Kd = 3600 nM. Bmax/Kd for sub-pharmacological doses of [{sup 11}C]cocaine was decreased by cocaine and drugs that inhibit the dopamine transporter, to 0.1-0.2, but not by drugs that inhibit the serotonin or the norepinephrine transporter. None of these drugs changed Bmax/Kd for a pharmacological dose of [{sup 11}C]cocaine. At subpharmacological doses, [{sup 11}C]cocaine binds predominantly to a high-affinity site on the dopamine transporter. 36 refs., 4 figs., 5 tabs.« less

  18. Ligand-induced changes in 2-aminopurine fluorescence as a probe for small molecule binding to HIV-1 TAR RNA

    PubMed Central

    BRADRICK, THOMAS D.; MARINO, JOHN P.

    2004-01-01

    Replication of human immunodeficiency virus type 1 (HIV-1) is regulated in part through an interaction between the virally encoded trans-activator protein Tat and the trans-activator responsive region (TAR) of the viral RNA genome. Because TAR is highly conserved and its interaction with Tat is required for efficient viral replication, it has received much attention as an antiviral drug target. Here, we report a 2-aminopurine (2-AP) fluorescence-based assay for evaluating potential TAR inhibitors. Through selective incorporation of 2-AP within the bulge (C23 or U24) of a truncated form of the TAR sequence (Δ TAR-ap23 and Δ TAR-ap24), binding of argininamide, a 24-residue arginine-rich peptide derived from Tat, and Neomycin has been characterized using steady-state fluorescence. Binding of argininamide to the 2-AP ΔTAR constructs results in a four- to 11-fold increase in fluorescence intensity, thus providing a sensitive reporter of that interaction (KD ~ 1 mM). Similarly, binding of the Tat peptide results in an initial 14-fold increase in fluorescence (KD ~ 25 nM), but is then followed by a slight decrease that is attributed to an additional, lower-affinity association(s). Using the ΔTAR-ap23 and TAR-ap24 constructs, two classes of Neomycin binding sites are detected; the first molecule of antibiotic binds as a noncompetitive inhibitor of Tat/argininamide (KD ~ 200 nM), whereas the second, more weakly bound molecule(s) becomes associated in a presumably nonspecific manner (KD ~ 4 μM). Taken together, the results demonstrate that the 2-AP fluorescence-detected binding assays provide accurate and general methods for quantitatively assessing TAR interactions. PMID:15273324

  19. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model.

    PubMed

    Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A

    2009-09-01

    A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.

  20. Improved Accuracy of Low Affinity Protein-Ligand Equilibrium Dissociation Constants Directly Determined by Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Jaquillard, Lucie; Saab, Fabienne; Schoentgen, Françoise; Cadene, Martine

    2012-05-01

    There is continued interest in the determination by ESI-MS of equilibrium dissociation constants (KD) that accurately reflect the affinity of a protein-ligand complex in solution. Issues in the measurement of KD are compounded in the case of low affinity complexes. Here we present a KD measurement method and corresponding mathematical model dealing with both gas-phase dissociation (GPD) and aggregation. To this end, a rational mathematical correction of GPD (fsat) is combined with the development of an experimental protocol to deal with gas-phase aggregation. A guide to apply the method to noncovalent protein-ligand systems according to their kinetic behavior is provided. The approach is validated by comparing the KD values determined by this method with in-solution KD literature values. The influence of the type of molecular interactions and instrumental setup on fsat is examined as a first step towards a fine dissection of factors affecting GPD. The method can be reliably applied to a wide array of low affinity systems without the need for a reference ligand or protein.

  1. The 87-kD A gamma-globin enhancer-binding protein is a product of the HOXB2(HOX2H) locus.

    PubMed

    Sengupta, P K; Lavelle, D E; DeSimone, J

    1994-03-01

    Developmental regulation of globin gene expression may be controlled by developmental stage-specific nuclear proteins that influence interactions between the locus control region and local regulatory sequences near individual globin genes. We previously isolated an 87-kD nuclear protein from K562 cells that bound to DNA sequences in the beta-globin locus control region, gamma-globin promoter, and A gamma-globin enhancer. The presence of this protein in fetal globin-expressing cells and its absence in adult globin-expressing cells suggested that it may be a developmental stage-specific factor. A lambda gt11 K562 cDNA clone encoding a portion of the HOXB2 (formerly HOX2H) homeobox gene was isolated on the basis of the ability of its beta-galactosidase fusion protein to bind to the same DNA sequences as the 87-kD K562 protein. Because no other relationship had been established between the 87-kD K562 protein and the HOXB2 protein other than their ability to bind ot the same DNA sequences, we have investigated whether the two proteins are related antigenically. Our data show that antisera produced against the HOXB2-beta-gal fusion protein and a synthetic HOXB2 decapeptide react specifically with an 87-kD protein from K562 nuclear extract, showing that the 87-kD K562 nuclear protein is a product of the HOXB2 locus, and is the first demonstration of cellular HOXB2 protein.

  2. Dye-induced aggregation of single stranded RNA: a mechanistic approach.

    PubMed

    Biver, Tarita; Ciatto, Carlo; Secco, Fernando; Venturini, Marcella

    2006-08-15

    The binding of proflavine (D) to single stranded poly(A) (P) was investigated at pH 7.0 and 25 degrees C using T-jump, stopped-flow and spectrophotometric methods. Equilibrium measurements show that an external complex PD(I) and an internal complex PD(II) form upon reaction between P and D and that their concentrations depend on the polymer/dye concentration ratio (C(P)/C(D)). For C(P)/C(D)<2.5, cooperative formation of stacks external to polymer strands prevails (PD(I)). Equilibria and T-jump experiments, performed at I=0.1M and analyzed according to the Schwarz theory for cooperative binding, provide the values of site size (g=1), equilibrium constant for the nucleation step (K( *)=(1.4+/-0.6)x10(3)M(-1)), equilibrium constant for the growth step (K=(1.2+/-0.6)x10(5)M(-1)), cooperativity parameter (q=85) and rate constants for the growth step (k(r)=1.2x10(7)M(-1)s(-1), k(d)=1.1 x 10(2)s(-1)). Stopped-flow experiments, performed at low ionic strength (I=0.01 M), indicate that aggregation of stacked poly(A) strands do occur provided that C(P)/C(D)<2.5.

  3. Molecular recognition of live methicillin-resistant staphylococcus aureus cells using DNA aptamers

    PubMed Central

    Turek, Diane; Van Simaeys, Dimitri; Johnson, Judith; Ocsoy, Ismail; Tan, Weihong

    2014-01-01

    AIM To generate DNA-aptamers binding to Methicillin-resistant Staphylococcus aureus (MRSA). METHODS The Cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology was used to run the selection against MRSA bacteria and develop target-specific aptamers. MRSA bacteria were targeted while Enterococcus faecalis bacteria were used for counter selection during that process. Binding assays to determine the right aptamer candidates as well as binding assays on clinical samples were performed through flow cytometry and analyzed using the FlowJo software. The characterization of the aptamers was done by determination of their Kd values and determined by analysis of flow data at different aptamer concentration using SigmaPlot. Finally, the recognition of the complex Gold-nanoparticle-aptamer to the bacteria cells was observed using transmission electron microscopy (TEM). RESULTS During the cell-SELEX selection process, 17 rounds were necessary to generate enrichment of the pool. While the selection was run using fixed cells, it was shown that the binding of the pools with live cells was giving similar results. After sequencing and analysis of the two last pools, four sequences were identified to be aptamer candidates. The characterization of those aptamers showed that based on their Kd values, DTMRSA4 presented the best binding with a Kd value of 94.61 ± 18.82 nmol/L. A total of ten clinical samples of MRSA , S. aureus and Enterococcus faecalis were obtained to test those aptamers and determine their binding on a panel of samples. DTMRSA1 and DTMRSA3 showed the best results regarding their specificity to MRSA , DTMRSA1 being the most specific of all. Finally, those aptamers were coupled with gold-nanoparticle and their binding to MRSA cells was visualized through TEM showing that adduction of nanoparticles on the aptamers did not change their binding property. CONCLUSION A total of four aptamers that bind to MRSA were obtained with Kd values ranking from 94 to 200 nmol/L. PMID:25436184

  4. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    USGS Publications Warehouse

    Persson, Petra; Shrimpton, J.M.; McCormick, S.D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol x mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol x mg protein-1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  5. dbAMEPNI: a database of alanine mutagenic effects for protein–nucleic acid interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ling; Xiong, Yi; Gao, Hongyun

    Protein–nucleic acid interactions play essential roles in various biological activities such as gene regulation, transcription, DNA repair and DNA packaging. Understanding the effects of amino acid substitutions on protein–nucleic acid binding affinities can help elucidate the molecular mechanism of protein–nucleic acid recognition. Until now, no comprehensive and updated database of quantitative binding data on alanine mutagenic effects for protein–nucleic acid interactions is publicly accessible. Thus, we developed a new database of Alanine Mutagenic Effects for Protein-Nucleic Acid Interactions (dbAMEPNI). dbAMEPNI is a manually curated, literature-derived database, comprising over 577 alanine mutagenic data with experimentally determined binding affinities for protein–nucleic acidmore » complexes. Here, it contains several important parameters, such as dissociation constant (Kd), Gibbs free energy change (ΔΔG), experimental conditions and structural parameters of mutant residues. In addition, the database provides an extended dataset of 282 single alanine mutations with only qualitative data (or descriptive effects) of thermodynamic information.« less

  6. Molecular Docking and NMR Binding Studies to Identify Novel Inhibitors of Human Phosphomevalonate Kinase

    PubMed Central

    Boonsri, Pornthip; Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng; Herdendorf, Timothy J.; Miziorko, Henry M.; Hannongbua, Supa; Sem, Daniel S.

    2012-01-01

    Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using Autodock. Promising hits were verified and their affinity measured using NMR-based 1H-15N Heteronuclear Single Quantum Coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (Kd). Tight binding compounds with Kd’s ranging from 6–60 µM were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC crosspeak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development. PMID:23146631

  7. In vivo studies of opiate receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, J.J.; Dannals, R.F.; Duelfer, T.

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantlymore » to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented.« less

  8. Complementary DNA display selection of high-affinity peptides binding the vacuolating toxin (VacA) of Helicobacter pylori.

    PubMed

    Hayakawa, Yumiko; Matsuno, Mitsuhiro; Tanaka, Makoto; Wada, Akihiro; Kitamura, Koichiro; Takei, Osamu; Sasaki, Ryuzo; Mizukami, Tamio; Hasegawa, Makoto

    2015-09-01

    Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd ) of 58 nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  9. dbAMEPNI: a database of alanine mutagenic effects for protein–nucleic acid interactions

    DOE PAGES

    Liu, Ling; Xiong, Yi; Gao, Hongyun; ...

    2018-04-02

    Protein–nucleic acid interactions play essential roles in various biological activities such as gene regulation, transcription, DNA repair and DNA packaging. Understanding the effects of amino acid substitutions on protein–nucleic acid binding affinities can help elucidate the molecular mechanism of protein–nucleic acid recognition. Until now, no comprehensive and updated database of quantitative binding data on alanine mutagenic effects for protein–nucleic acid interactions is publicly accessible. Thus, we developed a new database of Alanine Mutagenic Effects for Protein-Nucleic Acid Interactions (dbAMEPNI). dbAMEPNI is a manually curated, literature-derived database, comprising over 577 alanine mutagenic data with experimentally determined binding affinities for protein–nucleic acidmore » complexes. Here, it contains several important parameters, such as dissociation constant (Kd), Gibbs free energy change (ΔΔG), experimental conditions and structural parameters of mutant residues. In addition, the database provides an extended dataset of 282 single alanine mutations with only qualitative data (or descriptive effects) of thermodynamic information.« less

  10. Analysis of the interaction of calcitriol with the disulfide isomerase ERp57

    NASA Astrophysics Data System (ADS)

    Gaucci, Elisa; Raimondo, Domenico; Grillo, Caterina; Cervoni, Laura; Altieri, Fabio; Nittari, Giulio; Eufemi, Margherita; Chichiarelli, Silvia

    2016-11-01

    Calcitriol, the active form of vitamin D3, can regulate the gene expression through the binding to the nuclear receptor VDR, but it can also display nongenomic actions, acting through a membrane-associated receptor, which has been discovered as the disulfide isomerase ERp57. The aim of our research is to identify the binding sites for calcitriol in ERp57 and to analyze their interaction. We first studied the interaction through bioinformatics and fluorimetric analyses. Subsequently, we focused on two protein mutants containing the predicted interaction domains with calcitriol: abb’-ERp57, containing the first three domains, and a’-ERp57, the fourth domain only. To consolidate the achievements we used the calorimetric approach to the whole protein and its mutants. Our results allow us to hypothesize that the interaction with the a’ domain contributes to a greater extent than the other potential binding sites to the dissociation constant, calculated as a Kd of about 10-9 M.

  11. Characterization of melatonin binding sites in the Harderian gland and median eminence of the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Gonzalez, M.A.; Calvo, J.R.; Rubio, A.

    The characterization of specific melatonin binding sites in the Harderian gland (HG) and median eminence (ME) of the rat was studied using ({sup 125}I)melatonin. Binding of melatonin to membrane crude preparations of both tissues was dependent on time and temperature. Thus, maximal binding was obtained at 37{degree}C after 30-60 min incubation. Binding was also dependent on protein concentration. The specific binding of ({sup 125}I)melatonin was saturable, exhibiting only the class of binding sites in both tissues. The dissociation constants (Kd) were 170 and 190 pM for ME and HG, respectively. The concentration of the binding sites in ME was 8more » fmol/mg protein, and in the HG 4 fmol/mg protein. In competition studies, binding of ({sup 125}I)melatonin to ME or HG was inhibited by increasing concentration of native melatonin; 50% inhibition was observed at about 702 and 422 nM for ME and HG, respectively. Additionally, the ({sup 125}I)melatonin binding to the crude membranes was not affected by the addition of different drugs such as norepinephrine, isoproterenol, phenylephrine, propranolol, or prazosin. The results confirm the presence of melatonin binding sites in median eminence and show, for the first time, the existence of melatonin binding sites in the Harderian gland.« less

  12. Haematoporphyrin and OO'-diacetylhaematoporphyrin binding by serum and cellular proteins. Implications for the clearance of these photochemotherapeutic agents by cells.

    PubMed Central

    Smith, A; Neuschatz, T

    1983-01-01

    Haematoporphyrin derivative (HpD), a mixture of porphyrins, is currently used as a photochemotherapeutic agent in the treatment of neoplasias. The interaction of purified components of HpD with serum and cellular proteins was investigated using absorption and fluorescence spectroscopy. The interactions of haematoporphyrin and OO'-diacetylhaematoporphyrin with human albumin and with haemopexin, the two major serum porphyrin-binding proteins, show stoichiometries of 1 mol of porphyrin bound per mol of protein. The apparent dissociation constants, Kd, are in the range of 1-2 microM for albumin and 3-4 microM for haemopexin. These two major components of HpD would, after intravenous injection, bind to albumin and circulate in serum as albumin complexes. Free porphyrin rather than porphyrin bound to albumin interacts with Morris hepatoma tissue culture cells. A rapid high-affinity saturable transport system operates at free porphyrin concentrations of less than 2 microM. In addition, fluorescence spectra show that components in rat liver cytosol can bind haematoporphyrin and OO'-diacetylhaematoporphyrin and distinguish these binders from those present in rat serum. PMID:6225429

  13. Examining small molecule: HIV RNA interactions using arrayed imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Chaimayo, Wanaruk; Miller, Benjamin L.

    2014-03-01

    Human Immunodeficiency Virus (HIV) has been the subject of intense research for more than three decades as it causes an uncurable disease: Acquired Immunodeficiency Syndrome, AIDS. In the pursuit of a medical treatment, RNAtargeted small molecules are emerging as promising targets. In order to understand the binding kinetics of small molecules and HIV RNA, association (ka) and dissociation (kd) kinetic constants must be obtained, ideally for a large number of sequences to assess selectivity. We have developed Aqueous Array Imaged Reflectometry (Aq-AIR) to address this challenge. Using a simple light interference phenomenon, Aq-AIR provides real-time high-throughput multiplex capabilities to detect binding of targets to surface-immobilized probes in a label-free microarray format. The second generation of Aq-AIR consisting of high-sensitivity CCD camera and 12-μL flow cell was fabricated. The system performance was assessed by real-time detection of MBNL1-(CUG)10 and neomycin B - HIV RNA bindings. The results establish this second-generation Aq-AIR to be able to examine small molecules binding to RNA sequences specific to HIV.

  14. Distinctive interactions of the Arabidopsis homolog of the 30 kD subunit of the cleavage and polyadenylation specificity factor (AtCPSF30) with other polyadenylation factor subunits

    USDA-ARS?s Scientific Manuscript database

    Background: The Arabidopsis ortholog of the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor (AtCPSF30) is an RNA-binding endonuclease that is associated with other Arabidopsis CPSF subunits (orthologs of the 160, 100, and 73 kD subunits of CPSF). In order to better u...

  15. Comparative Analysis of the 15.5kD Box C/D snoRNP Core Protein in the Primitive Eukaryote Giardia lamblia Reveals Unique Structural and Functional Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Shyamasri; Buhrman, Greg; Gagnon, Keith

    2012-07-11

    Box C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs. The crystal structure of the 15.5kD core protein from the primitive eukaryote Giardia lamblia is described here to a resolution of 1.8 {angstrom}. The Giardia 15.5kD protein exhibits the typical {alpha}-{beta}-{alpha} sandwich fold exhibited by both archaeal L7Ae and eukaryotic 15.5kD proteins. Characteristic of eukaryotic homologues, the Giardia 15.5kD protein binds the K-turn motif but not the variant K-loop motif. The highly conserved residues ofmore » loop 9, critical for RNA binding, also exhibit conformations similar to those of the human 15.5kD protein when bound to the K-turn motif. However, comparative sequence analysis indicated a distinct evolutionary position between Archaea and Eukarya. Indeed, assessment of the Giardia 15.5kD protein in denaturing experiments demonstrated an intermediate stability in protein structure when compared with that of the eukaryotic mouse 15.5kD and archaeal Methanocaldococcus jannaschii L7Ae proteins. Most notable was the ability of the Giardia 15.5kD protein to assemble in vitro a catalytically active chimeric box C/D RNP utilizing the archaeal M. jannaschii Nop56/58 and fibrillarin core proteins. In contrast, a catalytically competent chimeric RNP could not be assembled using the mouse 15.5kD protein. Collectively, these analyses suggest that the G. lamblia 15.5kD protein occupies a unique position in the evolution of this box C/D RNP core protein retaining structural and functional features characteristic of both archaeal L7Ae and higher eukaryotic 15.5kD homologues.« less

  16. Monoclonal antibodies to the light-harvesting chlorophyll a/b protein complex of photosystem II

    PubMed Central

    1986-01-01

    A collection of 17 monoclonal antibodies elicited against the light- harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC- II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b. PMID:3528171

  17. Oxytocin and vasopressin: distinct receptors in myometrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillon, G.; Balestre, M.N.; Roberts, J.M.

    1987-06-01

    The binding characteristics of (/sup 3/H)oxytocin (( /sup 3/H)OT) and (/sup 3/H)lysine vasopressin (( /sup 3/H)LVP) to nonpregnant human myometrium were investigated. Binding of both radioligands was saturable, time dependent, and reversible. Whereas (/sup 3/H)OT was found to bind to a single class of sites with high affinity (Kd, 1.5 +/- 0.4 (+/- SEM) nM) and low capacity (maximum binding (Bmax), 34 +/- 6 fmol/mg protein), (/sup 3/H)LVP bound to two classes of sites, one with high affinity (Kd, 2.2 +/- 0.1 nM) and low capacity (Bmax, 198 +/- 7 fmol/mg protein) and another with low affinity (Kd, 655 +/-more » 209 nM) and high capacity (Bmax, 5794 +/- 1616 fmol/mg protein). The binding of the labeled peptides also displayed a marked difference in sensitivity to Mg2+ and guanine nucleotides. These differences in binding characteristics as well as the differences in potency of analogs in competing for (/sup 3/H)OT and (/sup 3/H)LVP binding indicate the presence of distinct receptors for OT and vasopressin in human myometrium. Pharmacological characterization of the high affinity binding sites for (/sup 3/H)LVP indicated that these are of the V1 subtype. Although, as suggested by others, vasopressin and OT can bind to the same sites, the presence of distinct receptors for both peptides provides an explanation for the previously reported difference in myometrial responsiveness to OT and vasopressin.« less

  18. A novel substance P binding site in bovine adrenal medulla.

    PubMed

    Geraghty, D P; Livett, B G; Rogerson, F M; Burcher, E

    1990-05-04

    Radioligand binding techniques were used to characterize the substance P (SP) binding site on membranes prepared from bovine adrenal medullae. 125I-labelled Bolton-Hunter substance P (BHSP), which recognises the C-terminally directed, SP-preferring NK1 receptor, showed no specific binding. In contrast, binding of [3H]SP was saturable (at 6 nM) and reversible, with an equilibrium dissociation constant (Kd) 1.46 +/- 0.73 nM, Bmax 0.73 +/- 0.06 pmol/g wet weight and Hill coefficient 0.98 +/- 0.01. Specific binding of [3H]SP was displaced by SP greater than neurokinin A (NKA) greater than SP(3-11) approximately SP(1-9) greater than SP(1-7) approximately SP(1-4) approximately SP(1-6), with neurokinin B (NKB) and SP(1-3) very weak competitors and SP(5-11), SP(7-11) and SP(9-11) causing negligible inhibition (up to 10 microM). This potency order is quite distinct from that seen with binding to an NK1 site, a conclusion confirmed by the lack of BHSP binding. It appears that Lys3 and/or Pro4 are critical for binding, suggesting an anionic binding site. These data suggest the existence of an unusual binding site which may represent a novel SP receptor. This site appears to require the entire sequence of the SP molecule for full recognition.

  19. Characterization of bradykinin receptors in human lung fibroblasts using the binding of 3[H][Des-Arg10,Leu9]kallidin and [3H]NPC17731.

    PubMed

    Zhang, S P; Codd, E E

    1998-01-01

    Bradykinin (BK) receptors are involved in pain and inflammation. Two BK receptor subtypes, B1 and B2, have been defined based on their pharmacological properties. Both B1 and B2 receptors are G-protein coupled membrane receptors. B1 receptors are present in smooth muscle tissue, whereas B2 receptors are found in both smooth muscle tissue and neurons. [Des-Arg10,Leu9]kallidin (DALKD) is a selective B1 receptor antagonist, and NPC17731 is a selective B2 receptor antagonist. To develop binding assays for the two known BK receptor subtypes, [3H]DALKD and [3H]NPC17731 were used as selective ligands for B1 and B2 receptors respectively. Both ligands bound to the CCD-16 human lung fibroblast membranes reaching equilibrium at 25 degrees C within 30 min. Binding was stable for at least 60 min. The Kd of [3H]DALKD was 0.33 nM and Bmax was 52 fmol/mg membrane protein. The Kd of [3H]NPC17731 was 0.39 nM and Bmax was 700 fmol/mg membrane protein. Competition for [3H]DALKD binding with BK receptor agonists was in the order: [des-Arg10]KD (DAKD) > KD > [des-Arg9]BK (DABK) > BK, and competition for [3H]DALKD binding with BK receptor antagonists was in the order: DALKD > [des-Arg10]Hoe 140 (DAHoe 140) > [des-Arg9,Leu8]BK (DALBK) > NPC17731 > Hoe 140 > DNMFBK, suggesting that [3H]DALKD bound selectively to B1 receptors. By contrast, competition for [3H]NPC17731 binding by BK agonists was in the order: BK > KD > DAKD > DABK, and competition for [3H]NPC17731 binding by BK antagonists was in the order: NPC17731 = Hoe 140 > DNMFBK > DAHoe 140 > DALBK > DALKD, indicating that [3H]NPC17731 labeled B2 receptors selectively. These results demonstrate that [3H]DALKD and [3H]NPC17731 can be used with CCD-16 human lung fibroblast membranes to provide a pair of binding assays for the simultaneous evaluation of B1 and B2 BK receptor subtypes.

  20. Design of chimeric peptide ligands to galanin receptors and substance P receptors.

    PubMed

    Langel, U; Land, T; Bartfai, T

    1992-06-01

    Several chimeric peptides were synthesized and found to be high-affinity ligands for both galanin and substance P receptors in membranes from the rat hypothalamus. The peptide galantide, composed of the N-terminal part of galanin and C-terminal part of substance P (SP), galanin-(1-12)-Pro-SP-(5-11) amide, which is the first galanin antagonist to be reported, recognizes two classes of galanin binding sites (KD(1) less than 0.1 nM and KD(2) approximately 6 nM) in the rat hypothalamus, while it appears to bind to a single population of SP receptors (KD approximately 40 nM). The chimeric peptide has higher affinity towards galanin receptors than the endogenous peptide galanin-(1-29) (KD approximately 1 nM) or its N-terminal fragment galanin-(1-13) (KD approximately 1 microM), which constitutes the N-terminus of the chimeric peptide. Galantide has also higher affinity for the SP receptors than the C-terminal SP fragment-(4-11) amide (KD = 0.4 microM), which constitutes its C-terminal portion. Substitution of amino acid residues, which is of importance for recognition of galanin by galanin receptors, such as [Trp2], in the galanin portion of the chimeric peptide or substitution of ([Phe7] or [Met11]-amide) in the SP portion of chimeric peptide both cause significant loss in affinity of the analogs of galantide for both the galanin- and the SP-receptors. These results suggest that the high affinity of the chimeric peptide, galantide, may in part be accounted for by simultaneous recognition/binding to both receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. CO Binding and Ligand Discrimination in Human Myeloperoxidase†

    PubMed Central

    Murphy, Emma J.; Maréchal, Amandine; Segal, Anthony W.; Rich, Peter R.

    2015-01-01

    Despite the fact that ferrous myeloperoxidase (MPO) can bind both O2 and NO, its ability to bind CO has been questioned. UV/visible spectroscopy was used to confirm that CO induces small spectral shifts in ferrous MPO, and Fourier transform infrared difference spectroscopy showed definitively that these arose from formation of a heme ferrous–CO compound. Recombination rates after CO photolysis were monitored at 618 and 645 nm as a function of CO concentration and pH. At pH 6.3, kon and koff were 0.14 mM−1·s−1 and 0.23 s−1, respectively, yielding an unusually high KD of 1.6 mM. This affinity of MPO for CO is 10 times weaker than its affinity for O2. The observed rate constant for CO binding increased with increasing pH and was governed by a single protonatable group with a pKa of 7.8. Fourier transform infrared spectroscopy revealed two different conformations of bound CO with frequencies at 1927 and 1942 cm−1. Their recombination rate constants were identical, indicative of two forms of bound CO that are in rapid thermal equilibrium rather than two distinct protein populations with different binding sites. The ratio of bound states was pH-dependent (pKa ≈ 7.4) with the 1927 cm−1 form favored at high pH. Structural factors that account for the ligand-binding properties of MPO are identified by comparisons with published data on a range of other ligand-binding heme proteins, and support is given to the recent suggestion that the proximal His336 in MPO is in a true imidazolate state. PMID:20146436

  2. ADP binding to TF1 and its subunits induces ultraviolet spectral changes.

    PubMed

    Hisabori, T; Yoshida, M; Sakurai, H

    1986-09-01

    Adenine nucleotide binding sites on the coupling factor ATPase of thermophilic bacterium PS3 (TF1) were investigated by UV spectroscopy and by equilibrium dialysis. When ADP was mixed with TF1 in the presence and in the absence of Mg2+, an UV absorbance change was induced (t1/2 approximately 1 min) with a peak at about 278 nm and a trough at about 250 nm. Similar spectral changes were induced by ADP with the isolated beta subunits in the presence and in the absence of Mg2+, and with the isolated alpha subunits in the presence of Mg2+ although the magnitudes of the changes were different. From equilibrium dialysis measurement we identified two classes of nucleotide binding sites in TF1 in the presence of Mg2+, three high-affinity sites (Kd = 61 nM) and three low-affinity sites (Kd = 87 microM). In the absence of Mg2+, TF1 has one high-affinity site (Kd less than 10 nM) and five low-affinity sites (Kd = 100 microM). Moreover, we found a single Mg2+-dependent ADP binding site on the isolated alpha subunit and a single Mg2+-independent ADP binding site on the isolated beta subunit. From the above observations, we concluded that the three Mg2+-dependent high-affinity sites for ADP are located on the alpha subunit in TF1 and that the single high-affinity site is located on one of the beta subunits in TF1 in the absence of Mg2+.

  3. NMR Chemical Exchange as a Probe for Ligand-Binding Kinetics in a Theophylline-Binding RNA Aptamer

    PubMed Central

    Latham, Michael P.; Zimmermann, Grant R.; Pardi, Arthur

    2009-01-01

    The apparent on- and off-rate constants for theophylline binding to its RNA aptamer in the absence of Mg2+ were determined here by 2D 1H-1H NMR ZZ-exchange spectroscopy. Analysis of the build-up rate of the exchange cross peaks for several base-paired imino protons in the RNA yielded an apparent kon of 600 M-1 s-1. This small apparent kon results from the free RNA existing as a dynamic equilibrium of inactive states rapidly interconverting with a low population of active species. The data here indicate that the RNA aptamer employs a conformational selection mechanism for binding theophylline in the absence of Mg2+. The kinetic data here also explain a very unusual property of this RNA-theophylline system, slow exchange on the NMR chemical shift timescale for a weak-binding complex. To our knowledge, it is unprecedented to have such a weak binding complex (Kd ≈ 3.0 mM at 15 °C) show slow exchange on the NMR chemical shift timescale, but the results clearly demonstrate that slow exchange and weak binding are readily rationalized by a small kon. Comparisons with other ligand-receptor interactions are presented. PMID:19317486

  4. Localization in human interleukin 2 of the binding site to the alpha chain (p55) of the interleukin 2 receptor.

    PubMed Central

    Sauvé, K; Nachman, M; Spence, C; Bailon, P; Campbell, E; Tsien, W H; Kondas, J A; Hakimi, J; Ju, G

    1991-01-01

    Human interleukin 2 (IL-2) analogs with defined amino acid substitutions were used to identify specific residues that interact with the 55-kDa subunit (p55) or alpha chain of the human IL-2 receptor. Analog proteins containing specific substitutions for Lys-35, Arg-38, Phe-42, or Lys-43 were inactive in competitive binding assays for p55. All of these analogs retained substantial competitive binding to the intermediate-affinity p70 subunit (beta chain) of the receptor complex. The analogs varied in ability to interact with the high-affinity p55/p70 receptor. Despite the lack of binding to p55, all analogs exhibited significant biological activity, as assayed on the murine CTLL cell line. The dissociation constants of Arg-38 and Phe-42 analogs for p70 were consistent with intermediate-affinity binding; the Kd values were not significantly affected by the presence of p55 in binding to the high-affinity IL-2 receptor complex. These results confirm the importance of the B alpha-helix in IL-2 as the locus for p55-receptor binding and support a revised model of IL-2-IL-2 receptor interaction. PMID:2052547

  5. Competitor analogs for defined T cell antigens: peptides incorporating a putative binding motif and polyproline or polyglycine spacers.

    PubMed

    Maryanski, J L; Verdini, A S; Weber, P C; Salemme, F R; Corradin, G

    1990-01-12

    We describe a new approach for modeling antigenic peptides recognized by T cells. Peptide A24 170-182 can compete with other antigenic peptides that are recognized by H-2kd-restricted cytolytic T cells, presumably by binding to the Kd molecule. By comparing substituted A24 peptides as competitors in a functional competition assay, the A24 residues Tyr-171, Thr-178, and Leu-179 were identified as possible contact residues for Kd. A highly active competitor peptide analog was synthesized in which Tyr was separated from the Thr-Leu pair by a pentaproline spacer. The choice of proline allowed the prediction of a probable conformation for the analog when bound to the Kd molecule. The simplest conformation of the A24 peptide that allows the same spacing and orientation of the motif as in the analog would be a nearly extended polypeptide chain incorporating a single 3(10) helical turn or similar structural kink.

  6. Identification and Development of 2,3-Dihydropyrrolo[1,2-a]quinazolin-5(1H)-one Inhibitors Targeting Bromodomains within the Switch/Sucrose Nonfermenting Complex

    PubMed Central

    2016-01-01

    Bromodomain containing proteins PB1, SMARCA4, and SMARCA2 are important components of SWI/SNF chromatin remodeling complexes. We identified bromodomain inhibitors that target these proteins and display unusual binding modes involving water displacement from the KAc binding site. The best compound binds the fifth bromodomain of PB1 with a KD of 124 nM, SMARCA2B and SMARCA4 with KD values of 262 and 417 nM, respectively, and displays excellent selectivity over bromodomains other than PB1, SMARCA2, and SMARCA4. PMID:27119626

  7. Receptors for luteinizing hormone-releasing hormone (LHRH) in Dunning R3327 prostate cancers and rat anterior pituitaries after treatment with a sustained delivery system of LHRH antagonist SB-75.

    PubMed

    Srkalovic, G; Bokser, L; Radulovic, S; Korkut, E; Schally, A V

    1990-12-01

    Membrane receptors for LHRH were evaluated in Dunning R3327 prostate cancers and rat anterior pituitaries. The receptors were characterized both in untreated animals and after in vivo treatment with microcapsules of the agonist D-Trp6-LHRH and a sustained delivery system releasing different doses (23.8, 47.6, 71.4 micrograms/day) of LHRH antagonist [Ac-D-Nal(2)1-D-Phe(4Cl)2-D-Pal(3)3,D-Cit6, D-Ala10]-LHRH (SB-75). The therapy, which lasted 8 weeks, strongly inhibited tumor growth. A group of normal Sprague-Dawley male rats was also treated for 6 weeks with microcapsules of SB-75 releasing 25 micrograms/day. In the Dunning tumors from the control group, ligand [125I, D-Trp6]-LHRH was bound to two classes of binding sites [dissociation constant, class a (Kda) = 1.01 +/- 0.30 x 10(-9) M; Kdb = 1.71 +/- 0.41 x 10(-6) M; maximal binding capacity of receptors, class a (Bmaxa) = 48.66 +/- 22.13 fmol/mg of protein; Bmaxb = 92.10 +/- 29.40 pmol/mg of protein] in both kinetic and equilibrium studies. Treatment with D-Trp6-LHRH produced down-regulation of membrane receptors for LHRH in Dunning tumors. Microcapsules of SB-75 resulted in dose-dependent up-regulation of binding sites for LHRH in Dunning tumors. Analysis of the binding data showed that interaction of labeled D-Trp6-LHRH with binding sites in anterior pituitaries was consistent with the presence of a single class of noncooperative receptors (Kd = 43.75 x 10(-9) M; Bmax = 5.25 pmol/mg membrane proteins). Prolonged treatment with microcapsules of D-Trp6-LHRH reduced both Bmax and Kd. Lower doses of SB-75 (23.8 and 47.6 micrograms/day) produced up-regulation, whereas the highest dose (71.4 micrograms/day) resulted in down-regulation of binding sites for LHRH in rat pituitaries. In normal Sprague-Dawley rats, treatment with microcapsules of SB-75 (25 micrograms/day) for 6 weeks produced a slight increase in the number of available binding sites (Bmax = 2.35 +/- 0.82 pmol/mg membrane protein) and a moderate decrease in affinity (Kd = 35.10 +/- 15.19 x 10(-9) M) of pituitary membrane receptors for LHRH. The findings provide additional support for the view that LHRH analogs exert direct effects on tumor cells. Our findings indicate that prolonged treatment with high doses of modern LHRH antagonists produces down-regulation of pituitary receptors. Our work in tumors also implies that some differences may exist between LHRH receptors, even in the same tissue, leading to the concept of subclassification of LHRH receptors.

  8. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    USGS Publications Warehouse

    Persson, Petra; Shrimpton, J. Mark; McCormick, Stephen D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol × mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol × mg protein−1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  9. Ganglioside inhibition of sup 125 I-plasmin binding to colorectal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liepkalns, V.A.; Burtin, M.C.; Correc, P.

    1990-01-01

    The pre-incubation of human colorectal carcinoma cells SW 1116 with 25 to 100 uM purified gangliosides resulted in 35-60% inhibition of specific {sup 125}I-plasmin binding to the cell surface. After 5 to 6 days in culture, tumor cells were pre-incubated at 4 degrees for 1 to 4 h followed by post-incubation with {sup 125}I-plasmin by techniques previously described. At 25 uM the capacity for inhibition of plasmin binding was GT1b greater than GQ1b greater than or equal to GD1a greater than GM1 less than or equal to GgOse 4Cer. Thus a terminal sialyl moiety appears to be necessary (p lessmore » than 0.05) although exogenous N-acetyl neuraminic acid was ineffective (p greater than 0.05), indicating a role for the lipid portion of the ganglioside. Other (glyco)lipids such as sphingosine, fucolipid H-1 and sulfatide were without significant effect. The inhibition could not be reversed by the presence of 10 mM Ca+2, EDTA, pre-treatment of the cell with carboxypeptidase or pretreatment of plasmin with neuraminidases. The inhibition was however reversed by post-incubation in control medium without exogenous ganglioside. Cell counts determined prior to, and after ganglioside incubation showed that the effect was not due to cell death or detachment from the culture surface. The dissociation constant for {sup 125}I-plasmin binding was 5.6 x 10(-8) M (700,000 sites/cell), but in the presence of trisialoganglioside (GT1b), Scatchard plots suggested diversification of binding sites with 280,000 sites/cell at Kd 2.6 x 10(-8) M and 820,000 sites/cell at Kd 2.1 x 10(-7) M. Another interpretation of the Scatchard plot in the presence of ganglioside was that the glycolipid imposed negative cooperativity on plasmin binding to the cell surface. These results suggest that certain gangliosides can affect tumor cell invasiveness by altering protease binding to the cell surface.« less

  10. A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate

    PubMed Central

    Lott, William B.; Pontius, Brian W.; von Hippel, Peter H.

    1998-01-01

    Evidence for a two-metal ion mechanism for cleavage of the HH16 hammerhead ribozyme is provided by monitoring the rate of cleavage of the RNA substrate as a function of La3+ concentration in the presence of a constant concentration of Mg2+. We show that a bell-shaped curve of cleavage activation is obtained as La3+ is added in micromolar concentrations in the presence of 8 mM Mg2+, with a maximal rate of cleavage being attained in the presence of 3 μM La3+. These results show that two-metal ion binding sites on the ribozyme regulate the rate of the cleavage reaction and, on the basis of earlier estimates of the Kd values for Mg2+ of 3.5 mM and >50 mM, that these sites bind La3+ with estimated Kd values of 0.9 and >37.5 μM, respectively. Furthermore, given the very different effects of these metal ions at the two binding sites, with displacement of Mg2+ by La3+ at the stronger (relative to Mg2+) binding site activating catalysis and displacement of Mg2+ by La3+ at the weaker (relative to Mg2+) (relative to Mg2+) binding site inhibiting catalysis, we show that the metal ions at these two sites play very different roles. We argue that the metal ion at binding site 1 coordinates the attacking 2′-oxygen species in the reaction and lowers the pKa of the attached proton, thereby increasing the concentration of the attacking alkoxide nucleophile in an equilibrium process. In contrast, the role of the metal ion at binding site 2 is to catalyze the reaction by absorbing the negative charge that accumulates at the leaving 5′-oxygen in the transition state. We suggest structural reasons why the Mg2+–La3+ ion combination is particularly suited to demonstrating these different roles of the two-metal ions in the ribozyme cleavage reaction. PMID:9435228

  11. Physiological sodium concentrations enhance the iodide affinity of the Na+/I- symporter

    NASA Astrophysics Data System (ADS)

    Nicola, Juan P.; Carrasco, Nancy; Mario Amzel, L.

    2014-06-01

    The Na+/I- symporter (NIS) mediates active I- transport—the first step in thyroid hormonogenesis—with a 2Na+:1I- stoichiometry. NIS-mediated 131I- treatment of thyroid cancer post-thyroidectomy is the most effective targeted internal radiation cancer treatment available. Here to uncover mechanistic information on NIS, we use statistical thermodynamics to obtain Kds and estimate the relative populations of the different NIS species during Na+/anion binding and transport. We show that, although the affinity of NIS for I- is low (Kd=224 μM), it increases when Na+ is bound (Kd=22.4 μM). However, this Kd is still much higher than the submicromolar physiological I- concentration. To overcome this, NIS takes advantage of the extracellular Na+ concentration and the pronounced increase in its own affinity for I- and for the second Na+ elicited by binding of the first. Thus, at physiological Na+ concentrations, ~79% of NIS molecules are occupied by two Na+ ions and ready to bind and transport I-.

  12. Raised serum IgG and IgA antibodies to mycobacterial antigens in rheumatoid arthritis.

    PubMed Central

    Tsoulfa, G; Rook, G A; Van-Embden, J D; Young, D B; Mehlert, A; Isenberg, D A; Hay, F C; Lydyard, P M

    1989-01-01

    Autoantigens cross reactive with mycobacteria are implicated in the pathogenesis of adjuvant arthritis in the rat, and there are reports of changes in the immune response to mycobacteria in human rheumatoid arthritis (RA). We have therefore examined the IgM, IgG, and IgA antibody levels to crude mycobacterial antigens and to two recombinant mycobacterial heat shock/stress proteins (65 kD and 71 kD) in sera from patients with RA, systemic lupus erythematosus (SLE), and Crohn's disease, and from healthy controls. IgA binding to the crude mycobacterial antigens was significantly raised in RA sera, though IgG and IgM binding tended to be lower than in controls. Both IgA and IgG binding to the heat shock proteins were significantly raised in the RA sera. Smaller significant rises in both classes were seen in sera from patients with SLE, and in the IgA class only to the 65 kD protein in Crohn's disease. The rises in IgG and IgA antibodies to the 65 kD protein in RA were significantly higher than in the other diseases, however. It is interesting that this protein is the one responsible for adjuvant arthritis in the rat. PMID:2930263

  13. Platelets Contain Tissue Factor Pathway Inhibitor-2 Derived from Megakaryocytes and Inhibits Fibrinolysis*

    PubMed Central

    Vadivel, Kanagasabai; Ponnuraj, Sathya-Moorthy; Kumar, Yogesh; Zaiss, Anne K.; Bunce, Matthew W.; Camire, Rodney M.; Wu, Ling; Evseenko, Denis; Herschman, Harvey R.; Bajaj, Madhu S.; Bajaj, S. Paul

    2014-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a homologue of TFPI-1 and contains three Kunitz-type domains and a basic C terminus region. The N-terminal domain of TFPI-2 is the only inhibitory domain, and it inhibits plasma kallikrein, factor XIa, and plasmin. However, plasma TFPI-2 levels are negligible (≤20 pm) in the context of influencing clotting or fibrinolysis. Here, we report that platelets contain significant amounts of TFPI-2 derived from megakaryocytes. We employed RT-PCR, Western blotting, immunohistochemistry, and confocal microscopy to determine that platelets, MEG-01 megakaryoblastic cells, and bone marrow megakaryocytes contain TFPI-2. ELISA data reveal that TFPI-2 binds factor V (FV) and partially B-domain-deleted FV (FV-1033) with Kd ∼9 nm and binds FVa with Kd ∼100 nm. Steady state analysis of surface plasmon resonance data reveal that TFPI-2 and TFPI-1 bind FV-1033 with Kd ∼36–48 nm and bind FVa with Kd ∼252–456 nm. Further, TFPI-1 (but not TFPI-1161) competes with TFPI-2 in binding to FV. These data indicate that the C-terminal basic region of TFPI-2 is similar to that of TFPI-1 and plays a role in binding to the FV B-domain acidic region. Using pull-down assays and Western blots, we show that TFPI-2 is associated with platelet FV/FVa. TFPI-2 (∼7 nm) in plasma of women at the onset of labor is also, in part, associated with FV. Importantly, TFPI-2 in platelets and in plasma of pregnant women inhibits FXIa and tissue-type plasminogen activator-induced clot fibrinolysis. In conclusion, TFPI-2 in platelets from normal or pregnant subjects and in plasma from pregnant women binds FV/Va and regulates intrinsic coagulation and fibrinolysis. PMID:25262870

  14. Immunological characterization of eristostatin and echistatin binding sites on alpha IIb beta 3 and alpha V beta 3 integrins.

    PubMed Central

    Marcinkiewicz, C; Rosenthal, L A; Mosser, D M; Kunicki, T J; Niewiarowski, S

    1996-01-01

    Two disintegrins with a high degree of amino acid sequence similarity, echistatin and eristostatin, showed a low level of interaction with Chinese hamster ovary (CHO) cells, but they bound to CHO cells transfected with alpha IIb beta 3 genes (A5 cells) and to CHO cells transfected with alpha v beta 3 genes (VNRC3 cells) in a reversible and saturable manner. Scatchard analysis revealed that eristostatin bound to 816000 sites per A5 cell (Kd 28 nM) and to 200000 sites (Kd 14 nM) per VNRC3 cell respectively. However, VNRC3 cells did not bind to immobilized eristostatin. Echistatin bound to 495000 sites (Kd 53 nM) per A5 cell and to 443000 sites (Kd 20 nM) per VNRC3 cell. As determined by flow cytometry, radiobinding assay and adhesion studies, binding of both disintegrins to A5 cells and resting platelets and binding of echistatin to VNRC3 cells resulted in the expression of ligand-induced binding sites (LIBS) on the beta 3 subunit. Eristostatin inhibited, more strongly than echistatin, the binding of three monoclonal antibodies: OPG2 (RGD motif dependent), A2A9 (alpha IIb beta 3 complex dependent) and 7E3 (alpha IIb beta 3 and alpha v beta 3 complex dependent) to A5 cells, to resting and to activated platelets and to purified alpha IIb beta 3. Experiments in which echistatin and eristostatin were used alone or in combination to inhibit the binding of 7E3 and OPG2 antibodies to resting platelets suggested that these two disintegrins bind to different but overlapping sites on alpha IIb beta 3 integrin. Monoclonal antibody LM 609 and echistatin seemed to bind to different sites on alpha v beta 3 integrin. However, echistatin inhibited binding of 7E3 antibody to VNRC3 cells and to purified alpha v beta 3 suggesting that alpha v beta 3 and alpha IIb beta 3 might share the same epitope to which both echistatin and 7E3 bind. Eristostatin had no effect in these systems, providing further evidence that it binds to a different epitope on alpha v beta 3. PMID:8760368

  15. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity.

    PubMed

    Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind

    2015-01-01

    The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.

  16. The crystal structure of ribonuclease A in complex with thymidine-3'-monophosphate provides further insight into ligand binding.

    PubMed

    Doucet, Nicolas; Jayasundera, Thusitha B; Simonović, Miljan; Loria, J Patrick

    2010-08-15

    Thymidine-3'-monophosphate (3'-TMP) is a competitive inhibitor analogue of the 3'-CMP and 3'-UMP natural product inhibitors of bovine pancreatic ribonuclease A (RNase A). Isothermal titration calorimetry experiments show that 3'-TMP binds the enzyme with a dissociation constant (K(d)) of 15 microM making it one of the strongest binding members of the five natural bases found in nucleic acids (A, C, G, T, and U). To further investigate the molecular properties of this potent natural affinity, we have determined the crystal structure of bovine pancreatic RNase A in complex with 3'-TMP at 1.55 A resolution and we have performed NMR binding experiments with 3'-CMP and 3'-TMP. Our results show that binding of 3'-TMP is very similar to other natural and non-natural pyrimidine ligands, demonstrating that single nucleotide affinity is independent of the presence or absence of a 2'-hydroxyl on the ribose moiety of pyrimidines and suggesting that the pyrimidine binding subsite of RNase A is not a significant contributor of inhibitor discrimination. Accumulating evidence suggests that very subtle structural, chemical, and potentially motional variations contribute to ligand discrimination in this enzyme. 2010 Wiley-Liss, Inc.

  17. Identification of cross-reactive proteins amongst different Curvularia species.

    PubMed

    Gupta, Ratna; Singh, Bhanu P; Sridhara, Susheela; Gaur, Shailendra N; Kumar, Raj; Chaudhary, Vijay K; Arora, Naveen

    2002-01-01

    Curvularia lunata is an important inhalant allergen. The present study was undertaken to investigate the shared IgG- and IgE-binding components among seven Curvularia species prevalent in the aerospora. Seven different Curvularia species were grown in a semisynthetic medium for 13 days. The extracts were analyzed by SDS-PAGE, immunoblot and ELISA/immunoblot inhibition using sera from C. lunata-positive patients and anti-C. lunata rabbit serum. Different Curvularia species showed 11-19 protein bands on SDS-PAGE. Proteins of 12, 20, 31, 45, 53, 78 and 97 kD were present in all the species. Eight out of 98 nasobronchial patients exhibited positive skin tests to C. lunata and to at least five Curvularia species. ELISA using these sera showed IgE binding with Curvularia species. Immunoblot using pooled anti-C. lunata sera from patients showed 5-12 allergenic proteins. Proteins of 12, 31, 45, 53 and 78 kD showed IgE binding in Curvularia species. Antibodies against C. lunata detected 6-14 antigenic proteins on immunoblot. Proteins of 31, 45 and 53 kD showed IgG binding in all the species. Proteins of 31 and 53 kD showed complete IgE/IgG binding inhibition. IgE/IgG ELISA inhibition showed dose-dependent inhibition in Curvularia species. C. lunata extract required 0.17 and 0.11 microg of protein for 50% IgE and IgG inhibition, respectively. C. clavata and C. pallescens required 10 times more protein to exhibit the same inhibition and other species required similar protein levels as those required by C. lunata. A high degree of cross-reactivity was observed between C. lunata and the six other Curvularia species tested. C. lunata and C. senegalensis shared maximum allergenic and antigenic components.

  18. Europium-labeled epidermal growth factor and neurotensin: novel probes for receptor-binding studies.

    PubMed

    Mazor, Ohad; Hillairet de Boisferon, Marc; Lombet, Alain; Gruaz-Guyon, Anne; Gayer, Batya; Skrzydelsky, Delphine; Kohen, Fortune; Forgez, Patricia; Scherz, Avigdor; Rostene, William; Salomon, Yoram

    2002-02-01

    We investigated the possibility of labeling two biologically active peptides, epidermal growth factor (EGF) and neurotensin (NT), with europium (Eu)-diethylenetriaminepentaacetic acid. More specifically, we tested them as probes in studying receptor binding using time-resolved fluorescence of Eu3+. The relatively simple synthesis yields ligands with acceptable binding characteristics similar to isotopically labeled derivatives. The binding affinity (Kd) of labeled Eu-EGF to human A431 epidermal carcinoid cells was 3.6 +/- 1.2 nM, similar to the reported Kd values of EGF, whereas the Kd of Eu-NT to human HT29 colon cancer cells (7.4 +/- 0.5 nM) or to Chinese hamster ovary (CHO) cells transfected with the high-affinity NT receptor (CHO-NT1) were about 10-fold higher than the Kd values of NT. The bioactivity of the Eu-labeled EGF as determined by stimulation of cultured murine D1 hematopoietic cell proliferation was nearly the same as that obtained with native EGF. The maximal stimulation of Ca2+ influx with NT and Eu-NT in CHO-NT1 cells was similar, but the respective K0.5 values were 20 pM and 1 nM, corresponding to differences in the binding affinities previously described. The results of these studies indicate that Eu labeling of peptide hormones and growth factor molecules ranging from 10(3) to 10(5) Da can be conveniently accomplished. Importantly, the Eu-labeled products are stable for approximately 2 years and are completely safe for laboratory use compared to the biohazardous radioligands. Thus, Eu-labeled peptides present an attractive alternative for commonly used radiolabeled ligands in biological studies in general and in receptor assays in particular.

  19. Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17.

    PubMed

    Han, Mookyoung; Park, Yangshin; Kim, Iktae; Kim, Eun-Hee; Yu, Tae-Kyung; Rhee, Sangkee; Suh, Jeong-Yong

    2014-12-30

    Auxin is the central hormone that regulates plant growth and organ development. Transcriptional regulation by auxin is mediated by the auxin response factor (ARF) and the repressor, AUX/IAA. Aux/IAA associates with ARF via domain III-IV for transcriptional repression that is reversed by auxin-induced Aux/IAA degradation. It has been known that Aux/IAA and ARF form homo- and hetero-oligomers for the transcriptional regulation, but what determines their association states is poorly understood. Here we report, to our knowledge, the first solution structure of domain III-IV of Aux/IAA17 (IAA17), and characterize molecular interactions underlying the homotypic and heterotypic oligomerization. The structure exhibits a compact β-grasp fold with a highly dynamic insert helix that is unique in Aux/IAA family proteins. IAA17 associates to form a heterogeneous ensemble of front-to-back oligomers in a concentration-dependent manner. IAA17 and ARF5 associate to form homo- or hetero-oligomers using a common scaffold and binding interfaces, but their affinities vary significantly. The equilibrium dissociation constants (KD) for homo-oligomerization are 6.6 μM and 0.87 μM for IAA17 and ARF5, respectively, whereas hetero-oligomerization reveals a ∼ 10- to ∼ 100-fold greater affinity (KD = 73 nM). Thus, individual homo-oligomers of IAA17 and ARF5 spontaneously exchange their subunits to form alternating hetero-oligomers for transcriptional repression. Oligomerization is mainly driven by electrostatic interactions, so that charge complementarity at the interface determines the binding affinity. Variable binding affinity by surface charge modulation may effectively regulate the complex interaction network between Aux/IAA and ARF family proteins required for the transcriptional control of auxin-response genes.

  20. Fluorescence sensor for the quantification of unbound bilirubin concentrations.

    PubMed

    Huber, Andrew H; Zhu, Baolong; Kwan, Thomas; Kampf, J Patrick; Hegyi, Thomas; Kleinfeld, Alan M

    2012-05-01

    Hyperbilirubinemia in jaundiced neonates is routinely assessed by use of total serum bilirubin. However, the unbound or free form (B(f)), not total bilirubin, crosses the blood-brain barrier and can be neurotoxic. Although the peroxidase-mediated oxidation of bilirubin can be used to measure plasma concentrations of B(f), this measurement is relatively complex and the assay is not routinely used. We describe a fluorescence sensor for quantifying B(f) in plasma. Our method uses a mutated fatty acid binding protein labeled with the fluorescent molecule acrylodan (BL22P1B11), whose fluorescence is quenched upon binding bilirubin. Another configuration (BL22P1B11-Rh) was developed that uses BL22P1B11 together with the fluorophore rhodamine B, which responds by a change in the ratio of its fluorescence. The "B(f) probes" were calibrated with aqueous solutions of bilirubin and yielded similar bilirubin dissociation constants [K(d) = 16 (1.5) nmol/L]. We used the probes to determine B(f) concentrations in equilibrium with human serum albumin (HSA) and in human plasma samples supplemented with bilirubin. We obtained equivalent B(f) values in both systems, and the B(f) probe results were in agreement with the peroxidase assay. B(f) measurements revealed that bilirubin-HSA binding was well described by 2 sites with K(d) values of 15.4 (1) nmol/L and 748 (14) nmol/L. We measured B(f) concentrations in the range expected in jaundiced neonates with a mean CV of approximately 3%. The BL22P1B11-Rh probe provides accurate plasma sample B(f) concentrations with a single measurement, in 1 min with either a handheld B(f) meter or a laboratory fluorometer.

