Protocols Utilizing Constant pH Molecular Dynamics to Compute pH-Dependent Binding Free Energies
2015-01-01
In protein–ligand binding, the electrostatic environments of the two binding partners may vary significantly in bound and unbound states, which may lead to protonation changes upon binding. In cases where ligand binding results in a net uptake or release of protons, the free energy of binding is pH-dependent. Nevertheless, conventional free energy calculations and molecular docking protocols typically do not rigorously account for changes in protonation that may occur upon ligand binding. To address these shortcomings, we present a simple methodology based on Wyman’s binding polynomial formalism to account for the pH dependence of binding free energies and demonstrate its use on cucurbit[7]uril (CB[7]) host–guest systems. Using constant pH molecular dynamics and a reference binding free energy that is taken either from experiment or from thermodynamic integration computations, the pH-dependent binding free energy is determined. This computational protocol accurately captures the large pKa shifts observed experimentally upon CB[7]:guest association and reproduces experimental binding free energies at different levels of pH. We show that incorrect assignment of fixed protonation states in free energy computations can give errors of >2 kcal/mol in these host–guest systems. Use of the methods presented here avoids such errors, thus suggesting their utility in computing proton-linked binding free energies for protein–ligand complexes. PMID:25134690
Theoretical study of transition-metal ions bound to benzene
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.
1992-01-01
Theoretical binding energies are reported for all first-row and selected second-row transition metal ions (M+) bound to benzene. The calculations employ basis sets of at least double-zeta plus polarization quality and account for electron correlation using the modified coupled-pair functional method. While the bending is predominantly electrostatic, the binding energies are significantly increased by electron correlation, because the donation from the metal d orbitals to the benzene pi* orbitals is not well described at the self-consistent-field level. The uncertainties in the computed binding energies are estimated to be about 5 kcal/mol. Although the calculated and experimental binding energies generally agree to within their combined uncertainties, it is likely that the true binding energies lie in the lower portion of the experimental range. This is supported by the very good agreement between the theoretical and recent experimental binding energies for AgC6H6(+).
Conformational Transitions and Convergence of Absolute Binding Free Energy Calculations
Lapelosa, Mauro; Gallicchio, Emilio; Levy, Ronald M.
2011-01-01
The Binding Energy Distribution Analysis Method (BEDAM) is employed to compute the standard binding free energies of a series of ligands to a FK506 binding protein (FKBP12) with implicit solvation. Binding free energy estimates are in reasonably good agreement with experimental affinities. The conformations of the complexes identified by the simulations are in good agreement with crystallographic data, which was not used to restrain ligand orientations. The BEDAM method is based on λ -hopping Hamiltonian parallel Replica Exchange (HREM) molecular dynamics conformational sampling, the OPLS-AA/AGBNP2 effective potential, and multi-state free energy estimators (MBAR). Achieving converged and accurate results depends on all of these elements of the calculation. Convergence of the binding free energy is tied to the level of convergence of binding energy distributions at critical intermediate states where bound and unbound states are at equilibrium, and where the rate of binding/unbinding conformational transitions is maximal. This finding mirrors similar observations in the context of order/disorder transitions as for example in protein folding. Insights concerning the physical mechanism of ligand binding and unbinding are obtained. Convergence for the largest FK506 ligand is achieved only after imposing strict conformational restraints, which however require accurate prior structural knowledge of the structure of the complex. The analytical AGBNP2 model is found to underestimate the magnitude of the hydrophobic driving force towards binding in these systems characterized by loosely packed protein-ligand binding interfaces. Rescoring of the binding energies using a numerical surface area model corrects this deficiency. This study illustrates the complex interplay between energy models, exploration of conformational space, and free energy estimators needed to obtain robust estimates from binding free energy calculations. PMID:22368530
Calculations of the binding affinities of protein-protein complexes with the fast multipole method
NASA Astrophysics Data System (ADS)
Kim, Bongkeun; Song, Jiming; Song, Xueyu
2010-09-01
In this paper, we used a coarse-grained model at the residue level to calculate the binding free energies of three protein-protein complexes. General formulations to calculate the electrostatic binding free energy and the van der Waals free energy are presented by solving linearized Poisson-Boltzmann equations using the boundary element method in combination with the fast multipole method. The residue level model with the fast multipole method allows us to efficiently investigate how the mutations on the active site of the protein-protein interface affect the changes in binding affinities of protein complexes. Good correlations between the calculated results and the experimental ones indicate that our model can capture the dominant contributions to the protein-protein interactions. At the same time, additional effects on protein binding due to atomic details are also discussed in the context of the limitations of such a coarse-grained model.
The Strength of Hydrogen Bonds between Fluoro-Organics and Alcohols, a Theoretical Study.
Rosenberg, Robert E
2018-05-10
Fluorinated organic compounds are ubiquitous in the pharmaceutical and agricultural industries. To better discern the mode of action of these compounds, it is critical to understand the strengths of hydrogen bonds involving fluorine. There are only a few published examples of the strengths of these bonds. This study provides a high level ab initio study of inter- and intramolecular hydrogen bonds between RF and R'OH, where R and R' are aryl, vinyl, alkyl, and cycloalkyl. Intermolecular binding energies average near 5 kcal/mol, while intramolecular binding energies average about 3 kcal/mol. Inclusion of zero-point energies and applying a counterpoise correction lessen the difference. In both series, modest increases in binding energies are seen with increased acidity of R'OH and increased electron donation of R in RF. In the intramolecular compounds, binding energy increases with the rigidity of the F-(C) n -OH ring. Inclusion of free energy corrections at 298 K results in exoergic binding energies for the intramolecular compounds and endoergic binding energies for the intermolecular compounds. Parameters such as bond lengths, vibrational frequencies, and atomic populations are consistent with formation of a hydrogen bond and with slightly stronger binding in the intermolecular cases over the intramolecular cases. However, these parameters correlated poorly with binding energies.
Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism
Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue
2015-01-01
Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding. PMID:25856773
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Scuseria, Gustavo E.
1992-01-01
The correlation contribution to the M-C binding energy for the MCH2(+) systems can exceed 100 kcal/mol. At the self-consistent field (SCF) level, these systems can be more than 50 kcal/mol above the fragment energies. In spite of the poor zeroth-order reference, the coupled cluster single and double excitation method with a perturbational estimate of triple excitations, CCSD(T), method is shown to provide an accurate description of these systems. The maximum difference between the CCSD(T) and internally contracted averaged coupled-pair functional binding energies is 1.5 kcal/mol for CrCH2(+), with the remaining systems agreeing to within 1.0 kcal/mol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, V. Ya.; Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru
An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electronsmore » in an arbitrary atom.« less
Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H
2014-11-20
Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.
Hydrogenic impurity bound polaron in an anisotropic quantum dot
NASA Astrophysics Data System (ADS)
Chen, Shi-Hua
2018-01-01
The effect of the electron-phonon interaction on an electron bound to a hydrogenic impurity in a three-dimensional (3D) anisotropic quantum dot (QD) is studied theoretically. We use the Landau-Pekar variational approach to calculate the binding energy of ground state (GS) and first-excited state (ES) with considering electron-phonon interaction. The expressions of the GS and ES energies under investigation depict a rich variety of dependent relationship with the variational parameters in three different limiting cases. Numerical calculations were performed for ZnSe QDs with different confinement lengths in the xy-plane and the z-direction, respectively. It is illustrated that binding energies of impurity polarons corresponding to each level are larger in small QDs. Furthermore, the contribution to binding energy from phonon is about 15% of the total binding energy.
Coupled-cluster and explicitly correlated perturbation-theory calculations of the uracil anion.
Bachorz, Rafał A; Klopper, Wim; Gutowski, Maciej
2007-02-28
A valence-type anion of the canonical tautomer of uracil has been characterized using explicitly correlated second-order Moller-Plesset perturbation theory (RI-MP2-R12) in conjunction with conventional coupled-cluster theory with single, double, and perturbative triple excitations. At this level of electron-correlation treatment and after inclusion of a zero-point vibrational energy correction, determined in the harmonic approximation at the RI-MP2 level of theory, the valence anion is adiabatically stable with respect to the neutral molecule by 40 meV. The anion is characterized by a vertical detachment energy of 0.60 eV. To obtain accurate estimates of the vertical and adiabatic electron binding energies, a scheme was applied in which electronic energy contributions from various levels of theory were added, each of them extrapolated to the corresponding basis-set limit. The MP2 basis-set limits were also evaluated using an explicitly correlated approach, and the results of these calculations are in agreement with the extrapolated values. A remarkable feature of the valence anionic state is that the adiabatic electron binding energy is positive but smaller than the adiabatic electron binding energy of the dipole-bound state.
NASA Astrophysics Data System (ADS)
Ucisik, Melek N.; Dashti, Danial S.; Faver, John C.; Merz, Kenneth M.
2011-08-01
An energy expansion (binding energy decomposition into n-body interaction terms for n ≥ 2) to express the receptor-ligand binding energy for the fragmented HIV II protease-Indinavir system is described to address the role of cooperativity in ligand binding. The outcome of this energy expansion is compared to the total receptor-ligand binding energy at the Hartree-Fock, density functional theory, and semiempirical levels of theory. We find that the sum of the pairwise interaction energies approximates the total binding energy to ˜82% for HF and to >95% for both the M06-L density functional and PM6-DH2 semiempirical method. The contribution of the three-body interactions amounts to 18.7%, 3.8%, and 1.4% for HF, M06-L, and PM6-DH2, respectively. We find that the expansion can be safely truncated after n = 3. That is, the contribution of the interactions involving more than three parties to the total binding energy of Indinavir to the HIV II protease receptor is negligible. Overall, we find that the two-body terms represent a good approximation to the total binding energy of the system, which points to pairwise additivity in the present case. This basic principle of pairwise additivity is utilized in fragment-based drug design approaches and our results support its continued use. The present results can also aid in the validation of non-bonded terms contained within common force fields and in the correction of systematic errors in physics-based score functions.
The structure and energetics of Cr(CO)6 and Cr(CO)5
NASA Technical Reports Server (NTRS)
Barnes, Leslie A.; Liu, Bowen; Lindh, Roland
1992-01-01
The geometric structure of Cr(CO)6 is optimized at the modified coupled pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD, and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD, and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used. Calculations using larger basis sets reduce the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. In the largest basis set, the total CO binding energy of Cr(CO)6 is estimated to be 140 kcal/mol at the CCSD(T) level of theory, or about 86 percent of the experimental value. The remaining discrepancy between the experimental and theoretical value is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive set (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.
Energy Fluctuations Shape Free Energy of Nonspecific Biomolecular Interactions
NASA Astrophysics Data System (ADS)
Elkin, Michael; Andre, Ingemar; Lukatsky, David B.
2012-01-01
Understanding design principles of biomolecular recognition is a key question of molecular biology. Yet the enormous complexity and diversity of biological molecules hamper the efforts to gain a predictive ability for the free energy of protein-protein, protein-DNA, and protein-RNA binding. Here, using a variant of the Derrida model, we predict that for a large class of biomolecular interactions, it is possible to accurately estimate the relative free energy of binding based on the fluctuation properties of their energy spectra, even if a finite number of the energy levels is known. We show that the free energy of the system possessing a wider binding energy spectrum is almost surely lower compared with the system possessing a narrower energy spectrum. Our predictions imply that low-affinity binding scores, usually wasted in protein-protein and protein-DNA docking algorithms, can be efficiently utilized to compute the free energy. Using the results of Rosetta docking simulations of protein-protein interactions from Andre et al. (Proc. Natl. Acad. Sci. USA 105:16148, 2008), we demonstrate the power of our predictions.
NASA Technical Reports Server (NTRS)
Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.
1976-01-01
Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.
Relativistic excited state binding energies and RMS radii of Λ-hypernuclei
NASA Astrophysics Data System (ADS)
Nejad, S. Mohammad Moosavi; Armat, A.
2018-02-01
Using an analytical solution for the relativistic equation of single Λ-hypernuclei in the presence of Woods-Saxon (WS) potential we present, for the first time, an analytical form for the excited state binding energies of 1p, 1d, 1f and 1g shells of a number of hypernuclei. Based on phenomenological analysis of the Λ binding energies in a set of Λ-hypernuclei, the WS potential parameters are obtained phenomenologically for the set of Λ-hypernuclei. Systematic study of the energy levels of single Λ-hypernuclei enables us to extract more detailed information about the Λ-nucleon interaction. We also study the root mean square (RMS) radii of the Λ orbits in the hypernuclear ground states. Our results are presented for several hypernuclei and it is shown that our results for the binding energies are in good agreement with experimental data.
Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit.
Lemke, Kono H
2017-06-21
This study presents results for the binding energy and geometry of the H 2 S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of D e , E ZPE , D o , and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of D e are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance r SS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H 2 S dimer geometry and binding energy. As regards the structure of (H 2 S) 2 , MPn, CCSD, and CCSD(T) level values of r SS , obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy D e are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies D e with E ZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields D o = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.
Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit
NASA Astrophysics Data System (ADS)
Lemke, Kono H.
2017-06-01
This study presents results for the binding energy and geometry of the H2S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of De, EZPE, Do, and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of De are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance rSS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H2S dimer geometry and binding energy. As regards the structure of (H2S)2, MPn, CCSD, and CCSD(T) level values of rSS, obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy De are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies De with EZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields Do = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.
Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J
2015-01-22
The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.
a New Phenomenological Formula for Ground-State Binding Energies
NASA Astrophysics Data System (ADS)
Gangopadhyay, G.
A phenomenological formula based on liquid drop model has been proposed for ground-state binding energies of nuclei. The effect due to bunching of single particle levels has been incorporated through a term resembling the one-body Hamiltonian. The effect of n-p interaction has been included through a function of valence nucleons. A total of 50 parameters has been used in the present calculation. The root mean square (r.m.s.) deviation for the binding energy values for 2140 nuclei comes out to be 0.376 MeV, and that for 1091 alpha decay energies is 0.284 MeV. The correspondence with the conventional liquid drop model is discussed.
Impact of Many-Body Effects on Landau Levels in Graphene
NASA Astrophysics Data System (ADS)
Sonntag, J.; Reichardt, S.; Wirtz, L.; Beschoten, B.; Katsnelson, M. I.; Libisch, F.; Stampfer, C.
2018-05-01
We present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magnetophonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity vF. In contrast to the logarithmic divergence of vF at zero magnetic field, we find a piecewise linear scaling of vF as a function of the charge carrier density, due to a magnetic-field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈6 meV contained in the experimentally extracted Landau level transitions energies.
NASA Astrophysics Data System (ADS)
Kalescky, Robert; Kraka, Elfi; Cremer, Dieter
2014-02-01
The formic acid dimer in its C2h-symmetrical cyclic form is stabilized by two equivalent H-bonds. The currently accepted interaction energy is 18.75 kcal/mol whereas the experimental binding energy D0 value is only 14.22 ±0.12 kcal/mol [F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012)]. Calculation of the binding energies De and D0 at the CCSD(T) (Coupled Cluster with Single and Double excitations and perturbative Triple excitations)/CBS (Complete Basis Set) level of theory, utilizing CCSD(T)/CBS geometries and the frequencies of the dimer and monomer, reveals that there is a 3.2 kcal/mol difference between interaction energy and binding energy De, which results from (i) not relaxing the geometry of the monomers upon dissociation of the dimer and (ii) approximating CCSD(T) correlation effects with MP2. The most accurate CCSD(T)/CBS values obtained in this work are De = 15.55 and D0 = 14.32 kcal/mol where the latter binding energy differs from the experimental value by 0.1 kcal/mol. The necessity of employing augmented VQZ and VPZ calculations and relaxing monomer geometries of H-bonded complexes upon dissociation to obtain reliable binding energies is emphasized.
Gallicchio, Emilio; Deng, Nanjie; He, Peng; Wickstrom, Lauren; Perryman, Alexander L.; Santiago, Daniel N.; Forli, Stefano; Olson, Arthur J.; Levy, Ronald M.
2014-01-01
As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization. PMID:24504704
Olsson, Martin A; Söderhjelm, Pär; Ryde, Ulf
2016-06-30
In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Olsson, Martin A.; Söderhjelm, Pär
2016-01-01
In this article, the convergence of quantum mechanical (QM) free‐energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa‐acid deep‐cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158–224 atoms). We use single‐step exponential averaging (ssEA) and the non‐Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi‐empirical PM6‐DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free‐energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27117350
Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics
NASA Astrophysics Data System (ADS)
Ünal, Aslı; Bozkaya, Uǧur
2018-03-01
An extensive study of structures and energetics for anionic pentamer and hexamer clusters is performed employing high level ab initio quantum chemical methods, such as the density-fitted orbital-optimized linearized coupled-cluster doubles (DF-OLCCD), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] methods. In this study, sixteen anionic pentamer clusters and eighteen anionic hexamer clusters are reported. Relative, binding, and vertical detachment energies (VDE) are presented at the complete basis set limit (CBS), extrapolating energies of aug4-cc-pVTZ and aug4-cc-pVQZ custom basis sets. The largest VDE values obtained at the CCSD(T)/CBS level are 9.9 and 11.2 kcal mol-1 for pentamers and hexamers, respectively, which are in very good agreement with the experimental values of 9.5 and 11.1 kcal mol-1. Our binding energy results, at the CCSD(T)/CBS level, indicate strong bindings in anionic clusters due to hydrogen bond interactions. The average binding energy per water molecules is -5.0 and -5.3 kcal mol-1 for pentamers and hexamers, respectively. Furthermore, our results demonstrate that the DF-OLCCD method approaches to the CCSD(T) quality for anionic clusters. The inexpensive analytic gradients of DF-OLCCD compared to CCSD or CCSD(T) make it very attractive for high-accuracy studies.
Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics.
Ünal, Aslı; Bozkaya, Uğur
2018-03-28
An extensive study of structures and energetics for anionic pentamer and hexamer clusters is performed employing high level ab initio quantum chemical methods, such as the density-fitted orbital-optimized linearized coupled-cluster doubles (DF-OLCCD), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] methods. In this study, sixteen anionic pentamer clusters and eighteen anionic hexamer clusters are reported. Relative, binding, and vertical detachment energies (VDE) are presented at the complete basis set limit (CBS), extrapolating energies of aug4-cc-pVTZ and aug4-cc-pVQZ custom basis sets. The largest VDE values obtained at the CCSD(T)/CBS level are 9.9 and 11.2 kcal mol -1 for pentamers and hexamers, respectively, which are in very good agreement with the experimental values of 9.5 and 11.1 kcal mol -1 . Our binding energy results, at the CCSD(T)/CBS level, indicate strong bindings in anionic clusters due to hydrogen bond interactions. The average binding energy per water molecules is -5.0 and -5.3 kcal mol -1 for pentamers and hexamers, respectively. Furthermore, our results demonstrate that the DF-OLCCD method approaches to the CCSD(T) quality for anionic clusters. The inexpensive analytic gradients of DF-OLCCD compared to CCSD or CCSD(T) make it very attractive for high-accuracy studies.
Computational studies of metal-metal and metal-ligand interactions
NASA Technical Reports Server (NTRS)
Barnes, Leslie A.
1992-01-01
The geometric structure of Cr(CO)6 is optimized at the modified coupled-pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. A detailed comparison of the properties of free CO is therefore given, at both the MCPF and CCSD/CCSD(T) levels of treatment, using a variety of basis sets. With very large one-particle basis sets, the SSCD(T) method gives excellent results for the bond distance, dipole moment and harmonic frequency of free CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used here and in a previous study. Calculations using larger basis sets reduced the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. The remaining discrepancy between the experimental and theoretical total binding energy of Cr(CO)6 is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive se (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.
Axnanda, Stephanus; Scheele, Marcus; Crumlin, Ethan; Mao, Baohua; Chang, Rui; Rani, Sana; Faiz, Mohamed; Wang, Suidong; Alivisatos, A Paul; Liu, Zhi
2013-01-01
Work function is a fundamental property of a material's surface. It is playing an ever more important role in engineering new energy materials and efficient energy devices, especially in the field of photovoltaic devices, catalysis, semiconductor heterojunctions, nanotechnology, and electrochemistry. Using ambient pressure X-ray photoelectron spectroscopy (APXPS), we have measured the binding energies of core level photoelectrons of Ar gas in the vicinity of several reference materials with known work functions (Au(111), Pt(111), graphite) and PbS nanoparticles. We demonstrate an unambiguously negative correlation between the work functions of reference samples and the binding energies of Ar 2p core level photoelectrons detected from the Ar gas near the sample surface region. Using this experimentally determined linear relationship between the surface work function and Ar gas core level photoelectron binding energy, we can measure the surface work function of different materials under different gas environments. To demonstrate the potential applications of this ambient pressure XPS technique in nanotechnology and solar energy research, we investigate the work functions of PbS nanoparticles with various capping ligands: methoxide, mercaptopropionic acid, and ethanedithiol. Significant Fermi level position changes are observed for PbS nanoparticles when the nanoparticle size and capping ligands are varied. The corresponding changes in the valence band maximum illustrate that an efficient quantum dot solar cell design has to take into account the electrochemical effect of the capping ligand as well.
Accurate Wavelength Measurement of High-Energy Gamma Rays from the 35Cl(n,{gamma}) Reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belgya, T.; Molnar, G.L.; Mutti, P.
2005-05-24
The energies of eight gamma rays in the 36Cl level scheme have been measured with high precision using the 35Cl(n,{gamma}) reaction and the GAMS4 spectrometer. From these energies, a skeleton decay scheme for 36Cl was constructed, and the binding energy of 36Cl was determined to higher precision than previously. It is shown that using this new information, binding energy determination from Ge detector experiments for other nuclei can also be made with higher precision than now available. The measurement of additional weaker 36Cl gamma rays is continuing.
Leverentz, Hannah R; Qi, Helena W; Truhlar, Donald G
2013-02-12
The binding energies and relative conformational energies of five configurations of the water 16-mer are computed using 61 levels of density functional (DF) theory, 12 methods combining DF theory with molecular mechanics damped dispersion (DF-MM), seven semiempirical-wave function (SWF) methods, and five methods combining SWF theory with molecular mechanics damped dispersion (SWF-MM). The accuracies of the computed energies are assessed by comparing them to recent high-level ab initio results; this assessment is more relevant to bulk water than previous tests on small clusters because a 16-mer is large enough to have water molecules that participate in more than three hydrogen bonds. We find that for water 16-mer binding energies the best DF, DF-MM, SWF, and SWF-MM methods (and their mean unsigned errors in kcal/mol) are respectively M06-2X (1.6), ωB97X-D (2.3), SCC-DFTB-γ(h) (35.2), and PM3-D (3.2). We also mention the good performance of CAM-B3LYP (1.8), M05-2X (1.9), and TPSSLYP (3.0). In contrast, for relative energies of various water nanoparticle 16-mer structures, the best methods (and mean unsigned errors in kcal/mol), in the same order of classes of methods, are SOGGA11-X (0.3), ωB97X-D (0.2), PM6 (0.4), and PMOv1 (0.6). We also mention the good performance of LC-ωPBE-D3 (0.3) and ωB97X (0.4). When both relative and binding energies are taken into consideration, the best methods overall (out of the 85 tested) are M05-2X without molecular mechanics and ωB97X-D when molecular mechanics corrections are included; with considerably higher average errors and considerably lower cost, the best SWF or SWF-MM method is PMOv1. We use six of the best methods for binding energies of the water 16-mers to calculate the binding energies of water hexamers and water 17-mers to test whether these methods are also reliable for binding energy calculations on other types of water clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaka, R. S.; Barman, S. R.
Ne 1s core-level photoelectron spectra from Ne nanobubbles implanted in aluminum exhibit two peaks whose binding energies and relative intensities change with implantation energy, isochronal annealing, and sputtering. These changes in the core-level spectra are manifestations of the nanometer size of the bubbles since the screening of the photohole by the Al conduction electrons depends on the bubble size. Existence of a bimodal depth and size distribution of Ne nanobubbles is demonstrated in this work: smaller bubbles of about 4 A in radius are formed close to the Al(111) surface while the larger sized bubbles of 20 A in radiusmore » exist deeper below in the beneath subsurface region. A general relation between the radius of the rare-gas bubbles and their core-level binding energies is established.« less
The implementation of binding blocks in the classroom
NASA Astrophysics Data System (ADS)
Wright, A. J.; Willett, H. V.; Beanland, S. R.; Carson, M.; Davies, R. A.; Duffett, G.; Pastore, A.
2017-09-01
We discuss a series of activities for A-level students which can be carried out using the binding blocks three dimensional chart of nuclides. The planned activities cover four main sections which can be linked to the A-level curriculum; nuclear decays (as seen through the different colours on the chart), medical physics (medical isotopes highlighted on the chart), fusion on Earth (binding energy demonstrated through tower heights) and stellar fusion (which has a limit at 56Fe, illustrated by the decreasing tower heights).
Acceptor binding energies in GaN and AlN
NASA Astrophysics Data System (ADS)
Mireles, Francisco; Ulloa, Sergio E.
1998-08-01
We employ effective-mass theory for degenerate hole bands to calculate the acceptor binding energies for Be, Mg, Zn, Ca, C, and Si substitutional acceptors in GaN and AlN. The calculations are performed through the 6×6 Rashba-Sheka-Pikus and the Luttinger-Kohn matrix Hamiltonians for wurtzite (WZ) and zinc-blende (ZB) crystal phases, respectively. An analytic representation for the acceptor pseudopotential is used to introduce the specific nature of the impurity atoms. The energy shift due to polaron effects is also considered in this approach. The ionization energy estimates are in very good agreement with those reported experimentally in WZ GaN. The binding energies for ZB GaN acceptors are all predicted to be shallower than the corresponding impurities in the WZ phase. The binding-energy dependence upon the crystal-field splitting in WZ GaN is analyzed. Ionization levels in AlN are found to have similar ``shallow'' values to those in GaN, but with some important differences which depend on the band structure parametrizations, especially the value of the crystal-field splitting used.
Bucci, Enrico
2013-01-01
Hill’s plots of oxygen binding isotherms reveal the presence of a transition between two different oxygen affinities at the beginning and end of the isotherm. They correspond to the two conformations anticipated by the MWC model, namely the T and R conformations at the beginning and end of oxygen binding, when the lower affinity of the T form develops into the higher affinity of the R form. The difference between the binding Gibbs free energies changes of the two affinities (ΔGL) is the free energy of binding cooperativity. Notably ΔGL is positive in favor of the T form, that moves to a higher energy level upon oxygen release. Osmotic stress reveals a higher volume/surface ratio of deoxyHb, with a positive ΔGW also in favor of the T form . Increasing protein concentration shifts the isotherms to the right indicating the formation of intermediate polymeric forms. Enthalpy of the intermediates show a strong absorption of heat at the third oxygenation step due to polymers formation with quinary, and above, structures. The disassembly of intermediate polymers releases energy with a negative ΔG that compensates and allow the positivity of ΔGL. High energy polymers are the barrier preventing the relaxation of the T and R conformations into one another. The MWC allosteric model is the best justification of oxygen binding cooperativity . PMID:23710673
The Successive OH Binding Energies of Sc(OH)n+ for n=1-3
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James O. (Technical Monitor)
1996-01-01
The geometries of Sc(OH)n+, for n = 1-3, have been optimized using density functional theory, in conjunction with the B3LYP hybrid functional. The zero-point energies are computed at the same level of theory. The successive OH bond energies have been computed at the CCSD(T) level for ScOH+ and Sc(OH)2+. The computed result for ScOD+ is in excellent agreement with the recent experiment of Armentrout and co-workers. There is a dramatic drop for the third OH, because Sc+ has only two valence electrons and therefore the bonding changes when the third OH is added. The difference between the B3LYP and CCSD(T) OH binding energies for the first two OH groups is discussed.
Binding of two-electron metastable states in semiconductor quantum dots under a magnetic field
NASA Astrophysics Data System (ADS)
Garagiola, Mariano; Pont, Federico M.; Osenda, Omar
2018-04-01
Applying a strong enough magnetic field results in the binding of few-electron resonant states. The mechanism was proposed many years ago but its verification in laboratory conditions is far more recent. In this work we study the binding of two-electron resonant states. The electrons are confined in a cylindrical quantum dot which is embedded in a semiconductor wire. The geometry considered is similar to the one used in actual experimental setups. The low-energy two-electron spectrum is calculated numerically from an effective-mass approximation Hamiltonian modelling the system. Methods for binding threshold calculations in systems with one and two electrons are thoroughly studied; in particular, we use quantum information quantities to assess when the strong lateral confinement approximation can be used to obtain reliable low-energy spectra. For simplicity, only cases without bound states in the absence of an external field are considered. Under these conditions, the binding threshold for the one-electron case is given by the lowest Landau energy level. Moreover, the energy of the one-electron bounded resonance can be used to obtain the two-electron binding threshold. It is shown that for realistic values of the two-electron model parameters it is feasible to bind resonances with field strengths of a few tens of tesla.
Three-state combinatorial switch models as applied to the binding of oxygen by human hemoglobin.
Straume, M; Johnson, M L
1988-02-23
We have generated a series of all 6561 unique, discrete three-state combinatorial switch models to describe the partitioning of the cooperative oxygen-binding free change among the 10 variously ligated forms of human hemoglobin tetramers. These models were inspired by the experimental observation of Smith and Ackers that the cooperative free energy of the intersubunit contact regions of the 10 possible ligated forms of human hemoglobin tetramers can be represented by a particular distribution of three distinct energy levels [Smith, F. R., & Ackers, G. K. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5347-5351]. A statistical thermodynamic formulation accounting for both dimer-tetramer equilibria and ligand binding properties of hemoglobin solutions as a function of oxygen and protein concentrations was utilized to exhaustively test these thermodynamic models. In this series of models each of the 10 ligated forms of the hemoglobin tetramer can exist in one, and only one, of three possible energy levels; i.e., each ligated form was assumed to be associated with a discrete energy state. This series of models includes all possible ways that the 10 ligation states of hemoglobin can be distributed into three distinct cooperative energy levels. The mathematical models, as presented here, do not permit equilibria between energy states to exist for any of the 10 unique ligated forms of hemoglobin tetramers. These models were analyzed by nonlinear least-squares estimation of the free energy parameters characteristic of this statistical thermodynamic development.(ABSTRACT TRUNCATED AT 250 WORDS)
Raman, E. Prabhu; MacKerell, Alexander D.
2015-01-01
The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202
Pueyo Bellafont, Noèlia; Bagus, Paul S; Illas, Francesc
2015-06-07
A systematic study of the N(1s) core level binding energies (BE's) in a broad series of molecules is presented employing Hartree-Fock (HF) and the B3LYP, PBE0, and LC-BPBE density functional theory (DFT) based methods with a near HF basis set. The results show that all these methods give reasonably accurate BE's with B3LYP being slightly better than HF but with both PBE0 and LCBPBE being poorer than HF. A rigorous and general decomposition of core level binding energy values into initial and final state contributions to the BE's is proposed that can be used within either HF or DFT methods. The results show that Koopmans' theorem does not hold for the Kohn-Sham eigenvalues. Consequently, Kohn-Sham orbital energies of core orbitals do not provide estimates of the initial state contribution to core level BE's; hence, they cannot be used to decompose initial and final state contributions to BE's. However, when the initial state contribution to DFT BE's is properly defined, the decompositions of initial and final state contributions given by DFT, with several different functionals, are very similar to those obtained with HF. Furthermore, it is shown that the differences of Kohn-Sham orbital energies taken with respect to a common reference do follow the trend of the properly calculated initial state contributions. These conclusions are especially important for condensed phase systems where our results validate the use of band structure calculations to determine initial state contributions to BE shifts.
NASA Astrophysics Data System (ADS)
Verma, Prakash L.; Singh, Priti; Gejji, Shridhar P.
2017-07-01
Molecular insights for the formation of ion pairs accompanying the cyclic ammonium cation based room temperature ionic liquids (RTILs) composed of alkyl substituted N-methylmorpholinium (RMMor) and alkylphosphite [(Rsbnd O)2PHdbnd O] (Rdbnd ethyl, butyl, hexyl, octyl) anion have been derived from the M06-2x level of theory. Electronic structures, binding energies, and spectral characteristics of the ion pairs underlying these RTILs have been characterized. The ion pair formation is largely governed by Csbnd H⋯O and other intermolecular interactions. Calculated binding energies increase with the increasing alkyl chain on either cation or alkylphosphite anion. The cation-anion binding reveals signature in the frequency down-(red) shift of the characteristic anionic Pdbnd O stretching whereas the Psbnd H stretching exhibits a shift in the opposite direction in vibrational spectra which has further been rationalized through molecular electron density topography. Correlations of measured electrochemical stability with the separation of frontier orbital energies and binding energies in the ion pairs have further been established.
Panda, Dulal; Kunwar, Ambarish
2016-01-01
Tubulin isotypes are found to play an important role in regulating microtubule dynamics. The isotype composition is also thought to contribute in the development of drug resistance as tubulin isotypes show differential binding affinities for various anti-cancer agents. Tubulin isotypes αβII, αβIII and αβIV show differential binding affinity for colchicine. However, the origin of differential binding affinity is not well understood at the molecular level. Here, we investigate the origin of differential binding affinity of a colchicine analogue N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) for human αβII, αβIII and αβIV isotypes, employing sequence analysis, homology modeling, molecular docking, molecular dynamics simulation and MM-GBSA binding free energy calculations. The sequence analysis study shows that the residue compositions are different in the colchicine binding pocket of αβII and αβIII, whereas no such difference is present in αβIV tubulin isotypes. Further, the molecular docking and molecular dynamics simulations results show that residue differences present at the colchicine binding pocket weaken the bonding interactions and the correct binding of DAMA-colchicine at the interface of αβII and αβIII tubulin isotypes. Post molecular dynamics simulation analysis suggests that these residue variations affect the structure and dynamics of αβII and αβIII tubulin isotypes, which in turn affect the binding of DAMA-colchicine. Further, the binding free-energy calculation shows that αβIV tubulin isotype has the highest binding free-energy and αβIII has the lowest binding free-energy for DAMA-colchicine. The order of binding free-energy for DAMA-colchicine is αβIV ≃ αβII >> αβIII. Thus, our computational approaches provide an insight into the effect of residue variations on differential binding of αβII, αβIII and αβIV tubulin isotypes with DAMA-colchicine and may help to design new analogues with higher binding affinities for tubulin isotypes. PMID:27227832
Mackie, Iain D; DiLabio, Gino A
2011-10-07
The first-principles calculation of non-covalent (particularly dispersion) interactions between molecules is a considerable challenge. In this work we studied the binding energies for ten small non-covalently bonded dimers with several combinations of correlation methods (MP2, coupled-cluster single double, coupled-cluster single double (triple) (CCSD(T))), correlation-consistent basis sets (aug-cc-pVXZ, X = D, T, Q), two-point complete basis set energy extrapolations, and counterpoise corrections. For this work, complete basis set results were estimated from averaged counterpoise and non-counterpoise-corrected CCSD(T) binding energies obtained from extrapolations with aug-cc-pVQZ and aug-cc-pVTZ basis sets. It is demonstrated that, in almost all cases, binding energies converge more rapidly to the basis set limit by averaging the counterpoise and non-counterpoise corrected values than by using either counterpoise or non-counterpoise methods alone. Examination of the effect of basis set size and electron correlation shows that the triples contribution to the CCSD(T) binding energies is fairly constant with the basis set size, with a slight underestimation with CCSD(T)∕aug-cc-pVDZ compared to the value at the (estimated) complete basis set limit, and that contributions to the binding energies obtained by MP2 generally overestimate the analogous CCSD(T) contributions. Taking these factors together, we conclude that the binding energies for non-covalently bonded systems can be accurately determined using a composite method that combines CCSD(T)∕aug-cc-pVDZ with energy corrections obtained using basis set extrapolated MP2 (utilizing aug-cc-pVQZ and aug-cc-pVTZ basis sets), if all of the components are obtained by averaging the counterpoise and non-counterpoise energies. With such an approach, binding energies for the set of ten dimers are predicted with a mean absolute deviation of 0.02 kcal/mol, a maximum absolute deviation of 0.05 kcal/mol, and a mean percent absolute deviation of only 1.7%, relative to the (estimated) complete basis set CCSD(T) results. Use of this composite approach to an additional set of eight dimers gave binding energies to within 1% of previously published high-level data. It is also shown that binding within parallel and parallel-crossed conformations of naphthalene dimer is predicted by the composite approach to be 9% greater than that previously reported in the literature. The ability of some recently developed dispersion-corrected density-functional theory methods to predict the binding energies of the set of ten small dimers was also examined. © 2011 American Institute of Physics
Magnetic quantization in monolayer bismuthene
NASA Astrophysics Data System (ADS)
Chen, Szu-Chao; Chiu, Chih-Wei; Lin, Hui-Chi; Lin, Ming-Fa
The magnetic quantization in monolayer bismuthene is investigated by the generalized tight-binding model. The quite large Hamiltonian matrix is built from the tight-binding functions of the various sublattices, atomic orbitals and spin states. Due to the strong spin orbital coupling and sp3 bonding, monolayer bismuthene has the diverse low-lying energy bands such as the parabolic, linear and oscillating energy bands. The main features of band structures are further reflected in the rich magnetic quantization. Under a uniform perpendicular magnetic field (Bz) , three groups of Landau levels (LLs) with distinct features are revealed near the Fermi level. Their Bz-dependent energy spectra display the linear, square-root and non-monotonous dependences, respectively. These LLs are dominated by the combinations of the 6pz orbital and (6px,6py) orbitals as a result of strong sp3 bonding. Specifically, the LL anti-crossings only occur between LLs originating from the oscillating energy band.
Quark-level analogue of nuclear fusion with doubly heavy baryons.
Karliner, Marek; Rosner, Jonathan L
2017-11-01
The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery of the first doubly charmed baryon , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λ c ) undergo fusion to produce the doubly charmed baryon and a neutron n (), resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium-tritium nuclear fusion reaction (DT → 4 He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks () to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.
Quark-level analogue of nuclear fusion with doubly heavy baryons
NASA Astrophysics Data System (ADS)
Karliner, Marek; Rosner, Jonathan L.
2017-11-01
The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery of the first doubly charmed baryon , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λc) undergo fusion to produce the doubly charmed baryon and a neutron n (), resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium-tritium nuclear fusion reaction (DT → 4He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks () to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.
NASA Astrophysics Data System (ADS)
Ren, Jieru; Zhao, Yongtao; Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Wang, Xing; Xu, Ge; Wang, Yuyu; Liu, Shidong; Yu, Yang; Li, Yongfeng; Zhang, Xiaoan; Xu, Zhongfeng; Xiao, Guoqing
2013-09-01
X-ray yields for the projectile L-shell have been measured for collisions between Xe20+ and thick solid targets throughout the periodic table with incident energies near the Bohr velocity. The yields show a very pronounced cyclic dependence on the target atomic number. This result indicates that Xe L x-ray emission intensity is greatly enhanced either in near-symmetric collisions or if the binding energy of the Xe M-shell matches the L- or N-shell binding energy of the target.
Makarewicz, Jan; Shirkov, Leonid
2016-05-28
The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy De of 392 cm(-1) is close to that of 387 cm(-1) calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, De for PAr becomes slightly lower than De for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.
Properties of inhibitors of methane hydrate formation via molecular dynamics simulations.
Anderson, Brian J; Tester, Jefferson W; Borghi, Gian Paolo; Trout, Bernhardt L
2005-12-21
Within the framework of a proposed two-step mechanism for hydrate inhibition, the energy of binding of four inhibitor molecules (PEO, PVP, PVCap, and VIMA) to a hydrate surface is estimated with molecular dynamic simulations. One key feature of this proposed mechanism is that the binding of an inhibitor molecule to the surface of an ensuing hydrate crystal disrupts growth and therein crystallization. It is found through the molecular dynamic simulations that inhibitor molecules that experimentally exhibit better inhibition strength also have higher free energies of binding, an indirect confirmation of our proposed mechanism. Inhibitors increasing in effectiveness, PEO < PVP < PVCap < VIMA, have increasingly negative (exothermic) binding energies of -0.2 < -20.6 < -37.5 < -45.8 kcal/mol and binding free energies of increasing favorability (+0.4 approximately = +0.5 < -9.4 < -15.1 kcal/mol). Furthermore, the effect of an inhibitor molecule on the local liquid water structure under hydrate-forming conditions was examined and correlated to the experimental effectiveness of the inhibitors. Two molecular characteristics that lead to strongly binding inhibitors were found: (1) a charge distribution on the edge of the inhibitor that mimics the charge separation in the water molecules on the surface of the hydrate and (2) the congruence of the size of the inhibitor with respect to the available space at the hydrate-surface binding site. Equipped with this molecular-level understanding of the process of hydrate inhibition via low-dosage kinetic hydrate inhibitors we can design new, more effective inhibitor molecules.
Chan, Jean L; Williams, Catherine J; Raciti, Patricia; Blakeman, Jennifer; Kelesidis, Theodore; Kelesidis, Iosif; Johnson, Michael L; Thorner, Michael O; Mantzoros, Christos S
2008-07-01
States of acute and chronic energy deficit are characterized by increased GH secretion and decreased IGF-I levels. The objective of the study was to determine whether changes in levels of leptin, a key mediator of the adaptation to starvation, regulate the GH-IGF system during energy deficit. We studied 14 healthy normal-weight men and women during three conditions: baseline fed and 72-h fasting (to induce hypoleptinemia) with administration of placebo or recombinant methionyl human leptin (r-metHuLeptin) (to reverse the fasting associated hypoleptinemia). We also studied eight normal-weight women with exercise-induced chronic energy deficit and hypothalamic amenorrhea at baseline and during 2-3 months of r-metHuLeptin treatment. GH pulsatility, IGF levels, IGF and GH binding protein (GHBP) levels were measured. During short-term energy deficit, measures of GH pulsatility and disorderliness and levels of IGF binding protein (IGFBP)-1 increased, whereas leptin, insulin, IGF-I (total and free), IGFBP-4, IGFBP-6, and GHBP decreased; r-metHuLeptin administration blunted the starvation-associated decrease of IGF-I. In chronic energy deficit, total and free IGF-I, IGFBP-6, and GHBP levels were lower, compared with euleptinemic controls; r-metHuLeptin administration had no major effect on GH pulsatility after 2 wk but increased total IGF-I levels and tended to increase free IGF-I and IGFBP-3 after 1 month. The GH/IGF system changes associated with energy deficit are largely independent of leptin deficiency. During acute energy deficit, r-metHuLeptin administration in replacement doses blunts the starvation-induced decrease of IGF-I, but during chronic energy deficit, r-metHuLeptin administration increases IGF-I and tends to increase free IGF-I and IGFBP-3.
Binding blocks: building the Universe one nucleus at a time
NASA Astrophysics Data System (ADS)
Diget, C. Aa; Pastore, A.; Leech, K.; Haylett, T.; Lock, S.; Sanders, T.; Shelley, M.; Willett, H. V.; Keegans, J.; Sinclair, L.; Simpson, E. C.; Binding Blocks Collaboration
2017-03-01
We present a new teaching and outreach activity based around the construction of a three-dimensional chart of isotopes using \\text{LEG}{{\\text{O}}\\circledR} bricks5. The activity, binding blocks, demonstrates nuclear and astrophysical processes through a seven-meter chart of all nuclear isotopes, built from over 26 000 \\text{LEG}{{\\text{O}}\\circledR} bricks. It integrates A-Level and GCSE curricula across areas of nuclear physics, astrophysics, and chemistry, including: nuclear decays (through the colours in the chart); nuclear binding energy (through tower heights); production of chemical elements in the cosmos; fusion processes in stars and fusion energy on Earth; as well as links to medical physics, particularly diagnostics and radiotherapy.
Tight-binding modeling and low-energy behavior of the semi-Dirac point.
Banerjee, S; Singh, R R P; Pardo, V; Pickett, W E
2009-07-03
We develop a tight-binding model description of semi-Dirac electronic spectra, with highly anisotropic dispersion around point Fermi surfaces, recently discovered in electronic structure calculations of VO2-TiO2 nanoheterostructures. We contrast their spectral properties with the well-known Dirac points on the honeycomb lattice relevant to graphene layers and the spectra of bands touching each other in zero-gap semiconductors. We also consider the lowest order dispersion around one of the semi-Dirac points and calculate the resulting electronic energy levels in an external magnetic field. In spite of apparently similar electronic structures, Dirac and semi-Dirac systems support diverse low-energy physics.
Free energy component analysis for drug design: a case study of HIV-1 protease-inhibitor binding.
Kalra, P; Reddy, T V; Jayaram, B
2001-12-06
A theoretically rigorous and computationally tractable methodology for the prediction of the free energies of binding of protein-ligand complexes is presented. The method formulated involves developing molecular dynamics trajectories of the enzyme, the inhibitor, and the complex, followed by a free energy component analysis that conveys information on the physicochemical forces driving the protein-ligand complex formation and enables an elucidation of drug design principles for a given receptor from a thermodynamic perspective. The complexes of HIV-1 protease with two peptidomimetic inhibitors were taken as illustrative cases. Four-nanosecond-level all-atom molecular dynamics simulations using explicit solvent without any restraints were carried out on the protease-inhibitor complexes and the free proteases, and the trajectories were analyzed via a thermodynamic cycle to calculate the binding free energies. The computed free energies were seen to be in good accord with the reported data. It was noted that the net van der Waals and hydrophobic contributions were favorable to binding while the net electrostatics, entropies, and adaptation expense were unfavorable in these protease-inhibitor complexes. The hydrogen bond between the CH2OH group of the inhibitor at the scissile position and the catalytic aspartate was found to be favorable to binding. Various implicit solvent models were also considered and their shortcomings discussed. In addition, some plausible modifications to the inhibitor residues were attempted, which led to better binding affinities. The generality of the method and the transferability of the protocol with essentially no changes to any other protein-ligand system are emphasized.
Sadiq, S Kashif; Wright, David W; Kenway, Owain A; Coveney, Peter V
2010-05-24
Accurate calculation of important thermodynamic properties, such as macromolecular binding free energies, is one of the principal goals of molecular dynamics simulations. However, single long simulation frequently produces incorrectly converged quantitative results due to inadequate sampling of conformational space in a feasible wall-clock time. Multiple short (ensemble) simulations have been shown to explore conformational space more effectively than single long simulations, but the two methods have not yet been thermodynamically compared. Here we show that, for end-state binding free energy determination methods, ensemble simulations exhibit significantly enhanced thermodynamic sampling over single long simulations and result in accurate and converged relative binding free energies that are reproducible to within 0.5 kcal/mol. Completely correct ranking is obtained for six HIV-1 protease variants bound to lopinavir with a correlation coefficient of 0.89 and a mean relative deviation from experiment of 0.9 kcal/mol. Multidrug resistance to lopinavir is enthalpically driven and increases through a decrease in the protein-ligand van der Waals interaction, principally due to the V82A/I84V mutation, and an increase in net electrostatic repulsion due to water-mediated disruption of protein-ligand interactions in the catalytic region. Furthermore, we correctly rank, to within 1 kcal/mol of experiment, the substantially increased chemical potency of lopinavir binding to the wild-type protease compared to saquinavir and show that lopinavir takes advantage of a decreased net electrostatic repulsion to confer enhanced binding. Our approach is dependent on the combined use of petascale computing resources and on an automated simulation workflow to attain the required level of sampling and turn around time to obtain the results, which can be as little as three days. This level of performance promotes integration of such methodology with clinical decision support systems for the optimization of patient-specific therapy.
NASA Astrophysics Data System (ADS)
Hayrapetyan, David B.; Kotanjyan, Tigran V.; Tevosyan, Hovhannes Kh.; Kazaryan, Eduard M.
2016-12-01
The effects of hydrostatic pressure and size quantization on the binding energies of a hydrogen-like donor impurity in cylindrical GaAs quantum dot (QD) with Morse confining potential are studied using the variational method and effective-mass approximation. In the cylindrical QD, the effect of hydrostatic pressure on the binding energy of electron has been investigated and it has been found that the application of the hydrostatic pressure leads to the blue shift. The dependence of the absorption edge on geometrical parameters of cylindrical QD is obtained. Selection rules are revealed for transitions between levels with different quantum numbers. It is shown that for the radial quantum number, transitions are allowed between the levels with the same quantum numbers, and any transitions between different levels are allowed for the principal quantum number.
Srivastava, Gaurava; Tripathi, Shubhandra; Kumar, Akhil; Sharma, Ashok
2017-07-01
Multi drug resistant tuberculosis is a major threat for mankind. Resistance against Isoniazid (INH), targeting MtKatG protein, is one of the most commonly occurring resistances in MDR TB strains. S315T-MtKatG mutation is widely reported for INH resistance. Despite having knowledge about the mechanism of INH, exact binding site of INH to MtKatG is still uncertain and proposed to have three presumable binding sites (site-1, site-2, and site-3). In the current study docking, molecular dynamics simulation, binding free energy estimation, principal component analysis and free energy landscape analysis were performed to get molecular level details of INH binding site on MtKatG, and to probe the effect of S315T mutation on INH binding. Molecular docking and MD analysis suggested site-1 as active binding site of INH, where the effects of S315T mutation were observed on both access tunnel as well as molecular interaction between INH and its neighboring residues. MMPBSA also supported site-1 as potential binding site with lowest binding energy of -44.201 kJ/mol. Moreover, PCA and FEL revealed that S315T mutation not only reduces the dimension of heme access tunnel but also showed that extra methyl group at 315 position altered heme cavity, enforcing heme group distantly from INH, and thus preventing INH activation. The present study not only investigated the active binding site of INH but also provides a new insight about the conformational changes in the binding site of S315T-MtKatG. Copyright © 2017 Elsevier Ltd. All rights reserved.
Theoretical study of metal noble-gas positive ions
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.
1989-01-01
Theoretical calculations have been performed to determine the spectroscopic constant for the ground and selected low-lying electronic states of the transition-metal noble-gas ions Var(+), FeAr(+), CoAr(+), CuHe(+), CuAr(+), and CuKr(+). Analogous calculations have been performed for the ground states of the alkali noble-gas ions LiAr(+), LiKr(+), NaAr(+), and KAr(+) and the alkaline-earth noble-gas ion MgAr(+) to contrast the difference in binding energies between the simple and transition-metal noble-gas ions. The binding energies increase with increasing polarizability of the noble-gas ions, as expected for a charge-induced dipole bonding mechanism. It is found that the spectroscopic constants of the X 1Sigma(+) states of the alkali noble-gas ions are well described at the self-consistent field level. In contrast, the binding energies of the transition-metal noble-gas ions are substantially increased by electron correlation.
Comparison of the bonding between ML(+) and ML2(+) (M = metal, L = noble gas)
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.
1990-01-01
Ab initio calculations are reported of the spectroscopic constants for the low-lying states of the molecular ions ML2(+), where M = Li, Na, Mg, V, Fe, Co, Ni and Cu, and where L is usually Ar. Comparison with existing analogous calculations on the ML(+) ions shows how the bonding and binding energy change with the addition of a second noble gas atom. The second binding energy is predicted to be essentially the same as the first for the Li, Na, Mg, and V ions, but larger for the Fe, Co, Ni and Cu ions. The binding energies of the transition metal noble gas ions are not accurately predicted at the SCF level, because correlation is required to describe their M(0)Ln(+) character. All trends can be explained in terms of promotion and hybridization on the metal ion.