  1. Characterization of Rose Bengal binding to sinusoidal and bile canalicular plasma membrane from rat liver.

    PubMed

    Yachi, K; Sugiyama, Y; Sawada, Y; Iga, T; Ikeda, Y; Toda, G; Hanano, M

    1989-01-16

    The binding of Rose bengal, a model organic anion, to sinusoidal and bile canalicular membrane fractions isolated from rat liver was compared. The fluorescence change of Rose bengal after being bound to liver plasma membranes was utilized for measuring the binding. The dissociation constants (Kd = 0.1-0.12 microM) and the binding capacities (n = 11-15 nmol/mg protein) for Rose bengal are comparable between the two membrane fractions, although the n value for sinusoidal membrane is somewhat larger than that for bile canalicular membrane. The Rose bengal binding to both membrane fractions was inhibited by various organic anions at relatively low concentrations, i.e., the half-inhibition concentrations (IC50) for Indocyanine green, sulfobromophthalein, Bromophenol blue and 1-anilino-8-naphthalene sulfonate were 0.1, 100, 1.5-2.5 and 100 microM, respectively, while taurocholate did not inhibit the Rose bengal binding to either membrane fraction at these low concentration ranges. The type of inhibition of sulfobromophthalein and Indocyanine green for Rose bengal binding is different between the two membrane domains. That is, in sinusoidal and bile canalicular membrane fractions, these organic anions exhibit mixed-type and competitive-type inhibition, respectively. It was suggested that the fluorescence method using Rose bengal may provide a simple method for detecting the specific organic anion binding protein(s) in the liver plasma membrane.

  2. Cyclophilin B binding to platelets supports calcium-dependent adhesion to collagen.

    PubMed

    Allain, F; Durieux, S; Denys, A; Carpentier, M; Spik, G

    1999-08-01

    We have recently reported that cyclophilin B (CyPB), a secreted cyclosporine-binding protein, could bind to T lymphocytes through interactions with two types of binding sites. The first ones, referred to as type I, involve interactions with the conserved domain of CyPB and promote the endocytosis of surface-bound ligand, while the second type of binding sites, termed type II, are represented by glycosaminoglycans (GAG). Here, we further investigated the interactions of CyPB with blood cell populations. In addition to lymphocytes, CyPB was found to interact mainly with platelets. The binding is specific, with a dissociation constant (kd) of 9 +/- 3 nmol/L and the number of sites estimated at 960 +/- 60 per cell. Platelet glycosaminoglycans are not required for the interactions, but the binding is dramatically reduced by active cyclosporine derivatives. We then analyzed the biologic effects of CyPB and found a significant increase in platelet adhesion to collagen. Concurrently, CyPB initiates a transmembranous influx of Ca(2+) and induces the phosphorylation of the P-20 light chains of myosin. Taken together, the present results demonstrate for the first time that extracellular CyPB specifically interacts with platelets through a functional receptor related to the lymphocyte type I binding sites and might act by regulating the activity of a receptor-operated membrane Ca(2+) channel.

  3. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.

    PubMed

    Luanloet, Thikumporn; Sucharitakul, Jeerus; Chaiyen, Pimchai

    2015-08-01

    2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (EC 1.14.12.4) from Pseudomonas sp. MA-1 is a flavin-dependent monooxygenase that catalyzes a hydroxylation and aromatic ring cleavage reaction. The functional roles of two residues, Tyr223 and Tyr82, located ~ 5 Å away from MHPC, were characterized using site-directed mutagenesis, along with ligand binding, product analysis and transient kinetic experiments. Mutation of Tyr223 resulted in enzyme variants that were impaired in their hydroxylation activity and had Kd values for substrate binding 5-10-fold greater than the wild-type enzyme. Because this residue is adjacent to the water molecule that is located next to the 3-hydroxy group of MHPC, the results indicate that the interaction between Tyr223, H2 O and the 3-hydroxyl group of MHPC are important for substrate binding and hydroxylation. By contrast, the Kd for substrate binding of Tyr82His and Tyr82Phe variants were similar to that of the wild-type enzyme. However, only ~ 40-50% of the substrate was hydroxylated in the reactions of both variants, whereas most of the substrate was hydroxylated in the wild-type enzyme reaction. In free solution, MHPC or 5-hydroxynicotinic acid exists in a mixture of monoanionic and tripolar ionic forms, whereas only the tripolar ionic form binds to the wild-type enzyme. The binding of tripolar ionic MHPC would allow efficient hydroxylation through an electrophilic aromatic substitution mechanism. For the Tyr82His and Tyr82Phe variants, both forms of substrates can bind to the enzymes, indicating that the mutation at Tyr82 abolished the selectivity of the enzyme towards the tripolar ionic form. Transient kinetic studies indicated that the hydroxylation rate constants of both Tyr82 variants are approximately two- to 2.5-fold higher than that of the wild-type enzyme. Altogether, our findings suggest that Tyr82 is important for the binding selectivity of MHPC oxygenase towards the tripolar ionic species, whereas the interaction between Tyr223 and the substrate is important for ensuring hydroxylation. These results highlight how the active site of a flavoenzyme is able to deal with the presence of multiple forms of a substrate in solution and ensure efficient hydroxylation. © 2015 FEBS.

  4. Effect of Methamphetamine on Spectral Binding, Ligand Docking and Metabolism of Anti-HIV Drugs with CYP3A4

    PubMed Central

    Ande, Anusha; Wang, Lei; Vaidya, Naveen K.; Li, Weihua; Kumar, Santosh; Kumar, Anil

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir-boosted antiretroviral therapy, in HIV-1-infected individuals who abuse methamphetamine. PMID:26741368

  5. Selective labeling of serotonin uptake sites in rat brain by (/sup 3/H)citalopram contrasted to labeling of multiple sites by (/sup 3/H)imipramine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Amato, R.J.; Largent, B.L.; Snowman, A.M.

    1987-07-01

    Citalopram is a potent and selective inhibitor of neuronal serotonin uptake. In rat brain membranes (/sup 3/H)citalopram demonstrates saturable and reversible binding with a KD of 0.8 nM and a maximal number of binding sites (Bmax) of 570 fmol/mg of protein. The drug specificity for (/sup 3/H)citalopram binding and synaptosomal serotonin uptake are closely correlated. Inhibition of (/sup 3/H)citalopram binding by both serotonin and imipramine is consistent with a competitive interaction in both equilibrium and kinetic analyses. The autoradiographic pattern of (/sup 3/H)citalopram binding sites closely resembles the distribution of serotonin. By contrast, detailed equilibrium-saturation analysis of (/sup 3/H)imipramine bindingmore » reveals two binding components, i.e., high affinity (KD = 9 nM, Bmax = 420 fmol/mg of protein) and low affinity (KD = 553 nM, Bmax = 8560 fmol/mg of protein) sites. Specific (/sup 3/H)imipramine binding, defined as the binding inhibited by 100 microM desipramine, is displaced only partially by serotonin. Various studies reveal that the serotonin-sensitive portion of binding corresponds to the high affinity sites of (/sup 3/H)imipramine binding whereas the serotonin-insensitive binding corresponds to the low affinity sites. Lesioning of serotonin neurons with p-chloroamphetamine causes a large decrease in (/sup 3/H)citalopram and serotonin-sensitive (/sup 3/H)imipramine binding with only a small effect on serotonin-insensitive (/sup 3/H)imipramine binding. The dissociation rate of (/sup 3/H)imipramine or (/sup 3/H)citalopram is not altered by citalopram, imipramine or serotonin up to concentrations of 10 microM. The regional distribution of serotonin sensitive (/sup 3/H)imipramine high affinity binding sites closely resembles that of (/sup 3/H)citalopram binding.« less

  6. The carcinoembryonic antigen IgV-like N domain plays a critical role in the implantation of metastatic tumor cells.

    PubMed

    Abdul-Wahid, Aws; Huang, Eric H-B; Cydzik, Marzena; Bolewska-Pedyczak, Eleonora; Gariépy, Jean

    2014-03-01

    The human carcinoembryonic antigen (CEA) is a cell adhesion molecule involved in both homotypic and heterotypic interactions. The aberrant overexpression of CEA on adenocarcinoma cells correlates with their increased metastatic potential. Yet, the mechanism(s) by which its adhesive properties can lead to the implantation of circulating tumor cells and expansion of metastatic foci remains to be established. In this study, we demonstrate that the IgV-like N terminal domain of CEA directly participates in the implantation of cancer cells through its homotypic and heterotypic binding properties. Specifically, we determined that the recombinant N terminal domain of CEA directly binds to fibronectin (Fn) with a dissociation constant in the nanomolar range (K(D) 16 ± 3 nM) and interacts with itself (K(D) 100 ± 17 nM) and more tightly to the IgC-like A(3) domain (K(D) 18 ± 3 nM). Disruption of these molecular associations through the addition of antibodies specific to the CEA N or A(3)B(3) domains, or by adding soluble recombinant forms of the CEA N, A(3) or A(3)B(3) domains or a peptide corresponding to residues 108-115 of CEA resulted in the inhibition of CEA-mediated intercellular aggregation and adherence events in vitro. Finally, pretreating CEA-expressing murine colonic carcinoma cells (MC38.CEA) with rCEA N, A3 or A(3)B(3) modules blocked their implantation and the establishment of tumor foci in vivo. Together, these results suggest a new mechanistic insight into how the CEA IgV-like N domain participates in cellular events that can have a macroscopic impact in terms of cancer progression and metastasis. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Azole affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo sapiens.

    PubMed

    Warrilow, Andrew G; Parker, Josie E; Kelly, Diane E; Kelly, Steven L

    2013-03-01

    Candida albicans CYP51 (CaCYP51) (Erg11), full-length Homo sapiens CYP51 (HsCYP51), and truncated Δ60HsCYP51 were expressed in Escherichia coli and purified to homogeneity. CaCYP51 and both HsCYP51 enzymes bound lanosterol (K(s), 14 to 18 μM) and catalyzed the 14α-demethylation of lanosterol using Homo sapiens cytochrome P450 reductase and NADPH as redox partners. Both HsCYP51 enzymes bound clotrimazole, itraconazole, and ketoconazole tightly (dissociation constants [K(d)s], 42 to 131 nM) but bound fluconazole (K(d), ~30,500 nM) and voriconazole (K(d), ~2,300 nM) weakly, whereas CaCYP51 bound all five medical azole drugs tightly (K(d)s, 10 to 56 nM). Selectivity for CaCYP51 over HsCYP51 ranged from 2-fold (clotrimazole) to 540-fold (fluconazole) among the medical azoles. In contrast, selectivity for CaCYP51 over Δ60HsCYP51 with agricultural azoles ranged from 3-fold (tebuconazole) to 9-fold (propiconazole). Prothioconazole bound extremely weakly to CaCYP51 and Δ60HsCYP51, producing atypical type I UV-visible difference spectra (K(d)s, 6,100 and 910 nM, respectively), indicating that binding was not accomplished through direct coordination with the heme ferric ion. Prothioconazole-desthio (the intracellular derivative of prothioconazole) bound tightly to both CaCYP51 and Δ60HsCYP51 (K(d), ~40 nM). These differences in binding affinities were reflected in the observed 50% inhibitory concentration (IC(50)) values, which were 9- to 2,000-fold higher for Δ60HsCYP51 than for CaCYP51, with the exception of tebuconazole, which strongly inhibited both CYP51 enzymes. In contrast, prothioconazole weakly inhibited CaCYP51 (IC(50), ~150 μM) and did not significantly inhibit Δ60HsCYP51.

  8. von Willebrand factor (VWF) propeptide binding to VWF D'D3 domain attenuates platelet activation and adhesion.

    PubMed

    Madabhushi, Sri R; Shang, Chengwei; Dayananda, Kannayakanahalli M; Rittenhouse-Olson, Kate; Murphy, Mary; Ryan, Thomas E; Montgomery, Robert R; Neelamegham, Sriram

    2012-05-17

    Noncovalent association between the von Willebrand factor (VWF) propeptide (VWFpp) and mature VWF aids N-terminal multimerization and protein compartmentalization in storage granules. This association is currently thought to dissipate after secretion into blood. In the present study, we examined this proposition by quantifying the affinity and kinetics of VWFpp binding to mature VWF using surface plasmon resonance and by developing novel anti-VWF D'D3 mAbs. Our results show that the only binding site for VWFpp in mature VWF is in its D'D3 domain. At pH 6.2 and 10mM Ca(2+), conditions mimicking intracellular compartments, VWFpp-VWF binding occurs with high affinity (K(D) = 0.2nM, k(off) = 8 × 10(-5) s(-1)). Significant, albeit weaker, binding (K(D) = 25nM, k(off) = 4 × 10(-3) s(-1)) occurs under physiologic conditions of pH 7.4 and 2.5mM Ca(2+). This interaction was also observed in human plasma (K(D) = 50nM). The addition of recombinant VWFpp in both flow-chamber-based platelet adhesion assays and viscometer-based shear-induced platelet aggregation and activation studies reduced platelet adhesion and activation partially. Anti-D'D3 mAb DD3.1, which blocks VWFpp binding to VWF-D'D3, also abrogated platelet adhesion, as shown by shear-induced platelet aggregation and activation studies. Our data demonstrate that VWFpp binding to mature VWF occurs in the circulation, which can regulate the hemostatic potential of VWF by reducing VWF binding to platelet GpIbα.

  9. [Changes in molecular forms of sex hormone binding globulin during menstrual cycle and menopause].

    PubMed

    Fonseca, M E; Masón, M; Ochoa, R; Hernández-V, M; Zárate, A

    1996-11-01

    Sex hormone binding globulin (SHBG) is a glycoprotein that transports mainly androgens and estrogens regulating the amount of free and bound hormone which in turn plays a role in the metabolic balance. It is also known that estrogens increase the hepatic production of SHBG which circulates in various molecular forms containing different amounts of sialic acid as the main component of carbohydrates. In the present work we studied physiological variations of molecular forms of SHBG during the normal menstrual cycle and the menopause. During the follicular phase the form 54 KD was the predominant variant, in the periovulatory period was isomers 90 KD, and during the luteal phase corresponded to both 54 and 90 KD. In the menopause dimeric form of 90 KD corresponded to the major proportion and was present a higher molecular forms of 115-135 KD. Following estrogen therapy the chromatographic profile changed as to that observed during the menstrual cycle. Important changes in the proportion of sialic acid were observed in each of the phases of menstrual cycle and following estrogen replacement. And increase in the amount of sialic acid corresponded to higher estrogen concentrations. It is concluded that SHBG concentrations varies during the menstrual cycle according the estrogen levels which in addition regulates the proportion of molecular forms and sialic acid containt.

  10. Measurement of the Dissociation-Equilibrium Constants for Low Affinity Antibiotic Binding Interaction with Bacterial Ribosomes by the T2 (CPMG) and Line-Broadening Methods

    NASA Astrophysics Data System (ADS)

    Verdier, L.; Gharbi-Benarous, J.; Bertho, G.; Mauvais, P.; Girault, J.-P.

    1999-10-01

    In this study the dissociation constants of the low antibiotic-ribosomes interaction were determined by the T2 (CPMG), the Carr-Purcell-Meiboom-Gill spin-echo decay rate and the line-broadening methods. Three MLSB antibiotics were studied, a macrolide roxithromycin, a ketolide HMR 3647 and a lincosamide clindamycin for their weak interaction with three bacterial ribosomes, E. coli, Staphylococcus aureus sensitive and resistant to erythromycin. Nous avons mesuré la constante de dissociation, Kd correspondant à l'interaction faible antibiotique-ribosome bactérien pour des antibiotiques de différentes classes, un macrolide (roxithromycine), un kétolide (HMR 3647) et une lincosamide (clindamycine) avec des ribosomes de différentes souches bactériennes (E. coli, Staphylococcus aureus sensible ou résistant à l'erythromycin) par deux méthodes : l'une basée sur la variation des largeurs de raies et l'autre sur les temps de relaxation transversaux T2 en utilisant une séquence CPMG.

  11. Interaction of aurintricarboxylic acid (ATA) with four nucleic acid binding proteins DNase I, RNase A, reverse transcriptase and Taq polymerase

    NASA Astrophysics Data System (ADS)

    Ghosh, Utpal; Giri, Kalyan; Bhattacharyya, Nitai P.

    2009-12-01

    In the investigation of interaction of aurintricarboxylic acid (ATA) with four biologically important proteins we observed inhibition of enzymatic activity of DNase I, RNase A, M-MLV reverse transcriptase and Taq polymerase by ATA in vitro assay. As the telomerase reverse transcriptase (TERT) is the main catalytic subunit of telomerase holoenzyme, we also monitored effect of ATA on telomerase activity in vivo and observed dose-dependent inhibition of telomerase activity in Chinese hamster V79 cells treated with ATA. Direct association of ATA with DNase I ( Kd = 9.019 μM)), RNase A ( Kd = 2.33 μM) reverse transcriptase ( Kd = 0.255 μM) and Taq polymerase ( Kd = 81.97 μM) was further shown by tryptophan fluorescence quenching studies. Such association altered the three-dimensional conformation of DNase I, RNase A and Taq polymerase as detected by circular dichroism. We propose ATA inhibits enzymatic activity of the four proteins through interfering with DNA or RNA binding to the respective proteins either competitively or allosterically, i.e. by perturbing three-dimensional structure of enzymes.

  12. Generation and characterization of high affinity humanized fab against hepatitis B surface antigen.

    PubMed

    Tiwari, Ashutosh; Dutta, Durgashree; Khanna, Navin; Acharya, Subrat K; Sinha, Subrata

    2009-09-01

    5S is a mouse monoclonal IgG1 that binds to the 'a' epitope of the Hepatitis B surface antigen (HBsAg) and tested positive in an in vitro test for virus neutralization. We have earlier reported the generation of humanized single chain variable fragment (scFv) from the same. In this article we report the generation of a recombinant Fab molecule by fusing humanized variable domains of 5S with the constant domains of human IgG1. The humanized Fab expressed in E. coli and subsequently purified, retained a high binding affinity (K(D) = 3.63 nmol/L) to HBsAg and bound to the same epitope of HBsAg as the parent molecule. The humanized Fab also maintained antigen binding in the presence of various destabilizing agents like 3 M NaCl, 30% DMSO, 8 M urea, and extreme pH. This high affinity humanized Fab provides a basis for the development of therapeutic molecules that can be safely utilized for the prophylaxis and treatment for Hepatitis B infection.

  13. Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes.

    PubMed

    Di Noto, Giuseppe; Bugatti, Antonella; Zendrini, Andrea; Mazzoldi, Elena Laura; Montanelli, Alessandro; Caimi, Luigi; Rusnati, Marco; Ricotta, Doris; Bergese, Paolo

    2016-03-15

    A novel approach for sorting exosomes from multiple myeloma (MM), monoclonal gammopathy of undetermined significance (MGUS) and healthy individuals is presented. The method is based on the combination of colloidal gold nanoplasmonics and surface plasmon resonance (SPR) biosensing and probes distinctive colloidal properties of MM-derived exosomes, such as molar concentration and cell membrane binding preferences. It allowed to discover that MM patients produce about four folds more exosomes than MGUS and healthy individuals. In addition, it showed that among the analyzed exosomes, only the MM-derived ones bind heparin - a structural analog of heparan sulfate proteoglycans known to mediate exosome endocytosis - with an apparent dissociation constant (Kd) equal to about 1 nM, indicating a high affinity binding. This plasmonic method complements the classical biochemical profiling approach to exosomes, expanding the MM biomarker panel and adding biosensors to the toolbox to diagnose MM. It may find applications for other diseases and has wider interest for fundamental and translational research involving exosomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Fluorescence emission and polarization analyses for evaluating binding of ruthenium metalloglycoclusters to lectins and tetanus toxin C-fragment

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Minoura, Norihiko

    2011-03-01

    We develop a fluorescent ruthenium metalloglycocluster for use as a powerful molecular probe in evaluating the binding between carbohydrates and lectins by fluorescence emission (FE) and fluorescence polarization (FP) analyses. Changes in the FE and FP of these metalloglycoclusters are measured following the addition of lectin [peanut agglutinin (PNA), Ricinus communis agglutinin 120, Concanavalin A (ConA), or wheat germ agglutinin] or tetanus toxin c-fragment (TCF). After the addition of PNA, the FE spectrum of [Ru(bpy-2Gal)3] shows a new emission peak and the FP value of [Ru(bpy-2Gal)3] increases. Similarly, the FE spectrum of [Ru(bpy-2Glc)3] shows a new emission peak and the FP value increases on addition of ConA. Because other combinations of metalloglycoclusters and lectins show little change, specific binding of galactose to PNA and that of glucose to ConA are confirmed by the FE and FP measurements. Resulting dissociation constants (Kd) prove that the metalloglycoclusters with highly clustered carbohydrates show higher affinity for the respective lectins than those with less clustered carbohydrates. Furthermore, specific binding of [Ru(bpy-2Gal)3] to TCF was confirmed by the FP measurement.

  15. Chronic molindone treatment: relative inability to elicit dopamine receptor supersensitivity in rats.

    PubMed

    Meller, E

    1982-01-01

    Chronic treatment of rats with the antipsychotic drug molindone (2.5 mg/kg) did not elicit behavioral supersensitivity to apomorphine (AP) (0.25 mg/kg) or increased striatal 3H-spiroperidol binding, whereas treatment with haloperidol (0.5-1.0 mg/kg) produced manifestations of dopaminergic supersensitivity in both paradigms. Chronic treatment with a high dose of molindone (20 mg/kg) elicited a small, but significant increase in behavioral sensitivity to AP (57%) which was, however, significantly less than that produced by 1 mg/kg haloperidol (126%, P less than 0.01). Apparent tolerance to elevation of striatal and frontal cortical 3,4-dihydroxyphenylacetic acid (DOPAC) levels was obtained with chronic molindone treatment (5 or 20 mg/kg). None of the molindone doses used (2.5-50 mg/kg) increased striatal dopamine receptor binding. Scatchard analyses revealed no change in either maximal binding capacity (Bmax) or dissociation constant (Kd). A significant (P less than 0.001) correlation of receptor binding activity and stereotypy score was obtained for haloperidol-, but not molindone-treated rats. These results with molindone in an animal model of tardive dyskinesia suggest that this drug may have a lower potential for eliciting this disorder in humans.

  16. Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes.

    PubMed Central

    Schmidt, R J; Ketudat, M; Aukerman, M J; Hoschek, G

    1992-01-01

    opaque-2 (o2) is a regulatory locus in maize that plays an essential role in controlling the expression of genes encoding the 22-kD zein proteins. Through DNase I footprinting and DNA binding analyses, we have identified the binding site for the O2 protein (O2) in the promoter of 22-kD zein genes. The sequence in the 22-kD zein gene promoter that is recognized by O2 is similar to the target site recognized by other "basic/leucine zipper" (bZIP) proteins in that it contains an ACGT core that is necessary for DNA binding. The site is located in the -300 region relative to the translation start and lies about 20 bp downstream of the highly conserved zein gene sequence motif known as the "prolamin box." Employing gel mobility shift assays, we used O2 antibodies and nuclear extracts from an o2 null mutant to demonstrate that the O2 protein in maize endosperm nuclei recognizes the target site in the zein gene promoter. Mobility shift assays using nuclear proteins from an o2 null mutant indicated that other endosperm proteins in addition to O2 can bind the O2 target site and that O2 may be associated with one of these proteins. We also demonstrated that in yeast cells the O2 protein can activate expression of a lacZ gene containing a multimer of the O2 target sequence as part of its promoter, thus confirming its role as a transcriptional activator. A computer-assisted search indicated that the O2 target site is not present in the promoters of zein genes other than those of the 22-kD class. These data suggest a likely explanation at the molecular level for the differential effect of o2 mutations on expression of certain members of the zein gene family. PMID:1392590

  17. High-Affinity Low-Capacity and Low-Affinity High-Capacity N-Acetyl-2-Aminofluorene (AAF) Macromolecular Binding Sites Are Revealed During the Growth Cycle of Adult Rat Hepatocytes in Primary Culture.

    PubMed

    Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L

    2018-05-01

    Long-term cultures of primary adult rat hepatocytes were used to study the effects of N-acetyl-2-aminofluorene (AAF) on hepatocyte proliferation during the growth cycle; on the initiation of hepatocyte DNA synthesis in quiescent cultures; and, on hepatocyte DNA replication following the initiation of DNA synthesis. Scatchard analyses were used to identify the pharmacologic properties of radiolabeled AAF metabolite binding to hepatocyte macromolecules. Two classes of growth cycle-dependent AAF metabolite binding sites-a high-affinity low-capacity site (designated Site I) and a low-affinity high-capacity site (designated Site II)-associated with two spatially distinct classes of macromolecular targets, were revealed. Based upon radiolabeled AAF metabolite binding to purified hepatocyte genomic DNA or to DNA, RNA, proteins, and lipids from isolated nuclei, Site IDAY 4 targets (KD[APPARENT] ≈ 2-4×10-6 M and BMAX[APPARENT] ≈ 6 pmol/106 cells/24 h) were consistent with genomic DNA; and with AAF metabolized by a nuclear cytochrome P450. Based upon radiolabeled AAF binding to total cellular lysates, Site IIDAY 4 targets (KD[APPARENT] ≈ 1.5×10-3 M and BMAX[APPARENT] ≈ 350 pmol/106 cells/24 h) were consistent with cytoplasmic proteins; and with AAF metabolized by cytoplasmic cytochrome P450s. DNA synthesis was not inhibited by concentrations of AAF that saturated DNA binding in the neighborhood of the Site I KD. Instead, hepatocyte DNA synthesis inhibition required higher concentrations of AAF approaching the Site II KD. These observations raise the possibility that carcinogenic DNA adducts derived from AAF metabolites form below concentrations of AAF that inhibit replicative and repair DNA synthesis.

  18. Filamin A regulates the organization and remodeling of the pericellular collagen matrix.

    PubMed

    Mezawa, Masaru; Pinto, Vanessa I; Kazembe, Mwayi P; Lee, Wilson S; McCulloch, Christopher A

    2016-10-01

    Extracellular matrix remodeling by cell adhesion-related processes is critical for proliferation and tissue homeostasis, but how adhesions and the cytoskeleton interact to organize the pericellular matrix (PCM) is not understood. We examined the role of the actin-binding protein, filamin A (FLNa), in pericellular collagen remodeling. Compared with wild-type (WT), mice with fibroblast-specific deletion of FLNa exhibited higher density but reduced organization of collagen fibers after increased loading of the periodontal ligament for 2 wk. In cultured fibroblasts, FLNa knockdown (KD) did not affect collagen mRNA, but after 24 h of culture, FLNa WT cells exhibited ∼2-fold higher cell-surface collagen KD cells and 13-fold higher levels of activated β1 integrins. In FLNa WT cells, there was 3-fold more colocalization of talin with pericellular cleaved collagen than in FLNa KD cells. MMP-9 mRNA and protein expression were >2-fold higher in FLNa KD cells than in WT cells. Cathepsin B, which is necessary for intracellular collagen digestion, was >3-fold higher in FLNa WT cells than in KD cells. FLNa WT cells exhibited 2-fold more collagen phagocytosis than KD cells, which involved the FLNa actin-binding domain. Evidently, FLNa regulates PCM remodeling through its effects on degradation pathways that affect the abundance and organization of collagen.-Mezawa, M., Pinto, V. I., Kazembe, M. P., Lee, W. S., McCulloch, C. A. Filamin A regulates the organization and remodeling of the pericellular collagen matrix. © FASEB.

  19. Calmodulin-stimulated Ca(2+)-ATPases in the vacuolar and plasma membranes in cauliflower.

    PubMed

    Askerlund, P

    1997-07-01

    The subcellular locations of Ca(2+)-ATPases in the membranes of cauliflower (Brassica oleracea L.) inflorescences were investigated. After continuous sucrose gradient centrifugation a 111-kD calmodulin (CaM)-stimulated and caM-binding Ca(2+)-ATPase (BCA1; P. Askerlund [1996] Plant Physiol 110: 913-922; S. Malmström, P. Askerlund, M.G. Plamgren [1997] FEBS Lett 400: 324-328) comigrated with vacuolar membrane markers, whereas a 116-kD caM-binding Ca(2+)-ATPase co-migrated with a marker for the plasma membrane. The 116 kD Ca(2+)-ATPase was enriched in plasma membranes obtained by aqueous two-phase partitioning, which is in agreement with a plasma membrane location of this Ca(2+)-ATPase. Countercurrent distribution of a low-density intracellular membrane fraction in an aqueous two-phase system resulted in the separation of the endoplasmic reticulum and vacuolar membranes. The 111-kD Ca(2+)-ATPase co-migrated with a vacuolar membrane marker after countercurrent distribution but not with markers for the endoplasmic reticulum. A vacuolar membrane location of the 111-kD Ca(2+)-AtPase was further supported by experiments with isolated vacuoles from cauliflower: (a) Immunoblotting with an antibody against the 111-kD Ca(2+)-ATPase showed that it was associated with the vacuoles, and (b) ATP-dependent Ca2+ uptake by the intact vacuoles was found to be CaM stimulated and partly protonophore insensitive.

  20. The disorderly conduct of Hsc70 and its interaction with the Alzheimer's related Tau protein.

    PubMed

    Taylor, Isabelle R; Ahmad, Atta; Wu, Taia; Nordhues, Bryce A; Bhullar, Anup; Gestwicki, Jason E; Zuiderweg, Erik R P

    2018-05-15

    Hsp70 chaperones bind to various protein substrates for folding, trafficking, and degradation. Considerable structural information is available about how prokaryotic Hsp70 (DnaK) binds substrates, but less is known about mammalian Hsp70s, of which there are 13 isoforms encoded in the human genome. Here, we report the interaction between the human Hsp70 isoform heat shock cognate 71 KDa protein (Hsc70 or HSPA8) and peptides derived from the microtubule-associated protein tau, which is linked to Alzheimer's disease. For structural studies, we used an Hsc70 construct (called BETA) comprising the substrate-binding domain, but lacking the lid. Importantly, we found that truncating the lid does not significantly impair Hsc70's chaperone activity or allostery in vitro. Using NMR, we show that BETA is partially dynamically disordered in the absence of substrate and that binding of the tau sequence GKVQIINKKG (with a KD = 500 nM) causes dramatic rigidification of BETA. Nuclear Overhauser effect distance measurements revealed that tau binds to the canonical substrate-binding cleft, similar to the binding observed with DnaK. To further develop BETA as a tool for studying Hsc70 interactions, we also measured BETA binding in NMR and fluorescent competition assays to peptides derived from huntingtin, insulin, a second tau-recognition sequence, and a KFERQ-like sequence linked to chaperone-mediated autophagy. We found that the insulin C-peptide binds BETA with high affinity (KD < 100 nM), whereas the others do not (KD > 100 μM). Together, our findings reveal several similarities and differences in how prokaryotic and mammalian Hsp70 isoforms interact with different substrate peptides. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Effects on interaction kinetics of mutations at the VH-VL interface of Fabs depend on the structural context.

    PubMed

    Khalifa, M B; Weidenhaupt, M; Choulier, L; Chatellier, J; Rauffer-Bruyère, N; Altschuh, D; Vernet, T

    2000-01-01

    The influence of framework residues belonging to VH and VL modules of antibody molecules on antigen binding remains poorly understood. To investigate the functional role of such residues, we have performed semi-conservative amino acid replacements at the VH-VL interface. This work was carried out with (i) variants of the same antibody and (ii) with antibodies of different specificities (Fab fragments 145P and 1F1h), in order to check if functional effects are additive and/or similar for the two antibodies. Interaction kinetics of Fab mutants with peptide and protein antigens were measured using a BIACORE instrument. The substitutions introduced at the VH-VL interface had no significant effects on k(a) but showed small, significant effects on k(d). Mutations in the VH module affected k(d) not only for the two different antibodies but also for variants of the same antibody. These effects varied both in direction and in magnitude. In the VL module, the double mutation F(L37)L-Q(L38)L, alone or in combination with other mutations, consistently decreased k(d) about two-fold in Fab 145P. Other mutations in the VL module had no effect on k(d) in 145P, but always decreased k(d) in 1F1h. Moreover, in both systems, small-magnitude non-additive effects on k(d) were observed, but affinity variations seemed to be limited by a threshold. When comparing functional effects in antibodies of different specificity, no general rules could be established. In addition, no clear relationship could be pointed out between the nature of the amino acid change and the observed functional effect. Our results show that binding kinetics are affected by alteration of framework residues remote from the binding site, although these effects are unpredictable for most of the studied changes. Copyright 2000 John Wiley & Sons, Ltd.

  2. Characterization and distribution of natriuretic peptide receptors in the rat uterus.

    PubMed

    Dos Reis, A M; Fujio, N; Dam, T V; Mukaddam-Daher, S; Jankowski, M; Tremblay, J; Gutkowska, J

    1995-10-01

    Atrial natriuretic peptide (ANP) receptors were characterized in rat uterus. The binding of [125I]ANP to uterine membranes was completely competed for by increasing concentrations of unlabeled ANP (Kd = 0.39 nM) and brain natriuretic peptide (Kd = 1.24 nM) and partially by C-type natriuretic peptide (CNP; Kd = 80.4 nM), but not by C-ANF. Also, [125I]Tyr-CNP bound to uterine membranes was completely competed by unlabeled CNP (Kd = 1.12 nM). Cross-linking of [125I]ANP to uterine membranes revealed the presence of one band of 130 kilodaltons, corresponding to the guanylyl cyclase (GC-A and/or GC-B) subtypes of natriuretic peptide receptors. The presence of messenger RNA coding for genes of both GC-A and GC-B receptors was shown by quantitative reverse transcriptase polymerase chain reaction. Furthermore, ANP and, to a lesser degree, CNP stimulated the production of cGMP in rat uterus. Autoradiographic studies localized the highest binding of [125I]ANP in the endometrium, whereas [125I]Tyr-CNP binding was distributed in the endometrium as well as in the myometrium. These results demonstrate that rat uterine ANP receptors are of the guanylyl cyclase-coupled subtypes. The uterus is a target of natriuretic peptides where ANP induces its biological effects through the production of cGMP.

  3. An enlarged, adaptable active site in CYP164 family P450 enzymes, the sole P450 in Mycobacterium leprae.

    PubMed

    Agnew, Christopher R J; Warrilow, Andrew G S; Burton, Nicholas M; Lamb, David C; Kelly, Steven L; Brady, R Leo

    2012-01-01

    CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin "open" conformation of the enzyme (K(d) [dissociation constant] of 0.1 μM), with binding to the low-spin "closed" form being significantly hindered (K(d) of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.

  4. An Enlarged, Adaptable Active Site in CYP164 Family P450 Enzymes, the Sole P450 in Mycobacterium leprae

    PubMed Central

    Agnew, Christopher R. J.; Warrilow, Andrew G. S.; Burton, Nicholas M.; Lamb, David C.; Kelly, Steven L.

    2012-01-01

    CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin “open” conformation of the enzyme (Kd [dissociation constant] of 0.1 μM), with binding to the low-spin “closed” form being significantly hindered (Kd of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy. PMID:22037849

  5. Characterization of atrial natriuretic peptide receptors in brain microvessel endothelial cells

    NASA Technical Reports Server (NTRS)

    Whitson, P. A.; Huls, M. H.; Sams, C. F.

    1991-01-01

    Atrial natriuretic peptide (ANP) binding and ANP-induced increases in cyclic guanosine monophosphate (cGMP) levels have been observed in brain microvessels (Chabrier et al., 1987; Steardo and Nathanson, 1987), suggesting that this fluid-regulating hormone may play a role in the fluid homeostasis of the brain. This study was initiated to characterize the ANP receptors in primary cultures of brain microvessel endothelial cells (BMECs). The apparent equilibrium dissociation constant, Kd, for ANP increased from 0.25 nM to 2.5 nM, and the number of ANP binding sites as determined by Scatchard analysis increased from 7,100 to 170,000 sites/cell between 2 and 10 days of culture following monolayer formation. Time- and concentration-dependent studies on the stimulation of cGMP levels by ANP indicated that guanylate cyclase-linked ANP receptors were present in BMECs. The relative abilities of ANP, brain natriuretic peptide (BNP), and a truncated analog of ANP containing amino acids 5-27 (ANP 5-27) to modulate the accumulation of cGMP was found to be ANP greater than BNP much greater than ANP 5-27. Affinity cross-linking with disuccinimidyl suberate and radiolabeled ANP followed by gel electrophoresis under reducing conditions demonstrated a single band corresponding to the 60-70 kD receptor, indicating the presence of the nonguanylate cyclase-linked ANP receptor. Radiolabeled ANP binding was examined in the presence of various concentrations of either ANP, BNP, or ANP 5-27 and suggested that a large proportion of the ANP receptors present in blood-brain barrier endothelial cells bind all of these ligands similarly. These data indicate both guanylate cyclase linked and nonguanylate cyclase linked receptors are present on BMECs and that a higher proportion of the nonguanylate cyclase linked receptors is expressed. This in vitro culture system may provide a valuable tool for the examination of ANP receptor expression and function in blood-brain barrier endothelial cells.

  6. Cl(-) concentration dependence of photovoltage generation by halorhodopsin from Halobacterium salinarum.

    PubMed Central

    Muneyuki, Eiro; Shibazaki, Chie; Wada, Yoichiro; Yakushizin, Manabu; Ohtani, Hiroyuki

    2002-01-01

    The photovoltage generation by halorhodopsin from Halobacterium salinarum (shR) was examined by adsorbing shR-containing membranes onto a thin polymer film. The photovoltage consisted of two major components: one with a sub-millisecond range time constant and the other with a millisecond range time constant with different amplitudes, as previously reported. These components exhibited different Cl(-) concentration dependencies (0.1-9 M). We found that the time constant for the fast component was relatively independent of the Cl(-) concentration, whereas the time constant for the slow component increased sigmoidally at higher Cl(-) concentrations. The fast and the slow processes were attributed to charge (Cl(-)) movements within the protein and related to Cl(-) ejection, respectively. The laser photolysis studies of shR-membrane suspensions revealed that they corresponded to the formation and the decay of the N intermediate. The photovoltage amplitude of the slow component exhibited a distorted bell-shaped Cl(-) concentration dependence, and the Cl(-) concentration dependence of its time constant suggested a weak and highly cooperative Cl(-)-binding site(s) on the cytoplasmic side (apparent K(D) of approximately 5 M and Hill coefficient > or =5). The Cl(-) concentration dependence of the photovoltage amplitude and the time constant for the slow process suggested a competition between spontaneous relaxation and ion translocation. The time constant for the relaxation was estimated to be >100 ms. PMID:12324398

  7. Metal Binding Studies and EPR Spectroscopy of the Manganese Transport Regulator MntR†

    PubMed Central

    Golynskiy, Misha V.; Gunderson, William A.; Hendrich, Michael P.; Cohen, Seth M.

    2007-01-01

    Manganese transport regulator (MntR) is a member of the diphtheria toxin repressor (DtxR) family of transcription factors that is responsible for manganese homeostasis in Bacillus subtilis. Prior biophysical studies have focused on the metal-mediated DNA binding of MntR [Lieser, S. A., Davis, T. C., Helmann, J. D., and Cohen, S. M. (2003) Biochemistry 42, 12634-12642], as well as metal stabilization of the MntR structure [Golynskiy, M. V., Davis, T. C., Helmann, J. D., and Cohen, S. M. (2005) Biochemistry 44, 3380-3389], but only limited data on the metal-binding affinities for MntR are available. Herein, the metal-binding affinities of MntR were determined by using electron paramagnetic resonance (EPR) spectroscopy, as well as competition experiments with the fluorimetric dyes Fura-2 and Mag-fura-2. MntR was not capable of competing with Fura-2 for the binding of transition metal ions. Therefore, the metal-binding affinities and stoichiometries of Mag-fura-2 for Mn2+, Co2+, Ni2+, Zn2+, and Cd2+ were determined and utilized in MntR/Mag-fura-2 competition experiments. The measured Kd values for MntR metal binding are comparable to those reported for DtxR metal binding [Kd from 10-7 to 10-4 M; D’Aquino, J. A., et al. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 18408-18413], AntR [a homologue from Bacillus anthracis; Sen, K. I. et al. (2006) Biochemistry 45, 4295-4303], and generally follow the Irving-Williams series. Direct detection of the dinuclear Mn2+ site in MntR with EPR spectroscopy is presented, and the exchange interaction was determined, J = -0.2 cm-1. This value is lower in magnitude than most known dinuclear Mn2+ sites in proteins and synthetic complexes and is consistent with a dinuclear Mn2+ site with a longer Mn···Mn distance (4.4 Å) observed in some of the available crystal structures. MntR is found to have a surprisingly low binding affinity (∼160 μM) for its cognate metal ion Mn2+. Moreover, the results of DNA binding studies in the presence of limiting metal ion concentrations were found to be consistent with the measured metal-binding constants. The metal-binding affinities of MntR reported here help to elucidate the regulatory mechanism of this metal-dependent transcription factor. PMID:17176058

  8. Manipulation of a DNA aptamer-protein binding site through arylation of internal guanine residues.

    PubMed

    Van Riesen, Abigail J; Fadock, Kaila L; Deore, Prashant S; Desoky, Ahmed; Manderville, Richard A; Sowlati-Hashjin, Shahin; Wetmore, Stacey D

    2018-05-23

    Chemically modified aptamers have the opportunity to increase aptamer target binding affinity and provide structure-activity relationships to enhance our understanding of molecular target recognition by the aptamer fold. In the current study, 8-aryl-2'-deoxyguanosine nucleobases have been inserted into the G-tetrad and central TGT loop of the thrombin binding aptamer (TBA) to determine their impact on antiparallel G-quadruplex (GQ) folding and thrombin binding affinity. The aryl groups attached to the dG nucleobase vary greatly in aryl ring size and impact on GQ stability (∼20 °C change in GQ thermal melting (Tm) values) and thrombin binding affinity (17-fold variation in dissociation constant (Kd)). At G8 of the central TGT loop that is distal from the aptamer recognition site, the probes producing the most stable GQ structure exhibited the strongest thrombin binding affinity. However, within the G-tetrad, changes to the electron density of the dG component within the modified nucleobase can diminish thrombin binding affinity. Detailed molecular dynamics (MD) simulations on the modified TBA (mTBA) and mTBA-protein complexes demonstrate how the internal 8-aryl-dG modification can manipulate the interactions between the DNA nucleobases and the amino acid residues of thrombin. These results highlight the potential of internal fluorescent nuclobase analogs (FBAs) to broaden design options for aptasensor development.

  9. Binding of (/sup 3/H)forskolin to platelet membranes and solubilized proteins from bovine brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C.A.; Seamon, K.B.

    1986-05-01

    (/sup 3/H)Forskolin ((/sup 3/H)FSK) bound to platelet membranes with a Kd of 20 nM and a Bmax of 125 fmol/mg protein. The Bmax was increased to 400 fmol/mg protein in the presence of GppNHp (or NaF) and MgCl/sub 2/ with no change in Kd. PGE/sub 1/ decreased the EC50 of GppNHp to increase the Bmax for (/sup 3/H)FSK binding from 600 nM to 35 nM. In contrast, PGE/sub 1/ had no effect on the EC50 of NaF to increase (/sup 3/H)FSK binding. (/sup 3/H)FSK binding increased slowly over 60 min when forskolin and GppNHp were added to membranes simultaneously atmore » 20/sup 0/C. Preincubation of membranes with GppNHp at 20/sup 5/C also caused a linear increase in adenylate cyclase specific activity over 60 minutes. (/sup 3/H)FSK bound to solubilized protein from bovine brain membrane with a Kd of 22 nM. GppNHp increased the number of binding sites in solubilized proteins only if membranes were not preincubated with GppNHp prior to solubilization. In conclusion the number of binding sites for (/sup 3/H)FSK is increased by agents that activate adenylate cyclase through the Ns protein. These sites appear to be associated with an activated complex of the Ns protein and adenylate cyclase.« less

  10. Determination of the distribution coefficient (log Kd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure.

    PubMed

    Loke, Marie-Louise; Tjørnelund, Jette; Halling-Sørensen, Bent

    2002-07-01

    Olaquindox (log Kow = -2.3) and metronidazole (log Kow = -0.1) both have low tendencies to sorp to particles in manure. This corresponds with the negative log Kow values of these antibiotics. Tylosin (log Kow = 1.63) and oxytetracycline (log Kow = -1.12) sorp relatively strongly to the manure particles and have log Kd values between 1.5 and 2.0. The tendency to bind to manure was ranked after increasing binding as follows: metronidazole < olaquindox < tylosin A and oxytetracycline. This order of ranking is consistent with results of sorption in soil. Our experiments illustrate that for some antibacterial agents estimation of the partitioning coefficients, Kd, cannot be made from Kow and f(oc) alone. Sorption of oxytetracycline to manure is much higher than expected from the negative log Kow value of the compound. It is believed that sorption of oxytetracycline to manure is influenced by ionic binding to divalent metal ions as such Mg2+ and Ca2+ as well as other charged compounds in the matrix. Binding of oxytetracycline to soil is stronger than the binding to manure. This is most likely due to the strong mineral related metal complexes formed between soil, metal ion and oxytetracycline. These complexes are not known to exist in manure. The relatively strong sorption of tylosin A to manure corresponds with data found for soil sorption of tylosin. Tylosin has a log Kow value of 2.5, thus it is not surprising that this drug binds strongly to manure.

  11. The fine-tuning of TRAF2–GSTP1-1 interaction: effect of ligand binding and in situ detection of the complex

    PubMed Central

    De Luca, A; Mei, G; Rosato, N; Nicolai, E; Federici, L; Palumbo, C; Pastore, A; Serra, M; Caccuri, A M

    2014-01-01

    We provide the first biochemical evidence of a direct interaction between the glutathione transferase P1-1 (GSTP1-1) and the TRAF domain of TNF receptor-associated factor 2 (TRAF2), and describe how ligand binding modulates such an equilibrium. The dissociation constant of the heterocomplex is Kd=0.3 μM; however the binding affinity strongly decreases when the active site of GSTP1-1 is occupied by the substrate GSH (Kd≥2.6 μM) or is inactivated by oxidation (Kd=1.7 μM). This indicates that GSTP1-1's TRAF2-binding region involves the GSH-binding site. The GSTP1-1 inhibitor NBDHEX further decreases the complex's binding affinity, as compared with when GSH is the only ligand; this suggests that the hydrophobic portion of the GSTP1-1 active site also contributes to the interaction. We therefore hypothesize that TRAF2 binding inactivates GSTP1-1; however, analysis of the data, using a model taking into account the dimeric nature of GSTP1-1, suggests that GSTP1-1 engages only one subunit in the complex, whereas the second subunit maintains the catalytic activity or binds to other proteins. We also analyzed GSTP1-1's association with TRAF2 at the cellular level. The TRAF2–GSTP1-1 complex was constitutively present in U-2OS cells, but strongly decreased in S, G2 and M phases. Thus the interaction appears regulated in a cell cycle-dependent manner. The variations in the levels of individual proteins seem too limited to explain the complex's drastic decline observed in cells progressing from the G0/G1 to the S–G2–M phases. Moreover, GSH's intracellular content was so high that it always saturated GSTP1-1. Interestingly, the addition of NBDHEX maintains the TRAF2–GSTP1-1 complex at low levels, thus causing a prolonged cell cycle arrest in the G2/M phase. Overall, these findings suggest that a reversible sequestration of TRAF2 into the complex may be crucial for cell cycle progression and that multiple factors are involved in the fine-tuning of this interaction. PMID:24457959

  12. ARSENITE BINDING TO SUBSETS OF THE HUMAN ESTROGEN RECEPTOR-ALPHA

    EPA Science Inventory

    Enzyme inhibition by arsenicals has been described many times, but the underlying binding of trivalent arsenicals to peptides and proteins has received little attention. The purpose of this study was to determine Kd and Bmax values for arsenite binding to nine synthetic peptides ...

  13. On the binding affinity of macromolecular interactions: daring to ask why proteins interact

    PubMed Central

    Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J.

    2013-01-01

    Interactions between proteins are orchestrated in a precise and time-dependent manner, underlying cellular function. The binding affinity, defined as the strength of these interactions, is translated into physico-chemical terms in the dissociation constant (Kd), the latter being an experimental measure that determines whether an interaction will be formed in solution or not. Predicting binding affinity from structural models has been a matter of active research for more than 40 years because of its fundamental role in drug development. However, all available approaches are incapable of predicting the binding affinity of protein–protein complexes from coordinates alone. Here, we examine both theoretical and experimental limitations that complicate the derivation of structure–affinity relationships. Most work so far has concentrated on binary interactions. Systems of increased complexity are far from being understood. The main physico-chemical measure that relates to binding affinity is the buried surface area, but it does not hold for flexible complexes. For the latter, there must be a significant entropic contribution that will have to be approximated in the future. We foresee that any theoretical modelling of these interactions will have to follow an integrative approach considering the biology, chemistry and physics that underlie protein–protein recognition. PMID:23235262

  14. Sodium channel from rat brain. Reconstitution of voltage-dependent scorpion toxin binding in vesicles of defined lipid composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, D.J.; Talvenheimo, J.A.; Catterall, W.A.

    1985-09-25

    Purified sodium channels incorporated into phosphatidylcholine (PC) vesicles mediate neurotoxin-activated SSNa influx but do not bind the alpha-scorpion toxin from Leiurus quinquestriatus (LqTx) with high affinity. Addition of phosphatidylethanolamine (PE) or phosphatidylserine to the reconstitution mixture restores high affinity LqTx binding with KD = 1.9 nM for PC/PE vesicles at -90 mV and 36 degrees C in sucrose-substituted medium. Other lipids tested were markedly less effective. The binding of LqTx in vesicles of PC/PE (65:35) is sensitive to both the membrane potential formed by sodium gradients across the reconstituted vesicle membrane and the cation concentration in the extravesicular medium. Bindingmore » of LqTx is reduced 3- to 4-fold upon depolarization to 0 mV from -50 to -60 mV in experiments in which (Na+)out/(Na+)in is varied by changing (Na+)in or (Na+)out at constant extravesicular ionic strength. It is concluded that the purified sodium channel contains the receptor site for LqTx in functional form and that restoration of high affinity, voltage-dependent binding of LqTx by the purified sodium channel requires an appropriate ratio of PC to PE and/or phosphatidylserine in the vesicle membrane.« less

  15. Long-term ketogenic diet contributes to glycemic control but promotes lipid accumulation and hepatic steatosis in type 2 diabetic mice.

    PubMed

    Zhang, Xiaoyu; Qin, Juliang; Zhao, Yihan; Shi, Jueping; Lan, Rong; Gan, Yunqiu; Ren, Hua; Zhu, Bing; Qian, Min; Du, Bing

    2016-04-01

    The ketogenic diet (KD) has been widely used in weight and glycemic control, although potential side effects of long-term KD treatment have caused persistent concern. In this study, we hypothesized that the KD would ameliorate the progression of diabetes but lead to disruptions in lipid metabolism and hepatic steatosis in a mouse model of diabetes. In type 2 diabetic mouse model, mice were fed a high-fat diet and administered streptozotocin treatment before given the test diets for 8 weeks. Subsequently, ameliorated glucose and insulin tolerance in KD-fed diabetic mice was found, although the body weight of high-fat diet- and KD-fed mice was similar. Interestingly, the weight of adipose tissue in KD mice was greater than in the other groups. The KD diet resulted in higher serum triacylglycerol and cholesterol levels in diabetic mice. Moreover, the KD-fed mice showed greater hepatic lipid accumulation. Mice fed the KD showed significant changes in several key genes such as sterol regulatory element-binding protein, fibroblast growth factor 21, and peroxisome proliferator-activated receptor α, which are all important in metabolism. In summary, KD ameliorates glucose and insulin tolerance in a mouse model of diabetes, but severe hepatic lipid accumulation and hepatic steatosis were observed, which should be considered carefully in the long-term application of KD. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Stress and Protein Turnover in Lemna minor1

    PubMed Central

    Cooke, Robert J.; Oliver, Jane; Davies, David D.

    1979-01-01

    Transfer of fronds of Lemna minor L. to adverse growth conditions or stress situations causes a lowering of the growth rate and a loss of soluble protein per frond, the extent of the loss being dependent on the nature of the stress. The loss or protein is due to two factors: (a) a decrease in the rate constant of protein synthesis (ks); (b) an increase in the rate constant of protein degradation (kd). In plants adapted to the stresses, protein synthesis increases and the initially rapid rate of proteolysis is reduced. Addition of abscisic acid both lowers ks and increases kd, whereas benzyladenine seems to alleviate the effects of stress on protein content by decreasing kd rather than by altering ks. Based on the measurement of enzyme activities, stress-induced protein degradation appears to be a general phenomenon, affecting many soluble proteins. The adaptive significance of stress-induced proteolysis is discussed. PMID:16661102

  17. Differences in the protein composition of bovine retinal rod outer segment disk and plasma membranes isolated by a ricin-gold-dextran density perturbation method

    PubMed Central

    1987-01-01

    The plasma membrane and disk membranes of bovine retinal rod outer segments (ROS) have been purified by a novel density-gradient perturbation method for analysis of their protein compositions. Purified ROS were treated with neuraminidase to expose galactose residues on plasma membrane-specific glycoproteins and labeled with ricin-gold-dextran particles. After the ROS were lysed in hypotonic buffer, the plasma membrane was dissociated from the disks by either mild trypsin digestion or prolonged exposure to low ionic strength buffer. The dense ricin-gold-dextran-labeled plasma membrane was separated from disks by sucrose gradient centrifugation. Electron microscopy was used to follow this fractionation procedure. The dense red pellet primarily consisted of inverted plasma membrane vesicles containing gold particles; the membrane fraction of density 1.13 g/cc consisted of unlabeled intact disks and vesicles. Ricin-binding studies indicated that the plasma membrane from trypsin-treated ROS was purified between 10-15-fold. The protein composition of plasma membranes and disks was significantly different as analyzed by SDS gels and Western blots labeled with lectins and monoclonal antibodies. ROS plasma membrane exhibited three major proteins of 36 (rhodopsin), 38, and 52 kD, three ricin-binding glycoproteins of 230, 160, and 110 kD, and numerous minor proteins in the range of 14-270 kD. In disk membranes rhodopsin appeared as the only major protein. A 220-kD concanavalin A-binding glycoprotein and peripherin, a rim-specific protein, were also present along with minor proteins of 43 and 57-63 kD. Radioimmune assays indicated that the ROS plasma membrane contained about half as much rhodopsin as disk membranes. PMID:2447095

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strittmatter, S.M.; Snyder, S.H.

    We demonstrate that (3H)captopril selectively labels angiotensin converting enzyme (EC 3.14.15.1) (ACE) and employ this technique to probe enzyme-inhibitor interactions. (3H)Captopril binding sites copurify with ACE activity from rat lung or rat brain. At each stage of the purification the Vmax/Bmax ratio, or kcat is 17,000 min-1 with hippuryl-L-histidyl-L-leucine as substrate. The specificity of (3H)captopril binding is apparent in the similar pharmacologic profile of inhibition in crude and pure enzyme preparations. Furthermore, binding sites and enzyme activity comigrate in gel filtration and sucrose gradient sedimentation experiments. Equilibrium analysis of (3H)captopril binding to purified ACE reveals a Bmax of 6 nmol/mgmore » of protein (KD = 2 nM), demonstrating the presence of one inhibitor binding site per polypeptide chain. The kinetics of (3H)captopril binding are characterized by monophasic association and dissociation rate constants of 0.026 nM-1 min-1 and 0.034 min-1, respectively. The affinity of ACE for both (3H) captopril and enalaprilat is greater at 37 degrees than at 0 degree, demonstrating that these interactions are entropically driven, perhaps by an isomerization of the enzyme molecule. The ionic requirements for (3H)captopril binding and substrate catalysis differ. Chloride and bromide ion, but not fluoride, are about 100-fold more potent stimulators of binding than catalysis. When the active site Zn2+ ion is replaced by Co2+, catalysis was stimulated 2-fold, whereas binding activity was decreased by 70%.« less

  19. Glucose and cyclic adenosine monophosphate stimulate activities of adenylate cyclase and guanylate cyclase of Tetrahymena pyriformis infusoria.

    PubMed

    Shpakov, A O; Derkach, K V; Uspenskaya, Z I

    2012-02-01

    The sensitivities of cyclase enzymes adenylate cyclase and guanylate cyclase to glucose and extracellular cAMP were studied in Tetrahymena pyriformis infusoria. Glucose effectively stimulated activities of both cyclase enzymes, while cAMP more effectively stimulated adenylate cyclase. It was shown that [6-(14)C]glucose specifically bound to Tetrahymena pyriformis infusoria at dissociation constant (K(D)) and number of binding sites (B(max)) 43 nM and 7.53 fmol glucose per 100,000 cells and [8-(3)H]cAMP bound at 19 nM and 4.46 fmol cAMP per 100,000 cells, respectively. Hence, glucose and cAMP specifically bound to Tetrahymena pyriformis cells and stimulated activities of cyclases in these infusoria.

  20. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    PubMed

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  1. Biochemical characterization of a phosphinate inhibitor of Escherichia coli MurC.

    PubMed

    Marmor, S; Petersen, C P; Reck, F; Yang, W; Gao, N; Fisher, S L

    2001-10-09

    The bacterial UDP-N-acetylmuramyl-L-alanine ligase (MurC) from Escherichia coli, an essential, cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent ligation of L-alanine (Ala) and UDP-N-acetylmuramic acid (UNAM) to form UDP-N-acetylmuramyl-L-alanine (UNAM-Ala). The phosphinate inhibitor 1 was designed and prepared as a multisubstrate/transition state analogue. The compound exhibits mixed-type inhibition with respect to all three enzyme substrates (ATP, UNAM, Ala), suggesting that this compound forms dead-end complexes with multiple enzyme states. Results from isothermal titration calorimetry (ITC) studies supported these findings as exothermic binding was observed under conditions with free enzyme (K(d) = 1.80-2.79 microM, 95% CI), enzyme saturated with ATP (K(d) = 0.097-0.108 microM, 95% CI), and enzyme saturated with the reaction product ADP (K(d) = 0.371-0.751 microM, 95% CI). Titrations run under conditions of saturating UNAM or the product UNAM-Ala did not show heat effects consistent with competitive compound binding to the active site. The potent binding affinity observed in the presence of ATP is consistent with the inhibitor design and the proposed Ordered Ter-Ter mechanism for this enzyme; however, the additional binding pathways suggest that the inhibitor can also serve as a product analogue.

  2. Profiles of equilibrium constants for self-association of aromatic molecules

    NASA Astrophysics Data System (ADS)

    Beshnova, Daria A.; Lantushenko, Anastasia O.; Davies, David B.; Evstigneev, Maxim P.

    2009-04-01

    Analysis of the noncovalent, noncooperative self-association of identical aromatic molecules assumes that the equilibrium self-association constants are either independent of the number of molecules (the EK-model) or change progressively with increasing aggregation (the AK-model). The dependence of the self-association constant on the number of molecules in the aggregate (i.e., the profile of the equilibrium constant) was empirically derived in the AK-model but, in order to provide some physical understanding of the profile, it is proposed that the sources for attenuation of the equilibrium constant are the loss of translational and rotational degrees of freedom, the ordering of molecules in the aggregates and the electrostatic contribution (for charged units). Expressions are derived for the profiles of the equilibrium constants for both neutral and charged molecules. Although the EK-model has been widely used in the analysis of experimental data, it is shown in this work that the derived equilibrium constant, KEK, depends on the concentration range used and hence, on the experimental method employed. The relationship has also been demonstrated between the equilibrium constant KEK and the real dimerization constant, KD, which shows that the value of KEK is always lower than KD.

  3. Assay of picogram level isocarbophos residue on tangerines and oranges with luminol-albumin chemiluminescence system.

    PubMed

    Chen, Donghua; Song, Zhenghua; Lv, Hairu

    2012-12-15

    A sensitive flow injection-chemiluminescence (FI-CL) method for the determination of isocarbophos (ICP) residue on tangerines and oranges was proposed. It was found that the CL intensity from luminol-albumin CL reaction could be obviously quenched in the presence of ICP and the decrease in CL intensity was proportional to the logarithm of ICP concentrations ranging from 1.0 to 1000 pmol L(-1), giving the limit of detection of 0.3 pmol L(-1) (3σ). The proposed procedure was successfully applied to the determination of ICP residue on tangerines and oranges with recoveries varying from 92.0 to 111.0% and RSDs less than 5.0%. The possible CL mechanism of luminol-albumin-ICP reaction was discussed, and ICP to albumin's binding constant (K(D)=1.00 × 10(6) L mol(-1)) and the number of binding sites (n=1.00) were given by the homemade FI-CL model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Identification of the cutaneous basement membrane zone antigen and isolation of antibody in linear immunoglobulin A bullous dermatosis.

    PubMed Central

    Zone, J J; Taylor, T B; Kadunce, D P; Meyer, L J

    1990-01-01

    Linear IgA bullous dermatosis (LABD) is a rare blistering skin disease characterized by basement membrane zone deposition of IgA. This study identifies a tissue antigen detected by patient serum and then isolates the autoantibody using epidermis and protein bands blotted on nitrocellulose as immunoabsorbents. Sera from 10 patients (9 with cutaneous disease and 1 with cicatrizing conjunctivitis) were evaluated. Indirect immunofluorescence revealed an IgA anti-basement membrane antibody in 6 of 10 sera with monkey esophagus substrate and 9 of 10 sera with human epidermal substrate. Immunoblotting was performed on epidermal and dermal extracts prepared from skin separated at the basement membrane zone with either sodium chloride or EDTA. Saline-separated skin expressed a 97-kD band in dermal extract alone that was recognized by 4 of 10 sera. EDTA-separated skin expressed the 97-kD band in both epidermal (4 of 10 sera) and dermal (6 of 10 sera) extract. Immunoabsorption of positive sera with epidermis purified an IgA antibody that reacted uniquely with the 97-kD band. In addition, IgA antibody bound to nitrocellulose was eluted from the 97-kD band and found to uniquely bind basement membrane zone. It is likely that the 97-kD protein identified by these techniques is responsible for basement membrane binding of IgA in LABD. Images PMID:2107211

  5. Radiation increases the activity of oncolytic adenovirus cancer gene therapy vectors that overexpress the ADP (E3-11.6K) protein.

    PubMed

    Toth, Karoly; Tarakanova, Vera; Doronin, Konstantin; Ward, Peter; Kuppuswamy, Mohan; Locke, Jacob E; Dawson, Julie E; Kim, Han J; Wold, William S M

    2003-03-01

    We have described three potential adenovirus type 5 (Ad5)-based replication-competent cancer gene therapy vectors named KD1, KD3, and VRX-007. All three vectors overexpress an Ad5 protein named Adenovirus Death Protein (ADP, also named E3-11.6 K protein). ADP is required for efficient lysis of Ad5-infected cells and spread of virus from cell to cell, and thus its overexpression increases the oncolytic activity of the vectors. KD1 and KD3 contain mutations in the Ad5 E1A gene that knock out binding of the E1A proteins to cellular p300/CBP and pRB; these mutations allow KD1 and KD3 to grow well in cancer cells but not in normal cells. VRX-007 has wild-type E1A. Here we report that radiation increases the oncolytic activity of KD1, KD3, and VRX-007. This increased activity was observed in cultured cells, and it was not because of radiation-induced replication of the vectors. The combination of radiation plus KD3 suppressed the growth of A549 lung adenocarcinoma xenografts in nude mice more efficiently than radiation alone or KD3 alone. The combination of ADP-overexpressing vectors and radiation may have potential in treating cancer.

  6. Mapping of a binding site for ATP within the extracellular region of the Torpedo nicotinic acetylcholine receptor beta-subunit.

    PubMed

    Schrattenholz, A; Roth, U; Godovac-Zimmermann, J; Maelicke, A

    1997-10-28

    Using 2,8,5'-[3H]ATP as a direct photoaffinity label for membrane-bound nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata, we have identified a binding site for ATP in the extracellular region of the beta-subunit of the receptor. Photolabeling was completely inhibited in the presence of saturating concentrations of nonradioactive ATP, whereas neither the purinoreceptor antagonists suramin, theophyllin, and caffeine nor the nAChR antagonists alpha-bungarotoxin and d-tubocurarine affected the labeling reaction. Competitive and noncompetitive nicotinic agonists and Ca2+ increased the yield of the photoreaction by up to 50%, suggesting that the respective binding sites are allosterically linked with the ATP site. The dissociation constant KD of binding of ATP to the identified site on the nAChR was of the order of 10(-4) M. Sites of labeling were found in the sequence regions Leu11-Pro17 and Asp152-His163 of the nAChR beta-subunit. These regions may represent parts of a single binding site for ATP, which is discontinuously distributed within the primary structure of the N-terminal extracellular domain. The existence of an extracellular binding site for ATP confirms, on the molecular level, that this nucleotide can directly act on nicotinic receptors, as has been suggested from previous electrophysiological and biochemical studies.

  7. Super-high-affinity binding site for [3H]diazepam in the presence of Co2+, Ni2+, Cu2+, or Zn2+.

    PubMed

    Mizuno, S; Ogawa, N; Mori, A

    1982-12-01

    Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 nM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site.

  8. Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin.

    PubMed

    Choudhury, Diptiman; Ganguli, Arnab; Dastidar, Debabrata Ghosh; Acharya, Bipul R; Das, Amlan; Chakrabarti, Gopal

    2013-06-01

    Apigenin, a natural flavone, present in many plants sources, induced apoptosis and cell death in lung epithelium cancer (A549) cells with an IC50 value of 93.7 ± 3.7 μM for 48 h treatment. Target identification investigations using A549 cells and also in cell-free system demonstrated that apigenin depolymerized microtubules and inhibited reassembly of cold depolymerized microtubules of A549 cells. Again apigenin inhibited polymerization of purified tubulin with an IC50 value of 79.8 ± 2.4 μM. It bounds to tubulin in cell-free system and quenched the intrinsic fluorescence of tubulin in a concentration- and time-dependent manner. The interaction was temperature-dependent and kinetics of binding was biphasic in nature with binding rate constants of 11.5 × 10(-7) M(-1) s(-1) and 4.0 × 10(-9) M(-1) s(-1) for fast and slow phases at 37 °C, respectively. The stoichiometry of tubulin-apigenin binding was 1:1 and binding the binding constant (Kd) was 6.08 ± 0.096 μM. Interestingly, apigenin showed synergistic anti-cancer effect with another natural anti-tubulin agent curcumin. Apigenin and curcumin synergistically induced cell death and apoptosis and also blocked cell cycle progression at G2/M phase of A549 cells. The synergistic activity of apigenin and curcumin was also apparent from their strong depolymerizing effects on interphase microtubules and inhibitory effect of reassembly of cold depolymerized microtubules when used in combinations, indicating that these ligands bind to tubulin at different sites. In silico modeling suggested apigenin bounds at the interphase of α-β-subunit of tubulin. The binding site is 19 Å in distance from the previously predicted curcumin binding site. Binding studies with purified protein also showed both apigenin and curcumin can simultaneously bind to purified tubulin. Understanding the mechanism of synergistic effect of apigenin and curcumin could be helped to develop anti-cancer combination drugs from cheap and readily available nutraceuticals. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Dietary therapy is not the best option for refractory nonsurgical epilepsy.

    PubMed

    Vaccarezza, María Magdalena; Silva, Walter Horacio

    2015-09-01

    The ketogenic diet (KD) is currently a well-established treatment for patients with medically refractory, nonsurgical epilepsy. However, despite its efficacy, the KD is highly restrictive and constitutes a treatment with serious potential adverse effects, and often with difficulties in its implementation and compliance. Patients on the KD require strict follow-up and constant supervision by a medical team highly experienced in its management in order to prevent complications. Other alternative treatments for patients with refractory epilepsy include vagus nerve stimulation (VNS), new-generation antiepileptic drugs (AEDs), corpus callosotomy (CC), and responsive focal cortical stimulation (RNS). In this review, we explain not only the difficulties of the KD as a therapeutic option for refractory epilepsy but also the benefits of other therapeutic strategies, which, in many cases, have proven to have better efficacy than the KD itself. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  10. Effects of target binding kinetics on in vivo drug efficacy: koff , kon and rebinding.

    PubMed

    Vauquelin, Georges

    2016-08-01

    Optimal drug therapy often requires continuing high levels of target occupancy. Besides the traditional pharmacokinetic contribution, target binding kinetics is increasingly considered to play an important role as well. While most attention has been focused on the dissociation rate of the complex, recent reports expressed doubt about the unreserved translatability of this pharmacodynamic property into clinical efficacy. 'Micro'-pharmacokinetic mechanisms like drug rebinding and partitioning into the cell membrane may constitute a potential fix. Simulations were based on solving differential equations. Based on a selected range of association and dissociation rate constants, kon and koff , and rebinding potencies of the drugs as variables, their effects on the temporal in vivo occupancy profile of their targets, after one or multiple repetitive dosings, have here been simulated. Most strikingly, the simulations show that, when rebinding is also taken into account, increasing kon may produce closely the same outcome as decreasing koff when dosing is performed in accordance with the therapeutically most relevant constant [Lmax ]/KD ratio paradigm. Also, under certain conditions, rebinding may produce closely the same outcome as invoking slow diffusion of the drug between the plasma compartment and a target-containing 'effect' compartment. Although the present simulations should only be regarded as a 'proof of principle', these findings may help pharmacologists and medicinal chemists to devise ex vivo and in vitro binding kinetic assays that are more relevant and translatable to in vivo settings. © 2016 The British Pharmacological Society.

  11. Probing the nucleotide binding domain of the osmoregulator EnvZ using fluorescent nucleotide derivatives.

    PubMed

    Plesniak, Leigh; Horiuchi, Yuki; Sem, Daniel; Meinenger, David; Stiles, Linda; Shaffer, Jennifer; Jennings, Patricia A; Adams, Joseph A

    2002-11-26

    EnvZ is a histidine protein kinase important for osmoregulation in bacteria. While structural data are available for this enzyme, the nucleotide binding pocket is not well characterized. The ATP binding domain (EnvZB) was expressed, and its ability to bind nucleotide derivatives was assessed using equilbrium and stopped-flow fluorescence spectroscopy. The fluorescence emission of the trinitrophenyl derivatives, TNP-ATP and TNP-ADP, increase upon binding to EnvZB. The fluorescence enhancements were quantitatively abolished in the presence of excess ADP, indicating that the fluorescent probes occupy the nucleotide binding pocket. Both TNP-ATP and TNP-ADP bind to EnvZB with high affinity (K(d) = 2-3 microM). The TNP moiety attached to the ribose ring does not impede access of the fluorescent nucleotide into the binding pocket. The association rate constant for TNP-ADP is 7 microM(-1) s(-1), a value consistent with those for natural nucleotides and the eucaryotic protein kinases. Using competition experiments, it was found that ATP and ADP bind 30- and 150-fold more poorly, respectively, than the corresponding TNP-derivatized forms. Surprisingly, the physiological metal Mg(2+) is not required for ADP binding and only enhances ATP affinity by 3-fold. Although portions of the nucleotide pocket are disordered, the recombinant enzyme is highly stable, unfolding only at temperatures in excess of 70 degrees C. The unusually high affinity of the TNP derivatives compared to the natural nucleotides suggests that hydrophobic substitutions on the ribose ring enforce an altered binding mode that may be exploited for drug design strategies.

  12. GAPDH-mediated posttranscriptional regulations of sodium channel Scn1a and Scn3a genes under seizure and ketogenic diet conditions.

    PubMed

    Lin, Guo-Wang; Lu, Ping; Zeng, Tao; Tang, Hui-Ling; Chen, Yong-Hong; Liu, Shu-Jing; Gao, Mei-Mei; Zhao, Qi-Hua; Yi, Yong-Hong; Long, Yue-Sheng

    2017-02-01

    Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3' UTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3' UTR and SCN3A 3' UTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3' UTR, which lead to downregulation of Scn1a and upregulation of Scn3a. Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. α-Actinin Anchors PSD-95 at Postsynaptic Sites.

    PubMed

    Matt, Lucas; Kim, Karam; Hergarden, Anne C; Patriarchi, Tommaso; Malik, Zulfiqar A; Park, Deborah K; Chowdhury, Dhrubajyoti; Buonarati, Olivia R; Henderson, Peter B; Gökçek Saraç, Çiğdem; Zhang, Yonghong; Mohapatra, Durga; Horne, Mary C; Ames, James B; Hell, Johannes W

    2018-03-07

    Despite the central role PSD-95 plays in anchoring postsynaptic AMPARs, how PSD-95 itself is tethered to postsynaptic sites is not well understood. Here we show that the F-actin binding protein α-actinin binds to the very N terminus of PSD-95. Knockdown (KD) of α-actinin phenocopies KD of PSD-95. Mutating lysine at position 10 or lysine at position 11 of PSD-95 to glutamate, or glutamate at position 53 or glutamate and aspartate at positions 213 and 217 of α-actinin, respectively, to lysine impairs, in parallel, PSD-95 binding to α-actinin and postsynaptic localization of PSD-95 and AMPARs. These experiments identify α-actinin as a critical PSD-95 anchor tethering the AMPAR-PSD-95 complex to postsynaptic sites. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Development of a Surface Plasmon Resonance Assay for the Characterization of Small-Molecule Binding Kinetics and Mechanism of Binding to Kynurenine 3-Monooxygenase.

    PubMed

    Poda, Suresh B; Kobayashi, Masakazu; Nachane, Ruta; Menon, Veena; Gandhi, Adarsh S; Budac, David P; Li, Guiying; Campbell, Brian M; Tagmose, Lena

    2015-10-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway, was identified as a potential therapeutic target for treating neurodegenerative and psychiatric disorders. In this article, we describe a surface plasmon resonance (SPR) assay that delivers both kinetics and the mechanism of binding (MoB) data, enabling a detailed characterization of KMO inhibitors for the enzyme in real time. SPR assay development included optimization of the protein construct and the buffer conditions. The stability and inhibitor binding activity of the immobilized KMO were significantly improved when the experiments were performed at 10°C using a buffer containing 0.05% n-dodecyl-β-d-maltoside (DDM) as the detergent. The KD values of the known KMO inhibitors (UPF648 and RO61-8048) from the SPR assay were in good accordance with the biochemical LC/MS/MS assay. Also, the SPR assay was able to differentiate the binding kinetics (k(a) and k(d)) of the selected unknown KMO inhibitors. For example, the inhibitors that showed comparable IC50 values in the LC/MS/MS assay displayed differences in their residence time (τ = 1/k(d)) in the SPR assay. To better define the MoB of the inhibitors to KMO, an SPR-based competition assay was developed, which demonstrated that both UPF648 and RO61-8048 bound to the substrate-binding site. These results demonstrate the potential of the SPR assay for characterizing the affinity, the kinetics, and the MoB profiles of the KMO inhibitors.

  15. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    PubMed

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  16. One base pair change abolishes the T cell-restricted activity of a kB-like proto-enhancer element from the interleukin 2 promoter.

    PubMed Central

    Briegel, K; Hentsch, B; Pfeuffer, I; Serfling, E

    1991-01-01

    The inducible, T cell-specific enhancers of murine and human Interleukin 2 (Il-2) genes contain the kB-like sequence GGGATTTCACC as an essential cis-acting enhancer motif. When cloned in multiple copies this so-called TCEd (distal T cell element) acts as an inducible proto-enhancer element in E14 T lymphoma cells, but not in HeLa cells. In extracts of induced, Il-2 secreting El4 cells three individual protein factors bind to TCEd DNA. The binding of the most prominent factor, named TCF-1 (T cell factor 1), is correlated with the proto-enhancer activity of TCEd. TCF-1 consists of two polypeptides of about 50 kD and 105 kD; the former seems to be related to the 50 kD polypeptide of NF-kB. Purified NF-kB is also able to bind to the TCEd, but TCF-1 binds stronger than NF-kB to TCEd DNA. The conversion of the TCEd to a 'perfect' NF-kB binding site leads to a tighter binding of NF-kB to TCEd DNA and, as a functional consequence, to the activity of the 'converted' TCEd motifs in HeLa cells. Thus, the substitution of the underlined A residue to a C within the GGGATTTCACC motif abolishes its T cell-restricted activity and leads to its functioning in both El4 cells and HeLa cells. These results indicate that lymphocyte-specific factors binding to the TCEd are involved in the control of T cell specific-transcription of the Il-2 gene. Images PMID:1945879

  17. The affinity of a major Ca2+ binding site on GRP78 is differentially enhanced by ADP and ATP.

    PubMed

    Lamb, Heather K; Mee, Christopher; Xu, Weiming; Liu, Lizhi; Blond, Sylvie; Cooper, Alan; Charles, Ian G; Hawkins, Alastair R

    2006-03-31

    GRP78 is a major protein regulated by the mammalian endoplasmic reticulum stress response, and up-regulation has been shown to be important in protecting cells from challenge with cytotoxic agents. GRP78 has ATPase activity, acts as a chaperone, and interacts specifically with other proteins, such as caspases, as part of a mechanism regulating apoptosis. GRP78 is also reported to have a possible role as a Ca2+ storage protein. In order to understand the potential biological effects of Ca2+ and ATP/ADP binding on the biology of GRP78, we have determined its ligand binding properties. We show here for the first time that GRP78 can bind Ca2+, ATP, and ADP, each with a 1:1 stoichiometry, and that the binding of cation and nucleotide is cooperative. These observations do not support the hypothesis that GRP78 is a dynamic Ca2+ storage protein. Furthermore, we demonstrate that whereas Mg2+ enhances GRP78 binding to ADP and ATP to the same extent, Ca2+ shows a differential enhancement. In the presence of Ca2+, the KD for ATP is lowered approximately 11-fold, and the KD for ADP is lowered around 930-fold. The KD for Ca2+ is lowered approximately 40-fold in the presence of ATP and around 880-fold with ADP. These findings may explain the biological requirement for a nucleotide exchange factor to remove ADP from GRP78. Taken together, our data suggest that the Ca2+-binding property of GRP78 may be part of a signal transduction pathway that modulates complex interactions between GRP78, ATP/ADP, secretory proteins, and caspases, and this ultimately has important consequences for cell viability.

  18. Two classes of receptor specific for sperm-activating peptide III in sand-dollar spermatozoa.

    PubMed

    Yoshino, K; Suzuki, N

    1992-06-15

    We characterized receptors specific for sperm-activating peptide III (SAP-III: DSDSAQNLIQ) in spermatozoa of the sand dollar, Clypeaster japonicus, using both binding and cross-linking techniques. Analyses of the data obtained from the equilibrium binding of a radiolabeled SAP-III analogueto C. japonicus spermatozoa, using Klotz, Scatchard and Hill plots, showed the presence of two classes of receptors specific for SAP-III in the spermatozoa. One of the receptors (high-affinity) had a Kd of 3.4 nM and 3.4 x 10(4) binding sites/spermatozoon. The other receptor (low-affinity) had a Kd of 48 nM, with 6.1 x 10(4) binding sites/spermatozoon. The Kd of the high-affinity receptor was comparable to the median effective concentration of the intracellular-pH-increasing activity of SAP-III and that of the low-affinity receptor was comparable to the median effective concentration of the cellular-cGMP-elevating activity of the peptide. In addition, Scatchard and Hill plots of the data suggested the existence of positive cooperativity between the high-affinity members. Similar results were also obtained from a binding experiment using a sperm-membrane fraction prepared from C. japonicus spermatozoa. The incubation of intact spermatozoa or sperm plasma membranes with the radioiodinated SAP-III analogue and a chemical cross-linking reagent, disuccinimidyl suberate, resulted in the radiolabeling of three proteins with molecular masses of 126, 87 and 64 kDa, estimated by SDS/PAGE under reducing conditions.

  19. Development of a DNA Aptamer for Screening Neisseria meningitidis Serogroup B by Cell SELEX

    PubMed Central

    Mirzakhani, Kimia; Gargari, Seyed Latif Mousavi; Rasooli, Iraj; Rasoulinejad, Samaneh

    2018-01-01

    Background: Artificial oligonucleotides like DNA or RNA aptamers can be used as biodiagnostic alternatives for antibodies to detect pathogens. Comparing to antibodies, artificial oligonucleotides are produced easily at lower costs and are more stable. Neisseria meningitidis, the causative agent of meningitis, is responsible for about 1% of infections in an epidemic period. Specific DNA aptamers that bind to N. meningitidis serogroup B were identified by whole-cell Systemic Evolution of Ligands by EXponential Enrichment (SELEX). Methods: The SELEX begins with a library of labeled ssDNA molecules. After six rounds of selection and two rounds of counter-selection, 60 clones were obtained, of which the binding efficiency of 21 aptamers to the aforementioned bacterium was tested by flow cytometry. Results: The aptamers K3 and K4 showed the highest affinity to N. meningitidis serogroup B and no affinity to N. meningitidis serogroups Y, A, and C, or to other meningitis causing bacteria. The dissociation constant (Kd value) for K3 and K4 were calculated as 28.3 ± 8.9 pM and 39.1 ± 8.6 pM, respectively. K3 aptamer with the lowest Kd was chosen as the main aptamer. K3 could detect N. meningitidis in patients’ cerebrospinal fluid (CSF) samples and in CSF from healthy volunteers inoculated with N. meningitidis serogroup B (ATCC 13090) at 200 and 100 CFU ml-1, respectively. Conclusion: The findings suggest the application of the developed aptamer in specific detection of N. meningitidis serogroup B amongst a group of meningitis causing bacteria.

  20. Arginine- and lysine-specific polymers for protein recognition and immobilization.

    PubMed

    Renner, Christian; Piehler, Jacob; Schrader, Thomas

    2006-01-18

    Free radical polymerization of methacrylamide-based bisphosphonates turns weak arginine binders into powerful polymeric protein receptors. Dansyl-labeled homo- and copolymers with excellent water solubility are accessible through a simple copolymerization protocol. Modeling studies point to a striking structural difference between the stiff rodlike densely packed homopolymer 1 and the flexible copolymer 2 with spatially separated bisphosphonate units. Fluorescence titrations in buffered aqueous solution (pH = 7.0) confirm the superior affinity of the homopolymer toward oligoarginine peptides reaching nanomolar K(D) values for the Tat peptide. Basic proteins are bound almost equally well by 1 and 2 with micromolar affinities, with the latter producing much more soluble complexes. The Arg selectivity of the monomer is transferred to the polymer, which binds Arg-rich proteins 1 order of magnitude tighter than lysine-rich pendants of comparable pI, size, and (Arg/Lys vs Glu/Asp) ratio. Noncovalent deposition of both polymers on glass substrates via polyethyleneimine layers results in new materials suitable for peptide and protein immobilization. RIfS measurements allow calculation of association constants K(a) as well as dissociation kinetics k(D). They generally confirm the trends already found in free solution. Close inspection of electrostatic potential surfaces suggest that basic domains favor protein binding on the flat surface. The high specificity of the bisphosphonate polymers toward basic proteins is demonstrated by comparison with polyvinyl sulfate, which has almost no effect in RIfS experiments. Thus, copolymerization of few different comonomer units without cross-linking enables surface recognition of basic proteins in free solution as well as their effective immobilization on surfaces.

  1. Quantification of Protein-Ligand Interactions by Laser Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Archer, Jieutonne J.; Karki, Santosh; Shi, Fengjian; Sistani, Habiballah; Levis, Robert J.

    2018-04-01

    Laser electrospray mass spectrometry (LEMS) measurement of the dissociation constant (Kd) for hen egg white lysozyme (HEWL) and N,N',N″-triacetylchitotriose (NAG3) revealed an apparent Kd value of 313.2 ± 25.9 μM for the ligand titration method. Similar measurements for N,N',N″,N″'-tetraacetylchitotetraose (NAG4) revealed an apparent Kd of 249.3 ± 13.6 μM. An electrospray ionization mass spectrometry (ESI-MS) experiment determined a Kd value of 9.8 ± 0.6 μM. In a second LEMS approach, a calibrated measurement was used to determine a Kd value of 6.8 ± 1.5 μM for NAG3. The capture efficiency of LEMS was measured to be 3.6 ± 1.8% and is defined as the fraction of LEMS sample detected after merging with the ESI plume. When the dilution is factored into the ligand titration measurement, the adjusted Kd value was 11.3 μM for NAG3 and 9.0 μM for NAG4. The calibration method for measuring Kd developed in this study can be applied to solutions containing unknown analyte concentrations. [Figure not available: see fulltext.

  2. A ruthenium dimer complex with a flexible linker slowly threads between DNA bases in two distinct steps.

    PubMed

    Bahira, Meriem; McCauley, Micah J; Almaqwashi, Ali A; Lincoln, Per; Westerlund, Fredrik; Rouzina, Ioulia; Williams, Mark C

    2015-10-15

    Several multi-component DNA intercalating small molecules have been designed around ruthenium-based intercalating monomers to optimize DNA binding properties for therapeutic use. Here we probe the DNA binding ligand [μ-C4(cpdppz)2(phen)4Ru2](4+), which consists of two Ru(phen)2dppz(2+) moieties joined by a flexible linker. To quantify ligand binding, double-stranded DNA is stretched with optical tweezers and exposed to ligand under constant applied force. In contrast to other bis-intercalators, we find that ligand association is described by a two-step process, which consists of fast bimolecular intercalation of the first dppz moiety followed by ∼10-fold slower intercalation of the second dppz moiety. The second step is rate-limited by the requirement for a DNA-ligand conformational change that allows the flexible linker to pass through the DNA duplex. Based on our measured force-dependent binding rates and ligand-induced DNA elongation measurements, we are able to map out the energy landscape and structural dynamics for both ligand binding steps. In addition, we find that at zero force the overall binding process involves fast association (∼10 s), slow dissociation (∼300 s), and very high affinity (Kd ∼10 nM). The methodology developed in this work will be useful for studying the mechanism of DNA binding by other multi-step intercalating ligands and proteins. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Expression of melatonin receptors in arteries involved in thermoregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, M.; Laitinen, J.T.; Saavedra, J.M.

    Melatonin binding sites were localized and characterized in the vasculature of the rat by using the melatonin analogue 2-(125I)iodomelatonin (125I-melatonin) and quantitative in vitro autoradiography. The expression of these sites was restricted to the caudal artery and to the arteries that form the circle of Willis at the base of the brain. The arterial 125I-melatonin binding was stable, saturable, and reversible. Saturation studies revealed that the binding represented a single class of high-affinity binding sites with a dissociation constant (Kd) of 3.4 x 10(-11) M in the anterior cerebral artery and 1.05 x 10(-10) M in the caudal artery. Themore » binding capacities (Bmax) in these arteries were 19 and 15 fmol/mg of protein, respectively. The relative order of potency of indoles for inhibition of 125I-melatonin binding at these sites was typical of a melatonin receptor: 2-iodomelatonin greater than melatonin greater than N-acetylserotonin much much greater than 5-hydroxytryptamine. Norepinephrine-induced contraction of the caudal artery in vitro was significantly prolonged and potentiated by melatonin in a concentration-dependent manner, suggesting that these arterial binding sites are functional melatonin receptors. Neither primary steps in smooth muscle contraction (inositol phospholipid hydrolysis) nor relaxation (adenylate cyclase activation) were affected by melatonin. Melatonin, through its action on the tone of these arteries, may cause circulatory adjustments in these arteries, which are believed to be involved in thermoregulation.« less

  4. Amino acids 16-275 of minute virus of mice NS1 include a domain that specifically binds (ACCA)2-3-containing DNA.

    PubMed

    Mouw, M; Pintel, D J

    1998-11-10

    GST-NS1 purified from Escherichia coli and insect cells binds double-strand DNA in an (ACCA)2-3-dependent fashion under similar ionic conditions, independent of the presence of anti-NS1 antisera or exogenously supplied ATP and interacts with single-strand DNA and RNA in a sequence-independent manner. An amino-terminal domain (amino acids 1-275) of NS1 [GST-NS1(1-275)], representing 41% of the full-length NS1 molecule, includes a domain that binds double-strand DNA in a sequence-specific manner at levels comparable to full-length GST-NS1, as well as single-strand DNA and RNA in a sequence-independent manner. The deletion of 15 additional amino-terminal amino acids yielded a molecule [GST-NS1(1-275)] that maintained (ACCA)2-3-specific double-strand DNA binding; however, this molecule was more sensitive to increasing ionic conditions than full-length GST-NS1 and GST-NS1(1-275) and could not be demonstrated to bind single-strand nucleic acids. A quantitative filter binding assay showed that E. coli- and baculovirus-expressed GST-NS1 and E. coli GST-NS1(1-275) specifically bound double-strand DNA with similar equilibrium kinetics [as measured by their apparent equilibrium DNA binding constants (KD)], whereas GST-NS1(16-275) bound 4- to 8-fold less well. Copyright 1998 Academic Press.

  5. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, M.J.; Collins, A.C.

    1982-11-01

    The binding of (/sup 3/H)nicotine to mouse brain has been measured and subsequently compared with the binding of (/sup 125/I)alpha-bungarotoxin (alpha-BTX) and L-(/sup 3/H)quinuclidinyl benzilate (QNB). The binding of nicotine was saturable, reversible, and stereospecific. The average KD and Bmax were 59 nM and 88 fmoles/mg of protein, respectively. Although the rates of association and dissociation of nicotine were temperature-dependent, the incubation temperature had no effect on either KD or Bmax. When measured at 20 degrees or 37 degrees, nicotine appeared to bind to a single class of binding sites, but a second, very low-affinity, binding site was observed atmore » 4 degrees. Nicotine binding was unaffected by the addition of NaCl, KCl, CaCl/sub 2/, or MgSO/sub 4/ to the incubation medium. Nicotinic cholinergic agonists were potent inhibitors of nicotine binding; however, nicotinic antagonists were poor inhibitors. The regional distribution of binding was not uniform: midbrain and striatum contained the highest number of receptors, whereas cerebellum had the fewest. Differences in site densities, regional distribution, inhibitor potencies, and thermal denaturation indicated that nicotine binding was not the same as either QNB or alpha-BTX binding, and therefore that receptors for nicotine may represent a unique population of cholinergic receptors.« less

  6. The sodium channel in membranes of electroplax. Binding of batrachotoxinin-a [(3)H]benzoate to particulate preparations from electric eel (electrophorus).

    PubMed

    McNeal, E T; Daly, J W

    1986-01-01

    Batrachotoxinin-A [(3)H]benzoate ([(3)H]BTX-B) binds specifically and with high affinity (K(D) 48 nM) to sites (B(max) 2.1 pmol/mg protein) associated with voltage-dependent sodium channels in rodent brain vesicular preparations. High affinity binding requires the presence of scorpion (Leiurus) venom and a membrane potential. Local anesthetics antagonize the binding. Nonspecific binding is defined in the presence of veratridine. In particulate preparations from electroplax of the eel Electrophorus electricus, [(3)H]BTX-B binds with a K(D) of about 140 nM and a B(max) of 2.5 pmol/mg protein in the presence of scorpion venom. Higher concentrations of scorpion venom are required to enhance binding in Electrophorus preparations than in brain preparations. Local anesthetics antagonize binding in Electrophorus preparations with potencies similar to those in brain preparations. Veratridine and batrachotoxin are less potent in blocking binding in Electrophorus than in brain preparations. It appears likely that binding in Electrophorus preparations is primarily to membrane fragments rather than vesicular entities as in brain. Binding of [(3)H]BTX-B to particulate preparations from electroplax of the ray Torpedo californica and the catfish Malapterurus electricus is mainly nonspecific. Scorpion venom does not enhance total binding and local anesthetics are not effective in antagonizing binding.

  7. Inactive enzymatic mutant proteins (phosphoglycerate mutase and enolase) as sugar binders for ribulose-1,5-bisphosphate regeneration reactors

    PubMed Central

    De, Debojyoti; Dutta, Debajyoti; Kundu, Moloy; Mahato, Sourav; Schiavone, Marc T; Chaudhuri, Surabhi; Giri, Ashok; Gupta, Vidya; Bhattacharya, Sanjoy K

    2005-01-01

    Background Carbon dioxide fixation bioprocess in reactors necessitates recycling of D-ribulose1,5-bisphosphate (RuBP) for continuous operation. A radically new close loop of RuBP regenerating reactor design has been proposed that will harbor enzyme-complexes instead of purified enzymes. These reactors will need binders enabling selective capture and release of sugar and intermediate metabolites enabling specific conversions during regeneration. In the current manuscript we describe properties of proteins that will act as potential binders in RuBP regeneration reactors. Results We demonstrate specific binding of 3-phosphoglycerate (3PGA) and 3-phosphoglyceraldehyde (3PGAL) from sugar mixtures by inactive mutant of yeast enzymes phosphoglycerate mutase and enolase. The reversibility in binding with respect to pH and EDTA has also been shown. No chemical conversion of incubated sugars or sugar intermediate metabolites were found by the inactive enzymatic proteins. The dissociation constants for sugar metabolites are in the micromolar range, both proteins showed lower dissociation constant (Kd) for 3-phosphoglycerate (655–796 μM) compared to 3-phosphoglyceraldehyde (822–966 μM) indicating higher affinity for 3PGA. The proteins did not show binding to glucose, sucrose or fructose within the sensitivity limits of detection. Phosphoglycerate mutase showed slightly lower stability on repeated use than enolase mutants. Conclusions The sugar and their intermediate metabolite binders may have a useful role in RuBP regeneration reactors. The reversibility of binding with respect to changes in physicochemical factors and stability when subjected to repeated changes in these conditions are expected to make the mutant proteins candidates for in-situ removal of sugar intermediate metabolites for forward driving of specific reactions in enzyme-complex reactors. PMID:15689239

  8. Identification of B. anthracis N(5)-carboxyaminoimidazole ribonucleotide mutase (PurE) active site binding compounds via fragment library screening.

    PubMed

    Lei, Hao; Jones, Christopher; Zhu, Tian; Patel, Kavankumar; Wolf, Nina M; Fung, Leslie W-M; Lee, Hyun; Johnson, Michael E

    2016-02-15

    The de novo purine biosynthesis pathway is an attractive target for antibacterial drug design, and PurE from this pathway has been identified to be crucial for Bacillus anthracis survival in serum. In this study we adopted a fragment-based hit discovery approach, using three screening methods-saturation transfer difference nucleus magnetic resonance (STD-NMR), water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR, and surface plasmon resonance (SPR), against B. anthracis PurE (BaPurE) to identify active site binding fragments by initially testing 352 compounds in a Zenobia fragment library. Competition STD NMR with the BaPurE product effectively eliminated non-active site binding hits from the primary hits, selecting active site binders only. Binding affinities (dissociation constant, KD) of these compounds varied between 234 and 301μM. Based on test results from the Zenobia compounds, we subsequently developed and applied a streamlined fragment screening strategy to screen a much larger library consisting of 3000 computationally pre-selected fragments. Thirteen final fragment hits were confirmed to exhibit binding affinities varying from 14μM to 700μM, which were categorized into five different basic scaffolds. All thirteen fragment hits have ligand efficiencies higher than 0.30. We demonstrated that at least two fragments from two different scaffolds exhibit inhibitory activity against the BaPurE enzyme. Published by Elsevier Ltd.

  9. Gonadotropin stimulation of cyclic adenosine monophosphate and testosterone production without detectable high-affinity binding sites in purified Leydig cells from rat testis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, E.S.; Bhalla, V.K.

    1991-02-01

    Rat testicular interstitial cells were separated by three different gradient-density procedures and, with each, two biochemically and morphologically distinct cell fractions were isolated. The lighter density cells in fraction-I bound iodine 125-labeled human chorionic gonadotropin (hCG) with high-affinity (apparent equilibrium dissociation constant, Kd, approximately 10{sup {minus} 10} M) without producing either cyclic adenosine monophosphate or testosterone in response to hormone action. The heavier-density cells displayed morphologic features typical of Leydig cells and produced cyclic adenosine monophosphate and testosterone in the presence of hCG without detectable {sup 125}I-labeled hCG high-affinity binding. These cell fractions were further characterized by studies using deglycosylatedmore » hCG, a known antagonist to hCG action. Cell concentration-dependent studies with purified Leydig cells revealed that maximal testosterone production was achieved when lower cell concentrations (0.5 x 10(6) cells/250 microliters) were used for in vitro hCG stimulation assays. Under these conditions, the {sup 125}I-labeled hCG binding was barely detectable (2.24 fmol; 2,698 sites/cell). Furthermore, these studies revealed that the hCG-specific binding in Leydig cells is overestimated by the classic method for nonspecific binding correction using excess unlabeled hormone. An alternate method is presented.« less

  10. Structural Basis of the High Affinity Interaction between the Alphavirus Nonstructural Protein-3 (nsP3) and the SH3 Domain of Amphiphysin-2.

    PubMed

    Tossavainen, Helena; Aitio, Olli; Hellman, Maarit; Saksela, Kalle; Permi, Perttu

    2016-07-29

    We show that a peptide from Chikungunya virus nsP3 protein spanning residues 1728-1744 binds the amphiphysin-2 (BIN1) Src homology-3 (SH3) domain with an unusually high affinity (Kd 24 nm). Our NMR solution complex structure together with isothermal titration calorimetry data on several related viral and cellular peptide ligands reveal that this exceptional affinity originates from interactions between multiple basic residues in the target peptide and the extensive negatively charged binding surface of amphiphysin-2 SH3. Remarkably, these arginines show no fixed conformation in the complex structure, indicating that a transient or fluctuating polyelectrostatic interaction accounts for this affinity. Thus, via optimization of such dynamic electrostatic forces, viral peptides have evolved a superior binding affinity for amphiphysin-2 SH3 compared with typical cellular ligands, such as dynamin, thereby enabling hijacking of amphiphysin-2 SH3-regulated host cell processes by these viruses. Moreover, our data show that the previously described consensus sequence PXRPXR for amphiphysin SH3 ligands is inaccurate and instead define it as an extended Class II binding motif PXXPXRpXR, where additional positive charges between the two constant arginine residues can give rise to extraordinary high SH3 binding affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Strong DNA deformation required for extremely slow DNA threading intercalation by a binuclear ruthenium complex

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2014-01-01

    DNA intercalation by threading is expected to yield high affinity and slow dissociation, properties desirable for DNA-targeted therapeutics. To measure these properties, we utilize single molecule DNA stretching to quantify both the binding affinity and the force-dependent threading intercalation kinetics of the binuclear ruthenium complex Δ,Δ-[μ‐bidppz‐(phen)4Ru2]4+ (Δ,Δ-P). We measure the DNA elongation at a range of constant stretching forces using optical tweezers, allowing direct characterization of the intercalation kinetics as well as the amount intercalated at equilibrium. Higher forces exponentially facilitate the intercalative binding, leading to a profound decrease in the binding site size that results in one ligand intercalated at almost every DNA base stack. The zero force Δ,Δ-P intercalation Kd is 44 nM, 25-fold stronger than the analogous mono-nuclear ligand (Δ-P). The force-dependent kinetics analysis reveals a mechanism that requires DNA elongation of 0.33 nm for association, relaxation to an equilibrium elongation of 0.19 nm, and an additional elongation of 0.14 nm from the equilibrium state for dissociation. In cells, a molecule with binding properties similar to Δ,Δ-P may rapidly bind DNA destabilized by enzymes during replication or transcription, but upon enzyme dissociation it is predicted to remain intercalated for several hours, thereby interfering with essential biological processes. PMID:25245944

  12. A monoclonal antibody based capture ELISA for botulinum neurotoxin serotype B: toxin detection in food.

    PubMed

    Stanker, Larry H; Scotcher, Miles C; Cheng, Luisa; Ching, Kathryn; McGarvey, Jeffery; Hodge, David; Hnasko, Robert

    2013-11-18

    Botulism is a serious foodborne neuroparalytic disease, caused by botulinum neurotoxin (BoNT), produced by the anaerobic bacterium Clostridium botulinum. Seven toxin serotypes (A-H) have been described. The majority of human cases of botulism are caused by serotypes A and B followed by E and F. We report here a group of serotype B specific monoclonal antibodies (mAbs) capable of binding toxin under physiological conditions. Thus, they serve as capture antibodies for a sandwich (capture) ELISA. The antibodies were generated using recombinant peptide fragments corresponding to the receptor-binding domain of the toxin heavy chain as immunogen. Their binding properties suggest that they bind a complex epitope with dissociation constants (KD's) for individual antibodies ranging from 10 to 48 × 10-11 M. Assay performance for all possible combinations of capture-detector antibody pairs was evaluated and the antibody pair resulting in the lowest level of detection (L.O.D.), ~20 pg/mL was determined. Toxin was detected in spiked dairy samples with good recoveries at concentrations as low as 0.5 pg/mL and in ground beef samples at levels as low as 2 ng/g. Thus, the sandwich ELISA described here uses mAb for both the capture and detector antibodies (binding different epitopes on the toxin molecule) and readily detects toxin in those food samples tested.

  13. Revealing multi-binding sites for taspine to VEGFR-2 by cell membrane chromatography zonal elution.

    PubMed

    Du, Hui; Wang, Sicen; Ren, Jing; Lv, Nan; He, Langchong

    2012-03-01

    A new high-expression vascular endothelial growth factor receptor-2 (VEGFR-2) cell membrane chromatography (CMC) method was developed to investigate the affinity of ligands for VEGFR-2. An HEK293 VEGFR-2/CMC system was applied to specifically recognize ligands acting on VEGFR-2. Sorafenib was used as a mobile phase additive to evaluate the effect of the marker's concentration on the retention of sorafenib and taspine, respectively. The relationship among the retention, the types of binding sites and the affinity of taspine binding to VEGFR-2 has also been concerned. The retention behavior indicated that sorafenib had two major binding regions on VEGFR-2, and that taspine might act as a multi-target VEGFR-2 inhibitor with similar biological activity to sorafenib. The equilibrium dissociation constants (K(D)) obtained from the model are (5.25 ± 0.31) × 10⁻⁷ and (9.88 ± 0.54) × 10⁻⁵ mol L⁻¹ for sorafenib at the high- and low-affinity sites, respectively, and the corresponding values for taspine are (3.88 ± 0.31) × 10⁻⁶ and (7.04 ± 0.49)×10⁻⁵ mol L⁻¹. The two types of binding sites contributed about a 1:2 ratio on the retention of taspine. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Cytochrome bo(3) from Escherichia coli: the binding and turnover of nitric oxide.

    PubMed

    Butler, Clive; Forte, Elena; Maria Scandurra, Francesca; Arese, Marzia; Giuffré, Alessandro; Greenwood, Colin; Sarti, Paolo

    2002-09-06

    The reaction of nitric oxide (NO) with fast and reduced cytochrome bo(3)(cyt bo(3)) from Escherichia coli has been investigated. The stoichiometry of NO binding to cyt bo(3) was determined using an NO electrode in the [NO] range 1-14 microM. Under reducing conditions, the initial decrease in [NO] following the addition of cyt bo(3) corresponded to binding of 1 NO molecule per cyt bo(3) functional unit. After this "rapid" NO binding phase, there was a slow, but significant rate of NO consumption ( approximately 0.3molNOmol bo(3)(-1)min(-1)), indicating that cyt bo(3) possesses a low level of NO reductase activity. The binding of NO to fast pulsed enzyme was also investigated. The results show that in the [NO] range used (1-14 microM) both fast and pulsed oxidised cyt bo(3) bind NO with a stoichiometry of 1:1 with an observed dissociation constant of K(d)=5.6+/-0.6 microM and that NO binding was inhibited by the presence of Cl(-). The binding of nitrite to the binuclear centre causes spectral changes similar to those observed upon NO binding to fast cyt bo(3). These results are discussed in relation to the model proposed by Wilson and co-workers [FEBS Lett. 414 (1997) 281] where the binding of NO to Cu(B)(II) results in the formation of the nitrosonium (Cu(B)(I)-NO(+)) complex. NO(+) then reacts with OH(-), a Cu(B) ligand, to form nitrite, which can bind at the binuclear centre. This work suggests for the first time that the binding of NO to oxidised cyt bo(3) does result in the reduction of Cu(B).

  15. Synthesis and Properties of Asante Calcium Red –a Novel Family of Long Excitation Wavelength Calcium Indicators

    PubMed Central

    Hyrc, Krzysztof L.; Minta, Akwasi; Escamilla, P. Rogelio; Chan, Patrick P.L.; Meshik, Xenia A.; Goldberg, Mark P.

    2013-01-01

    Although many synthetic calcium indicators are available, a search for compounds with improved characteristics continues. Here, we describe the synthesis and properties of Asante Calcium Red-1 (ACR-1) and its low affinity derivative (ACR-1-LA) created by linking BAPTA to seminaphthofluorescein. The indicators combine a visible light (450–540 nm) excitation with deep-red fluorescence (640 nm). Upon Ca2+ binding, the indicators raise their fluorescence with longer excitation wavelengths producing higher responses. Although the changes occur without any spectral shifts, it is possible to ratio Ca2+-dependent (640 nm) and quasi-independent (530 nm) emission when using visible (<490 nm) or multiphoton (~780 nm) excitation. Therefore, both probes can be used as single wavelength or, less dynamic, ratiometric indicators. Long indicator emission might allow easy [Ca2+]i measurement in GFP expressing cells. The indicators bind Ca2+ with either high (Kd=0.49±0.07 μM; ACR-1) or low affinity (Kd=6.65±0.13 μM; ACR-1-LA). Chelating Zn2+ (Kd =0.38±0.02 nM) or Mg2+ (Kd ~5 mM) slightly raises and binding Co2+ quenches dye fluorescence. New indicators are somewhat pH-sensitive (pKa=6.31±0.07), but fairly resistant to bleaching. The probes are rather dim, which combined with low AM ester loading efficiency, might complicate in situ imaging. Despite potential drawbacks, ACR-1 and ACR-1-LA are promising new calcium indicators. PMID:24017967

  16. Modulation of slow inactivation in human cardiac Kv1.5 channels by extra- and intracellular permeant cations

    PubMed Central

    Fedida, David; Maruoka, Neil D; Lin, Shunping

    1999-01-01

    The properties and regulation of slow inactivation by intracellular and extracellular cations in the human heart K+ channel hKv1.5 have been investigated. Extensive NH2- and COOH-terminal deletions outside the central core of transmembrane domains did not affect the degree of inactivation. The voltage dependence of steady-state inactivation curves of hKv1.5 channels was unchanged in Rb+ and Cs+, compared with K+, but biexponential inactivation over 10 s was reduced from ∼100% of peak current in Na+ to ∼65% in K+, ∼50% in Rb+ and ∼30% in Cs+. This occurred as a result of a decrease in both fast and slow components of inactivation, with little change in inactivation time constants. Changes in extracellular cation species and concentration (5-300 mM) had only small effects on the rates of inactivation and recovery from inactivation (τrecovery∼1 s). Mutation of residues at a putative regulatory site at R487 in the outer pore mouth did not affect slow inactivation or recovery from inactivation of hKv1.5, although sensitivity to extracellular TEA was conferred. Symmetrical reduction of both intra- and extracellular cation concentrations accelerated and augmented both components of inactivation of K+ (Kd = 34.7 mM) and Cs+ (Kd = 20.5 mM) currents. These effects could be quantitatively accounted for by unilateral reduction of intracellular K+ (Ki+) (Kd = 43.4 mM) or Csi+ with constant 135 mM external ion concentrations. We conclude that inactivation and recovery from inactivation in hKv1.5 were not typically C-type in nature. However, the ion species dependence of inactivation was still closely coupled to ion permeation through the pore. Intracellular ion modulatory actions were more potent than extracellular actions, although still of relatively low affinity. These results suggest the presence of ion binding sites capable of regulating inactivation located on both intracellular and extracellular sides of the pore selectivity filter. PMID:10050000

  17. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.

    PubMed

    Hamula, Camille L A; Peng, Hanyong; Wang, Zhixin; Tyrrell, Gregory J; Li, Xing-Fang; Le, X Chris

    2016-03-15

    Streptococcus pyogenes is a clinically important pathogen consisting of various serotypes determined by different M proteins expressed on the cell surface. The M type is therefore a useful marker to monitor the spread of invasive S. pyogenes in a population. Serotyping and nucleic acid amplification/sequencing methods for the identification of M types are laborious, inconsistent, and usually confined to reference laboratories. The primary objective of this work is to develop a technique that enables generation of aptamers binding to specific M-types of S. pyogenes. We describe here an in vitro technique that directly used live bacterial cells and the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) strategy. Live S. pyogenes cells were incubated with DNA libraries consisting of 40-nucleotides randomized sequences. Those sequences that bound to the cells were separated, amplified using polymerase chain reaction (PCR), purified using gel electrophoresis, and served as the input DNA pool for the next round of SELEX selection. A specially designed forward primer containing extended polyA20/5Sp9 facilitated gel electrophoresis purification of ssDNA after PCR amplification. A counter-selection step using non-target cells was introduced to improve selectivity. DNA libraries of different starting sequence diversity (10(16) and 10(14)) were compared. Aptamer pools from each round of selection were tested for their binding to the target and non-target cells using flow cytometry. Selected aptamer pools were then cloned and sequenced. Individual aptamer sequences were screened on the basis of their binding to the 10 M-types that were used as targets. Aptamer pools obtained from SELEX rounds 5-8 showed high affinity to the target S. pyogenes cells. Tests against non-target Streptococcus bovis, Streptococcus pneumoniae, and Enterococcus species demonstrated selectivity of these aptamers for binding to S. pyogenes. Several aptamer sequences were found to bind preferentially to the M11 M-type of S. pyogenes. Estimated binding dissociation constants (Kd) were in the low nanomolar range for the M11 specific sequences; for example, sequence E-CA20 had a Kd of 7±1 nM. These affinities are comparable to those of a monoclonal antibody. The improved bacterial cell-SELEX technique is successful in generating aptamers selective for S. pyogenes and some of its M-types. These aptamers are potentially useful for detecting S. pyogenes, achieving binding profiles of the various M-types, and developing new M-typing technologies for non-specialized laboratories or point-of-care testing. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A Transient Kinetic Approach to Investigate Nucleoside Inhibitors of Mitochondrial DNA polymerase γ

    PubMed Central

    Anderson, Karen S.