Core-level binding energy shifts in Pt Ru nanoparticles: A puzzle resolved
NASA Astrophysics Data System (ADS)
Lewera, Adam; Zhou, Wei Ping; Hunger, Ralf; Jaegermann, Wolfram; Wieckowski, Andrzej; Yockel, Scott; Bagus, Paul S.
2007-10-01
Synchrotron measurements of Pt and Ru core-level binding energies, BE's, in Pt-Ru nanoparticles, as a function of Pt content, quantify earlier indications that the Pt 4f BE shift is much larger than the Ru 3d BE shift. A complementary theoretical analysis relates the BE shifts to changes in the metal-metal distances as the composition of the nanoparticle changes. We establish that the large Pt and small Ru BE shifts arise from the different response of these metals to changes in the bond distances, an unexpected result. Our results give evidence that the magnitudes of the BE shifts depend on whether the d band is open, as for Ru, or essentially filled, as for Pt.
Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration.
Soniat, Marielle; Rogers, David M; Rempe, Susan B
2015-07-14
A challenge in density functional theory is developing functionals that simultaneously describe intermolecular electron correlation and electron delocalization. Recent exchange-correlation functionals address those two issues by adding corrections important at long ranges: an atom-centered pairwise dispersion term to account for correlation and a modified long-range component of the electron exchange term to correct for delocalization. Here we investigate how those corrections influence the accuracy of binding free energy predictions for sodium-water clusters. We find that the dual-corrected ωB97X-D functional gives cluster binding energies closest to high-level ab initio methods (CCSD(T)). Binding energy decomposition shows that the ωB97X-D functional predicts the smallest ion-water (pairwise) interaction energy and larger multibody contributions for a four-water cluster than most other functionals - a trend consistent with CCSD(T) results. Also, ωB97X-D produces the smallest amounts of charge transfer and the least polarizable waters of the density functionals studied, which mimics the lower polarizability of CCSD. When compared with experimental binding free energies, however, the exchange-corrected CAM-B3LYP functional performs best (error <1 kcal/mol), possibly because of its parametrization to experimental formation enthalpies. For clusters containing more than four waters, "split-shell" coordination must be considered to obtain accurate free energies in comparison with experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanourgakis, Georgios S.; Apra, Edoardo; Xantheas, Sotiris S.
2004-08-08
We report estimates of complete basis set (CBS) limits at the second-order Møller-Plesset perturbation level of theory (MP2) for the binding energies of the lowest lying isomers within each of the four major families of minima of (H2O)20. These were obtained by performing MP2 calculations with the family of correlation-consistent basis sets up to quadruple zeta quality, augmented with additional diffuse functions (aug-cc-pVnZ, n=D, T, Q). The MP2/CBS estimates are: -200.1 kcal/mol (dodecahedron, 30 hydrogen bonds), -212.6 kcal/mol (fused cubes, 36 hydrogen bonds), -215.0 (face-sharing pentagonal prisms, 35 hydrogen bonds) and –217.9 kcal/mol (edge-sharing pentagonal prisms, 34 hydrogen bonds). Themore » energetic ordering of the various (H2O)20 isomers does not follow monotonically the number of hydrogen bonds as in the case of smaller clusters such as the different isomers of the water hexamer. The dodecahedron lies ca. 18 kcal/mol higher in energy than the most stable edge-sharing pentagonal prism isomer. The TIP4P, ASP-W4, TTM2-R, AMOEBA and TTM2-F empirical potentials also predict the energetic stabilization of the edge-sharing pentagonal prisms with respect to the dodecahedron, albeit they universally underestimate the cluster binding energies with respect to the MP2/CBS result. Among them, the TTM2-F potential was found to predict the absolute cluster binding energies to within < 1% from the corresponding MP2/CBS values, whereas the error for the rest of the potentials considered in this study ranges from 3-5%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarewicz, Jan, E-mail: jama@amu.edu.pl; Shirkov, Leonid
The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center ofmore » mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy D{sub e} of 392 cm{sup −1} is close to that of 387 cm{sup −1} calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, D{sub e} for PAr becomes slightly lower than D{sub e} for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, D.
A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)
Coordinating Resource Usage through Adaptive Service Provisioning in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Fok, Chien-Liang; Roman, Gruia-Catalin; Lu, Chenyang
Wireless sensor networks (WSNs) exhibit high levels of network dynamics and consist of devices with limited energy. This results in the need to coordinate applications not only at the functional level, as is traditionally done, but also in terms of resource utilization. In this paper, we present a middleware that does this using adaptive service provisioning. Novel service binding strategies automatically adapt application behavior when opportunities for energy savings surface, and switch providers when the network topology changes. The former is accomplished by providing limited information about the energy consumption associated with using various services, systematically exploiting opportunities for sharing service invocations, and exploiting the broadcast nature of wireless communication in WSNs. The middleware has been implemented and evaluated on two disparate WSN platforms, the TelosB and Imote2. Empirical results show that adaptive service provisioning can enable energy-aware service binding decisions that result in increased energy efficiency and significantly increase service availability, while imposing minimal additional burden on the application, service, and device developers. Two applications, medical patient monitoring and structural health monitoring, demonstrate the middleware's efficacy.
Quantifying Intrinsic Specificity: A Potential Complement to Affinity in Drug Screening
NASA Astrophysics Data System (ADS)
Wang, Jin; Zheng, Xiliang; Yang, Yongliang; Drueckhammer, Dale; Yang, Wei; Verkhivker, Gennardy; Wang, Erkang
2007-11-01
We report here the investigation of a novel description of specificity in protein-ligand binding based on energy landscape theory. We define a new term, intrinsic specificity ratio (ISR), which describes the level of discrimination in binding free energies of the native basin for a protein-ligand complex from the weaker binding states of the same ligand. We discuss the relationship between the intrinsic specificity we defined here and the conventional definition of specificity. In a docking study of molecules with the enzyme COX-2, we demonstrate a statistical correspondence between ISR value and geometrical shapes of the small molecules binding to COX-2. We further observe that the known selective (nonselective) inhibitors of COX-2 have higher (lower) ISR values. We suggest that intrinsic specificity ratio may be a useful new criterion and a complement to affinity in drug screening and in searching for potential drug lead compounds.
Insights on the Cuprate High Energy Anomaly Observed in ARPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moritz, Brian
2011-08-16
Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). The anomaly is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different energy scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA.more » Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the anomaly demarcates a transition, or cross-over, from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character.« less
NASA Astrophysics Data System (ADS)
Gatti, Matteo; Panaccione, Giancarlo; Reining, Lucia
2015-03-01
The effects of electron interaction on spectral properties can be understood in terms of coupling between excitations. In transition-metal oxides, the spectral function close to the Fermi level and low-energy excitations between d states have attracted particular attention. In this work we focus on photoemission spectra of vanadium dioxide over a wide (10 eV) range of binding energies. We show that there are clear signatures of the metal-insulator transition over the whole range due to a cross coupling of the delocalized s and p states with low-energy excitations between the localized d states. This coupling can be understood by advanced calculations based on many-body perturbation theory in the G W approximation. We also advocate the fact that tuning the photon energy up to the hard-x-ray range can help to distinguish fingerprints of correlation from pure band-structure effects.
Formation Energies of Native Point Defects in Strained layer Superlattices (Postprint)
2017-06-05
AFRL-RX-WP-JA-2017-0440 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi Gang Yu...2017 Interim 11 September 2013 – 31 May 2017 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...Hamiltonian, tight-binding Hamiltonian, and Green’s function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and
Faller, Christina E; Raman, E Prabhu; MacKerell, Alexander D; Guvench, Olgun
2015-01-01
Fragment-based drug design (FBDD) involves screening low molecular weight molecules ("fragments") that correspond to functional groups found in larger drug-like molecules to determine their binding to target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that bind nonoverlapping nearby sites on the target can be combined to yield a new molecule whose binding free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray crystallography, have proven very useful but can be expensive in terms of time, materials, and labor. Accordingly, a variety of computational FBDD approaches have been developed that provide different levels of detail and accuracy.The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The target is "soaked" in an aqueous solution with multiple fragments having different identities. The resulting computational competition assay reveals what small molecule types are most likely to bind which regions of the target. From SILCS simulations, 3D probability maps of fragment binding called "FragMaps" can be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine "Grid Free Energies (GFEs)," which provide per-atom contributions to fragment binding affinities. For essentially no additional computational overhead relative to the production of the FragMaps, GFEs can be used to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can be used to rank-order the molecules in accordance with binding affinities.
Elevated mitochondrial gene expression during rat liver regeneration after portal vein ligation.
Shimizu, Y; Suzuki, H; Nimura, Y; Onoue, S; Nagino, M; Tanaka, M; Ozawa, T
1995-10-01
We explored the molecular basis of mitochondrial energy production during rat liver regeneration after portal vein ligation. Ligation of the left branch of the portal vein induces an increase in the weight of the nonligated lobe, counterbalancing the reduced weight of the ligated lobe. Using this model, we investigated changes in mitochondrial DNA-binding proteins, mitochondrial DNA, and mitochondrial messenger RNA (mRNA) in rat hepatocytes of the nonligated lobes. The amount of mitochondrial DNA-binding protein increased maximally (200% to 300% of the preoperative level) at 12 hours after the operation, before an increase (390%) in mitochondrial DNA content at 24 hours, and parallel to an increase (240%) in mitochondrial mRNA levels at 12 hours. These results suggest that the energy supply for liver regeneration is achieved through enhancement of mitochondrial DNA replication as well as transcription, in which the mitochondrial DNA-binding proteins probably play regulatory roles. We also found that in the nonligated lobes, mRNA levels of hepatocyte growth factor increased to a detectable level only 12 hours after the operation. These molecular biochemical data help explain why preoperative portal vein embolization, which is a modification of portal vein branch ligation, is an effective method to prevent posthepatectomy liver failure.
NASA Astrophysics Data System (ADS)
Rosenfeld, Robin J.; Goodsell, David S.; Musah, Rabi A.; Morris, Garrett M.; Goodin, David B.; Olson, Arthur J.
2003-08-01
The W191G cavity of cytochrome c peroxidase is useful as a model system for introducing small molecule oxidation in an artificially created cavity. A set of small, cyclic, organic cations was previously shown to bind in the buried, solvent-filled pocket created by the W191G mutation. We docked these ligands and a set of non-binders in the W191G cavity using AutoDock 3.0. For the ligands, we compared docking predictions with experimentally determined binding energies and X-ray crystal structure complexes. For the ligands, predicted binding energies differed from measured values by ± 0.8 kcal/mol. For most ligands, the docking simulation clearly predicted a single binding mode that matched the crystallographic binding mode within 1.0 Å RMSD. For 2 ligands, where the docking procedure yielded an ambiguous result, solutions matching the crystallographic result could be obtained by including an additional crystallographically observed water molecule in the protein model. For the remaining 2 ligands, docking indicated multiple binding modes, consistent with the original electron density, suggesting disordered binding of these ligands. Visual inspection of the atomic affinity grid maps used in docking calculations revealed two patches of high affinity for hydrogen bond donating groups. Multiple solutions are predicted as these two sites compete for polar hydrogens in the ligand during the docking simulation. Ligands could be distinguished, to some extent, from non-binders using a combination of two trends: predicted binding energy and level of clustering. In summary, AutoDock 3.0 appears to be useful in predicting key structural and energetic features of ligand binding in the W191G cavity.
NASA Astrophysics Data System (ADS)
Tarakeshwar, P.; Kim, Kwang S.; Kraka, Elfi; Cremer, Dieter
2001-10-01
The van der Waals complexes benzene-argon (BAr), fluorobenzene-argon (FAr), p-difluorobenzene-argon (DAr) are investigated at the second-order Møller-Plesset (MP2) level of theory using the 6-31+G(d), cc-pVDZ, aug-cc-pVTZ, and [7s4p2d1f/4s3p1d/3s1p] basis sets. Geometries, binding energies, harmonic vibrational frequencies, and density distribution are calculated where basis set superposition errors are corrected with the counterpoise method. Binding energies turn out to be almost identical (MP2/[7s4p2d1f/4s3p1d/3s1p]: 408, 409, 408 cm-1) for BAr, FAr, and DAr. Vibrationally corrected binding energies (357, 351, 364 cm-1) agree well with experimental values (340, 344, and 339 cm-1). Symmetry adapted perturbation theory (SAPT) is used to decompose binding energies and to examine the influence of attractive and repulsive components. Fluorine substituents lead to a contraction of the π density of the benzene ring, thus reducing the destabilizing exchange-repulsion and exchange-induction effects. At the same time, both the polarizing power and the polarizability of the π-density of the benzene derivative decreases thus reducing stabilizing induction and dispersion interactions. Stabilizing and destabilizing interactions largely cancel each other out to give comparable binding energies. The equilibrium geometry of the Ar complex is also a result of the decisive influence of exchange-repulsion and dispersive interactions.
Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study.
Brown, Craig M; Liu, Yun; Yildirim, Taner; Peterson, Vanessa K; Kepert, Cameron J
2009-05-20
Hydrogen adsorption in high surface area nanoporous coordination polymers has attracted a great deal of interest in recent years due to the potential applications in energy storage. Here we present combined inelastic neutron scattering measurements and detailed first-principles calculations aimed at unraveling the nature of hydrogen adsorption in HKUST-1 (Cu3(1,3,5-benzenetricarboxylate)2), a metal-organic framework (MOF) with unsaturated metal centers. We reveal that, in this system, the major contribution to the overall binding comes from the classical Coulomb interaction which is not screened due to the open metal site; this explains the relatively high binding energies and short H2-metal distances observed in MOFs with exposed metal sites as compared to traditional ones. Despite the short distances, there is no indication of an elongation of the H-H bond for the bound H2 molecule at the metal site. We find that both the phonon and rotational energy levels of the hydrogen molecule are closely similar, making the interpretation of the inelastic neutron scattering data difficult. Finally, we show that the orientation of H2 has a surprisingly large effect on the binding potential, reducing the classical binding energy by almost 30%. The implication of these results for the development of MOF materials for better hydrogen storage is discussed.
Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study
NASA Astrophysics Data System (ADS)
Brown, Craig M.; Liu, Yun; Yildirim, Taner; Peterson, Vanessa K.; Kepert, Cameron J.
2009-05-01
Hydrogen adsorption in high surface area nanoporous coordination polymers has attracted a great deal of interest in recent years due to the potential applications in energy storage. Here we present combined inelastic neutron scattering measurements and detailed first-principles calculations aimed at unraveling the nature of hydrogen adsorption in HKUST-1 (Cu3(1,3,5-benzenetricarboxylate)2), a metal-organic framework (MOF) with unsaturated metal centers. We reveal that, in this system, the major contribution to the overall binding comes from the classical Coulomb interaction which is not screened due to the open metal site; this explains the relatively high binding energies and short H2-metal distances observed in MOFs with exposed metal sites as compared to traditional ones. Despite the short distances, there is no indication of an elongation of the H-H bond for the bound H2 molecule at the metal site. We find that both the phonon and rotational energy levels of the hydrogen molecule are closely similar, making the interpretation of the inelastic neutron scattering data difficult. Finally, we show that the orientation of H2 has a surprisingly large effect on the binding potential, reducing the classical binding energy by almost 30%. The implication of these results for the development of MOF materials for better hydrogen storage is discussed.
Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle
2015-06-09
Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges.
2016-01-01
Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges. PMID:26085821
Duan, Yuhua; Stinespring, Charter D.; Chorpening, Benjamin
2015-06-18
To better understand the effects of low-level fluorine in graphene-based sensors, first-principles density functional theory (DFT) with van der Waals dispersion interactions has been employed to investigate the structure and impact of fluorine defects on the electrical properties of single-layer graphene films. The results show that both graphite-2H and graphene have zero band gaps. When fluorine bonds to a carbon atom, the carbon atom is pulled slightly above the graphene plane, creating what is referred to as a CF defect. The lowest-binding energy state is found to correspond to two CF defects on nearest neighbor sites, with one fluorine abovemore » the carbon plane and the other below the plane. Overall this has the effect of buckling the graphene. The results further show that the addition of fluorine to graphene leads to the formation of an energy band (BF) near the Fermi level, contributed mainly from the 2p orbitals of fluorine with a small contribution from the porbitals of the carbon. Among the 11 binding configurations studied, our results show that only in two cases does the BF serve as a conduction band and open a band gap of 0.37 eV and 0.24 eV respectively. The binding energy decreases with decreasing fluorine concentration due to the interaction between neighboring fluorine atoms. The obtained results are useful for sensor development and nanoelectronics.« less
On the nature of the {SO2-4}/{Ag(111) } and {SO2-4}/{Au(111) } surface bonding
NASA Astrophysics Data System (ADS)
Patrito, E. M.; Olivera, P. Paredes; Sellers, Harrell
1997-05-01
The nature of sulfate-Ag(111) and sulfate-Au(111) surface bonding has been investigated at the SCF + MP2 level of theory. Convergence of binding energy with cluster size is investigated and, unlike neutral adsorbates, large clusters are required in order to obtain reliable binding energies. In the most stable adsorption mode, sulfate binds to the surface via three oxygen atoms (C 3v symmetry) with a binding energy of 159.3 kcal/mol on Ag(111) and 143.9 kcal/mol on Au(111). The geometry of adsorbed sulfate was optimized at the SCF level. While the bond length between sulfur and the oxygens coordinated to the surface increases, the sulfur-uncoordinated oxygen bond length decreases. This weakening and strengthening of the bonds, respectively, is consistent with bond order conservation in adsorbates on metal surfaces. Although a charge transfer of 0.4 electrons towards the metal is observed, the adsorbate remains very much sulfate-like. The molecular orbital analysis indicates that there is also some charge back-donation towards unoccupied orbitals of sulfate. This results in an increased electron density around sulfur as revealed in the electron density difference maps. Analysis of the Laplacian of the charge density of free sulfate provides a suitable framework to understand the nature of the different charge transfer processes and allows us to establish some similarities with the CO- and SO 2-metal bondings.
2011-01-01
Background The reliable and robust estimation of ligand binding affinity continues to be a challenge in drug design. Many current methods rely on molecular mechanics (MM) calculations which do not fully explain complex molecular interactions. Full quantum mechanical (QM) computation of the electronic state of protein-ligand complexes has recently become possible by the latest advances in the development of linear-scaling QM methods such as the ab initio fragment molecular orbital (FMO) method. This approximate molecular orbital method is sufficiently fast that it can be incorporated into the development cycle during structure-based drug design for the reliable estimation of ligand binding affinity. Additionally, the FMO method can be combined with approximations for entropy and solvation to make it applicable for binding affinity prediction for a broad range of target and chemotypes. Results We applied this method to examine the binding affinity for a series of published cyclin-dependent kinase 2 (CDK2) inhibitors. We calculated the binding affinity for 28 CDK2 inhibitors using the ab initio FMO method based on a number of X-ray crystal structures. The sum of the pair interaction energies (PIE) was calculated and used to explain the gas-phase enthalpic contribution to binding. The correlation of the ligand potencies to the protein-ligand interaction energies gained from FMO was examined and was seen to give a good correlation which outperformed three MM force field based scoring functions used to appoximate the free energy of binding. Although the FMO calculation allows for the enthalpic component of binding interactions to be understood at the quantum level, as it is an in vacuo single point calculation, the entropic component and solvation terms are neglected. For this reason a more accurate and predictive estimate for binding free energy was desired. Therefore, additional terms used to describe the protein-ligand interactions were then calculated to improve the correlation of the FMO derived values to experimental free energies of binding. These terms were used to account for the polar and non-polar solvation of the molecule estimated by the Poisson-Boltzmann equation and the solvent accessible surface area (SASA), respectively, as well as a correction term for ligand entropy. A quantitative structure-activity relationship (QSAR) model obtained by Partial Least Squares projection to latent structures (PLS) analysis of the ligand potencies and the calculated terms showed a strong correlation (r2 = 0.939, q2 = 0.896) for the 14 molecule test set which had a Pearson rank order correlation of 0.97. A training set of a further 14 molecules was well predicted (r2 = 0.842), and could be used to obtain meaningful estimations of the binding free energy. Conclusions Our results show that binding energies calculated with the FMO method correlate well with published data. Analysis of the terms used to derive the FMO energies adds greater understanding to the binding interactions than can be gained by MM methods. Combining this information with additional terms and creating a scaled model to describe the data results in more accurate predictions of ligand potencies than the absolute values obtained by FMO alone. PMID:21219630
NASA Astrophysics Data System (ADS)
Lindström, A.; Klintenberg, M.; Sanyal, B.; Mirbt, S.
2015-08-01
The coexistence in Te-rich CdTe of substitutional Cl-dopants, ClTe, which act as donors, and Cd vacancies, VC d - 1 , which act as electron traps, was studied from first principles utilising the HSE06 hybrid functional. We find ClTe to preferably bind to VC d - 1 and to form an acceptor complex, (ClTe-VCd)-1. The complex has a (0,-1) charge transfer level close to the valence band and shows no trap state (deep level) in the band gap. During the complex formation, the defect state of VCd-1 is annihilated and leaves the Cl-doped CdTe bandgap without any trap states (self-purification). We calculate Cl-doped CdTe to be semi-insulating with a Fermi energy close to midgap. We calculate the formation energy of the complex to be sufficiently low to allow for spontanous defect formation upon Cl-doping (self-compensation). In addition, we quantitatively analyse the geometries, DOS, binding energies and formation energies of the (ClTe-VCd) complexes.
Grasso, Gianvito; Deriu, Marco Agostino; Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea
2017-01-01
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.
Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea
2017-01-01
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine. PMID:29088239
Zou, Yunlong; Holmes, Russell J
2015-08-26
In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.
Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel
Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less
Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd
Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel; ...
2016-11-07
Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less
Bloomfield, Jolyon; Davies, Erin; Gatt, Phillip; Petrie, Simon
2006-01-26
High-level ab initio quantum chemical calculations, at the CP-dG2thaw level of theory, are reported for coordination of Na+ to a wide assortment of small organic and inorganic ligands. The ligands range in size from H to C6H6, and include 22 of the ligands for which precise relative sodium ion binding free energies have been determined by recent Fourier transform ion cyclotron resonance and guided ion beam studies. Agreement with the relative experimental values is excellent (+/-1.1 kJ mol(-1)), and agreement with the absolute scale (obtained when these relative values are pegged to the CH3NH2 "anchor" value measured in a high-pressure mass spectrometric study) is only marginally poorer, with CP-dG2thaw values exceeding the absolute experimental DeltaG(298) values by an average of 2.1 kJ mol(-1). The excellent agreement between experiment and the CP-dG2thaw technique also suggests that the additional 97 ligands surveyed here (which, in many cases, are not readily susceptible to laboratory investigation) can also be reliably fitted to the existing experimental scale. However, while CP-dG2thaw and the experimental ladder are in close accord, a small set of higher level ab initio calculations on sodium ion/ligand complexes (including several values obtained here using the W1 protocol) suggests that the CP-dG2thaw values are themselves too low by approximately 2.5 kJ mol(-1), thereby implying that the accepted laboratory values are typically 4.6 kJ mol(-1) too low. The present work also highlights the importance of Na+/ligand binding energy determinations (whether by experimental or theoretical approaches) on a case-by-case basis: trends in increasing binding energy along homologous series of compounds are not reliably predictable, nor are binding site preferences or chelating tendencies in polyfunctional compounds.
Neundlinger, Isabel; Puntheeranurak, Theeraporn; Wildling, Linda; Rankl, Christian; Wang, Lai-Xi; Gruber, Hermann J.; Kinne, Rolf K. H.; Hinterdorfer, Peter
2014-01-01
Single molecule force spectroscopy was employed to investigate the dynamics of the sodium glucose co-transporter (SGLT1) upon substrate and inhibitor binding on the single molecule level. CHO cells stably expressing rbSGLT1 were probed by using atomic force microscopy tips carrying either thioglucose, 2′-aminoethyl β-d-glucopyranoside, or aminophlorizin. Poly(ethylene glycol) (PEG) chains of different length and varying end groups were used as tether. Experiments were performed at 10, 25 and 37 °C to address different conformational states of SGLT1. Unbinding forces between ligands and SGLT1 were recorded at different loading rates by changing the retraction velocity, yielding binding probability, width of energy barrier of the binding pocket, and the kinetic off rate constant of the binding reaction. With increasing temperature, width of energy barrier and average life time increased for the interaction of SGLT1 with thioglucose (coupled via acrylamide to a long PEG) but decreased for aminophlorizin binding. The former indicates that in the membrane-bound SGLT1 the pathway to sugar translocation involves several steps with different temperature sensitivity. The latter suggests that also the aglucon binding sites for transport inhibitors have specific, temperature-sensitive conformations. PMID:24962566
Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors
2016-01-01
Available crystal structures of opioid receptors provide a high-resolution picture of ligand binding at the primary (“orthosteric”) site, that is, the site targeted by endogenous ligands. Recently, positive allosteric modulators of opioid receptors have also been discovered, but their modes of binding and action remain unknown. Here, we use a metadynamics-based strategy to efficiently sample the binding process of a recently discovered positive allosteric modulator of the δ-opioid receptor, BMS-986187, in the presence of the orthosteric agonist SNC-80, and with the receptor embedded in an explicit lipid–water environment. The dynamics of BMS-986187 were enhanced by biasing the potential acting on the ligand–receptor distance and ligand–receptor interaction contacts. Representative lowest-energy structures from the reconstructed free-energy landscape revealed two alternative ligand binding poses at an allosteric site delineated by transmembrane (TM) helices TM1, TM2, and TM7, with some participation of TM6. Mutations of amino acid residues at these proposed allosteric sites were found to either affect the binding of BMS-986187 or its ability to modulate the affinity and/or efficacy of SNC-80. Taken together, these combined experimental and computational studies provide the first atomic-level insight into the modulation of opioid receptor binding and signaling by allosteric modulators. PMID:26841170
Zou, Yi; Wang, Fang; Wang, Yan; Guo, Wenjie; Zhang, Yihua; Xu, Qiang; Lai, Yisheng
2017-05-05
Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as an attractive target for cancer immunotherapy. To rationalize the detailed interactions between IDO1 and its inhibitors at the atomic level, an integrated computational approach by combining molecular mechanics and quantum mechanics methods was employed in this report. Specifically, the binding modes of 20 inhibitors was initially investigated using the induced fit docking (IFD) protocol, which outperformed other two docking protocols in terms of correctly predicting ligand conformations. Secondly, molecular dynamics (MD) simulations and MM/PBSA free energy calculations were employed to determine the dynamic binding process and crucial residues were confirmed through close contact analysis, hydrogen-bond analysis and binding free energy decomposition calculations. Subsequent quantum mechanics and nonbonding interaction analysis were carried out to provide in-depth explanations on the critical role of those key residues, and Arg231 and 7-propionate of the heme group were major contributors to ligand binding, which lowed a great amount of interaction energy. We anticipate that these findings will be valuable for enzymatic studies and rational drug design. Copyright © 2017. Published by Elsevier Masson SAS.
Faller, Christina E.; Raman, E. Prabhu; MacKerell, Alexander D.; Guvench, Olgun
2015-01-01
Fragment-based drug design (FBDD) involves screening low molecular weight molecules (“fragments”) that correspond to functional groups found in larger drug-like molecules to determine their binding to target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that bind non-overlapping nearby sites on the target can be combined to yield a new molecule whose binding free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray crystallography, have proven very useful but can be expensive in terms of time, materials, and labor. Accordingly, a variety of computational FBDD approaches have been developed that provide different levels of detail and accuracy. The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The target is “soaked” in an aqueous solution with multiple fragments having different identities. The resulting computational competition assay reveals what small molecule types are most likely to bind which regions of the target. From SILCS simulations, 3D probability maps of fragment binding called “FragMaps” can be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine “Grid Free Energies (GFEs),” which provide per-atom contributions to fragment binding affinities. For essentially no additional computational overhead relative to the production of the FragMaps, GFEs can be used to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can be used to rank-order the molecules in accordance with binding affinities. PMID:25709034
NMR Studies of Protein Hydration and Protein-Ligand Interactions
NASA Astrophysics Data System (ADS)
Chong, Yuan
Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be facilitated by hydration. On the other hand, alcohols can bind to many nonspecific sites on the protein. In dry proteins, this type of binding only occurs above a threshold of alcohol vapor pressure. Such a threshold is gradually reduced by increasing the hydration level and can be removed above a critical hydration level. Hydration also shifts the nonspecific alcohol binding from an entropy-driven to an enthalpy-driven process. This dissertation reveals the mechanism of protein hydration and the detailed roles of hydration in ligand binding, with important implications for the understanding of protein functions.
Electronic structure evolution of fullerene on CH 3NH 3PbI 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chenggong; Wang, Congcong; Liu, Xiaoliang
2015-03-19
The thickness dependence of fullerene on CH 3NH 3PbI 3 perovskitefilm surface has been investigated by using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy(XPS), and inverse photoemission spectroscopy (IPES). The lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) can be observed directly with IPES and UPS. It is observed that the HOMO level in fullerene shifts to lower binding energy. The XPS results show a strong initial shift of core levels to lower binding energy in the perovskite, which indicates that electrons transfer from the perovskitefilm to fullerene molecules. Further deposition of fullerene forms C 60 solid, accompaniedmore » by the reduction of the electron transfer. As a result, the strongest electron transfer happened at 1/4 monolayer of fullerene.« less
Electronic structure evolution of fullerene on CH{sub 3}NH{sub 3}PbI{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chenggong; Wang, Congcong; Kauppi, John
2015-03-16
The thickness dependence of fullerene on CH{sub 3}NH{sub 3}PbI{sub 3} perovskite film surface has been investigated by using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), and inverse photoemission spectroscopy (IPES). The lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) can be observed directly with IPES and UPS. It is observed that the HOMO level in fullerene shifts to lower binding energy. The XPS results show a strong initial shift of core levels to lower binding energy in the perovskite, which indicates that electrons transfer from the perovskite film to fullerene molecules. Further deposition of fullerene forms C{submore » 60} solid, accompanied by the reduction of the electron transfer. The strongest electron transfer happened at 1/4 monolayer of fullerene.« less
NASA Astrophysics Data System (ADS)
Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin
2018-04-01
Within the framework of effective-mass envelope-function theory, the ground state binding energy of a hydrogenic donor impurity is calculated in the InGaAsP/InP concentric double quantum rings (CDQRs) using the plane wave method. The effects of geometry, impurity position, external electric field and alloy composition on binding energy are considered. It is shown that the peak value of the binding energy appears in two rings with large gap as the donor impurity moves along the radial direction. The binding energy reaches the peak value at the center of ring height when the donor impurity moves along the axial direction. The binding energy shows nonlinear variation with the increase of ring height. With the external electric field applied along the z-axis, the binding energy of the donor impurity located at zi ≥ 0 decreases while that located at zi < 0 increases. In addition, the binding energy decreases with increasing Ga composition, but increases with the increasing As composition.
First-principles study of Ti intercalation between graphene and Au surface
NASA Astrophysics Data System (ADS)
Kaneko, T.; Imamura, H.
2011-06-01
We investigate the effects of Ti intercalation between graphene and Au surface on binding energy and charge doping by using the first-principles calculations. We show that the largest binding energy is realized by the intercalation of single mono-layer of Ti. We also show that electronic structure is very sensitive to the arrangement of metal atoms at the interface. If the composition of the interface layer is Ti0.33Au0.67 and the Ti is located at the top site, the Fermi level lies closely at the Dirac point, i.e., the Dirac cone of the ideal free-standing graphene is recovered.
NASA Astrophysics Data System (ADS)
Khordad, R.
2010-03-01
The influence of temperature and pressure, simultaneously, on the binding energy of a hydrogenic donor impurity in a ridge GaAs/Ga 1- xAl xAs quantum wire is studied using a variational procedure within the effective mass approximation. The subband energy and the binding energy of the donor impurity in its ground state as a function of the wire bend width and impurity location at different temperatures and pressures are calculated. The results show that, when the temperature increases, the donor binding energy decreases for a constant applied pressure for all wire bend widths. Also, the binding energy increases by increasing the pressure for a constant temperature for all wire bend widths. In addition, when the temperature and pressure are applied simultaneously the binding energy decreases as the quantum wire bend width increases. On the whole, it is deduced that the temperature and pressure have important effects on the donor binding energy in a V-groove quantum wire.
Discrete structural features among interface residue-level classes.
Sowmya, Gopichandran; Ranganathan, Shoba
2015-01-01
Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs.
Discrete structural features among interface residue-level classes
2015-01-01
Background Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Results Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Conclusions Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs. PMID:26679043
Armentrout, P B; Yang, Bo; Rodgers, M T
2014-04-24
Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu < Asn < Gln.
Hepatic CREB3L3 controls whole-body energy homeostasis and improves obesity and diabetes.
Nakagawa, Yoshimi; Satoh, Aoi; Yabe, Sachiko; Furusawa, Mika; Tokushige, Naoko; Tezuka, Hitomi; Mikami, Motoki; Iwata, Wakiko; Shingyouchi, Akiko; Matsuzaka, Takashi; Kiwata, Shiori; Fujimoto, Yuri; Shimizu, Hidehisa; Danno, Hirosuke; Yamamoto, Takashi; Ishii, Kiyoaki; Karasawa, Tadayoshi; Takeuchi, Yoshinori; Iwasaki, Hitoshi; Shimada, Masako; Kawakami, Yasushi; Urayama, Osamu; Sone, Hirohito; Takekoshi, Kazuhiro; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi
2014-12-01
Transcriptional regulation of metabolic genes in the liver is the key to maintaining systemic energy homeostasis during starvation. The membrane-bound transcription factor cAMP-responsive element-binding protein 3-like 3 (CREB3L3) has been reported to be activated during fasting and to regulate triglyceride metabolism. Here, we show that CREB3L3 confers a wide spectrum of metabolic responses to starvation in vivo. Adenoviral and transgenic overexpression of nuclear CREB3L3 induced systemic lipolysis, hepatic ketogenesis, and insulin sensitivity with increased energy expenditure, leading to marked reduction in body weight, plasma lipid levels, and glucose levels. CREB3L3 overexpression activated gene expression levels and plasma levels of antidiabetic hormones, including fibroblast growth factor 21 and IGF-binding protein 2. Amelioration of diabetes by hepatic activation of CREB3L3 was also observed in several types of diabetic obese mice. Nuclear CREB3L3 mutually activates the peroxisome proliferator-activated receptor (PPAR) α promoter in an autoloop fashion and is crucial for the ligand transactivation of PPARα by interacting with its transcriptional regulator, peroxisome proliferator-activated receptor gamma coactivator-1α. CREB3L3 directly and indirectly controls fibroblast growth factor 21 expression and its plasma level, which contributes at least partially to the catabolic effects of CREB3L3 on systemic energy homeostasis in the entire body. Therefore, CREB3L3 is a therapeutic target for obesity and diabetes.
Li, Xian Liang; Man, Kwan; Ng, Kevin T; Lee, Terence K; Lo, Chung Mau; Fan, Sheung Tat
2004-09-01
Ischemia / reperfusion (I / R) injury is related to tissue graft energy status. Insulin, which is currently used in the University of Wisconsin (UW) preservation solution with insulin (UWI), is an anabolic hormone and was shown to exacerbate the hepatic I / R injury in our previous study. In this study, the energy status and regulation of metabolism genes by insulin were investigated in liver grafts preserved by UW solution. Insulin could significantly decrease adenosine triphosphate (ATP) level after 3 hours of preservation, as well as total adenine nucleotides (TANs) and energy charge (EC) levels. Energy regeneration deteriorated in the grafts preserved by insulin in terms of ATP and EC levels at 24 hours after transplantation. The insulin signal was transduced through the insulin receptor substrate-2 (IRS-2) pathway and the activity of IRS-2 was decreased gradually at the messenger ribonucleic acid (mRNA) level during cold preservation. Downstream targeting genes such as sterol regulatory element-binding protein-1c (SREBP-1c), glucokinase (GKC), and fatty acid synthase (FAS) genes, as well as phospho-glycogen synthase kinase-3beta (GSK-3beta) were activated and they showed the similar expression profiles during cold preservation. Lipoprotein metabolism was accelerated by insulin through upregulation of the activity of apolipoprotein C-III (Apo C-III) during cold preservation. The insulin-like growth factor-binding protein-1 pathway was inhibited during cold preservation. In conclusion, insulin in UW solution exacerbates hepatic I / R injury by energy depletion as the graft maintains its anabolic activity. The key enzyme activities of the energy-consuming process of glycogen and fatty acid synthesis as well as lipoprotein metabolism were accelerated by insulin through the IRS-2 / SREBP-1c pathway.
Thunyakitpisal, Pasutha; Ruangpornvisuti, Vithaya; Kengkwasing, Pattrawadee; Chokboribal, Jaroenporn; Sangvanich, Polkit
2017-04-01
Acemannan, an acetylated polymannose from Aloe vera, has immunomodulatory effects. We investigated whether acemannan induces IL-6 and -8 expression and NF-κB/DNA binding in human gingival fibroblasts. IL-6 and -8 expression levels were assessed via RT-PCR and ELISA. The NF-κB p50/p65-DNA binding was determined. The structures of acemannan mono-pentamers and Toll-like receptor 5 (TLR5) were simulated. The binding energies between acemannan and TLR5 were identified. We found that acemannan significantly stimulated IL-6/-8 expression at both the mRNA and protein level and significantly increased p50/DNA binding. Preincubation with an anti-TLR5 neutralizing antibody abolished acemannan-induced IL-6/-8 expression and p50/DNA binding, and co-incubation of acemannan with Bay11-7082, a specific NF- κB inhibitor, abolished IL-6/-8 expression. The computer modeling indicated that monomeric/dimeric single stranded acemannan molecules interacted with the TLR5 flagellin recognition sites with a high binding affinity. We conclude that acemannan induces IL-6/-8 expression, and p50/DNA binding in gingival fibroblasts, at least partly, via a TLR5/NF-κB-dependent signaling pathway. Furthermore, acemannan selectively binds with TLR5 ectodomain flagellin recognition sites. Copyright © 2017 Elsevier Ltd. All rights reserved.
Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Lionta, Evanthia; Heil, Jochen; Kast, Stefan M
2017-07-24
Water molecules play an essential role for mediating interactions between ligands and protein binding sites. Displacement of specific water molecules can favorably modulate the free energy of binding of protein-ligand complexes. Here, the nature of water interactions in protein binding sites is investigated by 3D RISM (three-dimensional reference interaction site model) integral equation theory to understand and exploit local thermodynamic features of water molecules by ranking their possible displacement in structure-based design. Unlike molecular dynamics-based approaches, 3D RISM theory allows for fast and noise-free calculations using the same detailed level of solute-solvent interaction description. Here we correlate molecular water entities instead of mere site density maxima with local contributions to the solvation free energy using novel algorithms. Distinct water molecules and hydration sites are investigated in multiple protein-ligand X-ray structures, namely streptavidin, factor Xa, and factor VIIa, based on 3D RISM-derived free energy density fields. Our approach allows the semiquantitative assessment of whether a given structural water molecule can potentially be targeted for replacement in structure-based design. Finally, PLS-based regression models from free energy density fields used within a 3D-QSAR approach (CARMa - comparative analysis of 3D RISM Maps) are shown to be able to extract relevant information for the interpretation of structure-activity relationship (SAR) trends, as demonstrated for a series of serine protease inhibitors.
Nose, Holliness; Chen, Yu; Rodgers, M T
2013-05-23
The third sequential binding energies of the late first-row divalent transition metal cations to 1,10-phenanthroline (Phen) are determined by energy-resolved collision-induced dissociation (CID) techniques using a guided ion beam tandem mass spectrometer. Five late first-row transition metal cations in their +2 oxidation states are examined including: Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). The kinetic energy dependent CID cross sections for loss of an intact Phen ligand from the M(2+)(Phen)3 complexes are modeled to obtain 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of the internal energy of the complexes, multiple ion-neutral collisions, and unimolecular decay rates. Electronic structure theory calculations at the B3LYP, BHandHLYP, and M06 levels of theory are employed to determine the structures and theoretical estimates for the first, second, and third sequential BDEs of the M(2+)(Phen)x complexes. B3LYP was found to deliver results that are most consistent with the measured values. Periodic trends in the binding of these complexes are examined and compared to the analogous complexes to the late first-row monovalent transition metal cations, Co(+), Ni(+), Cu(+), and Zn(+), previously investigated.
Ligand selectivity of estrogen receptors by a molecular dynamics study.
Hu, Guodong; Wang, Jihua
2014-03-03
Estrogen receptors α (ERα) and β (ERβ) have different physiological functions and expression levels in different tissues. ERα and ERβ are highly homologous and have only two residue substitutions in the binding pocket. This high similarity at the active site stimulates the interests for discovering subtype selective ligands. In this study, molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method have been carried out to analyze the basis of selectivity of three ligands (659, 818 and 041). The calculated binding free energies show that all the ligands bind more tightly to ERβ than to ERα. The dominant free energy components of selectivity for 659 are similar to that for 041, but different from that for 818. The decompositions of free energy contributions and structural analysis imply that there are eight residues primarily contributing to the selectivity for 659, five residues for 041, as well as two residues for 818. The structural analysis implies that two residue substitutions in binding packet cause the position of 659 in ERβ-659 complex to shift relative to that in ERα-659 complex and also cause the conformational changes of other residues in the binding pocket. The higher selectivity for 041 is mainly caused by three residues, Ile373 (Met421), His475 (His524) and Leu476 (Leu525). Copyright © 2013. Published by Elsevier Masson SAS.
Deng, Nanjie; Cui, Di; Zhang, Bin W; Xia, Junchao; Cruz, Jeffrey; Levy, Ronald
2018-06-13
Accurately predicting absolute binding free energies of protein-ligand complexes is important as a fundamental problem in both computational biophysics and pharmaceutical discovery. Calculating binding free energies for charged ligands is generally considered to be challenging because of the strong electrostatic interactions between the ligand and its environment in aqueous solution. In this work, we compare the performance of the potential of mean force (PMF) method and the double decoupling method (DDM) for computing absolute binding free energies for charged ligands. We first clarify an unresolved issue concerning the explicit use of the binding site volume to define the complexed state in DDM together with the use of harmonic restraints. We also provide an alternative derivation for the formula for absolute binding free energy using the PMF approach. We use these formulas to compute the binding free energy of charged ligands at an allosteric site of HIV-1 integrase, which has emerged in recent years as a promising target for developing antiviral therapy. As compared with the experimental results, the absolute binding free energies obtained by using the PMF approach show unsigned errors of 1.5-3.4 kcal mol-1, which are somewhat better than the results from DDM (unsigned errors of 1.6-4.3 kcal mol-1) using the same amount of CPU time. According to the DDM decomposition of the binding free energy, the ligand binding appears to be dominated by nonpolar interactions despite the presence of very large and favorable intermolecular ligand-receptor electrostatic interactions, which are almost completely cancelled out by the equally large free energy cost of desolvation of the charged moiety of the ligands in solution. We discuss the relative strengths of computing absolute binding free energies using the alchemical and physical pathway methods.
Alcohol-Binding Sites in Distinct Brain Proteins: The Quest for Atomic Level Resolution
Howard, Rebecca J.; Slesinger, Paul A.; Davies, Daryl L.; Das, Joydip; Trudell, James R.; Harris, R. Adron
2011-01-01
Defining the sites of action of ethanol on brain proteins is a major prerequisite to understanding the molecular pharmacology of this drug. The main barrier to reaching an atomic-level understanding of alcohol action is the low potency of alcohols, ethanol in particular, which is a reflection of transient, low-affinity interactions with their targets. These mechanisms are difficult or impossible to study with traditional techniques such as radioligand binding or spectroscopy. However, there has been considerable recent progress in combining X-ray crystallography, structural modeling, and site-directed mutagenesis to define the sites and mechanisms of action of ethanol and related alcohols on key brain proteins. We review such insights for several diverse classes of proteins including inwardly rectifying potassium, transient receptor potential, and neurotransmit-ter-gated ion channels, as well as protein kinase C epsilon. Some common themes are beginning to emerge from these proteins, including hydrogen bonding of the hydroxyl group and van der Waals interactions of the methylene groups of ethanol with specific amino acid residues. The resulting binding energy is proposed to facilitate or stabilize low-energy state transitions in the bound proteins, allowing ethanol to act as a “molecular lubricant” for protein function. We discuss evidence for characteristic, discrete alcohol-binding sites on protein targets, as well as evidence that binding to some proteins is better characterized by an interaction region that can accommodate multiple molecules of ethanol. PMID:21676006
Cui, Di; Zhang, Bin W; Matubayasi, Nobuyuki; Levy, Ronald M
2018-02-13
Classical density functional theory (DFT) can be used to relate the thermodynamic properties of solutions to the indirect solvent mediated part of the solute-solvent potential of mean force (PMF). Standard, but powerful numerical methods can be used to estimate the solute-solvent PMF from which the indirect part can be extracted. In this work we show how knowledge of the direct and indirect parts of the solute-solvent PMF for water at the interface of a protein receptor can be used to gain insights about how to design tighter binding ligands. As we show, the indirect part of the solute-solvent PMF is equal to the sum of the 1-body (energy + entropy) terms in the inhomogeneous solvation theory (IST) expansion of the solvation free energy. To illustrate the effect of displacing interfacial water molecules with particular direct/indirect PMF signatures on the binding of ligands, we carry out simulations of protein binding with several pairs of congeneric ligands. We show that interfacial water locations that contribute favorably or unfavorably at the 1-body level (energy + entropy) to the solvation free energy of the solute can be targeted as part of the ligand design process. Water locations where the indirect PMF is larger in magnitude provide better targets for displacement when adding a functional group to a ligand core.
Zhang, Yuxin; Huang, Xiaoqin; Han, Keli; Zheng, Fang; Zhan, Chang-Guo
2016-11-25
The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profile of the CocE)-(+)-cocaine binding process in comparison with that of the corresponding CocE-(-)-cocaine binding process. According to the MD simulations, the equilibrium CocE-(+)-cocaine binding mode is similar to the CocE-(-)-cocaine binding mode. However, based on the simulated free energy profiles, a significant free energy barrier (∼5 kcal/mol) exists in the CocE-(+)-cocaine binding process whereas no obvious free energy barrier exists in the CocE-(-)-cocaine binding process, although the free energy barrier of ∼5 kcal/mol is not high enough to really slow down the CocE-(+)-cocaine binding process. In addition, the obtained free energy profiles also demonstrate that (+)-cocaine and (-)-cocaine have very close binding free energies with CocE, with a negligible difference (∼0.2 kcal/mol), which is qualitatively consistent with the nearly same experimental K M values of the CocE enzyme for (+)-cocaine and (-)-cocaine. The consistency between the computational results and available experimental data suggests that the mechanistic insights obtained from this study are reasonable. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Christensen, Anders S.; Kromann, Jimmy C.; Jensen, Jan H.; Cui, Qiang
2017-10-01
To facilitate further development of approximate quantum mechanical methods for condensed phase applications, we present a new benchmark dataset of intermolecular interaction energies in the solution phase for a set of 15 dimers, each containing one charged monomer. The reference interaction energy in solution is computed via a thermodynamic cycle that integrates dimer binding energy in the gas phase at the coupled cluster level and solute-solvent interaction with density functional theory; the estimated uncertainty of such calculated interaction energy is ±1.5 kcal/mol. The dataset is used to benchmark the performance of a set of semi-empirical quantum mechanical (SQM) methods that include DFTB3-D3, DFTB3/CPE-D3, OM2-D3, PM6-D3, PM6-D3H+, and PM7 as well as the HF-3c method. We find that while all tested SQM methods tend to underestimate binding energies in the gas phase with a root-mean-squared error (RMSE) of 2-5 kcal/mol, they overestimate binding energies in the solution phase with an RMSE of 3-4 kcal/mol, with the exception of DFTB3/CPE-D3 and OM2-D3, for which the systematic deviation is less pronounced. In addition, we find that HF-3c systematically overestimates binding energies in both gas and solution phases. As most approximate QM methods are parametrized and evaluated using data measured or calculated in the gas phase, the dataset represents an important first step toward calibrating QM based methods for application in the condensed phase where polarization and exchange repulsion need to be treated in a balanced fashion.
NASA Astrophysics Data System (ADS)
Feng, Tingting; Zhang, Yanjun; Ding, Jing-Na; Fan, Song; Han, Ju-Guang
2015-12-01
Macrolide biosensor protein MphR(A) has been known as a key regulatory protein in metabolite sensing and genetic expression regulating. MphR(A) protein binds to macrolide antibiotic erythromycin (Ery) and releases the gene operon, thus activates expression of the mphA gene and initiates Ery resistance. The two mutant amino acid residues (V66L and V126L) might potentially disrupt Ery binding to MphR(A). In these studies, the binding of macrolide antibiotic Ery to wild type (Wt) MphR(A) and double mutant (V66L/V126L) MphR(A) are explored by molecular dynamics simulations. Compared to the Apo-MphR(A) protein and Wt-MphR(A)-Ery complex, many interesting effects owing to the double mutant (V66L/V126L) are discovered. In the case of Ery, Helix I which plays an important role in transcription shows itself a right-hand α helix in Wt-MphR(A)-Ery, whereas the activated helix is broken down in double mutant-V66L/V126L-MphR(A)-Ery. The calculated results exhibit that the double mutant V66L/V126L reduces the binding affinity of the V66L/V126L-MphR(A) to Ery, resulting in the block of Ery resistance. The binding free energy decomposition analysis reveals that the decrease of the binding affinity for the variant V66L/V126L-MphR(A)-Ery is mainly attributed to the gas phase electrostatic energies. The residue Leu66, Thr154, and Arg122 enhance the binding affinity of V66L/V126L-MphR(A) to Ery. The residues Tyr103 and His147 contributes mainly to binding energies in the Wt-MphR(A)-Ery complex, whereas the two residues have no contribution to the binding free energy inV66L/V126L-MphR(A)-Ery complex. Our study gives useful insights into the nature of amino acids mutation effect, the mechanism of blocking drug resistance at the atomic level and the characteristics in binding affinity for Ery to double mutant (V66L/V126L) MphR(A), which will contribute to the design of more effective macrolide antibiotics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallory, Joel D.; Mandelshtam, Vladimir A.
2015-10-14
The diffusion Monte Carlo (DMC) method is applied to compute the ground state energies of the water monomer and dimer and their D{sub 2}O isotopomers using MB-pol; the most recent and most accurate ab inito-based potential energy surface (PES). MB-pol has already demonstrated excellent agreement with high level electronic structure data, as well as agreement with some experimental, spectroscopic, and thermodynamic data. Here, the DMC binding energies of (H{sub 2}O){sub 2} and (D{sub 2}O){sub 2} agree with the corresponding values obtained from velocity map imaging within, respectively, 0.01 and 0.02 kcal/mol. This work adds two more valuable data points thatmore » highlight the accuracy of the MB-pol PES.« less
Substrate effect on the growth of Sn thin films
NASA Astrophysics Data System (ADS)
Chakraborty, Suvankar; Menon, Krishnakumar S. R.
2018-05-01
Growth of tin (Sn) on Ag(001), Ag(111) and W(110) substrate has been studied at elevated temperatures (473 K) using x-ray photoemission spectroscopy (XPS) and low energy electron diffraction (LEED). For Sn growth on silver substrates, it is noticed that both Sn 3d and Ag 3d core-level spectra shift in the higher binding energy direction due to the formation of surface alloy with the substrate. In both cases, surface alloy finally transforms into bulk alloy finally reaching bulk Sn value. For Sn growth on W(110) only Sn 3d core-level spectra shift in the higher binding energy direction due to surface core-level effect whereas no shift for tungsten core-level was noticed confirming no alloy formation. Sn is incorporated into the surface of substrate silver layer by removing every alternate or every third silver atoms to relieve the surface tensile stress as confirmed by LEED. On the other hand, tungsten being hard, Sn forms an overlayer structure by sitting in different energetically available positions rather than forming an alloy as energetically also it is not possible. Sn forms alloy with soft substrate silver and form overlayer films with tungsten. These studies are important in understanding the growth mechanism of Sn films on metal substrates.
Binding Energy of Quantum Bound States in X-shaped Nanowire Intersection
2014-01-01
α0)〉 = 3~2 mb2 ( 2α0 + 2 11 ) = 6~2 mb2 ( α0 + 1 11 ) = 1.058 ~2 ma2 ∆2 (111) The threshold energy is found to be Et = π2~2 2mw2 (112) Since the...energy (Eb) of the electron taking the threshold energy as zero level is given by Eb = −Emin = −1.058 ~2 ma2 ∆2 = −4.232 ~ 2 mw2 cos2(θ1 − θ2
Rangl, Martina; Leitner, Michael; Riihimäki, Tiina; Lehtonen, Soili; Hytönen, Vesa P; Gruber, Hermann J; Kulomaa, Markku; Hinterdorfer, Peter; Ebner, Andreas
2014-02-01
Molecular recognition force spectroscopy, a biosensing atomic force microscopy technique allows to characterise the dissociation of ligand-receptor complexes at the molecular level. Here, we used molecular recognition force spectroscopy to study the binding capability of recently developed testosterone binders. The two avidin-based proteins called sbAvd-1 and sbAvd-2 are expected to bind both testosterone and biotin but differ in their binding behaviour towards these ligands. To explore the ligand binding and dissociation energy landscape of these proteins, we tethered biotin or testosterone to the atomic force microscopy probe while the testosterone-binding protein was immobilized on the surface. Repeated formation and rupture of the ligand-receptor complex at different pulling velocities allowed determination of the loading rate dependence of the complex-rupturing force. In this way, we obtained the molecular dissociation rate (k(off)) and energy landscape distances (x(β)) of the four possible complexes: sbAvd-1-biotin, sbAvd-1-testosterone, sbAvd-2-biotin and sbAvd-2-testosterone. It was found that the kinetic off-rates for both proteins and both ligands are similar. In contrast, the x(β) values, as well as the probability of complex formations, varied considerably. In addition, competitive binding experiments with biotin and testosterone in solution differ significantly for the two testosterone-binding proteins, implying a decreased cross-reactivity of sbAvd-2. Unravelling the binding behaviour of the investigated testosterone-binding proteins is expected to improve their usability for possible sensing applications. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sarkar, Supratik; Sarkar, Samrat; Bose, Chayanika
2018-07-01
We present a general formulation of the ground state binding energy of a shallow hydrogenic impurity in spherical quantum dot with parabolic confinement, considering the effects of polarization and self energy. The variational approach within the effective mass approximation is employed here. The binding energy of an on-center impurity is computed for a GaAs/AlxGa1-xAs quantum dot as a function of the dot size with the dot barrier as parameter. The influence of polarization and self energy are also treated separately. Results indicate that the binding energy increases due to the presence of polarization charge, while decreases due to the self energy of the carrier. An overall enhancement in impurity binding energy, especially for small dots is noted.
Universal binding energy relations in metallic adhesion
NASA Technical Reports Server (NTRS)
Ferrante, J.; Smith, J. R.; Rose, J. H.
1981-01-01
Scaling relations which map metallic adhesive binding energy onto a single universal binding energy curve are discussed in relation to adhesion, friction, and wear in metals. The scaling involved normalizing the energy to the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. The universal curve was found to be accurately represented by E*(A*)= -(1+beta A) exp (-Beta A*) where E* is the normalized binding energy, A* is the normalized separation, and beta is the normalized decay constant. The calculated cohesive energies of potassium, barium, copper, molybdenum, and samarium were also found to scale by similar relations, suggesting that the universal relation may be more general than for the simple free electron metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atuchin, V.V.; Kesler, V.G.; Sapozhnikov, V.K.
2008-09-15
The electronic structure of BaBe{sub 2}Si{sub 2}O{sub 7}, clinobarylite, has been investigated by means of X-ray photoelectron spectroscopy (XPS). The valence band of the crystal is mainly formed by Ba 5p, Ba 3s and O 2s states. At higher binding energies the emission lines related to the Si 2p, Be 1s, Si 2s, O 1s and numerous Ba-related states were analyzed in the photoemission spectrum. The Si KLL Auger line has been measured under excitation by the bremsstrahlung X-rays from the Al anode. Chemical bonding effects for Be 1s core level have been considered by comparison with electronic parameters measuredmore » for other beryllium containing oxides.« less
Energetics of drug-DNA interactions.
Chaires, J B
1997-01-01
Understanding the thermodynamics of drug binding to DNA is of both practical and fundamental interest. The practical interest lies in the contribution that thermodynamics can make to the rational design process for the development of new DNA targeted drugs. Thermodynamics offer key insights into the molecular forces that drive complex formation that cannot be obtained by structural or computational studies alone. The fundamental interest in these interactions lies in what they can reveal about the general problems of parsing and predicting ligand binding free energies. For these problems, drug-DNA interactions offer several distinct advantages, among them being that the structures of many drug-DNA complexes are known at high resolution and that such structures reveal that in many cases the drug acts as a rigid body, with little conformational change upon binding. Complete thermodynamic profiles (delta G, delta H, delta S, delta Cp) for numerous drug-DNA interactions have been obtained, with the help of high-sensitivity microcalorimetry. The purpose of this article is to offer a perspective on the interpretation of these thermodynamics parameters, and in particular how they might be correlated with known structural features. Obligatory conformational changes in the DNA to accommodate intercalators and the loss of translational and rotational freedom upon complex formation both present unfavorable free energy barriers for binding. Such barriers must be overcome by favorable free energy contributions from the hydrophobic transfer of ligand from solution into the binding site, polyelectrolyte contributions from coupled ion release, and molecular interactions (hydrogen and ionic bonds, van der Waals interactions) that form within the binding site. Theoretical and semiempirical tools that allow estimates of these contributions to be made will be discussed, and their use in dissecting experimental data illustrated. This process, even at the current level of approximation, can shed considerable light on the drug-DNA binding process.
Twisting a β-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection*
Sobotka, Roman; Kish, Elizabeth; Shukla, Mahendra Kumar; Pascal, Andrew A.; Polívka, Tomáš; Robert, Bruno
2017-01-01
Cyanobacteria possess a family of one-helix high light-inducible proteins (Hlips) that are homologous to light-harvesting antenna of plants and algae. An Hlip protein, high light-inducible protein D (HliD) purified as a small complex with the Ycf39 protein is evaluated using resonance Raman spectroscopy. We show that the HliD binds two different β-carotenes, each present in two non-equivalent binding pockets with different conformations, having their (0,0) absorption maxima at 489 and 522 nm, respectively. Both populations of β-carotene molecules were in all-trans configuration and the absorption position of the farthest blue-shifted β-carotene was attributed entirely to the polarizability of the environment in its binding pocket. In contrast, the absorption maximum of the red-shifted β-carotene was attributed to two different factors: the polarizability of the environment in its binding pocket and, more importantly, to the conformation of its β-rings. This second β-carotene has highly twisted β-rings adopting a flat conformation, which implies that the effective conjugation length N is extended up to 10.5 modifying the energetic levels. This increase in N will also result in a lower S1 energy state, which may provide a permanent energy dissipation channel. Analysis of the carbonyl stretching region for chlorophyll a excitations indicates that the HliD binds six chlorophyll a molecules in five non-equivalent binding sites, with at least one chlorophyll a presenting a slight distortion to its macrocycle. The binding modes and conformations of HliD-bound pigments are discussed with respect to the known structures of LHCII and CP29. PMID:27994060
Duan, Juan; Hu, Chuncai; Guo, Jiafan; Guo, Lianxian; Sun, Jia; Zhao, Zuguo
2018-02-28
The mechanism of substrate hydrolysis of New Delhi metallo-β-lactamase 1 (NDM-1) has been reported, but the process in which NDM-1 captures and transports the substrate into its active center remains unknown. In this study, we investigated the process of the substrate entry into the NDM-1 activity center through long unguided molecular dynamics simulations using meropenem as the substrate. A total of 550 individual simulations were performed, each of which for 200 ns, and 110 of them showed enzyme-substrate binding events. The results reveal three categories of relatively persistent and noteworthy enzyme-substrate binding configurations, which we call configurations A, B, and C. We performed binding free energy calculations of the enzyme-substrate complexes of different configurations using the molecular mechanics Poisson-Boltzmann surface area method. The role of each residue of the active site in binding the substrate was investigated using energy decomposition analysis. The simulated trajectories provide a continuous atomic-level view of the entire binding process, revealing potentially valuable regions where the enzyme and the substrate interact persistently and five possible pathways of the substrate entering into the active center, which were validated using well-tempered metadynamics. These findings provide important insights into the binding mechanism of meropenem to NDM-1, which may provide new prospects for the design of novel metallo-β-lactamase inhibitors and enzyme-resistant antibiotics.
Sprenger, K G; Prakash, Arushi; Drobny, Gary; Pfaendtner, Jim
2018-01-23
Biomimetic silica formation, a process that is largely driven by proteins, has garnered considerable interest in recent years due to its role in the development of new biotechnologies. However, much remains unknown of the molecular-scale mechanisms underlying the binding of proteins to biomineral surfaces such as silica, or even of the key residue-level interactions between such proteins and surfaces. In this study, we employ molecular dynamics (MD) simulations to study the binding of R5-a 19-residue segment of a native silaffin peptide used for in vitro silica formation-to a silica surface. The metadynamics enhanced sampling method is used to converge the binding behavior of R5 on silica at both neutral (pH 7.5) and acidic (pH 5) conditions. The results show fundamental differences in the mechanism of binding between the two cases, providing unique insight into the pH-dependent ability of R5 and native silaffin to precipitate silica. We also study the effect of phosphorylation of serine residues in R5 on both the binding free energy to silica and the interfacial conformation of the peptide. Results indicate that phosphorylation drastically decreases the binding free energy and changes the structure of silica-adsorbed R5 through the introduction of charge and steric repulsion. New mechanistic insights from this work could inform rational design of new biomaterials and biotechnologies.
Energy levels of a scalar particle in a static gravitational field close to the black hole limit
NASA Astrophysics Data System (ADS)
Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.
2011-10-01
The bound-state energy levels of a scalar particle in the gravitational field of finite-sized objects with interiors described by the Florides and Schwarzschild metrics are found. For these metrics, bound states with zero energy (where the binding energy is equal to the rest mass of the scalar particle) only exist when a singularity occurs in the metric. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides metric the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the center. Moreover, the energy spectrum is shown to become quasi-continuous as the metric becomes singular.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miliordos, Evangelos; Xantheas, Sotiris S.
2015-06-21
We report MP2 and CCSD(T) binding energies with basis sets up to pentuple zeta quality for the m = 2-6, 8 clusters. Or best CCSD(T)/CBS estimates are -4.99 kcal/mol (dimer), -15.77 kcal/mol (trimer), -27.39 kcal/mol (tetramer), -35.9 ± 0.3 kcal/mol (pentamer), -46.2 ± 0.3 kcal/mol (prism hexamer), -45.9 ± 0.3 kcal/mol (cage hexamer), -45.4 ± 0.3 kcal/mol (book hexamer), -44.3 ± 0.3 kcal/mol (ring hexamer), -73.0 ± 0.5 kcal/mol (D 2d octamer) and -72.9 ± 0.5 kcal/mol (S4 octamer). We have found that the percentage of both the uncorrected (dimer) and BSSE-corrected (dimer CP e) binding energies recovered with respectmore » to the CBS limit falls into a narrow range for each basis set for all clusters and in addition this range was found to decrease upon increasing the basis set. Relatively accurate estimates (within < 0.5%) of the CBS limits can be obtained when using the “ 2/3, 1/3” (for the AVDZ set) or the “½ , ½” (for the AVTZ, AVQZ and AV5Z sets) mixing ratio between dimer e and dimer CPe. Based on those findings we propose an accurate and efficient computational protocol that can be used to estimate accurate binding energies of clusters at the MP2 (for up to 100 molecules) and CCSD(T) (for up to 30 molecules) levels of theory. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multi program national laboratory operated for DOE by Battelle. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. AC02-05CH11231.« less
Coletti, Cecilia; Re, Nazzareno
2009-02-26
High level ab initio calculations were performed on the interaction of halide anions (F(-), Cl(-), Br(-), and I(-)) to benzene. For these systems recent experimental and theoretical data are rather scarce, in spite of their growingly acknowledged importance for binding in complex biological systems. We have thus explored the complete basis set limit and the effect of counterpoise basis set superposition error corrections on the minimum geometries and energies of benzene-halide adducts in their possible interaction modes. The binding energy and enthalpy values (ranging from -15.3 kcal/mol for fluoride to -6.1 kcal/mol for iodide) show that the hydrogen bonding occurring in these complexes cannot be described as a weak interaction. We have furthermore investigated the topology of the minima and of other selected sections of the potential energy surface, so to gain further insight on the nature of the halide-benzene interaction. In particular, the geometry corresponding to the C(6v) symmetry, although being overall repulsive, has displayed the unprecedented presence of a small flex (a minimum in C(6v) symmetry) with interaction energy close to zero or slightly attractive.
Noncovalent Interactions of DNA Bases with Naphthalene and Graphene.
Cho, Yeonchoo; Min, Seung Kyu; Yun, Jeonghun; Kim, Woo Youn; Tkatchenko, Alexandre; Kim, Kwang S
2013-04-09
The complexes of a DNA base bound to graphitic systems are studied. Considering naphthalene as the simplest graphitic system, DNA base-naphthalene complexes are scrutinized at high levels of ab initio theory including coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] at the complete basis set (CBS) limit. The stacked configurations are the most stable, where the CCSD(T)/CBS binding energies of guanine, adenine, thymine, and cytosine are 9.31, 8.48, 8.53, 7.30 kcal/mol, respectively. The energy components are investigated using symmetry-adapted perturbation theory based on density functional theory including the dispersion energy. We compared the CCSD(T)/CBS results with several density functional methods applicable to periodic systems. Considering accuracy and availability, the optB86b nonlocal functional and the Tkatchenko-Scheffler functional are used to study the binding energies of nucleobases on graphene. The predicted values are 18-24 kcal/mol, though many-body effects on screening and energy need to be further considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolmann, Stephen J.; D'Arcy, Jordan H.; Jordan, Meredith J. T., E-mail: m.jordan@chem.usyd.edu.au
Quantum and anharmonic effects are investigated in H{sub 2}-Li{sup +}-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H{sub 2} binding enthalpy estimates, ΔH{sub bind} (0 K), being 16.5 kJ mol{sup −1} and 12.4 kJ mol{sup −1}, respectively: 0.1 and 0.6more » kJ mol{sup −1} higher than harmonic values. Zero-point energy effects are 35% of the value of ΔH{sub bind} (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔH{sub bind} (0 K) by at least 6 kJ mol{sup −1}. Harmonic intermolecular binding enthalpies can be corrected by treating the H{sub 2} “helicopter” and “ferris wheel” rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H{sub 2} molecule is delocalized above the Li{sup +}-benzene system at 0 K.« less
NASA Astrophysics Data System (ADS)
Gelzinis, Andrius; Valkunas, Leonas; Fuller, Franklin D.; Ogilvie, Jennifer P.; Mukamel, Shaul; Abramavicius, Darius
2013-07-01
We propose an optimized tight-binding electron-hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments.
McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco
2015-01-01
Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567
Bello, Martiniano
2014-10-01
The bovine dairy protein β-lactoglobulin (βlg) is a promiscuous protein that has the ability to bind several hydrophobic ligands. In this study, based on known experimental data, the dynamic interaction mechanism between bovine βlg and four fatty acids was investigated by a protocol combining molecular dynamics (MD) simulations and molecular mechanics generalized Born surface area (MMGBSA) binding free energy calculations. Energetic analyses revealed binding free energy trends that corroborated known experimental findings; larger ligand size corresponded to greater binding affinity. Finally, binding free energy decomposition provided detailed information about the key residues stabilizing the complex. © 2014 Wiley Periodicals, Inc.
A Prediction Method of Binding Free Energy of Protein and Ligand
NASA Astrophysics Data System (ADS)
Yang, Kun; Wang, Xicheng
2010-05-01
Predicting the binding free energy is an important problem in bimolecular simulation. Such prediction would be great benefit in understanding protein functions, and may be useful for computational prediction of ligand binding strengths, e.g., in discovering pharmaceutical drugs. Free energy perturbation (FEP)/thermodynamics integration (TI) is a classical method to explicitly predict free energy. However, this method need plenty of time to collect datum, and that attempts to deal with some simple systems and small changes of molecular structures. Another one for estimating ligand binding affinities is linear interaction energy (LIE) method. This method employs averages of interaction potential energy terms from molecular dynamics simulations or other thermal conformational sampling techniques. Incorporation of systematic deviations from electrostatic linear response, derived from free energy perturbation studies, into the absolute binding free energy expression significantly enhances the accuracy of the approach. However, it also is time-consuming work. In this paper, a new prediction method based on steered molecular dynamics (SMD) with direction optimization is developed to compute binding free energy. Jarzynski's equality is used to derive the PMF or free-energy. The results for two numerical examples are presented, showing that the method has good accuracy and efficiency. The novel method can also simulate whole binding proceeding and give some important structural information about development of new drugs.
Yang, Xiaoliang; Wang, Zihua; Xiang, Zhichu; Li, Dan; Hu, Zhiyuan; Cui, Wei; Geng, Lingling; Fang, Qiaojun
2017-04-01
A high level of HER2 expression in breast cancer correlates with a higher tumor growth rate, high metastatic potential, and a poor long-term patient survival rate. Pertuzumab, a human monoclonal antibody, can reduce the effect of HER2 overexpression by preventing HER2 dimerization. In this study, a combination protocol of molecular dynamics modeling and MM/GBSA binding free energy calculations was applied to design peptides that interact with HER2 based on the HER2/pertuzumab crystal structure. Based on a β hairpin in pertuzumab from Glu46 to Lys65-which plays a key role in interacting with HER2-mutations were carried out in silico to improve the binding free energy of the hairpin that interacts with the Phe256-Lys314 of the HER2 protein. Combined the use of one-bead-one-compound library screening, among all the mutations, a peptide (58F63Y) with the lowest binding free energy was confirmed experimentally to have the highest affinity, and it may be used as a new probe in diagnosing and treating HER2-positive breast cancer.
Hamed, Mazen Y; Arya, Gaurav
2016-05-01
Energy calculations based on MM-GBSA were employed to study various zinc finger protein (ZF) motifs binding to DNA. Mutants of both the DNA bound to their specific amino acids were studied. Calculated energies gave evidence for a relationship between binding energy and affinity of ZF motifs to their sites on DNA. ΔG values were -15.82(12), -3.66(12), and -12.14(11.6) kcal/mol for finger one, finger two, and finger three, respectively. The mutations in the DNA bases reduced the value of the negative energies of binding (maximum value for ΔΔG = 42Kcal/mol for F1 when GCG mutated to GGG, and ΔΔG = 22 kcal/mol for F2, the loss in total energy of binding originated in the loss in electrostatic energies upon mutation (r = .98). The mutations in key amino acids in the ZF motif in positions-1, 2, 3, and 6 showed reduced binding energies to DNA with correlation coefficients between total free energy and electrostatic was .99 and with Van der Waal was .93. Results agree with experimentally found selectivity which showed that Arginine in position-1 is specific to G, while Aspartic acid (D) in position 2 plays a complicated role in binding. There is a correlation between the MD calculated free energies of binding and those obtained experimentally for prepared ZF motifs bound to triplet bases in other reports (), our results may help in the design of ZF motifs based on the established recognition codes based on energies and contributing energies to the total energy.
A study of planar anchor groups for graphene-based single-molecule electronics.
Bailey, Steven; Visontai, David; Lambert, Colin J; Bryce, Martin R; Frampton, Harry; Chappell, David
2014-02-07
To identify families of stable planar anchor groups for use in single molecule electronics, we report detailed results for the binding energies of two families of anthracene and pyrene derivatives adsorbed onto graphene. We find that all the selected derivatives functionalized with either electron donating or electron accepting substituents bind more strongly to graphene than the parent non-functionalized anthracene or pyrene. The binding energy is sensitive to the detailed atomic alignment of substituent groups over the graphene substrate leading to larger than expected binding energies for -OH and -CN derivatives. Furthermore, the ordering of the binding energies within the anthracene and pyrene series does not simply follow the electron affinities of the substituents. Energy barriers to rotation or displacement on the graphene surface are much lower than binding energies for adsorption and therefore at room temperature, although the molecules are bound to the graphene, they are almost free to move along the graphene surface. Binding energies can be increased by incorporating electrically inert side chains and are sensitive to the conformation of such chains.
A study of planar anchor groups for graphene-based single-molecule electronics
NASA Astrophysics Data System (ADS)
Bailey, Steven; Visontai, David; Lambert, Colin J.; Bryce, Martin R.; Frampton, Harry; Chappell, David
2014-02-01
To identify families of stable planar anchor groups for use in single molecule electronics, we report detailed results for the binding energies of two families of anthracene and pyrene derivatives adsorbed onto graphene. We find that all the selected derivatives functionalized with either electron donating or electron accepting substituents bind more strongly to graphene than the parent non-functionalized anthracene or pyrene. The binding energy is sensitive to the detailed atomic alignment of substituent groups over the graphene substrate leading to larger than expected binding energies for -OH and -CN derivatives. Furthermore, the ordering of the binding energies within the anthracene and pyrene series does not simply follow the electron affinities of the substituents. Energy barriers to rotation or displacement on the graphene surface are much lower than binding energies for adsorption and therefore at room temperature, although the molecules are bound to the graphene, they are almost free to move along the graphene surface. Binding energies can be increased by incorporating electrically inert side chains and are sensitive to the conformation of such chains.
Tamarkin-Ben-Harush, Ana; Vasseur, Jean-Jacques; Debart, Françoise; Ulitsky, Igor; Dikstein, Rivka
2017-02-08
Transcription start-site (TSS) selection and alternative promoter (AP) usage contribute to gene expression complexity but little is known about their impact on translation. Here we performed TSS mapping of the translatome following energy stress. Assessing the contribution of cap-proximal TSS nucleotides, we found dramatic effect on translation only upon stress. As eIF4E levels were reduced, we determined its binding to capped-RNAs with different initiating nucleotides and found the lowest affinity to 5'cytidine in correlation with the translational stress-response. In addition, the number of differentially translated APs was elevated following stress. These include novel glucose starvation-induced downstream transcripts for the translation regulators eIF4A and Pabp, which are also translationally-induced despite general translational inhibition. The resultant eIF4A protein is N-terminally truncated and acts as eIF4A inhibitor. The induced Pabp isoform has shorter 5'UTR removing an auto-inhibitory element. Our findings uncovered several levels of coordination of transcription and translation responses to energy stress.
Borodin, Oleg; Smith, Grant D
2006-03-30
Classical many-body polarizable force fields were developed for n-alkanes, perflouroalkanes, polyethers, ketones, and linear and cyclic carbonates on the basis of quantum chemistry dimer energies of model compounds and empirical thermodynamic liquid-state properties. The dependence of the electron correlation contribution to the dimer binding energy on basis-set size and level of theory was investigated as a function of molecular separation for a number of alkane, ether, and ketone dimers. Molecular dynamics (MD) simulations of the force fields accurately predicted structural, dynamic, and transport properties of liquids and unentangled polymer melts. On average, gas-phase dimer binding energies predicted with the force field were between those from MP2/aug-cc-pvDz and MP2/aug-cc-pvTz quantum chemistry calculations.
Miao, Zhichao; Westhof, Eric
2016-07-08
RBscore&NBench combines a web server, RBscore and a database, NBench. RBscore predicts RNA-/DNA-binding residues in proteins and visualizes the prediction scores and features on protein structures. The scoring scheme of RBscore directly links feature values to nucleic acid binding probabilities and illustrates the nucleic acid binding energy funnel on the protein surface. To avoid dataset, binding site definition and assessment metric biases, we compared RBscore with 18 web servers and 3 stand-alone programs on 41 datasets, which demonstrated the high and stable accuracy of RBscore. A comprehensive comparison led us to develop a benchmark database named NBench. The web server is available on: http://ahsoka.u-strasbg.fr/rbscorenbench/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T
2012-11-23
NRF-1 regulates mediators of neuronal activity and energy generation. NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and β1. NRF-1 functionally regulates mediators of energy consumption in neurons. NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between energy consumption, energy generation, and neuronal activity at the molecular level.
2017-01-01
Virtually all biological processes depend on the interaction between proteins at some point. The correct prediction of biomolecular binding free-energies has many interesting applications in both basic and applied pharmaceutical research. While recent advances in the field of molecular dynamics (MD) simulations have proven the feasibility of the calculation of protein–protein binding free energies, the large conformational freedom of proteins and complex free energy landscapes of binding processes make such calculations a difficult task. Moreover, convergence and reversibility of resulting free-energy values remain poorly described. In this work, an easy-to-use, yet robust approach for the calculation of standard-state protein–protein binding free energies using perturbed distance restraints is described. In the binding process the conformations of the proteins were restrained, as suggested earlier. Two approaches to avoid end-state problems upon release of the conformational restraints were compared. The method was evaluated by practical application to a small model complex of ubiquitin and the very flexible ubiquitin-binding domain of human DNA polymerase ι (UBM2). All computed free energy differences were closely monitored for convergence, and the calculated binding free energies had a mean unsigned deviation of only 1.4 or 2.5 kJ·mol–1 from experimental values. Statistical error estimates were in the order of thermal noise. We conclude that the presented method has promising potential for broad applicability to quantitatively describe protein–protein and various other kinds of complex formation. PMID:28898077
Nanobiological studies on drug design using molecular mechanic method.
Ghaheh, Hooria Seyedhosseini; Mousavi, Maryam; Araghi, Mahmood; Rasoolzadeh, Reza; Hosseini, Zahra
2015-01-01
Influenza H1N1 is very important worldwide and point mutations that occur in the virus gene are a threat for the World Health Organization (WHO) and druggists, since they could make this virus resistant to the existing antibiotics. Influenza epidemics cause severe respiratory illness in 30 to 50 million people and kill 250,000 to 500,000 people worldwide every year. Nowadays, drug design is not done through trial and error because of its cost and waste of time; therefore bioinformatics studies is essential for designing drugs. This paper, infolds a study on binding site of Neuraminidase (NA) enzyme, (that is very important in drug design) in 310K temperature and different dielectrics, for the best drug design. Information of NA enzyme was extracted from Protein Data Bank (PDB) and National Center for Biotechnology Information (NCBI) websites. The new sequences of N1 were downloaded from the NCBI influenza virus sequence database. Drug binding sites were assimilated and homologized modeling using Argus lab 4.0, HyperChem 6.0 and Chem. D3 softwares. Their stability was assessed in different dielectrics and temperatures. Measurements of potential energy (Kcal/mol) of binding sites of NA in different dielectrics and 310K temperature revealed that at time step size = 0 pSec drug binding sites have maximum energy level and at time step size = 100 pSec have maximum stability and minimum energy. Drug binding sites are more dependent on dielectric constants rather than on temperature and the optimum dielectric constant is 39/78.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, WC; Zhuang, ZB; Gao, MR
2015-01-08
The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearlymore » increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.« less
Anisotropic energy flow and allosteric ligand binding in albumin
NASA Astrophysics Data System (ADS)
Li, Guifeng; Magana, Donny; Dyer, R. Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Anisotropic energy flow and allosteric ligand binding in albumin.
Li, Guifeng; Magana, Donny; Dyer, R Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Anisotropic energy flow and allosteric ligand binding in albumin
Li, Guifeng; Magana, Donny; Dyer, R. Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. PMID:24445265
Baum, Bernhard; Muley, Laveena; Smolinski, Michael; Heine, Andreas; Hangauer, David; Klebe, Gerhard
2010-04-09
Additivity of functional group contributions to protein-ligand binding is a very popular concept in medicinal chemistry as the basis of rational design and optimized lead structures. Most of the currently applied scoring functions for docking build on such additivity models. Even though the limitation of this concept is well known, case studies examining in detail why additivity fails at the molecular level are still very scarce. The present study shows, by use of crystal structure analysis and isothermal titration calorimetry for a congeneric series of thrombin inhibitors, that extensive cooperative effects between hydrophobic contacts and hydrogen bond formation are intimately coupled via dynamic properties of the formed complexes. The formation of optimal lipophilic contacts with the surface of the thrombin S3 pocket and the full desolvation of this pocket can conflict with the formation of an optimal hydrogen bond between ligand and protein. The mutual contributions of the competing interactions depend on the size of the ligand hydrophobic substituent and influence the residual mobility of ligand portions at the binding site. Analysis of the individual crystal structures and factorizing the free energy into enthalpy and entropy demonstrates that binding affinity of the ligands results from a mixture of enthalpic contributions from hydrogen bonding and hydrophobic contacts, and entropic considerations involving an increasing loss of residual mobility of the bound ligands. This complex picture of mutually competing and partially compensating enthalpic and entropic effects determines the non-additivity of free energy contributions to ligand binding at the molecular level. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xi, Lei; Wang, Yu; He, Qing; Zhang, Qingyan; Du, Linfang
2016-12-01
The binding of epigallocatechin-3-gallate (EGCG) to wild type Pin1 in solution was studied by spectroscopic methods and molecular dynamics simulations in this research to explore the binding mode and inhibition mechanism. The binding constants and number of binding sites per Pin1 for EGCG were calculated through the Stern-Volmer equation. The values of binding free energy and thermodynamic parameters were calculated and indicated that hydrogen bonds, electrostatic interaction and Van der Waals interaction played the major role in the binding process. The alterations of Pin1 secondary structure in the presence of EGCG were confirmed by far-UV circular dichroism spectra. The binding model at atomic-level revealed that EGCG was bound to the Glu12, Lys13, Arg14, Met15 and Arg17 in WW domain. Furthermore, EGCG could also interact with Arg69, Asp112, Cys113 and Ser114 in PPIase domain.
Binding Energy and Enzymatic Catalysis.
ERIC Educational Resources Information Center
Hansen, David E.; Raines, Ronald T.
1990-01-01
Discussed is the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis. The principle that all of the catalytic factors discussed are realized by the use of this binding energy is reviewed. (CW)
Li, Wenhui; Xu, Jiachao; Kou, Xiaolong; Zhao, Rong; Zhou, Wei; Fang, Xiaohong
2018-05-01
Angiotensin II type 1 receptor (AT1R), a typical G protein-coupled receptor, plays a key role in regulating many cardiovascular functions. Different ligands can bind with AT1R to selectively activate either G protein (Gq) or β-arrestin (β-arr) pathway, or both pathways, but the molecular mechanism is not clear yet. In this work, we used, for the first time, atomic force microscopy-based single molecule force spectroscopy (SMFS) to study the interactions of AT1R with three types of ligands, balanced ligand, Gq-biased ligand, and β-arr-biased ligand, in living cells. The results revealed their difference in binding force and binding stability. The complex of the Gq-biased ligand-AT1R overcame two energy barriers with an intermediate state during dissociation, whereas that of β-arr-biased ligand-AT1R complex overcame one energy barrier. This indicated that AT1R had different ligand-binding conformational substates and underwent different structural changes to activate downstream signaling pathways with variable agonist efficacies. Quantitative analysis of AT1R-ligand binding in living cells at the single-molecule level offers a new tool to study the molecular mechanism of AT1R biased activation. Graphical Abstract Single-molecule force measurement on the living cell expressing AT1R-eGFP with a ligand modified AFM tip (left), the dynamic force spectra of β-arrestin biased ligands-AT1R (middle), and Gq-biased ligands-AT1R (right). The complexes of β-arr-biased ligand-AT1R overcame one energy barrier, with one linear region in the spectra, whereas the Gq-biased ligand-AT1R complexes overcame two energy barriers with two linear regions.
Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.
Miao, Yinglong; McCammon, J Andrew
2016-10-25
G-protein-coupled receptors (GPCRs) recognize ligands of widely different efficacies, from inverse to partial and full agonists, which transduce cellular signals at differentiated levels. However, the mechanism of such graded activation remains unclear. Using the Gaussian accelerated molecular dynamics (GaMD) method that enables both unconstrained enhanced sampling and free energy calculation, we have performed extensive GaMD simulations (∼19 μs in total) to investigate structural dynamics of the M 2 muscarinic GPCR that is bound by the full agonist iperoxo (IXO), the partial agonist arecoline (ARC), and the inverse agonist 3-quinuclidinyl-benzilate (QNB), in the presence or absence of the G-protein mimetic nanobody. In the receptor-nanobody complex, IXO binding leads to higher fluctuations in the protein-coupling interface than ARC, especially in the receptor transmembrane helix 5 (TM5), TM6, and TM7 intracellular domains that are essential elements for GPCR activation, but less flexibility in the receptor extracellular region due to stronger binding compared with ARC. Two different binding poses are revealed for ARC in the orthosteric pocket. Removal of the nanobody leads to GPCR deactivation that is characterized by inward movement of the TM6 intracellular end. Distinct low-energy intermediate conformational states are identified for the IXO- and ARC-bound M 2 receptor. Both dissociation and binding of an orthosteric ligand are observed in a single all-atom GPCR simulation in the case of partial agonist ARC binding to the M 2 receptor. This study demonstrates the applicability of GaMD for exploring free energy landscapes of large biomolecules and the simulations provide important insights into the GPCR functional mechanism.
Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael
2012-08-14
Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.
NASA Astrophysics Data System (ADS)
Ngo, Son Tung; Nguyen, Minh Tung; Nguyen, Minh Tho
2017-05-01
The absolute binding free energy of an inhibitor to HIV-1 Protease (PR) was determined throughout evaluation of the non-bonded interaction energy difference between the two bound and unbound states of the inhibitor and surrounding molecules by the fast pulling of ligand (FPL) process using non-equilibrium molecular dynamics (NEMD) simulations. The calculated free energy difference terms help clarifying the nature of the binding. Theoretical binding affinities are in good correlation with experimental data, with R = 0.89. The paradigm used is able to rank two inhibitors having the maximum difference of ∼1.5 kcal/mol in absolute binding free energies.
NASA Astrophysics Data System (ADS)
Hakimyfard, Alireza; Barseghyan, M. G.; Duque, C. A.; Kirakosyan, A. A.
2009-12-01
In the frame of the variational method and the effective-mass approximation, the effects of hydrostatic pressure and temperature on the binding energy for donor impurities in the Pöschl-Teller quantum well are studied. The binding energy dependencies on the width of the quantum well, the hydrostatic pressure, the impurity position, the temperature, and the parameters of the confining potential are reported. The results show that the binding energy increases (decreases) with the increasing of the hydrostatic pressure (temperature). It is also found that, associated with the symmetry breaking in the Pöschl-Teller quantum well, and depending on the impurity position, the binding energy can increase or decrease.
Implicit ligand theory for relative binding free energies
NASA Astrophysics Data System (ADS)
Nguyen, Trung Hai; Minh, David D. L.
2018-03-01
Implicit ligand theory enables noncovalent binding free energies to be calculated based on an exponential average of the binding potential of mean force (BPMF)—the binding free energy between a flexible ligand and rigid receptor—over a precomputed ensemble of receptor configurations. In the original formalism, receptor configurations were drawn from or reweighted to the apo ensemble. Here we show that BPMFs averaged over a holo ensemble yield binding free energies relative to the reference ligand that specifies the ensemble. When using receptor snapshots from an alchemical simulation with a single ligand, the new statistical estimator outperforms the original.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.
Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M 2(dobdc) and M 3(btc) 2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements.more » A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.« less
Elementary Particles and Forces.
ERIC Educational Resources Information Center
Quigg, Chris
1985-01-01
Discusses subatomic particles (quarks, leptons, and others) revealed by higher accelerator energies. A connection between forces at this subatomic level has been established, and prospects are good for a description of forces that encompass binding atomic nuclei. Colors, fundamental interactions, screening, camouflage, electroweak symmetry, and…
NASA Astrophysics Data System (ADS)
Yilmaz, S.; Kirak, M.
2018-05-01
In the present study, we have studied theoretically the influences of donor impurity position on the binding energy of a GaAs cubic quantum box structure. The binding energy is calculated as functions of the position of impurity, electric field, temperature and hydrostatic pressure. The variational method is employed to obtain the energy eigenvalues of the structure in the framework of the effective mass approximation. It has been found that the impurity positions with electric field, pressure and temperature have an important effect on the binding energy of structure considered. The results can be used to manufacture semiconductor device application by manipulating the binding energy with the impurity positions, electric field, pressure and temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.
We establish a new estimate for the binding energy between two benzene molecules in the parallel-displaced (PD) conformation by systematically converging (i) the intra- and intermolecular geometry at the minimum, (ii) the expansion of the orbital basis set, and (iii) the level of electron correlation. The calculations were performed at the second-order Møller–Plesset perturbation (MP2) and the coupled cluster including singles, doubles, and a perturbative estimate of triples replacement [CCSD(T)] levels of electronic structure theory. At both levels of theory, by including results corrected for basis set superposition error (BSSE), we have estimated the complete basis set (CBS) limit bymore » employing the family of Dunning’s correlation-consistent polarized valence basis sets. The largest MP2 calculation was performed with the cc-pV6Z basis set (2772 basis functions), whereas the largest CCSD(T) calculation was with the cc-pV5Z basis set (1752 basis functions). The cluster geometries were optimized with basis sets up to quadruple-ζ quality, observing that both its intra- and intermolecular parts have practically converged with the triple-ζ quality sets. The use of converged geometries was found to play an important role for obtaining accurate estimates for the CBS limits. Our results demonstrate that the binding energies with the families of the plain (cc-pVnZ) and augmented (aug-cc-pVnZ) sets converge [within <0.01 kcal/mol for MP2 and <0.15 kcal/mol for CCSD(T)] to the same CBS limit. In addition, the average of the uncorrected and BSSE-corrected binding energies was found to converge to the same CBS limit much faster than either of the two constituents (uncorrected or BSSE-corrected binding energies). Due to the fact that the family of augmented basis sets (especially for the larger sets) causes serious linear dependency problems, the plain basis sets (for which no linear dependencies were found) are deemed as a more efficient and straightforward path for obtaining an accurate CBS limit. We considered extrapolations of the uncorrected (ΔE) and BSSE-corrected (ΔE cp) binding energies, their average value (ΔE ave), as well as the average of the latter over the plain and augmented sets (Δ~E ave) with the cardinal number of the basis set n. Our best estimate of the CCSD(T)/CBS limit for the π–π binding energy in the PD benzene dimer is D e = -2.65 ± 0.02 kcal/mol. The best CCSD(T)/cc-pV5Z calculated value is -2.62 kcal/mol, just 0.03 kcal/mol away from the CBS limit. For comparison, the MP2/CBS limit estimate is -5.00 ± 0.01 kcal/mol, demonstrating a 90% overbinding with respect to CCSD(T). Finally, the spin-component-scaled (SCS) MP2 variant was found to closely reproduce the CCSD(T) results for each basis set, while scaled opposite spin (SOS) MP2 yielded results that are too low when compared to CCSD(T).« less
A hierarchical approach to cooperativity in macromolecular and self-assembling binding systems.
Garcés, Josep Lluís; Acerenza, Luis; Mizraji, Eduardo; Mas, Francesc
2008-04-01
The study of complex macromolecular binding systems reveals that a high number of states and processes are involved in their mechanism of action, as has become more apparent with the sophistication of the experimental techniques used. The resulting information is often difficult to interpret because of the complexity of the scheme (large size and profuse interactions, including cooperative and self-assembling interactions) and the lack of transparency that this complexity introduces into the interpretation of the indexes traditionally used to describe the binding properties. In particular, cooperative behaviour can be attributed to very different causes, such as direct chemical modification of the binding sites, conformational changes in the whole structure of the macromolecule, aggregation processes between different subunits, etc. In this paper, we propose a novel approach for the analysis of the binding properties of complex macromolecular and self-assembling systems. To quantify the binding behaviour, we use the global association quotient defined as K(c) = [occupied sites]/([free sites] L), L being the free ligand concentration. K(c) can be easily related to other measures of cooperativity (such as the Hill number or the Scatchard plot) and to the free energies involved in the binding processes at each ligand concentration. In a previous work, it was shown that K(c) could be decomposed as an average of equilibrium constants in two ways: intrinsic constants for Adair binding systems and elementary constants for the general case. In this study, we show that these two decompositions are particular cases of a more general expression, where the average is over partial association quotients, associated with subsystems from which the system is composed. We also show that if the system is split into different subsystems according to a binding hierarchy that starts from the lower, microscopic level and ends at the higher, aggregation level, the global association quotient can be decomposed following the hierarchical levels of macromolecular organisation. In this process, the partial association quotients of one level are expressed, in a recursive way, as a function of the partial quotients of the level that is immediately below, until the microscopic level is reached. As a result, the binding properties of very complex macromolecular systems can be analysed in detail, making the mechanistic explanation of their behaviour transparent. In addition, our approach provides a model-independent interpretation of the intrinsic equilibrium constants in terms of the elementary ones.
Electronic and optical properties of exciton, trions and biexciton in II-VI parabolic quantum dot
NASA Astrophysics Data System (ADS)
Sujanah, P.; John Peter, A.; Woo Lee, Chang
2015-08-01
Binding energies of exciton, trions and biexciton and their interband optical transition energies are studied in a CdTe/ZnTe quantum dot nanostructure taking into consideration the geometrical confinement effect. The radial spread of the wavefunctions, binding energies, optical transition energies, oscillator strength, radiative life time and the absorption coefficients of exciton, positively and negatively charged excitons and biexciton are carried out. It is found that the ratio of the radiative life time of exciton with the trions and biexciton enhances with the reduction of geometrical confinement. The results show that (i) the binding energies of exciton, positive and negative trions and the biexciton have strong influence on the reduction of geometrical confinement effect, (ii) the binding energy is found to decrease from the binding energies of exciton to positive trion through biexciton and negative trion binding energies, (iii) the oscillator strength of trions is found to be lesser than exciton and the biexciton and (iv) the electronic and optical properties of exciton, trions and the biexciton are considerably dependent on the spatial confinement, incident photon energy and the radiative life time. The obtained results are in good agreement with the other existing literature.
Calculation of Host-Guest Binding Affinities Using a Quantum-Mechanical Energy Model.
Muddana, Hari S; Gilson, Michael K
2012-06-12
The prediction of protein-ligand binding affinities is of central interest in computer-aided drug discovery, but it is still difficult to achieve a high degree of accuracy. Recent studies suggesting that available force fields may be a key source of error motivate the present study, which reports the first mining minima (M2) binding affinity calculations based on a quantum mechanical energy model, rather than an empirical force field. We apply a semi-empirical quantum-mechanical energy function, PM6-DH+, coupled with the COSMO solvation model, to 29 host-guest systems with a wide range of measured binding affinities. After correction for a systematic error, which appears to derive from the treatment of polar solvation, the computed absolute binding affinities agree well with experimental measurements, with a mean error 1.6 kcal/mol and a correlation coefficient of 0.91. These calculations also delineate the contributions of various energy components, including solute energy, configurational entropy, and solvation free energy, to the binding free energies of these host-guest complexes. Comparison with our previous calculations, which used empirical force fields, point to significant differences in both the energetic and entropic components of the binding free energy. The present study demonstrates successful combination of a quantum mechanical Hamiltonian with the M2 affinity method.
Molecular basis of endosomal-membrane association for the dengue virus envelope protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, David M.; Kent, Michael S.; Rempe, Susan B.
Dengue virus is coated by an icosahedral shell of 90 envelope protein dimers that convert to trimers at low pH and promote fusion of its membrane with the membrane of the host endosome. We provide the first estimates for the free energy barrier and minimum for two key steps in this process: host membrane bending and protein–membrane binding. Both are studied using complementary membrane elastic, continuum electrostatics and all-atom molecular dynamics simulations. The predicted host membrane bending required to form an initial fusion stalk presents a 22–30 kcal/mol free energy barrier according to a constrained membrane elastic model. Combined continuummore » and molecular dynamics results predict a 15 kcal/mol free energy decrease on binding of each trimer of dengue envelope protein to a membrane with 30% anionic phosphatidylglycerol lipid. The bending cost depends on the preferred curvature of the lipids composing the host membrane leaflets, while the free energy gained for protein binding depends on the surface charge density of the host membrane. The fusion loop of the envelope protein inserts exactly at the level of the interface between the membrane's hydrophobic and head-group regions. As a result, the methods used in this work provide a means for further characterization of the structures and free energies of protein-assisted membrane fusion.« less
Molecular basis of endosomal-membrane association for the dengue virus envelope protein
Rogers, David M.; Kent, Michael S.; Rempe, Susan B.
2015-01-02
Dengue virus is coated by an icosahedral shell of 90 envelope protein dimers that convert to trimers at low pH and promote fusion of its membrane with the membrane of the host endosome. We provide the first estimates for the free energy barrier and minimum for two key steps in this process: host membrane bending and protein–membrane binding. Both are studied using complementary membrane elastic, continuum electrostatics and all-atom molecular dynamics simulations. The predicted host membrane bending required to form an initial fusion stalk presents a 22–30 kcal/mol free energy barrier according to a constrained membrane elastic model. Combined continuummore » and molecular dynamics results predict a 15 kcal/mol free energy decrease on binding of each trimer of dengue envelope protein to a membrane with 30% anionic phosphatidylglycerol lipid. The bending cost depends on the preferred curvature of the lipids composing the host membrane leaflets, while the free energy gained for protein binding depends on the surface charge density of the host membrane. The fusion loop of the envelope protein inserts exactly at the level of the interface between the membrane's hydrophobic and head-group regions. As a result, the methods used in this work provide a means for further characterization of the structures and free energies of protein-assisted membrane fusion.« less
Engineering Tocopherol Selectivity in α-TTP: A Combined In Vitro/In Silico Study
Helbling, Rachel E.; Aeschimann, Walter; Simona, Fabio; Stocker, Achim; Cascella, Michele
2012-01-01
We present a combined in vitro/in silico study to determine the molecular origin of the selectivity of -tocopherol transfer protein (-TTP) towards -tocopherol. Molecular dynamics simulations combined to free energy perturbation calculations predict a binding free energy for -tocopherol to -TTP 8.262.13 kcal mol lower than that of -tocopherol. Our calculations show that -tocopherol binds to -TTP in a significantly distorted geometry as compared to that of the natural ligand. Variations in the hydration of the binding pocket and in the protein structure are found as well. We propose a mutation, A156L, which significantly modifies the selectivity properties of -TTP towards the two tocopherols. In particular, our simulations predict that A156L binds preferentially to -tocopherol, with striking structural similarities to the wild-type--tocopherol complex. The affinity properties are confirmed by differential scanning fluorimetry as well as in vitro competitive binding assays. Our data indicate that residue A156 is at a critical position for determination of the selectivity of -TTP. The engineering of TTP mutants with modulating binding properties can have potential impact at industrial level for easier purification of single tocopherols from vitamin E mixtures coming from natural oils or synthetic processes. Moreover, the identification of a -tocopherol selective TTP offers the possibility to challenge the hypotheses for the evolutionary development of a mechanism for -tocopherol selection in omnivorous animals. PMID:23152872
Ngo, Son Tung; Mai, Binh Khanh; Hiep, Dinh Minh; Li, Mai Suan
2015-10-01
The binding mechanism of AC1NX476 to HIV-1 protease wild type and mutations was studied by the docking and molecular dynamics simulations. The binding free energy was calculated using the double-annihilation binding free energy method. It is shown that the binding affinity of AC1NX476 to wild type is higher than not only ritonavir but also darunavir, making AC1NX476 become attractive candidate for HIV treatment. Our theoretical results are in excellent agreement with the experimental data as the correlation coefficient between calculated and experimentally measured binding free energies R = 0.993. Residues Asp25-A, Asp29-A, Asp30-A, Ile47-A, Gly48-A, and Val50-A from chain A, and Asp25-B from chain B play a crucial role in the ligand binding. The mutations were found to reduce the receptor-ligand interaction by widening the binding cavity, and the binding propensity is mainly driven by the van der Waals interaction. Our finding may be useful for designing potential drugs to combat with HIV. © 2015 John Wiley & Sons A/S.
Pan, Peichen; Li, Lin; Li, Youyong; Li, Dan; Hou, Tingjun
2013-11-01
Neuraminidase inhibitors (NAIs) play vital roles in controlling human influenza epidemics and pandemics. However, the emergence of new human influenza virus mutant strains resistant to existing antiviral drugs has been becoming a major challenge. Therefore, it is critical to uncover the mechanisms of drug resistance and seek alternative treatments to combat drug resistance. In this study, molecular dynamics (MD) simulations and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) were applied to investigate the different sensitivities of oseltamivir (OTV), zanamivir (ZNV), and peramivir (PRV) against the E119G mutant of 2009 A/H1N1 neuraminidase. The predicted binding free energies indicate that the E119G mutation in NA confers resistance to all of the three studied inhibitors. The ordering of the level of drug resistance predicted by the binding free energies for the three inhibitors is ZNV>PRV>OTV, which agrees well with the experimental data. Drug resistance arises primarily from the unfavorable shifts of the polar interactions between NA and the inhibitors. It comes as a surprise that the mutation of Glu119 that can form strong H-bonds with the inhibitors in the wild-type protein does not have direct impact on the binding affinities of both OTV and PRV due to the regulation of the strong unfavorable polar desolvation energies. The indirectly conformational variations of the inhibitors, which caused by the E119G mutation, are responsible for the loss of the binding free energies. However, for ZNV, the E119G mutation has both direct and indirect influences on the drug binding. The structural and quantitative viewpoint obtained from this study provides valuable information for the rational design of novel and effective drugs to combat drug resistance. Copyright © 2013 Elsevier B.V. All rights reserved.
Wickstrom, Lauren; He, Peng; Gallicchio, Emilio; Levy, Ronald M.