    2010-01-01

    Nucleoside analogs play an essential role in treating human immunodeficiency virus (HIV) infection since the beginning of the AIDS epidemic and work by inhibition of HIV-1 reverse transcriptase (RT), a viral polymerase essential for DNA replication. Today, over 90% of all regimens for HIV treatment contain at least one nucleoside. Long-term use of nucleoside analogs has been associated with adverse effects including mitochondrial toxicity due to inhibition of the mitochondrial polymerase, DNA polymerase gamma (mtDNA pol ©). In this review, we describe our efforts to delineate the molecular mechanism of nucleoside inhibition of HIV-1 RT and mtDNA pol © based upon a transient kinetic approach using rapid chemical quench methodology. Using transient kinetic methods, the maximum rate of polymerization (kpol), the dissociation constant for the ground state binding (Kd), and the incorporation efficiency (kpol/Kd) can be determined for the nucleoside analogs and their natural substrates. This analysis allowed us to develop an understanding of the structure activity relationships that allow correlation between the structural and stereochemical features of the nucleoside analog drugs with their mechanistic behavior toward the viral polymerase, RT, and the host cell polymerase, mtDNA pol γ. An in-depth understanding of the mechanisms of inhibition of these enzymes is imperative in overcoming problems associated with toxicity. PMID:20573564

  19. The novel kinetics expression of Cadmium (II) removal using green adsorbent horse dung humic acid (Hd-Ha)

    NASA Astrophysics Data System (ADS)

    Basuki, Rahmat; Santosa, Sri Juari; Rusdiarso, Bambang

    2017-03-01

    Humic acid from dry horse dung powder has been prepared and this horse dung humic acid (HD-HA) was then applied as a sorbent to adsorb Cadmium(II) from a solution. Characterization of HD-HA was conducted by detection of its functional group, UV-Vis spectra, ash level, and total acidity. Result of the work showed that HD-HA had similar character compared with peat soil humic acid (PS-HA) and previous researchers. The adsorption study of this work was investigated by batch experiment in pH 5. The thermodynamics parameters in this work were determined by the Langmuir isotherm model for monolayer sorption and Freundlich isotherm model multilayer sorption. Monolayer sorption capacity (b) for HD-HA was 1.329 × 10-3 mol g-1, equilibrium constant (K) was 5.651 (mol/L)-1, and multilayer sorption capacity was 2.646 × 10-2 mol g-1. The kinetics parameters investigated in this work were determined by the novel kinetics expression resulted from the mathematical derivation the availability of binding sites of sorbent. Adsorption rate constant (ka) from this novel expression was 43.178 min-1 (mol/L)-1 and desorption rate constant (kd) was 1.250 × 10-2 min-1. Application of the kinetics model on sorption Cd(II) onto HD-HA showed the nearly all of models gave a good linearity. However, only this proposed kinetics expression has good relation with Langmuir model. The novel kinetics expression proposed in this paper seems to be more realistic and reasonable and close to the experimental real condition because the value of ka/kd (3452 (mol/L)-1) was fairly close with K from Langmuir isotherm model (5651 (mol/L)-1). Comparison of this novel kinetics expression with well-known Lagergren pseudo-first order kinetics and Ho pseudo-second order kinetics was also critically discussed in this paper.

  20. Serotonin storage pools in basophil leukemia and mast cells: characterization of two types of serotonin binding protein and radioautographic analysis of the intracellular distribution of (/sup 3/H)serotonin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamir, H.; Theoharides, T.C.; Gershon, M.D.

    1982-06-01

    The binding of serotonin to protein(s) derived from rat basophil leukemia (RBL) cells and mast cells was studied. Two types of serotonin binding protein in RBL cells was found. These proteins differed from one another in molecular weight and eluted in separate peaks from sephadex G-200 columns. Peak I protein (KD = 1.9 x 10/sup -6/ M) was a glycoprotein that bound to concanavalin A (Con A); Peak II protein (KD/sub 1/ = 4.5 x 10/sup -/8 M; KD/sub 2/ = 3.9 x 10/sup -6/ M) did not bind to Con A. Moreover, binding of (/sup 3/H)serotonin to protein ofmore » Peak I was sensitive to inhibition by reserpine, while binding of (/sup 3/H)serotonin to protein of Peak II resisted inhibition by that drug. Other differences between the two types of binding protein were found, the most significant of which was the far more vigorous conditions of homogenization required to extract Peak I than Peak II protein. Electron microscope radioautographic analysis of the intracellular distribution of (/sup 3/H) serotonin taken up in vitro by RBL cells or in vivo by murine mast cells indicated that essentially all of the labeled amine was located in cytoplasmic granules.No evidence for a pool in the cytosol was found and all granules were capable of becoming labeled. The presence of two types of intracellular serotonin binding proteins in these cells may indicate that there are two intracellular storage compartments for the amine. Both may be intragranular, but Peak I protein may be associated with the granular membrane while Peak II protein may be more free within the granular core. Different storage proteins may help to explain the differential release of amines from mast cell granules.« less

  1. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    PubMed

    Banerjee, S; Poddar, M K

    2016-04-05

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Calcium Regulates Molecular Interactions of Otoferlin with Soluble NSF Attachment Protein Receptor (SNARE) Proteins Required for Hair Cell Exocytosis*

    PubMed Central

    Ramakrishnan, Neeliyath A.; Drescher, Marian J.; Morley, Barbara J.; Kelley, Philip M.; Drescher, Dennis G.

    2014-01-01

    Mutations in otoferlin, a C2 domain-containing ferlin family protein, cause non-syndromic hearing loss in humans (DFNB9 deafness). Furthermore, transmitter secretion of cochlear inner hair cells is compromised in mice lacking otoferlin. In the present study, we show that the C2F domain of otoferlin directly binds calcium (KD = 267 μm) with diminished binding in a pachanga (D1767G) C2F mouse mutation. Calcium was found to differentially regulate binding of otoferlin C2 domains to target SNARE (t-SNARE) proteins and phospholipids. C2D–F domains interact with the syntaxin-1 t-SNARE motif with maximum binding within the range of 20–50 μm Ca2+. At 20 μm Ca2+, the dissociation rate was substantially lower, indicating increased binding (KD = ∼10−9) compared with 0 μm Ca2+ (KD = ∼10−8), suggesting a calcium-mediated stabilization of the C2 domain·t-SNARE complex. C2A and C2B interactions with t-SNAREs were insensitive to calcium. The C2F domain directly binds the t-SNARE SNAP-25 maximally at 100 μm and with reduction at 0 μm Ca2+, a pattern repeated for C2F domain interactions with phosphatidylinositol 4,5-bisphosphate. In contrast, C2F did not bind the vesicle SNARE protein synaptobrevin-1 (VAMP-1). Moreover, an antibody targeting otoferlin immunoprecipitated syntaxin-1 and SNAP-25 but not synaptobrevin-1. As opposed to an increase in binding with increased calcium, interactions between otoferlin C2F domain and intramolecular C2 domains occurred in the absence of calcium, consistent with intra-C2 domain interactions forming a “closed” tertiary structure at low calcium that “opens” as calcium increases. These results suggest a direct role for otoferlin in exocytosis and modulation of calcium-dependent membrane fusion. PMID:24478316

  3. Dissecting the Dynamic Pathways of Stereoselective DNA Threading Intercalation

    PubMed Central

    Almaqwashi, Ali A.; Andersson, Johanna; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2016-01-01

    DNA intercalators that have high affinity and slow kinetics are developed for potential DNA-targeted therapeutics. Although many natural intercalators contain multiple chiral subunits, only intercalators with a single chiral unit have been quantitatively probed. Dumbbell-shaped DNA threading intercalators represent the next order of structural complexity relative to simple intercalators, and can provide significant insights into the stereoselectivity of DNA-ligand intercalation. We investigated DNA threading intercalation by binuclear ruthenium complex [μ-dppzip(phen)4Ru2]4+ (Piz). Four Piz stereoisomers are defined by the chirality of the intercalating subunit (Ru(phen)2dppz) and the distal subunit (Ru(phen)2ip), respectively, each of which can be either right-handed (Δ) or left-handed (Λ). We used optical tweezers to measure single DNA molecule elongation due to threading intercalation, revealing force-dependent DNA intercalation rates and equilibrium dissociation constants. The force spectroscopy analysis provided the zero-force DNA binding affinity, the equilibrium DNA-ligand elongation Δxeq, and the dynamic DNA structural deformations during ligand association xon and dissociation xoff. We found that Piz stereoisomers exhibit over 20-fold differences in DNA binding affinity, from a Kd of 27 ± 3 nM for (Δ,Λ)-Piz to a Kd of 622 ± 55 nM for (Λ,Δ)-Piz. The striking affinity decrease is correlated with increasing Δxeq from 0.30 ± 0.02 to 0.48 ± 0.02 nm and xon from 0.25 ± 0.01 to 0.46 ± 0.02 nm, but limited xoff changes. Notably, the affinity and threading kinetics is 10-fold enhanced for right-handed intercalating subunits, and 2- to 5-fold enhanced for left-handed distal subunits. These findings demonstrate sterically dispersed transition pathways and robust DNA structural recognition of chiral intercalators, which are critical for optimizing DNA binding affinity and kinetics. PMID:27028636

  4. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species.

    PubMed

    Zhao, Yuefang; Niu, Congwei; Wen, Xin; Xi, Zhen

    2013-04-15

    Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay.

    PubMed

    Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M

    1991-05-15

    A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Characterization of the high affinity binding of epsilon toxin from Clostridium perfringens to the renal system.

    PubMed

    Dorca-Arévalo, Jonatan; Martín-Satué, Mireia; Blasi, Juan

    2012-05-25

    Epsilon toxin (ε-toxin), produced by Clostridium perfringens types B and D, causes fatal enterotoxaemia in livestock. In the renal system, the toxin binds to target cells before oligomerization, pore formation and cell death. Still, there is little information about the cellular and molecular mechanism involved in the initial steps of the cytotoxic action of ε-toxin, including the specific binding to the target sensitive cells. In the present report, the binding step of ε-toxin to the MDCK cell line is characterized by means of an ELISA-based binding assay with recombinant ε-toxin-green fluorescence protein (ε-toxin-GFP) and ε-prototoxin-GFP. In addition, different treatments with Pronase E, detergents, N-glycosidase F and beta-elimination on MDCK cells and renal cryosections have been performed to further characterize the ε-toxin binding. The ELISA assays revealed a single binding site with a similar dissociation constant (K(d)) for ε-toxin-GFP and ε-prototoxin-GFP, but a three-fold increase in B(max) levels in the case of ε-toxin-GFP. Double staining on kidney cryoslices with lectins and ε-prototoxin-GFP revealed specific binding to distal and collecting tubule cells. In addition, experiments on kidney and bladder cryoslices demonstrated the specific binding to distal tubule of a range of mammalian renal systems. Pronase E and beta-elimination treatments on kidney cryoslices and MDCK cells revealed that the binding of ε-toxin in renal system is mediated by a O-glycoprotein. Detergent treatments revealed that the integrity of the plasma membrane is required for the binding of ε-toxin to its receptor. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. All-trans retinol, vitamin D and other hydrophobic compounds bind in the axial pore of the five-stranded coiled-coil domain of cartilage oligomeric matrix protein.

    PubMed Central

    Guo, Y; Bozic, D; Malashkevich, V N; Kammerer, R A; Schulthess, T; Engel, J

    1998-01-01

    The potential storage and delivery function of cartilage oligomeric matrix protein (COMP) for cell signaling molecules was explored by binding hydrophobic compounds to the recombinant five-stranded coiled-coil domain of COMP. Complex formation with benzene, cyclohexane, vitamin D3 and elaidic acid was demonstrated through increases in denaturation temperatures of 2-10 degreesC. For all-trans retinol and all-trans retinoic acid, an equilibrium dissociation constant KD = 0.6 microM was evaluated by fluorescence titration. Binding of benzene and all-trans retinol into the hydrophobic axial pore of the COMP coiled-coil domain was proven by the X-ray crystal structures of the corresponding complexes at 0.25 and 0.27 nm resolution, respectively. Benzene binds with its plane perpendicular to the pore axis. The binding site is between the two internal rings formed by Leu37 and Thr40 pointing into the pore of the COMP coiled-coil domain. The retinol beta-ionone ring is positioned in a hydrophobic environment near Thr40, and the 1.1 nm long isoprene tail follows a completely hydrophobic region of the pore. Its terminal hydroxyl group complexes with a ring of the five side chains of Gln54. A mutant in which Gln54 is replaced by Ile binds all-trans retinol with affinity similar to the wild-type, demonstrating that hydrophobic interactions are predominant. PMID:9736606

  8. Relationship between Na+-dependent respiration and Na+ + K+-adenosine triphosphatase activity in the action of thyroid hormone on rat jejunal mucosa.

    PubMed Central

    Liberman, U A; Asano, Y; Lo, C S; Edelman, I S

    1979-01-01

    Administration of three successive doses of triiodothyronine (T3) (50 micrograms/100 g body wt), given on alternate days to thyroidectomized and euthyroid rats, stimulated oxygen consumption (QO2) and Na+ transport-dependent respiration (QO2 [5]) in the stripped jejunal mucosa, a preparation that consisted mostly of epithelial cells. The increase in QO2(t) accounted for 57% of the increment in QO2 in the transition from the hypothyroid to the euthyroid state and for 29% of the increment in the transition from the euthyroid to the hyperthyroid state. Administration of T3 to hypothyroid rats also increased the yield of epithelial cells. Injection of T3 into thyroidectomized and euthyroid rats increased the specific activity (at Vmax) of the (Na+ + K+)-dependent adenosine triphosphatase (NaK-ATPase) in jejunal crude membrane preparations. No significant change was recorded in the activity of Mg-ATPase in the same preparation. The ratio of QO2/NaK-ATPase and QO2(t)/NaK-ATPase in the various thyroid states remained constant, indicating proportionate increased in the respiratory and enzymatic indices. The effect of administration of T3 to thyroidectomized rats on the number of NaK-ATPase units (recovered in the crude membrane preparation) was estimated by: (a) Na+ + Mg++ + ATP-dependent binding of [3H]-ouabain to crude membrane fractions, and (b) the amount of the phosphorylated intermediate formed in the NaK-ATPase reaction from AT32P(gamma). Estimates were obtained of the maximal number of [3H]ouabain binding sites (Nm) and dissociation constants (Kd). Nm for [3H]ouabain and Nak-ATPase specific activity increased to about the same extent after T3 administration to thyroidectomized rats, with no change in the apparent Kd values. The amount of phosphorylated intermediate formed in jejunal crude membrane preparations also increased significantly. Thus, thyroid hormone administration may increase the number of active Na+pump sites in the plasma membrane. The apparent increase in the number of Na+ pump sites also correlated with the hormone dependent increases in QO2 and QO2(t). Images FIGURE 1 PMID:233567

  9. Relationship between Na+-dependent respiration and Na+ + K+-adenosine triphosphatase activity in the action of thyroid hormone on rat jejunal mucosa.

    PubMed

    Liberman, U A; Asano, Y; Lo, C S; Edelman, I S

    1979-07-01

    Administration of three successive doses of triiodothyronine (T3) (50 micrograms/100 g body wt), given on alternate days to thyroidectomized and euthyroid rats, stimulated oxygen consumption (QO2) and Na+ transport-dependent respiration (QO2 [5]) in the stripped jejunal mucosa, a preparation that consisted mostly of epithelial cells. The increase in QO2(t) accounted for 57% of the increment in QO2 in the transition from the hypothyroid to the euthyroid state and for 29% of the increment in the transition from the euthyroid to the hyperthyroid state. Administration of T3 to hypothyroid rats also increased the yield of epithelial cells. Injection of T3 into thyroidectomized and euthyroid rats increased the specific activity (at Vmax) of the (Na+ + K+)-dependent adenosine triphosphatase (NaK-ATPase) in jejunal crude membrane preparations. No significant change was recorded in the activity of Mg-ATPase in the same preparation. The ratio of QO2/NaK-ATPase and QO2(t)/NaK-ATPase in the various thyroid states remained constant, indicating proportionate increased in the respiratory and enzymatic indices. The effect of administration of T3 to thyroidectomized rats on the number of NaK-ATPase units (recovered in the crude membrane preparation) was estimated by: (a) Na+ + Mg++ + ATP-dependent binding of [3H]-ouabain to crude membrane fractions, and (b) the amount of the phosphorylated intermediate formed in the NaK-ATPase reaction from AT32P(gamma). Estimates were obtained of the maximal number of [3H]ouabain binding sites (Nm) and dissociation constants (Kd). Nm for [3H]ouabain and Nak-ATPase specific activity increased to about the same extent after T3 administration to thyroidectomized rats, with no change in the apparent Kd values. The amount of phosphorylated intermediate formed in jejunal crude membrane preparations also increased significantly. Thus, thyroid hormone administration may increase the number of active Na+pump sites in the plasma membrane. The apparent increase in the number of Na+ pump sites also correlated with the hormone dependent increases in QO2 and QO2(t).

  10. Ibrutinib targets mutant-EGFR kinase with a distinct binding conformation.

    PubMed

    Wang, Aoli; Yan, Xiao-E; Wu, Hong; Wang, Wenchao; Hu, Chen; Chen, Cheng; Zhao, Zheng; Zhao, Peng; Li, Xixiang; Wang, Li; Wang, Beilei; Ye, Zi; Wang, Jinhua; Wang, Chu; Zhang, Wei; Gray, Nathanael S; Weisberg, Ellen L; Chen, Liang; Liu, Jing; Yun, Cai-Hong; Liu, Qingsong

    2016-10-25

    Ibrutinib, a clinically approved irreversible BTK kinase inhibitor for Mantle Cell Lymphoma (MCL) and Chronic Lymphocytic Leukemia (CLL) etc, has been reported to be potent against EGFR mutant kinase and currently being evaluated in clinic for Non Small Cell Lung Cancer (NSCLC). Through EGFR wt/mutant engineered isogenic BaF3 cell lines we confirmed the irreversible binding mode of Ibrutinib with EGFR wt/mutant kinase via Cys797. However, comparing to typical irreversible EGFR inhibitor, such as WZ4002, the washing-out experiments revealed a much less efficient covalent binding for Ibrutinib. The biochemical binding affinity examination in the EGFR L858R/T790M kinase revealed that, comparing to more efficient irreversible inhibitor WZ4002 (Kd: 0.074 μM), Ibrutinib exhibited less efficient binding (Kd: 0.18 μM). An X-ray crystal structure of EGFR (T790M) in complex with Ibrutinib exhibited a unique DFG-in/c-Helix-out inactive binding conformation, which partially explained the less efficiency of covalent binding and provided insight for further development of highly efficient irreversible binding inhibitor for the EGFR mutant kinase. These results also imply that, unlike the canonical irreversible inhibitor, sustained effective concentration might be required for Ibrutinib in order to achieve the maximal efficacy in the clinic application against EGFR driven NSCLC.

  11. Binding affinities of NKG2D and CD94 to sialyl Lewis X-expressing N-glycans and heparin.

    PubMed

    Higai, Koji; Suzuki, Chiho; Imaizumi, Yuzo; Xin, Xin; Azuma, Yutaro; Matsumoto, Kojiro

    2011-01-01

    Lectin-like receptors natural killer group 2D (NKG2D) and CD94 on natural killer (NK) cells bind to α2,3-NeuAc-containing N-glycans and heparin/heparan sulfate (HS). Using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rGST-NKG2Dlec) and CD94 (rGST-CD94lec), we evaluated their binding affinities (K(d)) to high sialyl Lewis X (sLeX)-expressing transferrin secreted by HepG2 cells (HepTf) and heparin-conjugated bovine serum albumin (Heparin-BSA), using quartz crystal microbalance (QCM) and enzyme immunoassay (EIA) microplate methods. K(d) values obtained by linear reciprocal plots revealed good coincidence between the two methods. K(d) values of rGST-NKG2Dlec obtained by QCM and EIA, respectively, were 1.19 and 1.11 µM for heparin-BSA >0.30 and 0.20 µM for HepTf, while those of rGST-CD94lec were 1.31 and 1.45 µM for HepTf >0.37 and 0.36 µM for heparin-BSA. These results suggested that these glycans can interact with NKG2D and CD94 to modulate NK cell-dependent cytotoxicity.

  12. Mycobacterium leprae antigens involved in human immune responses. I. Identification of four antigens by monoclonal antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, W.J.; Hellqvist, L.; Basten, A.

    1985-12-01

    Four distinct antigens were identified in soluble sonicates of Mycobacterium leprae by using a panel of 11 monoclonal antibodies. Cross-reactivity studies with other mycobacterial species were conducted by using ELISA and immunoblot assays, and demonstrated that determinants on two of the antigens were present in many mycobacteria, whereas the other two were limited in distribution. Competitive inhibition experiments with radiolabeled monoclonal antibodies showed cross-inhibition between antibodies identifying two of the four antigenicbands. These two bands, of M/sub tau/ 4.5 to 6 KD and 30 to 40 KD, were resistant to protease treatment after immunoblotting. In contrast the two other bandsmore » of 16 and 70 KD were protease-sensitive. Although all four bands reacted with some human lepromatous leprosy sera in immunoblots, the 4.5 to 6 KD and 30 to 40 KD bands were most prominent. Lepromatous leprosy sera also inhibited the binding of radiolabeled monoclonal antibodies to each of the four antigens, with the mean titer causing 50% inhibition being higher for antibodies reacting with the 4.5 to 6 KD and 30 to 40 KD bands. These findings indicated that all four antigens were involved in the human B cell response to M. leprae.« less

  13. The hepta-beta-glucoside elicitor-binding proteins from legumes represent a putative receptor family.

    PubMed

    Mithöfer, A; Fliegmann, J; Neuhaus-Url, G; Schwarz, H; Ebel, J

    2000-08-01

    The ability of legumes to recognize and respond to beta-glucan elicitors by synthesizing phytoalexins is consistent with the existence of a membrane-bound beta-glucan-binding site. Related proteins of approximately 75 kDa and the corresponding mRNAs were detected in various species of legumes which respond to beta-glucans. The cDNAs for the beta-glucan-binding proteins of bean and soybean were cloned. The deduced 75-kDa proteins are predominantly hydrophilic and constitute a unique class of glucan-binding proteins with no currently recognizable functional domains. Heterologous expression of the soybean beta-glucan-binding protein in tomato cells resulted in the generation of a high-affinity binding site for the elicitor-active hepta-beta-glucoside conjugate (Kd = 4.5 nM). Ligand competition experiments with the recombinant binding sites demonstrated similar ligand specificities when compared with soybean. In both soybean and transgenic tomato, membrane-bound, active forms of the glucan-binding proteins coexist with immunologically detectable, soluble but inactive forms of the proteins. Reconstitution of a soluble protein fraction into lipid vesicles regained beta-glucoside-binding activity but with lower affinity (Kd = 130 nM). We conclude that the beta-glucan elicitor receptors of legumes are composed of the 75 kDa glucan-binding proteins as the critical components for ligand-recognition, and of an as yet unknown membrane anchor constituting the plasma membrane-associated receptor complex.

  14. Allergic reaction to latex: a risk factor for unsuspected anaphylaxis.

    PubMed

    Warpinski, J R; Folgert, J; Cohen, M; Bush, R K

    1991-01-01

    Allergic reactions to latex, including anaphylaxis may be a problem in certain individuals exposed to latex. Four atopic patients with symptoms of rhinitis, asthma, anaphylaxis, and/or urticaria upon contact with latex products were studied. The patients showed IgE binding to latex RAST disks ranging from 1.0 to 27.3 times the negative control. Latex products (gloves, balloons, and condoms) directly bound IgE from all four patients. Eluted proteins from the latex products inhibited IgE binding to commercial latex RAST disks. SDS-PAGE demonstrated multiple latex protein bands by Coomassie Blue staining between 14 and 66 kD. Immunoblotting showed specific IgE binding to latex proteins at 30 and 66 kD. These results indicate that latex-allergic patients have IgE directed against specific latex proteins. Allergy to latex can pose a substantial health risk to susceptible individuals.

  15. Sulfated Metabolites of Polychlorinated Biphenyls Are High-Affinity Ligands for the Thyroid Hormone Transport Protein Transthyretin

    PubMed Central

    Grimm, Fabian A.; Lehmler, Hans-Joachim; He, Xianran; Robertson, Larry W.

    2013-01-01

    Background: The displacement of l-thyroxine (T4) from binding sites on transthyretin (TTR) is considered a significant contributing mechanism in polychlorinated biphenyl (PCB)-induced thyroid disruption. Previous research has discovered hydroxylated PCB metabolites (OH-PCBs) as high-affinity ligands for TTR, but the binding potential of conjugated PCB metabolites such as PCB sulfates has not been explored. Objectives: We evaluated the binding of five lower-chlorinated PCB sulfates to human TTR and compared their binding characteristics to those determined for their OH-PCB precursors and for T4. Methods: We used fluorescence probe displacement studies and molecular docking simulations to characterize the binding of PCB sulfates to TTR. The stability of PCB sulfates and the reversibility of these interactions were characterized by HPLC analysis of PCB sulfates after their binding to TTR. The ability of OH-PCBs to serve as substrates for human cytosolic sulfotransferase 1A1 (hSULT1A1) was assessed by OH-PCB–dependent formation of adenosine-3´,5´-diphosphate, an end product of the sulfation reaction. Results: All five PCB sulfates were able to bind to the high-affinity binding site of TTR with equilibrium dissociation constants (Kd values) in the low nanomolar range (4.8–16.8 nM), similar to that observed for T4 (4.7 nM). Docking simulations provided corroborating evidence for these binding interactions and indicated multiple high-affinity modes of binding. All OH-PCB precursors for these sulfates were found to be substrates for hSULT1A1. Conclusions: Our findings show that PCB sulfates are high-affinity ligands for human TTR and therefore indicate, for the first time, a potential relevance for these metabolites in PCB-induced thyroid disruption. PMID:23584369

  16. The Hydrogenase Activity of the Molybdenum/Copper-containing Carbon Monoxide Dehydrogenase of Oligotropha carboxidovorans*

    PubMed Central

    Wilcoxen, Jarett; Hille, Russ

    2013-01-01

    The reaction of the air-tolerant CO dehydrogenase from Oligotropha carboxidovorans with H2 has been examined. Like the Ni-Fe CO dehydrogenase, the enzyme can be reduced by H2 with a limiting rate constant of 5.3 s−1 and a dissociation constant Kd of 525 μm; both kred and kred/Kd, reflecting the breakdown of the Michaelis complex and the reaction of free enzyme with free substrate in the low [S] regime, respectively, are largely pH-independent. During the reaction with H2, a new EPR signal arising from the Mo/Cu-containing active site of the enzyme is observed which is distinct from the signal seen when the enzyme is reduced by CO, with greater g anisotropy and larger hyperfine coupling to the active site 63,65Cu. The signal also exhibits hyperfine coupling to at least two solvent-exchangeable protons of bound substrate that are rapidly exchanged with solvent. Proton coupling is also evident in the EPR signal seen with the dithionite-reduced native enzyme, and this coupling is lost in the presence of bicarbonate. We attribute the coupled protons in the dithionite-reduced enzyme to coordinated water at the copper site in the native enzyme and conclude that bicarbonate is able to displace this water from the copper coordination sphere. On the basis of our results, a mechanism for H2 oxidation is proposed which involves initial binding of H2 to the copper of the binuclear center, displacing the bound water, followed by sequential deprotonation through a copper-hydride intermediate to reduce the binuclear center. PMID:24165123

  17. What is the role of the second "structural" NADP+-binding site in human glucose 6-phosphate dehydrogenase?

    PubMed

    Wang, Xiao-Tao; Chan, Ting Fai; Lam, Veronica M S; Engel, Paul C

    2008-08-01

    Human glucose 6-phosphate dehydrogenase, purified after overexpression in E. coli, was shown to contain one molecule/subunit of acid-extractable "structural" NADP+ and no NADPH. This tightly bound NADP+ was reduced by G6P, presumably following migration to the catalytic site. Gel-filtration yielded apoenzyme, devoid of bound NADP+ but, surprisingly, still fully active. Mr of the main component of "stripped" enzyme by gel filtration was approximately 100,000, suggesting a dimeric apoenzyme (subunit Mr = 59,000). Holoenzyme also contained tetramer molecules and, at high protein concentration, a dynamic equilibrium gave an apparent intermediate Mr of 150 kDa. Fluorescence titration of the stripped enzyme gave the K d for structural NADP+ as 37 nM, 200-fold lower than for "catalytic" NADP+. Structural NADP+ quenches 91% of protein fluorescence. At 37 degrees C, stripped enzyme, much less stable than holoenzyme, inactivated irreversibly within 2 d. Inactivation at 4 degrees C was partially reversed at room temperature, especially with added NADP+. Apoenzyme was immediately active, without any visible lag, in rapid-reaction studies. Human G6PD thus forms active dimer without structural NADP+. Apparently, the true role of the second, tightly bound NADP+ is to secure long-term stability. This fits the clinical pattern, G6PD deficiency affecting the long-lived non-nucleate erythrocyte. The Kd values for two class I mutants, G488S and G488V, were 273 nM and 480 nM, respectively (seven- and 13-fold elevated), matching the structural prediction of weakened structural NADP+ binding, which would explain decreased stability and consequent disease. Preparation of native apoenzyme and measurement of Kd constant for structural NADP+ will now allow quantitative assessment of this defect in clinical G6PD mutations.

  18. ATP and magnesium promote cotton short-form ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase hexamer formation at low micromolar concentrations.

    PubMed

    Kuriata, Agnieszka M; Chakraborty, Manas; Henderson, J Nathan; Hazra, Suratna; Serban, Andrew J; Pham, Tuong V T; Levitus, Marcia; Wachter, Rebekka M

    2014-11-25

    We report a fluorescence correlation spectroscopy (FCS) study of the assembly pathway of the AAA+ protein ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca), a ring-forming ATPase responsible for activation of inhibited Rubisco complexes for biological carbon fixation. A thermodynamic characterization of simultaneously populated oligomeric states appears critical in understanding Rca structure and function. Using cotton β-Rca, we demonstrate that apparent diffusion coefficients vary as a function of concentration, nucleotide, and cation. Using manual fitting procedures, we provide estimates for the equilibrium constants for the stepwise assembly and find that in the presence of ATPγS, the Kd for hexamerization is 10-fold lower than with ADP (∼0.1 vs ∼1 μM). Hexamer fractions peak at 30 μM and dominate at 8-70 μM Rca, where they comprise 60-80% of subunits with ATPγS, compared with just 30-40% with ADP. Dimer fractions peak at 1-4 μM Rca, where they comprise 15-18% with ATPγS and 26-28% with ADP. At 30 μM Rca, large aggregates begin to form that comprise ∼10% of total protein with ATPγS and ∼25% with ADP. FCS data collected on the catalytically impaired WalkerB-D173N variant in the presence of ATP provided strong support for these results. Titration with free magnesium ions lead to the disaggregation of larger complexes in favor of hexameric forms, suggesting that a second magnesium binding site with a Kd value of 1-3 mM mediates critical subunit contacts. We propose that closed-ring toroidal hexameric forms are stabilized by binding of Mg·ATP plus Mg2+, whereas Mg·ADP promotes continuous assembly to supramolecular aggregates such as spirals.

  19. OmpL1 Is an Extracellular Matrix- and Plasminogen-Interacting Protein of Leptospira spp.

    PubMed Central

    Fernandes, Luis G. V.; Vieira, Monica L.; Kirchgatter, Karin; Alves, Ivy J.; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Romero, Eliete C.

    2012-01-01

    Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection. PMID:22802342

  20. OmpL1 is an extracellular matrix- and plasminogen-interacting protein of Leptospira spp.

    PubMed

    Fernandes, Luis G V; Vieira, Monica L; Kirchgatter, Karin; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Romero, Eliete C; Nascimento, Ana L T O

    2012-10-01

    Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with K(D) (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a K(D) of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.

  1. Identification and structural mechanism for a novel interaction between a ubiquitin ligase WWP1 and Nogo-A, a key inhibitor for central nervous system regeneration.

    PubMed

    Qin, Haina; Pu, Helen X; Li, Minfen; Ahmed, Sohail; Song, Jianxing

    2008-12-23

    Nogo-A has been extensively demonstrated to play key roles in inhibiting central nervous system regeneration, regulating endoplasmic reticulum formation, and maintaining the integrity of the neuromuscular junction. In this study, an E3 ubiquitin ligase WWP1 was first identified to be a novel interacting partner for Nogo-A both in vitro and in vivo. By using CD, ITC, and NMR, we have further conducted extensive studies on all four WWP1 WW domains and their interactions with a Nogo-A peptide carrying the only PPxY motif. The results lead to several striking findings. (1) Despite containing an unstructured region, the 186-residue WWP1 fragment containing all four WW domains is able to interact with the Nogo-A(650-666) peptide with a high affinity, with a dissociation constant (K(d)) of 1.68 microM. (2) Interestingly, four isolated WW domains show differential structural properties in the free states. WW1 and WW2 are only partially folded, while WW4 is well-folded. Nevertheless, they all become well-folded upon binding to Nogo-A(650-666), with K(d) values ranging from 1.03 to 3.85 microM. (3) The solution structure of the best-folded WW4 domain is determined, and the binding-perturbed residues were derived for both WW4 and Nogo-A(650-666) by NMR HSQC titrations. Moreover, on the basis of the NMR data, the complex model is constructed by HADDOCK 2.0. This study provides rationales as well as a template Nogo-A(650-666) for further design of molecules to intervene in the WWP1-Nogo-A interaction which may regulate the Nogo-A protein level by controlling its ubiquitination.

  2. "Features of two proteins of Leptospira interrogans with potential role in host-pathogen interactions"

    PubMed Central

    2012-01-01

    Background Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (KD) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a KD of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro. PMID:22463075

  3. Aptamer Against Mannose-capped Lipoarabinomannan Inhibits Virulent Mycobacterium tuberculosis Infection in Mice and Rhesus Monkeys

    PubMed Central

    Pan, Qin; Wang, Qilong; Sun, Xiaoming; Xia, Xianru; Wu, Shimin; Luo, Fengling; Zhang, Xiao-Lian

    2014-01-01

    The major surface lipoglycan of Mycobacterium tuberculosis (M. tb), mannose-capped lipoarabinomannan (ManLAM), is an immunosuppressive epitope of M. tb. We used systematic evolution of ligands by exponential enrichment (SELEX) to generate an aptamer (ZXL1) that specifically bound to ManLAM from the virulent M. tb strain H37Rv. Aptamer ZXL1 had the highest binding affinity, with an equilibrium dissociation constant (Kd) of 436.3 ± 37.84 nmol/l, and competed with the mannose receptor for binding to ManLAM and M. tb H37Rv. ZXL1 significantly inhibited the ManLAM-induced immunosuppression of CD11c+ dendritic cells (DCs) and enhanced the M. tb antigen–presenting activity of DCs for naive CD4+ Th1 cell activation. More importantly, we demonstrated that injection of aptamer ZXL1 significantly reduced the progression of M. tb H37Rv infections and bacterial loads in lungs of mice and rhesus monkeys. These results suggest that the aptamer ZXL1 is a new potential antimycobacterial agent and tuberculosis vaccine immune adjuvant. PMID:24572295

  4. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies.

    PubMed

    de Sousa, Lorena Ramos Freitas; Wu, Hongmei; Nebo, Liliane; Fernandes, João Batista; da Silva, Maria Fátima das Graças Fernandes; Kiefer, Werner; Kanitz, Manuel; Bodem, Jochen; Diederich, Wibke E; Schirmeister, Tanja; Vieira, Paulo Cezar

    2015-02-01

    NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Structural basis for collagen recognition by the immune receptor OSCAR.

    PubMed

    Zhou, Long; Hinerman, Jennifer M; Blaszczyk, Michal; Miller, Jeanette L C; Conrady, Deborah G; Barrow, Alexander D; Chirgadze, Dimitri Y; Bihan, Dominique; Farndale, Richard W; Herr, Andrew B

    2016-02-04

    The osteoclast-associated receptor (OSCAR) is a collagen-binding immune receptor with important roles in dendritic cell maturation and activation of inflammatory monocytes as well as in osteoclastogenesis. The crystal structure of the OSCAR ectodomain is presented, both free and in complex with a consensus triple-helical peptide (THP). The structures revealed a collagen-binding site in each immunoglobulin-like domain (D1 and D2). The THP binds near a predicted collagen-binding groove in D1, but a more extensive interaction with D2 is facilitated by the unusually wide D1-D2 interdomain angle in OSCAR. Direct binding assays, combined with site-directed mutagenesis, confirm that the primary collagen-binding site in OSCAR resides in D2, in marked contrast to the related collagen receptors, glycoprotein VI (GPVI) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). Monomeric OSCAR D1D2 binds to the consensus THP with a KD of 28 µM measured in solution, but shows a higher affinity (KD 1.5 μM) when binding to a solid-phase THP, most likely due to an avidity effect. These data suggest a 2-stage model for the interaction of OSCAR with a collagen fibril, with transient, low-affinity interactions initiated by the membrane-distal D1, followed by firm adhesion to the primary binding site in D2. © 2016 by The American Society of Hematology.

  6. Binding Linkage in a Telomere DNA–Protein Complex at the Ends of Oxytricha nova Chromosomes

    PubMed Central

    Buczek, Pawel; Orr, Rochelle S.; Pyper, Sean R.; Shum, Mili; Ota, Emily Kimmel Irene; Gerum, Shawn E.; Horvath, Martin P.

    2005-01-01

    Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein–protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (KD-DNA=1.4 nM). Another fusion protein, constructed without the C-terminal protein–protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (KD-DNA=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA–protein stability to protein–protein contacts at a remote site may provide a trigger point for DNA–protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase. PMID:15967465

  7. Zic2 hypomorphic mutant mice as a schizophrenia model and ZIC2 mutations identified in schizophrenia patients

    PubMed Central

    Hatayama, Minoru; Ishiguro, Akira; Iwayama, Yoshimi; Takashima, Noriko; Sakoori, Kazuto; Toyota, Tomoko; Nozaki, Yayoi; Odaka, Yuri S.; Yamada, Kazuyuki; Yoshikawa, Takeo; Aruga, Jun

    2011-01-01

    ZIC2 is a causal gene for holoprosencephaly and encodes a zinc-finger-type transcriptional regulator. We characterized Zic2kd/+ mice with a moderate (40%) reduction in Zic2 expression. Zic2kd/+ mice showed increased locomotor activity in novel environments, cognitive and sensorimotor gating dysfunctions, and social behavioral abnormalities. Zic2kd/+ brain involved enlargement of the lateral ventricle, thinning of the cerebral cortex and corpus callosum, and decreased number of cholinergic neurons in the basal forebrain. Because these features are reminiscent of schizophrenia, we examined ZIC2 variant-carrying allele frequencies in schizophrenia patients and in controls in the Japanese population. Among three novel missense mutations in ZIC2, R409P was only found in schizophrenia patients, and was located in a strongly conserved position of the zinc finger domain. Mouse Zic2 with the corresponding mutation showed lowered transcription-activating capacity and had impaired target DNA-binding and co-factor-binding capacities. These results warrant further study of ZIC2 in the pathogenesis of schizophrenia. PMID:22355535

  8. Identification of Psilocybe cubensis spore allergens by immunoprinting.

    PubMed

    Helbling, A; Horner, W E; Lehrer, S B

    1993-01-01

    Previous studies established that Psilocybe cubensis contains potent allergens, and that a significant percentage of atopic subjects were sensitized to P. cubensis spores. The objective of this study was to identify P. cubensis spore allergens using isoelectric focusing (IEF) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) immunoprinting. Coomassie blue staining of IEF gels detected approximately 20 bands between pI 3.6 and 9.3. Immunoprints obtained with 15 P. cubensis skin test- and RAST-positive sera revealed 13 IgE-binding bands; the most reactive were at pI 5.0 (80%), 5.6 (87%), 8.7 (80%) and 9.3 (100%). SDS-PAGE resolved 27 proteins ranging from about 13 to 112 kD. SDS-PAGE immunoprints conducted with 11 skin test- and RAST-positive sera demonstrated 18 IgE-binding bands; most sera reacted to 16 (82%), 35 (100%) and 76 kD (91%) allergens. Both electrophoretic procedures demonstrated a single allergen (at pI 9.3 and 35 kD) that reacted with all sera tested. This study corroborates the allergenic significance of P. cubensis spores and identifies the allergens of greatest importance.

  9. Cur l 3, a major allergen of Curvularia lunata-derived short synthetic peptides, shows promise for successful immunotherapy.

    PubMed

    Sharma, Vidhu; Singh, Bhanu Pratap; Arora, Naveen

    2011-12-01

    Allergens with reduced IgE binding and intact T cell reactivity are required for safety and efficacy of immunotherapy (IT). Curvularia lunata is an important fungus for respiratory allergic disorders having cross-reactive and specific allergens. Previously, we have identified major allergens-namely, Cur l 1 (31 kD, serine protease), Cur l 2 (48 kD, enolase), and Cur l 3 (12 kD, cytochrome c)-from this fungus. Furthermore, Cur l 3 epitope-peptide, P6, showed immunogenicity and higher IgE binding, where cysteine and histidine were observed to be vital for IgE binding. Thus, this peptide and three derivatives with reduced IgE binding were selected for analysis in mice. In the present study, the effect of IT was assessed with Cur l 3, P6, its derivatives (P6.1-6.3), and P10 in a mouse model of allergy. IT with P6.2 and P10 reduced IgE and IgG1 levels significantly (P < 0.05), with increase in IgG2a levels as compared to other antigens. There was a significant reduction of IL-4 level associated with increased IFN-γ after IT. Airway inflammation was reduced significantly in terms of eosinophil counts in lung tissue and bronchoalveolar lavage fluid. IT with P6 and P6.2 induced significantly higher IL-10 secretion than baseline after 40 days of treatment. Generally, the effect of IT was more pronounced after 40 days than after 10 days of treatment. In summary, the modified peptide, P6.2, with reduced IgE binding, but intact immunogenicity, showed promise for successful IT.

  10. Control of the Ability of Profilin to Bind and Facilitate Nucleotide Exchange from G-actin*

    PubMed Central

    Wen, Kuo-Kuang; McKane, Melissa; Houtman, Jon C. D.; Rubenstein, Peter A.

    2008-01-01

    A major factor in profilin regulation of actin cytoskeletal dynamics is its facilitation of G-actin nucleotide exchange. However, the mechanism of this facilitation is unknown. We studied the interaction of yeast (YPF) and human profilin 1 (HPF1) with yeast and mammalian skeletal muscle actins. Homologous pairs (YPF and yeast actin, HPF1 and muscle actin) bound more tightly to one another than heterologous pairs. However, with saturating profilin, HPF1 caused a faster etheno-ATP exchange with both yeast and muscle actins than did YPF. Based on the -fold change in ATP exchange rate/Kd, however, the homologous pairs are more efficient than the heterologous pairs. Thus, strength of binding of profilin to actin and nucleotide exchange rate are not tightly coupled. Actin/HPF interactions were entropically driven, whereas YPF interactions were enthalpically driven. Hybrid yeast actins containing subdomain 1 (sub1) or subdomain 1 and 2 (sub12) muscle actin residues bound more weakly to YPF than did yeast actin (Kd = 2 μm versus 0.6 μm). These hybrids bound even more weakly to HPF than did yeast actin (Kd = 5 μm versus 3.2 μm). sub1/YPF interactions were entropically driven, whereas the sub12/YPF binding was enthalpically driven. Compared with WT yeast actin, YPF binding to sub1 occurred with a 5 times faster koff and a 2 times faster kon. sub12 bound with a 3 times faster koff and a 1.5 times slower kon. Profilin controls the energetics of its interaction with nonhybrid actin, but interactions between actin subdomains 1 and 2 affect the topography of the profilin binding site. PMID:18223293

  11. Quantitative analysis of the interactions between prenyl Rab9, GDP dissociation inhibitor-alpha, and guanine nucleotides.

    PubMed

    Shapiro, A D; Pfeffer, S R

    1995-05-12

    Rab9 is a Ras-like GTPase required for the transport of mannose 6-phosphate receptors between late endosomes and the trans Golgi network. Rab9 occurs in the cytosol as a complex with GDP dissociation inhibitor (GDI), which we have shown delivers prenyl Rab9 to late endosomes in a functional form. We report here basal rate constants for guanine nucleotide dissociation and GTP hydrolysis for prenyl Rab9. Both rate constants were influenced in part by the hydrophobic environment of the prenyl group. Guanine nucleotide dissociation and GTP hydrolysis rates were lower in the presence of lipid; detergent stimulated intrinsic nucleotide exchange. GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 2.4-fold. GDI-alpha associated with prenyl Rab9 with a KD of 60 nM in 0.1% Lubrol and 23 nM in 0.02% Lubrol. In 0.1% Lubrol, GDI-alpha inhibited GDP dissociation half maximally at 72 +/- 18 nM, consistent with the KD determinations. These data suggest that GDI-alpha associates with prenyl Rab9 with a KD of < or = 23 nM under physiological conditions. Finally, a previously uncharacterized minor form of GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 1.9-fold and bound prenyl Rab9 with a KD of 67 nM in 0.1% Lubrol.

  12. Iodination of (Tyr11)somatostatin yields a super high affinity ligand for somatostatin receptors in GH4C1 pituitary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Presky, D.H.; Schonbrunn, A.

    1988-11-01

    GH4C1 cells are a clonal strain of rat pituitary tumor cells which contain high affinity receptors for the inhibitory neuropeptide somatostatin (SRIF). In contrast to other peptides that bind to specific receptors on these cells, receptor-bound (125I-Tyr1)SRIF does not undergo rapid endocytosis. Rather, partial degradation to 125I-tyrosine occurs concomitantly with the dissociation of (125I-Tyr1)SRIF from cell surface receptors. In this study we characterize the binding, biological activity and receptor-mediated degradation of (125I-Tyr11)SRIF, a SRIF analog that is radiolabeled in the center of the molecule. The binding of trace concentrations of (125I-Tyr11)SRIF (less than 50 pM) required 6 hr to reachmore » equilibrium at 37 degrees compared with the 60 min required for (125I-Tyr1)SRIF. Analysis of the kinetics of (125I- Tyr11)SRIF binding showed that the rate constant for association (kon = 1.7 x 10(8) M-8min-1) was similar to that for (125I-Tyr1)SRIF (0.8 x 10(8) M-1min-1). However, the two radioligands exhibited markedly different dissociation kinetics; the koff for (125I-Tyr11)SRIF was 0.002 min-1 compared with the value of 0.02 min-1 for (125I-Tyr1) SRIF. In agreement with its much slower rate of dissociation, (125I-Tyr11)SRIF bound to the SRIF receptor with higher affinity (Kd = 70 pM) than did (125I-Tyr1)SRIF (Kd = 350 pM). However, the apparent ED50 for (I-Tyr11)SRIF to inhibit cAMP accumulation (1.9 +/- 0.4 nM) was greater than the ED50 for SRIF (0.19 +/- 0.04 nM). The low potency of (I-Tyr11)SRIF probably resulted from the fact that subsaturating concentrations of this peptide did not achieve equilibrium binding during the 30-min incubation used to assay biological activity. As previously reported for (125I-Tyr1)SRIF, receptor-bound (125I-Tyr11)SRIF was not internalized and was released from the cells as a mixture of intact (125I-Tyr11)SRIF (30%) and the degradation product 125I-tyrosine (65%).« less

  13. Maternal melatonin selectively inhibits cortisol production in the primate fetal adrenal gland

    PubMed Central

    Torres-Farfan, Claudia; Richter, Hans G; Germain, Alfredo M; Valenzuela, Guillermo J; Campino, Carmen; Rojas-García, Pedro; Forcelledo, María Luisa; Torrealba, Fernando; Serón-Ferré, María

    2004-01-01

    We tested the hypothesis that in primates, maternal melatonin restrains fetal and newborn adrenal cortisol production. A functional G-protein-coupled MT1 membrane-bound melatonin receptor was detected in 90% gestation capuchin monkey fetal adrenals by (a) 2-[125I] iodomelatonin binding (Kd, 75.7 ± 6.9 pm; Bmax, 2.6 ± 0.4 fmol (mg protein)−1), (b) cDNA identification, and (c) melatonin inhibition of adrenocorticotrophic hormone (ACTH)- and corticotrophin-releasing hormone (CRH)-stimulated cortisol but not of dehydroepiandrosterone sulphate (DHAS) production in vitro. Melatonin also inhibited ACTH-induced 3β-hydroxysteroid dehydrogenase mRNA expression. To assess the physiological relevance of these findings, we next studied the effect of chronic maternal melatonin suppression (induced by exposure to constant light during the last third of gestation) on maternal plasma oestradiol during gestation and on plasma cortisol concentration in the 4- to 6-day-old newborn. Constant light suppressed maternal melatonin without affecting maternal plasma oestradiol concentration, consistent with no effect on fetal DHAS, the precursor of maternal oestradiol. However, newborns from mothers under constant light condition had twice as much plasma cortisol as newborns from mothers maintained under a normal light–dark schedule. Newborns from mothers exposed to chronic constant light and daily melatonin replacement had normal plasma cortisol concentration. Our results support a role of maternal melatonin in fetal and neonatal primate cortisol regulation. PMID:14673186

  14. Characteristic of theophylline imprinted monolithic column and its application for determination of xanthine derivatives caffeine and theophylline in green tea.

    PubMed

    Sun, Han-wen; Qiao, Feng-xia; Liu, Guang-yu

    2006-11-17

    Theophylline imprinted monolithic columns were designed and prepared for rapid separation of a homologous series of xanthine derivatives, caffeine, and theophylline by an in situ thermal-initiated copolymerization technique. Caffeine and theophylline were fully separated both under isocratic and gradient elutions on this kind of monolithic molecularly imprinted polymers (MIP) column. The broad peak showed in isocratic elution could be improved in gradient elution. Some chromatographic conditions such as mobile phase composition, flow rate, and the temperature on the retention times were investigated. Hydrogen bonding interaction and hydrophobic interaction played an important role in the retention and separation. The binding capacity was evaluated by static adsorption and Scatchard analysis, which showed that the dissociation constant (KD) and the maximum binding capacity (Qmax) were 1.50 mol/L, and 236 micromol/g for high affinity binding site, and 7.97 mol/L and 785 micromol/g for lower affinity binding site, respectively. Thermodynamic data (DeltaDeltaH and DeltaDeltaS) obtained by Van't Hoff plots revealed an enthalpy-controlled separation. The morphological characteristics of monolithic MIP were investigated by scanning electron microscope, which showed that both mesopores and macropores were formed in the monolith. The present monolithic MIP column was successfully applied for the quantitative determination of caffeine and theophylline in different kinds of green tea.

  15. Comparison of the ligand binding properties of two homologous rat apocellular retinol-binding proteins expressed in Escherichia coli.

    PubMed

    Levin, M S; Locke, B; Yang, N C; Li, E; Gordon, J I

    1988-11-25

    Cellular retinol-binding protein (CRBP) and cellular retinol-binding protein II (CRBP II) are 132-residue cytosolic proteins which have 56% amino acid sequence identity and bind all-trans-retinol as their endogenous ligand. They belong to a family of cytoplasmic proteins which have evolved to bind distinct hydrophobic ligands. Their patterns of tissue-specific and developmental regulation are distinct. We have compared the ligand binding properties of rat apo-CRBP and apo-CRBP II that have been expressed in Escherichia coli. Several observations indicate that the E. coli-derived apoproteins are structurally similar to the native rat proteins: they co-migrate on isoelectric focusing gels; and when complexed with all-trans-retinol, their absorption and excitation/emission spectra are nearly identical to those of the authentic rat holoproteins. Comparative lifetime and acrylamide quenching studies suggest that there are differences in the conformations of apo-CRBP and apo-CRBP II. The interaction of E. coli-derived apo-CRBP and apo-CRBP II with a variety of retinoids was analyzed using spectroscopic techniques. Both apoproteins formed high affinity complexes with all-trans-retinol (K'd approximately 10 nM). In direct binding assays, all-trans-retinal bound to both apoproteins (K'd approximately 50 nM for CRBP; K'd approximately 90 nM for CRBP II). However, all-trans-retinal could displace all-trans-retinol bound to CRBP II but not to CRBP. These observations suggests that there is a specific yet distinct interaction between these two proteins and all-trans-retinal. Apo-CRBP and apo-CRBP II did not demonstrate significant binding to either retinoic acid or methyl retinoate, an uncharged derivative of all-trans-retinoic acid. This indicates that the carboxymethyl group of methyl retinoate cannot be sterically accommodated in their binding pockets and that failure to bind retinoic acid probably is not simply due to the negative charge of its C-15 carboxylate group. Finally, neither all-trans-retinol nor retinoic acid bound to E. coli-derived rat intestinal fatty acid-binding protein, a homologous protein whose tertiary structure is known. Together, the data suggest that these three family members have acquired unique functional capabilities.

  16. Deep-etch visualization of proteins involved in clathrin assembly

    PubMed Central

    1988-01-01

    Assembly proteins were extracted from bovine brain clathrin-coated vesicles with 0.5 M Tris and purified by clathrin-Sepharose affinity chromatography, then adsorbed to mica and examined by freeze-etch electron microscopy. The fraction possessing maximal ability to promote clathrin polymerization, termed AP-2, was found to be a tripartite structure composed of a relatively large central mass flanked by two smaller mirror-symmetric appendages. Elastase treatment quantitatively removed the appendages and clipped 35 kD from the molecule's major approximately 105-kD polypeptides, indicating that the appendages are made from portions of these polypeptides. The remaining central masses no longer promote clathrin polymerization, suggesting that the appendages are somehow involved in the clathrin assembly reaction. The central masses are themselves relatively compact and brick-shaped, and are sufficiently large to contain two copies of the molecule's other major polypeptides (16- and 50-kD), as well as two copies of the approximately 70-kD protease-resistant portions of the major approximately 105-kD polypeptides. Thus the native molecule seems to be a dimeric, bilaterally symmetrical entity. Direct visualization of AP-2 binding to clathrin was accomplished by preparing mixtures of the two molecules in buffers that marginally inhibit AP-2 aggregation and cage assembly. This revealed numerous examples of AP-2 molecules binding to the so-called terminal domains of clathrin triskelions, consistent with earlier electron microscopic evidence that in fully assembled cages, the AP's attach centrally to inwardly-directed terminal domains of the clathrin molecule. This would place AP-2s between the clathrin coat and the enclosed membrane in whole coated vesicles. AP-2s linked to the membrane were also visualized by enzymatically removing the clathrin from brain coated vesicles, using purified 70 kD, uncoating ATPase plus ATP. This revealed several brick-shaped molecules attached to the vesicle membrane by short stalks. The exact stoichiometry of APs to clathrin in such vesicles, before and after uncoating, remains to be determined. PMID:3417785

  17. Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction

    NASA Astrophysics Data System (ADS)

    Park, Insun; Londhe, Ashwini M.; Lim, Ji Woong; Park, Beoung-Geon; Jung, Seo Yun; Lee, Jae Yeol; Lim, Sang Min; No, Kyoung Tai; Lee, Jiyoun; Pae, Ae Nim

    2017-10-01

    Cyclophilin D (CypD) is a mitochondria-specific cyclophilin that is known to play a pivotal role in the formation of the mitochondrial permeability transition pore (mPTP).The formation and opening of the mPTP disrupt mitochondrial homeostasis, cause mitochondrial dysfunction and eventually lead to cell death. Several recent studies have found that CypD promotes the formation of the mPTP upon binding to β amyloid (Aβ) peptides inside brain mitochondria, suggesting that neuronal CypD has a potential to be a promising therapeutic target for Alzheimer's disease (AD). In this study, we generated an energy-based pharmacophore model by using the crystal structure of CypD—cyclosporine A (CsA) complex and performed virtual screening of ChemDiv database, which yielded forty-five potential hit compounds with novel scaffolds. We further tested those compounds using mitochondrial functional assays in neuronal cells and identified fifteen compounds with excellent protective effects against Aβ-induced mitochondrial dysfunction. To validate whether these effects derived from binding to CypD, we performed surface plasmon resonance (SPR)—based direct binding assays with selected compounds and discovered compound 29 was found to have the equilibrium dissociation constants (KD) value of 88.2 nM. This binding affinity value and biological activity correspond well with our predicted binding mode. We believe that this study offers new insights into the rational design of small molecule CypD inhibitors, and provides a promising lead for future therapeutic development.