2013-01-01
Host-guest inclusion complexes are useful models for understanding the structural and energetic aspects of molecular recognition. Due to their small size relative to much larger protein-ligand complexes, converged results can be obtained rapidly for these systems thus offering the opportunity to more reliably study fundamental aspects of the thermodynamics of binding. In this work, we have performed a large scale binding affinity survey of 57 β-cyclodextrin (CD) host guest systems using the binding energy distribution analysis method (BEDAM) with implicit solvation (OPLS-AA/AGBNP2). Converged estimates of the standard binding free energies are obtained for these systems by employing techniques such as parallel Hamitionian replica exchange molecular dynamics, conformational reservoirs and multistate free energy estimators. Good agreement with experimental measurements is obtained in terms of both numerical accuracy and affinity rankings. Overall, average effective binding energies reproduce affinity rank ordering better than the calculated binding affinities, even though calculated binding free energies, which account for effects such as conformational strain and entropy loss upon binding, provide lower root mean square errors when compared to measurements. Interestingly, we find that binding free energies are superior rank order predictors for a large subset containing the most flexible guests. The results indicate that, while challenging, accurate modeling of reorganization effects can lead to ligand design models of superior predictive power for rank ordering relative to models based only on ligand-receptor interaction energies. PMID:25147485
Huang, Xun; He, Jiexiang; Zhang, Huan-Tian; Sun, Kai; Yang, Jie; Wang, Huajun; Zhang, Hongxin; Guo, Zhenzhao; Zha, Zhen-Gang; Zhou, Changren
2017-01-01
CD44 ligand-receptor interactions are known to be involved in regulating cell migration and tumor cell metastasis. High expression levels of CD44 correlate with a poor prognosis of melanoma patients. In order to understand not only the mechanistic basis for dacarbazine (DTIC)-based melanoma treatment but also the reason for the poor prognosis of melanoma patients treated with DTIC, dynamic force spectroscopy was used to structurally map single native CD44-coupled receptors on the surface of melanoma cells. The effect of DTIC treatment was quantified by the dynamic binding strength and the ligand-binding free-energy landscape. The results demonstrated no obvious effect of DTIC on the unbinding force between CD44 ligand and its receptor, even when the CD44 nanodomains were reduced significantly. However, DTIC did perturb the kinetic and thermodynamic interactions of the CD44 ligand-receptor, with a resultant greater dissociation rate, lower affinity, lower binding free energy, and a narrower energy valley for the free-energy landscape. For cells treated with 25 and 75 μg/mL DTIC for 24 hours, the dissociation constant for CD44 increased 9- and 70-fold, respectively. The CD44 ligand binding free energy decreased from 9.94 for untreated cells to 8.65 and 7.39 kcal/mol for DTIC-treated cells, which indicated that the CD44 ligand-receptor complexes on DTIC-treated melanoma cells were less stable than on untreated cells. However, affinity remained in the micromolar range, rather than the millimolar range associated with nonaffinity ligands. Hence, the CD44 receptor could still be activated, resulting in intracellular signaling that could trigger a cellular response. These results demonstrate DTIC perturbs, but not completely inhibits, the binding of CD44 ligand to membrane receptors, suggesting a basis for the poor prognosis associated with DTIC treatment of melanoma. Overall, atomic force microscopy-based nanoscopic methods offer thermodynamic and kinetic insight into the effect of DTIC on the CD44 ligand-binding process.
Huang, Xun; He, Jiexiang; Zhang, Huan-tian; Sun, Kai; Yang, Jie; Wang, Huajun; Zhang, Hongxin; Guo, Zhenzhao; Zha, Zhen-gang; Zhou, Changren
2017-01-01
CD44 ligand–receptor interactions are known to be involved in regulating cell migration and tumor cell metastasis. High expression levels of CD44 correlate with a poor prognosis of melanoma patients. In order to understand not only the mechanistic basis for dacarbazine (DTIC)-based melanoma treatment but also the reason for the poor prognosis of melanoma patients treated with DTIC, dynamic force spectroscopy was used to structurally map single native CD44-coupled receptors on the surface of melanoma cells. The effect of DTIC treatment was quantified by the dynamic binding strength and the ligand-binding free-energy landscape. The results demonstrated no obvious effect of DTIC on the unbinding force between CD44 ligand and its receptor, even when the CD44 nanodomains were reduced significantly. However, DTIC did perturb the kinetic and thermodynamic interactions of the CD44 ligand–receptor, with a resultant greater dissociation rate, lower affinity, lower binding free energy, and a narrower energy valley for the free-energy landscape. For cells treated with 25 and 75 μg/mL DTIC for 24 hours, the dissociation constant for CD44 increased 9- and 70-fold, respectively. The CD44 ligand binding free energy decreased from 9.94 for untreated cells to 8.65 and 7.39 kcal/mol for DTIC-treated cells, which indicated that the CD44 ligand–receptor complexes on DTIC-treated melanoma cells were less stable than on untreated cells. However, affinity remained in the micromolar range, rather than the millimolar range associated with nonaffinity ligands. Hence, the CD44 receptor could still be activated, resulting in intracellular signaling that could trigger a cellular response. These results demonstrate DTIC perturbs, but not completely inhibits, the binding of CD44 ligand to membrane receptors, suggesting a basis for the poor prognosis associated with DTIC treatment of melanoma. Overall, atomic force microscopy-based nanoscopic methods offer thermodynamic and kinetic insight into the effect of DTIC on the CD44 ligand-binding process. PMID:29296081
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2013-11-01
We have investigated the electronic properties of SiNTs, under the external electric field, using Tight Binding (TB) approximation. It was found that the energy levels, energy gaps, and density of states (DOS) strongly depend on the electric field strength. The large electric strength leads to coupling the neighbor subbands and induce destruction of subband degeneracy, increase of low-energy states, and strong modulation of energy gap which these effects reflect in the DOS spectrum. It has been shown that, the band gap reduction of Si g-NTs is linearly proportional to the electric field strength. The band gap variation for Si h-NTs increases first and later decreases (Metallic) or first remains constant and then decreases (semiconductor). Also we show that the larger diameter tubes are more sensitive to the field strength than smaller ones. The semiconducting metallic transition or vice versa can be achieved through an increasing of applied fields. Number and position of peaks in DOS spectrum are dependent on electric field strength.
NASA Astrophysics Data System (ADS)
Resende, Stella M.; De Almeida, Wagner B.; van Duijneveldt-van de Rijdt, Jeanne G. C. M.; van Duijneveldt, Frans B.
2001-08-01
Geometrical parameters for the equilibrium (MIN) and lowest saddle-point (TS) geometries of the C2H4⋯SO2 dimer, and the corresponding binding energies, were calculated using the Hartree-Fock and correlated levels of ab initio theory, in basis sets ranging from the D95(d,p) double-zeta basis set to the aug-cc-pVQZ correlation consistent basis set. An assessment of the effect of the basis set superposition error (BSSE) on these results was made. The dissociation energy from the lowest vibrational state was estimated to be 705±100 cm-1 at the basis set limit, which is well within the range expected from experiment. The barrier to internal rotation was found to be 53±5 cm-1, slightly higher than the (revised) experimental result of 43 cm-1, probably due to zero-point vibrational effects. Our results clearly show that, in direct contrast with recent ideas, the BSSE correction affects differentially the MIN and TS binding energies and so has to be included in the calculation of small energy barriers such as that in the C2H4⋯SO2 dimer. Previous reports of positive MP2 frozen-core binding energies for this complex in basis D95(d,p) are confirmed. The anomalies are shown to be an artifact arising from an incorrect removal of virtual orbitals by the default frozen-core option in the GAUSSIAN program.
Liu, Jianbin; Wu, Xiaoyun; Bao, Pengjia; Long, Ruijun; Guo, Xian; Ding, Xuezhi; Yan, Ping
2017-01-01
The energy available from the diet, which affects fat deposition in vivo, is a major factor in the expression of genes regulating fat deposition in the longissimus dorsi muscle. Providing high-energy diets to yaks might increase intramuscular fat deposition and fatty acid concentrations under a traditional grazing system in cold seasons. A total of fifteen adult castrated male yaks with an initial body weight 274.3 ± 3.14 kg were analyzed for intramuscular adipose deposition and fatty acid composition. The animals were divided into three groups and fed low-energy (LE: 5.5 MJ/kg), medium-energy (ME: 6.2 MJ/kg) and high-energy (HE: 6.9 MJ/kg) diets, respectively. All animals were fed ad libitum twice daily at 08:00–09:00 am and 17:00–18:00 pm and with free access to water for 74 days, including a 14-d period to adapt to the diets and the environment. Intramuscular fat (IMF) content, fatty acid profile and mRNA levels of genes involved in fatty acid synthesis were determined. The energy levels of the diets significantly (P<0.05) affected the content of IMF, total SFA, total MUFA and total PUFA. C16:0, C18:0 and C18:1n9c account for a large proportion of total fatty acids. Relative expression of acetyl-CoA carboxylase (ACACA), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD), sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor γ (PPARγ) and fatty acid-binding protein 4 (FABP4) was greater in HE than in LE yaks (P<0.05). Moreover, ME yaks had higher (P<0.05) mRNA expression levels of PPARγ, ACACA, FASN, SCD and FABP4 than did the LE yaks. The results demonstrate that the higher energy level of the diets increased IMF deposition and fatty acid content as well as increased intramuscular lipogenic gene expression during the experimental period. PMID:29121115
Martínez-González, Eduardo; Frontana, Carlos
2014-05-07
In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.
Free energy decomposition of protein-protein interactions.
Noskov, S Y; Lim, C
2001-08-01
A free energy decomposition scheme has been developed and tested on antibody-antigen and protease-inhibitor binding for which accurate experimental structures were available for both free and bound proteins. Using the x-ray coordinates of the free and bound proteins, the absolute binding free energy was computed assuming additivity of three well-defined, physical processes: desolvation of the x-ray structures, isomerization of the x-ray conformation to a nearby local minimum in the gas-phase, and subsequent noncovalent complex formation in the gas phase. This free energy scheme, together with the Generalized Born model for computing the electrostatic solvation free energy, yielded binding free energies in remarkable agreement with experimental data. Two assumptions commonly used in theoretical treatments; viz., the rigid-binding approximation (which assumes no conformational change upon complexation) and the neglect of vdW interactions, were found to yield large errors in the binding free energy. Protein-protein vdW and electrostatic interactions between complementary surfaces over a relatively large area (1400--1700 A(2)) were found to drive antibody-antigen and protease-inhibitor binding.
Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.; ...
2015-03-02
Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M 2(dobdc) and M 3(btc) 2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements.more » A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.« less
Lu, Haiting; Huang, Xiaoqin; AbdulHameed, Mohamed Diwan M; Zhan, Chang-Guo
2014-04-01
Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations have been performed to explore the dynamic behaviors of cytochrome P450 2A6 (CYP2A6) binding with nicotine analogs (that are typical inhibitors) and to calculate their binding free energies in combination with Poisson-Boltzmann surface area (PBSA) calculations. The combined MD simulations and QM/MM-PBSA calculations reveal that the most important structural parameters affecting the CYP2A6-inhibitor binding affinity are two crucial internuclear distances, that is, the distance between the heme iron atom of CYP2A6 and the coordinating atom of the inhibitor, and the hydrogen-bonding distance between the N297 side chain of CYP2A6 and the pyridine nitrogen of the inhibitor. The combined MD simulations and QM/MM-PBSA calculations have led to dynamic CYP2A6-inhibitor binding structures that are consistent with the observed dynamic behaviors and structural features of CYP2A6-inhibitor binding, and led to the binding free energies that are in good agreement with the experimentally-derived binding free energies. The agreement between the calculated binding free energies and the experimentally-derived binding free energies suggests that the combined MD and QM/MM-PBSA approach may be used as a valuable tool to accurately predict the CYP2A6-inhibitor binding affinities in future computational design of new, potent and selective CYP2A6 inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Neyman, Konstantin M; Inntam, Chan; Matveev, Alexei V; Nasluzov, Vladimir A; Rösch, Notker
2005-08-24
Single d-metal atoms on oxygen defects F(s) and F(s+) of the MgO(001) surface were studied theoretically. We employed an accurate density functional method combined with cluster models, embedded in an elastic polarizable environment, and we applied two gradient-corrected exchange-correlation functionals. In this way, we quantified how 17 metal atoms from groups 6-11 of the periodic table (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; and Cr, Mo, W) interact with terrace sites of MgO. We found bonding with F(s) and F(s+) defects to be in general stronger than that with O2- sites, except for Mn-, Re-, and Fe/F(s) complexes. In M/F(s) systems, electron density is accumulated on the metal center in a notable fashion. The binding energy on both kinds of O defects increases from 3d- to 4d- to 5d-atoms of a given group, at variance with the binding energy trend established earlier for the M/O2- complexes, 4d < 3d < 5d. Regarding the evolution of the binding energy along a period, group 7 atoms are slightly destabilized compared to their group 6 congeners in both the F(s) and F(s+) complexes; for later transition elements, the binding energy increases gradually up to group 10 and finally decreases again in group 11, most strongly on the F(s) site. This trend is governed by the negative charge on the adsorbed atoms. We discuss implications for an experimental detection of metal atoms on oxide supports based on computed core-level energies.
Resonant scattering due to adatoms in graphene: Top, bridge, and hollow positions
NASA Astrophysics Data System (ADS)
Irmer, Susanne; Kochan, Denis; Lee, Jeongsu; Fabian, Jaroslav
2018-02-01
We present a theoretical study of resonance characteristics in graphene from adatoms with s or pz character binding in top, bridge, and hollow positions. The adatoms are described by two tight-binding parameters: on-site energy and hybridization strength. We explore a wide range of different magnitudes of these parameters by employing T -matrix calculations in the single adatom limit and by tight-binding supercell calculations for dilute adatom coverage. We calculate the density of states and the momentum relaxation rate and extract the resonance level and resonance width. The top position with a large hybridization strength or, equivalently, small on-site energy, induces resonances close to zero energy. The bridge position, compared to top, is more sensitive to variation in the orbital tight-binding parameters. Resonances within the experimentally relevant energy window are found mainly for bridge adatoms with negative on-site energies. The effect of resonances from the top and bridge positions on the density of states and momentum relaxation rate is comparable and both positions give rise to a power-law decay of the resonant state in graphene. The hollow position with s orbital character is affected from destructive interference, which is seen from the very narrow resonance peaks in the density of states and momentum relaxation rate. The resonant state shows no clear tendency to a power-law decay around the impurity and its magnitude decreases strongly with lowering the adatom content in the supercell calculations. This is in contrast to the top and bridge positions. We conclude our study with a comparison to models of pointlike vacancies and strong midgap scatterers. The latter model gives rise to significantly higher momentum relaxation rates than caused by single adatoms.
Carbon Nanotube Field Emission Arrays
2011-06-01
K , and M [14]. Using the tight binding energy model, the energy dispersion relations for graphene can be calculated for the triangle formed from...The corresponding reciprocal lattice vectors, b1 and b2, and Brillouin zone of graphene [14]. 19 graphene band structure is the six K ...points where the two bands are degenerate and the Fermi level passes. It has been shown through thorough calculations that at T = 0 K , the density
Cross section measurements of radiative KL2,3 RRS in 24Cr and L3M4,5 RRS in 59Pr for Mn Kα1,2 X-rays
NASA Astrophysics Data System (ADS)
Sharma, Veena; Upmanyu, Arun; Singh, Ranjit; Singh, Gurjot; Sharma, Hitesh; Kumar, Sanjeev; Mehta, D.
2017-06-01
The KL2,3 and L3M4,5 radiative resonant Raman scattering (RRS) cross sections have been measured for the quasimonochromatic Mn Kα1,2 X-rays (5.895 keV) in 24Cr (K-shell level width (ΓK) =1.08 eV) and 59 Pr (L3-subshell level width (ΓL3) =3.60 eV), respectively, using targets in metallic and various chemical forms. The incident Mn Kα1,2 X-ray energy is lower than the K-shell binding energy of 24Cr and L3-subshell binding energy of 59Pr by 94 ΓK (Cr) and 94 ΓL3 (Pr), respectively. The experimental measurements were performed with a low energy Ge detector (LEGe) and a radioactive 55Fe annular source in conjunction with 24Cr absorber. The measured cross section values for the 24Cr and 59 Pr elements in their various oxidation states are found to be same within experimental errors. The measurements were further extended to investigate alignment of the intermediate L3-subshell (J =3/2) virtual vacancy states in 59Pr through angular distribution measurements for RRS photon emission, which is found to be isotropic within experimental errors.
Sharifi, Tayebeh; Ghayeb, Yousef
2018-05-01
Peroxisome proliferator-activated receptors (PPARs) compose a family of nuclear receptors, PPARα, PPARβ, and PPARγ, which mediate the effects of lipidic ligands at the transcriptional level. Among these, the PPARγ has been known to regulate adipocyte differentiation, fatty acid storage and glucose metabolism, and is a target of antidiabetic drugs. In this work, the interactions between PPARγ and its six known antagonists were investigated using computational methods such as molecular docking, molecular dynamics (MD) simulations, and the hybrid quantum mechanics/molecular mechanics (QM/MM). The binding energies evaluated by molecular docking varied between -22.59 and -35.15 kJ mol - 1 . In addition, MD simulations were performed to investigate the binding modes and PPARγ conformational changes upon binding of antagonists. Analysis of the root-mean-square fluctuations (RMSF) of backbone atoms shows that H3 of PPARγ has a higher mobility in the absence of antagonists and moderate conformational changes were observed. The interaction energies between antagonists and each PPARγ residue involved in the interactions were studied by QM/MM calculations. These calculations reveal that antagonists with different structures show different interaction energies with the same residue of PPARγ. Therefore, it can be concluded that the key residues vary depending on the structure of the ligand, which binds to PPARγ.
NASA Astrophysics Data System (ADS)
Yoo, Soohaeng; Shao, Nan; Zeng, X. C.
2009-10-01
We report improved results of lowest-lying silicon clusters Si 30-Si 38. A large population of low-energy clusters are collected from previous searches by several research groups and the binding energies of these clusters are computed using density-functional theory (DFT) methods. Best candidates (isomers with high binding energies) are identified from the screening calculations. Additional constrained search is then performed for the best candidates using the basin-hopping method combined with DFT geometry optimization. The obtained low-lying clusters are classified according to binding energies computed using either the Perdew-Burke-Ernzerhof (PBE) functional or the Becke exchange and Lee-Yang-Parr correlation (BLYP) functional. We propose to rank low-lying clusters according to the mean PBE/BLYP binding energies in view that the PBE functional tends to give greater binding energies for more compact clusters whereas the BLYP functional tends to give greater binding energies for less compact clusters or clusters composed of small-sized magic-number clusters. Except for Si 30, the new search confirms again that medium-size silicon clusters Si 31-Si 38 constructed with proper fullerene cage motifs are most promising to be the lowest-energy structures.
NASA Astrophysics Data System (ADS)
Chen, Chang Pang; Ong, Bin Leong; Ong, Sheau Wei; Ong, Weijie; Tan, Hui Ru; Chai, Jian Wei; Zhang, Zheng; Wang, Shi Jie; Pan, Ji Sheng; Harrison, Leslie John; Kang, Hway Chuan; Tok, Eng Soon
2017-10-01
Room temperature growth of HfO2 thin film on clean 2H-MoS2 via plasma-sputtering of Hf-metal target in an argon/oxygen environment was studied in-situ using x-ray photoelectron spectroscopy (XPS). The deposited film was observed to grow akin to a layer-by-layer growth mode. At the onset of growth, a mixture of sulfate- and sulfite-like species (SOx2- where x = 3, 4), and molybdenum trioxide (MoO3), are formed at the HfO2/MoS2 interface. An initial decrease in binding energies for both Mo 3d and S 2p core-levels of the MoS2 substrate by 0.4 eV was also observed. Their binding energies, however, did not change further with increasing HfO2 thickness. There was no observable change in the Hf4f core-level binding energy throughout the deposition process. With increasing HfO2 deposition, MoO3 becomes buried at the interface while SOx2- was observed to be present in the film. The shift of 0.4 eV for both Mo 3d and S 2p core-levels of the MoS2 substrate can be attributed to a charge transfer from the substrate to the MoO3/SOx2--like interface layer. Consequently, the Type I heterojunction valence band offset (conduction band offset) becomes 1.7 eV (2.9 eV) instead of 1.3 eV (3.3 eV) expected from considering the bulk HfO2 and MoS2 valence band offset (conduction band offset). The formation of these states and its influence on band offsets will need to be considered in their device applications.
Zhang, Baofeng; D'Erasmo, Michael P; Murelli, Ryan P; Gallicchio, Emilio
2016-09-30
We report the results of a binding free energy-based virtual screening campaign of a library of 77 α-hydroxytropolone derivatives against the challenging RNase H active site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus-1. Multiple protonation states, rotamer states, and binding modalities of each compound were individually evaluated. The work involved more than 300 individual absolute alchemical binding free energy parallel molecular dynamics calculations and over 1 million CPU hours on national computing clusters and a local campus computational grid. The thermodynamic and structural measures obtained in this work rationalize a series of characteristics of this system useful for guiding future synthetic and biochemical efforts. The free energy model identified key ligand-dependent entropic and conformational reorganization processes difficult to capture using standard docking and scoring approaches. Binding free energy-based optimization of the lead compounds emerging from the virtual screen has yielded four compounds with very favorable binding properties, which will be the subject of further experimental investigations. This work is one of the few reported applications of advanced-binding free energy models to large-scale virtual screening and optimization projects. It further demonstrates that, with suitable algorithms and automation, advanced-binding free energy models can have a useful role in early-stage drug-discovery programs.
Energy balance, insulin-resistance biomarkers and breast cancer risk
Fair, Alecia Malin; Dai, Qi; Shu, Xiao-Ou; Matthews, Charles E.; Yu, Herbert; Jin, Fan; Gao, Yu-Tang; Zheng, Wei
2007-01-01
Background American women are five times more likely to be at risk for breast cancer than women from Asian countries. Epidemiologic studies have linked energy balance to an increased risk of breast cancer, yet few studies have investigated potential mediators of this association with Chinese women. We examined the above association by blood levels of insulin-like growth factors, binding proteins, and C-peptide in the Shanghai Breast Cancer Study (SBCS), a case-control study conducted among 1459 breast cancer cases and 1556 healthy Chinese women from 1996 and 1998. Methods In-person surveys were used to collect data on energy intake, anthropometric measures, exercise/sport activity, and occupational activity. The present analyses consisted of 397 cases and 397 controls whose blood samples were measured for levels of insulin-like growth factors ( IGFs), insulin growth-factor binding protein 3, (IGFBP-3) C-peptide and the relationship with physical activity status, total energy intake, and body fat distribution. Results Body mass index [BMI] and waist-to-hip ratio [WHR] were significantly positively correlated with IGFBP-3 and C-peptide. Adult exercise/sport activity was significantly negatively correlated with insulin-like growth factor 1(IGF-I). C-peptide levels increased with increasing quartiles of WHR (p for trend <0.01). Additional analyses were performed to evaluate whether the association of energy balance measures with breast cancer risk changed after adjustment for IGFs, IGFBP-3 and C-peptide biomarkers. The associations attenuated, but none of them changed substantially. Conclusions Insulin resistance biomarkers may partially explain the association between positive energy balance and breast cancer risk, but future studies are needed to identify the underlying complex biological mechanisms of action for breast cancer prevention. PMID:17646056
Extended Fenske-Hall LCAO MO calculations of core-level shifts in solid P compounds
NASA Astrophysics Data System (ADS)
Franke, R.; Chassé, T.; Reinhold, J.; Streubel, P.; Szargan, R.
1997-08-01
Extended Fenske-Hall LCAO-MO ΔSCF calculations on solids modelled as H-pseudoatom saturated clusters are reported. The computational results verify the experimentally obtained initial-state (effective atomic charges, Madelung potential) and relaxation-energy contributions to the XPS phosphorus core-level binding energy shifts measured in Na 3PO 3S, Na 3PO 4, Na 2PO 3F and NH 4PF 6 in reference to red phosphorus. It is shown that the different initial-state contributions observed in the studied phosphates are determined by local and nonlocal terms while the relaxation-energy contributions are mainly dependent on the nature of the nearest neighbors of the phosphorus atom.
Binding free energy analysis of protein-protein docking model structures by evERdock.
Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio
2018-03-14
To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.
Binding free energy analysis of protein-protein docking model structures by evERdock
NASA Astrophysics Data System (ADS)
Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio
2018-03-01
To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.
A Comprehensive Docking and MM/GBSA Rescoring Study of Ligand Recognition upon Binding Antithrombin
Zhang, Xiaohua; Perez-Sanchez, Horacio; C. Lightstone, Felice
2017-04-06
A high-throughput virtual screening pipeline has been extended from single energetically minimized structure Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring to ensemble-average MM/GBSA rescoring. The correlation coefficient (R2) of calculated and experimental binding free energies for a series of antithrombin ligands has been improved from 0.36 to 0.69 when switching from the single-structure MM/GBSA rescoring to ensemble-average one. The electrostatic interactions in both solute and solvent are identified to play an important role in determining the binding free energy after the decomposition of the calculated binding free energy. Furthermore, the increasing negative charge of the compounds provides a more favorablemore » electrostatic energy change but creates a higher penalty for the solvation free energy. Such a penalty is compensated by the electrostatic energy change, which results in a better binding affinity. A highly hydrophobic ligand is determined by the docking program to be a non-specific binder. Finally, these results have demonstrated that it is very important to keep a few top poses for rescoring, if the binding is non-specific or the binding mode is not well determined by the docking calculation.« less
A Comprehensive Docking and MM/GBSA Rescoring Study of Ligand Recognition upon Binding Antithrombin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaohua; Perez-Sanchez, Horacio; C. Lightstone, Felice
A high-throughput virtual screening pipeline has been extended from single energetically minimized structure Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring to ensemble-average MM/GBSA rescoring. The correlation coefficient (R2) of calculated and experimental binding free energies for a series of antithrombin ligands has been improved from 0.36 to 0.69 when switching from the single-structure MM/GBSA rescoring to ensemble-average one. The electrostatic interactions in both solute and solvent are identified to play an important role in determining the binding free energy after the decomposition of the calculated binding free energy. Furthermore, the increasing negative charge of the compounds provides a more favorablemore » electrostatic energy change but creates a higher penalty for the solvation free energy. Such a penalty is compensated by the electrostatic energy change, which results in a better binding affinity. A highly hydrophobic ligand is determined by the docking program to be a non-specific binder. Finally, these results have demonstrated that it is very important to keep a few top poses for rescoring, if the binding is non-specific or the binding mode is not well determined by the docking calculation.« less
First Principles Electronic Structure of Mn doped GaAs, GaP, and GaN Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulthess, Thomas C; Temmerman, Walter M; Szotek, Zdzislawa
We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extractingmore » binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avilov, V. I.; Ageev, O. A.; Konoplev, B. G.
2016-05-15
The results of experimental studies of the phase composition of oxide nanostructures formed by the local anodic oxidation of a titanium thin film are reported. The data of the phase analysis of titanium-oxide nanostructures are obtained by X-ray photoelectron spectroscopy in the ion profiling mode of measurements. It is established that the surface of titanium-oxide nanostructures 4.5 ± 0.2 nm in height possesses a binding energy of core levels characteristic of TiO{sub 2} (458.4 eV). By analyzing the titanium-oxide nanostructures in depth by X-ray photoelectron spectroscopy, the formation of phases with binding energies of core levels characteristic of Ti{sub 2}O{submore » 3} (456.6 eV) and TiO (454.8 eV) is established. The results can be used in developing the technological processes of the formation of a future electronic-component base for nanoelectronics on the basis of titanium-oxide nanostructures and probe nanotechnologies.« less
Computational Design of Ligand Binding Proteins with High Affinity and Selectivity
Dou, Jiayi; Doyle, Lindsey; Nelson, Jorgen W.; Schena, Alberto; Jankowski, Wojciech; Kalodimos, Charalampos G.; Johnsson, Kai; Stoddard, Barry L.; Baker, David
2014-01-01
The ability to design proteins with high affinity and selectivity for any given small molecule would have numerous applications in biosensing, diagnostics, and therapeutics, and is a rigorous test of our understanding of the physiochemical principles that govern molecular recognition phenomena. Attempts to design ligand binding proteins have met with little success, however, and the computational design of precise molecular recognition between proteins and small molecules remains an “unsolved problem”1. We describe a general method for the computational design of small molecule binding sites with pre-organized hydrogen bonding and hydrophobic interfaces and high overall shape complementary to the ligand, and use it to design protein binding sites for the steroid digoxigenin (DIG). Of 17 designs that were experimentally characterized, two bind DIG; the highest affinity design has the lowest predicted interaction energy and the most pre-organized binding site in the set. A comprehensive binding-fitness landscape of this design generated by library selection and deep sequencing was used to guide optimization of binding affinity to a picomolar level, and two X-ray co-crystal structures of optimized complexes show atomic level agreement with the design models. The designed binder has a high selectivity for DIG over the related steroids digitoxigenin, progesterone, and β-estradiol, which can be reprogrammed through the designed hydrogen-bonding interactions. Taken together, the binding fitness landscape, co-crystal structures, and thermodynamic binding parameters illustrate how increases in binding affinity can result from distal sequence changes that limit the protein ensemble to conformers making the most energetically favorable interactions with the ligand. The computational design method presented here should enable the development of a new generation of biosensors, therapeutics, and diagnostics. PMID:24005320
Choi, Chang Min; Heo, Jiyoung; Kim, Nam Joon
2012-08-08
Dibenzo-18-crown-6 (DB18C6) exhibits the binding selectivity for alkali metal cations in solution phase. In this study, we investigate the main forces that determine the binding selectivity of DB18C6 for the metal cations in aqueous solution using the density functional theory (DFT) and the conductor-like polarizable continuum model (CPCM). The bond dissociation free energies (BDFE) of DB18C6 complexes with alkali metal cations (M+-DB18C6, M = Li, Na, K, Rb, and Cs) in aqueous solution are calculated at the B3LYP/6-311++G(d,p)//B3LYP/6-31 + G(d) level using the CPCM. It is found that the theoretical BDFE is the largest for K+-DB18C6 and decreases as the size of the metal cation gets larger or smaller than that of K+, which agrees well with previous experimental results. The solvation energy of M+-DB18C6 in aqueous solution plays a key role in determining the binding selectivity of DB18C6. In particular, the non-electrostatic dispersion interaction between the solute and solvent, which depends strongly on the complex structure, is largely responsible for the different solvation energies of M+-DB18C6. This study shows that the implicit solvation model like the CPCM works reasonably well in predicting the binding selectivity of DB18C6 in aqueous solution.
Jiang, Wei; Luo, Yun; Maragliano, Luca; Roux, Benoît
2012-11-13
An extremely scalable computational strategy is described for calculations of the potential of mean force (PMF) in multidimensions on massively distributed supercomputers. The approach involves coupling thousands of umbrella sampling (US) simulation windows distributed to cover the space of order parameters with a Hamiltonian molecular dynamics replica-exchange (H-REMD) algorithm to enhance the sampling of each simulation. In the present application, US/H-REMD is carried out in a two-dimensional (2D) space and exchanges are attempted alternatively along the two axes corresponding to the two order parameters. The US/H-REMD strategy is implemented on the basis of parallel/parallel multiple copy protocol at the MPI level, and therefore can fully exploit computing power of large-scale supercomputers. Here the novel technique is illustrated using the leadership supercomputer IBM Blue Gene/P with an application to a typical biomolecular calculation of general interest, namely the binding of calcium ions to the small protein Calbindin D9k. The free energy landscape associated with two order parameters, the distance between the ion and its binding pocket and the root-mean-square deviation (rmsd) of the binding pocket relative the crystal structure, was calculated using the US/H-REMD method. The results are then used to estimate the absolute binding free energy of calcium ion to Calbindin D9k. The tests demonstrate that the 2D US/H-REMD scheme greatly accelerates the configurational sampling of the binding pocket, thereby improving the convergence of the potential of mean force calculation.
On binding energy of trions in bulk materials
NASA Astrophysics Data System (ADS)
Filikhin, Igor; Kezerashvili, Roman Ya.; Vlahovic, Branislav
2018-03-01
We study the negatively T- and positively T+ charged trions in bulk materials in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing Faddeev equation in configuration space. Results of calculations of the binding energies for T- are consistent with previous computational studies and are in reasonable agreement with experimental measurements, while the T+ is unbound for all considered cases. The mechanism of formation of the binding energy of trions is analyzed by comparing contributions of a mass-polarization term related to kinetic energy operators and a term related to the Coulomb repulsion of identical particles.
Xie, Bing; Nguyen, Trung Hai; Minh, David D. L.
2017-01-01
We demonstrate the feasibility of estimating protein-ligand binding free energies using multiple rigid receptor configurations. Based on T4 lysozyme snapshots extracted from six alchemical binding free energy calculations with a flexible receptor, binding free energies were estimated for a total of 141 ligands. For 24 ligands, the calculations reproduced flexible-receptor estimates with a correlation coefficient of 0.90 and a root mean square error of 1.59 kcal/mol. The accuracy of calculations based on Poisson-Boltzmann/Surface Area implicit solvent was comparable to previously reported free energy calculations. PMID:28430432
NASA Astrophysics Data System (ADS)
Eid, Sameh; Saleh, Noureldin; Zalewski, Adam; Vedani, Angelo
2014-12-01
Carbohydrates play a key role in a variety of physiological and pathological processes and, hence, represent a rich source for the development of novel therapeutic agents. Being able to predict binding mode and binding affinity is an essential, yet lacking, aspect of the structure-based design of carbohydrate-based ligands. We assembled a diverse data set comprising 273 carbohydrate-protein crystal structures with known binding affinity and evaluated the prediction accuracy of a large collection of well-established scoring and free-energy functions, as well as combinations thereof. Unfortunately, the tested functions were not capable of reproducing binding affinities in the studied complexes. To simplify the complex free-energy surface of carbohydrate-protein systems, we classified the studied proteins according to the topology and solvent exposure of the carbohydrate-binding site into five distinct categories. A free-energy model based on the proposed classification scheme reproduced binding affinities in the carbohydrate data set with an r 2 of 0.71 and root-mean-squared-error of 1.25 kcal/mol ( N = 236). The improvement in model performance underlines the significance of the differences in the local micro-environments of carbohydrate-binding sites and demonstrates the usefulness of calibrating free-energy functions individually according to binding-site topology and solvent exposure.
Magneto-electronic properties of graphene nanoribbons in the spatially modulated electric field
NASA Astrophysics Data System (ADS)
Chen, S. C.; Wang, T. S.; Lee, C. H.; Lin, M. F.
2008-09-01
The Peierls tight-binding model with the nearest-neighbor interactions is used to calculate the magneto-electronic structure of graphene nanoribbons under a spatially modulated electric field along the y-axis. A uniform perpendicular magnetic field could make energy dispersions change into the quasi-Landau levels. Such levels are composed of the dispersionless and parabolic energy bands. A spatially modulated electric field would further induce a lot of oscillating parabolic bands with several band-edge states. It drastically modifies energy dispersions, alters subband spacings, destroys symmetry of energy spectrum about k=0, and changes features of band-edge states (number and energy). The above-mentioned magneto-electronic structures are directly reflected in density of states (DOS). The modulation effect changes shape, number, positions, and intensities of peaks in DOS. The predicted result could be tested by the optical measurements.
NASA Astrophysics Data System (ADS)
Richter, J. H.; Karlsson, P. G.; Sandell, A.
2008-05-01
A TiO2-ZrO2 film with laterally graded stoichiometry has been prepared by metal-organic chemical vapor deposition in ultrahigh vacuum. The film was characterized in situ using synchrotron radiation photoelectron spectroscopy (PES) and x-ray absorption spectroscopy. PES depth profiling clearly shows that Ti ions segregate toward the surface region when mixed with ZrO2. The binding energy of the ZrO2 electronic levels is constant with respect to the local vacuum level. The binding energy of the TiO2 electronic levels is aligned to the Fermi level down to a Ti /Zr ratio of about 0.5. At a Ti /Zr ratio between 0.1 and 0.5, the TiO2 related electronic levels become aligned to the local vacuum level. The addition of small amounts of TiO2 to ZrO2 results in a ZrO2 band alignment relative to the Fermi level that is less asymmetric than for pure ZrO2. The band edge positions shift by -0.6eV for a Ti /Zr ratio of 0.03. This is explained in terms of an increase in the work function when adding TiO2, an effect that becomes emphasized by Ti surface segregation.
Tsai, Ya-Hui; Wang, Ting-Wen; Wei, Hsiao-Jui; Hsu, Chien-Yeh; Ho, Hsin-Jung; Chen, Wen-Hua; Young, Robert; Liaw, Chian-Mey; Chao, Jane C-J
2013-06-28
The present study investigated dietary intake, glucose metabolism and sex hormones in women with polycystic ovary syndrome (PCOS). A total of forty-five women (aged 25–40 years) with PCOS and 161 control women (aged 25–43 years) with non-PCOS-related infertility were recruited. Anthropometry, glucose tolerance and sex hormones were determined and dietary intake was assessed. Women with PCOS had lower serum sex hormone-binding globulin and increased BMI, waist:hip ratio, luteinising hormone, ratio of luteinising hormone: follicle-stimulating hormone, testosterone and free androgen index (FAI). Postprandial glucose, fasting insulin and insulin resistance were elevated in women with PCOS. Women with PCOS had reduced energy and carbohydrate intake but higher fat intake. Serum sex hormone-binding globulin level was negatively associated with BMI in both groups and negatively correlated with macronutrient intake in the PCOS group with hyperandrogenism. However, FAI was positively correlated with BMI, waist circumference and glucose metabolic parameters in both groups. Therefore, women with PCOS consume lower energy and carbohydrate compared with those with non-PCOS-related infertility and macronutrient intake is only negatively associated with serum sex hormone-binding globulin level in the PCOS group with hyperandrogenism.
Molecular Determinants of Epidermal Growth Factor Binding: A Molecular Dynamics Study
Sanders, Jeffrey M.; Wampole, Matthew E.; Thakur, Mathew L.; Wickstrom, Eric
2013-01-01
The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF ligands or the receptor itself. PMID:23382875
Allosteric Ligand Binding and Anisotropic Energy Flow in Albumin
NASA Astrophysics Data System (ADS)
Dyer, Brian
2014-03-01
Protein allostery usually involves propagation of local structural changes through the protein to a remote site. Coupling of structural changes at remote sites is thought to occur through anisotropic energy transport, but the nature of this process is poorly understood. We have studied the relationship between allosteric interactions of remote ligand binding sites of the protein and energy flow through the structure of bovine serum albumin (BSA). We applied ultrafast infrared spectroscopy to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic flow through the protein structure following input of thermal energy into the flexible ligand binding sites. We also observe anisotropic heat flow through the structure, without local heating of the rigid helix bundles that connect these sites. We will discuss the implications of this efficient energy transport mechanism with regard to the allosteric propagation of binding energy through the connecting helix structures.
Funnel metadynamics as accurate binding free-energy method
Limongelli, Vittorio; Bonomi, Massimiliano; Parrinello, Michele
2013-01-01
A detailed description of the events ruling ligand/protein interaction and an accurate estimation of the drug affinity to its target is of great help in speeding drug discovery strategies. We have developed a metadynamics-based approach, named funnel metadynamics, that allows the ligand to enhance the sampling of the target binding sites and its solvated states. This method leads to an efficient characterization of the binding free-energy surface and an accurate calculation of the absolute protein–ligand binding free energy. We illustrate our protocol in two systems, benzamidine/trypsin and SC-558/cyclooxygenase 2. In both cases, the X-ray conformation has been found as the lowest free-energy pose, and the computed protein–ligand binding free energy in good agreement with experiments. Furthermore, funnel metadynamics unveils important information about the binding process, such as the presence of alternative binding modes and the role of waters. The results achieved at an affordable computational cost make funnel metadynamics a valuable method for drug discovery and for dealing with a variety of problems in chemistry, physics, and material science. PMID:23553839
Single molecule junction conductance and binding geometry
NASA Astrophysics Data System (ADS)
Kamenetska, Maria
This Thesis addresses the fundamental problem of controlling transport through a metal-organic interface by studying electronic and mechanical properties of single organic molecule-metal junctions. Using a Scanning Tunneling Microscope (STM) we image, probe energy-level alignment and perform STM-based break junction (BJ) measurements on molecules bound to a gold surface. Using Scanning Tunneling Microscope-based break-junction (STM-BJ) techniques, we explore the effect of binding geometry on single-molecule conductance by varying the structure of the molecules, metal-molecule binding chemistry and by applying sub-nanometer manipulation control to the junction. These experiments are performed both in ambient conditions and in ultra high vacuum (UHV) at cryogenic temperatures. First, using STM imaging and scanning tunneling spectroscopy (STS) measurements we explore binding configurations and electronic properties of an amine-terminated benzene derivative on gold. We find that details of metal-molecule binding affect energy-level alignment at the interface. Next, using the STM-BJ technique, we form and rupture metal-molecule-metal junctions ˜104 times to obtain conductance-vs-extension curves and extract most likely conductance values for each molecule. With these measurements, we demonstrated that the control of junction conductance is possible through a choice of metal-molecule binding chemistry and sub-nanometer positioning. First, we show that molecules terminated with amines, sulfides and phosphines bind selectively on gold and therefore demonstrate constant conductance levels even as the junction is elongated and the metal-molecule attachment point is modified. Such well-defined conductance is also obtained with paracyclophane molecules which bind to gold directly through the pi system. Next, we are able to create metal-molecule-metal junctions with more than one reproducible conductance signatures that can be accessed by changing junction geometry. In the case of pyridine-linked molecules, conductance can be reliably switched between two distinct conductance states using sub-nanometer mechanical manipulation. Using a methyl sulfide linker attached to an oligoene backbone, we are able to create a 3-nm-long molecular potentiometer, whose resistance can be tuned exponentially with Angstom-scale modulations in metal-molecule configuration. These experiments points to a new paradigm for attaining reproducible electrical characteristics of metal-organic devices which involves controlling linker-metal chemistry rather than fabricating identically structured metal-molecule interfaces. By choosing a linker group which is either insensitive to or responds reproducibly to changes in metal-molecule configuration, one can design single molecule devices with functionality more complex than a simple resistor. These ambient temperature experiments were combined with UHV conductance measurements performed in a commercial STM on amine-terminated benzene derivatives which conduct through a non-resonant tunneling mechanism, at temperatures varying from 5 to 300 Kelvin. Our results indicate that while amine-gold binding remains selective irrespective of environment, conductance is not temperature independent, in contrast to what is expected for a tunneling mechanism. Furthermore, using temperature-dependent measurements in ambient conditions we find that HOMO-conducting amines and LUMO-conducting pyridines show opposite dependence of conductance on temperature. These results indicate that energy-level alignment between the molecule and the electrodes changes as a result of varying electrode structure at different temperatures. We find that temperature can serve as a knob with which to tune transport properties of single molecule-metal junctions.
Taylor, Cooper A; Miller, Bill R; Shah, Soleil S; Parish, Carol A
2017-02-01
Mutations in the amyloid precursor protein (APP) are responsible for the formation of amyloid-β peptides. These peptides play a role in Alzheimer's and other dementia-related diseases. The cargo binding domain of the kinesin-1 light chain motor protein (KLC1) may be responsible for transporting APP either directly or via interaction with C-jun N-terminal kinase-interacting protein 1 (JIP1). However, to date there has been no direct experimental or computational assessment of such binding at the atomistic level. We used molecular dynamics and free energy estimations to gauge the affinity for the binary complexes of KLC1, APP, and JIP1. We find that all binary complexes (KLC1:APP, KLC1:JIP1, and APP:JIP1) contain conformations with favorable binding free energies. For KLC1:APP the inclusion of approximate entropies reduces the favorability. This is likely due to the flexibility of the 42-residue APP protein. In all cases we analyze atomistic/residue driving forces for favorable interactions. Proteins 2017; 85:221-234. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Crespo, Alejandro; Rodriguez-Granillo, Agustina; Lim, Victoria T
2017-01-01
The development and application of quantum mechanics (QM) methodologies in computer- aided drug design have flourished in the last 10 years. Despite the natural advantage of QM methods to predict binding affinities with a higher level of theory than those methods based on molecular mechanics (MM), there are only a few examples where diverse sets of protein-ligand targets have been evaluated simultaneously. In this work, we review recent advances in QM docking and scoring for those cases in which a systematic analysis has been performed. In addition, we introduce and validate a simplified QM/MM expression to compute protein-ligand binding energies. Overall, QMbased scoring functions are generally better to predict ligand affinities than those based on classical mechanics. However, the agreement between experimental activities and calculated binding energies is highly dependent on the specific chemical series considered. The advantage of more accurate QM methods is evident in cases where charge transfer and polarization effects are important, for example when metals are involved in the binding process or when dispersion forces play a significant role as in the case of hydrophobic or stacking interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Enzyme activation through the utilization of intrinsic dianion binding energy.
Amyes, T L; Malabanan, M M; Zhai, X; Reyes, A C; Richard, J P
2017-03-01
We consider 'the proposition that the intrinsic binding energy that results from the noncovalent interaction of a specific substrate with the active site of the enzyme is considerably larger than is generally believed. An important part of this binding energy may be utilized to provide the driving force for catalysis, so that the observed binding energy represents only what is left over after this utilization' [Jencks,W.P. (1975) Adv. Enzymol. Relat. Areas. Mol. Biol. , , 219-410]. The large ~12 kcal/mol intrinsic substrate phosphodianion binding energy for reactions catalyzed by triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase and glycerol-3-phosphate dehydrogenase is divided into 4-6 kcal/mol binding energy that is expressed on the formation of the Michaelis complex in anchoring substrates to the respective enzyme, and 6-8 kcal/mol binding energy that is specifically expressed at the transition state in activating the respective enzymes for catalysis. A structure-based mechanism is described where the dianion binding energy drives a conformational change that activates these enzymes for catalysis. Phosphite dianion plays the active role of holding TIM in a high-energy closed active form, but acts as passive spectator in showing no effect on transition-state structure. The result of studies on mutant enzymes is presented, which support the proposal that the dianion-driven enzyme conformational change plays a role in enhancing the basicity of side chain of E167, the catalytic base, by clamping the base between a pair of hydrophobic side chains. The insight these results provide into the architecture of enzyme active sites and the development of strategies for the de novo design of protein catalysts is discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Gallicchio, Emilio
2012-01-01
The results of computer simulations of the binding of etravirine (TMC125) and rilpivirine (TMC278) to HIV reverse transcriptase are reported. It is confirmed that consistent binding free energy estimates are obtained with or without the application of torsional restraints when the free energies of imposing the restraints are taken into account. The restraints have a smaller influence on the thermodynamics and apparent kinetics of binding of TMC125 compared to the more flexible TMC278 inhibitor. The concept of the reorganization free energy of binding is useful to understand and categorize these effects. Contrary to expectations, the use of conformational restraints did not consistently enhance convergence of binding free energy estimates due to suppression of binding/unbinding pathways and due to the influence of rotational degrees of freedom not directly controlled by the restraints. Physical insights concerning the thermodynamic driving forces for binding and the role of “jiggling” and “wiggling” motion of the ligands are discussed. Based on these insights we conclude that an ideal inhibitor, if chemically realizable, would possess the electrostatic charge distribution of TMC125, so as to form strong interactions with the receptor, and the larger and more flexible substituents of TMC278, so as to minimize reorganization free energy penalties and the effects of resistance mutations, suitably modified, as in TMC125, so as to disfavor the formation of non-binding competent extended conformations when free in solution. PMID:22708073
Leptin and Hormones: Energy Homeostasis.
Triantafyllou, Georgios A; Paschou, Stavroula A; Mantzoros, Christos S
2016-09-01
Leptin, a 167 amino acid adipokine, plays a major role in human energy homeostasis. Its actions are mediated through binding to leptin receptor and activating JAK-STAT3 signal transduction pathway. It is expressed mainly in adipocytes, and its circulating levels reflect the body's energy stores in adipose tissue. Recombinant methionyl human leptin has been FDA approved for patients with generalized non-HIV lipodystrophy and for compassionate use in subjects with congenital leptin deficiency. The purpose of this review is to outline the role of leptin in energy homeostasis, as well as its interaction with other hormones. Copyright © 2016 Elsevier Inc. All rights reserved.
2014-01-01
Background Binding free energy and binding hot spots at protein-protein interfaces are two important research areas for understanding protein interactions. Computational methods have been developed previously for accurate prediction of binding free energy change upon mutation for interfacial residues. However, a large number of interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss. Results This work proposes a new method, βACV ASA , to predict the change of binding free energy after alanine mutations. βACV ASA integrates accessible surface area (ASA) and our newly defined β contacts together into an atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396 alanine mutations, our method is found to be superior in classification performance to many other methods, including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACV ASA methods (similar to βACV ASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation; (ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces; (iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a necessary condition for a residue to become a binding hot spot. Conclusions βACV ASA is designed using the advantages of both β contacts and water exclusion. It is an excellent tool to predict binding free energy changes and binding hot spots after alanine mutation. PMID:24568581
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Jungki; Perera, Lalith; Krahn, Juno M.
ABSTRACT Glucocorticoid receptor β (GRβ) is associated with glucocorticoid resistance via dominant negative regulation of GRα. To better understand how GRβ functions as a dominant negative inhibitor of GRα at a molecular level, we determined the crystal structure of the ligand binding domain of GRβ complexed with the antagonist RU-486. The structure reveals that GRβ binds RU-486 in the same ligand binding pocket as GRα, and the unique C-terminal amino acids of GRβ are mostly disordered. Binding energy analysis suggests that these C-terminal residues of GRβ do not contribute to RU-486 binding. Intriguingly, the GRβ/RU-486 complex binds corepressor peptide withmore » affinity similar to that of a GRα/RU-486 complex, despite the lack of helix 12. Our biophysical and biochemical analyses reveal that in the presence of RU-486, GRβ is found in a conformation that favors corepressor binding, potentially antagonizing GRα function. This study thus presents an unexpected molecular mechanism by which GRβ could repress transcription.« less
Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M
2016-09-01
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.
NASA Astrophysics Data System (ADS)
Deng, Nanjie; Flynn, William F.; Xia, Junchao; Vijayan, R. S. K.; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M.
2016-09-01
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.
Effects of the Hydroxyl Group on Phenyl Based Ligand/ERRγ Protein Binding
2015-01-01
Bisphenol-A (4,4′-dihydroxy-2,2-diphenylpropane, BPA, or BPA-A) and its derivatives, when exposed to humans, may affect functions of multiple organs by specific binding to the human estrogen-related receptor γ (ERRγ). We carried out atomistic molecular dynamics (MD) simulations of three ligand compounds including BPA-A, 4-α-cumylphenol (BPA-C), and 2,2-diphenylpropane (BPA-D) binding to the ligand binding domain (LBD) of a human ERRγ to study the structures and energies associated with the binding. We used the implicit Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method to estimate the free energies of binding for the phenyl based compound/ERRγ systems. The addition of hydroxyl groups to the aromatic ring had only a minor effect on binding structures and a significant effect on ligand/protein binding energy in an aqueous solution. Free binding energies of BPA-D to the ERRγ were found to be considerably less than those of BPA-A and BPA-C to the ERRγ. These results are well correlated with those from experiments where no binding affinities were determined in the BPA-D/ERRγ complex. No conformational change was observed for the helix 12 (H-12) of ERRγ upon binding of these compounds preserving an active transcriptional conformation state. PMID:25098505
Fragmentation cross sections and binding energies of neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Tsang, M. B.; Lynch, W. G.; Friedman, W. A.; Mocko, M.; Sun, Z. Y.; Aoi, N.; Cook, J. M.; Delaunay, F.; Famiano, M. A.; Hui, H.; Imai, N.; Iwasaki, H.; Motobayashi, T.; Niikura, M.; Onishi, T.; Rogers, A. M.; Sakurai, H.; Suzuki, H.; Takeshita, E.; Takeuchi, S.; Wallace, M. S.
2007-10-01
An exponential dependence of the fragmentation cross section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured cross sections. From the systematics of Cu isotope cross sections, the binding energies of Cu76,77,78,79 have been extracted. They are 636.94±0.4,647.1±0.4,651.6±0.4, and 657.8±0.5 MeV, respectively. Specifically, the uncertainty of the binding energy of Cu75 is reduced from 980 keV, as listed in the 2003 mass table of Audi, Wapstra, and Thibault to 400 keV. The predicted cross sections of two near drip-line nuclei, Na39 and Mg40 from the fragmentation of Ca48 are discussed.
Interactions of solute (3p, 4p, 5p and 6p) with solute, vacancy and divacancy in bcc Fe
NASA Astrophysics Data System (ADS)
You, Yu-Wei; Kong, Xiang-Shan; Wu, Xue-Bang; Liu, Wei; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.; Wang, Zhiguang
2014-12-01
Solute-vacancy binding energy is a key quantity in understanding solute diffusion kinetics and phase segregation, and may help choice of alloy compositions for future material design. However, the binding energy of solute with vacancy is notoriously difficult to measure and largely unknown in bcc Fe. With first-principles method, we systemically calculate the binding energies of solute (3p, 4p, 5p and 6p alloying solutes are included) with vacancy, divacancy and solute in bcc Fe. The binding energy of Si with vacancy in the present work is in good consistent with experimental value available. All the solutes considered are able to form stable solute-vacancy, solute-divacancy complexes, and the binding strength of solute-divacancy is about two times larger than that of solute-vacancy. Most solutes could not form stable solute-solute complexes except S, Se, In and Tl. The factors controlling the binding energies are analyzed at last.
Mass-number and excitation-energy dependence of the spin cutoff parameter
Grimes, S. M.; Voinov, A. V.; Massey, T. N.
2016-07-12
Here, the spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined through the spin projection as < J 2 z > 1/2 or equivalently for spherical nuclei, (< J(J+1) >/3) 1/2. It is needed to divide the total level density into levels as a function of J. To obtain the total level density at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonlymore » used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.« less
Quantum chemistry of the minimal CdSe clusters
NASA Astrophysics Data System (ADS)
Yang, Ping; Tretiak, Sergei; Masunov, Artëm E.; Ivanov, Sergei
2008-08-01
Colloidal quantum dots are semiconductor nanocrystals (NCs) which have stimulated a great deal of research and have attracted technical interest in recent years due to their chemical stability and the tunability of photophysical properties. While internal structure of large quantum dots is similar to bulk, their surface structure and passivating role of capping ligands (surfactants) are not fully understood to date. We apply ab initio wavefunction methods, density functional theory, and semiempirical approaches to study the passivation effects of substituted phosphine and amine ligands on the minimal cluster Cd2Se2, which is also used to benchmark different computational methods versus high level ab initio techniques. Full geometry optimization of Cd2Se2 at different theory levels and ligand coverage is used to understand the affinities of various ligands and the impact of ligands on cluster structure. Most possible bonding patterns between ligands and surface Cd/Se atoms are considered, including a ligand coordinated to Se atoms. The degree of passivation of Cd and Se atoms (one or two ligands attached to one atom) is also studied. The results suggest that B3LYP/LANL2DZ level of theory is appropriate for the system modeling, whereas frequently used semiempirical methods (such as AM1 and PM3) produce unphysical results. The use of hydrogen atom for modeling of the cluster passivating ligands is found to yield unphysical results as well. Hence, the surface termination of II-VI semiconductor NCs with hydrogen atoms often used in computational models should probably be avoided. Basis set superposition error, zero-point energy, and thermal corrections, as well as solvent effects simulated with polarized continuum model are found to produce minor variations on the ligand binding energies. The effects of Cd-Se complex structure on both the electronic band gap (highest occupied molecular orbital-lowest unoccupied molecular orbital energy difference) and ligand binding energies are systematically examined. The role played by positive charges on ligand binding is also explored. The calculated binding energies for various ligands L are found to decrease in the order OPMe3>OPH3>NH2Me>=NH3>=NMe3>PMe3>PH3 for neutral clusters and OPMe3>OPH3>PMe3>=NMe3>=NH2Me>=NH3>PH3 and OPMe3>OPH3>NH2Me>=NMe3>=PMe3>=NH3>PH3 for single and double ligations of positively charged Cd2Se22+ cluster, respectively.
Exciton binding energy in GaAsBiN spherical quantum dot heterostructures
NASA Astrophysics Data System (ADS)
Das, Subhasis; Dhar, S.
2017-03-01
The ground state exciton binding energies (EBE) of heavy hole excitons in GaAs1-x-yBixNy - GaAs spherical quantum dots (QD) are calculated using a variational approach under 1s hydrogenic wavefunctions within the framework of effective mass approximation. Both the nitrogen and the bismuth content in the material are found to affect the binding energy, in particular for larger nitrogen content and lower dot radii. Calculations also show that the ground state exciton binding energies of heavy holes increase more at smaller dot sizes as compared to that for the light hole excitons.
Payne, Christina M.; Bomble, Yannick J.; Taylor, Courtney B.; McCabe, Clare; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.
2011-01-01
Proteins employ aromatic residues for carbohydrate binding in a wide range of biological functions. Glycoside hydrolases, which are ubiquitous in nature, typically exhibit tunnels, clefts, or pockets lined with aromatic residues for processing carbohydrates. Mutation of these aromatic residues often results in significant activity differences on insoluble and soluble substrates. However, the thermodynamic basis and molecular level role of these aromatic residues remain unknown. Here, we calculate the relative ligand binding free energy by mutating tryptophans in the Trichoderma reesei family 6 cellulase (Cel6A) to alanine. Removal of aromatic residues near the catalytic site has little impact on the ligand binding free energy, suggesting that aromatic residues immediately upstream of the active site are not directly involved in binding, but play a role in the glucopyranose ring distortion necessary for catalysis. Removal of aromatic residues at the entrance and exit of the Cel6A tunnel, however, dramatically impacts the binding affinity, suggesting that these residues play a role in chain acquisition and product stabilization, respectively. The roles suggested from differences in binding affinity are confirmed by molecular dynamics and normal mode analysis. Surprisingly, our results illustrate that aromatic-carbohydrate interactions vary dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, these results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering strategies for biomass utilization. Generally, these results suggest that nature employs aromatic-carbohydrate interactions with a wide range of binding affinities for diverse functions. PMID:21965672
Ligand Binding Pathways and Conformational Transitions of the HIV Protease.
Miao, Yinglong; Huang, Yu-Ming M; Walker, Ross C; McCammon, J Andrew; Chang, Chia-En A
2018-03-06
It is important to determine the binding pathways and mechanisms of ligand molecules to target proteins to effectively design therapeutic drugs. Molecular dynamics (MD) is a promising computational tool that allows us to simulate protein-drug binding at an atomistic level. However, the gap between the time scales of current simulations and those of many drug binding processes has limited the usage of conventional MD, which has been reflected in studies of the HIV protease. Here, we have applied a robust enhanced simulation method, Gaussian accelerated molecular dynamics (GaMD), to sample binding pathways of the XK263 ligand and associated protein conformational changes in the HIV protease. During two of 10 independent GaMD simulations performed over 500-2500 ns, the ligand was observed to successfully bind to the protein active site. Although GaMD-derived free energy profiles were not fully converged because of insufficient sampling of the complex system, the simulations still allowed us to identify relatively low-energy intermediate conformational states during binding of the ligand to the HIV protease. Relative to the X-ray crystal structure, the XK263 ligand reached a minimum root-mean-square deviation (RMSD) of 2.26 Å during 2.5 μs of GaMD simulation. In comparison, the ligand RMSD reached a minimum of only ∼5.73 Å during an earlier 14 μs conventional MD simulation. This work highlights the enhanced sampling power of the GaMD approach and demonstrates its wide applicability to studies of drug-receptor interactions for the HIV protease and by extension many other target proteins.
Energetics of Glutamate Binding to an Ionotropic Glutamate Receptor.
Yu, Alvin; Lau, Albert Y
2017-11-22
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are responsible for the majority of excitatory transmission at the synaptic cleft. Mechanically speaking, agonist binding to the ligand binding domain (LBD) activates the receptor by triggering a conformational change that is transmitted to the transmembrane region, opening the ion channel pore. We use fully atomistic molecular dynamics simulations to investigate the binding process in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, an iGluR subtype. The string method with swarms of trajectories was applied to calculate the possible pathways glutamate traverses during ligand binding. Residues peripheral to the binding cleft are found to metastably bind the ligand prior to ligand entry into the binding pocket. Umbrella sampling simulations were performed to compute the free energy barriers along the binding pathways. The calculated free energy profiles demonstrate that metastable interactions contribute substantially to the energetics of ligand binding and form local minima in the overall free energy landscape. Protein-ligand interactions at sites outside of the orthosteric agonist-binding site may serve to lower the transition barriers of the binding process.
Comitani, Federico; Limongelli, Vittorio; Molteni, Carla
2016-07-12
Pentameric ligand-gated ion channels (pLGICs) of the Cys-loop superfamily are important neuroreceptors that mediate fast synaptic transmission. They are activated by the binding of a neurotransmitter, but the details of this process are still not fully understood. As a prototypical pLGIC, here we choose the insect resistance to dieldrin (RDL) receptor involved in resistance to insecticides and investigate the binding of the neurotransmitter GABA to its extracellular domain at the atomistic level. We achieve this by means of μ-sec funnel-metadynamics simulations, which efficiently enhance the sampling of bound and unbound states by using a funnel-shaped restraining potential to limit the exploration in the solvent. We reveal the sequence of events in the binding process from the capture of GABA from the solvent to its pinning between the charged residues Arg111 and Glu204 in the binding pocket. We characterize the associated free energy landscapes in the wild-type RDL receptor and in two mutant forms, where the key residues Arg111 and Glu204 are mutated to Ala. Experimentally these mutations produce nonfunctional channels, which is reflected in the reduced ligand binding affinities due to the loss of essential interactions. We also analyze the dynamical behavior of the crucial loop C, whose opening allows the access of GABA to the binding site and closure locks the ligand into the protein. The RDL receptor shares structural and functional features with other pLGICs; hence, our work outlines a valuable protocol to study the binding of ligands to pLGICs beyond conventional docking and molecular dynamics techniques.
On the contribution of vibrational anharmonicity to the binding energies of water clusters.
Diri, Kadir; Myshakin, Evgeniy M; Jordan, Kenneth D
2005-05-05
The second-order vibrational perturbation theory method has been used together with the B3LYP and MP2 electronic structure methods to investigate the effects of anharmonicity on the vibrational zero-point energy (ZPE) contributions to the binding energies of (H2O)n, n = 2-6, clusters. For the low-lying isomers of (H2O)6, the anharmonicity correction to the binding energy is calculated to range from -248 to -355 cm(-1). It is also demonstrated that although high-order electron correlation effects are important for the individual vibrational frequencies, they are relatively unimportant for the net ZPE contributions to the binding energies of water clusters.
The positive binding energy envelopes of low-mass helium stars
NASA Astrophysics Data System (ADS)
Hall, Philip D.; Jeffery, C. Simon
2018-04-01
It has been hypothesized that stellar envelopes with positive binding energy may be ejected if the release of recombination energy can be triggered and the calculation of binding energy includes this contribution. The implications of this hypothesis for the evolution of normal hydrogen-rich stars have been investigated, but the implications for helium stars - which may represent mass-transfer or merger remnants in binary star systems - have not. Making a set of model helium stars, we find that those with masses between 0.9 and 2.4 M⊙ evolve to configurations with positive binding energy envelopes. We discuss consequences of the ejection hypothesis for such stars, and possible observational tests of these predictions.
The volume- and surface-binding energies of ice systems containing CO, CO2, and H2O
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Allamandola, Louis J.
1990-01-01
Laboratory-measured, temperature-dependent sticking efficiencies are presently used to derive the surface-binding energies of CO and CO2 on H2O-rich ices, with a view to determining the condensation and vaporization properties of these systems as well as to the measured energies' implications for both cometary behavior and the evolution of interstellar ices. The molecular volume and the surface binding energies are not found to be necessarily related on the basis of simple nearest-neighbor scaling in surface and bulk sites; this may be due to the physical constraints associated with matrix structure-associated physical constraints, which sometimes dominate the volume-binding energies.
Hassan, Ayorinde; Dinadayalane, Tandabany C; Grabowski, Sławomir J; Leszczynski, Jerzy
2013-12-28
The effect of increasing the number of monocyclic six-membered rings or bicyclic rings of bicyclo[2.1.1]hexenyl fused to benzene on cation-π interactions involving alkali metal ions (Li(+), Na(+), and K(+)) has been investigated. The binding energy data at the B3LYP/6-311+G(2d,2p) level clearly indicate that the binding affinity of the metal ion with benzene is enhanced by increasing the number of rings fused irrespective of a monocyclic or a bicyclic ring. Calculated binding energies are in good agreement with the available experimental results. The binding strength of cations with ligands decreases in the order Li(+) > Na(+) > K(+). Our study establishes that trisannelation of bicyclo[2.1.1]hexene to benzene facilitates a very strong interaction between benzene and cations. Infrared (IR) frequencies and nuclear magnetic resonance (NMR) chemical shifts are shown to be valuable in characterizing cation-π interactions. The C-C bonds of the central six-membered rings are weakened due to metal ion binding. Based on the Quantum Theory of Atoms in Molecules (QTAIM), we have observed the presence of stabilizing H∙∙∙H interactions in two of the considered systems as opposed to the frequent description of these interactions as non-bonded repulsive interactions. Alkali metal ion binding with those two ligands slightly reduces the strength of such H∙∙∙H interactions.
SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.
Petukh, Marharyta; Dai, Luogeng; Alexov, Emil
2016-04-12
Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.
Prediction of Ras-effector interactions using position energy matrices.
Kiel, Christina; Serrano, Luis
2007-09-01
One of the more challenging problems in biology is to determine the cellular protein interaction network. Progress has been made to predict protein-protein interactions based on structural information, assuming that structural similar proteins interact in a similar way. In a previous publication, we have determined a genome-wide Ras-effector interaction network based on homology models, with a high accuracy of predicting binding and non-binding domains. However, for a prediction on a genome-wide scale, homology modelling is a time-consuming process. Therefore, we here successfully developed a faster method using position energy matrices, where based on different Ras-effector X-ray template structures, all amino acids in the effector binding domain are sequentially mutated to all other amino acid residues and the effect on binding energy is calculated. Those pre-calculated matrices can then be used to score for binding any Ras or effector sequences. Based on position energy matrices, the sequences of putative Ras-binding domains can be scanned quickly to calculate an energy sum value. By calibrating energy sum values using quantitative experimental binding data, thresholds can be defined and thus non-binding domains can be excluded quickly. Sequences which have energy sum values above this threshold are considered to be potential binding domains, and could be further analysed using homology modelling. This prediction method could be applied to other protein families sharing conserved interaction types, in order to determine in a fast way large scale cellular protein interaction networks. Thus, it could have an important impact on future in silico structural genomics approaches, in particular with regard to increasing structural proteomics efforts, aiming to determine all possible domain folds and interaction types. All matrices are deposited in the ADAN database (http://adan-embl.ibmc.umh.es/). Supplementary data are available at Bioinformatics online.
Free Energy Simulations of Ligand Binding to the Aspartate Transporter GltPh
Heinzelmann, Germano; Baştuğ, Turgut; Kuyucak, Serdar
2011-01-01
Glutamate/Aspartate transporters cotransport three Na+ and one H+ ions with the substrate and countertransport one K+ ion. The binding sites for the substrate and two Na+ ions have been observed in the crystal structure of the archeal homolog GltPh, while the binding site for the third Na+ ion has been proposed from computational studies and confirmed by experiments. Here we perform detailed free energy simulations of GltPh, giving a comprehensive characterization of the substrate and ion binding sites, and calculating their binding free energies in various configurations. Our results show unequivocally that the substrate binds after the binding of two Na+ ions. They also shed light into Asp/Glu selectivity of GltPh, which is not observed in eukaryotic glutamate transporters. PMID:22098736
Yu, Tao; Wang, Xiao-Qing; Sang, Jian-Ping; Pan, Chun-Xu; Zou, Xian-Wu; Chen, Tsung-Yu; Zou, Xiaoqin
2012-01-01
Mutations in ClC channel proteins may cause serious functional changes and even diseases. The function of ClC proteins mainly manifests as Cl− transport, which is related to the binding free energies of chloride ions. Therefore, the influence of a mutation on ClC function can be studied by investigating the mutational effect on the binding free energies of chloride ions. The present study provides quantitative and systematic investigations on the influences of residue mutations on the electrostatic binding free energies in Escherichia coli ClC (EcClC) proteins, using all-atom molecular dynamics simulations. It was found that the change of the electrostatic binding free energy decreases linearly with the increase of the residue-chloride ion distance for a mutation. This work reveals how changes in the charge of a mutated residue and in the distance between the mutated residue and the binding site govern the variations in the electrostatic binding free energies, and therefore influence the transport of chloride ions and conduction in EcClC. This work would facilitate our understanding of the mutational effects on transport of chloride ions and functions of ClC proteins, and provide a guideline to estimate which residue mutations will have great influences on ClC functions. PMID:22612693
Free energy landscape for the binding process of Huperzine A to acetylcholinesterase
Bai, Fang; Xu, Yechun; Chen, Jing; Liu, Qiufeng; Gu, Junfeng; Wang, Xicheng; Ma, Jianpeng; Li, Honglin; Onuchic, José N.; Jiang, Hualiang
2013-01-01
Drug-target residence time (t = 1/koff, where koff is the dissociation rate constant) has become an important index in discovering better- or best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, koff and activation free energy of dissociation (). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated. We applied this method to simulate the binding event of the anti-Alzheimer’s disease drug (−)−Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/mol. The method also provides atomic resolution information for the (−)−Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect this methodology to be widely applicable to drug discovery and development. PMID:23440190
Free energy landscape for the binding process of Huperzine A to acetylcholinesterase.
Bai, Fang; Xu, Yechun; Chen, Jing; Liu, Qiufeng; Gu, Junfeng; Wang, Xicheng; Ma, Jianpeng; Li, Honglin; Onuchic, José N; Jiang, Hualiang
2013-03-12
Drug-target residence time (t = 1/k(off), where k(off) is the dissociation rate constant) has become an important index in discovering better- or best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, k(off) and activation free energy of dissociation (ΔG(off)≠). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated. We applied this method to simulate the binding event of the anti-Alzheimer's disease drug (-)-Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/mol. The method also provides atomic resolution information for the (-)-Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect this methodology to be widely applicable to drug discovery and development.
Coderch, Claire; Tang, Yong; Klett, Javier; Zhang, Shu-En; Ma, Yun-Tao; Shaorong, Wang; Matesanz, Ruth; Pera, Benet; Canales, Angeles; Jiménez-Barbero, Jesús; Morreale, Antonio; Díaz, J Fernando; Fang, Wei-Shuo; Gago, Federico
2013-05-14
Ten novel taxanes bearing modifications at the C2 and C13 positions of the baccatin core have been synthesized and their binding affinities for mammalian tubulin have been experimentally measured. The design strategy was guided by (i) calculation of interaction energy maps with carbon, nitrogen and oxygen probes within the taxane-binding site of β-tubulin, and (ii) the prospective use of a structure-based QSAR (COMBINE) model derived from an earlier series comprising 47 congeneric taxanes. The tubulin-binding affinity displayed by one of the new compounds (CTX63) proved to be higher than that of docetaxel, and an updated COMBINE model provided a good correlation between the experimental binding free energies and a set of weighted residue-based ligand-receptor interaction energies for 54 out of the 57 compounds studied. The remaining three outliers from the original training series have in common a large unfavourable entropic contribution to the binding free energy that we attribute to taxane preorganization in aqueous solution in a conformation different from that compatible with tubulin binding. Support for this proposal was obtained from solution NMR experiments and molecular dynamics simulations in explicit water. Our results shed additional light on the determinants of tubulin-binding affinity for this important class of antitumour agents and pave the way for further rational structural modifications.
Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies
NASA Astrophysics Data System (ADS)
Pang, Yuan-Ping; Kozikowski, Alan P.
1994-12-01
We have performed docking studies with the SYSDOC program on acetylcholinesterase (AChE) to predict the binding sites in AChE of huperzine A (HA), which is a potent and selective, reversible inhibitor of AChE. The unique aspects of our docking studies include the following: (i) Molecular flexibility of the guest and the host is taken into account, which permits both to change their conformations upon binding. (ii) The binding energy is evaluated by a sum of energies of steric, electrostatic and hydrogen bonding interactions. In the energy calculation no grid approximation is used, and all hydrogen atoms of the system are treated explicitly. (iii) The energy of cation-π interactions between the guest and the host, which is important in the binding of AChE, is included in the calculated binding energy. (iv) Docking is performed in all regions of the host's binding cavity. Based on our docking studies and the pharmacological results reported for HA and its analogs, we predict that HA binds to the bottom of the binding cavity of AChE (the gorge) with its ammonium group interacting with Trp84, Phe330, Glu199 and Asp72 (catalytic site). At the the opening of the gorge with its ammonium group partially interacting with Trp279 (peripheral site). At the catalytic site, three partially overlapping subsites of HA were identified which might provide a dynamic view of binding of HA to the catalytic site.
Role of Desolvation in Thermodynamics and Kinetics of Ligand Binding to a Kinase
2015-01-01
Computer simulations are used to determine the free energy landscape for the binding of the anticancer drug Dasatinib to its src kinase receptor and show that before settling into a free energy basin the ligand must surmount a free energy barrier. An analysis based on using both the ligand-pocket separation and the pocket-water occupancy as reaction coordinates shows that the free energy barrier is a result of the free energy cost for almost complete desolvation of the binding pocket. The simulations further show that the barrier is not a result of the reorganization free energy of the binding pocket. Although a continuum solvent model gives the location of free energy minima, it is not able to reproduce the intermediate free energy barrier. Finally, it is shown that a kinetic model for the on rate constant in which the ligand diffuses up to a doorway state and then surmounts the desolvation free energy barrier is consistent with published microsecond time-scale simulations of the ligand binding kinetics for this system [Shaw, D. E. et al. J. Am. Chem. Soc.2011, 133, 9181−918321545110]. PMID:25516727
Prado-Gotor, R.; Grueso, E.
2014-01-01
The binding of gold nanoparticles capped with N-(2-mercaptopropionyl)glycine (Au@tiopronin) with double-stranded DNA has been investigated and quantified in terms of free energies by using two different approaches. The first approach follows the DNA conformational changes induced by gold nanoparticles using the CD technique. The second methodology consists in the use of pyrene-1-carboxaldehyde as a fluorescent probe. This second procedure implies the determination of the “true” free energy of binding of the probe with DNA, after corrections through solubility measurements. Working at different salt concentrations, the nonelectrostatic and electrostatic components of the binding free energy have been separated. The results obtained revealed that the binding is of nonelectrostatic character, fundamentally. The procedure used in this work could be extended to quantify the binding affinity of other AuNPs/DNA systems. PMID:24587710
Restructuring of the dinucleotide-binding fold in an NADP(H) sensor protein
Zheng, Xiaofeng; Dai, Xueyu; Zhao, Yanmei; Chen, Qiang; Lu, Fei; Yao, Deqiang; Yu, Quan; Liu, Xinping; Zhang, Chuanmao; Gu, Xiaocheng; Luo, Ming
2007-01-01
NAD(P) has long been known as an essential energy-carrying molecule in cells. Recent data, however, indicate that NAD(P) also plays critical signaling roles in regulating cellular functions. The crystal structure of a human protein, HSCARG, with functions previously unknown, has been determined to 2.4-Å resolution. The structure reveals that HSCARG can form an asymmetrical dimer with one subunit occupied by one NADP molecule and the other empty. Restructuring of its NAD(P)-binding Rossmann fold upon NADP binding changes an extended loop to an α-helix to restore the integrity of the Rossmann fold. The previously unobserved restructuring suggests that HSCARG may assume a resting state when the level of NADP(H) is normal within the cell. When the NADP(H) level passes a threshold, an extensive restructuring of HSCARG would result in the activation of its regulatory functions. Immunofluorescent imaging shows that HSCARG redistributes from being associated with intermediate filaments in the resting state to being dispersed in the nucleus and the cytoplasm. The structural change of HSCARG upon NADP(H) binding could be a new regulatory mechanism that responds only to a significant change of NADP(H) levels. One of the functions regulated by HSCARG may be argininosuccinate synthetase that is involved in NO synthesis. PMID:17496144
Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing
Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric
2017-01-01
AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457
Fragmentation cross sections and binding energies of neutron-rich nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, M. B.; Lynch, W. G.; Mocko, M.
An exponential dependence of the fragmentation cross section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured cross sections. From the systematics of Cu isotope cross sections, the binding energies of {sup 76,77,78,79}Cu have been extracted. They are 636.94{+-}0.4,647.1{+-}0.4,651.6{+-}0.4, and 657.8{+-}0.5 MeV, respectively. Specifically, the uncertainty of the binding energy of {sup 75}Cu is reduced from 980 keV, as listed in the 2003 mass table of Audi, Wapstra, and Thibault to 400 keV. The predicted cross sections of two near drip-linemore » nuclei, {sup 39}Na and {sup 40}Mg from the fragmentation of {sup 48}Ca are discussed.« less
Using the fast fourier transform in binding free energy calculations.
Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L
2018-04-30
According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Shu, Chang; Ding, Li; Zhong, Wenying
2014-10-01
In the current work, using ZnSe ZnS quantum dots (QDs) as representative nanoparticles, the affinities of seven anticancer drugs for bovine serum albumin (BSA) were studied using fluorescence resonance energy transfer (FRET). The FRET efficiency of BSA-QD conjugates can reach as high as 24.87% by electrostatic interaction. The higher binding constant (3.63 × 107 L mol-1) and number of binding sites (1.75) between ZnSe ZnS QDs and BSA demonstrated that the QDs could easily associate to plasma proteins and enhance the transport efficacy of drugs. The magnitude of binding constants (103-106 L mol-1), in the presence of QDs, was between drugs-BSA and drugs-QDs in agreement with common affinities of drugs for serum albumins (104-106 L mol-1) in vivo. ZnSe ZnS QDs significantly increased the affinities for BSA of Vorinostat (SAHA), Docetaxel (DOC), Carmustine (BCNU), Doxorubicin (Dox) and 10-Hydroxycamptothecin (HCPT). However, they slightly reduced the affinities of Vincristine (VCR) and Methotrexate (MTX) for BSA. The recent work will not only provide useful information for appropriately understanding the binding affinity and binding mechanism at the molecular level, but also illustrate the ZnSe ZnS QDs are perfect candidates for nanoscal drug delivery system (DDS).
Physical activity and sex hormone levels in estradiol- and placebo-treated postmenopausal women.
Choudhury, Farzana; Bernstein, Leslie; Hodis, Howard N; Stanczyk, Frank Z; Mack, Wendy J
2011-10-01
Postmenopausal changes in the hormonal milieu in women with or without hormone therapy are hypothesized to be the pathway for a number of menopause-associated modifications in physiology and disease risk. Physical activity may modify these changes in women's hormone profiles. The crucial yet complex relationship between physical activity and physiologic and pharmacologic sex hormone levels in postmenopausal women has not been investigated sufficiently. Using structured recall, physical activity was assessed longitudinally during a period of 2 years in 194 postmenopausal women (90 randomized to 1 mg 17β-estradiol treatment daily and 104 randomized to placebo) in the Estrogen in the Prevention of Atherosclerosis Trial. The levels of physical activity were correlated with the serum sex hormone and the serum hormone-binding globulin levels in each treatment group. Among the placebo-treated women, total energy expenditure was positively associated with sex hormone-binding globulin (SHBG; P < 0.001) and inversely associated with testosterones (total, bioavailable, or free) and androstenedione (P < 0.001 for all), as well as with estradiol (P = 0.02). In estradiol-treated women, estradiol levels were inversely associated with total energy expenditure (P = 0.002) and weekly hours spent in moderate or more vigorous physical activity (P = 0.001). Physical activity is associated with lower serum levels of estradiol in both hormone therapy-treated and untreated women. In placebo-treated women only, physical activity is associated with reduced androgen levels and elevated SHBG levels.
NASA Astrophysics Data System (ADS)
El-Sheshtawy, Hamdy S.; El-Mehasseb, Ibrahim
2017-11-01
The mechanism for the inhibition of thyroid hormones by the thioamide-like antithyroid drug is a key process in the thyroid gland function. Therefore, in this study theoretical investigation of the molecular interaction between two antithyroid drugs, namely methimazol (MMI) and thiazoline-2-thione (T2T), with the hypohalous acids (HOX, X = I, Br, and Cl), which act as heme-linked halogenated species to tyrosine residue was discussed. The calculations were performed by M06-2X and MP2 using aug-cc-pVDZ level of theory. In addition, wB97xd/6-31G* level of theory was used in order to account for the dispersion forces. The results show the possible formation of three adducts, which is stabilized by halogen bond (I), both halogen and hydrogen bonds (II), two hydrogen bonds (III). The binding energies of the complexes reveals stabilization in the order III > II > I. The binding energies of the complexes was increased with increasing the electron affinity and polarizability of halogen atom, the dipole moment of the complexes (I and II), the electrostatic potential on halogen atom (Vmax:i.e σ-hole), and the charge-transfer process through the halogen bond in I. On the other hand, the binding energies of the complexes decreased with increasing the halogen atom electronegativity and the dipole moment of complex III. Natural bond orbital (NBO) analysis was used to investigate the molecular orbital interactions and the charge transfer process upon complexation.
Wang, Lingle; Wu, Yujie; Deng, Yuqing; Kim, Byungchan; Pierce, Levi; Krilov, Goran; Lupyan, Dmitry; Robinson, Shaughnessy; Dahlgren, Markus K; Greenwood, Jeremy; Romero, Donna L; Masse, Craig; Knight, Jennifer L; Steinbrecher, Thomas; Beuming, Thijs; Damm, Wolfgang; Harder, Ed; Sherman, Woody; Brewer, Mark; Wester, Ron; Murcko, Mark; Frye, Leah; Farid, Ramy; Lin, Teng; Mobley, David L; Jorgensen, William L; Berne, Bruce J; Friesner, Richard A; Abel, Robert
2015-02-25
Designing tight-binding ligands is a primary objective of small-molecule drug discovery. Over the past few decades, free-energy calculations have benefited from improved force fields and sampling algorithms, as well as the advent of low-cost parallel computing. However, it has proven to be challenging to reliably achieve the level of accuracy that would be needed to guide lead optimization (∼5× in binding affinity) for a wide range of ligands and protein targets. Not surprisingly, widespread commercial application of free-energy simulations has been limited due to the lack of large-scale validation coupled with the technical challenges traditionally associated with running these types of calculations. Here, we report an approach that achieves an unprecedented level of accuracy across a broad range of target classes and ligands, with retrospective results encompassing 200 ligands and a wide variety of chemical perturbations, many of which involve significant changes in ligand chemical structures. In addition, we have applied the method in prospective drug discovery projects and found a significant improvement in the quality of the compounds synthesized that have been predicted to be potent. Compounds predicted to be potent by this approach have a substantial reduction in false positives relative to compounds synthesized on the basis of other computational or medicinal chemistry approaches. Furthermore, the results are consistent with those obtained from our retrospective studies, demonstrating the robustness and broad range of applicability of this approach, which can be used to drive decisions in lead optimization.
Universal binding energy relations in metallic adhesion
NASA Technical Reports Server (NTRS)
Ferrante, J.; Smith, J. R.; Rose, J. J.
1984-01-01
Rose, Smith, and Ferrante have discovered scaling relations which map the adhesive binding energy calculated by Ferrante and Smith onto a single universal binding energy curve. These binding energies are calculated for all combinations of Al(111), Zn(0001), Mg(0001), and Na(110) in contact. The scaling involves normalizing the energy by the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. Rose et al. have also found that the calculated cohesive energies of K, Ba, Cu, Mo, and Sm scale by similar simple relations, suggesting the universal relation may be more general than for the simple free electron metals for which it was derived. In addition, the scaling length was defined more generally in order to relate it to measurable physical properties. Further this universality can be extended to chemisorption. A simple and yet quite accurate prediction of a zero temperature equation of state (volume as a function of pressure for metals and alloys) is presented. Thermal expansion coefficients and melting temperatures are predicted by simple, analytic expressions, and results compare favorably with experiment for a broad range of metals.
Exciton size and binding energy limitations in one-dimensional organic materials.
Kraner, S; Scholz, R; Plasser, F; Koerner, C; Leo, K
2015-12-28
In current organic photovoltaic devices, the loss in energy caused by the charge transfer step necessary for exciton dissociation leads to a low open circuit voltage, being one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy to a value of the order of thermal energy, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley-Queisser limit. We determine the size of the excitons for different organic molecules and polymers by time dependent density functional theory calculations. For optically relevant transitions, the exciton size saturates around 0.7 nm for one-dimensional molecules with a size longer than about 4 nm. For the ladder-type polymer poly(benzimidazobenzophenanthroline), we obtain an exciton binding energy of about 0.3 eV, serving as a lower limit of the exciton binding energy for the organic materials investigated. Furthermore, we show that charge transfer transitions increase the exciton size and thus identify possible routes towards a further decrease of the exciton binding energy.
NASA Astrophysics Data System (ADS)
Tshipa, M.; Winkoun, D. P.; Nijegorodov, N.; Masale, M.
2018-04-01
Theoretical investigations are carried out of binding energies of a donor charge assumed to be located exactly at the center of symmetry of two concentric cylindrical quantum wires. The intrinsic confinement potential in the region of the inner cylinder is modeled in any one of the three profiles: simple parabolic, shifted parabolic or the polynomial potential. The potential inside the shell is taken to be a potential step or potential barrier of a finite height. Additional confinement of the charge carriers is due to the vector potential of the axial applied magnetic field. It is found that the binding energies attain maxima in their variations with the radius of the inner cylinder irrespective of the particular intrinsic confinement of the inner cylinder. As the radius of the inner cylinder is increased further, the binding energies corresponding to either the parabolic or the polynomial potentials attain minima at some critical core-radius. Finally, as anticipated, the binding energies increase with the increase of the parallel applied magnetic field. This behaviour of the binding energies is irrespective of the particular electric potential of the nanostructure or its specific dimensions.
BFEE: A User-Friendly Graphical Interface Facilitating Absolute Binding Free-Energy Calculations.
Fu, Haohao; Gumbart, James C; Chen, Haochuan; Shao, Xueguang; Cai, Wensheng; Chipot, Christophe
2018-03-26
Quantifying protein-ligand binding has attracted the attention of both theorists and experimentalists for decades. Many methods for estimating binding free energies in silico have been reported in recent years. Proper use of the proposed strategies requires, however, adequate knowledge of the protein-ligand complex, the mathematical background for deriving the underlying theory, and time for setting up the simulations, bookkeeping, and postprocessing. Here, to minimize human intervention, we propose a toolkit aimed at facilitating the accurate estimation of standard binding free energies using a geometrical route, coined the binding free-energy estimator (BFEE), and introduced it as a plug-in of the popular visualization program VMD. Benefitting from recent developments in new collective variables, BFEE can be used to generate the simulation input files, based solely on the structure of the complex. Once the simulations are completed, BFEE can also be utilized to perform the post-treatment of the free-energy calculations, allowing the absolute binding free energy to be estimated directly from the one-dimensional potentials of mean force in simulation outputs. The minimal amount of human intervention required during the whole process combined with the ergonomic graphical interface makes BFEE a very effective and practical tool for the end-user.
First-principles study of the binding energy between nanostructures and its scaling with system size
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Jiao, Yang; Mo, Yuxiang; Yang, Zeng-Hui; Zhu, Jian-Xin; Hyldgaard, Per; Perdew, John P.
2018-04-01
The equilibrium van der Waals binding energy is an important factor in the design of materials and devices. However, it presents great computational challenges for materials built up from nanostructures. Here we investigate the binding-energy scaling behavior from first-principles calculations. We show that the equilibrium binding energy per atom between identical nanostructures can scale up or down with nanostructure size, but can be parametrized for large N with an analytical formula (in meV/atom), Eb/N =a +b /N +c /N2+d /N3 , where N is the number of atoms in a nanostructure and a , b , c , and d are fitting parameters, depending on the properties of a nanostructure. The formula is consistent with a finite large-size limit of binding energy per atom. We find that there are two competing factors in the determination of the binding energy: Nonadditivities of van der Waals coefficients and center-to-center distance between nanostructures. To decode the detail, the nonadditivity of the static multipole polarizability is investigated from an accurate spherical-shell model. We find that the higher-order multipole polarizability displays ultrastrong intrinsic nonadditivity, no matter if the dipole polarizability is additive or not.
Toward an Experimental Quantum Chemistry: Exploring a New Energy Partitioning.
Rahm, Martin; Hoffmann, Roald
2015-08-19
Following the work of L. C. Allen, this work begins by relating the central chemical concept of electronegativity with the average binding energy of electrons in a system. The average electron binding energy, χ̅, is in principle accessible from experiment, through photoelectron and X-ray spectroscopy. It can also be estimated theoretically. χ̅ has a rigorous and understandable connection to the total energy. That connection defines a new kind of energy decomposition scheme. The changing total energy in a reaction has three primary contributions to it: the average electron binding energy, the nuclear-nuclear repulsion, and multielectron interactions. This partitioning allows one to gain insight into the predominant factors behind a particular energetic preference. We can conclude whether an energy change in a transformation is favored or resisted by collective changes to the binding energy of electrons, the movement of nuclei, or multielectron interactions. For example, in the classical formation of H2 from atoms, orbital interactions dominate nearly canceling nuclear-nuclear repulsion and two-electron interactions. While in electron attachment to an H atom, the multielectron interactions drive the reaction. Looking at the balance of average electron binding energy, multielectron, and nuclear-nuclear contributions one can judge when more traditional electronegativity arguments can be justifiably invoked in the rationalization of a particular chemical event.
Atomic Mass and Nuclear Binding Energy for I-131 (Iodine)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-131 (Iodine, atomic number Z = 53, mass number A = 131).
Atomic Mass and Nuclear Binding Energy for F-22 (Fluorine)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-22 (Fluorine, atomic number Z = 9, mass number A = 22).
NASA Astrophysics Data System (ADS)
McCarrick, Margaret A.; Kollman, Peter A.
1999-03-01
The relative binding free energies in HIV protease of haloperidol thioketal (THK) and three of its derivatives were examined with free energy calculations. THK is a weak inhibitor (IC50 = 15 μM) for which two cocrystal structures with HIV type 1 proteases have been solved [Rutenber, E. et al., J. Biol. Chem., 268 (1993) 15343]. A THK derivative with a phenyl group on C2 of the piperidine ring was expected to be a poor inhibitor based on experiments with haloperidol ketal and its 2- phenyl derivative (Caldera, P., personal communication). Our calculations predict that a 5-phenyl THK derivative, suggested based on examination of the crystal structure, will bind significantly better than THK. Although there are large error bars as estimated from hysteresis, the calculations predict that the 5-phenyl substituent is clearly favored over the 2-phenyl derivative as well as the parent compound. The unfavorable free energies of solvation of both phenyl THK derivatives relative to the parent compound contributed to their predicted binding free energies. In a third simulation, the change in binding free energy for 5-benzyl THK relative to THK was calculated. Although this derivative has a lower free energy in the protein, its decreased free energy of solvation increases the predicted ΔΔG(bind) to the same range as that of the 2-phenyl derivative.
NASA Astrophysics Data System (ADS)
Anisimov, Victor M.; Ziemys, Arturas; Kizhake, Smitha; Yuan, Ziyan; Natarajan, Amarnath; Cavasotto, Claudio N.
2011-11-01
The C-terminal domain of BRCA1(BRCT) is involved in the DNA repair pathway by recognizing the pSXXF motif in interacting proteins. It has been reported that short peptides containing this motif bind to BRCA1(BRCT) in the micromolar range with high specificity. In this work, the binding of pSXXF peptides has been studied computationally and experimentally in order to characterize their interaction with BRCA1(BRCT). Elucidation of the contacts that drive the protein-ligand interaction is critical for the development of high affinity small-molecule BRCA1 inhibitors. Molecular dynamics (MD) simulations revealed the key role of threonine at the peptide P+2 position in providing structural rigidity to the ligand in the bound state. The mutation at P+1 had minor effects. Peptide extension at the N-terminal position with the naphthyl amino acid exhibited a modest increase in binding affinity, what could be explained by the dispersion interaction of the naphthyl side-chain with a hydrophobic patch. Three in silico end-point methods were considered for the calculation of binding free energy. The Molecular Mechanics Poisson-Boltzmann Surface Area and the Solvated Interaction Energy methods gave reasonable agreement with experimental data, exhibiting a Pearlman predictive index of 0.71 and 0.78, respectively. The MM-quantum mechanics-surface area method yielded improved results, which was characterized by a Pearlman index of 0.78. The correlation coefficients were 0.59, 0.61 and 0.69, respectively. The ability to apply a QM level of theory within an end-point binding free energy protocol may provide a way for a consistent improvement of accuracy in computer-aided drug design.
Influence of Γ-X band mixing on the excited donor in a parabolic quantum well
NASA Astrophysics Data System (ADS)
Raghuvaran, T.; Shanthi, R. Vijaya; D'Reuben, A. Merwyn Jasper; Nithiananthi, P.
2013-06-01
Equally spaced energy levels of Parabolic Quantum Well are perturbed due to the application of hydrostatic pressure. It will modify the electronic and optical behavior of high Potential devices. The variation of excited state donor binding energy due to Γ-X band mixing at critical cross over pressures in a Parabolic GaAs/AlxGa1-x As quantum well has been investigated in the effective mass approximation using variational method.
AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.
Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A
2017-07-03
AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
AMMOS2: a web server for protein–ligand–water complexes refinement via molecular mechanics
Labbé, Céline M.; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O.; Pajeva, Ilza
2017-01-01
Abstract AMMOS2 is an interactive web server for efficient computational refinement of protein–small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein–ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein–ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein–ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein–ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein–ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein–ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. PMID:28486703
In silico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level
Yang, Changwon; Kulkarni, Mandar; Lim, Manho
2017-01-01
Abstract The reversible folding of the thrombin-binding DNA aptamer G-quadruplexes (GQs) (TBA-15) starting from fully unfolded states was demonstrated using a prolonged time scale (10–12 μs) parallel tempering metadynamics (PTMetaD) simulation method in conjunction with a modified version of the AMBER bsc1 force field. For unbiased descriptions of the folding free energy landscape of TBA-15, this force field was minimally modified. From this direct folding simulation using the modified bsc1 force field, reasonably converged free energy landscapes were obtained in K+-rich aqueous solution (150 mM), providing detailed atomistic pictures of GQ folding mechanisms for TBA-15. This study found that the TBA folding occurred via multiple folding pathways with two major free energy barriers of 13 and 15 kcal/mol in the presence of several intermediate states of G-triplex variants. The early formation of these intermediates was associated with a single K+ ion capturing. Interestingly, these intermediate states appear to undergo facile transitions among themselves through relatively small energy barriers. PMID:29112755
Ground state energies from converging and diverging power series expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, C.; Norris, S.; Pelphrey, R.
2016-10-15
It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent,more » consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.« less
NASA Astrophysics Data System (ADS)
Miliordos, Evangelos; Xantheas, Sotiris S.
2015-03-01
We report the variation of the binding energy of the Formic Acid Dimer with the size of the basis set at the Coupled Cluster with iterative Singles, Doubles and perturbatively connected Triple replacements [CCSD(T)] level of theory, estimate the Complete Basis Set (CBS) limit, and examine the validity of the Basis Set Superposition Error (BSSE)-correction for this quantity that was previously challenged by Kalescky, Kraka, and Cremer (KKC) [J. Chem. Phys. 140, 084315 (2014)]. Our results indicate that the BSSE correction, including terms that account for the substantial geometry change of the monomers due to the formation of two strong hydrogen bonds in the dimer, is indeed valid for obtaining accurate estimates for the binding energy of this system as it exhibits the expected decrease with increasing basis set size. We attribute the discrepancy between our current results and those of KKC to their use of a valence basis set in conjunction with the correlation of all electrons (i.e., including the 1s of C and O). We further show that the use of a core-valence set in conjunction with all electron correlation converges faster to the CBS limit as the BSSE correction is less than half than the valence electron/valence basis set case. The uncorrected and BSSE-corrected binding energies were found to produce the same (within 0.1 kcal/mol) CBS limits. We obtain CCSD(T)/CBS best estimates for De = - 16.1 ± 0.1 kcal/mol and for D0 = - 14.3 ± 0.1 kcal/mol, the later in excellent agreement with the experimental value of -14.22 ± 0.12 kcal/mol.
Measuring Intermolecular Binding Energies by Laser Spectroscopy.
Knochenmuss, Richard; Maity, Surajit; Féraud, Géraldine; Leutwyler, Samuel
2017-02-22
The ground-state dissociation energy, D0(S0), of isolated intermolecular complexes in the gas phase is a fundamental measure of the interaction strength between the molecules. We have developed a three-laser, triply resonant pump-dump-probe technique to measure dissociation energies of jet-cooled M•S complexes, where M is an aromatic chromophore and S is a closed-shell 'solvent' molecule. Stimulated emission pumping (SEP) via the S0→S1 electronic transition is used to precisely 'warm' the complex by populating high vibrational levels v" of the S0 state. If the deposited energy E(v") is less than D0(S0), the complex remains intact, and is then mass- and isomer-selectively detected by resonant two-photon ionization (R2PI) with a third (probe) laser. If the pumped level is above D0(S0), the hot complex dissociates and the probe signal disappears. Combining the fluorescence or SEP spectrum of the cold complex with the SEP breakoff of the hot complex brackets D0(S0). The UV chromophores 1-naphthol and carbazole were employed; these bind either dispersively via the aromatic rings, or form a hydrogen bond via the -OH or -NH group. Dissociation energies have been measured for dispersively bound complexes with noble gases (Ne, Kr, Ar, Xe), diatomics (N2, CO), alkanes (methane to n-butane), cycloalkanes (cyclopropane to cycloheptane), and unsaturated compounds (ethene, benzene). Hydrogen-bond dissociation energies have been measured for H2O, D2O, methanol, ethanol, ethers (oxirane, oxetane), NH3 and ND3.
Electronic structure of Mo1-x Re x alloys studied through resonant photoemission spectroscopy
NASA Astrophysics Data System (ADS)
Sundar, Shyam; Banik, Soma; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Ganguli, Tapas; Lodha, G. S.; Pandey, Sudhir K.; Phase, D. M.; Roy, S. B.
2016-08-01
We studied the electronic structure of Mo-rich Mo1-x Re x alloys (0≤slant x≤slant 0.4 ) using valence band photoemission spectroscopy in the photon energy range 23-70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to -6 eV, whereas s states lie in the binding energy range -4 to -10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p-5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p-4d transition (threshold: 42 eV) and the Re 5p-5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE = 0) to -5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x > 0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1-x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s-d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x.
Zheng, Xiliang; Wang, Jin
2015-01-01
We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics. PMID:25885453
Klein, Tobias; Tucker, Julie; Holdgate, Geoffrey A; Norman, Richard A; Breeze, Alexander L
2014-02-13
The binding of a ligand to its target protein is often accompanied by conformational changes of both the protein and the ligand. This is of particular interest, since structural rearrangements of the macromolecular target and the ligand influence the free energy change upon complex formation. In this study, we use X-ray crystallography, isothermal titration calorimetry, and surface-plasmon resonance biosensor analysis to investigate the binding of pyrazolylaminopyrimidine inhibitors to FGFR1 tyrosine kinase, an important anticancer target. Our results highlight that structurally close analogs of this inhibitor series interact with FGFR1 with different binding modes, which are a consequence of conformational changes in both the protein and the ligand as well as the bound water network. Together with the collected kinetic and thermodynamic data, we use the protein-ligand crystal structure information to rationalize the observed inhibitory potencies on a molecular level.
Accurate Binding Free Energy Predictions in Fragment Optimization.
Steinbrecher, Thomas B; Dahlgren, Markus; Cappel, Daniel; Lin, Teng; Wang, Lingle; Krilov, Goran; Abel, Robert; Friesner, Richard; Sherman, Woody
2015-11-23
Predicting protein-ligand binding free energies is a central aim of computational structure-based drug design (SBDD)--improved accuracy in binding free energy predictions could significantly reduce costs and accelerate project timelines in lead discovery and optimization. The recent development and validation of advanced free energy calculation methods represents a major step toward this goal. Accurately predicting the relative binding free energy changes of modifications to ligands is especially valuable in the field of fragment-based drug design, since fragment screens tend to deliver initial hits of low binding affinity that require multiple rounds of synthesis to gain the requisite potency for a project. In this study, we show that a free energy perturbation protocol, FEP+, which was previously validated on drug-like lead compounds, is suitable for the calculation of relative binding strengths of fragment-sized compounds as well. We study several pharmaceutically relevant targets with a total of more than 90 fragments and find that the FEP+ methodology, which uses explicit solvent molecular dynamics and physics-based scoring with no parameters adjusted, can accurately predict relative fragment binding affinities. The calculations afford R(2)-values on average greater than 0.5 compared to experimental data and RMS errors of ca. 1.1 kcal/mol overall, demonstrating significant improvements over the docking and MM-GBSA methods tested in this work and indicating that FEP+ has the requisite predictive power to impact fragment-based affinity optimization projects.
Electronic and Structural Parameters of Phosphorus-Oxygen Bonds in Inorganic Phosphate Crystals
NASA Astrophysics Data System (ADS)
Atuchin, V. V.; Kesler, V. G.; Pervukhina, N. V.
Wide set of experimental results on binding energy of photoelectrons emitted from P 2p, P 2s, and O 1s core levels has been observed for inorganic phosphate crystals and the parameters were compared using energy differences Δ(O 1s - P 2p) and Δ (O 1s - P 2s) as most robust characteristics. Linear dependence of the binding energy difference on mean chemical bond length L(P-O) between phosphorus and oxygen atoms has been found. The functions are of the forms: Δ (O 1s - P 2p) (eV) = 375.54 + 0.146 · L(P-O) (pm) and Δ (O 1s - P 2s) (eV) = 320.77 + 0.129 · L(P-O) (pm). The dependencies are general for inorganic phosphates and may be used in quantitative component analysis of X-ray photoemission spectra of complex oxide compounds including functional groups with different coordination of P and O atoms.
Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study
NASA Astrophysics Data System (ADS)
Tachikawa, Hiroto
2017-02-01
Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4-37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2-7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8-28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.
DFT-based ranking of zinc-binding groups in histone deacetylase inhibitors.
Vanommeslaeghe, K; Loverix, S; Geerlings, P; Tourwé, D
2005-11-01
Histone deacetylases (HDACs) have recently attracted considerable interest as targets in the treatment of cell proliferative diseases such as cancer. In the present work, a general framework is proposed for chemical groups that bind into the HDAC catalytic core. Based on this framework, a series of groups was selected for further investigation. A method was developed to rank the HDAC inhibitory potential of these moieties at the B3LYP/6-31G* level, making use of extra diffuse functions and of the PCM solvation model where appropriate. The resulting binding geometries indicate that very stringent constraints should be satisfied in order to have bidental zinc chelation, and even more so to have a strong binding affinity, which makes it difficult to predict the binding mode and affinity of such zinc-binding groups. The chemical hardness and the pK(a) were identified as important criteria for the binding affinity. Also, the hydrophilicity may have a direct influence on the binding affinity. The calculated binding energies were qualitatively validated with experimental results from the literature, and were shown to be meaningful for the purpose of ranking. Additionally, the insights gained from the present work may be useful for increasing the accuracy of QSAR models by providing a rational basis for selecting descriptors.
NASA Astrophysics Data System (ADS)
Chen, Ming; Zhao, Yu-Jun; Liao, Ji-Hai; Yang, Xiao-Bao
2012-07-01
Using density-functional theory calculations, we investigated the adsorption of transition-metal (TM) atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) on carbon doped hexagonal boron nitride (BN) sheet and the corresponding cage (B12N12). With carbon substitution of nitrogen, Sc, V, Cr, and Mn atoms were energetically favorable to be dispersed on the BN nanostructures without clustering or the formation of TM dimers, due to the strong binding between TM atoms and substrate, which contains the half-filled levels above the valence bands maximum. The carbon doped BN nanostructures with dispersed Sc could store up to five and six H2, respectively, with the average binding energy of 0.3 ˜ 0.4 eV, indicating the possibility of fabricating hydrogen storage media with high capacity. We also demonstrated that the geometrical effect is important for the hydrogen storage, leading to a modulation of the charge distributions of d levels, which dominates the binding between H2 and TM atoms.
Exciton Binding Energy of Monolayer WS2
Zhu, Bairen; Chen, Xi; Cui, Xiaodong
2015-01-01
The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 ± 0.01 eV around K valley in the Brillouin zone. PMID:25783023
A computational analysis of the binding model of MDM2 with inhibitors
NASA Astrophysics Data System (ADS)
Hu, Guodong; Wang, Dunyou; Liu, Xinguo; Zhang, Qinggang
2010-08-01
It is a new and promising strategy for anticancer drug design to block the MDM2-p53 interaction using a non-peptide small-molecule inhibitor. We carry out molecular dynamics simulations to study the binding of a set of six non-peptide small-molecule inhibitors with the MDM2. The relative binding free energies calculated using molecular mechanics Poisson-Boltzmann surface area method produce a good correlation with experimentally determined results. The study shows that the van der Waals energies are the largest component of the binding free energy for each complex, which indicates that the affinities of these inhibitors for MDM2 are dominated by shape complementarity. The A-ligands and the B-ligands are the same except for the conformation of 2,2-dimethylbutane group. The quantum mechanics and the binding free energies calculation also show the B-ligands are the more possible conformation of ligands. Detailed binding free energies between inhibitors and individual protein residues are calculated to provide insights into the inhibitor-protein binding model through interpretation of the structural and energetic results from the simulations. The study shows that G1, G2 and G3 group mimic the Phe19, Trp23 and Leu26 residues in p53 and their interactions with MDM2, but the binding model of G4 group differs from the original design strategy to mimic Leu22 residue in p53.
NASA Astrophysics Data System (ADS)
Bhakat, Soumendranath; Söderhjelm, Pär
2017-01-01
The funnel metadynamics method enables rigorous calculation of the potential of mean force along an arbitrary binding path and thereby evaluation of the absolute binding free energy. A problem of such physical paths is that the mechanism characterizing the binding process is not always obvious. In particular, it might involve reorganization of the solvent in the binding site, which is not easily captured with a few geometrically defined collective variables that can be used for biasing. In this paper, we propose and test a simple method to resolve this trapped-water problem by dividing the process into an artificial host-desolvation step and an actual binding step. We show that, under certain circumstances, the contribution from the desolvation step can be calculated without introducing further statistical errors. We apply the method to the problem of predicting host-guest binding free energies in the SAMPL5 blind challenge, using two octa-acid hosts and six guest molecules. For one of the hosts, well-converged results are obtained and the prediction of relative binding free energies is the best among all the SAMPL5 submissions. For the other host, which has a narrower binding pocket, the statistical uncertainties are slightly higher; longer simulations would therefore be needed to obtain conclusive results.
Sprenger, K G; Pfaendtner, Jim
2016-06-07
Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution, results that show the expected physical behavior, i.e., peptide binding strength that decreases with increasing temperature or is independent of temperature altogether, can be recovered on the charged surface. On the basis of this analysis, an overall free energy for the entire thermodynamic cycle for peptide adsorption on charged surfaces is constructed and validated with independent simulations.
Conductance of three-terminal molecular bridge based on tight-binding theory
NASA Astrophysics Data System (ADS)
Wang, Li-Guang; Li, Yong; Yu, Ding-Wen; Katsunori, Tagami; Masaru, Tsukada
2005-05-01
The quantum transmission characteristic of three-benzene ring nano-molecular bridge is investigated theoretically by using Green's function approach based on tight-binding theory with only a π orbital per carbon atom at the site. The transmission probabilities that electrons transport through the molecular bridge from one terminal to the other two terminals are obtained. The electronic current distributions inside the molecular bridge are calculated and shown in graphical analogy by the current density method based on Fisher-Lee formula at the energy points E = ±0.42, ±1.06 and ±1.5, respectively, where the transmission spectra appear peaks. We find that the transmission spectra are related to the incident electronic energy and the molecular levels strongly and the current distributions agree well with Kirchhoff quantum current momentum conservation law.
Khatri, Bhavin S.; Goldstein, Richard A.
2015-01-01
Speciation is fundamental to understanding the huge diversity of life on Earth. Although still controversial, empirical evidence suggests that the rate of speciation is larger for smaller populations. Here, we explore a biophysical model of speciation by developing a simple coarse-grained theory of transcription factor-DNA binding and how their co-evolution in two geographically isolated lineages leads to incompatibilities. To develop a tractable analytical theory, we derive a Smoluchowski equation for the dynamics of binding energy evolution that accounts for the fact that natural selection acts on phenotypes, but variation arises from mutations in sequences; the Smoluchowski equation includes selection due to both gradients in fitness and gradients in sequence entropy, which is the logarithm of the number of sequences that correspond to a particular binding energy. This simple consideration predicts that smaller populations develop incompatibilities more quickly in the weak mutation regime; this trend arises as sequence entropy poises smaller populations closer to incompatible regions of phenotype space. These results suggest a generic coarse-grained approach to evolutionary stochastic dynamics, allowing realistic modelling at the phenotypic level. PMID:25936759
Lawrenz, Morgan; Baron, Riccardo; Wang, Yi; McCammon, J Andrew
2012-01-01
The Independent-Trajectory Thermodynamic Integration (IT-TI) approach for free energy calculation with distributed computing is described. IT-TI utilizes diverse conformational sampling obtained from multiple, independent simulations to obtain more reliable free energy estimates compared to single TI predictions. The latter may significantly under- or over-estimate the binding free energy due to finite sampling. We exemplify the advantages of the IT-TI approach using two distinct cases of protein-ligand binding. In both cases, IT-TI yields distributions of absolute binding free energy estimates that are remarkably centered on the target experimental values. Alternative protocols for the practical and general application of IT-TI calculations are investigated. We highlight a protocol that maximizes predictive power and computational efficiency.
Van Dornshuld, Eric; Holy, Christina M; Tschumper, Gregory S
2014-05-08
This work provides the first characterization of five stationary points of the homogeneous thioformaldehyde dimer, (CH2S)2, and seven stationary points of the heterogeneous formaldehyde/thioformaldehyde dimer, CH2O/CH2S, with correlated ab initio electronic structure methods. Full geometry optimizations and corresponding harmonic vibrational frequencies were computed with second-order Møller-Plesset perturbation theory (MP2) and 13 different density functionals in conjunction with triple-ζ basis sets augmented with diffuse and multiple sets of polarization functions. The MP2 results indicate that the three stationary points of (CH2S)2 and four of CH2O/CH2S are minima, in contrast to two stationary points of the formaldehyde dimer, (CH2O)2. Single-point energies were also computed using the explicitly correlated MP2-F12 and CCSD(T)-F12 methods and basis sets as large as heavy-aug-cc-pVTZ. The (CH2O)2 and CH2O/CH2S MP2 and MP2-F12 binding energies deviated from the CCSD(T)-F12 binding energies by no more than 0.2 and 0.4 kcal mol(-1), respectively. The (CH2O)2 and CH2O/CH2S global minimum is the same at every level of theory. However, the MP2 methods overbind (CH2S)2 by as much as 1.1 kcal mol(-1), effectively altering the energetic ordering of the thioformaldehyde dimer minima relative to the CCSD(T)-F12 energies. The CCSD(T)-F12 binding energies of the (CH2O)2 and CH2O/CH2S stationary points are quite similar, with the former ranging from around -2.4 to -4.6 kcal mol(-1) and the latter from about -1.1 to -4.4 kcal mol(-1). Corresponding (CH2S)2 stationary points have appreciably smaller CCSD(T)-F12 binding energies ranging from ca. -1.1 to -3.4 kcal mol(-1). The vibrational frequency shifts upon dimerization are also reported for each minimum on the MP2 potential energy surfaces.
Yellapu, Nanda Kumar; Kandlapalli, Kalpana; Valasani, Koteswara Rao; Sarma, P V G K; Matcha, Bhaskar
2013-01-01
Glucokinase (GK) is the predominant hexokinase that acts as glucose sensor and catalyses the formation of Glucose-6-phosphate. The mutations in GK gene influence the affinity for glucose and lead to altered glucose levels in blood causing maturity onset diabetes of the young type 2 (MODY2) condition, which is one of the prominent reasons of type 2 diabetic condition. In view of the importance of mutated GK resulting in hyperglycemic condition, in the present study, molecular dynamics simulations were carried out in intact and 256 E-K mutated GK structures and their energy values and conformational variations were correlated. Energy variations were observed in mutated GK (3500 Kcal/mol) structure with respect to intact GK (5000 Kcal/mol), and it showed increased γ -turns, decreased β -turns, and more helix-helix interactions that affected substrate binding region where its volume increased from 1089.152 Å(2) to 1246.353 Å(2). Molecular docking study revealed variation in docking scores (intact = -12.199 and mutated = -8.383) and binding mode of glucose in the active site of mutated GK where the involvement of A53, S54, K56, K256, D262 and Q286 has resulted in poor glucose binding which probably explains the loss of catalytic activity and the consequent prevailing of high glucose levels in MODY2 condition.
Binding free energy prediction in strongly hydrophobic biomolecular systems.
Charlier, Landry; Nespoulous, Claude; Fiorucci, Sébastien; Antonczak, Serge; Golebiowski, Jérome
2007-11-21
We present a comparison of various computational approaches aiming at predicting the binding free energy in ligand-protein systems where the ligand is located within a highly hydrophobic cavity. The relative binding free energy between similar ligands is obtained by means of the thermodynamic integration (TI) method and compared to experimental data obtained through isothermal titration calorimetry measurements. The absolute free energy of binding prediction was obtained on a similar system (a pyrazine derivative bound to a lipocalin) by TI, potential of mean force (PMF) and also by means of the MMPBSA protocols. Although the TI protocol performs poorly either with an explicit or an implicit solvation scheme, the PMF calculation using an implicit solvation scheme leads to encouraging results, with a prediction of the binding affinity being 2 kcal mol(-1) lower than the experimental value. The use of an implicit solvation scheme appears to be well suited for the study of such hydrophobic systems, due to the lack of water molecules within the binding site.
Liu, Yuanyue; Wang, Y. Morris; Yakobson, Boris I.; ...
2014-07-11
Many key performance characteristics of carbon-based lithium-ion battery anodes are largely determined by the strength of binding between lithium (Li) and sp 2 carbon (C), which can vary significantly with subtle changes in substrate structure, chemistry, and morphology. We use density functional theory calculations to investigate the interactions of Li with a wide variety of sp 2 C substrates, including pristine, defective, and strained graphene, planar C clusters, nanotubes, C edges, and multilayer stacks. In almost all cases, we find a universal linear relation between the Li-C binding energy and the work required to fill previously unoccupied electronic states withinmore » the substrate. This suggests that Li capacity is predominantly determined by two key factors—namely, intrinsic quantum capacitance limitations and the absolute placement of the Fermi level. This simple descriptor allows for straightforward prediction of the Li-C binding energy and related battery characteristics in candidate C materials based solely on the substrate electronic structure. It further suggests specific guidelines for designing more effective C-based anodes. Furthermore, this method should be broadly applicable to charge-transfer adsorption on planar substrates, and provides a phenomenological connection to established principles in supercapacitor and catalyst design.« less
Lim, Chang Jin; Park, Min Gyu; Kim, Min Su; Han, Jeong Hwa; Cho, Soohaeng; Cho, Mann-Ho; Yi, Yeonjin; Lee, Hyunbok; Cho, Sang Wan
2018-02-18
The interfacial electronic structures of a bilayer of fullerene (C 60 ) and zinc phthalocyanine (ZnPc) grown on vanadium pentoxide (V₂O₅) thin films deposited using radio frequency sputtering under various conditions were studied using X-ray and ultraviolet photoelectron spectroscopy. The energy difference between the highest occupied molecular orbital (HOMO) level of the ZnPc layer and the lowest unoccupied molecular orbital (LUMO) level of the C 60 layer was determined and compared with that grown on an indium tin oxide (ITO) substrate. The energy difference of a heterojunction on all V₂O₅ was found to be 1.3~1.4 eV, while that on ITO was 1.1 eV. This difference could be due to the higher binding energy of the HOMO of ZnPc on V₂O₅ than that on ITO regardless of work functions of the substrates. We also determined the complete energy level diagrams of C 60 /ZnPc on V₂O₅ and ITO.
Wang, Qiantao; Edupuganti, Ramakrishna; Tavares, Clint D J; Dalby, Kevin N; Ren, Pengyu
2015-01-01
A-484954 is a known eEF2K inhibitor with submicromolar IC50 potency. However, the binding mechanism and the crystal structure of the kinase remains unknown. Here, we employ a homology eEF2K model, docking and alchemical free energy simulations to probe the binding mechanism of eEF2K, and in turn, guide the optimization of potential lead compounds. The inhibitor was docked into the ATP-binding site of a homology model first. Three different binding poses, hypothesis 1, 2, and 3, were obtained and subsequently applied to molecular dynamics (MD) based alchemical free energy simulations. The calculated relative binding free energy of the analogs of A-484954 using the binding pose of hypothesis 1 show a good correlation with the experimental IC50 values, yielding an r (2) coefficient of 0.96 after removing an outlier (compound 5). Calculations using another two poses show little correlation with experimental data, (r (2) of less than 0.5 with or without removing any outliers). Based on hypothesis 1, the calculated relative free energy suggests that bigger cyclic groups, at R1 e.g., cyclobutyl and cyclopentyl promote more favorable binding than smaller groups, such as cyclopropyl and hydrogen. Moreover, this study also demonstrates the ability of the alchemical free energy approach in combination with docking and homology modeling to prioritize compound synthesis. This can be an effective means of facilitating structure-based drug design when crystal structures are not available.
The feasibility of an efficient drug design method with high-performance computers.
Yamashita, Takefumi; Ueda, Akihiko; Mitsui, Takashi; Tomonaga, Atsushi; Matsumoto, Shunji; Kodama, Tatsuhiko; Fujitani, Hideaki
2015-01-01
In this study, we propose a supercomputer-assisted drug design approach involving all-atom molecular dynamics (MD)-based binding free energy prediction after the traditional design/selection step. Because this prediction is more accurate than the empirical binding affinity scoring of the traditional approach, the compounds selected by the MD-based prediction should be better drug candidates. In this study, we discuss the applicability of the new approach using two examples. Although the MD-based binding free energy prediction has a huge computational cost, it is feasible with the latest 10 petaflop-scale computer. The supercomputer-assisted drug design approach also involves two important feedback procedures: The first feedback is generated from the MD-based binding free energy prediction step to the drug design step. While the experimental feedback usually provides binding affinities of tens of compounds at one time, the supercomputer allows us to simultaneously obtain the binding free energies of hundreds of compounds. Because the number of calculated binding free energies is sufficiently large, the compounds can be classified into different categories whose properties will aid in the design of the next generation of drug candidates. The second feedback, which occurs from the experiments to the MD simulations, is important to validate the simulation parameters. To demonstrate this, we compare the binding free energies calculated with various force fields to the experimental ones. The results indicate that the prediction will not be very successful, if we use an inaccurate force field. By improving/validating such simulation parameters, the next prediction can be made more accurate.
The Acetylcholine Receptor and Its Ionic Channel as Targets for Drugs and Toxins
1981-12-10
mlecular target that can have any number of different binding sites and is able to generate levels of energy barriers which &re a direct function of the...Albuquerque, E.X. XEatrachotoxi.-A 20- a -benzoate: A new radioactive ligand for voltage- sensitive sodium channels. Cell. Mol. Neurobio .. 1: 19-40
High-level ab initio studies of NO(X2Π)-O2(X3Σg -) van der Waals complexes in quartet states
NASA Astrophysics Data System (ADS)
Grein, Friedrich
2018-05-01
Geometry optimisations were performed on nine different structures of NO(X2Π)-O2(X3Σg-) van der Waals complexes in their quartet states, using the explicitly correlated RCCSD(T)-F12b method with basis sets up to the cc-pVQZ-F12 level. For the most stable configurations, counterpoise-corrected optimisations as well as extrapolations to the complete basis set (CBS) were performed. The X structure in the 4A‧ state was found to be most stable, with a CBS binding energy of -157 cm-1. The slipped tilted structures with N closer to O2 (Slipt-N), as well as the slipped parallel structure with O of NO closer to O2 (Slipp-O) in 4A″ states have binding energies of about -130 cm-1. C2v and linear complexes are less stable. According to calculated harmonic frequencies, the X isomer is bound. Isotropic hyperfine coupling constants of the complex are compared with those of the monomers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guille, Émilie; Vallverdu, Germain, E-mail: germain.vallverdu@univ-pau.fr; Baraille, Isabelle
2014-12-28
We present first-principle calculations of core-level binding energies for the study of insulating, bulk phase, compounds, based on the Slater-Janak transition state model. Those calculations were performed in order to find a reliable model of the amorphous Li{sub x}PO{sub y}N{sub z} solid electrolyte which is able to reproduce its electronic properties gathered from X-ray photoemission spectroscopy (XPS) experiments. As a starting point, Li{sub 2}PO{sub 2}N models were investigated. These models, proposed by Du et al. on the basis of thermodynamics and vibrational properties, were the first structural models of Li{sub x}PO{sub y}N{sub z}. Thanks to chemical and structural modifications appliedmore » to Li{sub 2}PO{sub 2}N structures, which allow to demonstrate the relevance of our computational approach, we raise an issue concerning the possibility of encountering a non-bridging kind of nitrogen atoms (=N{sup −}) in Li{sub x}PO{sub y}N{sub z} compounds.« less
Ruan, Chunhai; Huang, Hai; Rodgers, M T
2008-02-01
Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies (BDEs) of complexes of alkali metal cations to trimethyl phosphate, TMP. Endothermic loss of the intact TMP ligand is the only dissociation pathway observed for all complexes. Theoretical calculations at the B3LYP/6-31G* level of theory are used to determine the structures, vibrational frequencies, and rotational constants of neutral TMP and the M+(TMP) complexes. Theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level using the B3LYP/6-31G* optimized geometries. The agreement between theory and experiment is reasonably good for all complexes except Li+(TMP). The absolute M+-(TMP) BDEs are found to decrease monotonically as the size of the alkali metal cation increases. No activated dissociation was observed for alkali metal cation binding to TMP. The binding of alkali metal cations to TMP is compared with that to acetone and methanol.
Accurate ab initio binding energies of the benzene dimer.
Park, Young Choon; Lee, Jae Shin
2006-04-20
Accurate binding energies of the benzene dimer at the T and parallel displaced (PD) configurations were determined using the single- and double-coupled cluster method with perturbative triple correction (CCSD(T)) with correlation-consistent basis sets and an effective basis set extrapolation scheme recently devised. The difference between the estimated CCSD(T) basis set limit electronic binding energies for the T and PD shapes appears to amount to more than 0.3 kcal/mol, indicating the PD shape is a more stable configuration than the T shape for this dimer in the gas phase. This conclusion is further strengthened when a vibrational zero-point correction to the electronic binding energies of this dimer is made, which increases the difference between the two configurations to 0.4-0.5 kcal/mol. The binding energies of 2.4 and 2.8 kcal/mol for the T and PD configurations are in good accord with the previous experimental result from ionization potential measurement.
NASA Astrophysics Data System (ADS)
Aciksoz, Esra; Bayrak, Orhan; Soylu, Asim
2016-10-01
The behavior of a donor in the GaAs-Ga1-x Al x As quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters (D e, r e, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential. Project supported by the Turkish Science Research Council (TÜBİTAK) and the Financial Supports from Akdeniz and Nigde Universities.
Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions
NASA Astrophysics Data System (ADS)
Crivelli, Joseph J.; Lemmon, Gordon; Kaufmann, Kristian W.; Meiler, Jens
2013-12-01
Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain-peptide interactions capable of predicting both affinity and specificity of binding based on X-ray crystal structures and comparative modeling with R osetta. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several R osetta protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain-peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain-peptide interactions.
Transport of Indirect Excitons in High Magnetic Fields
NASA Astrophysics Data System (ADS)
Dorow, C. J.; Kuznetsova, Y. Y.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.
Spatially- and spectrally-resolved photoluminescence measurements of indirect excitons in high magnetic fields are presented. The high magnetic field regime for excitons is realized when the cyclotron splitting compares to the exciton binding energy. Due to small mass and binding energy, the high magnetic field regime for excitons is achievable in lab, requiring a few Tesla. Long indirect exciton lifetimes allow large exciton transport distances before recombination, giving an opportunity to study transport and relaxation kinetics of indirect magnetoexcitons via optical imaging. Indirect excitons in several Landau level states are realized. 0e -0h indirect magnetoexcitons (formed from electrons and holes at zeroth Landau levels) travel over large distances and form an emission ring around the excitation spot. In contrast, the 1e -1h and 2e -2h states do not exhibit long transport distances, and the spatial profiles of the emission closely follow the laser excitation. The 0e -0h indirect magnetoexciton transport distance reduces with increasing magnetic field. Accompanying theoretical work explains these effects in terms of magnetoexciton energy relaxation and effective mass enhancement. Supported by NSF Grant No. 1407277. J.W. was supported by the EPSRC (Grant EP/L022990/1). C.J.D. was supported by the NSF Graduate Research Fellowship Program under Grant No. DGE-1144086.
NASA Astrophysics Data System (ADS)
Xue, L.; Tang, D. H.; Qu, X. D.; Sun, L. Z.; Lu, Wei; Zhong, J. X.
2011-09-01
Using first-principles method within the framework of the density functional theory, we study the formation energies and the binding energies of multiple hydrogen-mercury vacancy complex impurities (nH-VHg, n = 1,2,3,4) in Hg0.75Cd0.25Te. We find that, when mercury vacancies exist in Hg0.75Cd0.25Te, the formation of the complex impurity between H and VHg (1H-VHg) is easy and its binding energy is up to 0.56 eV. In this case, the deep acceptor level of mercury vacancy is passivated. As the hydrogen concentration increases, we find that the complex impurity between VHg and two hydrogen atoms (2H-VHg) is more stable than 1H-VHg. This complex passivates both the two acceptor levels introduced by mercury vacancy and neutralizes the p-type dopant characteristics of VHg in Hg0.75Cd0.25Te. Moreover, we find that the complex impurities formed by one VHg and three or four H atoms (3H-VHg, 4H-VHg) are still stable in Hg0.75Cd0.25Te, changing the VHg doped p-type Hg0.75Cd0.25Te to n-type material.
Xu, Peng; Gordon, Mark S
2014-09-04
Anionic water clusters are generally considered to be extremely challenging to model using fragmentation approaches due to the diffuse nature of the excess electron distribution. The local correlation coupled cluster (CC) framework cluster-in-molecule (CIM) approach combined with the completely renormalized CR-CC(2,3) method [abbreviated CIM/CR-CC(2,3)] is shown to be a viable alternative for computing the vertical electron binding energies (VEBE). CIM/CR-CC(2,3) with the threshold parameter ζ set to 0.001, as a trade-off between accuracy and computational cost, demonstrates the reliability of predicting the VEBE, with an average percentage error of ∼15% compared to the full ab initio calculation at the same level of theory. The errors are predominantly from the electron correlation energy. The CIM/CR-CC(2,3) approach provides the ease of a black-box type calculation with few threshold parameters to manipulate. The cluster sizes that can be studied by high-level ab initio methods are significantly increased in comparison with full CC calculations. Therefore, the VEBE computed by the CIM/CR-CC(2,3) method can be used as benchmarks for testing model potential approaches in small-to-intermediate-sized water clusters.
Exciton size and binding energy limitations in one-dimensional organic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraner, S., E-mail: stefan.kraner@iapp.de; Koerner, C.; Leo, K.
2015-12-28
In current organic photovoltaic devices, the loss in energy caused by the charge transfer step necessary for exciton dissociation leads to a low open circuit voltage, being one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy to a value of the order of thermal energy, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley-Queisser limit. We determine the size of the excitons for different organic molecules and polymers by time dependent densitymore » functional theory calculations. For optically relevant transitions, the exciton size saturates around 0.7 nm for one-dimensional molecules with a size longer than about 4 nm. For the ladder-type polymer poly(benzimidazobenzophenanthroline), we obtain an exciton binding energy of about 0.3 eV, serving as a lower limit of the exciton binding energy for the organic materials investigated. Furthermore, we show that charge transfer transitions increase the exciton size and thus identify possible routes towards a further decrease of the exciton binding energy.« less
Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan
2015-08-01
Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.
Computational scheme for pH-dependent binding free energy calculation with explicit solvent.
Lee, Juyong; Miller, Benjamin T; Brooks, Bernard R
2016-01-01
We present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pKa shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1) . We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations. © 2015 The Protein Society.
Price, William D.; Schnier, Paul D.
2005-01-01
Arrhenius activation energies in the zero-pressure limit for dissociation of gas-phase proton-bound homodimers of N,N-dimethylacetamide (N,N-DMA), glycine, alanine, and lysine and the heterodimer alanine·glycine were measured using blackbody infrared radiative dissociation (BIRD). In combination with master equation modeling of the kinetic data, binding energies of these dimers were determined. A value of 1.25 ± 0.05 eV is obtained for N,N-DMA and is in excellent agreement with that reported in the literature. The value obtained from the truncated Boltzmann model is significantly higher, indicating that the assumptions of this model do not apply to these ions. This is due to the competitive rates of photon emission and dissociation for these relatively large ions. The binding energies of the amino acid dimers are ~1.15 ± 0.05 eV and are indistinguishable despite the difference in their gas-phase basicity and structure. The threshold dissociation energies can be accurately modeled using a range of dissociation parameters and absorption/emission rates. However, the absolute values of the dissociation rates depend more strongly on the absorption/emission rates. For N,N-DMA and glycine, an accurate fit was obtained using frequencies and transition dipole moments calculated at the ab initio RHF/2-31G* and MP2/2-31G* level, respectively. In order to obtain a similar accuracy using values obtained from AM1 semiempirical calculations, it was necessary to multiply the transition dipole moments by a factor of 3. These results demonstrate that in combination with master equation modeling, BIRD can be used to obtain accurate threshold dissociation energies of relatively small ions of biological interest. PMID:17235378
The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes.
Pietropaolo, Adriana; Pierri, Ciro Leonardo; Palmieri, Ferdinando; Klingenberg, Martin
2016-06-01
The ADP/ATP carrier (AAC) of mitochondria has been an early example for elucidating the transport mechanism alternating between the external (c-) and internal (m-) states (M. Klingenberg, Biochim. Biophys. Acta 1778 (2008) 1978-2021). An atomic resolution crystal structure of AAC is available only for the c-state featuring a three repeat transmembrane domain structure. Modeling of transport mechanism remained hypothetical for want of an atomic structure of the m-state. Previous molecular dynamics studies simulated the binding of ADP or ATP to the AAC remaining in the c-state. Here, a full description of the AAC switching from the c- to the m-state is reported using well-tempered metadynamics simulations. Free-energy landscapes of the entire translocation from the c- to the m-state, based on the gyration radii of the c- and m-gates and of the center of mass, were generated. The simulations revealed three free-energy basins attributed to the c-, intermediate- and m-states separated by activation barriers. These simulations were performed with the empty and with the ADP- and ATP-loaded AAC as well as with the poorly transported AMP and guanine nucleotides, showing in the free energy landscapes that ADP and ATP lowered the activation free-energy barriers more than the other substrates. Upon binding AMP and guanine nucleotides a deeper free-energy level stabilized the intermediate-state of the AAC2 hampering the transition to the m-state. The structures of the substrate binding sites in the different states are described producing a full picture of the translocation events in the AAC. Copyright © 2016 Elsevier B.V. All rights reserved.
Ganguly, Debabani; Chen, Jianhan
2011-04-01
Coupled binding and folding is frequently involved in specific recognition of so-called intrinsically disordered proteins (IDPs), a newly recognized class of proteins that rely on a lack of stable tertiary fold for function. Here, we exploit topology-based Gō-like modeling as an effective tool for the mechanism of IDP recognition within the theoretical framework of minimally frustrated energy landscape. Importantly, substantial differences exist between IDPs and globular proteins in both amino acid sequence and binding interface characteristics. We demonstrate that established Gō-like models designed for folded proteins tend to over-estimate the level of residual structures in unbound IDPs, whereas under-estimating the strength of intermolecular interactions. Such systematic biases have important consequences in the predicted mechanism of interaction. A strategy is proposed to recalibrate topology-derived models to balance intrinsic folding propensities and intermolecular interactions, based on experimental knowledge of the overall residual structure level and binding affinity. Applied to pKID/KIX, the calibrated Gō-like model predicts a dominant multistep sequential pathway for binding-induced folding of pKID that is initiated by KIX binding via the C-terminus in disordered conformations, followed by binding and folding of the rest of C-terminal helix and finally the N-terminal helix. This novel mechanism is consistent with key observations derived from a recent NMR titration and relaxation dispersion study and provides a molecular-level interpretation of kinetic rates derived from dispersion curve analysis. These case studies provide important insight into the applicability and potential pitfalls of topology-based modeling for studying IDP folding and interaction in general. Copyright © 2011 Wiley-Liss, Inc.
Probing Bioluminescence Resonance Energy Transfer in Quantum Rod-Luciferase Nanoconjugates.
Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Coopersmith, Kaitlin; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M
2016-02-23
We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift.
NASA Astrophysics Data System (ADS)
Khanbabaee, B.; Bussone, G.; Knutsson, J. V.; Geijselaers, I.; Pryor, C. E.; Rieger, T.; Demarina, N.; Grützmacher, D.; Lepsa, M. I.; Timm, R.; Pietsch, U.
2016-10-01
Unique electronic properties of semiconductor heterostructured nanowires make them useful for future nano-electronic devices. Here, we present a study of the band bending effect at the heterointerface of GaAs/InAs core/shell nanowires by means of synchrotron based X-ray photoelectron spectroscopy. Different Ga, In, and As core-levels of the nanowire constituents have been monitored prior to and after cleaning from native oxides. The cleaning process mainly affected the As-oxides and was accompanied by an energy shift of the core-level spectra towards lower binding energy, suggesting that the As-oxides turn the nanowire surfaces to n-type. After cleaning, both As and Ga core-levels revealed an energy shift of about -0.3 eV for core/shell compared to core reference nanowires. With respect to depth dependence and in agreement with calculated strain distribution and electron quantum confinement, the observed energy shift is interpreted by band bending of core-levels at the heterointerface between the GaAs nanowire core and the InAs shell.
Kumar, Akhil; Srivastava, Gaurava; Srivastava, Swati; Verma, Seema; Negi, Arvind S; Sharma, Ashok
2017-08-01
BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.
NASA Astrophysics Data System (ADS)
Fani, Najmeh; Sattarinezhad, Elham; Bordbar, Abdol-Khalegh
2017-06-01
In the first part of this paper, docking method was employed in order to study the binding mechanism of breast cancer resistance protein (BCRP) with a group of previously synthesized TPS-A derivatives which known as potent inhibitors of this protein to get insight into drug binding site of BCRP and to explore structure-activity relationship of these compounds. Molecular docking results showed that most of these compounds bind in the binding site of BCRP at the interface between the membrane and outer environment. In the second part, a group of designed TPS-A derivatives which showed good binding energies in the binding site of αβ-tubulin in the previous study were chosen to study their binding energies in the binding site of BCRP to investigate their simultaneous inhibitory effect on both αβ-tubulin and BCRP. The results showed that all of these compounds bind to the binding site of BCRP with relatively suitable binding energies and therefore could be potential inhibitors of both αβ-tubulin and BCRP proteins. Finally, virtual consensus docking method was utilized with the aim of design of new 2,5-diketopiperazine derivatives with significant inhibitory effect on both αβ-tubulin and BCRP proteins. For this purpose binding energies of a library of 2,5-diketopiperazine derivatives in the binding sites of αβ-tubulin and BCRP was investigated by using AutoDock and AutoDock vina tools. Molecular docking results revealed that a group of 36 compounds among them exhibit strong anti-tubulin and anti-BCRP activity.
No way out? The double-bind in seeking global prosperity along with mitigated climate change
NASA Astrophysics Data System (ADS)
Garrett, T. J.
2011-04-01
In a prior study (Garrett, 2011), I introduced a simple thermodynamics-based economic growth model. By treating civilization as a whole, it was found that the global economy's current rate of energy consumption can be tied through a constant to its current accumulation of wealth. The value of the constant is λ = 9.7 ± 0.3 milliwatts per 1990 US dollar. Here, this model is coupled to a linear formulation for the evolution of atmospheric CO2 concentrations. Despite the model's extreme simplicity, multi-decadal hindcasts of trajectories in gross world product (GWP) and CO2 agree closely with recent observations. Extending the model to the future, the model implies that the well-known IPCC SRES scenarios substantially underestimate how much CO2 levels will rise for a given level of future economic prosperity. Instead, what is shown is that, like a long-term natural disaster, future greenhouse warming should be expected to retard the real growth of wealth through inflationary pressures. Because wealth is tied to rates of energy consumption through the constant λ, it follows that dangerous climate change should be a negative feedback on CO2 emission rates, and therefore the ultimate extent of greenhouse warming. Nonetheless, if atmospheric CO2 concentrations are to remain below a "dangerous" level of 450 ppmv (Hansen et al., 2007), there will have to be some combination of an unrealistically rapid rate of energy decarbonization and a near immediate collapse of civilization wealth. Effectively, civilization is in a double-bind. If civilization does not collapse quickly this century, then CO2 levels will likely end up exceeding 1000 ppmv; but, if CO2 levels rise by this much, then the danger is that civilization will gradually tend towards collapse.
Detection of a Fermi-level crossing in Si(557)-Au with inverse photoemission
NASA Astrophysics Data System (ADS)
Lipton-Duffin, J. A.; MacLeod, J. M.; McLean, A. B.
2006-06-01
The unoccupied energy bands of the quasi-one-dimensional (1D) Si(557)-Au system have been studied with momentum-resolved inverse photoemission. A band is found that lies (0.4±0.4)eV above the Fermi level at the center of the surface Brillouin zone (Γ¯) . It disperses to higher binding energy, along the Γ Kmacr direction, and crosses the Fermi level at k‖=0.5±0.1Å-1 . The corresponding direction in real space is parallel to both the rows of silicon adatoms and the rows of embedded gold atoms that are distinctive features of this surface reconstruction. The location of the crossing is in good agreement with previously published photoemission data [Altmann , Phys. Rev. B 64, 035406 (2001); Ahn , Phys. Rev. Lett. 91, 196403 (2003)], where two closely spaced bands were found to disperse from the Kmacr zone boundary to lower binding energy and then cross the Fermi level. In addition to the band mentioned above, a band was found that has parabolic dispersion along Γ Kmacr , the direction that is parallel to the rows of embedded gold atoms. The band minimum for the parabolic band lies (0.8±0.4)eV below the vacuum level and it has an effective mass m*=(1.0±0.1)me , where me is the free electron mass. Perpendicular to the rows of gold atoms, as expected for a state with quasi-1D symmetry, it has flat dispersion. This band may be an image state resonance, overlapping the silicon conduction band continuum, and it is spatially localized to the edge of the silicon terraces.
Excitons in coupled type-II double quantum wells under electric and magnetic fields: InAs/AlSb/GaSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyo, S. K., E-mail: sklyo@uci.edu; Pan, W.
2015-11-21
We calculate the wave functions and the energy levels of an exciton in double quantum wells under electric (F) and magnetic (B) fields along the growth axis. The result is employed to study the energy levels, the binding energy, and the boundary on the F–B plane of the phase between the indirect exciton ground state and the semiconductor ground state for several typical structures of the type-II quasi-two-dimensional quantum wells such as InAs/AlSb/GaSb. The inter-well inter-band radiative transition rates are calculated for exciton creation and recombination. We find that the rates are modulated over several orders of magnitude by themore » electric and magnetic fields.« less
Chu, Xiakun; Wang, Jin
2014-01-01
Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition. PMID:25144525
Chu, Xiakun; Wang, Jin
2014-08-01
Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.
Laitinen, Tuomo; Kankare, Jussi A; Peräkylä, Mikael
2004-04-01
Antiestradiol antibody 57-2 binds 17beta-estradiol (E2) with moderately high affinity (K(a) = 5 x 10(8) M(-1)). The structurally related natural estrogens estrone and estriol as well synthetic 17-deoxy-estradiol and 17alpha-estradiol are bound to the antibody with 3.7-4.9 kcal mol(-1) lower binding free energies than E2. Free energy perturbation (FEP) simulations and the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were applied to investigate the factors responsible for the relatively low cross-reactivity of the antibody with these four steroids, differing from E2 by the substituents of the steroid D-ring. In addition, computational alanine scanning of the binding site residues was carried out with the MM-PBSA method. Both the FEP and MM-PBSA methods reproduced the experimental relative affinities of the five steroids in good agreement with experiment. On the basis of FEP simulations, the number of hydrogen bonds formed between the antibody and steroids, which varied from 0 to 3 in the steroids studied, determined directly the magnitude of the steroid-antibody interaction free energies. One hydrogen bond was calculated to contribute about 3 kcal mol(-1) to the interaction energy. Because the relative binding free energies of estrone (two antibody-steroid hydrogen bonds), estriol (three hydrogen bonds), 17-deoxy-estradiol (no hydrogen bonds), and 17alpha-estradiol (two hydrogen bonds) are close to each other and clearly lower than that of E2 (three hydrogen bonds), the water-steroid interactions lost upon binding to the antibody make an important contribution to the binding free energies. The MM-PBSA calculations showed that the binding of steroids to the antiestradiol antibody is driven by van der Waals interactions, whereas specificity is solely due to electrostatic interactions. In addition, binding of steroids to the antiestradiol antibody 57-2 was compared to the binding to the antiprogesterone antibody DB3 and antitestosterone antibody 3-C4F5, studied earlier with the MM-PBSA method. Copyright 2004 Wiley-Liss, Inc.
Stability and free energy calculation of LNA modified quadruplex: a molecular dynamics study
NASA Astrophysics Data System (ADS)
Chaubey, Amit Kumar; Dubey, Kshatresh Dutta; Ojha, Rajendra Prasad
2012-03-01
Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, which are the fundamental in protecting the cell from recombination and degradation. Telomeric DNA sequences can form four stranded quadruplex structures, which are involved in the structure of telomere ends. The formation and stabilization of telomeric quadruplexes has been shown to inhibit the activity of telomerase, thus establishing telomeric DNA quadrulex as an attractive target for cancer therapeutic intervention. Molecular dynamic simulation offers the prospects of detailed description of the dynamical structure with ion and water at molecular level. In this work we have taken a oligomeric part of human telomeric DNA, d(TAGGGT) to form different monomeric quadruplex structures d(TAGGGT)4. Here we report the relative stabilities of these structures under K+ ion conditions and binding interaction between the strands, as determined by molecular dynamic simulations followed by energy calculation. We have taken locked nucleic acid (LNA) in this study. The free energy molecular mechanics Poission Boltzman surface area calculations are performed for the determination of most stable complex structure between all modified structures. We calculated binding free energy for the combination of different strands as the ligand and receptor for all structures. The energetic study shows that, a mixed hybrid type quadruplex conformation in which two parallel strands are bind with other two antiparallel strands, are more stable than other conformations. The possible mechanism for the inhibition of the cancerous growth has been discussed. Such studies may be helpful for the rational drug designing.
Atomic Mass and Nuclear Binding Energy for U-287 (Uranium)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope U-287 (Uranium, atomic number Z = 92, mass number A = 287).
Atomic Mass and Nuclear Binding Energy for Ac-212 (Actinium)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Ac-212 (Actinium, atomic number Z = 89, mass number A = 212).
Duan, Lili; Liu, Xiao; Zhang, John Z H
2016-05-04
Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.
Role of the insulin-like growth factor family in cancer development and progression.
Yu, H; Rohan, T
2000-09-20
The insulin-like growth factors (IGFs) are mitogens that play a pivotal role in regulating cell proliferation, differentiation, and apoptosis. The effects of IGFs are mediated through the IGF-I receptor, which is also involved in cell transformation induced by tumor virus proteins and oncogene products. Six IGF-binding proteins (IGFBPs) can inhibit or enhance the actions of IGFs. These opposing effects are determined by the structures of the binding proteins. The effects of IGFBPs on IGFs are regulated in part by IGFBP proteases. Laboratory studies have shown that IGFs exert strong mitogenic and antiapoptotic actions on various cancer cells. IGFs also act synergistically with other mitogenic growth factors and steroids and antagonize the effect of antiproliferative molecules on cancer growth. The role of IGFs in cancer is supported by epidemiologic studies, which have found that high levels of circulating IGF-I and low levels of IGFBP-3 are associated with increased risk of several common cancers, including those of the prostate, breast, colorectum, and lung. Evidence further suggests that certain lifestyles, such as one involving a high-energy diet, may increase IGF-I levels, a finding that is supported by animal experiments indicating that IGFs may abolish the inhibitory effect of energy restriction on cancer growth. Further investigation of the role of IGFs in linking high energy intake, increased cell proliferation, suppression of apoptosis, and increased cancer risk may provide new insights into the etiology of cancer and lead to new strategies for cancer prevention.
Ligand deconstruction: Why some fragment binding positions are conserved and others are not.
Kozakov, Dima; Hall, David R; Jehle, Stefan; Jehle, Sefan; Luo, Lingqi; Ochiana, Stefan O; Jones, Elizabeth V; Pollastri, Michael; Allen, Karen N; Whitty, Adrian; Vajda, Sandor
2015-05-19
Fragment-based drug discovery (FBDD) relies on the premise that the fragment binding mode will be conserved on subsequent expansion to a larger ligand. However, no general condition has been established to explain when fragment binding modes will be conserved. We show that a remarkably simple condition can be developed in terms of how fragments coincide with binding energy hot spots--regions of the protein where interactions with a ligand contribute substantial binding free energy--the locations of which can easily be determined computationally. Because a substantial fraction of the free energy of ligand binding comes from interacting with the residues in the energetically most important hot spot, a ligand moiety that sufficiently overlaps with this region will retain its location even when other parts of the ligand are removed. This hypothesis is supported by eight case studies. The condition helps identify whether a protein is suitable for FBDD, predicts the size of fragments required for screening, and determines whether a fragment hit can be extended into a higher affinity ligand. Our results show that ligand binding sites can usefully be thought of in terms of an anchor site, which is the top-ranked hot spot and dominates the free energy of binding, surrounded by a number of weaker satellite sites that confer improved affinity and selectivity for a particular ligand and that it is the intrinsic binding potential of the protein surface that determines whether it can serve as a robust binding site for a suitably optimized ligand.
Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics
2015-01-01
We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design. PMID:26523125
Camacho, Carlos J
2005-08-01
The CAPRI-II experiment added an extra level of complexity to the problem of predicting protein-protein interactions by including 5 targets for which participants had to build or complete the 3-dimensional (3D) structure of either the receptor or ligand based on the structure of a close homolog. In this article, we describe how modeling key side-chains using molecular dynamics (MD) in explicit solvent improved the recognition of the binding region of a free energy- based computational docking method. In particular, we show that MD is able to predict with relatively high accuracy the rotamer conformation of the anchor side-chains important for molecular recognition as suggested by Rajamani et al. (Proc Natl Acad Sci USA 2004;101:11287-11292). As expected, the conformations are some of the most common rotamers for the given residue, while latch side-chains that undergo induced fit upon binding are forced into less common conformations. Using these models as starting conformations in conjunction with the rigid-body docking server ClusPro and the flexible docking algorithm SmoothDock, we produced valuable predictions for 6 of the 9 targets in CAPRI-II, missing only the 3 targets that underwent significant structural rearrangements upon binding. We also show that our free energy- based scoring function, consisting of the sum of van der Waals, Coulombic electrostatic with a distance-dependent dielectric, and desolvation free energy successfully discriminates the nativelike conformation of our submitted predictions. The latter emphasizes the critical role that thermodynamics plays on our methodology, and validates the generality of the algorithm to predict protein interactions.
The electronic and optical properties of quantum nano-structures
NASA Astrophysics Data System (ADS)
Ham, Heon
In semiconducting quantum nano-structures, the excitonic effects play an important role when we fabricate opto-electronic devices, such as lasers, diodes, detectors, etc. To gain a better understanding of the excitonic effects in quantum nano-structures, we investigated the exciton binding energy, oscillator strength, and linewidth in quantum nano-structures using both the infinite and finite well models. We investigated also the hydrogenic impurity binding energy and the photoionization cross section of the hydrogenic impurity in a spherical quantum dot. In our work, the variational approach is used in all calculations, because the Hamiltonian of the system is not separable, due to the different symmetries of the Coulomb and confining potentials. In the infinite well model of the semiconducting quantum nanostructures, the binding energy of the exciton increases with decreasing width of the potential barriers due to the increase in the effective strength of the Coulomb interaction between the electron and hole. In the finite well model, the exciton binding energy reaches a peak value, and the binding energy decreases with further decrease in the width of the potential barriers. The exciton linewidth in the infinite well model increases with decreasing wire radius, because the scattering rate of the exciton increases with decreasing wire radius. In the finite well model, the exciton linewidth in a cylindrical quantum wire reaches a peak value and the exciton linewidth decreases with further decrease in the wire radius, because the exciton is not well confined at very smaller wire radii. The binding energy of the hydrogenic impurity in a spherical quantum dot has also calculated using both the infinite and the finite well models. The binding energy of the hydrogenic impurity was calculated for on center and off center impurities in the spherical quantum dots. With decreasing radii of the dots, the binding energy of the hydrogenic impurity increases in the infinite well model. The binding energy of the hydrogenic impurity in the finite well model reaches a peak value and decreases with further decrease in the dot radii for both on center and off center impurities. We have calculated the photoionization cross section as a function of the radius and the frequency using both the infinite and finite well models. The photoionizaton cross section has a peak value at a frequency where the photon energy equals the difference between the final and initial state energies of the impurity. The behavior of the cross section with dot radius depends upon the location of the impurity and the polarization of the electromagnetic field.
Hou, Tingjun; Wang, Junmei; Li, Youyong; Wang, Wei
2011-01-24
The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods calculate binding free energies for macromolecules by combining molecular mechanics calculations and continuum solvation models. To systematically evaluate the performance of these methods, we report here an extensive study of 59 ligands interacting with six different proteins. First, we explored the effects of the length of the molecular dynamics (MD) simulation, ranging from 400 to 4800 ps, and the solute dielectric constant (1, 2, or 4) on the binding free energies predicted by MM/PBSA. The following three important conclusions could be observed: (1) MD simulation length has an obvious impact on the predictions, and longer MD simulation is not always necessary to achieve better predictions. (2) The predictions are quite sensitive to the solute dielectric constant, and this parameter should be carefully determined according to the characteristics of the protein/ligand binding interface. (3) Conformational entropy often show large fluctuations in MD trajectories, and a large number of snapshots are necessary to achieve stable predictions. Next, we evaluated the accuracy of the binding free energies calculated by three Generalized Born (GB) models. We found that the GB model developed by Onufriev and Case was the most successful model in ranking the binding affinities of the studied inhibitors. Finally, we evaluated the performance of MM/GBSA and MM/PBSA in predicting binding free energies. Our results showed that MM/PBSA performed better in calculating absolute, but not necessarily relative, binding free energies than MM/GBSA. Considering its computational efficiency, MM/GBSA can serve as a powerful tool in drug design, where correct ranking of inhibitors is often emphasized.
Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter
2014-04-01
Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil
Nonbonded interactions in membrane active cyclic biopolymers. IV - Cation dependence
NASA Technical Reports Server (NTRS)
Radhakrishnan, R.; Srinivasan, S.; Prasad, C. V.; Brinda, S. R.; Macelroy, R. D.; Sundaram, K.
1980-01-01
Interactions of valinomycin and form of its analogs in several conformations with the central ions Li(+), Na(+), K(+), Rb(+) and Cs(+) are investigated as part of a study of the specific preference of valinomycin for potassium and the mechanisms of carrier-mediated ion transport across membranes. Ion binding energies and conformational potential energies are calculated taking into account polarization energy formulas and repulsive energy between the central ion and the ligand atoms for conformations representing various stages in ion capture and release for each of the two ring chiralities of valinomycin and its analogs. Results allow the prediction of the chirality and conformation most likely to be observed for a given analog, and may be used to synthesize analogs with a desired rigidity or flexibility. The binding energies with the alkali metal cations are found to decrease with increasing ion size, and to be smaller than the corresponding ion hydration energies. It is pointed out that the observed potassium preference may be explainable in terms of differences between binding and hydration energies. Binding energies are also noted to depend on ligand conformation.