  18. Label-free detection of surface markers on stem cells by oblique-incidence reflectivity difference microscopy

    PubMed Central

    Lo, Kai-Yin; Sun, Yung-Shin; Landry, James P.; Zhu, Xiangdong; Deng, Wenbin

    2012-01-01

    Conventional fluorescent microscopy is routinely used to detect cell surface markers through fluorophore-conjugated antibodies. However, fluorophore-conjugation of antibodies alters binding properties such as strength and specificity of the antibody in ways often uncharacterized. The binding between antibody and antigen might not be in the native situation after such conjugation. Here, we present an oblique-incidence reflectivity difference (OI-RD) microscope as an effective method for label-free, real-time detection of cell surface markers and apply such a technique to analysis of Stage-Specific Embryonic Antigen 1 (SSEA1) on stem cells. Mouse stem cells express SSEA1 on their surfaces and the level of SSEA1 decreases when the cells start to differentiate. In this study, we immobilized mouse stem cells and non-stem cells (control) on a glass surface as a microarray and reacted the cell microarray with unlabeled SSEA1 antibodies. By monitoring the reaction with an OI-RD microscope in real time, we confirmed that the SSEA1 antibodies only bind to the surface of the stem cells while not to the surface of non-stem cells. From the binding curves, we determined the equilibrium dissociation constant (Kd) of the antibody with the SSEA1 markers on the stem cell surface. The results concluded that OI-RD microscope can be used to detect binding affinities between cell surface markers and unlabeled antibodies bound to the cells. The information could be another indicator to determine the cell stages. PMID:21781038

  19. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    PubMed

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Modulation of 14-3-3 protein interactions with target polypeptides by physical and metabolic effectors.

    PubMed

    Athwal, G S; Lombardo, C R; Huber, J L; Masters, S C; Fu, H; Huber, S C

    2000-04-01

    The proteins commonly referred to as 14-3-3s have recently come to prominence in the study of protein:protein interactions, having been shown to act as allosteric or steric regulators and possibly scaffolds. The binding of 14-3-3 proteins to the regulatory phosphorylation site of nitrate reductase (NR) was studied in real-time by surface plasmon resonance, using primarily an immobilized synthetic phosphopeptide based on spinach NR-Ser543. Both plant and yeast 14-3-3 proteins were shown to bind the immobilized peptide ligand in a Mg2+-stimulated manner. Stimulation resulted from a reduction in KD and an increase in steady-state binding level (Req). As shown previously for plant 14-3-3s, fluorescent probes also indicated that yeast BMH2 interacted directly with cations, which bind and affect surface hydrophobicity. Binding of 14-3-3s to the phosphopeptide ligand occurred in the absence of divalent cations when the pH was reduced below neutral, and the basis for enhanced binding was a reduction in K(D). At pH 7.5 (+Mg2+), AMP inhibited binding of plant 14-3-3s to the NR based peptide ligand. The binding of AMP to 14-3-3s was directly demonstrated by equilibrium dialysis (plant), and from the observation that recombinant plant 14-3-3s have a low, but detectable, AMP phosphatase activity.

  1. Interaction of a vasopressin antagonist with vasopressin receptors in the septum of the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorsa, D.M.; Brot, M.D.; Shewey, L.M.

    1988-01-01

    The ability of d(CH2)5-Tyr(Me)-arginine-8-vasopressin, an antagonist of peripheral pressoric (V1-type) vasopressin receptors, to label vasopressin binding sites in the septum of the rat brain was evaluated. Using crude membrane preparations from the septum, /sup 3/H-arginine-8-vasopressin (AVP) specifically labels a single class of binding sites with a Kd of 2.9 nM and maximum binding site concentration of 19.8 fmole/mg protein. /sup 3/H-Antag also labels a single class of membrane sites but with higher affinity (Kd = 0.47 nM) and lower capacity (10.1 fmole/mg protein) than /sup 3/H-AVP. The rank order of potency of various competitor peptides for /sup 3/H-AVP and /supmore » 3/H-Antag binding was similar. Oxytocin was 100-1,000 fold less potent than AVP in competing for binding with both ligands. /sup 3/H-AVP and /sup 3/H-Antag showed similar labeling patterns when incubated with septal tissue slices. Unlabeled Antag also effectively antagonized vasopressin-stimulated phosphatidylinositol hydrolysis in septal tissue slices.« less

  2. Evidence that forskolin binds to the glucose transporter of human erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavis, V.R.; Lee, D.P.; Shenolikar, S.

    1987-10-25

    Binding of (4-/sup 3/H)cytochalasin B and (12-/sup 3/H)forskolin to human erythrocyte membranes was measured by a centrifugation method. Glucose-displaceable binding of cytochalasin B was saturable, with KD = 0.11 microM, and maximum binding approximately 550 pmol/mg of protein. Forskolin inhibited the glucose-displaceable binding of cytochalasin B in an apparently competitive manner, with K1 = 3 microM. Glucose-displaceable binding of (12-/sup 3/H)forskolin was also saturable, with KD = 2.6 microM and maximum binding approximately equal to 400 pmol/mg of protein. The following compounds inhibited binding of (12-/sup 3/H)forskolin and (4-/sup 3/H)cytochalasin B equivalently, with relative potencies parallel to their reported affinitiesmore » for the glucose transport system: cytochalasins A and D, dihydrocytochalasin B, L-rhamnose, L-glucose, D-galactose, D-mannose, D-glucose, 2-deoxy-D-glucose, 3-O-methyl-D-glucose, phloretin, and phlorizin. A water-soluble derivative of forskolin, 7-hemisuccinyl-7-desacetylforskolin, displaced equivalent amounts of (4-/sup 3/H)cytochalasin B or (12-/sup 3/H)forskolin. Rabbit erythrocyte membranes, which are deficient in glucose transporter, did not bind either (4-/sup 3/H)cytochalasin B or (12-/sup 3/H)forskolin in a glucose-displaceable manner. These results indicate that forskolin, in concentrations routinely employed for stimulation of adenylate cyclase, binds to the glucose transporter. Endogenous ligands with similar specificities could be important modulators of cellular metabolism.« less

  3. Design and synthesis of biotin analogues reversibly binding with streptavidin.

    PubMed

    Yamamoto, Tomohiro; Aoki, Kiyoshi; Sugiyama, Akira; Doi, Hirofumi; Kodama, Tatsuhiko; Shimizu, Yohei; Kanai, Motomu

    2015-04-01

    Two new biotin analogues, biotin carbonate 5 and biotin carbamate 6, have been synthesized. These molecules were designed to reversibly bind with streptavidin by replacing the hydrogen-bond donor NH group(s) of biotin's cyclic urea moiety with oxygen. Biotin carbonate 5 was synthesized from L-arabinose (7), which furnishes the desired stereochemistry at the 3,4-cis-dihydroxy groups, in 11% overall yield (over 10 steps). Synthesis of biotin carbamate 6 was accomplished from L-cysteine-derived chiral aldehyde 33 in 11% overall yield (over 7 steps). Surface plasmon resonance analysis of water-soluble biotin carbonate analogue 46 and biotin carbamate analogue 47 revealed that KD values of these compounds for binding to streptavidin were 6.7×10(-6)  M and 1.7×10(-10)  M, respectively. These values were remarkably greater than that of biotin (KD =10(-15)  M), and thus indicate the importance of the nitrogen atoms for the strong binding between biotin and streptavidin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and alters HagB-induced chemokine responses

    NASA Astrophysics Data System (ADS)

    Borgwardt, Derek S.; Martin, Aaron D.; van Hemert, Jonathan R.; Yang, Jianyi; Fischer, Carol L.; Recker, Erica N.; Nair, Prashant R.; Vidva, Robinson; Chandrashekaraiah, Shwetha; Progulske-Fox, Ann; Drake, David; Cavanaugh, Joseph E.; Vali, Shireen; Zhang, Yang; Brogden, Kim A.

    2014-01-01

    Histatins are human salivary gland peptides with anti-microbial and anti-inflammatory activities. In this study, we hypothesized that histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and attenuates HagB-induced chemokine responses in human myeloid dendritic cells. Histatin 5 bound to immobilized HagB in a surface plasmon resonance (SPR) spectroscopy-based biosensor system. SPR spectroscopy kinetic and equilibrium analyses, protein microarray studies, and I-TASSER structural modeling studies all demonstrated two histatin 5 binding sites on HagB. One site had a stronger affinity with a KD1 of 1.9 μM and one site had a weaker affinity with a KD2 of 60.0 μM. Binding has biological implications and predictive modeling studies and exposure of dendritic cells both demonstrated that 20.0 μM histatin 5 attenuated (p < 0.05) 0.02 μM HagB-induced CCL3/MIP-1α, CCL4/MIP-1β, and TNFα responses. Thus histatin 5 is capable of attenuating chemokine responses, which may help control oral inflammation.

  5. Autoradiographic localization of /sup 3/H-paroxetine-labeled serotonin uptake sites in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza, E.B.; Kuyatt, B.L.

    1987-01-01

    Paroxetine is a potent and selective inhibitor of serotonin uptake into neurons. Serotonin uptake sites have been identified, localized, and quantified in rat brain by autoradiography with 3H-paroxetine; 3H-paroxetine binding in slide-mounted sections of rat forebrain was of high affinity (KD = 10 pM) and the inhibition affinity constant (Ki) values of various drugs in competing 3H-paroxetine binding significantly correlated with their reported potencies in inhibiting synaptosomal serotonin uptake. Serotonin uptake sites labeled by 3H-paroxetine were highly concentrated in the dorsal and median raphe nuclei, central gray, superficial layer of the superior colliculus, lateral septal nucleus, paraventricular nucleus of themore » thalamus, and the islands of Calleja. High concentrations of 3H-paroxetine binding sites were found in brainstem areas containing dopamine (substantia nigra and ventral tegmental area) and norepinephrine (locus coeruleus) cell bodies. Moderate concentrations of 3H-paroxetine binding sites were present in laminae I and IV of the frontal parietal cortex, primary olfactory cortex, olfactory tubercle, regions of the basal ganglia, septum, amygdala, thalamus, hypothalamus, hippocampus, and some brainstem areas including the interpeduncular, trigeminal, and parabrachial nuclei. Lower densities of 3H-paroxetine binding sites were found in other regions of the neocortex and very low to nonsignificant levels of binding were present in white matter tracts and in the cerebellum. Lesioning of serotonin neurons with 3,4-methylenedioxyamphetamine caused large decreases in 3H-paroxetine binding. The autoradiographic distribution of 3H-paroxetine binding sites in rat brain corresponds extremely well to the distribution of serotonin terminals and cell bodies as well as with the pharmacological sites of action of serotonin.« less

  6. Development of a Novel Tetravalent Synthetic Peptide That Binds to Phosphatidic Acid.

    PubMed

    Ogawa, Rina; Nagao, Kohjiro; Taniuchi, Kentaro; Tsuchiya, Masaki; Kato, Utako; Hara, Yuji; Inaba, Takehiko; Kobayashi, Toshihide; Sasaki, Yoshihiro; Akiyoshi, Kazunari; Watanabe-Takahashi, Miho; Nishikawa, Kiyotaka; Umeda, Masato

    2015-01-01

    We employed a multivalent peptide-library screening technique to identify a peptide motif that binds to phosphatidic acid (PA), but not to other phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). A tetravalent peptide with the sequence motif of MARWHRHHH, designated as PAB-TP (phosphatidic acid-binding tetravalent peptide), was shown to bind as low as 1 mol% of PA in the bilayer membrane composed of PC and cholesterol. Kinetic analysis of the interaction between PAB-TP and the membranes containing 10 mol% of PA showed that PAB-TP associated with PA with a low dissociation constant of KD = 38 ± 5 nM. Coexistence of cholesterol or PE with PA in the membrane enhanced the PAB-TP binding to PA by increasing the ionization of the phosphomonoester head group as well as by changing the microenvironment of PA molecules in the membrane. Amino acid replacement analysis demonstrated that the tryptophan residue at position 4 of PAB-TP was involved in the interaction with PA. Furthermore, a series of amino acid substitutions at positions 5 to 9 of PAB-TP revealed the involvement of consecutive histidine and arginine residues in recognition of the phosphomonoester head group of PA. Our results demonstrate that the recognition of PA by PAB-TP is achieved by a combination of hydrophobic, electrostatic and hydrogen-bond interactions, and that the tetravalent structure of PAB-TP contributes to the high affinity binding to PA in the membrane. The novel PA-binding tetravalent peptide PAB-TP will provide insight into the molecular mechanism underlying the recognition of PA by PA-binding proteins that are involved in various cellular events.

  7. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcella, Aaron M.; Culbertson, Sannie J.; Shogren-Knaak, Michael A.

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05 and 4.10 Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determiningmore » the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a KD = 62 ± 13 nM, followed by the binding of two more equivalents of holo-ACPP with KD = 1.2 ± 0.2 μM. Cooperativity was not observed for apo-ACPP which bound with KD = 2.4 ± 0.1 μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis.« less

  8. Efficient Estimation of Mutual Information for Strongly Dependent Variables

    DTIC Science & Technology

    2015-05-11

    the two possibilities: for a fixed dimension d and near- est neighbor parameter k, we find a constant ↵ k,d , such that if V̄ (i)/V (i) < ↵ k,d , then...also compare the results to several baseline estima- tors: KSG (Kraskov et al., 2004), generalized near- est neighbor graph (GNN) (Pál et al., 2010...Amaury Lendasse, and Francesco Corona. A boundary corrected expansion of the moments of near- est neighbor distributions. Random Struct. Algorithms

  9. Kir6.2-dependent high-affinity repaglinide binding to β-cell KATP channels

    PubMed Central

    Hansen, Ann Maria K; Hansen, John Bondo; Carr, Richard D; Ashcroft, Frances M; Wahl, Philip

    2005-01-01

    The β-cell KATP channel is composed of two types of subunit – the inward rectifier K+ channel (Kir6.2) which forms the channel pore, and the sulphonylurea receptor (SUR1), which serves as a regulatory subunit. The N-terminus of Kir6.2 is involved in transduction of sulphonylurea binding into channel closure, and deletion of the N-terminus (Kir6.2ΔN14) results in functional uncoupling of the two subunits. In this study, we investigate the interaction of the hypoglycaemic agents repaglinide and glibenclamide with SUR1 and the effect of Kir6.2 on this interaction. We further explore how the binding properties of repaglinide and glibenclamide are affected by functional uncoupling of SUR1 and Kir6.2 in Kir6.2ΔN14/SUR1 channels. All binding experiments are performed on membranes in ATP-free buffer at 37°C. Repaglinide was found to bind with low affinity (KD=59±16 nM) to SUR1 alone, but with high affinity (increased ∼150-fold) when SUR1 was co-expressed with Kir6.2 (KD=0.42±0.03 nM). Glibenclamide, tolbutamide and nateglinide all bound with marginally lower affinity to SUR1 than to Kir6.2/SUR1. Repaglinide bound with low affinity (KD=51±23 nM) to SUR1 co-expressed with Kir6.2ΔN14. In contrast, the affinity for glibenclamide, tolbutamide and nateglinide was only mildly changed as compared to wild-type channels. In whole-cell patch-clamp experiments inhibition of Kir6.2ΔN14/SUR1 currents by both repaglinide and nateglinde is abolished. The results suggest that Kir6.2 causes a conformational change in SUR1 required for high-affinity repaglinide binding, or that the high-affinity repaglinide-binding site includes contributions from both SUR1 and Kir6.2. Glibenclamide, tolbutamide and nateglinide binding appear to involve only SUR1. PMID:15678092

  10. Hepcidin-Induced Iron Deficiency Is Related to Transient Anemia and Hypoferremia in Kawasaki Disease Patients

    PubMed Central

    Huang, Ying-Hsien; Kuo, Ho-Chang; Huang, Fu-Chen; Yu, Hong-Ren; Hsieh, Kai-Sheng; Yang, Ya-Ling; Sheen, Jiunn-Ming; Li, Sung-Chou; Kuo, Hsing-Chun

    2016-01-01

    Kawasaki disease (KD) is a type of systemic vasculitis that primarily affects children under the age of five years old. For sufferers of KD, intravenous immunoglobulin (IVIG) has been found to successfully diminish the occurrence of coronary artery lesions. Anemia is commonly found in KD patients, and we have shown that in appropriately elevated hepcidin levels are related to decreased hemoglobin levels in these patients. In this study, we investigated the time period of anemia and iron metabolism during different stages of KD. A total of 100 patients with KD and 20 control subjects were enrolled in this study for red blood cell and hemoglobin analysis. Furthermore, plasma, urine hepcidin, and plasma IL-6 levels were evaluated using enzyme-linked immunosorbent assay in 20 KD patients and controls. Changes in hemoglobin, plasma iron levels, and total iron binding capacity (TIBC) were also measured in patients with KD. Hemoglobin, iron levels, and TIBC were lower (p < 0.001, p = 0.009, and p < 0.001, respectively) while plasma IL-6 and hepcidin levels (both p < 0.001) were higher in patients with KD than in the controls prior to IVIG administration. Moreover, plasma hepcidin levels were positively and significantly correlated with urine hepcidin levels (p < 0.001) prior to IVIG administration. After IVIG treatment, plasma hepcidin and hemoglobin levels significantly decreased (both p < 0.001). Of particular note was a subsequent gradual increase in hemoglobin levels during the three weeks after IVIG treatment; nevertheless, the hemoglobin levels stayed lower in KD patients than in the controls (p = 0.045). These findings provide a longitudinal study of hemoglobin changes and among the first evidence that hepcidin induces transient anemia and hypoferremia during KD’s acute inflammatory phase. PMID:27187366

  11. Factors Affecting the Quantification of Biomolecular Interactions by Fluorescence Cross-Correlation Spectroscopy

    PubMed Central

    Foo, Yong Hwee; Naredi-Rainer, Nikolaus; Lamb, Don C.; Ahmed, Sohail; Wohland, Thorsten

    2012-01-01

    Fluorescence cross-correlation spectroscopy (FCCS) is used to determine interactions and dissociation constants (Kds) of biomolecules. The determination of a Kd depends on the accurate measurement of the auto- and cross-correlation function (ACF and CCF) amplitudes. In the case of complete binding, the ratio of the CCF/ACF amplitudes is expected to be 1. However, measurements performed on tandem fluorescent proteins (FPs), in which two different FPs are linked, yield CCF/ACF amplitude ratios of ∼0.5 or less for different FCCS schemes. We use single wavelength FCCS and pulsed interleaved excitation FCCS to measure various tandem FPs constituted of different red and green FPs and determine the causes for this suboptimal ratio. The main causes for the reduced CCF/ACF amplitude ratio are differences in observation volumes for the different labels, the existence of dark FPs due to maturation problems, photobleaching, and to a lesser extent Förster (or fluorescence) resonance energy transfer between the labels. We deduce the fraction of nonfluorescent proteins for EGFP, mRFP, and mCherry as well as the differences in observation volumes. We use this information to correct FCCS measurements of the interaction of Cdc42, a small Rho-GTPase, with its effector IQGAP1 in live cell measurements to obtain a label-independent value for the Kd. PMID:22404940

  12. [3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart.

    PubMed

    Matucci, R; Bennardini, F; Sciammarella, M L; Baccaro, C; Stendardi, I; Franconi, F; Giotti, A

    1987-04-01

    We compared the binding properties of [3H]-nitrendipine in heart membranes from normal guinea-pig heart and from hypoxic or hypoxic and reoxygenated heart. The [3H]-nitrendipine binds a single class of high capacity (Bmax 667.2 +/- 105.2) with high affinity (KD 0.14 +/- 0.02) binding sites. By contrast, in membranes of hypoxic and reoxygenated heart the Bmax decreases significantly while it remains unaffected during hypoxia. Xanthinoxidase activity is increased in hypoxic-reoxygenated hearts.

  13. Quantitation of the calcium and membrane binding properties of the C2 domains of dysferlin.

    PubMed

    Abdullah, Nazish; Padmanarayana, Murugesh; Marty, Naomi J; Johnson, Colin P

    2014-01-21

    Dysferlin is a large membrane protein involved in calcium-triggered resealing of the sarcolemma after injury. Although it is generally accepted that dysferlin is Ca(2+) sensitive, the Ca(2+) binding properties of dysferlin have not been characterized. In this study, we report an analysis of the Ca(2+) and membrane binding properties of all seven C2 domains of dysferlin as well as a multi-C2 domain construct. Isothermal titration calorimetry measurements indicate that all seven dysferlin C2 domains interact with Ca(2+) with a wide range of binding affinities. The C2A and C2C domains were determined to be the most sensitive, with Kd values in the tens of micromolar, whereas the C2D domain was least sensitive, with a near millimolar Kd value. Mutagenesis of C2A demonstrates the requirement for negatively charged residues in the loop regions for divalent ion binding. Furthermore, dysferlin displayed significantly lower binding affinity for the divalent cations magnesium and strontium. Measurement of a multidomain construct indicates that the solution binding affinity does not change when C2 domains are linked. Finally, sedimentation assays suggest all seven C2 domains bind lipid membranes, and that Ca(2+) enhances but is not required for interaction. This report reveals for the first time, to our knowledge, that all dysferlin domains bind Ca(2+) albeit with varying affinity and stoichiometry. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. RNA binding properties of the US11 protein from four primate simplexviruses.

    PubMed

    Tohme, Sarah; Cukier, Cyprian D; Severini, Alberto

    2011-11-03

    The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins.

  15. RNA binding properties of the US11 protein from four primate simplexviruses

    PubMed Central

    2011-01-01

    Background The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. Methods We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. Results and Conclusions The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins. PMID:22054255

  16. Binding of nucleotides by T4 DNA ligase and T4 RNA ligase: optical absorbance and fluorescence studies.

    PubMed Central

    Cherepanov, A V; de Vries, S

    2001-01-01

    The interaction of nucleotides with T4 DNA and RNA ligases has been characterized using ultraviolet visible (UV-VIS) absorbance and fluorescence spectroscopy. Both enzymes bind nucleotides with the K(d) between 0.1 and 20 microM. Nucleotide binding results in a decrease of absorbance at 260 nm due to pi-stacking with an aromatic residue, possibly phenylalanine, and causes red-shifting of the absorbance maximum due to hydrogen bonding with the exocyclic amino group. T4 DNA ligase is shown to have, besides the catalytic ATP binding site, another noncovalent nucleotide binding site. ATP bound there alters the pi-stacking of the nucleotide in the catalytic site, increasing its optical extinction. The K(d) for the noncovalent site is approximately 1000-fold higher than for the catalytic site. Nucleotides quench the protein fluorescence showing that a tryptophan residue is located in the active site of the ligase. The decrease of absorbance around 298 nm suggests that the hydrogen bonding interactions of this tryptophan residue are weakened in the ligase-nucleotide complex. The excitation/emission properties of T4 RNA ligase indicate that its ATP binding pocket is in contact with solvent, which is excluded upon binding of the nucleotide. Overall, the spectroscopic analysis reveals important similarities between T4 ligases and related nucleotidyltransferases, despite the low sequence similarity. PMID:11721015

  17. WAVE2 regulates epithelial morphology and cadherin isoform switching through regulation of Twist and Abl.

    PubMed

    Bryce, Nicole S; Reynolds, Albert B; Koleske, Anthony J; Weaver, Alissa M

    2013-01-01

    Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis.

  18. AN ALTERNATIVE METHOD FOR RELATING MACROSCOPIC TO MICROSCOPIC ACIDITY CONSTANTS WITH ZWITTERIONIC SPECIES

    EPA Science Inventory

    Using the notation of Adams (1916. JACS, 38:1503), zwitterionic microscopic acidity constants defined by: ka = [H+] [+H3NRCOO-]/ [+H3NRCOOH]; kb = [H+] [H2NRCOOH]/ [+H3NRCOOH]; kc = [H+] [H2NRCOO-]/ [+H3NRCOO-]; and kd = [H+] [H2NRCOO-]/ [H2NRCOOH] are historically related to th...

  19. The α-galactomannan Davanat binds galectin-1 at a site different from the conventional galectin carbohydrate binding domain

    PubMed Central

    Miller, Michelle C; Klyosov, Anatole; Mayo, Kevin H

    2009-01-01

    Galectins are a sub-family of lectins, defined by their highly conserved β-sandwich structures and ability to bind to β-galactosides, like Gal β1-4 Glc (lactose). Here, we used 15N-1H HSQC and pulse field gradient (PFG) NMR spectroscopy to demonstrate that galectin-1 (gal-1) binds to the relatively large galactomannan Davanat, whose backbone is composed of β1-4-linked d-mannopyranosyl units to which single d-galactopyranosyl residues are periodically attached via α1-6 linkage (weight-average MW of 59 kDa). The Davanat binding domain covers a relatively large area on the surface of gal-1 that runs across the dimer interface primarily on that side of the protein opposite to the lactose binding site. Our data show that gal-1 binds Davanat with an apparent equilibrium dissociation constant (Kd) of 10 × 10−6 M, compared to 260 × 10−6 M for lactose, and a stiochiometry of about 3 to 6 gal-1 molecules per Davanat molecule. Mannan also interacts at the same galactomannan binding domain on gal-1, but with at least 10-fold lower avidity, supporting the role of galactose units in Davanat for relatively strong binding to gal-1. We also found that the β-galactoside binding domain remains accessible in the gal-1/Davanat complex, as lactose can still bind with no apparent loss in affinity. In addition, gal-1 binding to Davanat also modifies the supermolecular structure of the galactomannan and appears to reduce its hydrodynamic radius and disrupt inter-glycan interactions thereby reducing glycan-mediated solution viscosity. Overall, our findings contribute to understanding gal-1–carbohydrate interactions and provide insight into gal-1 function with potentially significant biological consequences. PMID:19541770

  20. Synthesis, anticancer activity, and iron affinity of the Actinoplanes metabolite 7,8-dihydroxy-1-methylnaphtho[2,3-c]furan-4,9-dione.

    PubMed

    Breyer, Sandra; Effenberger-Neidnicht, Katharina; Knauer, Sebastian; Schobert, Rainer

    2011-02-01

    The first synthesis of 7,8-dihydroxy-1-methylnaphtho[2,3-c]furan-4,9-dione (1), an isofuranonaphthoquinone produced by an Actinoplanes strain is described. Lactone ring opening of 6-methylfuro[3,4-c]furan-1(3H)-one (4) with ortho-lithiated veratrole (3), oxidation of product alcohol 5, and Friedel-Crafts acylation of the resulting aroylcarboxylic acid 7 afforded the mono methyl ether 2 of the target compound. The latter was obtained by demethylation of 2 with BBr(3) in 14% overall yield. While mono ether 2 was distinctly more cytotoxic than catechol 1 against a panel of five cancer cell lines, only the latter showed a siderophore-like binding affinity for Fe(III) with a complex dissociation constant K(D) of approximately 10(-29) M(3) (pM = 25.9). Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. C-type natriuretic peptide and atrial natriuretic peptide receptors of rat brain.

    PubMed

    Brown, J; Zuo, Z

    1993-03-01

    Natriuretic peptide receptors in rat brain were mapped by in vitro autoradiography using 125I-labeled [Tyr0]CNP-(1-22) to bind atrial natriuretic peptide receptor (ANPR)-B and ANPR-C receptors selectively, and 125I-labeled alpha-ANP to select ANPR-A and ANPR-C receptors. Des-[Gln18,Ser19,Gly20,Leu21,Gly22]ANP-(4- 23)-amide (C-ANP) was used for its selectivity for ANPR-C over ANPR-A. Specific binding of 125I-[Tyr0]CNP-(1-22) with a dissociation constant (Kd) approximately 1 nM occurred in olfactory bulb, cerebral cortex, lateral septal nucleus, choroid plexus, and arachnoid mater. This binding was abolished by C-type natriuretic peptide [CNP-(1-22)], alpha-ANP and C-ANP, and conformed to ANPR-C. 125I-alpha-ANP bound to all structures that bound 125I-[Tyr0]CNP-(1-22). This binding was also inhibited by both CNP-(1-22) and C-ANP, confirming the presence of ANPR-C-like binding sites. However, ANPR-C-like binding sites were heterogenous because only some had high affinities for 125I-[Tyr0]CNP-(1-22) and CNP-(1-22). 125I-alpha-ANP also bound sites without affinities for C-ANP or CNP-(1-22). These sites were consistent with ANPR-A. They occurred mainly on the olfactory bulb, the choroid plexus, and the subfornical organ. Guanosine 3',5'-cyclic monophosphate production was strongly stimulated by alpha-ANP but not by CNP-(1-22) in olfactory bulb. Neither ligand stimulated it in cortical tissue. Thus the natriuretic peptide binding sites of rat brain conformed to ANPR-A and to heterogenous ANPR-C-like sites. No ANPR-B were detected.

  2. Electrostatic redesign of the [myoglobin, cytochrome b5] interface to create a well-defined docked complex with rapid interprotein electron transfer.

    PubMed

    Xiong, Peng; Nocek, Judith M; Griffin, Amanda K K; Wang, Jingyun; Hoffman, Brian M

    2009-05-27

    Cyt b(5) is the electron-carrier "repair" protein that reduces met-Mb and met-Hb to their O(2)-carrying ferroheme forms. Studies of electron transfer (ET) between Mb and cyt b(5) revealed that they react on a "Dynamic Docking" (DD) energy landscape on which binding and reactivity are uncoupled: binding is weak and involves an ensemble of nearly isoenergetic configurations, only a few of which are reactive; those few contribute negligibly to binding. We set the task of redesigning the surface of Mb so that its reaction with cyt b(5) instead would occur on a conventional "simple docking" (SD) energy landscape, on which a complex exhibits a well-defined (set of) reactive binding configuration(s), with binding and reactivity thus no longer being decoupled. We prepared a myoglobin (Mb) triple mutant (D44K/D60K/E85K; Mb(+6)) substituted with Zn-deuteroporphyrin and monitored cytochrome b(5) (cyt b(5)) binding and electron transfer (ET) quenching of the (3)ZnMb(+6) triplet state. In contrast, to Mb(WT), the three charge reversals around the "front-face" heme edge of Mb(+6) have directed cyt b(5) to a surface area of Mb adjacent to its heme, created a well-defined, most-stable structure that supports good ET pathways, and apparently coupled binding and ET: both K(a) and k(et) are increased by the same factor of approximately 2 x 10(2), creating a complex that exhibits a large ET rate constant, k(et) = 10(6 1) s(-1), and is in slow exchange (k(off) < k(et)). In short, these mutations indeed appear to have created the sought-for conversion from DD to simple docking (SD) energy landscapes.

  3. Multi-Ligand-Binding Flavoprotein Dodecin as a Key Element for Reversible Surface Modification in Nano-biotechnology.

    PubMed

    Gutiérrez Sánchez, Cristina; Su, Qiang; Schönherr, Holger; Grininger, Martin; Nöll, Gilbert

    2015-01-01

    In this paper the multiple (re)programming of protein-DNA nanostructures comprising generation, deletion, and reprogramming on the same flavin-DNA-modified surface is introduced. This work is based on a systematic study of the binding affinity of the multi-ligand-binding flavoprotein dodecin on flavin-terminated DNA monolayers by surface plasmon resonance and quartz crystal microbalance with dissipation (QCM-D) measurements, surface plasmon fluorescence spectroscopy (SPFS), and dynamic AFM force spectroscopy. Depending on the flavin surface coverage, a single apododecin is captured by one or more surface-immobilized flavins. The corresponding complex binding and unbinding rate constants kon(QCM) = 7.7 × 10(3) M(-1)·s(-1) and koff(QCM) = 4.5 × 10(-3) s(-1) (Kd(QCM) = 580 nM) were determined by QCM and were found to be in agreement with values for koff determined by SPFS and force spectroscopy. Even though a single apododecin-flavin bond is relatively weak, stable dodecin monolayers were formed on flavin-DNA-modified surfaces at high flavin surface coverage due to multivalent interactions between apododecin bearing six binding pockets and the surface-bound flavin-DNA ligands. If bi- or multivalent flavin ligands are adsorbed on dodecin monolayers, stable sandwich-type surface-DNA-flavin-apododecin-flavin ligand arrays are obtained. Nevertheless, the apododecin flavin complex is easily and quantitatively disassembled by flavin reduction. Binding and release of apododecin are reversible processes, which can be carried out alternatingly several times to release one type of ligand by an external redox trigger and subsequently replace it with a different ligand. Hence the versatile concept of reprogrammable functional biointerfaces with the multi-ligand-binding flavoprotein dodecin is demonstrated.

  4. Ketogenic Diet Improves Brain Ischemic Tolerance and Inhibits NLRP3 Inflammasome Activation by Preventing Drp1-Mediated Mitochondrial Fission and Endoplasmic Reticulum Stress

    PubMed Central

    Guo, Min; Wang, Xun; Zhao, Yanxin; Yang, Qi; Ding, Hongyan; Dong, Qiang; Chen, Xingdong; Cui, Mei

    2018-01-01

    Background: Neuroprotective effects of ketogenic diets (KD) have been reported in stroke models, and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome has also been implicated in the pathogenesis of stroke. This study aimed to investigate the effects of KD on NLRP3 inflammasome and explore the potential molecular mechanisms. Methods: In in vivo study, mice were fed with KD for 3 weeks and then subjected to middle cerebral artery occlusion/reperfusion (MCAO/R)-injury. In in vitro study, SH-SY-5Y cells were treated with β-hydroxybutyrate (BHB) followed by oxygen–glucose deprivation/reoxygenation (OGD/R). NLRP3 inflammasome activation and related regulatory mechanisms were evaluated. Results: Mice fed with KD had increased tolerance to MCAO/R. KD inhibited endoplasmic reticulum (ER) stress and suppressed TXNIP/NLRP3 inflammasome activation in the brain. The in vitro study showed BHB (10 mM) prevented the mitochondrial translocation of dynamin-related protein 1 (Drp1) to inhibit mitochondrial fission. Furthermore, BHB decreased reactive oxygen species (ROS) generation, inhibited ROS-NLRP3 pathway in OGD/R-treated cells, and suppressed ER stress-induced NLRP3 inflammasome activation. Conclusions: KD may suppress ER stress and protect mitochondrial integrity by suppressing the mitochondrial translocation of Drp1 to inhibit NLRP3 inflammasome activation, thus exerting neuroprotective effects. Our findings provide evidence for the potential application of KD in the prevention of ischemic stroke. PMID:29662437

  5. Lupus autoantibodies target ribosomal P proteins

    PubMed Central

    1985-01-01

    All nine SLE (systemic lupus erythematosus) sera with antiribosomal antibody activity targeted the same three ribosomal protein antigens, of molecular masses 38 and 17/19 kD when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. One serum reacted with an additional protein of approximately kD. Ribosomal subunit fractionation by composite gel electrophoresis and sucrose density ultracentrifugation showed that these proteins were part of the large subunit. Isoelectric focusing in agarose, and two-dimensional polyacrylamide gel electrophoresis revealed that the antigens had pI between 4.5 and 6.5, but that the 17/19 kD antigens were more acidic than the 38 kD antigen. Similarities in the molecular masses, charges, as well as the presence of highly conserved crossreactive epitopes, failure to bind to carboxymethylcellulose at pH 4.2, and extractability of the 17/19 kD proteins by 400 mM NH4Cl-ethanol at 0 degrees C indicated that these antigens were analogous to the proteins P0 (38 kD) and P1/P2 (17/19 kD) described previously (25, 36). Co-identity was confirmed using reference antibodies and antigen. Although antibodies to these proteins were only found in 5-10% of more than 50 sera screened by radioimmunoassay or Western blotting, the selective production of antibodies to epitopes on three (out of a total of more than 80) ribosomal proteins may provide further clues to autoantibody induction of SLE. PMID:2410526

  6. Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins.

    PubMed

    Smagghe, Benoit J; Hoy, Julie A; Percifield, Ryan; Kundu, Suman; Hargrove, Mark S; Sarath, Gautam; Hilbert, Jean-Louis; Watts, Richard A; Dennis, Elizabeth S; Peacock, W James; Dewilde, Sylvia; Moens, Luc; Blouin, George C; Olson, John S; Appleby, Cyril A

    2009-12-01

    Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant hemoglobins remain unknown. We have reviewed and, in some cases, measured new oxygen binding properties of a large number of Class 1 and 2 plant nonsymbiotic Hbs and leghemoglobins. We found that sequence classification correlates with distinct extents of hexacoordination with the distal histidine and markedly different overall oxygen affinities and association and dissociation rate constants. These results suggest strong selective pressure for the evolution of distinct physiological functions. The leghemoglobins evolved from the Class 2 globins and show no hexacoordination, very high rates of O(2) binding ( approximately 250 muM(-1) s(-1)), moderately high rates of O(2) dissociation ( approximately 5-15 s(-1)), and high oxygen affinity (K(d) or P(50) approximately 50 nM). These properties both facilitate O(2) diffusion to respiring N(2) fixing bacteria and reduce O(2) tension in the root nodules of legumes. The Class 1 plant Hbs show weak hexacoordination (K(HisE7) approximately 2), moderate rates of O(2) binding ( approximately 25 muM(-1) s(-1)), very small rates of O(2) dissociation ( approximately 0.16 s(-1)), and remarkably high O(2) affinities (P(50) approximately 2 nM), suggesting a function involving O(2) and nitric oxide (NO) scavenging. The Class 2 Hbs exhibit strong hexacoordination (K(HisE7) approximately 100), low rates of O(2) binding ( approximately 1 muM(-1) s(-1)), moderately low O(2) dissociation rate constants ( approximately 1 s(-1)), and moderate, Mb-like O(2) affinities (P(50) approximately 340 nM), perhaps suggesting a sensing role for sustained low, micromolar levels of oxygen.

  7. Magnetic levitation as a platform for competitive protein-ligand binding assays.

    PubMed

    Shapiro, Nathan D; Soh, Siowling; Mirica, Katherine A; Whitesides, George M

    2012-07-17

    This paper describes a method based on magnetic levitation (MagLev) that is capable of indirectly measuring the binding of unlabeled ligands to unlabeled protein. We demonstrate this method by measuring the affinity of unlabeled bovine carbonic anhydrase (BCA) for a variety of ligands (most of which are benzene sulfonamide derivatives). This method utilizes porous gel beads that are functionalized with a common aryl sulfonamide ligand. The beads are incubated with BCA and allowed to reach an equilibrium state in which the majority of the immobilized ligands are bound to BCA. Since the beads are less dense than the protein, protein binding to the bead increases the overall density of the bead. This change in density can be monitored using MagLev. Transferring the beads to a solution containing no protein creates a situation where net protein efflux from the bead is thermodynamically favorable. The rate at which protein leaves the bead for the solution can be calculated from the rate at which the levitation height of the bead changes. If another small molecule ligand of BCA is dissolved in the solution, the rate of protein efflux is accelerated significantly. This paper develops a reaction-diffusion (RD) model to explain both this observation, and the physical-organic chemistry that underlies it. Using this model, we calculate the dissociation constants of several unlabeled ligands from BCA, using plots of levitation height versus time. Notably, although this method requires no electricity, and only a single piece of inexpensive equipment, it can measure accurately the binding of unlabeled proteins to small molecules over a wide range of dissociation constants (K(d) values within the range from ~10 nM to 100 μM are measured easily). Assays performed using this method generally can be completed within a relatively short time period (20 min-2 h). A deficiency of this system is that it is not, in its present form, applicable to proteins with molecular weight greater than approximately 65 kDa.

  8. Rational Design, Synthesis, and Biological Evaluation of Third Generation α-Noscapine Analogues as Potent Tubulin Binding Anti-Cancer Agents

    PubMed Central

    Manchukonda, Naresh Kumar; Naik, Pradeep Kumar; Santoshi, Seneha; Lopus, Manu; Joseph, Silja; Sridhar, Balasubramanian; Kantevari, Srinivas

    2013-01-01

    Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔG bind) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents. PMID:24205049

  9. Activation of a Ca(2+)-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain

    NASA Technical Reports Server (NTRS)

    Huang, J. F.; Teyton, L.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Ca(2+)-dependent protein kinases (CDPKs) are regulated by a C-terminal calmodulin-like domain (CaM-LD). The CaM-LD is connected to the kinase by a short junction sequence which contains a pseudosubstrate autoinhibitor. To understand how the CaM-LD regulates a CDPK, a recombinant CDPK (isoform CPK-1 from Arabidopsis, accession no. L14771) was made as a fusion protein in Escherichia coli. We show here that a truncated CDPK lacking a CaM-LD (e.g. mutant delta NC-26H) can be activated by exogenous calmodulin or an isolated CaM-LD (Kact approximately 2 microM). We propose that Ca2+ activation of a CDPK normally occurs through intramolecular binding of the CaM-LD to the junction. When the junction and CaM-LD are made as two separate polypeptides, the CaM-LD can bind the junction in a Ca(2+)-dependent fashion with a dissociation constant (KD) of 6 x 10(-6) M, as determined by kinetic binding analyses. When the junction and CaM-LD are tethered in a single polypeptide (e.g. in protein JC-1), their ability to engage in bimolecular binding is suppressed (e.g. the tethered CaM-LD cannot bind a separate junction). A mutation which disrupts the putative CaM-LD binding sequence (e.g. substitution LRV-1444 to DLPG) appears to block intramolecular binding, as indicated by the restored ability of a tethered CaM-LD to engage in bimolecular binding. This mutation, in the context of a full-length enzyme (mutant KJM46H), appears to block Ca2+ activation. Thus, a disruption of intramolecular binding correlates with a disruption of the Ca2+ activation mechanism. CDPKs provide the first example of a member of the calmodulin superfamily where a target binding sequence is located within the same polypeptide.

  10. Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets.

    PubMed

    Bachelet, Laure; Bertholon, Isabelle; Lavigne, Damien; Vassy, Roger; Jandrot-Perrus, Martine; Chaubet, Frédéric; Letourneur, Didier

    2009-02-01

    P-selectin is an adhesion receptor expressed on activated platelets and endothelial cells. Its natural ligand, P-selectin glycoprotein ligand-1, is expressed on leucocytes and the P-selectin/PSGL-1 interaction is involved in leukocyte rolling. We have compared the interaction of P-selectin with several low molecular weight polysaccharides: fucoidan, heparin and dextran sulfate. Binding assays were obtained from the interaction of the polysaccharides with Sialyl Lewis X and PSGL-1 based constructs onto microtiter plates coated with P-selectin. SELDI TOF mass spectrometry was performed with anionic chips arrays coated with P-selectin in the absence or in the presence of polysaccharides. Kd were obtained from surface plasmon resonance experiments with immobilized P-selectin constructs, polysaccharides being injected in the mobile phase. Human whole blood flow cytometry experiments were performed with fluorescein isothiocyanate labelled polysaccharides with or without platelets activators. The fucoidan prevented P-selectin binding to Sialyl Lewis X with an IC(50) of 20 nM as compared to 400 nM for heparin and <25000 nM for dextran sulfate. It exhibited the highest affinity for immobilized P-selectin with a KD of 1.2 nM, two orders of magnitude greater than the K(D) of the other polysaccharides. Mass spectrometry evidenced the formation of a complex between P-selectin and fucoidan. The intensity of the fucoidan binding to platelets was dependent on the level of platelet activation. Competition between fucoidan and an anti P-selectin antibody demonstrated the specificity of the interaction. Low molecular weight fucoidan is a promising therapeutic agent of natural origin for biomedical applications.

  11. KU675, a Concomitant Heat-Shock Protein Inhibitor of Hsp90 and Hsc70 that Manifests Isoform Selectivity for Hsp90α in Prostate Cancer Cells

    PubMed Central

    Liu, Weiya; Vielhauer, George A.; Zhao, Huiping; Ghosh, Suman; Brown, Douglas; Lee, Eugene

    2015-01-01

    The 90-kDa heat-shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Inhibiting Hsp90 consequently is an attractive strategy for cancer therapy as the concomitant degradation of multiple oncoproteins may lead to effective antineoplastic agents. Here we report a novel C-terminal Hsp90 inhibitor, designated KU675, that exhibits potent antiproliferative and cytotoxic activity along with client protein degradation without induction of the heat-shock response in both androgen-dependent and -independent prostate cancer cell lines. In addition, KU675 demonstrates direct inhibition of Hsp90 complexes as measured by the inhibition of luciferase refolding in prostate cancer cells. In direct binding studies, the internal fluorescence signal of KU675 was used to determine the binding affinity of KU675 to recombinant Hsp90α, Hsp90β, and Hsc70 proteins. The binding affinity (Kd) for Hsp90α was determined to be 191 μM, whereas the Kd for Hsp90β was 726 μM, demonstrating a preference for Hsp90α. Western blot experiments with four different prostate cancer cell lines treated with KU675 supported this selectivity by inducing the degradation of Hsp90α-dependent client proteins. KU675 also displayed binding to Hsc70 with a Kd value at 76.3 μM, which was supported in cellular by lower levels of Hsc70-specific client proteins on Western blot analyses. Overall, these findings suggest that KU675 is an Hsp90 C-terminal inhibitor, as well as a dual inhibitor of Hsc70, and may have potential use for the treatment of cancer. PMID:25939977

  12. Absorbed aluminium is found with two cytosolic protein fractions, other than ferritin, in the rat duodenum.

    PubMed Central

    Cochran, M; Goddard, G; Ramm, G; Ludwigson, N; Marshall, J; Halliday, J

    1993-01-01

    After in vivo perfusion of the upper intestine of the rat with a range of concentrations of aluminium chloride, entry of the metal into the portal system was only detected when the perfusate exceeded 400 mumol/l, suggesting a mucosal block. Using gel filtration of a mucosal cytosol extract, two consistently appearing aluminium peaks were identified which may represent aluminium binding proteins. Both were heat stable at 60 degrees C and had molecular sizes of about 700 (kilo daltons) (kD) and 17 kD respectively. The larger molecule was distinct from ferritin. Neither molecule associated with 59Fe nor 45Ca. It is suggested that the aluminium peaks are relatively specific aluminium binding proteins that have a scavenging role, reducing entry of the metal from the intestinal contents into the portal blood. PMID:8504964

  13. In Vivo Quantification of Human Serotonin 1A Receptor Using 11C-CUMI-101, an Agonist PET Radiotracer

    PubMed Central

    Milak, Matthew S.; DeLorenzo, Christine; Zanderigo, Francesca; Prabhakaran, Jaya; Kumar, J.S. Dileep; Majo, Vattoly J.; Mann, J. John; Parsey, Ramin V.

    2013-01-01

    The serotonin (5-hydroxytryptamine, or 5-HT) type 1A receptor (5-HT1AR) is implicated in the pathophysiology of numerous neuropsychiatric disorders. We have published the initial evaluation and reproducibility in vivo of [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5 (2H,4H)dione (11C-CUMI-101), a novel 5-HT1A agonist radiotracer, in Papio anubis. Here, we report the optimal modeling parameters of 11C-CUMI-101 for human PET studies. Methods PET scans were obtained for 7 adult human volunteers. 11C-CUMI-101 was injected as an intravenous bolus, and emission data were collected for 120 min in 3-dimensional mode. We evaluated 10 different models using metabolite-corrected arterial input functions or reference region approaches and several outcome measures. Results When using binding potential (BPF = Bavail/KD [total available receptor concentration divided by the equilibrium dissociation constant]) as the outcome measure, the likelihood estimation in the graphical analysis (LEGA) model performed slightly better than the other methods evaluated at full scan duration. The average test–retest percentage difference was 9.90% ± 5.60%. When using BPND (BPND = fnd × Bavail/KD; BPND equals the product of BPF and fnd [free fraction in the nondisplaceable compartment]), the simplified reference tissue method (SRTM) achieved the lowest percentage difference and smallest bias when compared with nondisplaceable binding potential obtained from LEGA using the metabolite-corrected plasma input function (r2 = 0.99; slope = 0.92). The time–stability analysis indicates that a 120-min scan is sufficient for the stable estimation of outcome measures. Voxel results were comparable to region-of-interest–based analysis, with higher spatial resolution. Conclusion On the basis of its measurable and stable free fraction, high affinity and selectivity, good blood–brain barrier permeability, and plasma and brain kinetics, 11C-CUMI-101 is suitable for the imaging of high-affinity 5-HT1A binding in humans. PMID:21098796

  14. Involvement of serotonin system in bullimia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marazziti, D.; Macchi, E.; Rotondo, A.

    1988-01-01

    Platelet /sup 3/H-imipramine binding was investigated in 8 patients affected by bulimia according to DSM III criteria, and in 7 health volunteers. The Bmax /+ -/SD (fmol/mg protein) was 356 /+ -/ 53 in patients, and 1144 /+ -/ 134 in controls. The Kd /+ -/ SD (nM) was 1.35 /+ -/ 0.44 in patients, and 1.90 /+ -/ 0.72 in controls. There was a significant difference in Bmax values in the two groups, whereas no significant difference was observed in Kd values. This study suggests the possible involvement of the indoleamine system in bullimia.

  15. Fine specificities of natural regulatory T cells after IVIG therapy in patients with Kawasaki disease

    PubMed Central

    Burns, Jane C.; Touma, Ranim; Song, Yali; Padilla, Robert L.; Tremoulet, Adriana H.; Sidney, John; Sette, Alessandro; Franco, Alessandra

    2016-01-01

    The activation of natural regulatory T cells (nTreg) recognizing the heavy constant region (Fc) of IgG is an important mechanism of action of intravenous immunoglobulin (IVIG) therapy in Kawasaki disease (KD). Lack of circulating Fc-specific nTreg in the sub-acute phase of KD is correlated with the development of coronary artery abnormalities (CAA). Here, we characterize the fine specificity of nTreg in sub-acute (2- to 8-week post-IVIG) and convalescent (1- to 10-year post-IVIG) KD subjects by testing the immunogenicity of 64 peptides, 15 amino acids in length with a 10 amino acid-overlap spanning the entire Fc protein. About 12 Fc peptides (6 pools of 2 consecutive peptides) were recognized by nTreg in the cohorts studied, including two patients with CAA. To test whether IVIG expands the same nTreg populations that maintain vascular homeostasis in healthy subjects, we compared these results with results obtained in healthy adult controls. Similar nTreg fine specificities were observed in KD patients after IVIG and in healthy donors. These results suggest that T cell fitness rather than T cell clonal deletion or anergy is responsible for the lack of Fc-specific nTreg in KD patients who develop CAA. Furthermore, we found that adolescents and adults who had KD during childhood without developing CAA did not respond to the Fc protein in vitro, suggesting that the nTreg response induced by IVIG in KD patients is short-lived. Our results support the concept that peptide epitopes may be a viable therapeutic approach to expand Fc-specific nTreg and more effectively prevent CAA in KD patients. PMID:25822882

  16. Labile, dissolved and particulate PAHs and trace metals in wastewater: passive sampling, occurrence, partitioning in treatment plants.

    PubMed

    Gourlay-Francé, C; Bressy, A; Uher, E; Lorgeoux, C

    2011-01-01

    The occurrence and the partitioning of polycyclic aromatic hydrocarbons (PAHs) and seven metals (Al, Cd, Cr, Cu, Ni, Pb and Zn) were investigated in activated sludge wastewater treatment plants by means of passive and active sampling. Concentrations total dissolved and particulate contaminants were determined in wastewater at several points across the treatment system by means of grab sampling. Truly dissolved PAHs were sampled by means of semipermeable membrane devices. Labile (inorganic and weakly complexed) dissolved metals were also sampled using the diffusive gradient in thin film technique. This study confirms the robustness and the validity of these two passive sampling techniques in wastewater. All contaminant concentrations decreased in wastewater along the treatment, although dissolved and labile concentrations sometimes increased for substances with less affinity with organic matter. Solid-liquid and dissolved organic matter/water partitioning constants were estimated. The high variability of both partitioning constants for a simple substance and the poor relation between K(D) and K(OW) shows that the binding capacities of particles and organic matter are not uniform within the treatment and that other process than equilibrium sorption affect contaminant repartition and fate in wastewater.

  17. Synthesis and pharmacological evaluation of [(3)H]HS665, a novel, highly selective radioligand for the kappa opioid receptor.

    PubMed

    Guerrieri, Elena; Mallareddy, Jayapal Reddy; Tóth, Géza; Schmidhammer, Helmut; Spetea, Mariana

    2015-03-18

    Herein we report the radiolabeling and pharmacological investigation of a novel radioligand, the N-cyclobutylmethyl substituted diphenethylamine [(3)H]HS665, designed to bind selectively to the kappa opioid peptide (KOP) receptor, a target of therapeutic interest for the treatment of a variety of human disorders (i.e., pain, affective disorders, drug addiction, and psychotic disorders). HS665 was prepared in tritium-labeled form by a dehalotritiated method resulting in a specific activity of 30.65 Ci/mmol. Radioligand binding studies were performed to establish binding properties of [(3)H]HS665 to the recombinant human KOP receptor in membranes from Chinese hamster ovary cells stably expressing human KOP receptors (CHOhKOP) and to the native neuronal KOP receptor in guinea pig brain membranes. Binding of [(3)H]HS665 was specific and saturable in both tissue preparations. A single population of high affinity binding sites was labeled by [(3)H]HS665 in membranes from CHOhKOP cells and guinea pig brain with similar equilibrium dissociation constants, Kd, 0.45 and 0.64 nM, respectively. Average receptor density of [(3)H]HS665 recognition sites were 5564 and 154 fmol/mg protein in CHOhKOP cells and guinea pig brain, respectively. This study shows that the new radioligand distinguishes and labels KOP receptors specifically in neuronal and cellular systems expressing KOP receptors, making this molecule a valuable tool in probing structural and functional mechanisms governing ligand-KOP receptor interactions in both a recombinant and native in vitro setting.

  18. Selection of peptidoglycan-specific aptamers for bacterial cells identification.

    PubMed

    Ferreira, Iêda Mendes; de Souza Lacerda, Camila Maria; de Faria, Lígia Santana; Corrêa, Cristiane Rodrigues; de Andrade, Antero Silva Ribeiro

    2014-12-01

    Peptidoglycan is a highly complex and essential macromolecule of bacterial outer cell wall; it is a heteropolymer made up of linear glycan strands cross-linked by peptides. Peptidoglycan has a particular composition which makes it a possible target for specific bacterial recognition. Aptamers are single-stranded DNA or RNA oligonucleotides that bind to target molecules with high affinity and specificity. Aptamers can be labeled with different radioisotopes and possess several properties that make them suitable for molecular imaging. The purpose of this study was to obtain aptamers for use as radiopharmaceutical in bacterial infection diagnosis. Two aptamers (Antibac1 and Antibac2) against peptidoglycan were selected through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology. The dissociation constant (Kd) for Antibac1 was 0.415 + 0.047 μM and for Antibac2 was 1.261 + 0.280 μM. These aptamers labeled with (32)P showed high affinity for Staphylococcus aureus cells. The binding to S. aureus and Escherichia coli in vitro were significantly higher than for Candida albicans and human fibroblasts, demonstrating their specificity for bacterial cells. These results point Antibac1 and Antibac2 as promising tools for bacterial infections identification.

  19. Genetic epistasis between killer immunoglobulin-like receptors and human leukocyte antigens in Kawasaki disease susceptibility.