Dietary Fat, Fiber, and Carbohydrate Intake and Endogenous Hormone Levels in Premenopausal Women
Cui, Xiaohui; Rosner, Bernard; Willett, Walter C; Hankinson, Susan E
2011-01-01
The authors conducted a cross-sectional study to investigate the associations of fat, fiber and carbohydrate intake with endogenous estrogen, androgen, and insulin-like growth factor (IGF) levels among 595 premenopausal women. Overall, no significant associations were found between dietary intake of these macronutrients and plasma sex steroid hormone levels. Dietary fat intake was inversely associated with IGF-I and IGF-binding protein 3 (IGFBP-3) levels. When substituting 5% of energy from total fat for the equivalent amount of energy from carbohydrate or protein intake, the plasma levels of IGF-I and IGFBP-3 were 2.8% (95% confidence interval [CI] 0.3, 5.3) and 1.6% (95% CI 0.4, 2.8) lower, respectively. Animal fat, saturated fat and monounsaturated fat intakes also were inversely associated with IGFBP-3 levels (P < 0.05). Carbohydrates were positively associated with plasma IGF-I level. When substituting 5% of energy from carbohydrates for the equivalent amount of energy from fat or protein intake, the plasma IGF-I level was 2.0% (95% CI 0.1, 3.9%) higher. No independent associations between fiber intake and hormone levels were observed. The results suggest that a low-fat/high-fiber or carbohydrate diet is not associated with endogenous levels of sex steroid hormones, but it may modestly increase IGF-I and IGFBP-3 levels among premenopausal women. PMID:21761370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Sunandan; Rajbanshi, Biplab; Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in
2014-09-21
By using the density-functional tight binding method, we studied the electronic structure of CdSe quantum dot(QD)-buckminsterfullerene (C{sub 60}) hybrid systems as a function of both the size of the QD and concentration of the fullerene molecule. Our calculation reveals that the lowest unoccupied molecular orbital energy level of the hybrid CdSeQD-C{sub 60} systems lies on the fullerene moiety, whereas the highest occupied molecular orbital (HOMO) energy level lies either on the QD or the fullerene depending on size of the CdSe QD. We explored the possibility of engineering the energy level alignment by varying the size of the CdSe QD.more » With increase in size of the QD, the HOMO level is shifted upward and crosses the HOMO level of the C{sub 60}-thiol molecule resulting transition from the type-I to type-II band energy alignment. The density of states and charge density plot support these types of band gap engineering of the CdSe-C{sub 60} hybrid systems. This type II band alignment indicates the possibility of application of this nanohybrid for photovoltaic purpose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attah, Isaac K.; Platt, Sean P.; Meot-Ner, Michael
2014-03-21
The bonding energies of proton-bound homodimers BH{sup +}B were measured by ion mobility equilibrium studies and calculated at the DFT B3LYP/6-311++G{sup **} level, for a series of nitrogen heterocyclic molecules (B) with electron-withdrawing in-ring N and on-ring F substituents. The binding energies (ΔH°{sub dissoc}) of the proton-bound dimers (BH{sup +}B) vary significantly, from 29.7 to 18.1 kcal/mol, decreasing linearly with decreasing the proton affinity of the monomer (B). This trend differs significantly from the constant binding energies of most homodimers of other organic nitrogen and oxygen bases. The experimentally measured ΔH°{sub dissoc} for (1,3-diazine){sub 2}H{sup +}, i.e., (pyrimidine){sub 2}H{sup +}more » and (3-F-pyridine){sub 2}H{sup +} are 22.7 and 23.0 kcal/mol, respectively. The measured ΔH°{sub dissoc} for the pyrimidine{sup ·+}(3-F-pyridine) radical cation dimer (19.2 kcal/mol) is signifcantly lower than that of the proton-bound homodimers of pyrimidine and 3-F-pyridine, reflecting the stronger interaction in the ionic H-bond of the protonated dimers. The calculated binding energies for (1,2-diazine){sub 2}H{sup +}, (pyridine){sub 2}H{sup +}, (2-F-pyridine){sub 2}H{sup +}, (3-F-pyridine){sub 2}H{sup +}, (2,6-di-F-pyridine){sub 2}H{sup +}, (4-F-pyridine){sub 2}H{sup +}, (1,3-diazine){sub 2}H{sup +}, (1,4-diazine){sub 2}H{sup +}, (1,3,5-triazine){sub 2}H{sup +}, and (pentafluoropyridine){sub 2}H{sup +} are 29.7, 24.9, 24.8, 23.3, 23.2, 23.0, 22.4, 21.9, 19.3, and 18.1 kcal/mol, respectively. The electron-withdrawing substituents form internal dipoles whose electrostatic interactions contribute to both the decreased proton affinities of (B) and the decreased binding energies of the protonated dimers BH{sup +}B. The bonding energies also vary with rotation about the hydrogen bond, and they decrease in rotamers where the internal dipoles of the components are aligned efficiently for inter-ring repulsion. For compounds substituted at the 3 or 4 (meta or para) positions, the lowest energy rotamers are T-shaped with the planes of the two rings rotated by 90° about the hydrogen bond, while the planar rotamers are weakened by repulsion between the ortho hydrogen atoms of the two rings. Conversely, in ortho-substituted (1,2-diazine){sub 2}H{sup +} and (2-F-pyridine){sub 2}H{sup +}, attractive interactions between the ortho (C–H) hydrogen atoms of one ring and the electronegative ortho atoms (N or F) of the other ring are stabilizing, and increase the protonated dimer binding energies by up to 4 kcal/mol. In all of the dimers, rotation about the hydrogen bond can involve a 2–4 kcal/mol barrier due to the relative energies of the rotamers.« less
Purohit, Prasad
2011-01-01
The extent to which agonists activate synaptic receptor-channels depends on both the intrinsic tendency of the unliganded receptor to open and the amount of agonist binding energy realized in the channel-opening process. We examined mutations of the nicotinic acetylcholine receptor transmitter binding site (α subunit loop B) with regard to both of these parameters. αGly147 is an “activation” hinge where backbone flexibility maintains high values for intrinsic gating, the affinity of the resting conformation for agonists and net ligand binding energy. αGly153 is a “deactivation” hinge that maintains low values for these parameters. αTrp149 (between these two glycines) serves mainly to provide ligand binding energy for gating. We propose that a concerted motion of the two glycine hinges (plus other structural elements at the binding site) positions αTrp149 so that it provides physiologically optimal binding and gating function at the nerve-muscle synapse. PMID:21115636
Atomic and molecular adsorption on Au(111)
Santiago-Rodriguez, Yohaselly; Herron, Jeffrey A.; Curet-Arana, Maria C.; ...
2014-05-02
Periodic self-consistent density functional theory (DFT-GGA) calculations were used to study the adsorption of several atomic species, molecular species and molecular fragments on the Au(111) surface with a coverage of 1/4 monolayer (ML). Binding geometries, binding energies, and diffusion barriers were calculated for 27 species. Furthermore, we calculated the surface deformation energy associated with the binding events. The binding strength for all the analyzed species can be ordered as follows: NH 3 < NO < CO < CH 3 < HCO < NH 2 < COOH < OH < HCOO < CNH 2 < H < N < NH
Petukh, Marharyta; Li, Minghui; Alexov, Emil
2015-07-01
A new methodology termed Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) was developed to predict the changes of the binding free energy caused by mutations. The method utilizes 3D structures of the corresponding protein-protein complexes and takes advantage of both approaches: sequence- and structure-based methods. The method has two components: a MM/PBSA-based component, and an additional set of statistical terms delivered from statistical investigation of physico-chemical properties of protein complexes. While the approach is rigid body approach and does not explicitly consider plausible conformational changes caused by the binding, the effect of conformational changes, including changes away from binding interface, on electrostatics are mimicked with amino acid specific dielectric constants. This provides significant improvement of SAAMBE predictions as indicated by better match against experimentally determined binding free energy changes over 1300 mutations in 43 proteins. The final benchmarking resulted in a very good agreement with experimental data (correlation coefficient 0.624) while the algorithm being fast enough to allow for large-scale calculations (the average time is less than a minute per mutation).
NASA Astrophysics Data System (ADS)
Alshehri, Mansoor H.; Cox, Barry J.; Hill, James M.
2014-09-01
Fullerenes have attracted considerable attention in various areas of science and technology. Owing to their exceptional physical, chemical, and biological properties, they have many applications, particularly in cosmetic and medical products. Using the Lennard-Jones 6-12 potential function and the continuum approximation, which assumes that intermolecular interactions can be approximated by average atomic surface densities, we determine the binding energies of a C60 fullerene with respect to both single-strand and double-strand DNA molecules. We assume that all configurations are in a vacuum and that the C60 fullerene is initially at rest. Double integrals are performed to determine the interaction energy of the system. We find that the C60 fullerene binds to the double-strand DNA molecule, at either the major or minor grooves, with binding energies of -4.7 eV or -2.3 eV, respectively, and that the C60 molecule binds to the single-strand DNA molecule with a binding energy of -1.6 eV. Our results suggest that the C60 molecule is most likely to be linked to the major groove of the dsDNA molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orellana, Walter, E-mail: worellana@unab.cl
2014-07-14
The stability, electronic, and optical properties of (6,5) single-walled carbon nanotubes (CNTs) functionalized with free-base tetraphenylporphyrin (TPP) molecules through π-stacking interactions are studied by ab-initio calculations. The stability and optical response of the CNT-TPP compounds for increasing CNT-surface coverage are investigated. Our results show that four TPP molecules forming a ring around the CNT is the most stable configuration, showing strong binding energies of about 2.5 eV/TPP. However, this binding energy can increase even more after additional molecules assemble side by side along the CNT, favoring the formation of a full single layer of TPP, as experimentally suggested. The strong π-πmore » attractive forces induce molecular distortions that move the TPP higher-occupied molecular orbital levels inside the CNT bandgap, changing the optical response of the TPP molecules stacked on the CNT.« less
Spichty, Martin; Taly, Antoine; Hagn, Franz; Kessler, Horst; Barluenga, Sofia; Winssinger, Nicolas; Karplus, Martin
2009-01-01
We determine the binding mode of a macrocyclic radicicol-like oxime to yeast HSP90 by combining computer simulations and experimental measurements. We sample the macrocyclic scaffold of the unbound ligand by parallel tempering simulations and dock the most populated conformations to yeast HSP90. Docking poses are then evaluated by the use of binding free energy estimations with the linear interaction energy method. Comparison of QM/MM-calculated NMR chemical shifts with experimental shift data for a selective subset of back-bone 15N provides an additional evaluation criteria. As a last test we check the binding modes against available structure-activity-relationships. We find that the most likely binding mode of the oxime to yeast HSP90 is very similar to the known structure of the radicicol-HSP90 complex. PMID:19482409
Factors driving stable growth of He clusters in W: first-principles study
NASA Astrophysics Data System (ADS)
Feng, Y. J.; Xin, T. Y.; Xu, Q.; Wang, Y. X.
2018-07-01
The evolution of helium (He) bubbles is responsible for the surface morphology variation and subsequent degradation of the properties of plasma-facing materials (PFMs) in nuclear fusion reactors. These severe problems unquestionably trace back to the behavior of He in PFMs, which is closely associated with the interaction between He and the matrix. In this paper, we decomposed the binding energy of the He cluster into three parts, those from W–W, W–He, and He–He interactions, using density functional theory. As a result, we clearly identified the main factors that determine a steplike decrease in the binding energy with increasing number of He atoms, which explains the process of self-trapping and athermal vacancy generation during He cluster growth in the PFM tungsten. The three interactions were found to synergetically shape the features of the steplike decrease in the binding energy. Fairly strong He–He repulsive forces at a short distance, which stem from antibonding states between He atoms, need to be released when additional He atoms are continuously bonded to the He cluster. This causes the steplike feature in the binding energy. The bonding states between W and He atoms in principle facilitate the decreasing trend of the binding energy. The decrease in binding energy with increasing number of He atoms implies that He clusters can grow stably.
Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs.
Harger, Matthew; Li, Daniel; Wang, Zhi; Dalby, Kevin; Lagardère, Louis; Piquemal, Jean-Philip; Ponder, Jay; Ren, Pengyu
2017-09-05
The capabilities of the polarizable force fields for alchemical free energy calculations have been limited by the high computational cost and complexity of the underlying potential energy functions. In this work, we present a GPU-based general alchemical free energy simulation platform for polarizable potential AMOEBA. Tinker-OpenMM, the OpenMM implementation of the AMOEBA simulation engine has been modified to enable both absolute and relative alchemical simulations on GPUs, which leads to a ∼200-fold improvement in simulation speed over a single CPU core. We show that free energy values calculated using this platform agree with the results of Tinker simulations for the hydration of organic compounds and binding of host-guest systems within the statistical errors. In addition to absolute binding, we designed a relative alchemical approach for computing relative binding affinities of ligands to the same host, where a special path was applied to avoid numerical instability due to polarization between the different ligands that bind to the same site. This scheme is general and does not require ligands to have similar scaffolds. We show that relative hydration and binding free energy calculated using this approach match those computed from the absolute free energy approach. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Karttunen, Mikko; Choy, Wing-Yiu; Cino, Elio A
2018-06-07
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor and principal regulator of the antioxidant pathway. The Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) binds to motifs in the N-terminal region of Nrf2, promoting its degradation. There is interest in developing ligands that can compete with Nrf2 for binding to Kelch, thereby activating its transcriptional activities and increasing antioxidant levels. Using experimental Δ G bind values of Kelch-binding motifs determined previously, a revised hydrophobicity-based model was developed for estimating Δ G bind from amino acid sequence and applied to rank potential uncharacterized Kelch-binding motifs identified from interaction databases and BLAST searches. Model predictions and molecular dynamics (MD) simulations suggested that full-length MAD2A binds Kelch more favorably than a high-affinity 20-mer Nrf2 E78P peptide, but that the motif in isolation is not a particularly strong binder. Endeavoring to develop shorter peptides for activating Nrf2, new designs were created based on the E78P peptide, some of which showed considerable propensity to form binding-competent structures in MD, and were predicted to interact with Kelch more favorably than the E78P peptide. The peptides could be promising new ligands for enhancing the oxidative stress response.
Borodin, Oleg
2009-09-10
A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.
Theoretical study of the BeLi, BeNa, MgLi, MgNa, and AlBe molecules and their negative ions
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry
1992-01-01
The alkaline earth-alkali diatomics are found to have weak bonds, because the diffuse alkali valence s orbitals cannot form a bond of sufficient strength to pay the promotion energy of the alkaline-earth atoms. This leads to van der Waals bonding in the neutrals as well as the negative ions. In fact, the negative ions have larger binding energies than the neutrals as a result of the much larger polarizability of the negative ion. The binding energy of AlBe is significantly larger than the Be-alkali molecules, due to a covalent contribution to the bonding. The binding energy in AlBe(-) is considerably larger than AlBe; the binding energy of the X 3Sigma(-) state of AlBe(-) is computed to be 1.36 eV, as compared with 0.57 eV for the X 2Pi state of AlBe.
Binding energies and modelling of nuclei in semiclassical simulations
NASA Astrophysics Data System (ADS)
Pérez-García, M. Ángeles; Tsushima, K.; Valcarce, A.
2008-03-01
We study the binding energies of spin isospin saturated nuclei with nucleon number 8⩽A⩽100 in semiclassical Monte Carlo many-body simulations. The model Hamiltonian consists of (i) nucleon kinetic energy, (ii) a nucleon nucleon interaction potential, and (iii) an effective Pauli potential which depends on density. The basic ingredients of the nucleon nucleon potential are a short-range repulsion, and a medium-range attraction. Our results demonstrate that one can always expect to obtain the empirical binding energies for a set of nuclei by introducing a proper density dependent Pauli potential in terms of a single variable, the nucleon number, A. The present work shows that in the suggested procedure there is a delicate counterbalance of kinetic and potential energetic contributions allowing a good reproduction of the experimental nuclear binding energies. This type of calculations may be of interest in further reproduction of other properties of nuclei such as radii and also exotic nuclei.
Xue, Weiwei; Jiao, Pingzu; Liu, Huanxiang; Yao, Xiaojun
2014-04-01
Hepatitis C virus (HCV) NS5B protein is an RNA-dependent RNA polymerase (RdRp) with essential functions in viral genome replication and represents a promising therapeutic target to develop direct-acting antivirals (DAAs). Multiple nonnucleoside inhibitors (NNIs) binding sites have been identified within the polymerase. VX-222 and ANA598 are two NNIs targeting thumb II site and palm I site of HCV NS5B polymerase, respectively. These two molecules have been shown to be very effective in phase II clinical trials. However, the emergence of resistant HCV replicon variants (L419M, M423T, I482L mutants to VX-222 and M414T, M414L, G554D mutants to ANA598) has significantly decreased their efficacy. To elucidate the molecular mechanism about how these mutations influenced the drug binding mode and decreased drug efficacy, we studied the binding modes of VX-222 and ANA598 to wild-type and mutant polymerase by molecular modeling approach. Molecular dynamics (MD) simulations results combined with binding free energy calculations indicated that the mutations significantly altered the binding free energy and the interaction for the drugs to polymerase. The further per-residue binding free energy decomposition analysis revealed that the mutations decreased the interactions with several key residues, such as L419, M423, L474, S476, I482, L497, for VX-222 and L384, N411, M414, Y415, Q446, S556, G557 for ANA598. These were the major origins for the resistance to these two drugs. In addition, by analyzing the residue interaction network (RIN) of the complexes between the drugs with wild-type and the mutant polymerase, we found that the mutation residues in the networks involved in the drug resistance possessed a relatively lower size of topology centralities. The shift of betweenness and closeness values of binding site residues in the mutant polymerase is relevant to the mechanism of drug resistance of VX-222 and ANA598. These results can provide an atomic-level understanding about the mechanisms of drug resistance conferred by the studied mutations and will be helpful to design more potent inhibitors which could effectively overcome drug resistance of antivirus agents. Copyright © 2014 Elsevier B.V. All rights reserved.
Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction.
Yang, Chao-Yie; Sun, Haiying; Chen, Jianyong; Nikolovska-Coleska, Zaneta; Wang, Shaomeng
2009-09-30
Accurate prediction of the binding affinities of small-molecule ligands to their biological targets is fundamental for structure-based drug design but remains a very challenging task. In this paper, we have performed computational studies to predict the binding models of 31 small-molecule Smac (the second mitochondria-derived activator of caspase) mimetics to their target, the XIAP (X-linked inhibitor of apoptosis) protein, and their binding affinities. Our results showed that computational docking was able to reliably predict the binding models, as confirmed by experimentally determined crystal structures of some Smac mimetics complexed with XIAP. However, all the computational methods we have tested, including an empirical scoring function, two knowledge-based scoring functions, and MM-GBSA (molecular mechanics and generalized Born surface area), yield poor to modest prediction for binding affinities. The linear correlation coefficient (r(2)) value between the predicted affinities and the experimentally determined affinities was found to be between 0.21 and 0.36. Inclusion of ensemble protein-ligand conformations obtained from molecular dynamic simulations did not significantly improve the prediction. However, major improvement was achieved when the free-energy change for ligands between their free- and bound-states, or "ligand-reorganization free energy", was included in the MM-GBSA calculation, and the r(2) value increased from 0.36 to 0.66. The prediction was validated using 10 additional Smac mimetics designed and evaluated by an independent group. This study demonstrates that ligand reorganization free energy plays an important role in the overall binding free energy between Smac mimetics and XIAP. This term should be evaluated for other ligand-protein systems and included in the development of new scoring functions. To our best knowledge, this is the first computational study to demonstrate the importance of ligand reorganization free energy for the prediction of protein-ligand binding free energy.
NASA Astrophysics Data System (ADS)
Saavedra-Vélez, Margarita Virginia; Correa-Basurto, José; Matus, Myrna H.; Gasca-Pérez, Eloy; Bello, Martiniano; Cuevas-Hernández, Roberto; García-Rodríguez, Rosa Virginia; Trujillo-Ferrara, José; Ramos-Morales, Fernando Rafael
2014-12-01
The aim of this study was to identify compounds that possess anticonvulsant activity by using a pentylenetetrazol (PTZ)-induced seizure model. Theoretical studies of a set of ligands, explored the binding affinities of the ligands for the GABAA receptor (GABAAR), including some benzodiazepines. The ligands satisfy the Lipinski rules and contain a pharmacophore core that has been previously reported to be a GABAAR activator. To select the ligands with the best physicochemical properties, all of the compounds were analyzed by quantum mechanics and the energies of the highest occupied molecular orbital and lowest unoccupied molecular orbital were determined. Docking calculations between the ligands and the GABAAR were used to identify the complexes with the highest Gibbs binding energies. The identified compound D1 (dibenzo( b,f)(1,4)diazocine-6,11(5H,12H)-dione) was synthesized, experimentally tested, and the GABAAR-D1 complex was submitted to 12-ns-long molecular dynamics (MD) simulations to corroborate the binding conformation obtained by docking techniques. MD simulations were also used to analyze the decomposition of the Gibbs binding energy of the residues involved in the stabilization of the complex. To validate our theoretical results, molecular docking and MD simulations were also performed for three reference compounds that are currently in commercial use: clonazepam (CLZ), zolpidem and eszopiclone. The theoretical results show that the GABAAR-D1, and GABAAR-CLZ complexes bind to the benzodiazepine binding site, share a similar map of binding residues, and have similar Gibbs binding energies and entropic components. Experimental studies using a PTZ-induced seizure model showed that D1 possesses similar activity to CLZ, which corroborates the predicted binding free energy identified by theoretical calculations.
Protein surface roughness accounts for binding free energy of Plasmepsin II-ligand complexes.
Valdés-Tresanco, Mario E; Valdés-Tresanco, Mario S; Valiente, Pedro A; Cocho, Germinal; Mansilla, Ricardo; Nieto-Villar, J M
2018-01-01
The calculation of absolute binding affinities for protein-inhibitor complexes remains as one of the main challenges in computational structure-based ligand design. The present work explored the calculations of surface fractal dimension (as a measure of surface roughness) and the relationship with experimental binding free energies of Plasmepsin II complexes. Plasmepsin II is an attractive target for novel therapeutic compounds to treat malaria. However, the structural flexibility of this enzyme is a drawback when searching for specific inhibitors. Concerning that, we performed separate explicitly solvated molecular dynamics simulations using the available high-resolution crystal structures of different Plasmepsin II complexes. Molecular dynamics simulations allowed a better approximation to systems dynamics and, therefore, a more reliable estimation of surface roughness. This constitutes a novel approximation in order to obtain more realistic values of fractal dimension, because previous works considered only x-ray structures. Binding site fractal dimension was calculated considering the ensemble of structures generated at different simulation times. A linear relationship between binding site fractal dimension and experimental binding free energies of the complexes was observed within 20 ns. Previous studies of the subject did not uncover this relationship. Regression model, coined FD model, was built to estimate binding free energies from binding site fractal dimension values. Leave-one-out cross-validation showed that our model reproduced accurately the absolute binding free energies for our training set (R 2 = 0.76; <|error|> =0.55 kcal/mol; SD error = 0.19 kcal/mol). The fact that such a simple model may be applied raises some questions that are addressed in the article. Copyright © 2017 John Wiley & Sons, Ltd.
Calculating binding free energies for protein-carbohydrate complexes.
Hadden, Jodi A; Tessier, Matthew B; Fadda, Elisa; Woods, Robert J
2015-01-01
A variety of computational techniques may be applied to compute theoretical binding free energies for protein-carbohydrate complexes. Elucidation of the intermolecular interactions, as well as the thermodynamic effects, that contribute to the relative strength of receptor binding can shed light on biomolecular recognition, and the resulting initiation or inhibition of a biological process. Three types of free energy methods are discussed here, including MM-PB/GBSA, thermodynamic integration, and a non-equilibrium alternative utilizing SMD. Throughout this chapter, the well-known concanavalin A lectin is employed as a model system to demonstrate the application of these methods to the special case of carbohydrate binding.
Exciton and core-level electron confinement effects in transparent ZnO thin films
Mosquera, Adolfo A.; Horwat, David; Rashkovskiy, Alexandr; Kovalev, Anatoly; Miska, Patrice; Wainstein, Dmitry; Albella, Jose M.; Endrino, Jose L.
2013-01-01
The excitonic light emission of ZnO films have been investigated by means of photoluminescence measurements in ultraviolet-visible region. Exciton confinement effects have been observed in thin ZnO coatings with thickness below 20 nm. This is enhanced by a rise of the intensity and a blue shift of the photoluminescence peak after extraction of the adsorbed species upon annealing in air. It is found experimentally that the free exciton energy (determined by the photoluminescence peak) is inversely proportional to the square of the thickness while core-level binding energy is inversely proportional to the thickness. These findings correlate very well with the theory of kinetic and potential confinements.
NASA Astrophysics Data System (ADS)
Zoete, V.; Michielin, O.; Karplus, M.
2003-12-01
A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SAS bur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, ΔGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC 50 without reparametrization.
Effect of binding in cyclic phosphorylation-dephosphorylation process and in energy transformation.
Sarkar, A; Beard, D A; Franza, B R
2006-07-01
The effects of binding on the phosphorylation-dephosphorylation cycle (PDPC) - one of the key components of the signal transduction processes - is analyzed based on a mathematical model. The model shows that binding of proteins, forming a complex, diminishes the ultrasensitivity of the PDPC to the differences in activity between kinase and phosphatase in the cycle. It is also found that signal amplification depends upon the strength of the binding affinity of the protein (phosphorylated or dephosphorylated) to other proteins . It is also observed that the amplification of signal is not only dependent on phosphorylation potential but also on binding properties and resulting adjustments in binding energies.
Virtual screening using molecular simulations.
Yang, Tianyi; Wu, Johnny C; Yan, Chunli; Wang, Yuanfeng; Luo, Ray; Gonzales, Michael B; Dalby, Kevin N; Ren, Pengyu
2011-06-01
Effective virtual screening relies on our ability to make accurate prediction of protein-ligand binding, which remains a great challenge. In this work, utilizing the molecular-mechanics Poisson-Boltzmann (or Generalized Born) surface area approach, we have evaluated the binding affinity of a set of 156 ligands to seven families of proteins, trypsin β, thrombin α, cyclin-dependent kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen activator, β-glucosidase A, and coagulation factor Xa. The effect of protein dielectric constant in the implicit-solvent model on the binding free energy calculation is shown to be important. The statistical correlations between the binding energy calculated from the implicit-solvent approach and experimental free energy are in the range of 0.56-0.79 across all the families. This performance is better than that of typical docking programs especially given that the latter is directly trained using known binding data whereas the molecular mechanics is based on general physical parameters. Estimation of entropic contribution remains the barrier to accurate free energy calculation. We show that the traditional rigid rotor harmonic oscillator approximation is unable to improve the binding free energy prediction. Inclusion of conformational restriction seems to be promising but requires further investigation. On the other hand, our preliminary study suggests that implicit-solvent based alchemical perturbation, which offers explicit sampling of configuration entropy, can be a viable approach to significantly improve the prediction of binding free energy. Overall, the molecular mechanics approach has the potential for medium to high-throughput computational drug discovery. Copyright © 2011 Wiley-Liss, Inc.
Computation of pH-Dependent Binding Free Energies
Kim, M. Olivia; McCammon, J. Andrew
2015-01-01
Protein-ligand binding accompanies changes in the surrounding electrostatic environments of the two binding partners and may lead to changes in protonation upon binding. In cases where the complex formation results in a net transfer of protons, the binding process is pH-dependent. However, conventional free energy computations or molecular docking protocols typically employ fixed protonation states for the titratable groups in both binding partners set a priori, which are identical for the free and bound states. In this review, we draw attention to these important yet largely ignored binding-induced protonation changes in protein-ligand association by outlining physical origins and prevalence of the protonation changes upon binding. Following a summary of various theoretical methods for pKa prediction, we discuss the theoretical framework to examine the pH dependence of protein-ligand binding processes. PMID:26202905
Bound states of spin-half particles in a static gravitational field close to the black hole field
NASA Astrophysics Data System (ADS)
Spencer-Smith, A. F.; Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.
2013-03-01
We consider the bound-state energy levels of a spin-1/2 fermion in the gravitational field of a near-black hole object. In the limit that the metric of the body becomes singular, all binding energies tend to the rest-mass energy (i.e. total energy approaches zero). We present calculations of the ground state energy for three specific interior metrics (Florides, Soffel and Schwarzschild) for which the spectrum collapses and becomes quasi-continuous in the singular metric limit. The lack of zero or negative energy states prior to this limit being reached prevents particle pair production occurring. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides and Soffel metrics the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the centre. The behaviour of the energy level spectrum is discussed in the context of the semi-classical approximation and using general properties of the metric.
NASA Astrophysics Data System (ADS)
Dessau, D. S.; Shen, Z.-X.; Wells, B. O.; King, D. M.; Spicer, W. E.; Arko, A. J.; Lombardo, L. W.; Mitzi, D. B.; Kapitulnik, A.
1992-03-01
At the transition to superconductivity, an anomalous high-binding-energy (~=-90 meV) dip appears in the low-temperature photoemission spectra taken along the Γ-M¯ high-symmetry direction of Bi2Sr2CaCu2O8+δ. This paper details experiments which further characterize the energy and k-space dependence of this dip structure. The dip occurs over a wide portion of the Γ-M¯ zone diagonal (110), yet shows minimal energy dispersion. In the spectra taken along the Γ-X zone edge (100), the dip is very weak or not present. We show that these results imply that the dip is not an artifact dependent on the experiment or special features of the band structure and therefore is an intrinsic feature of the superconducting state of Bi2Sr2CaCu2O8+δ. The behavior of the normal-state bands along Γ-M¯ in relation to the local-density-approximation prediction of a Bi-O-based electron ``pocket'' is also discussed, with our data explained most naturally if the Bi-O band remains above the Fermi level for all k.
Insilico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level.
Yang, Changwon; Kulkarni, Mandar; Lim, Manho; Pak, Youngshang
2017-12-15
The reversible folding of the thrombin-binding DNA aptamer G-quadruplexes (GQs) (TBA-15) starting from fully unfolded states was demonstrated using a prolonged time scale (10-12 μs) parallel tempering metadynamics (PTMetaD) simulation method in conjunction with a modified version of the AMBER bsc1 force field. For unbiased descriptions of the folding free energy landscape of TBA-15, this force field was minimally modified. From this direct folding simulation using the modified bsc1 force field, reasonably converged free energy landscapes were obtained in K+-rich aqueous solution (150 mM), providing detailed atomistic pictures of GQ folding mechanisms for TBA-15. This study found that the TBA folding occurred via multiple folding pathways with two major free energy barriers of 13 and 15 kcal/mol in the presence of several intermediate states of G-triplex variants. The early formation of these intermediates was associated with a single K+ ion capturing. Interestingly, these intermediate states appear to undergo facile transitions among themselves through relatively small energy barriers. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Aouami, A. El; Feddi, E.; Talbi, A.; Dujardin, F.; Duque, C. A.
2018-06-01
In this study, we have investigated the simultaneous influence of magnetic field combined to the hydrostatic pressure and the geometrical confinement on the behavior of a single dopant confined in GaN/InGaN core/shell quantum dots. Within the scheme of the effective-mass approximation, the eigenvalues equation has solved by using the variational method with one-parameter trial wavefunctions. Variation of the ground state binding energy of the single dopant is determined according to the magnetic field and hydrostatic pressure for several dimensions of the heterostructure. The results show that the binding energy is strongly dependent on the core/shell sizes, the magnetic field, and the hydrostatic pressure. The analysis of the photoionization cross section, corresponding to optical transitions associated to the first donor energy level and the conduction band, shows clearly that the reduction of the dot dimensions and/or the simultaneous influences of applied magnetic field, combined to the hydrostatic pressure strength, cause a shift in resonance peaks towards the higher energies with important variations in the magnitude of the resonant peaks.
Kim, Ki Chul; Fairen-Jimenez, David; Snurr, Randall Q
2017-12-06
A thermodynamic analysis using quantum chemical methods was carried out to identify optimal functional group candidates that can be included in metal-organic frameworks and activated carbons for the selective capture of toxic industrial chemicals (TICs) in humid air. We calculated the binding energies of 14 critical TICs plus water with a series of 10 functional groups attached to a naphthalene ring model. Using vibrational calculations, the free energies of adsorption were calculated in addition to the binding energies. Our results show that, in these systems, the binding energies and free energies follow similar trends. We identified copper(i) carboxylate as the optimal functional group (among those studied) for the selective binding of the majority of the TICs in humid air, and this functional group exhibits especially strong binding for sulfuric acid. Further thermodynamic analysis shows that the presence of water weakens the binding strength of sulfuric acid with the copper carboxylate group. Our calculations predict that functionalization of aromatic rings would be detrimental to selective capture of COCl 2 , CO 2 , and Cl 2 under humid conditions. Finally, we found that forming an ionic complex, H 3 O + HSO 4 - , between H 2 SO 4 and H 2 O via proton transfer is not favorable on copper carboxylate.
2011-01-01
Background A protein binding hot spot is a cluster of residues in the interface that are energetically important for the binding of the protein with its interaction partner. Identifying protein binding hot spots can give useful information to protein engineering and drug design, and can also deepen our understanding of protein-protein interaction. These residues are usually buried inside the interface with very low solvent accessible surface area (SASA). Thus SASA is widely used as an outstanding feature in hot spot prediction by many computational methods. However, SASA is not capable of distinguishing slightly buried residues, of which most are non hot spots, and deeply buried ones that are usually inside a hot spot. Results We propose a new descriptor called “burial level” for characterizing residues, atoms and atomic contacts. Specifically, burial level captures the depth the residues are buried. We identify different kinds of deeply buried atomic contacts (DBAC) at different burial levels that are directly broken in alanine substitution. We use their numbers as input for SVM to classify between hot spot or non hot spot residues. We achieve F measure of 0.6237 under the leave-one-out cross-validation on a data set containing 258 mutations. This performance is better than other computational methods. Conclusions Our results show that hot spot residues tend to be deeply buried in the interface, not just having a low SASA value. This indicates that a high burial level is not only a necessary but also a more sufficient condition than a low SASA for a residue to be a hot spot residue. We find that those deeply buried atoms become increasingly more important when their burial levels rise up. This work also confirms the contribution of deeply buried interfacial atomic contacts to the energy of protein binding hot spot. PMID:21689480
Visualizing the kinetic power stroke that drives proton-coupled Zn(II) transport
Gupta, Sayan; Chai, Jin; Cheng, Jie; D'Mello, Rhijuta; Chance, Mark R.; Fu, Dax
2014-01-01
The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of E. coli, and the transport-site of YiiP receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux1,2. This membrane protein is a well characterized member3-7 of the protein family of cation diffusion facilitators (CDFs) that occurs at all phylogenetic levels8-10. X-ray mediated hydroxyl radical labeling of YiiP and mass spectrometric analysis showed that Zn(II) binding triggered a highly localized, all-or-none change of water accessibility to the transport-site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics revealed a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical reorientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport-site enables a stationary proton gradient to facilitate the conversion of zinc binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active transport reaction. PMID:25043033
Emerging Role of Corticosteroid-Binding Globulin in Glucocorticoid-Driven Metabolic Disorders.
Moisan, Marie-Pierre; Castanon, Nathalie
2016-01-01
Glucocorticoid hormones (GCs) are critical for survival since they ensure the energy supply necessary to the body in an ever challenging environment. GCs are known to act on appetite, glucose metabolism, fatty acid metabolism, and storage. However, to be beneficial to the body, GC levels should be maintained in an optimal window of concentrations. Not surprisingly, conditions of GC excess or deficiency, e.g., Cushing's syndrome or Addison's disease, are associated with severe alterations of energy metabolism. Corticosteroid-binding globulin (CBG), through its high specific affinity for GCs, plays a critical role in regulating plasma GC levels and their access to target cells. Genetic studies in various species including humans have revealed that CBG is the major factor influencing interindividual genetic variability of plasma GC levels, both in basal and stress conditions. Some, but not all, of these genetic studies have also provided data linking CBG levels to body composition and insulin levels. The examination of CBG-deficient mice submitted to hyperlipidic diets unveiled specific roles for CBG in lipid storage and metabolism. An influence of CBG on appetite has not been reported but remains to be more finely analyzed. Finally, only male mice have been examined under high-fat diet, while obesity is affecting women even more than men. Overall, a role of CBG in GC-driven metabolic disorders is emerging in recent studies. Although subtle, the influence of CBG in these diseases could open the way to new therapeutic interventions since CBG is easily accessible in the blood.
NASA Astrophysics Data System (ADS)
He, Jiao; Acharyya, Kinsuk; Emtiaz, S. M.; Vidali, Gianfranco
2016-06-01
Sticking and adsorption of molecules on dust grains are two important processes in gas-grain interactions. We accurately measured both the sticking coefficient and the binding energy of several key molecules on the surface of amorphous solid water as a function of coverage.A time-resolved scattering technique was used to measure sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on non-porous amorphous solid water (np-ASW) in the low coverage limit over a wide range of surface temperatures. We found that the time-resolved scattering technique is advantageous over the conventional King-Wells method that underestimates the sticking coefficient. Based on the measured values we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy.We measured the binding energy of N2, CO, O2, CH4, and CO2 on np-ASW, and of N2 and CO on porous amorphous solid water (p-ASW). We were able to measure binding energies down to a fraction of 1% of a layer, thus making these measurements more appropriate for astrochemistry than the existing values. We found that CO2 forms clusters on np-ASW surface even at very low coverage; this may help in explaining the segregation of CO2 in ices. The binding energies of N2, CO, O2, and CH4 on np-ASW decrease with coverage in the submonolayer regime. Their values in the low coverage limit are much higher than what is commonly used in gas-grain models. An empirical formula was used to describe the coverage dependence of the binding energies. We used the newly determined binding energy distributions in a simulation of gas-grain chemistry for cold dense clouds and hot core models. We found that owing to the higher value of desorption energy in the sub-monlayer regime a fraction of all these ices stays much longer and to higher temperature on the grain surface compared to the case using single value energies as currently done in astrochemical models.This work was supported in part by a grant to GV from NSF --- Astronomy & Astrophysics Division (#1311958)
Lee, Hui Sun; Jo, Sunhwan; Lim, Hyun-Suk; Im, Wonpil
2012-07-23
Molecular docking is widely used to obtain binding modes and binding affinities of a molecule to a given target protein. Despite considerable efforts, however, prediction of both properties by docking remains challenging mainly due to protein's structural flexibility and inaccuracy of scoring functions. Here, an integrated approach has been developed to improve the accuracy of binding mode and affinity prediction and tested for small molecule MDM2 and MDMX antagonists. In this approach, initial candidate models selected from docking are subjected to equilibration MD simulations to further filter the models. Free energy perturbation molecular dynamics (FEP/MD) simulations are then applied to the filtered ligand models to enhance the ability in predicting the near-native ligand conformation. The calculated binding free energies for MDM2 complexes are overestimated compared to experimental measurements mainly due to the difficulties in sampling highly flexible apo-MDM2. Nonetheless, the FEP/MD binding free energy calculations are more promising for discriminating binders from nonbinders than docking scores. In particular, the comparison between the MDM2 and MDMX results suggests that apo-MDMX has lower flexibility than apo-MDM2. In addition, the FEP/MD calculations provide detailed information on the different energetic contributions to ligand binding, leading to a better understanding of the sensitivity and specificity of protein-ligand interactions.
Entropy-enthalpy compensation at the single protein level: pH sensing in the bacterial channel OmpF.
Alcaraz, Antonio; Queralt-Martín, María; Verdiá-Báguena, Carmina; Aguilella, Vicente M; Mafé, Salvador
2014-12-21
The pH sensing mechanism of the OmpF channel operates via ligand modification: increasing acidity induces the replacement of cations with protons in critical binding sites decreasing the channel conductance. Aside from the change in enthalpy associated with the binding, there is also a change in the microscopic arrangements of ligands, receptors and the surrounding solvent. We show that the pH-modulation of the single channel conduction involves small free energy changes because large enthalpic and entropic contributions change in opposite ways, demonstrating an approximate enthalpy-entropy compensation for different salts and concentrations.
Haspel, Nurit; Geisbrecht, Brian V; Lambris, John; Kavraki, Lydia
2010-03-01
We present a novel multi-level methodology to explore and characterize the low energy landscape and the thermodynamics of proteins. Traditional conformational search methods typically explore only a small portion of the conformational space of proteins and are hard to apply to large proteins due to the large amount of calculations required. In our multi-scale approach, we first provide an initial characterization of the equilibrium state ensemble of a protein using an efficient computational conformational sampling method. We then enrich the obtained ensemble by performing short Molecular Dynamics (MD) simulations on selected conformations from the ensembles as starting points. To facilitate the analysis of the results, we project the resulting conformations on a low-dimensional landscape to efficiently focus on important interactions and examine low energy regions. This methodology provides a more extensive sampling of the low energy landscape than an MD simulation starting from a single crystal structure as it explores multiple trajectories of the protein. This enables us to obtain a broader view of the dynamics of proteins and it can help in understanding complex binding, improving docking results and more. In this work, we apply the methodology to provide an extensive characterization of the bound complexes of the C3d fragment of human Complement component C3 and one of its powerful bacterial inhibitors, the inhibitory domain of Staphylococcus aureus extra-cellular fibrinogen-binding domain (Efb-C) and two of its mutants. We characterize several important interactions along the binding interface and define low free energy regions in the three complexes. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Magnetic field dependence of electronic properties of MoS2 quantum dots with different edges
NASA Astrophysics Data System (ADS)
Chen, Qiao; Li, L. L.; Peeters, F. M.
2018-02-01
Using the tight-binding approach, we investigate the energy spectrum of square, triangular, and hexagonal MoS2 quantum dots (QDs) in the presence of a perpendicular magnetic field. Novel edge states emerge in MoS2 QDs, which are distributed over the whole edge which we call ring states. The ring states are robust in the presence of spin-orbit coupling (SOC). The corresponding energy levels of the ring states oscillate as a function of the perpendicular magnetic field which are related to Aharonov-Bohm oscillations. Oscillations in the magnetic field dependence of the energy levels and the peaks in the magneto-optical spectrum emerge (disappear) as the ring states are formed (collapsed). The period and the amplitude of the oscillation decrease with the size of the MoS2 QDs.
Yellapu, Nanda Kumar; Kandlapalli, Kalpana; Valasani, Koteswara Rao; Sarma, P. V. G. K.; Matcha, Bhaskar
2013-01-01
Glucokinase (GK) is the predominant hexokinase that acts as glucose sensor and catalyses the formation of Glucose-6-phosphate. The mutations in GK gene influence the affinity for glucose and lead to altered glucose levels in blood causing maturity onset diabetes of the young type 2 (MODY2) condition, which is one of the prominent reasons of type 2 diabetic condition. In view of the importance of mutated GK resulting in hyperglycemic condition, in the present study, molecular dynamics simulations were carried out in intact and 256 E-K mutated GK structures and their energy values and conformational variations were correlated. Energy variations were observed in mutated GK (3500 Kcal/mol) structure with respect to intact GK (5000 Kcal/mol), and it showed increased γ-turns, decreased β-turns, and more helix-helix interactions that affected substrate binding region where its volume increased from 1089.152 Å2 to 1246.353 Å2. Molecular docking study revealed variation in docking scores (intact = −12.199 and mutated = −8.383) and binding mode of glucose in the active site of mutated GK where the involvement of A53, S54, K56, K256, D262 and Q286 has resulted in poor glucose binding which probably explains the loss of catalytic activity and the consequent prevailing of high glucose levels in MODY2 condition. PMID:23476789
A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase.
Ahmad, Zulfiqar; Hassan, Sherif S; Azim, Sofiya
2017-11-20
For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phytochemicals is based on tradition or word of mouth with few evidence-based studies. Moreover, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become pertinent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of dietary phytochemicals are known to inhibit ATP synthase. Structural modifications of phytochemicals have been shown to increase the inhibitory potency and extent of inhibition. Sitedirected mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can result in selective binding and inhibition of microbial ATP synthase. In this review, the therapeutic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective targeting of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase
Ahmad, Zulfiqar; Hassan, Sherif S.; Azim, Sofiya
2017-01-01
For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phy-tochemicals is based on tradition or word of mouth with few evidence-based studies. Moreo-ver, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become perti-nent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of die-tary phytochemicals are known to inhibit ATP synthase. Structural modifications of phyto-chemicals have been shown to increase the inhibitory potency and extent of inhibition. Site-directed mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can re-sult in selective binding and inhibition of microbial ATP synthase. In this review, the therapeu-tic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective target-ing of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. PMID:28831918
Gocheva, Gergana; Ilieva, Nina; Peneva, Kalina; Ivanova, Anela
2018-04-01
Polypeptide-based materials are used as building blocks for drug delivery systems aimed at toxicity decrease in chemotherapeutics. A molecular-level approach is adopted for investigating the non-covalent interactions between doxorubicin and a recently synthesized drug-binging peptide as a key part of a system for delivery to neoplastic cells. Molecular dynamics simulations in aqueous solution at room and body temperature are applied to investigate the structure and the binding modes within the drug-peptide complex. The tryptophans are outlined as the main chemotherapeutic adsorption sites, and the importance of their placement in the peptide sequence is highlighted. The drug-peptide binging energy is evaluated by density functional theory calculations. Principal component analysis reveals comparable importance of several types of interaction for the binding strength. π-Stacking is dominant, but other factors are also significant: intercalation, peptide backbone stacking, electrostatics, dispersion, and solvation. Intra- and intermolecular H-bonding also stabilizes the complexes. The influence of solvent molecules on the binding energy is mild. The obtained data characterize the drug-to-peptide attachment as a mainly attractive collective process with interactions spanning a broad range of values. These results explain with atomistic detail the experimentally registered doxorubicin-binging ability of the peptide and outline the complex as a prospective carrying unit that can be employed in design of drug delivery systems. © 2017 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Humeniuk, Alexander; Mitrić, Roland
2017-12-01
A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.
Suárez, Dimas; Díaz, Natalia; Francisco, Evelio; Martín Pendás, Angel
2018-04-17
The interacting quantum atoms (IQA) method can assess, systematically and in great detail, the strength and physics of both covalent and noncovalent interactions. The lack of a pair density in density functional theory (DFT), which precludes the direct IQA decomposition of the characteristic exchange-correlation energy, has been recently overcome by means of a scaling technique, which can largely expand the applicability of the method. To better assess the utility of the augmented IQA methodology to derive quantum chemical decompositions at the atomic and molecular levels, we report the results of Hartree-Fock (HF) and DFT calculations on the complexes included in the S66 and the ionic H-bond databases of benchmark geometry and binding energies. For all structures, we perform single-point and geometry optimizations using HF and selected DFT methods with triple-ζ basis sets followed by full IQA calculations. Pairwise dispersion energies are accounted for by the D3 method. We analyze the goodness of the HF-D3 and DFT-D3 binding energies, the magnitude of numerical errors, the fragment and atomic distribution of formation energies, etc. It is shown that fragment-based IQA decomposes the formation energies in comparable terms to those of perturbative approaches and that the atomic IQA energies hold the promise of rigorously quantifying atomic and group energy contributions in larger biomolecular systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Free energy calculations of glycosaminoglycan-protein interactions.
Gandhi, Neha S; Mancera, Ricardo L
2009-10-01
Glycosaminoglycans (GAGs) are complex highly charged linear polysaccharides that have a variety of roles in biological processes. We report the first use of molecular dynamics (MD) free energy calculations using the MM/PBSA method to investigate the binding of GAGs to protein molecules, namely the platelet endothelial cell adhesion molecule 1 (PECAM-1) and annexin A2. Calculations of the free energy of the binding of heparin fragments of different sizes reveal the existence of a region of low GAG-binding affinity in domains 5-6 of PECAM-1 and a region of high affinity in domains 2-3, consistent with experimental data and ligand-protein docking studies. A conformational hinge movement between domains 2 and 3 was observed, which allows the binding of heparin fragments of increasing size (pentasaccharides to octasaccharides) with an increasingly higher binding affinity. Similar simulations of the binding of a heparin fragment to annexin A2 reveal the optimization of electrostatic and hydrogen bonding interactions with the protein and protein-bound calcium ions. In general, these free energy calculations reveal that the binding of heparin to protein surfaces is dominated by strong electrostatic interactions for longer fragments, with equally important contributions from van der Waals interactions and vibrational entropy changes, against a large unfavorable desolvation penalty due to the high charge density of these molecules.
Zhong, Haizhen A; Santos, Elizabeth M; Vasileiou, Chrysoula; Zheng, Zheng; Geiger, James H; Borhan, Babak; Merz, Kenneth M
2018-03-14
How to fine-tune the binding free energy of a small-molecule to a receptor site by altering the amino acid residue composition is a key question in protein engineering. Indeed, the ultimate solution to this problem, to chemical accuracy (±1 kcal/mol), will result in profound and wide-ranging applications in protein design. Numerous tools have been developed to address this question using knowledge-based models to more computationally intensive molecular dynamics simulations-based free energy calculations, but while some success has been achieved there remains room for improvement in terms of overall accuracy and in the speed of the methodology. Here we report a fast, knowledge-based movable-type (MT)-based approach to estimate the absolute and relative free energy of binding as influenced by mutations in a small-molecule binding site in a protein. We retrospectively validate our approach using mutagenesis data for retinoic acid binding to the Cellular Retinoic Acid Binding Protein II (CRABPII) system and then make prospective predictions that are borne out experimentally. The overall performance of our approach is supported by its success in identifying mutants that show high or even sub-nano-molar binding affinities of retinoic acid to the CRABPII system.
Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris
2016-04-15
The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.
Maurer, Manuela; de Beer, Stephanie B. A.; Oostenbrink, Chris
2018-01-01
The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data. PMID:27092480
NASA Astrophysics Data System (ADS)
Gupta, Amar Nath; Neupane, Krishna; Rezajooei, Negar; Cortez, Leonardo M.; Sim, Valerie L.; Woodside, Michael T.
2016-06-01
The development of small-molecule pharmacological chaperones as therapeutics for protein misfolding diseases has proven challenging, partly because their mechanism of action remains unclear. Here we study Fe-TMPyP, a tetrapyrrole that binds to the prion protein PrP and inhibits misfolding, examining its effects on PrP folding at the single-molecule level with force spectroscopy. Single PrP molecules are unfolded with and without Fe-TMPyP present using optical tweezers. Ligand binding to the native structure increases the unfolding force significantly and alters the transition state for unfolding, making it more brittle and raising the barrier height. Fe-TMPyP also binds the unfolded state, delaying native refolding. Furthermore, Fe-TMPyP binding blocks the formation of a stable misfolded dimer by interfering with intermolecular interactions, acting in a similar manner to some molecular chaperones. The ligand thus promotes native folding by stabilizing the native state while also suppressing interactions driving aggregation.
X-ray excited Auger transitions of Pu compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Art J., E-mail: nelson63@llnl.gov; Grant, William K.; Stanford, Jeff A.