    PubMed

    Bossi, G; Mannarino, S; Pietrogrande, M C; Salice, P; Dellepiane, R M; Cremaschi, A L; Corana, G; Tozzo, A; Capittini, C; De Silvestri, A; Tinelli, C; Pasi, A; Martinetti, M

    2015-10-01

    Kawasaki disease (KD) is a pediatric acute multisystemic vasculitis complicated by development of coronary artery lesions. The breakthrough theory on KD etiopathogenesis points to pathogens/environmental factors triggered by northeastern wind coming from China. Natural Killer cells and T lymphocytes express the inhibitory/activating Killer Immunoglobulin-like Receptors (KIR) to elicit an immune response against pathogens by binding to human leukocyte antigens (HLA) class I epitopes. We first report on the role of KIR/HLA genetic epistasis in a sample of 100 Italian KD children. We genotyped KIR, HLA-A, HLA-B and HLA-C polymorphisms, and compared KD data with those from 270 Italian healthy donors. The HLA-A*11 ligand for KIR2DS2/2DS4/3DL2 was a KD susceptibility marker by itself (odds ratio (OR)=3.85, confidence interval (CI)=1.55-9.53, P=0.004). Although no epistasis between HLA-A*11 and KIR2DS2/S4 emerged, HLA-A*11 also engages KIR3DL2, a framework gene encoding for a pathogen sensor of CpG-oligodeoxynucleotides (CpG-ODN), and KD blood mononuclear cells are actually prone to pathogen CpG-ODN activation in the acute phase. Moreover, carriers of KIR2DS2/HLA-C1 and KIR2DL2/HLA-C1 were more frequent among KD, in keeping with data demonstrating the involvement of these HLA/KIR couples in autoimmune endothelial damage. The highest KD risk factor was observed among carriers of KIR2DL2 and two or more HLA ligands (OR=10.24, CI=1.87-56.28; P=0.007).

  20. Whole genome sequencing of an African American family highlights toll like receptor 6 variants in Kawasaki disease susceptibility.

    PubMed

    Kim, Jihoon; Shimizu, Chisato; Kingsmore, Stephen F; Veeraraghavan, Narayanan; Levy, Eric; Ribeiro Dos Santos, Andre M; Yang, Hai; Flatley, Jay; Hoang, Long Truong; Hibberd, Martin L; Tremoulet, Adriana H; Harismendy, Olivier; Ohno-Machado, Lucila; Burns, Jane C

    2017-01-01

    Kawasaki disease (KD) is the most common acquired pediatric heart disease. We analyzed Whole Genome Sequences (WGS) from a 6-member African American family in which KD affected two of four children. We sought rare, potentially causative genotypes by sequentially applying the following WGS filters: sequence quality scores, inheritance model (recessive homozygous and compound heterozygous), predicted deleteriousness, allele frequency, genes in KD-associated pathways or with significant associations in published KD genome-wide association studies (GWAS), and with differential expression in KD blood transcriptomes. Biologically plausible genotypes were identified in twelve variants in six genes in the two affected children. The affected siblings were compound heterozygous for the rare variants p.Leu194Pro and p.Arg247Lys in Toll-like receptor 6 (TLR6), which affect TLR6 signaling. The affected children were also homozygous for three common, linked (r2 = 1) intronic single nucleotide variants (SNVs) in TLR6 (rs56245262, rs56083757 and rs7669329), that have previously shown association with KD in cohorts of European descent. Using transcriptome data from pre-treatment whole blood of KD subjects (n = 146), expression quantitative trait loci (eQTL) analyses were performed. Subjects homozygous for the intronic risk allele (A allele of TLR6 rs56245262) had differential expression of Interleukin-6 (IL-6) as a function of genotype (p = 0.0007) and a higher erythrocyte sedimentation rate at diagnosis. TLR6 plays an important role in pathogen-associated molecular pattern recognition, and sequence variations may affect binding affinities that in turn influence KD susceptibility. This integrative genomic approach illustrates how the analysis of WGS in multiplex families with a complex genetic disease allows examination of both the common disease-common variant and common disease-rare variant hypotheses.

  1. WAVE2 Regulates Epithelial Morphology and Cadherin Isoform Switching through Regulation of Twist and Abl

    PubMed Central

    Bryce, Nicole S.; Reynolds, Albert B.; Koleske, Anthony J.; Weaver, Alissa M.

    2013-01-01

    Background Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. Principal Findings We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. Conclusions The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis. PMID:23691243

  2. Interaction of LY171883 and other peroxisome proliferators with fatty-acid-binding protein isolated from rat liver.

    PubMed Central

    Cannon, J R; Eacho, P I

    1991-01-01

    Fatty-acid-binding protein (FABP) is a 14 kDa protein found in hepatic cytosol which binds and transports fatty acids and other hydrophobic ligands throughout the cell. The purpose of this investigation was to determine whether LY171883, a leukotriene D4 antagonist, and other peroxisome proliferators bind to FABP and displace an endogenous fatty acid. [3H]Oleic acid was used to monitor the elution of FABP during chromatographic purification. [14C]LY171883 had a similar elution profile when substituted in the purification, indicating a common interaction with FABP. LY171883 and its structural analogue, LY189585, as well as the hypolipidaemic peroxisome proliferators clofibric acid, ciprofibrate, bezafibrate and WY14,643, displaced [3H]oleic acid binding to FABP. Analogues of LY171883 that do not induce peroxisome proliferation only weakly displaced oleate binding. [3H]Ly171883 bound directly to FABP with a Kd of 10.8 microM, compared with a Kd of 0.96 microM for [3H]oleate. LY171883 binding was inhibited by LY189585, clofibric acid, ciprofibrate and bezafibrate. These findings demonstrate that peroxisome proliferators, presumably due to their structural similarity to fatty acids, are able to bind to FABP and displace an endogenous ligand from its binding site. Interaction of peroxisome proliferators with FABP may be involved in perturbations of fatty acid metabolism caused by these agents as well as in the development of the pleiotropic response of peroxisome proliferation. Images Fig. 2. PMID:1747111

  3. Interaction of xenobiotics with estrogen receptors α and β and a putative plasma sex hormone-binding globulin from channel catfish (Ictalurus punctatus)

    USGS Publications Warehouse

    Gale, William L.; Patino, Reynaldo; Maule, Alec G.

    2004-01-01

    Estrogens are important regulators of physiological functions. Although environmental contaminants (xenoestrogens) which interfere with estrogen signaling are of increasing concern, there is only limited information about their ability to interact with estrogen-binding proteins (SHBG) or receptors (ER). Recombinant ER?? and ?? were obtained after transient transfection of COS-7 cells with channel catfish ER cDNA. Plasma from adult female channel catfish was the source of SHBG. Tritiated estradiol ( 3H-E2) was used in standard radioligand-binding assays to characterize the binding properties of channel catfish SHBG (ccfSHBG) and to estimate the inhibition constants for various estrogenic compounds. Binding of 3H-E2 to ccfSHBG was saturable and of high affinity with a Kd (??SE) of 1.9??0.14nM and a Bmax of 14.3??2.4pmol/mg protein (n=3 assays). Additionally, ccfSHBG displayed binding specificity for androgens and estrogens. Endosulfan, 4-nonylphenol, and 4-octylphenol displaced 3H-E2 binding to ccfSHBG albeit only at very high concentrations, whereas dieldrin and atrazine showed little displacement activity even at the highest concentrations used. The synthetic estrogen ethynylestradiol had higher affinity than E2 for ccfSHBG. This finding differs from results with human and rainbow trout SHBG. The alkylphenolic compounds (4-octylphenol and 4-nonylphenol) displayed some ability to displace 3H-E2 binding from ER?? and ?? at high concentrations, but dieldrin and atrazine had little binding activity for both ER subtypes and endosulfan for ER??. The xenobiotics tested generally showed equivalent or greater affinity for ER?? than ER??, whereas natural estrogens had much greater affinity for ER?? than ER??. These observations suggest that results of studies using fish tissue ER extracts must be interpreted with caution, since both ER subtypes may be present, and that the binding of xenoestrogens to SHBG must be taken into account for proper assessment of endocrine disruption caused by environmental contaminants.

  4. Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging.

    PubMed

    Webb, Joseph A; Jones, Christopher P; Parent, Leslie J; Rouzina, Ioulia; Musier-Forsyth, Karin

    2013-08-01

    Despite the vast excess of cellular RNAs, precisely two copies of viral genomic RNA (gRNA) are selectively packaged into new human immunodeficiency type 1 (HIV-1) particles via specific interactions between the HIV-1 Gag and the gRNA psi (ψ) packaging signal. Gag consists of the matrix (MA), capsid, nucleocapsid (NC), and p6 domains. Binding of the Gag NC domain to ψ is necessary for gRNA packaging, but the mechanism by which Gag selectively interacts with ψ is unclear. Here, we investigate the binding of NC and Gag variants to an RNA derived from ψ (Psi RNA), as well as to a non-ψ region (TARPolyA). Binding was measured as a function of salt to obtain the effective charge (Zeff) and nonelectrostatic (i.e., specific) component of binding, Kd(1M). Gag binds to Psi RNA with a dramatically reduced Kd(1M) and lower Zeff relative to TARPolyA. NC, GagΔMA, and a dimerization mutant of Gag bind TARPolyA with reduced Zeff relative to WT Gag. Mutations involving the NC zinc finger motifs of Gag or changes to the G-rich NC-binding regions of Psi RNA significantly reduce the nonelectrostatic component of binding, leading to an increase in Zeff. These results show that Gag interacts with gRNA using different binding modes; both the NC and MA domains are bound to RNA in the case of TARPolyA, whereas binding to Psi RNA involves only the NC domain. Taken together, these results suggest a novel mechanism for selective gRNA encapsidation.

  5. The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids

    PubMed Central

    Campanacci, Valérie; Bishop, Russell E.; Blangy, Stéphanie; Tegoni, Mariella; Cambillau, Christian

    2016-01-01

    Lipocalins, a widespread multifunctional family of small proteins (15–25 kDa) have been first described in eukaryotes and more recently in Gram-negative bacteria. Bacterial lipocalins belonging to class I are outer membrane lipoproteins, among which Blc from E. coli is the better studied. Blc is expressed under conditions of starvation and high osmolarity, conditions known to exert stress on the cell envelope. The structure of Blc that we have previously solved (V. Campanacci, D. Nurizzo, S. Spinelli, C. Valencia, M. Tegoni, C. Cambillau, FEBS Lett. 562 (2004) 183–188.) suggested its possible role in binding fatty acids or phospholipids. Both physiological and structural data on Blc, therefore, point to a role in storage or transport of lipids necessary for membrane maintenance. In order to further document this hypothesis for Blc function, we have performed binding studies using fluorescence quenching experiments. Our results indicate that dimeric Blc binds fatty acids and phospholipids in a micromolar Kd range. The crystal structure of Blc with vaccenic acid, an unsaturated C18 fatty acid, reveals that the binding site spans across the Blc dimer, opposite to its membrane anchored face. An exposed unfilled pocket seemingly suited to bind a polar group attached to the fatty acid prompted us to investigate lyso-phospholipids, which were found to bind in a nanomolar Kd range. We discuss these findings in terms of a potential role for Blc in the metabolism of lysophospholipids generated in the bacterial outer membrane. PMID:16920109

  6. Quantitation of benzodiazepine receptor binding with PET [11C]iomazenil and SPECT [123I]iomazenil: preliminary results of a direct comparison in healthy human subjects.

    PubMed

    Bremner, J D; Baldwin, R; Horti, A; Staib, L H; Ng, C K; Tan, P Z; Zea-Ponce, Y; Zoghbi, S; Seibyl, J P; Soufer, R; Charney, D S; Innis, R B

    1999-08-31

    Although positron emission tomography (PET) and single photon emission computed tomography (SPECT) are increasingly used for quantitation of neuroreceptor binding, almost no studies to date have involved a direct comparison of the two. One study found a high level of agreement between the two techniques, although there was a systematic 30% increase in measures of benzodiazepine receptor binding in SPECT compared with PET. The purpose of the current study was to directly compare quantitation of benzodiazepine receptor binding in the same human subjects using PET and SPECT with high specific activity [11C]iomazenil and [123I]iomazenil, respectively. All subjects were administered a single bolus of high specific activity iomazenil labeled with 11C or 123I followed by dynamic PET or SPECT imaging of the brain. Arterial blood samples were obtained for measurement of metabolite-corrected radioligand in plasma. Compartmental modeling was used to fit values for kinetic rate constants of transfer of radioligand between plasma and brain compartments. These values were used for calculation of binding potential (BP = Bmax/Kd) and product of BP and the fraction of free non-protein-bound parent compound (V3'). Mean values for V3' in PET and SPECT were as follows: temporal cortex 23+/-5 and 22+/-3 ml/g, frontal cortex23+/-6 and 22+/-3 ml/g, occipital cortex 28+/-3 and 31+/-5 ml/g, and striatum 4+/-4 and 7+/-4 ml/g. These preliminary findings indicate that PET and SPECT provide comparable results in quantitation of neuroreceptor binding in the human brain.

  7. Identification of a Kinase in Wheat Germ that Phosphorylates the Large Subunit of Initiation Factor 4F 1

    PubMed Central

    Humphreys, Jean; Browning, Karen S.; Ravel, Joanne M.

    1988-01-01

    A kinase has been isolated from wheat (Triticum aestivum) germ that phosphorylates the 220 kilodaltons (kD) subunit of wheat germ initiation factor (eIF) 4F, the 80 kD subunit of eIF-4B (an isozyme form of eIF-4F) and eIF-4G (the functional equivalent to mammalian eIF-4B). The kinase elutes from Sephacryl S-200 slightly in front of ovalbumin. The kinase phosphorylates casein and histone IIA to a small extent, but does not phosphorylate phosvitin. Of the wheat germ initiation factors, elongation factors, and small and large ribosomal subunits, only eIF-4F, eIF-4B, and eIF-4G are phosphorylated to a significant extent. The kinase phosphorylates eIF-4F to the extent of two phosphates per mole of the 220 kD subunit and phosphorylates eIF-4B to the extent of one phosphate per mole of the 80 kD subunit. The 26 kD subunit of eIF-4F and the 28 kD subunit of eIF-4B are not phosphorylated by the kinase. The kinase phosphorylates the 59 kD component of eIF-4G to the extent of 0.25 phosphate per mole of eIF-4G. Phosphorylation of eIF-4F and eIF-4B does not affect their ability to support the binding of mRNA to small ribosomal subunits in vitro. Images Fig. 2 Fig. 3 PMID:16666331

  8. Recognition by nonaromatic and stereochemical subunit-containing polyamides of the four Watson-Crick base pairs in the DNA minor groove.

    PubMed

    Zhang, Hong-Fei; Wu, Yan-Ling; Jiang, Shi-Kun; Wang, Pu; Sugiyama, Hiroshi; Chen, Xing-Lai; Zhang, Wen; Ji, Yan-Juan; Guo, Chuan-Xin

    2012-06-18

    In order to develop an optimal subunit as a T-recognition element in hairpin polyamides, 15 novel chirality-modified polyamides containing (R)-α,β-diaminopropionic acid ((R) β α-NH 2), (S)-α,β-diaminopropionic acid ((S) β α-NH 2), (1R,3S)-3-aminocyclopentanecarboxylic acid ((RS) Cp), (1S,3R)-3-amino-cyclopentanecarboxylic acid ((RS) Cp), (1R,3R)-3-aminocyclopentanecarboxylic acid ((RR) Cp) and (1S,3S)-3-amino-cyclopentanecarboxylic acid ((SS) Cp) residues were synthesized. Their binding characteristics to DNA sequences 5'-TGCNCAT-3'/3'-ACGN'GTA-5' (N⋅N'=A⋅T, T⋅A, G⋅C and C⋅G) were systemically studied by surface plasmon resonance (SPR) and molecular simulation (MSim) techniques. SPR showed that polyamide 4, AcIm-(S) β α-NH 2-ImPy-γ-ImPy-β-Py-βDp (β/(S) β α-NH 2 pair), bound to a DNA sequence containing a core binding site of 5'-TGCACAT-3' with a dissociation equilibrium constant (K(D) ) of 4.5×10(-8)  m. This was a tenfold improvement in specificity over 5'-TGCTCAT-3' (K(D) =4.5×10(-7)  M). MSim studies supported the SPR results. More importantly, for the first time, we found that chiral 3-aminocyclopentanecarboxylic acids in polyamides can be employed as base readers with only a small decrease in binding affinity to DNA. In particular, SPR showed that polyamide 9 ((RR) Cp/β pair) had a 15-fold binding preference for 5'-TGCTCAT-3' over 5'-TGCACAT-3'. A large difference in standard free energy change for A⋅T over T⋅A was determined (ΔΔG(o) =5.9 kJ mol(-1) ), as was a twofold decrease in interaction energy by MSim. Moreover, a 1:1 stoichiometry (9 to 5'-TGCTCAT-3'/3'-ACGAGTA-5') was shown by MSim to be optimal for the chiral five-membered cycle to fit the minor groove. Collectively, the study suggests that the (S)-α-amino-β-aminopropionic acid and (1R,3R)-3-aminocyclopentanecarboxylic acid can serve as a T-recognition element, and the stereochemistry and the nature of these subunits significantly influence binding properties in these recognition events. Subunit (1R,3R)-3-aminocyclopentanecarboxylic acid broadens our scope to design novel polyamides. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.

    PubMed Central

    Shirakawa, I; Chaen, S; Bagshaw, C R; Sugi, H

    2000-01-01

    The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase. PMID:10653804

  10. A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties.

    PubMed

    Shaheen, Sabry M; Tsadilas, Christos D; Rinklebe, Jörg

    2013-12-01

    Knowledge about the behavior and reactions of separate soil components with trace elements (TEs) and their distribution coefficients (Kds) in soils is a key issue in assessing the mobility and retention of TEs. Thus, the fate of TEs and the toxic risk they pose depend crucially on their Kd in soil. This article reviews the Kd of TEs in soils as affected by the sorption system, element characteristics, and soil colloidal properties. The sorption mechanism, determining factors, favorable conditions, and competitive ions on the sorption and Kd of TEs are also discussed here. This review demonstrates that the Kd value of TEs does not only depend on inorganic and organic soil constituents, but also on the nature and characteristics of the elements involved as well as on their competition for sorption sites. The Kd value of TEs is mainly affected by individual or competitive sorption systems. Generally, the sorption in competitive systems is lower than in mono-metal sorption systems. More strongly sorbed elements, such as Pb and Cu, are less affected by competition than mobile elements, such as Cd, Ni, and Zn. The sorption preference exhibited by soils for elements over others may be due to: (i) the hydrolysis constant, (ii) the atomic weight, (iii) the ionic radius, and subsequently the hydrated radius, and (iv) its Misono softness value. Moreover, element concentrations in the test solution mainly affect the Kd values. Mostly, values of Kd decrease as the concentration of the included cation increases in the test solution. Additionally, the Kd of TEs is controlled by the sorption characteristics of soils, such as pH, clay minerals, soil organic matter, Fe and Mn oxides, and calcium carbonate. However, more research is required to verify the practical utilization of studying Kd of TEs in soils as a reliable indicator for assessing the remediation process of toxic metals in soils and waters. © 2013 Elsevier B.V. All rights reserved.

  11. Analysis of the interaction between membrane proteins and soluble binding partners by surface plasmon resonance.

    PubMed

    Wu, Zht Cheng; de Keyzer, Jeanine; Kusters, Ilja; Driessen, Arnold J M

    2013-01-01

    The interaction between membrane proteins and their (protein) ligands is conventionally investigated by nonequilibrium methods such as co-sedimentation or pull-down assays. Surface Plasmon Resonance can be used to monitor such binding events in real-time using isolated membranes immobilized to a surface providing insights in the kinetics of binding under equilibrium conditions. This application provides a fast, automated way to detect interacting species and to determine the kinetics and affinity (Kd) of the interaction.

  12. Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation.

    PubMed

    Baht, Gurpreet S; Hunter, Graeme K; Goldberg, Harvey A

    2008-09-01

    In bone, hydroxyapatite (HA) crystals are deposited onto the type I collagen scaffold by a mechanism that has yet to be elucidated. Bone sialoprotein (BSP) is an acidic phosphoprotein that is expressed at high levels in mineralized tissues, capable of binding type I collagen, and nucleating HA. Both bone-extracted and recombinant BSP (rBSP) bind with equal affinity to collagen. The nature of the BSP-collagen interaction and its role in HA nucleation are not known. We have used a solid-phase binding assay and affinity chromatography to characterize the BSP-collagen interaction. rBSP-binding affinities of triple-helical and fibrillar type I collagen were similar (K(D) approximately 13 nM), while that of heat-denatured type I collagen was lower (K(D) approximately 44 nM), indicating the importance of triple-helical structure in binding BSP. Pepsin treatment of collagen had no effect on rBSP binding, demonstrating that the telopeptides of collagen are not involved. The majority of collagen-bound rBSP was eluted by acetonitrile, indicating that hydrophobic interactions are principally responsible for binding. Using an HA-nucleation assay, it was shown that rBSP is ten-fold more potent in reconstituted fibrillar collagen gels than in agarose gels. Nucleating potency of a non-collagen-binding, HA-nucleating peptide [rBSP(134-206)] showed no difference in the two gel systems. The work here shows that optimal binding of rBSP requires collagen to be in a native, triple-helical structure, does not require the telopeptides, and is stabilized by hydrophobic interactions. Upon binding to collagen, rBSP displays an increase in nucleation potency, implying a co-operative effect of BSP and collagen in mineral formation.

  13. Characterization of diadenosine tetraphosphate (Ap4A) binding sites in cultured chromaffin cells: evidence for a P2y site.

    PubMed Central

    Pintor, J.; Torres, M.; Castro, E.; Miras-Portugal, M. T.

    1991-01-01

    1. Diadenosine tetraphosphate (Ap4A) a dinucleotide, which is stored in secretory granules, presents two types of high affinity binding sites in chromaffin cells. A Kd value of 8 +/- 0.65 x 10(-11) M and Bmax value of 5420 +/- 450 sites per cell were obtained for the high affinity binding site. A Kd value of 5.6 +/- 0.53 x 10(-9) M and a Bmax value close to 70,000 sites per cell were obtained for the second binding site with high affinity. 2. The diadenosine polyphosphates, Ap3A, Ap4A, Ap5A and Ap6A, displaced [3H]-Ap4A from the two binding sites, the Ki values being 1.0 nM, 0.013 nM, 0.013 nM and 0.013 nM for the very high affinity binding site and 0.5 microM, 0.13 microM, 0.062 microM and 0.75 microM for the second binding site. 3. The ATP analogues displaced [3H]-Ap4A with the potency order of the P2y receptors, adenosine 5'-O-(2 thiodiphosphate) (ADP-beta-S) greater than 5'-adenylyl imidodiphosphate (AMP-PNP) greater than alpha, beta-methylene ATP (alpha, beta-MeATP), in both binding sites. The Ki values were respectively 0.075 nM, 0.2 nM and 0.75 nM for the very high affinity binding site and 0.125 microM, 0.5 microM and 0.9 microM for the second binding site. PMID:1912985

  14. [3H]MK-801 binding sites in post-mortem human frontal cortex.

    PubMed

    Kornhuber, J; Mack-Burkhardt, F; Kornhuber, M E; Riederer, P

    1989-03-29

    The binding of [3H]MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate) was investigated in extensively washed homogenates of post-mortem human frontal cortex. The association of [3H]MK-801 proceeded slowly (t1/2 = 553 min) and reached equilibrium only after a prolonged incubation (greater than 24 h). The dissociation of [3H]MK-801 from the binding site was also slow (t1/2 = 244 min). Glutamate, glycine and magnesium markedly increased the rate of association (t1/2 = 14.8 min) and dissociation (t1/2 = 36.5 min). At equilibrium, the binding was not altered by these substances. Specific binding was linear with protein concentration, was saturable, reversible, stereoselective, heat-labile and was nearly absent in the white matter. Scatchard analysis of the saturation curves obtained at equilibrium indicated that there was a high-affinity (Kd1 1.39 +/- 0.21 nM, Bmax1 0.483 +/- 0.084 pmol/mg protein) and a low-affinity (Kd2 116.25 +/- 50.79 nM, Bmax2 3.251 +/- 0.991 pmol/mg protein) binding site. All competition curves obtained with (+)-MK-801, (-)-MK-801, phencyclidine and ketamine had Hill coefficients of less than unity and were best explained by a two-site model. Thus, our results demonstrate the presence of binding sites for MK-801 in post-mortem human brains and provide evidence for binding site heterogeneity. Furthermore, glutamate, glycine and magnesium accelerate the association and dissociation of [3H]MK-801 to and from its binding sites. The results add support to the hypothesis that MK-801, glutamate, glycine and magnesium all bind to different sites on the NMDA receptor-ion channel complex.

  15. dsRNA binding characterization of full length recombinant wild type and mutants Zaire ebolavirus VP35.

    PubMed

    Zinzula, Luca; Esposito, Francesca; Pala, Daniela; Tramontano, Enzo

    2012-03-01

    The Ebola viruses (EBOVs) VP35 protein is a multifunctional major virulence factor involved in EBOVs replication and evasion of the host immune system. EBOV VP35 is an essential component of the viral RNA polymerase, it is a key participant of the nucleocapsid assembly and it inhibits the innate immune response by antagonizing RIG-I like receptors through its dsRNA binding function and, hence, by suppressing the host type I interferon (IFN) production. Insights into the VP35 dsRNA recognition have been recently revealed by structural and functional analysis performed on its C-terminus protein. We report the biochemical characterization of the Zaire ebolavirus (ZEBOV) full-length recombinant VP35 (rVP35)-dsRNA binding function. We established a novel in vitro magnetic dsRNA binding pull down assay, determined the rVP35 optimal dsRNA binding parameters, measured the rVP35 equilibrium dissociation constant for heterologous in vitro transcribed dsRNA of different length and short synthetic dsRNA of 8bp, and validated the assay for compound screening by assessing the inhibitory ability of auryntricarboxylic acid (IC(50) value of 50μg/mL). Furthermore, we compared the dsRNA binding properties of full length wt rVP35 with those of R305A, K309A and R312A rVP35 mutants, which were previously reported to be defective in dsRNA binding-mediated IFN inhibition, showing that the latter have measurably increased K(d) values for dsRNA binding and modified migration patterns in mobility shift assays with respect to wt rVP35. Overall, these results provide the first characterization of the full-length wt and mutants VP35-dsRNA binding functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Production of a Brassica napus low-molecular mass acyl-coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds

    USDA-ARS?s Scientific Manuscript database

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expressio...

  17. Dominant role of local dipolar interactions in phosphate binding to a receptor cleft with an electronegative charge surface: equilibrium, kinetic, and crystallographic studies.

    PubMed

    Ledvina, P S; Tsai, A L; Wang, Z; Koehl, E; Quiocho, F A

    1998-12-01

    Stringent specificity and complementarity between the receptor, a periplasmic phosphate-binding protein (PBP) with a two-domain structure, and the completely buried and dehydrated phosphate are achieved by hydrogen bonding or dipolar interactions. We recently found that the surface charge potential of the cleft between the two domains that contains the anion binding site is intensely electronegative. This novel finding prompted the study reported here of the effect of ionic strength on the equilibrium and rapid kinetics of phosphate binding. To facilitate this study, Ala197, located on the edge of the cleft, was replaced by a Trp residue (A197W PBP) to generate a fluorescence reporter group. The A197W PBP-phosphate complex retains wild-type Kd and X-ray structure beyond the replacement residue. The Kd (0.18 microM) at no salt is increased by 20-fold at greater than 0.30 M NaCl. Stopped-flow fluorescence kinetic studies indicate a two-step binding process: (1) The phosphate (L) binds, at near diffusion-controlled rate, to the open cleft form (Po) of PBP to produce an intermediate, PoL. This rate decreases with increasing ionic strength. (2) The intermediate isomerizes to the closed-conformation form, PcL. The results indicate that the high specificity, affinity, and rate of phosphate binding are not influenced by the noncomplementary electronegative surface potential of the cleft. That binding depends almost entirely on local dipolar interactions with the receptor has important ramification in electrostatic interactions in protein structures and in ligand recognition.

  18. Characterization of [3H]LS-3-134, a Novel Arylamide Phenylpiperazine D3 Dopamine Receptor Selective Radioligand

    PubMed Central

    Rangel-Barajas, Claudia; Malik, Maninder; Taylor, Michelle; Neve, Kim A.; Mach, Robert H.; Luedtke, Robert R.

    2014-01-01

    LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit a) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, b) >100-fold D3 vs. D2 dopamine receptor subtype binding selectivity and c) low-affinity binding (Ki values >5,000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK-293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies we propose that [3H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype. PMID:25041389

  19. Somatomedin C deficiency in Asian sisters.

    PubMed

    McGraw, M E; Price, D A; Hill, D J

    1986-12-01

    Two sisters of Asian origin showed typical clinical and biochemical features of primary somatomedin C (SM-C) deficiency (Laron dwarfism). Abnormalities of SM-C binding proteins were observed, one sister lacking the high molecular weight (150 Kd) protein.

  20. Characterization of the catalytic and noncatalytic ADP binding sites of the F1-ATPase from the thermophilic bacterium, PS3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, M.; Allison, W.S.

    1986-05-05

    Two classes of ADP binding sites at 20 degrees C have been characterized in the F1-ATPase from the thermophilic bacterium, PS3 (TF1). One class is comprised of three sites which saturate with (/sup 3/H)ADP in less than 10 s with a Kd of 10 microM which, once filled, exchange rapidly with medium ADP. The binding of ADP to these sites is dependent on Mg2+. (/sup 3/H)ADP bound to these sites is removed by repeated gel filtrations on centrifuge columns equilibrated with ADP free medium. The other class is comprised of a single site which saturates with (/sup 3/H)ADP in 30more » min with a Kd of 30 microM. (/sup 3/H)ADP bound to this site does not exchange with medium ADP nor does it dissociate on gel filtration through centrifuge columns equilibrated with ADP free medium. Binding of (/sup 3/H)ADP to this site is weaker in the presence of Mg2+ where the Kd for ADP is about 100 microM. (/sup 3/H)ADP dissociated from this site when ATP plus Mg2+ was added to the complex while it remained bound in the presence of ATP alone or in the presence of ADP, Pi, or ADP plus Pi with or without added Mg2+. Significant amounts of ADP in the 1:1 TF1.ADP complex were converted to ATP in the presence of Pi, Mg2+, and 50% dimethyl sulfoxide. Enzyme-bound ATP synthesis was abolished by chemical modification of a specific glutamic acid residue by dicyclohexylcarbodiimide, but not by modification of a specific tyrosine residue with 7-chloro-4-nitrobenzofurazan. Difference circular dichroism spectra revealed that the three Mg2+ -dependent, high affinity ADP binding sites that were not stable to gel filtration were on the alpha subunits and that the single ADP binding site that was stable to gel filtration was on one of the three beta subunits.« less

  1. [beta]-Glucan Synthesis in the Cotton Fiber (III. Identification of UDP-Glucose-Binding Subunits of [beta]-Glucan Synthases by Photoaffinity Labeling with [[beta]-32P]5[prime]-N3-UDP-Glucose.

    PubMed Central

    Li, L.; Drake, R. R.; Clement, S.; Brown, R. M.

    1993-01-01

    Using differential product entrapment and photolabeling under specifying conditions, we identifIed a 37-kD polypeptide as the best candidate among the UDP-glucose-binding polypeptides for the catalytic subunit of cotton (Gossypium hirsutum) cellulose synthase. This polypeptide is enriched by entrapment under conditions favoring [beta]-1,4-glucan synthesis, and it is magnesium dependent and sensitive to unlabeled UDP-glucose. A 52-kD polypeptide was identified as the most likely candidate for the catalytic subunit of [beta]-1,3-glucan synthase because this polypeptide is the most abundant protein in the entrapment fraction obtained under conditions favoring [beta]-1,3-glucan synthesis, is coincident with [beta]-1,3-glucan synthase activity, and is calcium dependent. The possible involvement of other polypeptides in the synthesis of [beta]-1,3-glucan is discussed. PMID:12231766

  2. Rogue periodic waves of the modified KdV equation

    NASA Astrophysics Data System (ADS)

    Chen, Jinbing; Pelinovsky, Dmitry E.

    2018-05-01

    Rogue periodic waves stand for rogue waves on a periodic background. Two families of travelling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions for the mKdV equation. Since the dn-periodic wave is modulationally stable with respect to long-wave perturbations, the new solution constructed from the dn-periodic wave is a nonlinear superposition of an algebraically decaying soliton and the dn-periodic wave. On the other hand, since the cn-periodic wave is modulationally unstable with respect to long-wave perturbations, the new solution constructed from the cn-periodic wave is a rogue wave on the cn-periodic background, which generalizes the classical rogue wave (the so-called Peregrine’s breather) of the nonlinear Schrödinger equation. We compute the magnification factor for the rogue cn-periodic wave of the mKdV equation and show that it remains constant for all amplitudes. As a by-product of our work, we find explicit expressions for the periodic eigenfunctions of the spectral problem associated with the dn and cn periodic waves of the mKdV equation.

  3. Nuclear binding of progesterone in hen oviduct. Binding to multiple sites in vitro.

    PubMed Central

    Pikler, G M; Webster, R A; Spelsberg, T C

    1976-01-01

    Steroid hormones, including progesterone, are known to bind with high affinity (Kd approximately 1x10(-10)M) to receptor proteins once they enter target cells. This complex (the progesterone-receptor) then undergoes a temperature-and/or salt-dependent activation which allows it to migrate to the cell nucleus and to bind to the deoxyribonucleoproteins. The present studies demonstrate that binding the hormone-receptor complex in vitro to isolated nuclei from the oviducts of laying hens required the same conditions as do other studies of bbinding in vitro reported previously, e.g. the hormone must be complexed to intact and activated receptor. The assay of the nuclear binding by using multiple concentrations of progesterone receptor reveals the presence of more than one class of binding site in the oviduct nuclei. The affinity of each of these classes of binding sites range from Kd approximately 1x10(-9)-1x10(-8)M. Assays using free steroid (not complexed with receptor) show no binding to these sites. The binding to each of the classes of sites, displays a differential stability to increasing ionic concentrations, suggesting primarily an ionic-type interaction for all classes. Only the highest-affinity class of binding site is capable of binding progesterone receptor under physioligical-saline conditions. This class represent 6000-10000 sites per cell nucleus and resembles the sites detected in vivo (Spelsberg, 1976, Biochem. J. 156, 391-398) which cause maximal transcriptional response when saturated with the progesterone receptor. The multiple binding sites for the progesterone receptor either are not present or are found in limited numbers in the nuclei of non-target organs. Differences in extent of binding to the nuclear material between a target tissue (oviduct) and other tissues (spleen or erythrocyte) are markedly dependent on the ionic conditions, and are probably due to binding to different classes of sites in the nuclei. PMID:182147

  4. Receptor protein of Lysinibacillus sphaericus mosquito-larvicidal toxin displays amylomaltase activity.

    PubMed

    Sharma, Mahima; Gupta, Gagan D; Kumar, Vinay

    2018-02-01

    The activated binary toxin (BinAB) from Lysinibacillus sphaericus binds to surface receptor protein (Cqm1) on the midgut cell membrane and kills Culex quinquefasciatus larvae on internalization. Cqm1 is attached to cells via a glycosyl-phosphatidylinositol (GPI) anchor. It has been classified as a member of glycoside hydrolase family 13 of the CAZy database. Here, we report characterization of the ordered domain (residues 23-560) of Cqm1. Gene expressing Cqm1 of BinAB susceptible mosquito was chemically synthesized and the protein was purified using E. coli expression system. Values for the Michaelis-Menten kinetics parameters towards 4-nitrophenyl α-D-glucopyranoside (α-pNPG) substrate were estimated to be 0.44 mM (Km) and 1.9 s -1 (kcat). Thin layer chromatography experiments established Cqm1 as α-glucosidase competent to cleave α-1,4-glycosidic bonds of maltose and maltotriose with high glycosyltransferase activity to form glucose-oligomers. The observed hydrolysis and synthesis of glucose-oligomers is consistent with open and accessible active-site in the structural model. The protein also hydrolyses glycogen and sucrose. These activities suggest that Cqm1 may be involved in carbohydrate metabolism in mosquitoes. Further, toxic BinA component does not inhibit α-glucosidase activity of Cqm1, while BinB reduced the activity by nearly 50%. The surface plasmon resonance study reveals strong binding of BinB with Cqm1 (Kd, 9.8 nM). BinA interaction with Cqm1 however, is 1000-fold weaker. Notably the estimated Kd values match well with dissociation constants reported earlier with larvae brush border membrane fractions. The Cqm1 protein forms a stable dimer that is consistent with its apical localization in lipid rafts. Its melting temperature (T m ) as observed by thermofluor-shift assay is 51.5 °C and Ca 2+ provides structural stability to the protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress

    PubMed Central

    Mira, Nuno P.; Henriques, Sílvia F.; Keller, Greg; Teixeira, Miguel C.; Matos, Rute G.; Arraiano, Cecília M.; Winge, Dennis R.; Sá-Correia, Isabel

    2011-01-01

    The transcription factor Haa1 is the main player in reprogramming yeast genomic expression in response to acetic acid stress. Mapping of the promoter region of one of the Haa1-activated genes, TPO3, allowed the identification of an acetic acid responsive element (ACRE) to which Haa1 binds in vivo. The in silico analysis of the promoter regions of the genes of the Haa1-regulon led to the identification of an Haa1-responsive element (HRE) 5′-GNN(G/C)(A/C)(A/G)G(A/G/C)G-3′. Using surface plasmon resonance experiments and electrophoretic mobility shift assays it is demonstrated that Haa1 interacts with high affinity (KD of 2 nM) with the HRE motif present in the ACRE region of TPO3 promoter. No significant interaction was found between Haa1 and HRE motifs having adenine nucleotides at positions 6 and 8 (KD of 396 and 6780 nM, respectively) suggesting that Haa1p does not recognize these motifs in vivo. A lower affinity of Haa1 toward HRE motifs having mutations in the guanine nucleotides at position 7 and 9 (KD of 21 and 119 nM, respectively) was also observed. Altogether, the results obtained indicate that the minimal functional binding site of Haa1 is 5′-(G/C)(A/C)GG(G/C)G-3′. The Haa1-dependent transcriptional regulatory network active in yeast response to acetic acid stress is proposed. PMID:21586585

  6. Synthesis and properties of Asante Calcium Red--a novel family of long excitation wavelength calcium indicators.

    PubMed

    Hyrc, Krzysztof L; Minta, Akwasi; Escamilla, P Rogelio; Chan, Patrick P L; Meshik, Xenia A; Goldberg, Mark P

    2013-10-01

    Although many synthetic calcium indicators are available, a search for compounds with improved characteristics continues. Here, we describe the synthesis and properties of Asante Calcium Red-1 (ACR-1) and its low affinity derivative (ACR-1-LA) created by linking BAPTA to seminaphthofluorescein. The indicators combine a visible light (450-540 nm) excitation with deep-red fluorescence (640 nm). Upon Ca2+ binding, the indicators raise their fluorescence with longer excitation wavelengths producing higher responses. Although the changes occur without any spectral shifts, it is possible to ratio Ca(2+)-dependent (640 nm) and quasi-independent (530 nm) emission when using visible (< 490 nm) or multiphoton (∼780 nm) excitation. Therefore, both probes can be used as single wavelength or, less dynamic, ratiometric indicators. Long indicator emission might allow easy [Ca2+]i measurement in GFP expressing cells. The indicators bind Ca2+ with either high (Kd = 0.49 ± 0.07 μM; ACR-1) or low affinity (Kd = 6.65 ± 0.13 μM; ACR-1-LA). Chelating Zn2+ (Kd = 0.38 ± 0.02 nM) or Mg2+ (Kd∼5mM) slightly raises and binding Co2+ quenches dye fluorescence. New indicators are somewhat pH-sensitive (pKa = 6.31 ± 0.07), but fairly resistant to bleaching. The probes are rather dim, which combined with low AM ester loading efficiency, might complicate in situ imaging. Despite potential drawbacks, ACR-1 and ACR-1-LA are promising new calcium indicators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Protein-silver nanoparticle interactions to colloidal stability in acidic environments.

    PubMed

    Tai, Jui-Ting; Lai, Chao-Shun; Ho, Hsin-Chia; Yeh, Yu-Shan; Wang, Hsiao-Fang; Ho, Rong-Ming; Tsai, De-Hao

    2014-11-04

    We report a kinetic study of Ag nanoparticles (AgNPs) under acidic environments (i.e., pH 2.3 to pH ≈7) and systematically investigate the impact of protein interactions [i.e., bovine serum albumin (BSA) as representative] to the colloidal stability of AgNPs. Electrospray-differential mobility analysis (ES-DMA) was used to characterize the particle size distributions and the number concentrations of AgNPs. Transmission electron microscopy was employed orthogonally to provide visualization of AgNPs. For unconjugated AgNPs, the extent of aggregation, or the average particle size, was shown to be increased significantly with an increase of acidity, where a partial coalescence was found between the primary particles of unconjugated AgNP clusters. Aggregation rate constant, kD, was also shown to be proportional to acidity, following a correlation of log(kD) = -1.627(pH)-9.3715. Using ES-DMA, we observe BSA had a strong binding affinity (equilibrium binding constant, ≈ 1.1 × 10(6) L/mol) to the surface of AgNPs, with an estimated maximum molecular surface density of ≈0.012 nm(-2). BSA-functionalized AgNPs exhibited highly-improved colloidal stability compared to the unconjugated AgNPs under acidic environments, where both the acid-induced interfacial dissolution and the particle aggregation became negligible. Results confirm a complex mechanism of colloidal stability of AgNPs: the aggregation process was shown to be dominant, and the formation of BSA corona on AgNPs suppressed both particle aggregation and interfacial dissolution of AgNP samples under acidic environments.

  8. Transient kinetic studies of pH-dependent hydrolyses by exo-type carboxypeptidase P on a 27-MHz quartz crystal microbalance.

    PubMed

    Furusawa, Hiroyuki; Takano, Hiroki; Okahata, Yoshio

    2008-02-15

    pH-Dependent kinetic parameters (k(on), k(off), and k(cat)) of protein (myoglobin) hydrolyses catalyzed by exo-enzyme (carboxypeptidase P, CPP) were obtained by using a protein-immobilized quartz crystal microbalance (QCM) in acidic aqueous solutions. The formation of the enzyme-substrate (ES) complex (k(on)), the decay of the ES complex (k(off)), and the formation of the product (k(cat)) could be analyzed by transient kinetics as mass changes on the QCM plate. The Kd (k(off)/k(on)) value was different from the Michaelis constant Km calculated from (k(off) + k(cat))/k(on) due to k(cat) > k(off). The rate-determining step was the binding step (k(on), and the catalytic rate k(cat) was faster than other k(on) and k(off) values. In the range of pH 2.5-5.0, values of k(on) gradually increased with decreasing pH showing a maximum at pH 3.7, values of k(off) were independent of pH, and k(cat) increased gradually with decreasing pH. As a result, the apparent rate constant (k(cat)/Km) showed a maximum at pH 3.7 and gradually increased with decreasing pH. The optimum pH at 3.7 of k(on) is explained by the optimum binding ability of CPP to the COOH terminus of the substrate with hydrogen bonds. The increase of k(cat) at the lower pH correlated with the decrease of alpha-helix contents of the myoglobin substrate on the QCM.

  9. PARACEST Properties of a Dinuclear Neodymium(III) Complex Bound to DNA or Carbonate

    PubMed Central

    Nwe, Kido; Andolina, Christopher M.; Huang, Ching-Hui; Morrow, Janet R.

    2009-01-01

    A dinuclear Nd(III) macrocyclic complex of 1 (1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene) and mononuclear complexes of 1,4,7-tris-1,4,7,10-tetraazacyclododecane 2, and 1,4,7-tris[(N-N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane, 3, are prepared. Complexes of 1 and 2 give rise to a PARACEST (paramagnetic chemical exchange saturation transfer) peak from exchangeable amide protons that resonate approximately 12 ppm downfield from the bulk water proton resonance. The dinuclear Nd(III) complex is promising as a PARACEST contrast agent for MRI applications because it has an optimal pH of 7.5 and the rate constant for amide proton exchange (2700 s−1) is nearly as large as it can be within slow exchange conditions with bulk water. Dinuclear Ln2(1) complexes (Ln(III) = Nd(III), Eu(III)) bind tightly to anionic ligands including carbonate, diethylphosphate and DNA. The CEST amide peak of Nd2(1) is enhanced by certain DNA sequences that contain hairpin loops, but decreases in the presence of diethyl phosphate or carbonate. Direct excitation luminescence studies of Eu2(1) show that double-stranded and hairpin loop DNA sequences displace one water ligand on each Eu(III) center. DNA displaces carbonate ion despite the low dissociation constant for the Eu2(1) carbonate complex (Kd = 15 µM). Enhancement of the CEST effect of a lanthanide complex by binding to DNA is a promising step toward the preparation of PARACEST agents containing DNA scaffolds. PMID:19555071

  10. PARACEST properties of a dinuclear neodymium(III) complex bound to DNA or carbonate.

    PubMed

    Nwe, Kido; Andolina, Christopher M; Huang, Ching-Hui; Morrow, Janet R

    2009-07-01

    A dinuclear Nd(III) macrocyclic complex of 1 (1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene) and mononuclear complexes of 1,4,7-tris-1,4,7,10-tetraazacyclododecane, 2, and 1,4,7-tris[(N-N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane, 3, are prepared. Complexes of 1 and 2 give rise to a PARACEST (paramagnetic chemical exchange saturation transfer) peak from exchangeable amide protons that resonate approximately 12 ppm downfield from the bulk water proton resonance. The dinuclear Nd(III) complex is promising as a PARACEST contrast agent for MRI applications, because it has an optimal pH of 7.5 and the rate constant for amide proton exchange (2700 s(-1)) is nearly as large as it can be within slow exchange conditions with bulk water. Dinuclear Ln(2)(1) complexes (Ln(III) = Nd(III), Eu(III)) bind tightly to anionic ligands including carbonate, diethyl phosphate, and DNA. The CEST amide peak of Nd(2)(1) is enhanced by certain DNA sequences that contain hairpin loops, but decreases in the presence of diethyl phosphate or carbonate. Direct excitation luminescence studies of Eu(2)(1) show that double-stranded and hairpin-loop DNA sequences displace one water ligand on each Eu(III) center. DNA displaces carbonate ion despite the low dissociation constant for the Eu(2)(1) carbonate complex (K(d) = 15 microM). Enhancement of the CEST effect of a lanthanide complex by binding to DNA is a promising step toward the preparation of PARACEST agents containing DNA scaffolds.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C.

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE boundmore » with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.« less

  12. Lactose carrier protein of Escherichia coli. Transport and binding of 2'-(N-dansyl)aminoethyl beta-D-thiogalactopyranoside and p-nitrophenyl alpha-d-galactopyranoside.

    PubMed

    Overath, P; Teather, R M; Simoni, R D; Aichele, G; Wilhelm, U

    1979-01-09

    The elevated level of lactose carrier protein present in cytoplasmic membranes derived from Escherichia coli strain T31RT, which carries the Y gene of the lac operon on a plasmid vector (Teather, R. M., et al. (1978) Mol. Gen. Genet. 159, 239--248), has allowed the detection of a complex between the carrier and the fluorescent substrate 2'-(N-dansyl)-aminoethyl beta-D-thiogalactopyranoside (Dns2-S-Gal). Binding is accompanied by a 50-nm blue shift in the emission maximum of the dansyl residue. The complex (dissociation constant, KD = 30 micron) rapidly dissociates upon addition of competing substrates such as beta-D-galactopyranosyl 1-thio-beta-D-galactopyranoside or upon reaction with the thiol reagent p-chloromercuribenzenesulfonate. Binding of both Dns2-S-Gal and p-nitrophenyl alpha-D-galactopyranoside (alpha-NPG) occurs spontaneously in the absence of an electrochemical potential gradient across the membrane. Comparison of equilibrium binding experiments using Dns2-S-Gal or alpha-NPG and differential labeling of the carrier with radioactive amino acids shows that the carrier binds 1 mol of substrate per mol of polypeptide (molecular weight 30 000). In addition to specific binding to the lactose carrier, Dns2-S-gal binds unspecifically to lipid vesicles or membranes, as described by a partition coefficient, K = 60, resulting in a 25-nm blue shift in the emission maximum of the dansyl group. Both Dns2-S-Gal and alpha-NPG are not only bound by the lactose carrier but also transported across the membrane by this transport protein in cells and membrane vesicles. The fluorescence changes observed with dansylated galactosides in membrane vesicles in the presence of an electrochemical gradient (Schuldiner et al. (1975) J. Biol. Chem. 250, 1361--1370)) are interpreted as an increase in unspecific binding after translocation.

  13. Amino acid polymorphisms in the fibronectin-binding repeats of fibronectin-binding protein A affect bond strength and fibronectin conformation

    PubMed Central

    Casillas-Ituarte, Nadia N.; Cruz, Carlos H. B.; Lins, Roberto D.; DiBartola, Alex C.; Howard, Jessica; Liang, Xiaowen; Höök, Magnus; Viana, Isabelle F. T.; Sierra-Hernández, M. Roxana; Lower, Steven K.

    2017-01-01

    The Staphylococcus aureus cell surface contains cell wall-anchored proteins such as fibronectin-binding protein A (FnBPA) that bind to host ligands (e.g. fibronectin; Fn) present in the extracellular matrix of tissue or coatings on cardiac implants. Recent clinical studies have found a correlation between cardiovascular infections caused by S. aureus and nonsynonymous SNPs in FnBPA. Atomic force microscopy (AFM), surface plasmon resonance (SPR), and molecular simulations were used to investigate interactions between Fn and each of eight 20-mer peptide variants containing amino acids Ala, Asn, Gln, His, Ile, and Lys at positions equivalent to 782 and/or 786 in Fn-binding repeat-9 of FnBPA. Experimentally measured bond lifetimes (1/koff) and dissociation constants (Kd = koff/kon), determined by mechanically dissociating the Fn·peptide complex at loading rates relevant to the cardiovascular system, varied from the lowest-affinity H782A/K786A peptide (0.011 s, 747 μm) to the highest-affinity H782Q/K786N peptide (0.192 s, 15.7 μm). These atomic force microscopy results tracked remarkably well to metadynamics simulations in which peptide detachment was defined solely by the free-energy landscape. Simulations and SPR experiments suggested that an Fn conformational change may enhance the stability of the binding complex for peptides with K786I or H782Q/K786I (Kdapp = 0.2–0.5 μm, as determined by SPR) compared with the lowest-affinity double-alanine peptide (Kdapp = 3.8 μm). Together, these findings demonstrate that amino acid substitutions in Fn-binding repeat-9 can significantly affect bond strength and influence the conformation of Fn upon binding. They provide a mechanistic explanation for the observation of nonsynonymous SNPs in fnbA among clinical isolates of S. aureus that cause endovascular infections. PMID:28400484

  14. Thermodynamic Linkage Between Calmodulin Domains Binding Calcium and Contiguous Sites in the C-Terminal Tail of CaV1.2

    PubMed Central

    Evans, T. Idil Apak; Hell, Johannes; Shea, Madeline A.

    2011-01-01

    Calmodulin (CaM) binding to the intracellular C-terminal tail (CTT) of the cardiac L-type Ca2+ channel (CaV1.2) regulates Ca2+ entry by recognizing sites that contribute to negative feedback mechanisms for channel closing. CaM associates with CaV1.2 under low resting [Ca2+], but is poised to change conformation and position when intracellular [Ca2+] rises. CaM binding Ca2+, and the domains of CaM binding the CTT are linked thermodynamic functions. To better understand regulation, we determined the energetics of CaM domains binding to peptides representing pre-IQ sites A1588, and C1614 and the IQ motif studied as overlapping peptides IQ1644 and IQ′1650 as well as their effect on calcium binding. (Ca2+)4-CaM bound to all four peptides very favorably (Kd ≤ 2 nM). Linkage analysis showed that IQ1644–1670 bound with a Kd ~1 pM. In the pre-IQ region, (Ca2+)2-N-domain bound preferentially to A1588, while (Ca2+)2-C-domain preferred C1614. When bound to C1614, calcium binding in the N-domain affected the tertiary conformation of the C-domain. Based on the thermodynamics, we propose a structural mechanism for calcium-dependent conformational change in which the linker between CTT sites A and C buckles to form an A-C hairpin that is bridged by calcium-saturated CaM. PMID:21757287

  15. The Barley Magnesium Chelatase 150-kD Subunit Is Not an Abscisic Acid Receptor1[OA

    PubMed Central

    Müller, André H.; Hansson, Mats

    2009-01-01

    Magnesium chelatase is the first unique enzyme of the chlorophyll biosynthetic pathway. It is composed of three gene products of which the largest is 150 kD. This protein was recently identified as an abscisic acid receptor in Arabidopsis (Arabidopsis thaliana). We have evaluated whether the barley (Hordeum vulgare) magnesium chelatase large subunit, XanF, could be a receptor for the phytohormone. The study involved analysis of recombinant magnesium chelatase protein as well as several induced chlorophyll-deficient magnesium chelatase mutants with defects identified at the gene and protein levels. Abscisic acid had no effect on magnesium chelatase activity and binding to the barley 150-kD protein could not be shown. Magnesium chelatase mutants showed a wild-type response in respect to postgermination growth and stomatal aperture. Our results question the function of the large magnesium chelatase subunit as an abscisic acid receptor. PMID:19176716

  16. The Interaction Affinity between Vascular Cell Adhesion Molecule-1 (VCAM-1) and Very Late Antigen-4 (VLA-4) Analyzed by Quantitative FRET

    PubMed Central

    Wu, Shu-Han; Karmenyan, Artashes; Chiou, Arthur

    2015-01-01

    Very late antigen-4 (VLA-4), a member of integrin superfamily, interacts with its major counter ligand vascular cell adhesion molecule-1 (VCAM-1) and plays an important role in leukocyte adhesion to vascular endothelium and immunological synapse formation. However, irregular expressions of these proteins may also lead to several autoimmune diseases and metastasis cancer. Thus, quantifying the interaction affinity of the VCAM-1/VLA-4 interaction is of fundamental importance in further understanding the nature of this interaction and drug discovery. In this study, we report an ‘in solution’ steady state organic fluorophore based quantitative fluorescence resonance energy transfer (FRET) assay to quantify this interaction in terms of the dissociation constant (Kd). We have used, in our FRET assay, the Alexa Fluor 488-VLA-4 conjugate as the donor, and Alexa Fluor 546-VCAM-1 as the acceptor. From the FRET signal analysis, Kd of this interaction was determined to be 41.82 ± 2.36 nM. To further confirm our estimation, we have employed surface plasmon resonance (SPR) technique to obtain Kd = 39.60 ± 1.78 nM, which is in good agreement with the result obtained by FRET. This is the first reported work which applies organic fluorophore based ‘in solution’ simple quantitative FRET assay to obtain the dissociation constant of the VCAM-1/VLA-4 interaction, and is also the first quantification of this interaction. Moreover, the value of Kd can serve as an indicator of abnormal protein-protein interactions; hence, this assay can potentially be further developed into a drug screening platform of VLA-4/VCAM-1 as well as other protein-ligand interactions. PMID:25793408

  17. Solution and fluorescence properties of symmetric dipicolylamine-containing dichlorofluorescein-based Zn2+ sensors.

    PubMed

    Wong, Brian A; Friedle, Simone; Lippard, Stephen J

    2009-05-27

    The mechanism by which dipicolylamine (DPA) chelate-appended fluorophores respond to zinc was investigated by the synthesis and study of five new analogues of the 2',7'-dichlorofluorescein-based Zn(2+) sensor Zinpyr-1 (ZP1). With the use of absorption and emission spectroscopy in combination with potentiometric titrations, a detailed molecular picture has emerged of the Zn(2+) and H(+) binding properties of the ZP1 family of sensors. The two separate N(3)O donor atom sets on ZP1 converge to form binding pockets in which all four heteroatoms participate in coordination to either Zn(2+) or protons. The position of the pyridyl group nitrogen atom, 2-pyridyl or 4-pyridyl, has a large impact on the fluorescence response of the dyes to protons despite relatively small changes in pK(a) values. The fluorescence quenching effects of such multifunctional electron-donating units are often taken as a whole. Despite the structural complexity of ZP1, however, we provide evidence that the pyridyl arms of the DPA appendages participate in the quenching process, in addition to the contribution from the tertiary nitrogen amine atom. Potentiometric titrations reveal ZP1 dissociation constants (K(d)) for Zn(2+) of 0.04 pM and 1.2 nM for binding to the first and second binding pockets of the ligand, respectively, the second of which correlates with the value observed by fluorescence titration. This result demonstrates that both binding pockets of this symmetric, ditopic sensor need to be occupied in order for full fluorescence turn-on to be achieved. These results have significant implications for the design and implementation of fluorescent sensors for studies of mobile zinc ions in biology.

  18. Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum.

    PubMed

    Shin, W; Lindahl, P A

    1992-12-29

    Adding 1,10-phenanthroline to carbon monoxide dehydrogenase from Clostridium thermoaceticum results in the complete loss of the NiFeC EPR signal and the CO/acetyl-CoA exchange activity. Other EPR signals characteristic of the enzyme (the gav = 1.94 and gav = 1.86 signals) and the CO oxidation activity are completely unaffected by the 1,10-phenanthroline treatment. This indicates that there are two catalytic sites on the enzyme; the NiFe complex is required for catalyzing the exchange and acetyl-CoA synthase reactions, while some other site is responsible for CO oxidation. The strength of CO binding to the NiFe complex was examined by titrating dithionite-reduced enzyme with CO. During the titration, the NiFeC EPR signal developed to a final spin intensity of 0.23 spin/alpha beta. The resulting CO titration curve (NiFeC spins/alpha beta vs CO pha beta) was fitted using two reactions: binding of CO to the oxidized NiFe complex, and reduction of the CO-bound species to a form that exhibits the NiFeC signal. Best fits yielded apparent binding constants between 6000 and 14,000 M-1 (Kd = 70-165 microM). This sizable range is due to uncertainty whether CO binds to all or only a small fraction (approximately 23%) of the NiFe complexes. Reduction of the CO-bound NiFe complex is apparently required to activate it for catalysis. The electron used for this reduction originates from the CO oxidation site, suggesting that delivery of a low-potential electron to the CO-bound NiFe complex is the physiological function of the CO oxidation reaction catalyzed by this enzyme.

  19. Isocyanides inhibit human heme oxygenases at the verdoheme stage.

    PubMed

    Evans, John P; Kandel, Sylvie; Ortiz de Montellano, Paul R

    2009-09-22

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides, isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 microM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design.

  20. Isocyanides Inhibit Human Heme Oxygenases at the Verdoheme Stage†

    PubMed Central

    Evans, John P.; Kandel, Sylvie; Ortiz de Montellano, Paul R.

    2010-01-01

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides; isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides, and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 μM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design. PMID:19694439

  1. Somatomedin C deficiency in Asian sisters.

    PubMed Central

    McGraw, M E; Price, D A; Hill, D J

    1986-01-01

    Two sisters of Asian origin showed typical clinical and biochemical features of primary somatomedin C (SM-C) deficiency (Laron dwarfism). Abnormalities of SM-C binding proteins were observed, one sister lacking the high molecular weight (150 Kd) protein. Images Figure PMID:2434036

  2. (+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] hydrochloride, hemihydrate (SNI-2011, cevimeline hydrochloride) induces saliva and tear secretions in rats and mice: the role of muscarinic acetylcholine receptors.

    PubMed

    Iga, Y; Arisawa, H; Ogane, N; Saito, Y; Tomizuka, T; Nakagawa-Yagi, Y; Masunaga, H; Yasuda, H; Miyata, N

    1998-11-01

    We investigated effects of (+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] hydrochloride, hemihydrate (SNI-2011, cevimeline hydrochloride), a rigid analogue of acetylcholine, on saliva and tear secretions in rats and mice to evaluate its therapeutical efficacy for xerostomia and xerophthalmia in patients with Sjogren's syndrome and X-ray exposure in the head and neck. Intraduodenal administrations of SNI-2011 increased saliva secretion in a dose-dependent manner at doses ranging from 3 to 30 mg/kg in normal rats and mice, two strains of autoimmune disease mice and X-irradiated saliva secretion defective rats. The salivation elicited by SNI-2011 was completely inhibited by atropine. A similar atropine-sensitive response was observed in tear secretion. In rat submandibular/sublingual gland membranes, [3H]quinuclidinyl benzilate (QNB) binding was saturable, and Scatchard plot analysis revealed a single population of binding sites with a Kd of 22 pM and a maximal binding capacity of 60 fmol/mg protein. The competitive inhibition curve of the [3H]QNB binding by SNI-2011 was obtained, and its dissociation constant value calculated from IC50 was 1-2 microM. These results suggest that SNI-2011 increases saliva and tear secretions through a direct stimulation to muscarinic receptors in salivary and lacrimal glands, and they suggest that SNI-2011 should be beneficial to patients with Sjögren's syndrome and X-ray exposure in the head and neck.

  3. Interaction between rose bengal and different protein components.

    PubMed

    Tseng, S C; Zhang, S H

    1995-07-01

    Bindings of rose bengal to several proteins were determined by Sephadex G-75 chromatography. Their respective blocking effect against dye uptake was demonstrated in an assay using a rabbit corneal epithelial cell layer. The total binding capacity of nonmucin proteins was measured using fluorometry and Scatchard analysis. The results showed that albumin, lactoferrin, transferrin, and lysozyme could--but serum prealbumin, IgA, carboxymethyl cellulose (CMC), and Sepharose 4B-purified porcine stomach mucin (PSM) could not--bind rose bengal. Lysozyme formed precipitates with rose bengal. Sufficient concentrations of albumin, lactoferrin, transferrin, or lysozyme premixed with rose bengal could block dye uptake by cells, but IgA and serum prealbumin could not. Premixed PSM was not as effective as precoated PSM in blocking dye uptake. The dissociation constant (Kd) was 1.2 x 10(-7) M, 3.6 x 10(-7) M, 3.9 x 10(-7) M, and 1.6 x 10(-6) M for albumin, transferrin, lactoferrin, and lysozyme, respectively. Based on these values, the total maximal binding capacity of nonmucin proteins in normal 7-microliters tears was extrapolated to be 0.249 micrograms rose bengal, which is too small to explain the negative staining of rose bengal on the normal ocular surface. Rose bengal, but not fluorescein, could interact with carbohydrate-containing Sephadex, CMC, and PSM to slow down its elution via Sephadex column chromatography. Therefore, the normal negative staining to rose bengal might be caused by the blocking effect of preocular mucus tear layer, which serves as a diffusion barrier. Rose bengal remains a unique dye for detecting the protective function of the preocular mucus tear.

  4. DNA aptamers for the detection of Haemophilus influenzae type b by cell SELEX.

    PubMed

    Bitaraf, F S; Rasooli, I; Mousavi Gargari, S L

    2016-03-01

    Haemophilus influenzae type b (Hib) causes acute bacterial meningitis (ABM) in children, with a mortality rate of about 3-6 % of the affected patients. ABM can lead to death during a period of hours to several days and, hence, rapid and early detection of the infection is crucial. Aptamers, the short single-stranded DNA or RNA with high affinity to target molecules, are selected by a high-flux screening technique known as in vitro screening and systematic evolution of ligands by exponential enrichment technology (SELEX). In this study, whole-cell SELEX was applied for the selection of target-specific aptamers with high affinity to Hib. ssDNA aptamers prepared by lambda exonuclease were incubated with the target cells (Hib). The aptameric binding rate to Hib was characterized for binding affinity after seven SELEX rounds by flow cytometry. The aptamers with higher binding affinity were cloned. Four of 68 aptamer clones were selected for sequencing. The dissociation constant (Kd) of the high-affinity aptamer clones 45 and 63 were 47.10 and 28.46 pM, respectively. These aptamers did not bind to other bacterial species, including the seven meningitis-causing bacteria. They showed distinct affinity to various H. influenzae strains only. These aptamers showed the highest affinity to Hib and the lowest affinity to H. influenzae type c and to other meningitis-causing bacteria. Clone 63 could detect Hib in patients' cerebrospinal fluid (CSF) samples at 60 colony-forming units (CFU)/mL. The results indicate applicability of the aptamers for rapid and early detection of infections brought about by Hib.

  5. Characterization of the Ruler Protein Interaction Interface on the Substrate Specificity Switch Protein in the Yersinia Type III Secretion System*

    PubMed Central

    Ho, Oanh; Rogne, Per; Edgren, Tomas; Wolf-Watz, Hans; Login, Frédéric H.; Wolf-Watz, Magnus

    2017-01-01

    Many pathogenic Gram-negative bacteria use the type III secretion system (T3SS) to deliver effector proteins into eukaryotic host cells. In Yersinia, the switch to secretion of effector proteins is induced first after intimate contact between the bacterium and its eukaryotic target cell has been established, and the T3SS proteins YscP and YscU play a central role in this process. Here we identify the molecular details of the YscP binding site on YscU by means of nuclear magnetic resonance (NMR) spectroscopy. The binding interface is centered on the C-terminal domain of YscU. Disrupting the YscU-YscP interaction by introducing point mutations at the interaction interface significantly reduced the secretion of effector proteins and HeLa cell cytotoxicity. Interestingly, the binding of YscP to the slowly self-cleaving YscU variant P264A conferred significant protection against autoproteolysis. The YscP-mediated inhibition of YscU autoproteolysis suggests that the cleavage event may act as a timing switch in the regulation of early versus late T3SS substrates. We also show that YscUC binds to the inner rod protein YscI with a dissociation constant (Kd) of 3.8 μm and with 1:1 stoichiometry. The significant similarity among different members of the YscU, YscP, and YscI families suggests that the protein-protein interactions discussed in this study are also relevant for other T3SS-containing Gram-negative bacteria. PMID:28039361

  6. Interaction between the C-terminal domains of measles virus nucleoprotein and phosphoprotein: a tight complex implying one binding site.

    PubMed

    Blocquel, David; Habchi, Johnny; Costanzo, Stéphanie; Doizy, Anthony; Oglesbee, Michael; Longhi, Sonia

    2012-10-01

    The intrinsically disordered C-terminal domain (N(TAIL) ) of the measles virus (MeV) nucleoprotein undergoes α-helical folding upon binding to the C-terminal X domain (XD) of the phosphoprotein. The N(TAIL) region involved in binding coupled to folding has been mapped to a conserved region (Box2) encompassing residues 489-506. In the previous studies published in this journal, we obtained experimental evidence supporting a K(D) for the N(TAIL) -XD binding reaction in the nM range and also showed that an additional N(TAIL) region (Box3, aa 517-525) plays a role in binding to XD. In striking contrast with these data, studies published in this journal by Kingston and coworkers pointed out a much less stable complex (K(D) in the μM range) and supported lack of involvement of Box3 in complex formation. The objective of this study was to critically re-evaluate the role of Box3 in N(TAIL) -XD binding. Since our previous studies relied on N(TAIL) -truncated forms possessing an irrelevant Flag sequence appended at their C-terminus, we, herein, generated an N(TAIL) devoid of Box3 and any additional C-terminal residues, as well as a form encompassing only residues 482-525. We then used isothermal titration calorimetry to characterize the binding reactions between XD and these N(TAIL) forms. Results effectively argue for the presence of a single XD-binding site located within Box2, in agreement with the results by Kingston et al., while providing clear experimental support for a high-affinity complex. Altogether, the present data provide mechanistic insights into the replicative machinery of MeV and clarify a hitherto highly debated point. Copyright © 2012 The Protein Society.

  7. Interaction between the C-terminal domains of measles virus nucleoprotein and phosphoprotein: A tight complex implying one binding site

    PubMed Central

    Blocquel, David; Habchi, Johnny; Costanzo, Stéphanie; Doizy, Anthony; Oglesbee, Michael; Longhi, Sonia

    2012-01-01

    The intrinsically disordered C-terminal domain (NTAIL) of the measles virus (MeV) nucleoprotein undergoes α-helical folding upon binding to the C-terminal X domain (XD) of the phosphoprotein. The NTAIL region involved in binding coupled to folding has been mapped to a conserved region (Box2) encompassing residues 489–506. In the previous studies published in this journal, we obtained experimental evidence supporting a KD for the NTAIL–XD binding reaction in the nM range and also showed that an additional NTAIL region (Box3, aa 517–525) plays a role in binding to XD. In striking contrast with these data, studies published in this journal by Kingston and coworkers pointed out a much less stable complex (KD in the μM range) and supported lack of involvement of Box3 in complex formation. The objective of this study was to critically re-evaluate the role of Box3 in NTAIL–XD binding. Since our previous studies relied on NTAIL-truncated forms possessing an irrelevant Flag sequence appended at their C-terminus, we, herein, generated an NTAIL devoid of Box3 and any additional C-terminal residues, as well as a form encompassing only residues 482–525. We then used isothermal titration calorimetry to characterize the binding reactions between XD and these NTAIL forms. Results effectively argue for the presence of a single XD-binding site located within Box2, in agreement with the results by Kingston et al., while providing clear experimental support for a high-affinity complex. Altogether, the present data provide mechanistic insights into the replicative machinery of MeV and clarify a hitherto highly debated point. PMID:22887965

  8. A hydrogen-bonding network modulating enzyme function: asparagine-194 and tyrosine-225 of Escherichia coli aspartate aminotransferase.

    PubMed

    Yano, T; Mizuno, T; Kagamiyama, H

    1993-02-23

    The electron distribution within the coenzyme or coenzyme-substrate conjugate needs to be properly regulated during the catalytic process of aspartate aminotransferase (AspAT). Asn194 and Tyr225 may function in regulating the electron distribution through hydrogen-bonding to O(3') of the coenzyme, pyridoxal 5'-phosphate (PLP) or pyridoxamine 5'-phosphate (PMP). The roles of Tyr225 have already been explored by site-directed mutagenesis (Inoue et al., 1991; Goldberg et al., 1991). In the present studies, the mutant enzymes Asn194-->Ala and Asn194-->Ala + Tyr225-->Phe were analyzed kinetically and spectroscopically and were compared with the wild-type and Tyr225-->Phe enzymes. The kinetic studies showed that Asn194 is not essential for AspAT catalysis, although the Kd values for the substrates were increased by 10- to 50-fold upon the replacement of Asn194. The measurements of the absorption and fluorescence excitation spectra revealed that the ratio of an enolimine to a ketoenamine form was considerably increased as a tautomeric form of the protonated PLP in the active site of the double mutant enzyme. The pH-pKd relationship for the binding of maleate to AspAT could be explained by a simple thermodynamic cycle where only one ionizing group (the imine nitrogen of the internal aldimine bond) affects the binding of maleate. The analyses of the pH-pKd curves for the wild-type and mutant enzymes showed that (i) the hydrogen bond between O(3') of PLP and Asn194 is weakened by the binding of maleate to AspAT, while the hydrogen bond between O(3') and Tyr225 is not changed, and that (ii) the replacement of Asn194 causes some effect hampering the binding of maleate.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance.

    PubMed

    Chen, Qin-Fang; Xiao, Shi; Chye, Mee-Len

    2008-09-01

    Small 10-kD acyl-coenzyme A-binding proteins (ACBPs) are highly conserved proteins that are prevalent in eukaryotes. In Arabidopsis (Arabidopsis thaliana), other than the 10-kD ACBP homolog (designated Arabidopsis ACBP6), there are five larger forms of ACBPs ranging from 37.5 to 73.1 kD. In this study, the cytosolic subcellular localization of Arabidopsis ACBP6 was confirmed by analyses of transgenic Arabidopsis expressing autofluorescence-tagged ACBP6 and western-blot analysis of subcellular fractions using ACBP6-specific antibodies. The expression of Arabidopsis ACBP6 was noticeably induced at 48 h after 4 degrees C treatment by northern-blot analysis and western-blot analysis. Furthermore, an acbp6 T-DNA insertional mutant that lacked ACBP6 mRNA and protein displayed increased sensitivity to freezing temperature (-8 degrees C), while ACBP6-overexpressing transgenic Arabidopsis plants were conferred enhanced freezing tolerance. Northern-blot analysis indicated that ACBP6-associated freezing tolerance was not dependent on the induction of cold-regulated COLD-RESPONSIVE gene expression. Instead, ACBP6 overexpressors showed increased expression of mRNA encoding phospholipase Ddelta. Lipid profiling analyses of rosettes from cold-acclimated, freezing-treated (-8 degrees C) transgenic Arabidopsis plants overexpressing ACBP6 showed a decline in phosphatidylcholine (-36% and -46%) and an elevation of phosphatidic acid (73% and 67%) in comparison with wild-type plants. From our comparison, the gain in freezing tolerance in ACBP6 overexpressors that was accompanied by decreases in phosphatidylcholine and an accumulation of phosphatidic acid is consistent with previous findings on phospholipase Ddelta-overexpressing transgenic Arabidopsis. In vitro filter-binding assays indicating that histidine-tagged ACBP6 binds phosphatidylcholine, but not phosphatidic acid or lysophosphatidylcholine, further imply a role for ACBP6 in phospholipid metabolism in Arabidopsis, including the possibility of ACBP6 in the cytosolic trafficking of phosphatidylcholine.

  10. KU675, a Concomitant Heat-Shock Protein Inhibitor of Hsp90 and Hsc70 that Manifests Isoform Selectivity for Hsp90α in Prostate Cancer Cells.

    PubMed

    Liu, Weiya; Vielhauer, George A; Holzbeierlein, Jeffrey M; Zhao, Huiping; Ghosh, Suman; Brown, Douglas; Lee, Eugene; Blagg, Brian S J

    2015-07-01

    The 90-kDa heat-shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Inhibiting Hsp90 consequently is an attractive strategy for cancer therapy as the concomitant degradation of multiple oncoproteins may lead to effective antineoplastic agents. Here we report a novel C-terminal Hsp90 inhibitor, designated KU675, that exhibits potent antiproliferative and cytotoxic activity along with client protein degradation without induction of the heat-shock response in both androgen-dependent and -independent prostate cancer cell lines. In addition, KU675 demonstrates direct inhibition of Hsp90 complexes as measured by the inhibition of luciferase refolding in prostate cancer cells. In direct binding studies, the internal fluorescence signal of KU675 was used to determine the binding affinity of KU675 to recombinant Hsp90α, Hsp90β, and Hsc70 proteins. The binding affinity (Kd) for Hsp90α was determined to be 191 μM, whereas the Kd for Hsp90β was 726 μM, demonstrating a preference for Hsp90α. Western blot experiments with four different prostate cancer cell lines treated with KU675 supported this selectivity by inducing the degradation of Hsp90α -: dependent client proteins. KU675 also displayed binding to Hsc70 with a Kd value at 76.3 μM, which was supported in cellular by lower levels of Hsc70-specific client proteins on Western blot analyses. Overall, these findings suggest that KU675 is an Hsp90 C-terminal inhibitor, as well as a dual inhibitor of Hsc70, and may have potential use for the treatment of cancer. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  11. A Genome-Wide RNAi Screen Identifies FOXO4 as a Metastasis-Suppressor through Counteracting PI3K/AKT Signal Pathway in Prostate Cancer

    PubMed Central

    Su, Bing; Gao, Lingqiu; Baranowski, Catherine; Gillard, Bryan; Wang, Jianmin; Ransom, Ryan; Ko, Hyun-Kyung; Gelman, Irwin H.

    2014-01-01

    Activation of the PI3K/AKT signal pathway is a known driving force for the progression to castration-recurrent prostate cancer (CR-CaP), which constitutes the major lethal phenotype of CaP. Here, we identify using a genomic shRNA screen the PI3K/AKT-inactivating downstream target, FOXO4, as a potential CaP metastasis suppressor. FOXO4 protein levels inversely correlate with the invasive potential of a panel of human CaP cell lines, with decreased mRNA levels correlating with increased incidence of clinical metastasis. Knockdown (KD) of FOXO4 in human LNCaP cells causes increased invasion in vitro and lymph node (LN) metastasis in vivo without affecting indices of proliferation or apoptosis. Increased Matrigel invasiveness was found by KD of FOXO1 but not FOXO3. Comparison of differentially expressed genes affected by FOXO4-KD in LNCaP cells in culture, in primary tumors and in LN metastases identified a panel of upregulated genes, including PIP, CAMK2N1, PLA2G16 and PGC, which, if knocked down by siRNA, could decrease the increased invasiveness associated with FOXO4 deficiency. Although only some of these genes encode FOXO promoter binding sites, they are all RUNX2-inducible, and RUNX2 binding to the PIP promoter is increased in FOXO4-KD cells. Indeed, the forced expression of FOXO4 reversed the increased invasiveness of LNCaP/shFOXO4 cells; the forced expression of FOXO4 did not alter RUNX2 protein levels, yet it decreased RUNX2 binding to the PIP promoter, resulting in PIP downregulation. Finally, there was a correlation between FOXO4, but not FOXO1 or FOXO3, downregulation and decreased metastasis-free survival in human CaP patients. Our data strongly suggest that increased PI3K/AKT-mediated metastatic invasiveness in CaP is associated with FOXO4 loss, and that mechanisms to induce FOXO4 re-expression might suppress CaP metastatic aggressiveness. PMID:24983969

  12. FRET Studies Between CdTe Capped by Small-Molecule Ligands and Fluorescent Protein

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhou, Dejian; He, Junhui

    2014-12-01

    Water-soluble luminescent semiconductor nanocrystals also known as quantum dots (QDs) that have prominent photostability, wide absorption cross sections and tunable narrow emission, have been shown as promising probes in immunoassays. QDs are often used as donors in fluorescence resonance energy transfer (FRET) based sensors using organic dyes or fluorescent proteins as acceptors. Here, the FRET between a QD donor and fluorescent protein acceptors has been studied. The fluorescent protein (FP)mCherry appended with a hexa-histidine-tag could effectively self-assemble onto CdTe to produce small donor-acceptor distances and hence highly efficient FRET (efficiency > 80%) at relatively low FP:CdTe copy numbers (ca.1). Using the Förster dipole-dipole interaction formula, the Förster radius (R0) and respective donor-acceptor distances for the CdTe-FP FRET systems have been calculated. The binding constants (Kd) of the QD-FP systems have also been evaluated by the emission spectra.

  13. Molecularly imprinted polymers for RGD selective recognition and separation.

    PubMed

    Papaioannou, Emmanuel; Koutsas, Christos; Liakopoulou-Kyriakides, Maria

    2009-03-01

    Molecularly imprinted polymers that could recognize the tripeptide Arg-Gly-Asp have been produced with the use of two functional monomers and three different cross-linkers, respectively. Methacrylic acid and acrylamide were used as functional monomers and the role of the ethylene glycol dimethacrylate, trimethylpropane trimethacrylate and N,N'-methylene-bisacrylamide as crosslinking monomers, was investigated on their recognition capability. The % net rebinding and the imprinting factor values were obtained, giving for the methacrylic acid-trimethylpropane trimethacrylate polymer the highest values 12.3% and 2.44, respectively. In addition, this polymer presented lower dissociation constant (K(D)) value and the higher B (max)% of theoretical total binding sites than all the other polymers. Rebinding experiments with Lys-Gly-Asp, an analogue of Arg-Gly-Asp, and other different peptides, such as cholecystokinin C-terminal tri- and pentapeptide and gramicidin, further indicated the selectivity of methacrylic acid-trimethylpropane trimethacrylate copolymer for Arg-Gly-Asp giving specific selectivity factor values 1.27, 1.98, 1.31 and 1.67, respectively.

  14. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    PubMed

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents.

  15. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    PubMed

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. High performance dendrimer functionalized single-walled carbon nanotubes field effect transistor biosensor for protein detection

    NASA Astrophysics Data System (ADS)

    Rajesh, Sharma, Vikash; Puri, Nitin K.; Mulchandani, Ashok; Kotnala, Ravinder K.

    2016-12-01

    We report a single-walled carbon nanotube (SWNT) field-effect transistor (FET) functionalized with Polyamidoamine (PAMAM) dendrimer with 128 carboxyl groups as anchors for site specific biomolecular immobilization of protein antibody for C-reactive protein (CRP) detection. The FET device was characterized by scanning electron microscopy and current-gate voltage (I-Vg) characteristic studies. A concentration-dependent decrease in the source-drain current was observed in the regime of clinical significance, with a detection limit of ˜85 pM and a high sensitivity of 20% change in current (ΔI/I) per decade CRP concentration, showing SWNT being locally gated by the binding of CRP to antibody (anti-CRP) on the FET device. The low value of the dissociation constant (Kd = 0.31 ± 0.13 μg ml-1) indicated a high affinity of the device towards CRP analyte arising due to high anti-CRP loading with a better probe orientation on the 3-dimensional PAMAM structure.

  17. A protein with anion exchange properties found in the kidney proximal tubule.

    PubMed

    Soleimani, M; Bizal, G L; Anderson, C C

    1993-09-01

    One important mechanism for reabsorption of chloride in the kidney proximal tubule involves anion exchange of chloride for a base. Anion exchange transport systems in general demonstrate sensitivity to inhibition by disulfonic stilbenes, probenecid, furosemide, and the arginyl amino group modifier phenylglyoxal. Using disulfonic stilbene affinity chromatography, we have identified and partially purified a protein with anion exchanger properties in luminal membrane vesicles isolated from rabbit kidney cortex. This protein has a molecular weight of 162 kD. The binding of the 162 kD protein to the stilbene affinity matrix is inhibited by disulfonic stilbenes, probenecid, furosemide, and phenylglyoxal. Reconstitution of the proteins eluted from the affinity matrix into liposomes demonstrates anion exchange activity as assayed by radiolabeled chloride influx. Deletion of the 162 kD protein from the eluted mixture by probenecid diminishes the anion exchanger activity in the reconstituted liposomes. Further purification of the disulfonic stilbene column eluant by Econo-Pac Q ion exchange chromatography resulted in significant enrichment in 162 kD protein abundance and also anion exchange activity in reconstituted liposomes. The results of the above experiments strongly suggest that the 162 kD protein is an anion exchanger. Insight into the functional and molecular characteristics of this protein should provide important information about the mechanism(s) of chloride reabsorption in the kidney proximal tubule.

  18. TCDD causes stimulation of c-ras expression in the hepatic plasma membranes in vivo and in vitro.

    PubMed

    Tullis, K; Olsen, H; Bombick, D W; Matsumura, F; Jankun, J

    1992-01-01

    A series of in vivo and in vitro experiments were conducted to determine the effects of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) administered on the expression of c-ras. Differences in c-ras expression between control and TCDD treated groups were determined by immunoassay of p21ras protein, or indirectly measured by the specific binding of 3H-GTP to hepatic plasma membrane preparations. Intraperitoneal injection of sublethal doses of TCDD significantly elevated (P less than 0.05, Student t test) levels of hepatic p21ras protein in Sprague-Dawley rats and TCDD sensitive C57BL/6J mice. Such an increase occurred at an early stage of poisoning in the C57BL/6J mice. The earliest increase was detectable 6 hr after dosing, and the difference became statistically significant by 12 and 24 hr after dosing. In contrast, TCDD tolerant DBA/2J mice had only a marginal increase in hepatic p21ras protein which did not become statistically significant even at 24 hr host-dosing. TCDD evoked increases in hepatic p21ras protein of C57BL/6J mice were accompanied by the increase in the specific binding of GTP to hepatic plasma membranes. Column chromatography of solubilized rat hepatic membrane proteins on sephadex G-50 showed TCDD administration increased levels of a 3H-GTP binding protein with MW of approximately 21 Kd. 3H-GTP binding in total hepatic membranes was also elevated (P less than 0.05, Fisher PLSD multiple comparison test) 6 hr and 24 hr after dosing of C57BL/6J mice, but as expected the effect of TCDD was not as conspicuous as that found in the plasma membrane. TCDD treatment increased levels of a 21 Kd protein found in the in vitro translation products of RNA purified from guinea pig liver. This protein was identified as a c-ras protein based upon its ability to bind GTP, precipitation by a polyclonal antibody against the rasHa and Ki proteins and subsequent SDS-PAGE which showed a single protein band of approximately 21 Kd.

  19. Increased Antibody Affinity Confers Broad In Vitro Protection against Escape Mutants of Severe Acute Respiratory Syndrome Coronavirus

    PubMed Central

    Rani, Mridula; Bolles, Meagan; Donaldson, Eric F.; Van Blarcom, Thomas; Baric, Ralph; Iverson, Brent

    2012-01-01

    Even though the effect of antibody affinity on neutralization potency is well documented, surprisingly, its impact on neutralization breadth and escape has not been systematically determined. Here, random mutagenesis and DNA shuffling of the single-chain variable fragment of the neutralizing antibody 80R followed by bacterial display screening using anchored periplasmic expression (APEx) were used to generate a number of higher-affinity variants of the severe acute respiratory syndrome coronavirus (SARS-CoV)-neutralizing antibody 80R with equilibrium dissociation constants (KD) as low as 37 pM, a >270-fold improvement relative to that of the parental 80R single-chain variable fragment (scFv). As expected, antigen affinity was shown to correlate directly with neutralization potency toward the icUrbani strain of SARS-CoV. Additionally, the highest-affinity antibody fragment displayed 10-fold-increased broad neutralization in vitro and completely protected against several SARS-CoV strains containing substitutions associated with antibody escape. Importantly, higher affinity also led to the suppression of viral escape mutants in vitro. Escape from the highest-affinity variant required reduced selective pressure and multiple substitutions in the binding epitope. Collectively, these results support the hypothesis that engineered antibodies with picomolar dissociation constants for a neutralizing epitope can confer escape-resistant protection. PMID:22696652

  20. Dexamethasone upregulates ANP C-receptor protein in human mesangial cells without affecting mRNA.

    PubMed

    Ardaillou, N; Blaise, V; Placier, S; Amestoy, F; Ardaillou, R

    1996-03-01

    The objective of this study was to examine the role of dexamethasone on the expression of natriuretic peptide B-type and C-type receptors (ANPR-B and ANPR-C) in cultured human mesangial cells, which only possess these two subtypes. Dexamethasone caused concentration- and time-dependent increases in 125I-labeled ANP binding, which were prevented by glucocorticoid receptor inhibition with RU-38486. A lag time of 24 h and a concentration of dexamethasone of at least 1 nmol/l were necessary for this effect to occur. Dexamethasone-induced upregulation of 125I-ANP binding resulted from increased receptor density. No change in dissociation constant (Kd) was observed. Only ANPR-C were affected by dexamethasone. Indeed, dexamethasone did not modify C-type natriuretic peptide (i.e., CNP)-dependent cGMP production by mesangial cells. Moreover, dexamethasone upregulated ANPR-C protein expression as shown by Western blot analysis and by an increase in ANPR-C immunoreactivity at the cell surface. In contrast, dexamethasone did not modify ANPR-C mRNA expression. In conclusion, glucocorticoids increase ANPR-C density on mesangial cells through a mechanism implying, successively, interaction with the glucocorticoid receptor and increase of ANPR-C protein synthesis at a posttranscriptional stage. Thus dexamethasone may influence availability of natriuretic peptides at their glomerular target sites.

  1. Simultaneous detection of assembly and disassembly of multivalent HA tag and anti-HA antibody in single in-capillary assay.

    PubMed

    Wang, Jianhao; Qin, Yuqin; Qin, Haifang; Liu, Li; Ding, Shumin; Teng, Yiwan; Ji, Junling; Qiu, Lin; Jiang, Pengju

    2016-08-01

    Herein, we have developed an in-capillary assay for simultaneous detection of the assembly and disassembly of the multivalent HA tag peptide and antibody. HA tag with hexahistidine at C terminus (YPYDVPDYAG4 H6 , termed YPYDH6 ) was conjugated with quantum dots (QDs) by metal-affinity force to form a multivalent HA tag (QD-YPYDH6 ). QD-YPYDH6 and monoclonal anti-HA antibody (anti-HA) were sequentially injected into the capillary. They were mixed and assembled inside the capillary. The reaction products were online discriminated and detected by fluorescence coupled capillary electrophoresis (CE-FL). For the in-capillary assay, the binding efficiency of the multivalent HA tag and antibody on was influenced by the molar ratio and injection time. Such novel assay could even give out the self-assembly kinetic constant of QDs and YPYDH6 as KD of 34.1 μM with n (binding cooperativeness) of 2.2 by Hill equation. More importantly, the simultaneous detection of the assembly and imidazole (Im) induced disassembly of the QD-YPYDH6 -anti-HA complex was achieved in a single in-capillary assay. Our study demonstrated a new method for the online detection of antigen-antibody interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Selection is more intelligent than design: improving the affinity of a bivalent ligand through directed evolution.

    PubMed

    Ahmad, Kareem M; Xiao, Yi; Soh, H Tom

    2012-12-01

    Multivalent molecular interactions can be exploited to dramatically enhance the performance of an affinity reagent. The enhancement in affinity and specificity achieved with a multivalent construct depends critically on the effectiveness of the scaffold that joins the ligands, as this determines their positions and orientations with respect to the target molecule. Currently, no generalizable design rules exist for construction of an optimal multivalent ligand for targets with known structures, and the design challenge remains an insurmountable obstacle for the large number of proteins whose structures are not known. As an alternative to such design-based strategies, we report here a directed evolution-based method for generating optimal bivalent aptamers. To demonstrate this approach, we fused two thrombin aptamers with a randomized DNA sequence and used a microfluidic in vitro selection strategy to isolate scaffolds with exceptionally high affinities. Within five rounds of selection, we generated a bivalent aptamer that binds thrombin with an apparent dissociation constant (K(d)) <10 pM, representing a ∼200-fold improvement in binding affinity over the monomeric aptamers and a ∼15-fold improvement over the best designed bivalent construct. The process described here can be used to produce high-affinity multivalent aptamers and could potentially be adapted to other classes of biomolecules.

  3. Binding of glycated ovocystatin to rat renal brush border membranes.

    PubMed

    Golab, Krzysztof; Gburek, Jakub; Konopska, Bogusława; Krotkiewski, Hubert; Warwas, Maria

    2013-10-01

    Glycated proteins are considered as one of the factors involved in the pathogenesis of diabetic complications, including nephropathy. These proteins are formed endogenously under conditions of hyperglycemia, as well as being provided with food containing sugars, which was subjected to high temperature. Examples are egg products. One of the proteins found in eggs in a relatively high concentration is chicken cystatin (ovocystatin). It is now believed that some proteins can passage the intestinal epithelium by transcytosis directly into the bloodstream. Thus, glycated protein present in food can be an additional source of glycotoxins. The aim of this study was to compare the affinity of native and glycated cystatin to the brush border membranes of rat kidney. Kinetic analysis was performed with surface plasmon resonance technique using sensor chip L1. Dissociation constants for native and glycated cystatin (Kd ) were 2.76 μmol/L and 3.82 μmol/L, respectively. The results of our study indicate that glycation only slightly affects binding of cystatin to brush border membranes. This suggests that glycated cystatin and other glycated proteins may also be efficiently taken up in the kidney proximal tubule. The observation may be important for understanding the mechanisms involved in the development of diabetic nephropathy. © 2013 Japanese Society of Animal Science.

  4. Kinetic and thermodynamic study of bovine serum albumin interaction with rifampicin using surface plasmon resonance and molecular docking methods

    NASA Astrophysics Data System (ADS)

    Sharifi, Maryam; Dolatabadi, Jafar Ezzati Nazhad; Fathi, Farzaneh; Rashidi, Mohammad; Jafari, Behzad; Tajalli, Habib; Rashidi, Mohammad-Reza

    2017-03-01

    The interaction of bovine serum albumin (BSA) with various drugs, such as antibiotics, due to the importance of BSA in drug delivery has attracted increasing research attention at present. Therefore, the aim of this study was investigation of BSA interaction with rifampicin using surface plasmon resonance (SPR) and molecular docking methods under the imitated physiological conditions (pH=7.4). BSA immobilization on carboxymethyl dextran hydrogel chip has been carried out after activation with N-hydroxysuccinimide/N-ethyl-N-(3-diethylaminopropyl) carbodiimide. The dose-response sensorgrams of BSA upon increasing concentration of refampicin were attained in SPR analysis. The high affinity of rifampicin to BSA was demonstrated by a low equilibrium constants (KD) value (3.46×10-5 at 40°C). The process of kinetic values changing shows that affinity of BSA to rifampicin decreased with rising temperature. The positive value of both enthalpy change (ΔH) and entropy change (ΔS) showed that hydrophobic force plays major role in the BSA interaction with rifampicin. The positive value of ΔG was indicative of nonspontaneous and enthalpy-driven binding process. In addition, according to the molecular docking study, hydrogen binding has some contributions in the interaction of rifampicin with BSA.

  5. The N-terminal domain of a tick evasin is critical for chemokine binding and neutralization and confers specific binding activity to other evasins

    PubMed Central

    Eaton, James R. O.; Alenazi, Yara; Singh, Kamayani; Davies, Graham; Geis-Asteggiante, Lucia; Kessler, Benedikt; Robinson, Carol V.; Kawamura, Akane; Bhattacharya, Shoumo

    2018-01-01

    Tick chemokine-binding proteins (evasins) are an emerging class of biologicals that target multiple chemokines and show anti-inflammatory activities in preclinical disease models. Using yeast surface display, we identified a CCL8-binding evasin, P672, from the tick Rhipicephalus pulchellus. We found that P672 binds CCL8 and eight other CC-class chemokines with a Kd < 10 nm and four other CC chemokines with a Kd between 10 and 100 nm and neutralizes CCL3, CCL3L1, and CCL8 with an IC50 < 10 nm. The CC chemokine–binding profile was distinct from that of evasin 1 (EVA1), which does not bind CCL8. We also show that P672's binding activity can be markedly modulated by the location of a StrepII-His purification tag. Combining native MS and bottom-up proteomics, we further demonstrated that P672 is glycosylated and forms a 1:1 complex with CCL8, disrupting CCL8 homodimerization. Homology modeling of P672 using the crystal structure of the EVA1 and CCL3 complex as template suggested that 44 N-terminal residues of P672 form most of the contacts with CCL8. Replacing the 29 N-terminal residues of EVA1 with the 44 N-terminal residues of P672 enabled this hybrid evasin to bind and neutralize CCL8, indicating that the CCL8-binding properties of P672 reside, in part, in its N-terminal residues. This study shows that the function of certain tick evasins can be manipulated simply by adding a tag. We conclude that homology modeling helps identify regions with transportable chemokine-binding functions within evasins, which can be used to construct hybrid evasins with altered properties. PMID:29487134

  6. Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells

    PubMed Central

    Tahara, Atsuo; Tsukada, Junko; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Tanaka, Akihiro

    2000-01-01

    [3H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [3H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (Kd) of 0.76 nM and a maximum receptor density (Bmax) of 153 fmol mg−1 protein. The Hill coefficient (nH) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [3H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [3H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu1,6]-oxytocin>AVP= atosiban>d(CH2)5Tyr(Me)AVP>[Thr4,Gly7]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca2+]i increase and hyperplasia. In contrast, the V1A receptor selective antagonist, SR 49059, and the V2 receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca2+]i increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca2+]i increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [3H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca2+]i increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the physiologic and pathophysiologic roles of oxytocin in the uterus. PMID:10694212

  7. Modulation of thyroid hormone receptors by non-thyroidal stimuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ErkenBrack, D.E.; Clemons, G.K.

    1988-01-01

    The ability of non-thyroidal stimuli to affect the binding affinity and capacity of solubilized nuclear receptors for thyroid hormones was studied in a normal homeostatic system (erythropoiesis) and a pathobiologic one (lung-ozone interaction). No significant effects on affinity were found, as Kd control values for receptors derived from rat bone marrow averaged 57 (+/- 28) pM while experimental (hypoxic) values averaged 89 (+/- 55) pM. Kd control values in rat lung were found to average 142 (+/- 22) pM while average values derived from experimental protocols with ozone and methimazole were 267 (+/- 44) pM and 161 (+/- 35) pMmore » respectively. Finally, Kd control values for receptors derived from cultured MEL cells averaged 19 (+/- 2.6) pM while experimental values during exposure to DMSO or IGF1 were 23 (+/- 3.6) pM and 26 (+/- 11) pM respectively. In contrast, binding capacity (expressed as fmoles of hormone bound per unit protein of solubilized receptor) was markedly perturbed in several tissues by various agents: ozone effects on lung were shown by an average control value of 3.3 (+/- 0.4) as opposed to an experimental average of 28 (+/- 1.9); and hypoxia effects on erythroid tissue were displayed by an average control value of 0.7 (+/- 0.07) as opposed to the experimental figure of 1.8 (+/- 0.03). In cultured MEL cells, binding capacity was seen to be increased from control values of 388 (+/- 15) sites/cell to 1243 (+/- 142) sites/cell after DMSO exposure and 2002 (+/- 10) sites/cell after IGF1 exposure. Parallel experiments done with receptors derived from rat liver yielded values similar to those reported by other investigators and were unaffected by the experimental agents.« less

  8. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease

    PubMed Central

    1992-01-01

    Serum mannose-binding protein (MBP) is a C-type lectin that binds to terminal mannose and N-acetylglucosamine moieties present on surfaces of certain pathogens and activates the classical complement pathway. In the present study, we describe the mechanism underlying the activation triggered by MBP. The human serum MBP fraction was obtained by sequential affinity chromatography on mannan-Sepharose, anti-IgM- Sepharose and anti-MBP-Sepharose in the presence of calcium ions. This fraction contained a C1s-like serine protease as assessed by C4 consumption. The C1s-like serine protease, designated MBP-associated serine protease (MASP), was separated from MBP by rechromatography on anti-MBP-Sepharose in the presence of ethylenediaminetetraacetic acid. MASP exhibited both C4- and C2-consuming activities. The molecular mass of MASP was estimated to be 83 kD with two polypeptides of heavy (66 kD) and light (L) (31 kD) chains linked by disulfide bonds. The serine residue responsible for protease activity is located on the L chain. Reconstitution experiments using MASP and MBP revealed that combination of the two components restores C4- and C2-activating capacity on mannan. Based on analyses of molecular size, antigenicity, and 11 NH2- terminal amino acid sequences of the L chain, we conclude that MASP is a novel protein different from C1r or C1s. Our findings are not in accord with a proposed mechanism by which MBP utilizes the C1r2-C1s2 complex to initiate the classical complement pathway. PMID:1460414

  9. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin

    PubMed Central

    Zhuang, Tiandi; Chen, Qiuyan; Cho, Min-Kyu; Vishnivetskiy, Sergey A.; Iverson, Tina M.; Gurevich, Vsevolod V.; Sanders, Charles R.

    2013-01-01

    Solution NMR spectroscopy of labeled arrestin-1 was used to explore its interactions with dark-state phosphorylated rhodopsin (P-Rh), phosphorylated opsin (P-opsin), unphosphorylated light-activated rhodopsin (Rh*), and phosphorylated light-activated rhodopsin (P-Rh*). Distinct sets of arrestin-1 elements were seen to be engaged by Rh* and inactive P-Rh, which induced conformational changes that differed from those triggered by binding of P-Rh*. Although arrestin-1 affinity for Rh* was seen to be low (KD > 150 μM), its affinity for P-Rh (KD ∼80 μM) was comparable to the concentration of active monomeric arrestin-1 in the outer segment, suggesting that P-Rh generated by high-gain phosphorylation is occupied by arrestin-1 under physiological conditions and will not signal upon photo-activation. Arrestin-1 was seen to bind P-Rh* and P-opsin with fairly high affinity (KD of ∼50 and 800 nM, respectively), implying that arrestin-1 dissociation is triggered only upon P-opsin regeneration with 11-cis-retinal, precluding noise generated by opsin activity. Based on their observed affinity for arrestin-1, P-opsin and inactive P-Rh very likely affect the physiological monomer-dimer-tetramer equilibrium of arrestin-1, and should therefore be taken into account when modeling photoreceptor function. The data also suggested that complex formation with either P-Rh* or P-opsin results in a global transition in the conformation of arrestin-1, possibly to a dynamic molten globule-like structure. We hypothesize that this transition contributes to the mechanism that triggers preferential interactions of several signaling proteins with receptor-activated arrestins. PMID:23277586

  10. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin.

    PubMed

    Zhuang, Tiandi; Chen, Qiuyan; Cho, Min-Kyu; Vishnivetskiy, Sergey A; Iverson, Tina M; Gurevich, Vsevolod V; Sanders, Charles R

    2013-01-15

    Solution NMR spectroscopy of labeled arrestin-1 was used to explore its interactions with dark-state phosphorylated rhodopsin (P-Rh), phosphorylated opsin (P-opsin), unphosphorylated light-activated rhodopsin (Rh*), and phosphorylated light-activated rhodopsin (P-Rh*). Distinct sets of arrestin-1 elements were seen to be engaged by Rh* and inactive P-Rh, which induced conformational changes that differed from those triggered by binding of P-Rh*. Although arrestin-1 affinity for Rh* was seen to be low (K(D) > 150 μM), its affinity for P-Rh (K(D) ~80 μM) was comparable to the concentration of active monomeric arrestin-1 in the outer segment, suggesting that P-Rh generated by high-gain phosphorylation is occupied by arrestin-1 under physiological conditions and will not signal upon photo-activation. Arrestin-1 was seen to bind P-Rh* and P-opsin with fairly high affinity (K(D) of~50 and 800 nM, respectively), implying that arrestin-1 dissociation is triggered only upon P-opsin regeneration with 11-cis-retinal, precluding noise generated by opsin activity. Based on their observed affinity for arrestin-1, P-opsin and inactive P-Rh very likely affect the physiological monomer-dimer-tetramer equilibrium of arrestin-1, and should therefore be taken into account when modeling photoreceptor function. The data also suggested that complex formation with either P-Rh* or P-opsin results in a global transition in the conformation of arrestin-1, possibly to a dynamic molten globule-like structure. We hypothesize that this transition contributes to the mechanism that triggers preferential interactions of several signaling proteins with receptor-activated arrestins.

  11. Anaerobic Biotransformation and Mobility of Pu and of Pu-EDTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xun, Luying

    2009-11-20

    The enhanced mobility of radionuclides by co-disposed chelating agent, ethylenediaminetetraacetate (EDTA), is likely to occur only under anaerobic conditions. Our extensive effort to enrich and isolate anaerobic EDTA-degrading bacteria has failed. Others has tried and also failed. To explain the lack of anaerobic biodegradation of EDTA, we proposed that EDTA has to be transported into the cells for metabolism. A failure of uptake may contribute to the lack of EDTA degradation under anaerobic conditions. We demonstrated that an aerobic EDTA-degrading bacterium strain BNC1 uses an ABC-type transporter system to uptake EDTA. The system has a periplasmic binding protein that bindmore » EDTA and then interacts with membrane proteins to transport EDTA into the cell at the expense of ATP. The bind protein EppA binds only free EDTA with a Kd of 25 nM. The low Kd value indicates high affinity. However, the Kd value of Ni-EDTA is 2.4 x 10^(-10) nM, indicating much stronger stability. Since Ni and other trace metals are essential for anaerobic respiration, we conclude that the added EDTA sequestrates all trace metals and making anaerobic respiration impossible. Thus, the data explain the lack of anaerobic enrichment cultures for EDTA degradation. Although we did not obtain an EDTA degrading culture under anaerobic conditions, our finding may promote the use of certain metals that forms more stable metal-EDTA complexes than Pu(III)-EDTA to prevent the enhanced mobility. Further, our data explain why EDTA is the most dominant organic pollutant in surface waters, due to the lack of degradation of certain metal-EDTA complexes.« less

  12. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  13. A photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancer-associated retinopathy

    PubMed Central

    1991-01-01

    Cancer-associated retinopathy (CAR), a paraneoplastic syndrome, is characterized by the degeneration of retinal photoreceptors under conditions where the tumor and its metastases have not invaded the eye. The retinopathy often is apparent before the diagnosis of cancer and may be associated with autoantibodies that react with specific sites in the retina. We have examined the sera from patients with CAR to further characterize the retinal antigen. Western blot analysis of human retinal proteins reveals a prominent band at 26 kD that is labeled by the CAR antisera. Antibodies to the 26-kD protein were affinity- purified from complex CAR antisera and used for EM-immunocytochemical localization of the protein to the nuclei, inner and outer segments of both rod and cone cells. Other antibodies obtained from the CAR sera did not label photoreceptors. Using the affinity-purified antibodies for detection, the 26-kD protein, designated p26, was purified to homogeneity from the outer segments of bovine rod photoreceptor cells by Phenyl-Sepharose and ion exchange chromatography. Partial amino acid sequence of p26 was determined by gas phase Edman degradation and revealed extensive homology with a cone-specific protein, visinin. Based upon structural relatedness, both the p26 rod protein and visinin are members of the calmodulin family and contain calcium binding domains of the E-F hand structure. PMID:1999465

  14. Proteomic analysis associated with coronary artery dilatation caused by Kawasaki disease using serum exosomes.

    PubMed

    Zhang, Li; Wang, Wei; Bai, Jun; Xu, Yu-Fen; Li, Lai-Qing; Hua, Liang; Deng, Li; Jia, Hong-Ling

    2016-05-01

    The aim of this study was to investigate the serum exosome proteome profile of coronary artery dilatation (CAD) caused by Kawasaki disease (KD). Two-dimensional electrophoresis was implemented on proteins of serum exosomes obtained from children with CAD caused by KD and from healthy controls. Differentially expressed proteins were identified by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis. We identified 38 differentially expressed proteins (13 up-regulated and 25 down-regulated) from serum exosomes of patients with CAD caused by KD compared with healthy controls. Expression levels of three differentially expressed proteins (leucine-rich alpha-2-glycoprotein, sex hormone-binding globulin, and serotransferrin) were validated using western blot analysis. Classification and protein-protein network analysis showed that they are associated with multiple functional groups involved in the acute inflammatory response, defense response, complement activation, humoral immune response, and response to wounding. The majority of the proteins are involved in the inflammation and coagulation cascades. These findings establish a comprehensive proteome profile of CAD caused by KD and increase our knowledge of scientific insight into its mechanisms. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  15. The mapping of the human 52-kD Ro/SSA autoantigen gene to human chromosome II, and its polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, M.B.; Itoh, Kazuko; Fujisaku, Atsushi

    1993-01-01

    Autoantibodies to the ribonucleoprotein Ro/SSA occur in nearly half of the patients with systemic lupus erythematosus and are associated with lymphopenia, photosensitive dermatitis, and pulmonary and renal disease, which suggests that they have an immunopathologic role. The majority of Ro/SSA precipitin-positive patients produce serum antibodies that bind to the 60-kD and 52-kD Ro/SSA proteins. The authors previously isolated and determined the nucleotide sequence of a cDNA clone that encodes the 52-kD form of the human Ro/SSA protein. In the present study, they have determined the chromosomal location of the gene by in situ hybridization to the end of the shortmore » arm of chromosome 11. Hybridization of portions of the cDNA probe to restriction enzyme-digested DNA indicated the gene is composed of at least three exons. The exon encoding the putative zinc fingers of this protein was found to be distinct from that which encodes the leucine zipper. An RFLP of this gene was identified and is associated with the presence of lupus, primarily in black Americans. 60 refs., 3 figs., 3 tabs.« less

  16. Specific binding, internalization, and degradation of human neutrophil activating factor by human polymorphonuclear leukocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besemer, J.; Hujber, A.; Kuhn, B.

    1989-10-15

    The interaction of {sup 125}I-labeled recombinant human neutrophil activating factor (NAF) with polymorphonuclear leukocytes (PMN) was studied by means of a radioreceptor assay. The binding was characterized by a rapid transition (t1/2 less than or equal to 1 min) from a pH 3-sensitive state at 4{degree}C to pH 3 resistance at 37{degree}C. This was not caused by internalization of NAF since pH 3-resistant bound iodinated NAF could still be exchanged by an excess of nonlabeled NAF, i.e. was dissociable. Internalized iodinated NAF was processed into trichloroacetic acid-soluble forms. Scatchard transformation of binding isotherms at 4 and 37{degree}C led to nonlinearmore » curves, a finding which is consistent with the expression of two receptor populations, one with high (KD = 11-35 pM) and the other with lower affinity (KD = 640-830 pM) at 4 degrees C. Numbers of the low affinity binding sites were approximately 34,000, and those with high affinity were 5,200/PMN when estimated at 4 degrees C. Binding of iodinated NAF to PMN was specific since it could be competed by an excess of nonlabeled NAF but not by two other activators of PMN function, formylmethionyl-leucyl-phenylalanine or human recombinant granulocyte-macrophage colony-stimulating factor. In addition to human PMN, NAF also bound specifically to two human monocytic cell lines; however, only the low affinity binding site could be detected on these cells.« less

  17. Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin.

    PubMed

    Di Giovanni, Jerome; Iborra, Cécile; Maulet, Yves; Lévêque, Christian; El Far, Oussama; Seagar, Michael

    2010-07-30

    Neuroexocytosis requires SNARE proteins, which assemble into trans complexes at the synaptic vesicle/plasma membrane interface and mediate bilayer fusion. Ca(2+) sensitivity is thought to be conferred by synaptotagmin, although the ubiquitous Ca(2+)-effector calmodulin has also been implicated in SNARE-dependent membrane fusion. To examine the molecular mechanisms involved, we examined the direct action of calmodulin and synaptotagmin in vitro, using fluorescence resonance energy transfer to assay lipid mixing between target- and vesicle-SNARE liposomes. Ca(2+)/calmodulin inhibited SNARE assembly and membrane fusion by binding to two distinct motifs located in the membrane-proximal regions of VAMP2 (K(D) = 500 nm) and syntaxin 1 (K(D) = 2 microm). In contrast, fusion was increased by full-length synaptotagmin 1 anchored in vesicle-SNARE liposomes. When synaptotagmin and calmodulin were combined, synaptotagmin overcame the inhibitory effects of calmodulin. Furthermore, synaptotagmin displaced calmodulin binding to target-SNAREs. These findings suggest that two distinct Ca(2+) sensors act antagonistically in SNARE-mediated fusion.

  18. Improvement of Aptamer Affinity by Dimerization

    PubMed Central

    Hasegawa, Hijiri; Taira, Ken-ichi; Sode, Koji; Ikebukuro, Kazunori

    2008-01-01

    To increase the affinities of aptamers for their targets, we designed an aptamer dimer for thrombin and VEGF. This design is based on the avidity of the antibody, which enables the aptamer to connect easily since it is a single-strand nucleic acid. In this study, we connected a 15-mer thrombin-binding aptamer with a 29-mer thrombin-binding aptamer. Each aptamer recognizes a different part of the thrombin molecule, and the aptamer dimer has a Kd value which is 1/10 of that of the monomers from which it is composed. Also, the designed aptamer dimer has higher inhibitory activity than the reported (15-mer) thrombin-inhibiting aptamer. Additionally, we connected together two identical aptamers against vascular endothelial growth factor (VEGF165), which is a homodimeric protein. As in the case of the anti-thrombin aptamer, the dimeric anti-VEGF aptamer had a much lower Kd value than that of the monomer. This study demonstrated that the dimerization of aptamers effectively improves the affinities of those aptamers for their targets. PMID:27879754

  19. Specific binding of (/sup 3/H-Tyr8)physalaemin to rat submaxillary gland substance P receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahouth, S.W.; Lazaro, D.M.; Brundish, D.E.

    1985-01-01

    (/sup 3/H)Physalaemin ((/sup 3/H)PHY) binds to a single class of noninteracting sites on rat submaxillary gland membranes suspended in high ionic strength media with a KD of 2.7 nM, a Bmax of 240 fmol/mg of protein, and low nonspecific binding. The relative potencies of substance P (SP) and its fragments in competing with (/sup 3/H)PHY correlate with their relative salivation potencies. This indicates that (/sup 3/H)PHY interacts with a physiologically relevant SP receptor. In low ionic strength media, the KD of (/sup 3/H)PHY does not change, but SP and some of its fragments are more potent than PHY in competingmore » with (/sup 3/H) PHY. Computer-assisted analysis of (/sup 3/H)PHY and (/sup 3/H)SP binding in high and low ionic strength media demonstrated that both peptides are equipotent in high ionic strength but that the affinity of SP increases by 70-fold in low ionic strength. The SP fragments that contain a basic residue in positions 1 and/or 3 also display an increased affinity in low ionic strength. These findings document that (/sup 3/H)PHY binding in high ionic strength (mu . 0.6) accurately reflects the pharmacological potencies of agonists on the SP-P receptor. The binding of (/sup 3/H)PHY, like that of (/sup 3/H)SP, increases by the addition of divalent cations (Mg2+ greater than Ca2+ greater than Mn2+). Guanine nucleotides decrease (/sup 3/H)PHY binding by decreasing the Bmax to the same level (160 fmol/mg of protein), in the presence or absence of Mg2+.« less

  20. Synthesis and characterization of time-resolved fluorescence probes for evaluation of competitive binding to melanocortin receptors.

    PubMed

    Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E; Elshan, N G R D; Tafreshi, Narges K; Brabez, Nabila; Weber, Craig S; Lynch, Ronald M; Hruby, Victor J; Gillies, Robert J; Morse, David L; Mash, Eugene A

    2013-09-01

    Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these MSH(4) constructs than was previously reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells

    PubMed Central

    1993-01-01

    Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+). PMID:7687645

  2. An HLA-B27 Homodimer Specific Antibody Recognizes a Discontinuous Mixed-Disulfide Epitope as Identified by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Iuraşcu, Marius-Ionuţ; Marroquin Belaunzanar, Osiris; Cozma, Claudia; Petrausch, Ulf; Renner, Christoph; Przybylski, Michael

    2016-06-01

    HLA-B27 homodimer formation is believed to be a hallmark of HLA-B27 associated spondyloarthritides. Recently, we have generated a homodimer-specific monoclonal antibody (HD6) and have demonstrated that HLA-B27 homodimer complexes are present on monocytes of healthy HLA-B27 gene carriers at low levels, with significantly increased levels at active disease. The capability of the HD6 antibody to discriminate between correctly formed HLA-B27 heterotrimers and pathology-associated homodimers is striking and cannot be explained by the primary structure of HLA-B27. We hypothesized that HD6 accesses a unique epitope and used affinity-mass spectrometry for its identification. The HD6 antibody was immobilized on an activated sepharose affinity column, and HLA-B27 homodimer characterized for affinity. The epitope was identified by proteolytic epitope excision and MALDI mass spectrometry, and shown to comprise a discontinuous Cys-203- 257-Cys mixed-disulfide peptide structure that is not accessible in HLA-B27 heterotrimers due to protection by noncovalently linked β2-microglobulin. The epitope peptides were synthesized by solid phase peptide synthesis, and the two monomeric peptide components, HLA-B27(203-219) and HLA-B27(257-273), as well as the homo- and hetero-dimeric disulfide linked combinations prepared. The affinity binding constants KD towards the antibodies were determined using a surface acoustic wave (SAW) biosensor, and showed the highest affinity with a KD of approximately 40 nM to the HD6 antibody for the (203-219)-SS-(257-273) mixed disulfide epitope.

  3. Antiviral Immunotoxin Against Bovine herpesvirus-1: Targeted Inhibition of Viral Replication and Apoptosis of Infected Cell

    PubMed Central

    Xu, Jian; Li, Xiaoyang; Jiang, Bo; Feng, Xiaoyu; Wu, Jing; Cai, Yunhong; Zhang, Xixi; Huang, Xiufen; Sealy, Joshua E.; Iqbal, Munir; Li, Yongqing

    2018-01-01

    Bovine herpesvirus 1 (BoHV-1) is a highly contagious viral pathogen which causes infectious bovine rhinotracheitis in cattle worldwide. Currently, there is no antiviral prophylactic treatment available capable of mitigating the disease impact and facilitating recovery from latent infection. In this study, we have engineered a novel recombinant anti-BoHV-1 immunotoxin construct termed “BoScFv-PE38” that consists of a single-chain monoclonal antibody fragment (scFv) fused with an active domain of Pseudomonas exotoxin A as a toxic effector (PE38). The recombinant BoScFv-PE38 immunotoxin expressed in a prokaryotic expression system has specific binding affinity for BoHV-1 glycoprotein D (gD) with a dissociation constant (Kd) of 12.81 nM and for BoHV-1 virus particles with a Kd value of 97.63 nM. We demonstrate that the recombinant BoScFv-PE38 is internalized into MDBK cell compartments that inhibit BoHV-1 replication with a half-maximal inhibitory concentration (IC50) of 4.95 ± 0.33 nM and a selective index (SI) of 456 ± 31. Furthermore, the BoScFv-PE38 exerted a cytotoxic effect through the induction of ATP and ammonia, leading to apoptosis of BoHV-1-infected cells and the inhibition of BoHV-1 replication in MDBK cells. Collectively, we show that BoScFv-PE38 can potentially be employed as a therapeutic agent for the treatment of BoHV-1 infection. PMID:29670605

  4. Screening a fragment cocktail library using ultrafiltration

    PubMed Central

    Shibata, Sayaka; Zhang, Zhongsheng; Korotkov, Konstantin V.; Delarosa, Jaclyn; Napuli, Alberto; Kelley, Angela M.; Mueller, Natasha; Ross, Jennifer; Zucker, Frank H.; Buckner, Frederick S.; Merritt, Ethan A.; Verlinde, Christophe L. M. J.; Van Voorhis, Wesley C.; Hol, Wim G. J.; Fan, Erkang

    2011-01-01

    Ultrafiltration provides a generic method to discover ligands for protein drug targets with millimolar to micromolar Kd, the typical range of fragment-based drug discovery. This method was tailored to a 96-well format, and cocktails of fragment-sized molecules, with molecular masses between 150 and 300 Da, were screened against medical structural genomics target proteins. The validity of the method was confirmed through competitive binding assays in the presence of ligands known to bind the target proteins. PMID:21750879

  5. SSB-1 of the yeast Saccharomyces cerevisiae is a nucleolar-specific, silver-binding protein that is associated with the snR10 and snR11 small nuclear RNAs

    PubMed Central

    1990-01-01

    SSB-1, the yeast single-strand RNA-binding protein, is demonstrated to be a yeast nucleolar-specific, silver-binding protein. In double-label immunofluorescence microscopy experiments antibodies to two other nucleolar proteins, RNA Pol I 190-kD and fibrillarin, were used to reveal the site of rRNA transcription; i.e., the fibrillar region of the nucleolus. SSB-1 colocalized with fibrillarin in a double-label immunofluorescence mapping experiment to the yeast nucleolus. SSB-1 is located, though, over a wider region of the nucleolus than the transcription site marker. Immunoprecipitations of yeast cell extracts with the SSB-1 antibody reveal that in 150 mM NaCl SSB-1 is bound to two small nuclear RNAs (snRNAs). These yeast snRNAs are snR10 and snR11, with snR10 being predominant. Since snR10 has been implicated in pre-rRNA processing, the association of SSB-1 and snR10 into a nucleolar snRNP particle indicates SSB-1 involvement in rRNA processing as well. Also, another yeast protein, SSB-36-kD, isolated by single- strand DNA chromatography, is shown to bind silver under the conditions used for nucleolar-specific staining. It is, most likely, another yeast nucleolar protein. PMID:2121740

  6. KINETIC STUDY ON THE INHIBITION OF HEN BRAIN NEUROTOXIC ESTERASE BY MIPAFOX

    EPA Science Inventory

    A direct method of assaying neurotoxic esterase (NTE) activity, using 4-nitrophenyl valerate, has been described. The technique was used to determine the biomolecular rate (ki), phosphorylation (k2), and affinity (kd) constants for the reaction of hen brain microsomal NTE with mi...

  7. Arginine kinase from the Tardigrade, Macrobiotus occidentalis: molecular cloning, phylogenetic analysis and enzymatic properties.

    PubMed

    Uda, Kouji; Ishida, Mikako; Matsui, Tohru; Suzuki, Tomohiko

    2010-10-01

    Arginine kinase (AK), which catalyzes the reversible transfer of phosphate from ATP to arginine to yield phosphoarginine and ADP, is widely distributed throughout the invertebrates. We determined the cDNA sequence of AK from the tardigrade (water bear) Macrobiotus occidentalis, cloned the sequence into pET30b plasmid, and expressed it in Escherichia coli as a 6x His-tag—fused protein. The cDNA is 1377 bp, has an open reading frame of 1080 bp, and has 5′- and 3′-untranslated regions of 116 and 297 bp, respectively. The open reading frame encodes a 359-amino acid protein containing the 12 residues considered necessary for substrate binding in Limulus AK. This is the first AK sequence from a tardigrade. From fragmented and non-annotated sequences available from DNA databases, we assembled 46 complete AK sequences: 26 from arthropods (including 19 from Insecta), 11 from nematodes, 4 from mollusks, 2 from cnidarians and 2 from onychophorans. No onychophoran sequences have been reported previously. The phylogenetic trees of 104 AKs indicated clearly that Macrobiotus AK (from the phylum Tardigrada) shows close affinity with Epiperipatus and Euperipatoides AKs (from the phylum Onychophora), and therefore forms a sister group with the arthropod AKs. Recombinant 6x His-tagged Macrobiotus AK was successfully expressed as a soluble protein, and the kinetic constants (K(m), K(d), V(ma) and k(cat)) were determined for the forward reaction. Comparison of these kinetic constants with those of AKs from other sources (arthropods, mollusks and nematodes) indicated that Macrobiotus AK is unique in that it has the highest values for k(cat) and K(d)K(m) (indicative of synergistic substrate binding) of all characterized AKs.

  8. Placental heat shock proteins: no immunohistochemical evidence for a differential stress response in preterm labour.

    PubMed

    Divers, M J; Bulmer, J N; Miller, D; Lilford, R J

    1995-01-01

    The aetiology of idiopathic preterm labour remains obscure. The hypothesis that a stress response induced by low-grade bacterial infection in utero-placental tissues was investigated. Distribution of cognate and inducible isoforms of heat shock proteins (HSP) 70 kD, HSP 60 kD and HSP 90 kD were investigated in an immunohistochemical study of placental and decidual tissues before and after labour at varying gestations. Subjects were pregnant women undergoing singleton delivery after idiopathic preterm labour at less than 34 weeks' gestation (n = 23); spontaneous term labour at 37-42 weeks' gestation (n =24); preterm caesarean sections at less than 34 weeks' gestation for preeclampsia or intrauterine growth retardation (n=14); elective caesarean section at 37-42 weeks' gestation for cephalopelvic disproportion (n = 6). HSP expression was constant throughout the third trimester of pregnancy and did not change following the onset of labour, regardless of gestational age. A stress response in decidual tissues as determined by immunohistochemical analysis is apparently not associated with preterm labour.

  9. Comparison of in situ uranium KD values with a laboratory determined surface complexation model

    USGS Publications Warehouse

    Curtis, G.P.; Fox, P.; Kohler, M.; Davis, J.A.

    2004-01-01

    Reactive solute transport simulations in groundwater require a large number of parameters to describe hydrologic and chemical reaction processes. Appropriate methods for determining chemical reaction parameters required for reactive solute transport simulations are still under investigation. This work compares U(VI) distribution coefficients (i.e. KD values) measured under field conditions with KD values calculated from a surface complexation model developed in the laboratory. Field studies were conducted in an alluvial aquifer at a former U mill tailings site near the town of Naturita, CO, USA, by suspending approximately 10 g samples of Naturita aquifer background sediments (NABS) in 17-5.1-cm diameter wells for periods of 3 to 15 months. Adsorbed U(VI) on these samples was determined by extraction with a pH 9.45 NaHCO3/Na2CO3 solution. In wells where the chemical conditions in groundwater were nearly constant, adsorbed U concentrations for samples taken after 3 months of exposure to groundwater were indistinguishable from samples taken after 15 months. Measured in situ K D values calculated from the measurements of adsorbed and dissolved U(VI) ranged from 0.50 to 10.6 mL/g and the KD values decreased with increasing groundwater alkalinity, consistent with increased formation of soluble U(VI)-carbonate complexes at higher alkalinities. The in situ K D values were compared with KD values predicted from a surface complexation model (SCM) developed under laboratory conditions in a separate study. A good agreement between the predicted and measured in situ KD values was observed. The demonstration that the laboratory derived SCM can predict U(VI) adsorption in the field provides a critical independent test of a submodel used in a reactive transport model. ?? 2004 Elsevier Ltd. All rights reserved.

  10. Evolution of a Histone H4-K16 Acetyl-Specific DNA Aptamer

    PubMed Central

    Williams, Berea A. R.; Lin, Liyun; Lindsay, Stuart M.; Chaput, John C.

    2009-01-01

    We report the in vitro selection of DNA aptamers that bind to histone H4 proteins acetylated at lysine 16. The best aptamer identified in this selection binds to the target protein with a Kd of 21 nM, and discriminates against both the non-acetylated protein and histone H4 proteins acetylated at lysine 8. Comparative binding assays performed with a chip-quality antibody reveal that this aptamer binds to the acetylated histone target with similar affinity to a commercial antibody, but shows significantly greater specificity (15-fold versus 2,400-fold) for the target molecule. This result demonstrates that aptamers that are both modification and location specific can be generated to bind specific protein post-translational modifications. PMID:19385619

  11. Specific strychnine binding sites on acrosome-associated membranes of golden hamster spermatozoa.

    PubMed

    Llanos, Miguel N; Ronco, Ana M; Aguirre, María C

    2003-06-27

    This study demonstrates for the first time, that membrane vesicles originated from the hamster sperm head after the occurrence of the acrosome reaction, possess specific strychnine binding sites. [3H]Strychnine binding was saturable and reversible, being displaced by unlabeled strychnine (IC(50)=26.7+/-2.3 microM). Kinetic analysis revealed one binding site with K(d)=120nM and B(max)=142fmol/10(6) spermatozoa. Glycine receptor agonists beta-alanine and taurine inhibited strychnine binding by 20-30%. Surprisingly, glycine stimulated binding by about 40-50%. Results obtained in this study strongly suggest the presence of glycine receptors-with distinctive kinetic properties on the periacrosomal plasma membrane of hamster spermatozoa. Localization of this receptor fits well with its previously proposed role in acrosomal exocytosis during mammalian fertilization.

  12. A Pea Plasma Membrane Protein Exhibiting Blue Light-Induced Phosphorylation Retains Photosensitivity following Triton Solubilization.

    PubMed Central

    Short, T. W.; Reymond, P.; Briggs, W. R.

    1993-01-01

    Phosphorylation of a polypeptide of approximately 120 kD in pea (Pisum sativum L.) plasma membranes in response to blue light has been shown to be involved in phototropic curvature, but the relationship of this protein to the kinase and photoreceptor acting upon it is uncertain. Using two-phase aqueous partitioning to isolate right-side-out plasma membrane vesicles, we have obtained evidence suggesting that the photoreceptor, kinase, and substrate are localized to the plasma membrane fraction. Latent phosphorylation accessible through Triton X-100 or freeze/thaw treatments of purified plasma membrane vesicles indicates that at least the kinase moiety is present on the internal face of the plasma membrane. Effects of solubilization of vesicles on fluence-response characteristics and on phosphorylation levels provide evidence that the receptor, kinase, and protein substrate are present together in individual mixed detergent micelles, either as a stable complex or as domains of a single polypeptide. In vivo blue-light irradiation results in a small but significant decrease in mobility of the 120-kD phosphorylated protein on sodium dodecylsulfate gel electrophoresis. This mobility shift is evident on Coomassie-stained gels and on western blots probed with polyclonal antibodies raised against the 120-kD protein. Among the plasma membrane proteins bound to the reactive nucleotide analog fluorosulfonylbenzoyladenine (FSBA), a distinct protein band at 120 kD can be detected on blots probed with anti-FSBA antibodies. This band exhibits an in vivo light-dependent mobility shift identical to that observed for the protein band and antibodies specific for the 120-kD protein, implying that the 120-kD protein has an integral nucleotide binding site and consistent with the possibility that the substrate protein is also a kinase. PMID:12231721

  13. Cytochrome and Alternative Pathway Respiration in Tobacco (Effects of Salicylic Acid).

    PubMed

    Rhoads, D. M.; McIntosh, L.

    1993-11-01

    In suspension cultures of NT1 tobacco (Nicotiana tabacum L. cv Bright Yellow) cells the cytochrome pathway capacity increased between d 3 and d 4 following subculturing and reached the highest level observed on d 7. The capacity decreased significantly by d 10 and was at the same level on d 14. Both alternative pathway capacity and the amount of the 35-kD alternative oxidase protein increased significantly between d 5 and d 6, reached the highest point observed on d 7, remained constant until d 10, and decreased by d 14. The highest capacities of the alternative and cytochrome pathways and the highest amount of the 35-kD protein were attained on the day that cell cultures reached a stationary phase of growth. Addition of salicylic acid to cell cultures on d 4 caused a significant increase in alternative pathway capacity and a dramatic accumulation of the 35-kD protein by 12 h. The alternative pathway capacity and the protein level reached the highest level observed by 16 h after salicylic acid addition, and the cytochrome pathway capacity was at about the same level at each time point. The accumulation of the 35-kD alternative oxidase protein was significantly decreased by addition of actinomycin D 1 h before salicylic acid and was blocked by addition of cycloheximide. These results indicate that de novo transcription and translation were necessary for salicylic acid to cause the maximum accumulation of the 35-kD protein.

  14. Cytochrome and Alternative Pathway Respiration in Tobacco (Effects of Salicylic Acid).

    PubMed Central

    Rhoads, D. M.; McIntosh, L.

    1993-01-01

    In suspension cultures of NT1 tobacco (Nicotiana tabacum L. cv Bright Yellow) cells the cytochrome pathway capacity increased between d 3 and d 4 following subculturing and reached the highest level observed on d 7. The capacity decreased significantly by d 10 and was at the same level on d 14. Both alternative pathway capacity and the amount of the 35-kD alternative oxidase protein increased significantly between d 5 and d 6, reached the highest point observed on d 7, remained constant until d 10, and decreased by d 14. The highest capacities of the alternative and cytochrome pathways and the highest amount of the 35-kD protein were attained on the day that cell cultures reached a stationary phase of growth. Addition of salicylic acid to cell cultures on d 4 caused a significant increase in alternative pathway capacity and a dramatic accumulation of the 35-kD protein by 12 h. The alternative pathway capacity and the protein level reached the highest level observed by 16 h after salicylic acid addition, and the cytochrome pathway capacity was at about the same level at each time point. The accumulation of the 35-kD alternative oxidase protein was significantly decreased by addition of actinomycin D 1 h before salicylic acid and was blocked by addition of cycloheximide. These results indicate that de novo transcription and translation were necessary for salicylic acid to cause the maximum accumulation of the 35-kD protein. PMID:12231986

  15. Cytosolic glucocorticoid receptor in the testis of Bufo arenarum: seasonal changes in its binding parameters.

    PubMed

    Denari, Daniela; Ceballos, Nora R

    2006-07-01

    Glucocorticoids (GC) are the hormonal mediators of stress. In mammals, high levels of GC have negative effects on reproductive physiology. For instance, GC can inhibit testicular testosterone synthesis by acting via glucocorticoid receptors (GR), the extent of the inhibition being dependent on GC levels. However, the effect of GC on testicular function and even the presence of GR in amphibians are still unclear. The purpose of this work was to characterise testicular cytosolic GR in Bufo arenarum, determining the seasonal changes in its binding parameters as well as the intratesticular localisation. The binding assays were performed in testis cytosol with [3H]dexamethasone (DEX) and [3H]corticosterone (CORT). Binding kinetics of DEX and CORT fitted to a one-site model. Results were expressed as means +/- standard error. Apparent number of binding sites (Bapp) was similar for both steroids (Bapp DEX = 352.53 +/- 72.08 fmol/mg protein; Bapp CORT = 454.24 +/- 134.97 fmol/mg protein) suggesting that both hormones bind to the same site. Competition studies with different steroids showed that the order of displacement of [3H]DEX and [3H]CORT specific binding is: DEX approximately RU486 approximately deoxycorticosterone (DOC) > CORT > aldosterone > RU28362 > progesterone > 11-dehydroCORT. The affinity of GR for DEX (Kd = 11.2 +/- 1.5 nM) remained constant throughout the year while circulating CORT clearly increased during the reproductive season. Therefore, testis sensitivity to GC action would depend mainly on inactivating mechanisms (11beta-hydroxysteroid dehydrogenase type 2) and CORT plasma levels. Since total and free CORT are higher in the reproductive than in the non-reproductive period, the magnitude of GC actions could be higher during the breeding season. The intratesticular localisation of the GR was determined after separation of cells by a Percoll density gradient followed by binding assays in each fraction. DEX binds to two different fractions corresponding to Leydig and Sertoli cells. In conclusion, in the testis of B. arenarum GC could regulate the function of both cellular types particularly during breeding when CORT reaches the highest plasma concentration.

  16. Three-dimensional structure-activity relationship modeling of cocaine binding to two monoclonal antibodies by comparative molecular field analysis.

    PubMed

    Paula, Stefan; Tabet, Michael R; Keenan, Susan M; Welsh, William J; Ball, W James

    2003-01-17

    Successful immunotherapy of cocaine addiction and overdoses requires cocaine-binding antibodies with specific properties, such as high affinity and selectivity for cocaine. We have determined the affinities of two cocaine-binding murine monoclonal antibodies (mAb: clones 3P1A6 and MM0240PA) for cocaine and its metabolites by [3H]-radioligand binding assays. mAb 3P1A6 (K(d) = 0.22 nM) displayed a 50-fold higher affinity for cocaine than mAb MM0240PA (K(d) = 11 nM) and also had a greater specificity for cocaine. For the systematic exploration of both antibodies' binding specificities, we used a set of approximately 35 cocaine analogues as structural probes by determining their relative binding affinities (RBAs) using an enzyme-linked immunosorbent competition assay. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models on the basis of comparative molecular field analysis (CoMFA) techniques correlated the binding data with structural features of the ligands. The analysis indicated that despite the mAbs' differing specificities for cocaine, the relative contributions of the steric (approximately 80%) and electrostatic (approximately 20%) field interactions to ligand-binding were similar. Generated three-dimensional CoMFA contour plots then located the specific regions about cocaine where the ligand/receptor interactions occurred. While the overall binding patterns of the two mAbs had many features in common, distinct differences were observed about the phenyl ring and the methylester group of cocaine. Furthermore, using previously published data, a 3D-QSAR model was developed for cocaine binding to the dopamine reuptake transporter (DAT) that was compared to the mAb models. Although the relative steric and electrostatic field contributions were similar to those of the mAbs, the DAT cocaine-binding site showed a preference for negatively charged ligands. Besides establishing molecular level insight into the interactions that govern cocaine binding specificity by biopolymers, the three-dimensional images obtained reflect the properties of the mAbs binding pockets and provide the initial information needed for the possible design of novel antibodies with properties optimized for immunotherapy. Copyright 2003 Elsevier Science Ltd.

  17. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes.

    PubMed

    Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2013-09-17

    Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.

  18. Purification and partial characterization ofa 67-kD cross-react ive allergen from Imperata cylindrica pollen extract.

    PubMed

    Verma, J; Singh, B P; Gangal, S V; Arora, N; Sridhara, S

    2000-08-01

    Grass pollens are known to induce type I allergic reactions in a large number of genetically predisposed individuals. Earlier studies have recognized Imperata cylindrica (Ic) pollen as an important source of aeroallergen which contained 7 IgE binding proteins in the MW range of 85-16 kD. To isolate, purify and characterize a cross-reactive allergenic protein from Ic pollen extract for diagnosis and therapy of grass pollen allergy. Ic pollen extract was fractionated using DEAE Sephadex A-50, Sephadex G-200 and Mono Q column. Allergenic activity of the fractions was checked by ELISA, skin tests, ELISA inhibition and immunoblot using sera of Ic-sensitive patients. A 67-kD protein was purified to homogeneity from Ic-VIII. The allergenic determinants of this protein were identified by SDS-PAGE and immunoblot after CNBr treatment. Among Ic fractions, Ic-VIII was highly potent by ELISA, skin tests and showed cross-reactivity with 4 other tropical grasses by immunoblot and ELISA inhibition. The subfraction Ic-VIIIe1 of Ic-VIII showed a band at 67 kD on SDS-PAGE. On CNBr treatment, it gave 7 peptides, 3 of which were found to be allergenic. A 67-kD protein (Ic-VIIIe1) was isolated, purified to homogeneity and partially characterized. It showed cross-reactivity with tropical grasses tested and contained at least three allergenic determinants. Copyright 2000 S. Karger AG, Basel.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, R.J.; Sharma, S.D.; Toth, G.

    (D-Pen2,4{prime}-125I-Phe4,D-Pen5)enkephalin ((125I)DPDPE) is a highly selective radioligand for the delta opioid receptor with a specific activity (2200 Ci/mmol) that is over 50-fold greater than that of tritium-labeled DPDPE analogs. (125I)DPDPE binds to a single site in rat brain membranes with an equilibrium dissociation constant (Kd) value of 421 {plus minus} 67 pM and a receptor density (Bmax) value of 36.4 {plus minus} 2.7 fmol/mg protein. The high affinity of this site for delta opioid receptor ligands and its low affinity for mu or kappa receptor-selective ligands are consistent with its being a delta opioid receptor. The distribution of these sitesmore » in rat brain, observed by receptor autoradiography, is also consistent with that of delta opioid receptors. Association and dissociation binding kinetics of 1.0 nM (125I) DPDPE are monophasic at 25 degrees C. The association rate (k + 1 = 5.80 {plus minus} 0.88 {times} 10(7) M-1 min-1) is about 20- and 7-fold greater than that measured for 1.0 nM (3H) DPDPE and 0.8 nM (3H) (D-Pen2,4{prime}-Cl-Phe4, D-Pen5)enkephalin, respectively. The dissociation rate of (125I)DPDPE (0.917 {plus minus} 0.117 {times} 10(-2) min-1) measured at 1.0 nM is about 3-fold faster than is observed for either of the other DPDPE analogs. The rapid binding kinetics of (125I)DPDPE is advantageous because binding equilibrium is achieved with much shorter incubation times than are required for other cyclic enkephalin analogs. This, in addition to its much higher specific activity, makes (125I)DPDPE a valuable new radioligand for studies of delta opioid receptors.« less

  20. SPECT imaging of fibrin using fibrin-binding peptides.

    PubMed

    Starmans, Lucas W E; van Duijnhoven, Sander M J; Rossin, Raffaella; Aime, Silvio; Daemen, Mat J A P; Nicolay, Klaas; Grüll, Holger

    2013-01-01

    Noninvasive detection of fibrin in vivo using diagnostic imaging modalities may improve clinical decision-making on possible therapeutic options in atherosclerosis, cancer and thrombus-related pathologies such as pulmonary embolism and deep venous thrombosis. The aim of this study was to assess the potential of a novel (111)In-labeled fibrin-binding peptide (FibPep) to visualize thrombi in mice noninvasively using single-photon emission computed tomography (SPECT). FibPep and a negative control peptide (NCFibPep) were synthesized and their fibrin-binding properties were assessed in vitro. FibPep showed enhanced binding compared with NCFibPep to both fibrin and blood clots. FibPep bound to fibrin with a dissociation constant (K(d)) of 0.8 μ m, whereas NCFibPep displayed at least a 100-fold lower affinity towards fibrin. A FeCl3 -injury carotid artery thrombosis mouse model was used to evaluate the peptides in vivo. FibPep and NCFibPep displayed rapid blood clearance and were eliminated via the renal pathway. In vivo SPECT imaging using FibPep allowed clear visualization of thrombi. Ex vivo biodistribution showed significantly increased uptake of FibPep in the thrombus-containing carotid in comparison to the noninjured carotid (5.7 ± 0.7 and 0.6 ± 0.4% injected dose per gram (%ID g(-1)), respectively; p < 0.01; n = 4), whereas nonspecific NCFibPep did not (0.4 ± 0.2 and 0.3 ± 0.0%ID g(-1), respectively; n = 4). In conclusion, FibPep displayed high affinity towards fibrin in vitro and rapid blood clearance in vivo, and allowed sensitive detection of thrombi using SPECT imaging. Therefore, this particular imaging approach may provide a new tool to diagnose and monitor diseases such as atherosclerosis and cancer. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor.

    PubMed

    Nau-Wagner, Gabriele; Opper, Daniela; Rolbetzki, Anne; Boch, Jens; Kempf, Bettina; Hoffmann, Tamara; Bremer, Erhard

    2012-05-01

    Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent K(D) (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine.

  2. Structure-activity relationships and mechanism of action of Eph-ephrin antagonists: interaction of cholanic acid with the EphA2 receptor

    PubMed Central

    Tognolini, Massimiliano; Incerti, Matteo; Mohamed, Iftiin Hassan; Giorgio, Carmine; Russo, Simonetta; Bruni, Renato; Lelli, Barbara; Bracci, Luisa; Noberini, Roberta; Pasquale, Elena B.; Barocelli, Elisabetta; Vicini, Paola; Mor, Marco

    2012-01-01

    The Eph–ephrin system, including the EphA2 receptor and the ephrin-A1 ligand, plays a critical role in tumor and vascular functions during carcinogenesis. We previously identified (3α,5β)-3-hydroxycholan-24-oic acid (lithocholic acid) as an Eph-ephrin antagonist able to inhibit EphA2 receptor activation and therefore potentially useful as a novel EphA2 receptor targeting agent. Here, we explore the structure-activity relationships of a focused set of lithocholic acid derivatives, based on molecular modelling investigation and displacement binding assays. Our exploration shows that while the 3-α-hydroxyl group of lithocholic acid has a negligible role in the recognition of the EphA2 receptor, its carboxylate group is critical for disrupting the binding of ephrin-A1 to the EphA2. As a result of our investigation, we identified (5β)-cholan-24-oic acid (cholanic acid) as a novel compound that competitively inhibits EphA2-ephrin-A1 interaction with higher potency than lithocholic acid. Surface plasmon resonance analysis indicates that cholanic acid binds specifically and reversibly to the ligand-binding domain of EphA2, with a steady-state dissociation constant (KD) in the low micromolar range. Furthermore, cholanic acid blocks the phosphorylation of EphA2 and cell retraction and rounding in PC3 prostate cancer cells, two effects that depend on EphA2 activation by the ephrin-A1 ligand. These findings suggest that cholanic acid can be used as a template structure to design effective EphA2 antagonists, with potential impact in the elucidation of the role played by this receptor in pathological conditions. PMID:22529030

  3. Genetic Control of Osmoadaptive Glycine Betaine Synthesis in Bacillus subtilis through the Choline-Sensing and Glycine Betaine-Responsive GbsR Repressor

    PubMed Central

    Nau-Wagner, Gabriele; Opper, Daniela; Rolbetzki, Anne; Boch, Jens; Kempf, Bettina; Hoffmann, Tamara

    2012-01-01

    Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent KD (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine. PMID:22408163

  4. Structural and Biophysical Characterization of the Interactions between the Death Domain of Fas Receptor and Calmodulin*

    PubMed Central

    Fernandez, Timothy F.; Samal, Alexandra B.; Bedwell, Gregory J.; Chen, Yabing; Saad, Jamil S.

    2013-01-01

    The extrinsic apoptotic pathway is initiated by cell surface death receptors such as Fas. Engagement of Fas by Fas ligand triggers a conformational change that allows Fas to interact with adaptor protein Fas-associated death domain (FADD) via the death domain, which recruits downstream signaling proteins to form the death-inducing signaling complex (DISC). Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells, suggesting a novel role of CaM in Fas-mediated signaling. CaM antagonists induce apoptosis through a Fas-related mechanism in cholangiocarcinoma and other cancer cell lines possibly by inhibiting Fas-CaM interactions. The structural determinants of Fas-CaM interaction and the underlying molecular mechanisms of inhibition, however, are unknown. Here we employed NMR and biophysical techniques to elucidate these mechanisms. Our data show that CaM binds to the death domain of Fas (FasDD) with an apparent dissociation constant (Kd) of ∼2 μm and 2:1 CaM:FasDD stoichiometry. The interactions between FasDD and CaM are endothermic and entropically driven, suggesting that hydrophobic contacts are critical for binding. We also show that both the N- and C-terminal lobes of CaM are important for binding. NMR and surface plasmon resonance data show that three CaM antagonists (N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide, tamoxifen, and trifluoperazine) greatly inhibit Fas-CaM interactions by blocking the Fas-binding site on CaM. Our findings provide the first structural evidence for Fas-CaM interactions and mechanism of inhibition and provide new insight into the molecular basis for a novel role of CaM in regulating Fas-mediated apoptosis. PMID:23760276

  5. Isolation and characterization of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70.

    PubMed

    Nuttall, Stewart D; Krishnan, Usha V; Doughty, Larissa; Pearson, Kylie; Ryan, Michael T; Hoogenraad, Nicholas J; Hattarki, Meghan; Carmichael, Jennifer A; Irving, Robert A; Hudson, Peter J

    2003-09-01

    The new antigen receptor (IgNAR) from sharks is a disulphide bonded dimer of two protein chains, each containing one variable and five constant domains, and functions as an antibody. In order to assess the antigen-binding capabilities of isolated IgNAR variable domains (VNAR), we have constructed an in vitro library incorporating synthetic CDR3 regions of 15-18 residues in length. Screening of this library against the 60 kDa cytosolic domain of the 70 kDa outer membrane translocase receptor from human mitochondria (Tom70) resulted in one dominant antigen-specific clone (VNAR 12F-11) after four rounds of in vitro selection. VNAR 12F-11 was expressed into the Escherichia coli periplasm and purified by anti-FLAG affinity chromatography at yields of 3 mg x L(-1). Purified protein eluted from gel filtration columns as a single monomeric protein and CD spectrum analysis indicated correct folding into the expected beta-sheet conformation. Specific binding to Tom70 was demonstrated by ELISA and BIAcore (Kd = 2.2 +/- 0.31 x 10(-9) m-1) indicating that these VNAR domains can be efficiently displayed as bacteriophage libraries, and selected against target antigens with an affinity and stability equivalent to that obtained for other single domain antibodies. As an initial step in producing 'intrabody' variants of 12F-11, the impact of modifying or removing the conserved immunoglobulin intradomain disulphide bond was assessed. High affinity binding was only retained in the wild-type protein, which combined with our inability to affinity mature 12F-11, suggests that this particular VNAR is critically dependent upon precise CDR loop conformations for its binding affinity.

  6. A Small Aptamer with Strong and Specific Recognition of the Triphosphate of ATP

    PubMed Central

    Sazani, Peter L.; Larralde, Rosa

    2004-01-01

    We report the in vitro selection of an RNA-based ATP aptamer with the ability to discriminate between adenosine ligands based on their 5‘ phosphorylation state. Previous selection of ATP aptamers yielded molecules that do not significantly discriminate between ligands at the 5‘ position. By applying a selective pressure that demands recognition of the 5‘ triphosphate, we obtained an aptamer that binds to ATP with a Kd of approximately 5 μM, and to AMP with a Kd of approximately 5.5 mM, a difference of 1100-fold. This aptamer demonstrates the ability of small RNAs to interact with negatively charged moieties. PMID:15237981

  7. Cholinergic Neurotransmission: Function and Dysfunction, International Cholinergic Symposium (8th) Held at Montreal (Quebec) on 26-30 July 1992

    DTIC Science & Technology

    1992-12-31

    receptor were decreased. In the presence of nicotine 1.0pM, the Kd values of rat cerebral muscarinic receptor bound with its agonist P3H] oxotremorine -M...inhibitory effects of GTPrS on [1 3H] oxotremorine -M binding were potentiated.It is suggsted that the binding properties of brain muscarinic receptor...interval) the dose-response curves of M-agonists arecoline and oxotremorine for producing salivation shifted leftward. Above demonstrated phenomena

  8. Effects of the natural colloidal particles from one freshwater lake on the photochemistry reaction kinetics of ofloxacin and enrofloxacin.

    PubMed

    Cheng, Dengmiao; Liu, Xinhui; Li, Jinpeng; Feng, Yao; Wang, Juan; Li, Zhaojun

    2018-06-11

    Understanding the effect of natural colloidal particles (NCPs) on the photochemistry of organic pollutants is crucial to predict the environmental persistence and fate of them in surface waters, and it is, yet, scarcely elucidated. In this study, the pre-filtered surface water (through a 1 μm capsule filter) from Baiyangdian Lake was further separated into four different size NCPs: F1 (0.65-1.0 μm), F2 (100 kD-0.65 μm), F3 (10-100 kD) and F4 (1-10 kD) by cross-flow ultrafiltration (CFUF), and the photochemical kinetics and mechanisms of ofloxacin (OFL) and enrofloxacin (ENR) were investigated in the presence of those particles under simulated sunlight. Results showed that OFL and ENR underwent both direct and indirect photolysis in F1-F4 solutions, and the observed pseudo first-order rate constants (k obs ) for target compounds differed depending on the size of NCPs. Direct photolysis accounted for >50% of the degradation in all cases and was the dominant degradation pathway for the two target antibiotics with the exception of OFL in F1 solution. Except for ENR in both F3 and F4 solutions, nearly all NCPs enhanced the degradation of both target compounds by indirect photolytic pathways, especially in F1 solution that showed the largest reactivity for OFL and ENR, promoting the reactions by 63% and 41%, respectively. The excited state colloidal organic matter ( 3 COM ∗ ) plays a significant role in the indirect photolysis, and the adsorptions of OFL and ENR to NCPs were likely to have a pronounced effect in the photochemistry process. Pearson's correlations analysis showed that the k obs(OFL) was significant positive correlated with binding of Fe (r = 0.963, P < 0.05), and the k obs(ENR) was significant positive correlated with the adsorption percentage of OFL (r = 0.999, P < 0.01). This paper has demonstrated that different size NCPs showed the different photochemical contribution to the reaction rate for OFL and ENR. Copyright © 2018. Published by Elsevier Ltd.

  9. Rate Constants and Mechanisms of Protein–Ligand Binding

    PubMed Central

    Pang, Xiaodong; Zhou, Huan-Xiang

    2017-01-01

    Whereas protein–ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms. PMID:28375732

  10. Editor's Highlight: Structure-Based Investigation on the Binding and Activation of Typical Pesticides With Thyroid Receptor.

    PubMed

    Xiang, Dandan; Han, Jian; Yao, Tingting; Wang, Qiangwei; Zhou, Bingsheng; Mohamed, Abou Donia; Zhu, Guonian

    2017-12-01

    A broad range of pesticides have been reported to interfere with the normal function of the thyroid endocrine system. However, the precise mechanism(s) of action has not yet been thoroughly elucidated. In this study, 21 pesticides were assessed for their binding interactions and the potential to disrupt thyroid homeostasis. In the GH3 luciferase reporter gene assays, 5 of the pesticides tested had agonistic effects in the order of procymidone > imidacloprid > mancozeb > fluroxypyr > atrazine. 11 pesticides inhibited luciferase activity of T3 to varying degrees, demonstrating their antagonistic activity. And there are 4 pesticides showed mixed effects when treated with different concentrations. Surface plasmon resonance (SPR) biosensor technique was used to directly measure the binding interactions of these pesticides to the human thyroid hormone receptor (hTR). 13 pesticides were observed to bind directly with TR, with a KD ranging from 4.80E-08 M to 9.44E-07 M. The association and disassociation of the hTR/pesticide complex revealed 2 distinctive binding modes between the agonists and antagonists. At the same time, a different binding mode was displayed by the pesticides showed mix agonist and antagonist activity. In addition, the molecular docking simulation analyses indicated that the interaction energy calculated by CDOCKER for the agonists and antagonists correlated well with the KD values measured by the surface plasmon resonance assay. These results help to explain the differences of the TR activities of these tested pesticides. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii

    PubMed Central

    1989-01-01

    We studied the assembly of photosystem II (PSII) in several mutants from Chlamydomonas reinhardtii which were unable to synthesize either one PSII core subunit (P6 [43 kD], D1, or D2) or one oxygen-evolving enhancer (OEE1 or OEE2) subunit. Synthesis of the PSII subunits was analyzed on electrophoretograms of cells pulse labeled with [14C]acetate. Their accumulation in thylakoid membranes was studied on immunoblots, their chlorophyll-binding ability on nondenaturating gels, their assembly by detergent fractionation, their stability by pulse- chase experiments and determination of in vitro protease sensitivity, and their localization by immunocytochemistry. In Chlamydomonas, the PSII core subunits P5 (47 kD), D1, and D2 are synthesized in a concerted manner while P6 synthesis is independent. P5 and P6 accumulate independently of each other in the stacked membranes. They bind chlorophyll soon after, or concomitantly with, their synthesis and independently of the presence of the other PSII subunits. Resistance to degradation increases step by step: beginning with assembly of P5, D1, and D2, then with binding of P6, and, finally, with binding of the OEE subunits on two independent high affinity sites (one for OEE1 and another for OEE2 to which OEE3 binds). In the absence of PSII cores, the OEE subunits accumulate independently in the thylakoid lumen and bind loosely to the membranes; OEE1 was found on stacked membranes, but OEE2 was found on either stacked or unstacked membranes depending on whether or not P6 was synthesized. PMID:2670960

  12. Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii.

    PubMed

    de Vitry, C; Olive, J; Drapier, D; Recouvreur, M; Wollman, F A

    1989-09-01

    We studied the assembly of photosystem II (PSII) in several mutants from Chlamydomonas reinhardtii which were unable to synthesize either one PSII core subunit (P6 [43 kD], D1, or D2) or one oxygen-evolving enhancer (OEE1 or OEE2) subunit. Synthesis of the PSII subunits was analyzed on electrophoretograms of cells pulse labeled with [14C]acetate. Their accumulation in thylakoid membranes was studied on immunoblots, their chlorophyll-binding ability on nondenaturating gels, their assembly by detergent fractionation, their stability by pulse-chase experiments and determination of in vitro protease sensitivity, and their localization by immunocytochemistry. In Chlamydomonas, the PSII core subunits P5 (47 kD), D1, and D2 are synthesized in a concerted manner while P6 synthesis is independent. P5 and P6 accumulate independently of each other in the stacked membranes. They bind chlorophyll soon after, or concomitantly with, their synthesis and independently of the presence of the other PSII subunits. Resistance to degradation increases step by step: beginning with assembly of P5, D1, and D2, then with binding of P6, and, finally, with binding of the OEE subunits on two independent high affinity sites (one for OEE1 and another for OEE2 to which OEE3 binds). In the absence of PSII cores, the OEE subunits accumulate independently in the thylakoid lumen and bind loosely to the membranes; OEE1 was found on stacked membranes, but OEE2 was found on either stacked or unstacked membranes depending on whether or not P6 was synthesized.

  13. Flow Cytometric Determination of Panton-Valentine Leucocidin S Component Binding

    PubMed Central

    Gauduchon, Valérie; Werner, Sandra; Prévost, Gilles; Monteil, Henri; Colin, Didier A.

    2001-01-01

    The binding of the S component (LukS-PV) from the bicomponent staphylococcal Panton-Valentine leucocidin to human polymorphonuclear neutrophils (PMNs) and monocytes was determined using flow cytometry and a single-cysteine substitution mutant of LukS-PV. The mutant was engineered by replacing a glycine at position 10 with a cysteine and was labeled with a fluorescein moiety. The biological activity of the mutant was identical to that of the native protein. It has been shown that LukS-PV has a high affinity for PMNs (Kd = 0.07 ± 0.02 nM, n = 5) and monocytes (Kd = 0.020 ± 0.003 nM, n = 3) with maximal binding capacities of 197,000 and 80,000 LukS-PV molecules per cell, respectively. The nonspecifically bound molecules of LukS-PV do not form pores in the presence of the F component (LukF-PV) of leucocidin. LukS-PV and HlgC share the same receptor on PMNs, but the S components of other staphylococcal leukotoxins, HlgA, LukE, and LukM, do not compete with LukS-PV for its receptor. Extracellular Ca2+ at physiological concentrations (1 to 2 nM) has only a slight influence on the LukS-PV binding, in contrast to its complete inhibition by Zn2+. The down-regulation by phorbol 12-myristate 13-acetate (PMA) of the binding of LukS-PV was blocked by staurosporine, suggesting that the regulatory effect of PMA depends on protein kinase C activation. The labeled mutant form of LukS-PV has proved very useful for detailed binding studies of circulating white cells by flow cytometry. LukS-PV possesses a high specific affinity for a unique receptor on PMNs and monocytes. PMID:11254598

  14. Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2.

    PubMed

    Krintel, Christian; Frydenvang, Karla; Olsen, Lars; Kristensen, Maria T; de Barrios, Oriol; Naur, Peter; Francotte, Pierre; Pirotte, Bernard; Gajhede, Michael; Kastrup, Jette S

    2012-01-01

    Positive allosteric modulators of the ionotropic glutamate receptor-2 (GluA2) are promising compounds for the treatment of cognitive disorders, e.g. Alzheimer's disease. These modulators bind within the dimer interface of the LBD (ligand-binding domain) and stabilize the agonist-bound conformation slowing receptor desensitization and/or deactivation. In the present study, we employ isothermal titration calorimetry to determine binding affinities and thermodynamic details of binding of modulators of GluA2. A mutant of the LBD of GluA2 (LBD-L483Y-N754S) that forms a stable dimer in solution was used. The potent GluA2 modulator BPAM-97 was used as a reference compound. Evidence that BPAM-97 binds in the same pocket as the well-known GluA2 modulator cyclothiazide was obtained from X-ray structures. The LBD-L483Y-N754S:BPAM-97 complex has a Kd of 5.6 μM (ΔH=-4.9 kcal/mol, -TΔS=-2.3 kcal/mol; where 1 kcal≈4.187 kJ). BPAM-97 was used in a displacement assay to determine a Kd of 0.46 mM (ΔH=-1.2 kcal/mol, -TΔS=-3.3 kcal/mol) for the LBD-L483Y-N754S:IDRA-21 complex. The major structural factors increasing the potency of BPAM-97 over IDRA-21 are the increased van der Waals contacts to, primarily, Met496 in GluA2 imposed by the ethyl substituent of BPAM-97. These results add important information on binding affinities and thermodynamic details, and provide a new tool in the development of drugs against cognitive disorders.

  15. Certhrax Toxin, an Anthrax-related ADP-ribosyltransferase from Bacillus cereus*

    PubMed Central

    Visschedyk, Danielle; Rochon, Amanda; Tempel, Wolfram; Dimov, Svetoslav; Park, Hee-Won; Merrill, A. Rod

    2012-01-01

    We identified Certhrax, the first anthrax-like mART toxin from the pathogenic G9241 strain of Bacillus cereus. Certhrax shares 31% sequence identity with anthrax lethal factor from Bacillus anthracis; however, we have shown that the toxicity of Certhrax resides in the mART domain, whereas anthrax uses a metalloprotease mechanism. Like anthrax lethal factor, Certhrax was found to require protective antigen for host cell entry. This two-domain enzyme was shown to be 60-fold more toxic to mammalian cells than anthrax lethal factor. Certhrax localizes to distinct regions within mouse RAW264.7 cells by 10 min postinfection and is extranuclear in its cellular location. Substitution of catalytic residues shows that the mART function is responsible for the toxicity, and it binds NAD+ with high affinity (KD = 52.3 ± 12.2 μm). We report the 2.2 Å Certhrax structure, highlighting its structural similarities and differences with anthrax lethal factor. We also determined the crystal structures of two good inhibitors (P6 (KD = 1.7 ± 0.2 μm, Ki = 1.8 ± 0.4 μm) and PJ34 (KD = 5.8 ± 2.6 μm, Ki = 9.6 ± 0.3 μm)) in complex with Certhrax. As with other toxins in this family, the phosphate-nicotinamide loop moves toward the NAD+ binding site with bound inhibitor. These results indicate that Certhrax may be important in the pathogenesis of B. cereus. PMID:22992735

  16. Cy5.5-labeled Affibody molecule for near-infrared fluorescent optical imaging of epidermal growth factor receptor positive tumors

    NASA Astrophysics Data System (ADS)

    Miao, Zheng; Ren, Gang; Liu, Hongguang; Jiang, Lei; Cheng, Zhen

    2010-05-01

    Affibody protein is an engineered protein scaffold with a three-helical bundle structure. Affibody molecules of small size (7 kD) have great potential for targeting overexpressed cancer biomarkers in vivo. To develop an Affibody-based molecular probe for in vivo optical imaging of epidermal growth factor receptor (EGFR) positive tumors, an anti-EGFR Affibody molecule, Ac-Cys-ZEGFR:1907 (7 kD), is site-specifically conjugated with a near-IR fluorescence dye, Cy5.5-mono-maleimide. Using fluorescent microscopy, the binding specificity of the probe Cy5.5-ZEGFR:1907 is checked by a high-EGFR-expressing A431 cell and low-EGFR-expressing MCF7 cells. The binding affinity of Cy5.5-ZEGFR:1907 (KD) to EGFR is 43.6+/-8.4 nM, as determined by flow cytometry. For an in vivo imaging study, the probe shows fast tumor targeting and good tumor contrast as early as 0.5 h postinjection (p.i.) for A431 tumors, while MCF7 tumors are barely visible. An ex vivo imaging study also demonstrates that Cy5.5-ZEGFR:1907 has high tumor, liver, and kidney uptakes at 24 h p.i.. In conclusion, Cy5.5-ZEGFR:1907 shows good affinity and high specificity to the EGFR. There is rapid achievement of good tumor-to-normal-tissue contrasts of Cy5.5-ZEGFR:1907, thus demonstrating its potential for EGFR-targeted molecular imaging of cancers.

  17. Ap4A and ADP-beta-S binding to P2 purinoceptors present on rat brain synaptic terminals.

    PubMed Central

    Pintor, J.; Díaz-Rey, M. A.; Miras-Portugal, M. T.

    1993-01-01

    1. Diadenosine tetraphosphate (Ap4A) a dinucleotide stored and released from rat brain synaptic terminals presents two types of affinity binding sites in synaptosomes. When [3H]-Ap4A was used for binding studies a Kd value of 0.10 +/- 0.014 nM and a Bmax value of 16.6 +/- 1.2 fmol mg-1 protein were obtained for the high affinity binding site from the Scatchard analysis. The second binding site, obtained by displacement studies, showed a Ki value of 0.57 +/- 0.09 microM. 2. Displacement of [3H]-Ap4A by non-labelled Ap4A and P2-purinoceptor ligands showed a displacement order of Ap4A > adenosine 5'-O-(2-thiodiphosphate) (ADP-beta-S) > 5'-adenylyl-imidodiphosphate (AMP-PNP) > alpha,beta-methylene adenosine 5'-triphosphate (alpha,beta-MeATP) in both sites revealed by the Ki values of 0.017 nM, 0.030 nM, 0.058 nM and 0.147 nM respectively for the high affinity binding site and values of 0.57 microM, 0.87 microM, 2.20 microM and 4.28 microM respectively for the second binding site. 3. Studies of the P2-purinoceptors present in synaptosomes were also performed with [35S]-ADP-beta-S. This radioligand showed two binding sites the first with Kd and Bmax values of 0.11 +/- 0.022 nM and 3.9 +/- 2.1 fmol mg-1 of protein respectively for the high affinity binding site obtained from the Scatchard plot. The second binding site showed a Ki of 0.018 +/- 0.0035 microM obtained from displacement curves. 4. Competition studies with diadenosine polyphosphates of [35S]-ADP-beta-S binding showed a displacement order of Ap4A > Ap5A > Ap6A in the high affinity binding site and Ki values of 0.023 nM, 0.081 nM and 5.72 nM respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8485620

  18. Proflavine acts as a Rev inhibitor by targeting the high-affinity Rev binding site of the Rev responsive element of HIV-1.

    PubMed

    DeJong, Eric S; Chang, Chia-en; Gilson, Michael K; Marino, John P

    2003-07-08

    Rev is an essential regulatory HIV-1 protein that binds the Rev responsive element (RRE) within the env gene of the HIV-1 RNA genome, activating the switch between viral latency and active viral replication. Previously, we have shown that selective incorporation of the fluorescent probe 2-aminopurine (2-AP) into a truncated form of the RRE sequence (RRE-IIB) allowed the binding of an arginine-rich peptide derived from Rev and aminoglycosides to be characterized directly by fluorescence methods. Using these fluorescence and nuclear magnetic resonance (NMR) methods, proflavine has been identified, through a limited screen of selected small heterocyclic compounds, as a specific and high-affinity RRE-IIB binder which inhibits the interaction of the Rev peptide with RRE-IIB. Direct and competitive 2-AP fluorescence binding assays reveal that there are at least two classes of proflavine binding sites on RRE-IIB: a high-affinity site that competes with the Rev peptide for binding to RRE-IIB (K(D) approximately 0.1 +/- 0.05 microM) and a weaker binding site(s) (K(D) approximately 1.1 +/- 0.05 microM). Titrations of RRE-IIB with proflavine, monitored using (1)H NMR, demonstrate that the high-affinity proflavine binding interaction occurs with a 2:1 (proflavine:RRE-IIB) stoichiometry, and NOEs observed in the NOESY spectrum of the 2:1 proflavine.RRE-IIB complex indicate that the two proflavine molecules bind specifically and close to each other within a single binding site. NOESY data further indicate that formation of the 2:1 proflavine.RRE-IIB complex stabilizes base pairing and stacking within the internal purine-rich bulge of RRE-IIB in a manner analogous to what has been observed in the Rev peptide.RRE-IIB complex. The observation that proflavine competes with Rev for binding to RRE-IIB by binding as a dimer to a single high-affinity site opens the possibility for rational drug design based on linking and modifying it and related compounds.

  19. Expression of the 68-kilodalton neurofilament gene in aluminum intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muma, N.A.; Troncoso, J.C.; Hoffman, P.N.

    1986-03-01

    Intrathecal administration of aluminum salts induces accumulation of neurofilaments (NFs) in cell bodies and proximal axons of rabbit spinal motor neurons. Mechanisms leading to this pathological change are not well understood. Although impairments of NF transport have been demonstrated in this model, the hypothesis that NF accumulations are the result of an increase in NF synthesis needs to be explored. In rabbits, a large percentage of neurons develop accumulations of NFs following injections of aluminum lactate directly into the cisterna magna or into a reservoir placed in the lateral ventricle. To study levels of mRNA encoding cytoskeletal proteins, spinal cordmore » RNA was extracted, separated on a denaturing agarose gel, transferred to nitrocellulose paper, and hybridized to (/sup 32/P)-labeled cDNA clones encoding the mouse 68-kilodalton (kd) NF subunit and tubulin. Examining a constant amount of RNA, the radioactivity of labeled mRNA bands for the 68-kd NF subunit and for tubulin was decreased in spinal cords of aluminum-treated rabbits. These preliminary results will be followed up by in situ hybridization to determine levels of mRNA for tubulin and 68-kd NF subunit in affected and in normal spinal neurons. In conclusion, administration of aluminum decreased mRNA for the 608-kd NF protein in spinal neurons.« less

  20. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes

    PubMed Central

    1980-01-01

    The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812

Top