2015-05-15
X-ray excited Pu core–valence–valence and core–core–valence Auger line-shapes were used in combination with the Pu 4f photoelectron peaks to characterize differences in the oxidation state and local electronic structure for Pu compounds. The evolution of the Pu 4f core-level chemical shift as a function of sputtering depth profiling and hydrogen exposure at ambient temperature was quantified. The combination of the core–valence–valence Auger peak energies with the associated chemical shift of the Pu 4f photoelectron line defines the Auger parameter and results in a reliable method for definitively determining oxidation states independent of binding energy calibration. Results show that PuO{sub 2},more » Pu{sub 2}O{sub 3}, PuH{sub 2.7}, and Pu have definitive Auger line-shapes. These data were used to produce a chemical state (Wagner) plot for select plutonium oxides. This Wagner plot allowed us to distinguish between the trivalent hydride and the trivalent oxide, which cannot be differentiated by the Pu 4f binding energy alone.« less
Quantum-well states in thin Ag films grown on the Ga/Si(111)-√{3 }×√{3 } surface
NASA Astrophysics Data System (ADS)
Starfelt, S.; Zhang, H. M.; Johansson, L. S. O.
2018-05-01
Silver thin films have been created by room temperature deposition on a Ga/Si(111)-√{3 }×√{3 } surface and their valence band structures and core levels have been measured by angle-resolved photoelectron spectroscopy (ARPES). Discrete quantum-well states (QWSs) quantized from the Ag s p valence band are observed already at 3 monolayers (ML). The characteristics of the QWSs have been examined in the phase accumulation model for thicknesses between 3 and 12 ML. The phase shift and QWSs binding energies dependence with Ag film thicknesses have all been consistently derived. In-plane energy dispersion follows a parabolic curve, and the effective mass of the QWSs shows an increasing trend with binding energies as well as with reduced film thicknesses. Furthermore, the ARPES measurements reveal umklapp mediated QWSs around the M ¯ points of the Si(111) 1 ×1 surface Brillouin zone. The study confirms that the Ga/Si(111)-√{3 }×√{3 } surface is a good substrate for growing uniform ultrathin Ag films in room temperature conditions.
Georgieva, I; Mihaylov, Tz; Trendafilova, N
2014-06-01
The present paper summarizes theoretical and spectroscopic investigations on a series of active coumarins and their lanthanide and transition metal complexes with application in medicine and pharmacy. Molecular modeling as well as IR, Raman, NMR and electronic spectral simulations at different levels of theory were performed to obtain important molecular descriptors: total energy, formation energy, binding energy, stability, conformations, structural parameters, electron density distribution, molecular electrostatic potential, Fukui functions, atomic charges, and reactive indexes. The computations are performed both in gas phase and in solution with consideration of the solvent effect on the molecular structural and energetic parameters. The investigations have shown that the advanced computational methods are reliable for prediction of the metal-coumarin binding mode, electron density distribution, thermodynamic properties as well as the strength and nature of the metal-coumarin interaction (not experimentally accessible) and correctly interpret the experimental spectroscopic data. Known results from biological tests for cytotoxic, antimicrobial, anti-fungal, spasmolytic and anti-HIV activities on the studied metal complexes are reported and discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
2015-01-01
Molecular docking is a powerful tool used in drug discovery and structural biology for predicting the structures of ligand–receptor complexes. However, the accuracy of docking calculations can be limited by factors such as the neglect of protein reorganization in the scoring function; as a result, ligand screening can produce a high rate of false positive hits. Although absolute binding free energy methods still have difficulty in accurately rank-ordering binders, we believe that they can be fruitfully employed to distinguish binders from nonbinders and reduce the false positive rate. Here we study a set of ligands that dock favorably to a newly discovered, potentially allosteric site on the flap of HIV-1 protease. Fragment binding to this site stabilizes a closed form of protease, which could be exploited for the design of allosteric inhibitors. Twenty-three top-ranked protein–ligand complexes from AutoDock were subject to the free energy screening using two methods, the recently developed binding energy analysis method (BEDAM) and the standard double decoupling method (DDM). Free energy calculations correctly identified most of the false positives (≥83%) and recovered all the confirmed binders. The results show a gap averaging ≥3.7 kcal/mol, separating the binders and the false positives. We present a formula that decomposes the binding free energy into contributions from the receptor conformational macrostates, which provides insights into the roles of different binding modes. Our binding free energy component analysis further suggests that improving the treatment for the desolvation penalty associated with the unfulfilled polar groups could reduce the rate of false positive hits in docking. The current study demonstrates that the combination of docking with free energy methods can be very useful for more accurate ligand screening against valuable drug targets. PMID:25189630
Bu, Lintao; Beckham, Gregg T.; Shirts, Michael R.; Nimlos, Mark R.; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.
2011-01-01
Understanding the enzymatic mechanism that cellulases employ to degrade cellulose is critical to efforts to efficiently utilize plant biomass as a sustainable energy resource. A key component of cellulase action on cellulose is product inhibition from monosaccharide and disaccharides in the product site of cellulase tunnel. The absolute binding free energy of cellobiose and glucose to the product site of the catalytic tunnel of the Family 7 cellobiohydrolase (Cel7A) of Trichoderma reesei (Hypocrea jecorina) was calculated using two different approaches: steered molecular dynamics (SMD) simulations and alchemical free energy perturbation molecular dynamics (FEP/MD) simulations. For the SMD approach, three methods based on Jarzynski's equality were used to construct the potential of mean force from multiple pulling trajectories. The calculated binding free energies, −14.4 kcal/mol using SMD and −11.2 kcal/mol using FEP/MD, are in good qualitative agreement. Analysis of the SMD pulling trajectories suggests that several protein residues (Arg-251, Asp-259, Asp-262, Trp-376, and Tyr-381) play key roles in cellobiose and glucose binding to the catalytic tunnel. Five mutations (R251A, D259A, D262A, W376A, and Y381A) were made computationally to measure the changes in free energy during the product expulsion process. The absolute binding free energies of cellobiose to the catalytic tunnel of these five mutants are −13.1, −6.0, −11.5, −7.5, and −8.8 kcal/mol, respectively. The results demonstrated that all of the mutants tested can lower the binding free energy of cellobiose, which provides potential applications in engineering the enzyme to accelerate the product expulsion process and improve the efficiency of biomass conversion. PMID:21454590
Gopal, J Vinay; Kannabiran, K
2013-12-01
The aim of the study was to identify the interactions between insect repellent compounds and target olfactory proteins. Four compounds, camphor (C10H16O), carvacrol (C10H14O), oleic acid (C18H34O2) and firmotox (C22H28O5) were chosen as ligands. Seven olfactory proteins of insects with PDB IDs: 3K1E, 1QWV, 1TUJ, 1OOF, 2ERB, 3R1O and OBP1 were chosen for docking analysis. Patch dock was used and pymol for visualizing the structures. The interactions of these ligands with few odorant binding proteins showed binding energies. The ligand camphor had showed a binding energy of -136 kcal/mol with OBP1 protein. The ligand carvacrol interacted with 1QWV and 1TUJ proteins with a least binding energy of -117.45 kcal/mol and -21.78 kcal/mol respectively. The ligand oleic acid interacted with 1OOF, 2ERB, 3R1O and OBP1 with least binding energies. Ligand firmotox interacted with OBP1 and showed least binding energies. Three ligands (camphor, oleic acid and firmotox) had one, two, three interactions with a single protein OBP1 of Nilaparvatha lugens (Rice pest). From this in silico study we identified the interaction patterns for insect repellent compounds with the target insect odarant proteins. The results of our study revealed that the chosen ligands showed hydrogen bond interactions with the target olfactory receptor proteins.
Fang, Lei; Zhang, Huai; Cui, Wei; Ji, Mingjun
2008-10-01
Bidentate inhibitors of protein tyrosine phosphatase 1B (PTP1B) are considered as a group of ideal inhibitors with high binding potential and high selectivity in treating type II diabetes. In this paper, the binding models of five bidentate inhibitors to PTP1B, TCPTP, and SHP-2 were investigated and compared by using molecular dynamics (MD) simulations and free energy calculations. The binding free energies were computed using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodology. The calculation results show that the predicted free energies of the complexes are well consistent with the experimental data. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition analysis indicates that the residues ARG24, ARG254, and GLN262 in the second binding site of PTP1B are essential for the high selectivity of inhibitors. Furthermore, the residue PHE182 close to the active site is also important for the selectivity and the binding affinity of the inhibitors. According to our analysis, it can be concluded that in most cases the polarity of the portion of the inhibitor that binds to the second binding site of the protein is positive to the affinity of the inhibitors while negative to the selectivity of the inhibitors. We expect that the information we obtained here can help to develop potential PTP1B inhibitors with more promising specificity.
NASA Astrophysics Data System (ADS)
Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.
2017-02-01
In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.
Theoretical study of the adsorption of DNA bases on the acidic external surface of montmorillonite.
Mignon, Pierre; Sodupe, Mariona
2012-01-14
In the present study, DFT periodic plane wave calculations, at the PBE-D level of theory, were carried out to investigate the interaction of DNA nucleobases with acidic montmorillonite. The surface model was considered in its octahedral (Osub) and tetrahedral (Tsub) substituted forms, known to have different acidic properties. The adsorption of adenine, guanine and cytosine was considered in both orthogonal and coplanar orientations with the surface, interacting with the proton via a given heteroatom. In almost all considered cases, adsorption involved the spontaneous proton transfer to the nucleobase, with a more pronounced character in the Osub structures. The binding energy is about 10 kcal mol(-1) larger for Osub than for Tsub complexes mainly due to the larger acidity in Osub surfaces and due to the better stabilization by H-bond contacts between the negatively charged surface and the protonated base. The binding energy of coplanar orientations of the base is observed to be as large as the orthogonal ones due to a balance between electrostatic and dispersion contributions. Finally the binding of guanine and adenine on the acidic surface amounts to 50 kcal mol(-1) while that of cytosine rises to 44 kcal mol(-1).
The Role of Binding Site on the Mechanical Unfolding Mechanism of Ubiquitin
NASA Astrophysics Data System (ADS)
Cao, Penghui; Yoon, Gwonchan; Tao, Weiwei; Eom, Kilho; Park, Harold S.
2015-03-01
We apply novel atomistic simulations based on potential energy surface exploration to investigate the constant force-induced unfolding of ubiquitin. At the experimentally-studied force clamping level of 100 pN, we find a new unfolding mechanism starting with the detachment between β5 and β3 involving the binding site of ubiquitin, the Ile44 residue. This new unfolding pathway leads to the discovery of new intermediate configurations, which correspond to the end-to-end extensions previously seen experimentally. More importantly, it demonstrates the novel finding that the binding site of ubiquitin can be responsible not only for its biological functions, but also its unfolding dynamics. We also report in contrast to previous single molecule constant force experiments that when the clamping force becomes smaller than about 300 pN, the number of intermediate configurations increases dramatically, where almost all unfolding events at 100 pN involve an intermediate configuration. By directly calculating the life times of the intermediate configurations from the height of the barriers that were crossed on the potential energy surface, we demonstrate that these intermediate states were likely not observed experimentally due to their lifetimes typically being about two orders of magnitude smaller than the experimental temporal resolution.
Metalloid Aluminum Clusters with Fluorine
2016-12-01
molecular dynamics, binding energy , siesta code, density of states, projected density of states 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY...high energy density compared to explosives, but typically release this energy slowly via diffusion-limited combustion. There is recent interest in using...examine the cluster binding energy and electronic structure. Partial fluorine substitution in a prototypical aluminum-cyclopentadienyl cluster results
Bruna-Larenas, Tamara; Gómez-Jeria, Juan S
2012-01-01
We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.
Calculations of kaonic nuclei based on chiral meson-baryon amplitudes
NASA Astrophysics Data System (ADS)
Gazda, Daniel; Mareš, Jiří
2013-09-01
In-medium KbarN scattering amplitudes developed within a chirally motivated coupled-channel model are used to construct K- nuclear potentials for calculations of K- nuclear quasi-bound states. Self-consistent evaluations yield K- potential depths -Re VK(ρ0) of order 100 MeV. Dynamical polarization effects and two-nucleon KbarNN→YN absorption modes are discussed. The widths ΓK of allK- nuclear quasi-bound states are comparable or even larger than the corresponding binding energies BK, exceeding considerably the energy level spacing.
Unusual structures of MgF5- superhalogen anion
NASA Astrophysics Data System (ADS)
Anusiewicz, Iwona; Skurski, Piotr
2007-05-01
The vertical electron detachment energies (VDE) of three MgF5- anions were calculated at the outer valence Green function level with the 6-311 + G(3df) basis sets. This species was found to form unusual geometrical structures each of which corresponds to an anionic state exhibiting superhalogen nature. The global minimum structure was described as a system in which two central magnesium atoms are linked via symmetrical triangle formed by three fluorine atoms. Extremely large electron binding energies of these anions (exceeding 8.5 eV in all cases) were predicted and discussed.
Enhanced nitrogen diffusion induced by atomic attrition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochoa, E.A.; Figueroa, C.A.; Czerwiec, T.
2006-06-19
The nitrogen diffusion in steel is enhanced by previous atomic attrition with low energy xenon ions. The noble gas bombardment generates nanoscale texture surfaces and stress in the material. The atomic attrition increases nitrogen diffusion at lower temperatures than the ones normally used in standard processes. The stress causes binding energy shifts of the Xe 3d{sub 5/2} electron core level. The heavy ion bombardment control of the texture and stress of the material surfaces may be applied to several plasma processes where diffusing species are involved.
Electronic Chemical Potentials of Porous Metal–Organic Frameworks
2014-01-01
The binding energy of an electron in a material is a fundamental characteristic, which determines a wealth of important chemical and physical properties. For metal–organic frameworks this quantity is hitherto unknown. We present a general approach for determining the vacuum level of porous metal–organic frameworks and apply it to obtain the first ionization energy for six prototype materials including zeolitic, covalent, and ionic frameworks. This approach for valence band alignment can explain observations relating to the electrochemical, optical, and electrical properties of porous frameworks. PMID:24447027
Generalized Skyrme model with the loosely bound potential
NASA Astrophysics Data System (ADS)
Gudnason, Sven Bjarke; Zhang, Baiyang; Ma, Nana
2016-12-01
We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with a sixth-order derivative term—motivated by its fluidlike properties—and the second-order loosely bound potential—motivated by lowering the classical binding energies of higher-charged Skyrmions. We use the rational map approximation for the Skyrmion of topological charge B =4 , calculate the binding energy of the latter, and estimate the systematic error in using this approximation. In the parameter space that we can explore within the rational map approximation, we find classical binding energies as low as 1.8%, and once taking into account the contribution from spin-isospin quantization, we obtain binding energies as low as 5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density and axial coupling.
Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei
2017-09-01
Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.
Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A
2009-04-14
In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H2O)n, n = 2-8, 20), H3O(+)(H2O)n, n = 1-6, and OH(-)(H2O)n, n = 1-6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolated to the complete basis set limit of the second-order Møller-Plesset perturbation theory with the effects of higher order correlation estimated at the coupled-cluster theory with single, double, and perturbative triple excitations in the aug-cc-pVDZ basis set. We rank the accuracy of the functionals on the basis of the mean unsigned error (MUE) between calculated benchmark and density functional theory energies. The corresponding MUE (kcal/mol) for each functional is listed in parentheses. We find that M06-L (0.73) and M06 (0.84) give the most accurate binding energies using very extended basis sets such as aug-cc-pV5Z. For more affordable basis sets, the best methods for predicting the binding energies of water clusters are M06-L/aug-cc-pVTZ (1.24), B3LYP/6-311++G(2d,2p) (1.29), and M06/aug-cc-PVTZ (1.33). M06-L/aug-cc-pVTZ also gives more accurate energies for the neutralization reactions (1.38), whereas B3LYP/6-311++G(2d,2p) gives more accurate energies for the ion hydration reactions (1.69).
Rout, Ajaya Kumar; Dehury, Budheswar; Maharana, Jitendra; Nayak, Chirasmita; Baisvar, Vishwamitra Singh; Behera, Bijay Kumar; Das, Basanta Kumar
2018-05-01
In eukaryotes, the serine/threonine kinases (STKs) belonging to cyclin-dependent protein kinases (CDKs) play significant role in control of cell division and curb transcription in response to several extra and intra-cellular signals indispensable for enzymatic activity. The zebrafish cyclin-dependent protein kinase-like 1 protein (zCDKL1) shares a high degree of sequence and structural similarity with mammalian orthologs and express in brain, ovary, testis, and low levels in other tissues. Regardless of its importance in the developmental process, the structure, function and mode of ATP recognition have not been investigated yet due to lack of experimental data. Henceforth, to gain atomistic insights in to the structural dynamics and mode of ATP binding, a series of computational techniques involving theoretical modeling, docking, molecular dynamics (MD) simulations and MM/PBSA binding free energies were employed. The modeled bi-lobed zCDKL1 shares a high degree of secondary structure topology with human orthologs where ATP prefers to lie in the central cavity of the bi-lobed catalytic domain enclosed by strong hydrogen bonding, electrostatic and hydrophobic contacts. Long range MD simulation portrayed that catalytic domain of zCDKL1 to be highly rigid in nature as compared to the complex (zCDKL1-ATP) form. Comparative analysis with its orthologs revealed that conserved amino acids i.e., Ile10, Gly11, Glu12, Val18, Arg31, Phe80, Glu 130, Cys143 and Asp144 were crucial for ATP binding mechanism, which needs further investigation for legitimacy. MM/PBSA method revealed that van der Waals, electrostatic and polar solvation energy mostly contributes towards negative free energy. The implications of ATP binding mechanism inferred through these structural bioinformatics approaches will help in understanding the catalytic mechanisms of important STKs in eukaryotic system. Copyright © 2018. Published by Elsevier Inc.
The cis conformation of proline leads to weaker binding of a p53 peptide to MDM2 compared to trans.
Zhan, Yingqian Ada; Ytreberg, F Marty
2015-06-01
The cis and trans conformations of the Xaa-Pro (Xaa: any amino acid) peptide bond are thermodynamically stable while other peptide bonds strongly prefer trans. The effect of proline cis-trans isomerization on protein binding has not been thoroughly investigated. In this study, computer simulations were used to calculate the absolute binding affinity for a p53 peptide (residues 17-29) to MDM2 for both cis and trans isomers of the p53 proline in position 27. Results show that the cis isomer of p53(17-29) binds more weakly to MDM2 than the trans isomer, and that this is primarily due to the difference in the free energy cost associated with the loss of conformational entropy of p53(17-29) when it binds to MDM2. The population of cis p53(17-29) was estimated to be 0.8% of the total population in the bound state. The stronger binding of trans p53(17-29) to MDM2 compared to cis may leave a minimal level of p53 available to respond to cellular stress. This study demonstrates that it is feasible to estimate the absolute binding affinity for an intrinsically disordered protein fragment binding to an ordered protein that are in good agreement with experimental results. Copyright © 2015 Elsevier Inc. All rights reserved.
Energy spectrum and electrical conductivity of graphene with a nitrogen impurity
NASA Astrophysics Data System (ADS)
Repetskii, S. P.; Vyshivanaya, I. G.; Skotnikov, V. A.; Yatsenyuk, A. A.
2015-04-01
The electronic structure of graphene with a nitrogen impurity has been studied based on the model of tight binding using exchange-correlation potentials in the density-functional theory. Wave functions of 2 s and 2 p states of neutral noninteracting carbon atoms have been chosen as the basis. When studying the matrix elements of the Hamiltonian, the first three coordination shells have been taken into account. It has been established that the hybridization of electron-energy bands leads to the splitting of the electron energy spectrum near the Fermi level. Due to the overlap of the energy bands, the arising gap behaves as a quasi-gap, in which the density of the electron levels is much lower than in the rest of the spectrum. It has been established that the conductivity of graphene decreases with increasing nitrogen concentration. Since the increase in the nitrogen concentration leads to an increase in the density of states at the Fermi level, the decrease in the conductivity is due to a sharper decrease in the time of relaxation of the electron sates.
NASA Astrophysics Data System (ADS)
Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf
2016-09-01
We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.
Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf
2016-09-01
We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.
Tang, Yat T; Marshall, Garland R
2011-02-28
Binding affinity prediction is one of the most critical components to computer-aided structure-based drug design. Despite advances in first-principle methods for predicting binding affinity, empirical scoring functions that are fast and only relatively accurate are still widely used in structure-based drug design. With the increasing availability of X-ray crystallographic structures in the Protein Data Bank and continuing application of biophysical methods such as isothermal titration calorimetry to measure thermodynamic parameters contributing to binding free energy, sufficient experimental data exists that scoring functions can now be derived by separating enthalpic (ΔH) and entropic (TΔS) contributions to binding free energy (ΔG). PHOENIX, a scoring function to predict binding affinities of protein-ligand complexes, utilizes the increasing availability of experimental data to improve binding affinity predictions by the following: model training and testing using high-resolution crystallographic data to minimize structural noise, independent models of enthalpic and entropic contributions fitted to thermodynamic parameters assumed to be thermodynamically biased to calculate binding free energy, use of shape and volume descriptors to better capture entropic contributions. A set of 42 descriptors and 112 protein-ligand complexes were used to derive functions using partial least-squares for change of enthalpy (ΔH) and change of entropy (TΔS) to calculate change of binding free energy (ΔG), resulting in a predictive r2 (r(pred)2) of 0.55 and a standard error (SE) of 1.34 kcal/mol. External validation using the 2009 version of the PDBbind "refined set" (n = 1612) resulted in a Pearson correlation coefficient (R(p)) of 0.575 and a mean error (ME) of 1.41 pK(d). Enthalpy and entropy predictions were of limited accuracy individually. However, their difference resulted in a relatively accurate binding free energy. While the development of an accurate and applicable scoring function was an objective of this study, the main focus was evaluation of the use of high-resolution X-ray crystal structures with high-quality thermodynamic parameters from isothermal titration calorimetry for scoring function development. With the increasing application of structure-based methods in molecular design, this study suggests that using high-resolution crystal structures, separating enthalpy and entropy contributions to binding free energy, and including descriptors to better capture entropic contributions may prove to be effective strategies toward rapid and accurate calculation of binding affinity.
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Mishra, P. C.; Suhai, S.
Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the other strongly carcinogenic methylating agents.
Interaction entropy for protein-protein binding
NASA Astrophysics Data System (ADS)
Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.
2017-03-01
Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.
Interaction entropy for protein-protein binding.
Sun, Zhaoxi; Yan, Yu N; Yang, Maoyou; Zhang, John Z H
2017-03-28
Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interactionentropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interactionentropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.
Tran, N L; Bohrer, F I; Trogler, W C; Kummel, A C
2009-05-28
Density functional theory (DFT) simulations were used to determine the binding strength of 12 electron-donating analytes to the zinc metal center of a zinc phthalocyanine molecule (ZnPc monomer). The analyte binding strengths were compared to the analytes' enthalpies of complex formation with boron trifluoride (BF(3)), which is a direct measure of their electron donating ability or Lewis basicity. With the exception of the most basic analyte investigated, the ZnPc binding energies were found to correlate linearly with analyte basicities. Based on natural population analysis calculations, analyte complexation to the Zn metal of the ZnPc monomer resulted in limited charge transfer from the analyte to the ZnPc molecule, which increased with analyte-ZnPc binding energy. The experimental analyte sensitivities from chemiresistor ZnPc sensor data were proportional to an exponential of the binding energies from DFT calculations consistent with sensitivity being proportional to analyte coverage and binding strength. The good correlation observed suggests DFT is a reliable method for the prediction of chemiresistor metallophthalocyanine binding strengths and response sensitivities.
Ab initio Study of Transition metal binding to the Prion Protein
NASA Astrophysics Data System (ADS)
Cox, Daniel L.; Singh, Rajiv R. P.; Pan, Jianping
2004-03-01
Fundamental understanding of the prion protein (PrP) is of critical public health importance in view of mad cow and chronic wasting diseases. In recent years, it has been shown that the normal form (PrP^c) binds copper^1), and the structure of the copper binding domain has been elaborated. Hypotheses about toxicity associated with binding of other metals (notably manganese) have been put forward, Accordingly, using the ab initio SIESTA density functional theory code^2), we calculated the binding energy E_B(M) of M-(PrP) complexes relative to initially uncomplexed M ions, with M=Cu,Ni,Zn,Mn and (PrP)^* the minimal binding domain. The binding energy trend is E_B(Ni)>E_B(Cu)>E_B(Zn)>E_B(Mn), consistent with recent experiments apart from the surprising stability of Ni. We will also present preliminary results for binding of initially complexed M ions. *-Supported by U.S. DOE, Office of Basic Energy Sciences, Division of Materials Research 1) G.S. Jackson et al., Proc. Nat. Acad. Sci. (USA) 98, 8531 (2001). 2) P. Ordejón, et al., Phys. Rev. B53, R10441 (1996); J.M. Soler et al., J. Phys. Cond. Matt. 14, 2745 (2002).
Valence-band and core-level photoemission study of single-crystal Bi2CaSr2Cu2O8 superconductors
NASA Astrophysics Data System (ADS)
Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1988-12-01
High-quality single crystals of Bi2CaSr2Cu2O8 superconductors have been prepared and cleaved in ultrahigh vacuum. Low-energy electron diffraction measurements show that the surface structure is consistent with the bulk crystal structure. Ultraviolet photoemission and x-ray photoemission experiments were performed on these well-characterized sample surfaces. The valence-band and the core-level spectra obtained from the single-crystal surfaces are in agreement with spectra recorded from polycrystalline samples, justifying earlier results from polycrystalline samples. Cu satellites are observed both in the valence band and Cu 2p core level, signaling the strong correlation among the Cu 3d electrons. The O 1s core-level data exhibit a sharp, single peak at 529-eV binding energy without any clear satellite structures.
Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J; Simonson, Thomas
2017-01-01
PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or "PB/LIE" free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α 2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo . The overall performance of the model should allow its use in the design of new PDZ ligands in the future.
Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J.; Simonson, Thomas
2017-01-01
PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or “PB/LIE” free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo. The overall performance of the model should allow its use in the design of new PDZ ligands in the future. PMID:29018806
The Nature of the Interactions in Triethanolammonium-Based Ionic Liquids. A Quantum Chemical Study.
Fedorova, Irina V; Safonova, Lyubov P
2018-05-10
Structural features and interionic interactions play a crucial role in determining the overall stability of ionic liquids and their physicochemical properties. Therefore, we performed high-level quantum-chemical study of different cation-anion pairs representing the building units of protic ionic liquids based on triethanolammonium cation and anions of sulfuric, nitric, phosphoric, and phosphorus acids to provide essential insight into these phenomena at the molecular level. It was shown that every structure is stabilized through multiple H bonds between the protons in the N-H and O-H groups of the cation and different oxygen atoms of the anion acid. Using atoms in molecules topological parameters and natural bond orbital analysis, we determined the nature and strength of these interactions. Our calculations suggest that the N-H group of the cation has more proton donor-like character than the O-H group that makes the N-H···O hydrogen bonds stronger. A close relation between the binding energies of these ion pairs and experimental melting points was established: the smaller the absolute value of the binding energy between ions, the lower is the melting point.
Arcon, Juan Pablo; Defelipe, Lucas A; Modenutti, Carlos P; López, Elias D; Alvarez-Garcia, Daniel; Barril, Xavier; Turjanski, Adrián G; Martí, Marcelo A
2017-04-24
One of the most important biological processes at the molecular level is the formation of protein-ligand complexes. Therefore, determining their structure and underlying key interactions is of paramount relevance and has direct applications in drug development. Because of its low cost relative to its experimental sibling, molecular dynamics (MD) simulations in the presence of different solvent probes mimicking specific types of interactions have been increasingly used to analyze protein binding sites and reveal protein-ligand interaction hot spots. However, a systematic comparison of different probes and their real predictive power from a quantitative and thermodynamic point of view is still missing. In the present work, we have performed MD simulations of 18 different proteins in pure water as well as water mixtures of ethanol, acetamide, acetonitrile and methylammonium acetate, leading to a total of 5.4 μs simulation time. For each system, we determined the corresponding solvent sites, defined as space regions adjacent to the protein surface where the probability of finding a probe atom is higher than that in the bulk solvent. Finally, we compared the identified solvent sites with 121 different protein-ligand complexes and used them to perform molecular docking and ligand binding free energy estimates. Our results show that combining solely water and ethanol sites allows sampling over 70% of all possible protein-ligand interactions, especially those that coincide with ligand-based pharmacophoric points. Most important, we also show how the solvent sites can be used to significantly improve ligand docking in terms of both accuracy and precision, and that accurate predictions of ligand binding free energies, along with relative ranking of ligand affinity, can be performed.
Clark, Anthony J; Gindin, Tatyana; Zhang, Baoshan; Wang, Lingle; Abel, Robert; Murret, Colleen S; Xu, Fang; Bao, Amy; Lu, Nina J; Zhou, Tongqing; Kwong, Peter D; Shapiro, Lawrence; Honig, Barry; Friesner, Richard A
2017-04-07
Direct calculation of relative binding affinities between antibodies and antigens is a long-sought goal. However, despite substantial efforts, no generally applicable computational method has been described. Here, we describe a systematic free energy perturbation (FEP) protocol and calculate the binding affinities between the gp120 envelope glycoprotein of HIV-1 and three broadly neutralizing antibodies (bNAbs) of the VRC01 class. The protocol has been adapted from successful studies of small molecules to address the challenges associated with modeling protein-protein interactions. Specifically, we built homology models of the three antibody-gp120 complexes, extended the sampling times for large bulky residues, incorporated the modeling of glycans on the surface of gp120, and utilized continuum solvent-based loop prediction protocols to improve sampling. We present three experimental surface plasmon resonance data sets, in which antibody residues in the antibody/gp120 interface were systematically mutated to alanine. The RMS error in the large set (55 total cases) of FEP tests as compared to these experiments, 0.68kcal/mol, is near experimental accuracy, and it compares favorably with the results obtained from a simpler, empirical methodology. The correlation coefficient for the combined data set including residues with glycan contacts, R 2 =0.49, should be sufficient to guide the choice of residues for antibody optimization projects, assuming that this level of accuracy can be realized in prospective prediction. More generally, these results are encouraging with regard to the possibility of using an FEP approach to calculate the magnitude of protein-protein binding affinities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Odoh, Samuel O; Bondarevsky, Gary D; Karpus, Jason; Cui, Qiang; He, Chuan; Spezia, Riccardo; Gagliardi, Laura
2014-12-17
The capture of uranyl, UO2(2+), by a recently engineered protein (Zhou et al. Nat. Chem. 2014, 6, 236) with high selectivity and femtomolar sensitivity has been examined by a combination of density functional theory, molecular dynamics, and free-energy simulations. It was found that UO2(2+) is coordinated to five carboxylate oxygen atoms from four amino acid residues of the super uranyl binding protein (SUP). A network of hydrogen bonds between the amino acid residues coordinated to UO2(2+) and residues in its second coordination sphere also affects the protein's uranyl binding affinity. Free-energy simulations show how UO2(2+) capture is governed by the nature of the amino acid residues in the binding site, the integrity and strength of the second-sphere hydrogen bond network, and the number of water molecules in the first coordination sphere. Alteration of any of these three factors through mutations generally results in a reduction of the binding free energy of UO2(2+) to the aqueous protein as well as of the difference between the binding free energies of UO2(2+) and other ions (Ca(2+), Cu(2+), Mg(2+), and Zn(2+)), a proxy for the protein's selectivity over these ions. The results of our free-energy simulations confirmed the previously reported experimental results and allowed us to discover a mutant of SUP, specifically the GLU64ASP mutant, that not only binds UO2(2+) more strongly than SUP but that is also more selective for UO2(2+) over other ions. The predictions from the computations were confirmed experimentally.
NASA Astrophysics Data System (ADS)
Wang, Guangxin; Zhou, Rui; Duan, Xiuzhi
2016-07-01
The shallow-donor impurity states in cylindrical zinc-blende (ZB) In x Ga1- x N/GaN quantum dots (QDs) have been theoretically investigated, considering the combined effects of an intense laser field (ILF), an external electric field, and hydrostatic pressure. The numerical results show that for an on-center impurity in ZB In x Ga1- x N/GaN QD, (1) the ground-state binding energy of the donor impurity is a decreasing function of the laser-dressing parameter and/or the QD's height; (2) as the QD's radius decreases, the binding energy of the donor impurity increases at first, reaches a maximum value, and then drops rapidly; (3) the binding energy of the donor impurity is a decreasing function of the external electric field due to the Stark effect; (4) the binding energy of the donor impurity increases as the applied hydrostatic pressure becomes large. In addition, the position of the impurity ion was also found to have an important influence on the binding energy of the donor impurity. The physical reasons have been analyzed in detail.
Hedger, George; Shorthouse, David; Koldsø, Heidi; Sansom, Mark S P
2016-08-25
Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. -40 to -4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins.
Effective Mass Theory of 2D Excitons Revisited
NASA Astrophysics Data System (ADS)
Gonzalez, Joseph; Oleynik, Ivan
Two-dimensional (2D) semiconducting materials possess an exceptionally unique set of electronic and excitonic properties due to the combined effects of quantum and dielectric confinement. Reliable determination of exciton binding energies from both first-principles many-body perturbation theory (GW/BSE) and experiment is very challenging due to the enormous computational expense as well as the tremendous technical difficulties in experiment.. Very recently, effective mass theories of 2D excitons have been developed as an attractive alternative for inexpensive and accurate evaluation of the exciton binding energies. In this presentation, we evaluate two effective mass theory approaches by Velizhanin et al and Olsen et al in predicting exciton binding energies across a wide range of 2D materials. We specifically analyze the trends related to the varying screening lengths and exciton effective masses. We also extended the effective mass theory of 2D excitons to include effects of electron and hole mass anisotropies (mx ≠ my) , the latter showing a substantial influence on exciton binding energies. The recent predictions of exciton binding energies being independent of the exciton effective mass and a linear correlation with the band gap of a specific material are also critically reexamined.
2016-01-01
Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. −40 to −4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins. PMID:27109430
Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations
Moraca, Federica; Amato, Jussara; Ortuso, Francesco; Artese, Anna; Novellino, Ettore; Alcaro, Stefano; Parrinello, Michele; Limongelli, Vittorio
2017-01-01
G-quadruplexes (G4s) are higher-order DNA structures typically present at promoter regions of genes and telomeres. Here, the G4 formation decreases the replicative DNA at each cell cycle, finally leading to apoptosis. The ability to control this mitotic clock, particularly in cancer cells, is fascinating and passes through a rational understanding of the ligand/G4 interaction. We demonstrate that an accurate description of the ligand/G4 binding mechanism is possible using an innovative free-energy method called funnel-metadynamics (FM), which we have recently developed to investigate ligand/protein interaction. Using FM simulations, we have elucidated the binding mechanism of the anticancer alkaloid berberine to the human telomeric G4 (d[AG3(T2AG3)3]), computing also the binding free-energy landscape. Two ligand binding modes have been identified as the lowest energy states. Furthermore, we have found prebinding sites, which are preparatory to reach the final binding mode. In our simulations, the ions and the water molecules have been explicitly represented and the energetic contribution of the solvent during ligand binding evaluated. Our theoretical results provide an accurate estimate of the absolute ligand/DNA binding free energy (ΔGb0 = −10.3 ± 0.5 kcal/mol) that we validated through steady-state fluorescence binding assays. The good agreement between the theoretical and experimental value demonstrates that FM is a most powerful method to investigate ligand/DNA interaction and can be a useful tool for the rational design also of G4 ligands. PMID:28232513
Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.
Rehan, Medhat; Furnholm, Teal; Finethy, Ryan H; Chu, Feixia; El-Fadly, Gomaah; Tisa, Louis S
2014-09-01
Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.
NASA Astrophysics Data System (ADS)
Remko, Milan
Ab initio SCF and DFT methods were used to characterize the gas-phase complexes of selected carbonyl and silacarbonyl bases with Li+ , Na+ and Mg2+ . Geometries were optimized at the Hartree-Fock ab initio and Becke 3LYP DFT levels with the 6-31G* basis set. Frequency computations were performed at the RHF/6-31G* level of theory. Interaction energies of the cation-coordinated systems also were determined with the MP2/6-31G* method. The effect of extension of basis set (to the 6-31+ G* basis) on the computed properties of anion-metal cation complexes was investigated. Calculated energies of formation vary as Mg2+ > Li+ > Na+ . The Becke 3LYP DFT binding energies were comparable with those obtained at the correlated MP2 level and are in good agreement with available experimental data.
Measurements of continuum lowering in solid-density plasmas created from elements and compounds
Ciricosta, O.; Vinko, S. M.; Barbrel, B.; ...
2016-05-23
The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of plasma mixtures is of particular interest. In this study, we present an experiment showing that the standard density-dependent analytical models are inadequate to describe solid-density plasmas at the temperatures studied, where the reduction of the binding energies for a given species is unaffectedmore » by the different plasma environment (ion density) in either the element or compounds of that species, and can be accurately estimated by calculations only involving the energy levels of an isolated neutral atom. Lastly, the results have implications for the standard approaches to the equation of state calculations.« less
Kanti Si, Mrinal; Sen, Anik; Ganguly, Bishwajit
2017-05-10
G-quadruplexes are formed by the association of four guanine bases through Hoogsteen hydrogen bonding in guanine-rich sequences of DNA and exist in the telomere as well as in promoter regions of certain oncogenes. The sequences of G-quadruplex-DNA are targets for the design of molecules that can bind and can be developed as anti-cancer drugs. The linear and cyclic protonated diamines have been explored to bind to G-quadruplex-DNA through hydrogen bonding interactions. The quadruplex-DNA binders exploit π-stacking and hydrogen bonding interactions with the phosphate backbone of loops and grooves. In this study, linear and cyclic protonated diamines showed remarkable binding affinity for G-tetrads using hydrogen bonding interactions. The DFT M06-2X/6-31G(d)//B3LYP/6-31+G(d) level of theory showed that the cyclic ee-1,2-CHDA (equatorial-equatorial form of 1,2-disubstituted cyclohexadiamine di-cation) binds to the G-tetrads very strongly (∼70.0 kcal mol -1 ), with a much higher binding energy than the linear protonated diamines. The binding affinity of ligands for G-tetrads with counterions has also been examined. The binding preference of these small ligands for G-tetrads is higher than for DNA-duplex. The binding affinity of an intercalated acridine-based ligand (BRACO-19) for G-quadruplexes has been examined and the binding energy is relatively lower than that for the 1,2 disubstituted cyclohexadiamine di-cation with G-tetrads. The atoms-in-molecules (AIM) analysis reveals that the hydrogen bonding interactions between the organic systems with G-tetrads are primarily electrostatic in nature. The molecular dynamics simulations performed using a classical force field (GROMACS) also supported the phosphate backbone sites of G-quadruplex-DNA to bind to these diamines. To mimic the structural pattern of BRACO-19, the designed inhibitor N,2-bis-2(3,4-aminocyclohexyl) acetamide (9) examined possesses two 1,2-CHDA moieties linked through an acetamide group. The molecular dynamics results showed that the designed molecule 9 can efficiently bind to the base-pairs and the phosphate backbone of G quadruplex-DNA using H-bonding interactions. The binding affinity calculated for the intercalated acridine-based drug (BRACO-19) with G-quadruplexes is weaker compared to ee-1,2-CHDA. These ligands deliver a different binding motif (hydrogen bonding) compared to the reported G-quadruplex binders of π-delocalized systems and will kindle interest in examining such scaffolds to stabilize DNA.
Essential slow degrees of freedom in protein-surface simulations: A metadynamics investigation.
Prakash, Arushi; Sprenger, K G; Pfaendtner, Jim
2018-03-29
Many proteins exhibit strong binding affinities to surfaces, with binding energies much greater than thermal fluctuations. When modelling these protein-surface systems with classical molecular dynamics (MD) simulations, the large forces that exist at the protein/surface interface generally confine the system to a single free energy minimum. Exploring the full conformational space of the protein, especially finding other stable structures, becomes prohibitively expensive. Coupling MD simulations with metadynamics (enhanced sampling) has fast become a common method for sampling the adsorption of such proteins. In this paper, we compare three different flavors of metadynamics, specifically well-tempered, parallel-bias, and parallel-tempering in the well-tempered ensemble, to exhaustively sample the conformational surface-binding landscape of model peptide GGKGG. We investigate the effect of mobile ions and ion charge, as well as the choice of collective variable (CV), on the binding free energy of the peptide. We make the case for explicitly biasing ions to sample the true binding free energy of biomolecules when the ion concentration is high and the binding free energies of the solute and ions are similar. We also make the case for choosing CVs that apply bias to all atoms of the solute to speed up calculations and obtain the maximum possible amount of information about the system. Copyright © 2017 Elsevier Inc. All rights reserved.
High protein diets do not attenuate decrements in testosterone and IGF-I during energy deficit.
Henning, Paul C; Margolis, Lee M; McClung, James P; Young, Andrew J; Pasiakos, Stefan M
2014-05-01
Energy deficit (ED) diminishes fat-free mass (FFM) with concomitant reductions in anabolic hormone secretion. A modest increase in protein to recommended dietary allowance (RDA) levels during ED minimally attenuates decrements in insulin-like growth factor-I (IGF-I). The impact of dietary protein above the RDA on circulating anabolic hormones and their relationships with FFM in response to ED are not well described. Thirty-three adults were assigned diets providing protein at 0.8 (RDA), 1.6 (2×-RDA), and 2.4 (3×-RDA) g/kg/d for 31days. Testosterone, sex-hormone binding globulin (SHBG) and IGF-I system components were assessed after a 10-day period of weight-maintenance (WM) and after a 21-day period of ED (40%) achieved by an increase in energy expenditure and decreased energy intake. Associations between the change in FFM and anabolic hormone levels were determined. As compared to WM and regardless of dietary protein intake, total and free testosterone, total IGF-I, and acid-labile subunit decreased (P<0.05), whereas SHBG and IGF binding proteins-1, -2, and -3 increased (P<0.05) during ED. There were no energy-by-protein interactions on any hormones or IGF-I system components measured. Changes in FFM in response to ED were negatively associated with acid-labile subunit (ALS) (r=-0.62, P<0.05) in 2×-RDA; however, no other relationships were observed. Consuming a high protein diet does not impact the androgenic and IGF-I system response to ED. These data suggest that the protective effects of high protein diets on FFM during ED are likely not influenced by anabolic hormone concentrations. Published by Elsevier Inc.
The in Silico Insight into Carbon Nanotube and Nucleic Acid Bases Interaction.
Karimi, Ali Asghar; Ghalandari, Behafarid; Tabatabaie, Seyed Saleh; Farhadi, Mohammad
2016-05-01
To explore practical applications of carbon nanotubes (CNTs) in biomedical fields the properties of their interaction with biomolecules must be revealed. Recent years, the interaction of CNTs with biomolecules is a subject of research interest for practical applications so that previous research explored that CNTs have complementary structure properties with single strand DNA (ssDNA). Hence, the quantum mechanics (QM) method based on ab initio was used for this purpose. Therefore values of binding energy, charge distribution, electronic energy and other physical properties of interaction were studied for interaction of nucleic acid bases and SCNT. In this study, the interaction between nucleic acid bases and a (4, 4) single-walled carbon nanotube (SCNT) were investigated through calculations within quantum mechanics (QM) method at theoretical level of Hartree-Fock (HF) method using 6-31G basis set. Hence, the physical properties such as electronic energy, total dipole moment, charge distributions and binding energy of nucleic acid bases interaction with SCNT were investigated based on HF method. It has been found that the guanine base adsorption is bound stronger to the outer surface of nanotube in comparison to the other bases, consistent with the recent theoretical studies. In the other words, the results explored that guanine interaction with SCNT has optimum level of electronic energy so that their interaction is stable. Also, the calculations illustrated that SCNT interact to nucleic acid bases by noncovalent interaction because of charge distribution an electrostatic area is created in place of interaction. Consequently, small diameter SCNT interaction with nucleic acid bases is noncovalent. Also, the results revealed that small diameter SCNT interaction especially SCNT (4, 4) with nucleic acid bases can be useful in practical application area of biomedical fields such detection and drug delivery.
10 CFR 851.7 - Requests for a binding interpretive ruling.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Requests for a binding interpretive ruling. 851.7 Section 851.7 Energy DEPARTMENT OF ENERGY WORKER SAFETY AND HEALTH PROGRAM General Provisions § 851.7 Requests... ruling, but a person may not act in reliance on an interpretive ruling that is administratively rescinded...
Wahl, Joel; Smiesko, Martin
2018-05-04
Computational methods, namely Molecular Dynamics Simulations (MD simulations) in combination with Inhomogeneous Fluid Solvation Theory (IFST) were used to retrospectively investigate various cases of ligand structure modifications that led to the displacement of binding site water molecules. Our findings are that the water displacement per se is energetically unfavorable in the discussed examples, and that it is merely the fine balance between change in protein-ligand interaction energy, ligand solvation free energies and binding site solvation free energies that determine if water displacement is favorable or not. We furthermore evaluated if we can reproduce experimental binding affinities by a computational approach combining changes in solvation free energies with changes in protein-ligand interaction energies and entropies. In two of the seven cases, this estimation led to large errors, implying that accurate predictions of relative binding free energies based on solvent thermodynamics is challenging. Still, MD simulations can provide insights into which water molecules can be targeted for displacement. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Study of the Successive Metal-ligand Binding Energies for Fe(+), Fe(-), V(+) and Co(+)
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Maitre, Philippe; Langhoff, Stephen R. (Technical Monitor)
1994-01-01
The successive binding energies of CO and H2O to Fe(+), CO to Fe(-), and H2 to Co(+) and V(+) are presented. Overall the computed results are in good agreement with experiment. The trends in binding energies are analyzed in terms of metal to ligand donation, ligand to metal donation, ligand-ligand repulsion, and changes in the metal atom, such as hybridization, promotion, and spin multiplicity. The geometry and vibrational frequencies are also shown to be directly affected by these effects.
The Study Of The Successive Metal-Ligand Binding Energies For Fe+, Fe-, V+ and Co+
NASA Technical Reports Server (NTRS)
Bauschicher, Charles W., Jr.; Ricca, Alessandra; Maitre, Philippe; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The successive binding energies of CO and H2O to Fe(+), CO to Fe(-), and H2 to Co(+) and V(+) are presented. Overall the computed results are in good agreement with experiment. The trends in binding energies are analyzed in terms of metal to ligand donation, ligand to metal donation, ligand-ligand repulsion, and changes in the metal atom, such as hybridization, promotion, and spin multiplicity. The geometry and vibrational frequencies are also shown to be directly affected by these effects.
Aslan, Mikail; Davis, Jack B A; Johnston, Roy L
2016-03-07
The global optimisation of small bimetallic PdCo binary nanoalloys are systematically investigated using the Birmingham Cluster Genetic Algorithm (BCGA). The effect of size and composition on the structures, stability, magnetic and electronic properties including the binding energies, second finite difference energies and mixing energies of Pd-Co binary nanoalloys are discussed. A detailed analysis of Pd-Co structural motifs and segregation effects is also presented. The maximal mixing energy corresponds to Pd atom compositions for which the number of mixed Pd-Co bonds is maximised. Global minimum clusters are distinguished from transition states by vibrational frequency analysis. HOMO-LUMO gap, electric dipole moment and vibrational frequency analyses are made to enable correlation with future experiments.
Kišonaitė, Miglė; Zubrienė, Asta; Čapkauskaitė, Edita; Smirnov, Alexey; Smirnovienė, Joana; Kairys, Visvaldas; Michailovienė, Vilma; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas
2014-01-01
The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA) isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthio)acetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation. PMID:25493428
Chang, Chun-Chun; Hsu, Hao-Jen; Yen, Jui-Hung; Lo, Shih-Yen
2017-01-01
Hepatitis C virus (HCV) is a species-specific pathogenic virus that infects only humans and chimpanzees. Previous studies have indicated that interactions between the HCV E2 protein and CD81 on host cells are required for HCV infection. To determine the crucial factors for species-specific interactions at the molecular level, this study employed in silico molecular docking involving molecular dynamic simulations of the binding of HCV E2 onto human and rat CD81s. In vitro experiments including surface plasmon resonance measurements and cellular binding assays were applied for simple validations of the in silico results. The in silico studies identified two binding regions on the HCV E2 loop domain, namely E2-site1 and E2-site2, as being crucial for the interactions with CD81s, with the E2-site2 as the determinant factor for human-specific binding. Free energy calculations indicated that the E2/CD81 binding process might follow a two-step model involving (i) the electrostatic interaction-driven initial binding of human-specific E2-site2, followed by (ii) changes in the E2 orientation to facilitate the hydrophobic and van der Waals interaction-driven binding of E2-site1. The sequence of the human-specific, stronger-binding E2-site2 could serve as a candidate template for the future development of HCV-inhibiting peptide drugs. PMID:28481946
Xia, Zhen; Huynh, Tien; Kang, Seung-gu; Zhou, Ruhong
2012-03-21
Antibodies binding to conserved epitopes can provide a broad range of neutralization to existing influenza subtypes and may also prevent the propagation of potential pandemic viruses by fighting against emerging strands. Here we propose a computational framework to study structural binding patterns and detailed molecular mechanisms of viral surface glycoprotein hemagglutinin (HA) binding with a broad spectrum of neutralizing monoclonal antibody fragments (Fab). We used rigorous free-energy perturbation (FEP) methods to calculate the antigen-antibody binding affinities, with an aggregate underlying molecular-dynamics simulation time of several microseconds (∼2 μs) using all-atom, explicit-solvent models. We achieved a high accuracy in the validation of our FEP protocol against a series of known binding affinities for this complex system, with <0.5 kcal/mol errors on average. We then introduced what to our knowledge are novel mutations into the interfacial region to further study the binding mechanism. We found that the stacking interaction between Trp-21 in HA2 and Phe-55 in the CDR-H2 of Fab is crucial to the antibody-antigen association. A single mutation of either W21A or F55A can cause a binding affinity decrease of ΔΔG > 4.0 kcal/mol (equivalent to an ∼1000-fold increase in the dissociation constant K(d)). Moreover, for group 1 HA subtypes (which include both the H1N1 swine flu and the H5N1 bird flu), the relative binding affinities change only slightly (< ±1 kcal/mol) when nonpolar residues at the αA helix of HA mutate to conservative amino acids of similar size, which explains the broad neutralization capability of antibodies such as F10 and CR6261. Finally, we found that the hydrogen-bonding network between His-38 (in HA1) and Ser-30/Gln-64 (in Fab) is important for preserving the strong binding of Fab against group 1 HAs, whereas the lack of such hydrogen bonds with Asn-38 in most group 2 HAs may be responsible for the escape of antibody neutralization. These large-scale simulations may provide new insight into the antigen-antibody binding mechanism at the atomic level, which could be essential for designing more-effective vaccines for influenza. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Nilofer, Christina; Sukhwal, Anshul; Mohanapriya, Arumugam; Kangueane, Pandjassarame
2017-01-01
Several catalysis, cellular regulation, immune function, cell wall assembly, transport, signaling and inhibition occur through Protein- Protein Interactions (PPI). This is possible with the formation of specific yet stable protein-protein interfaces. Therefore, it is of interest to understand its molecular principles using structural data in relation to known function. Several interface features have been documented using known X-ray structures of protein complexes since 1975. This has improved our understanding of the interface using structural features such as interface area, binding energy, hydrophobicity, relative hydrophobicity, salt bridges and hydrogen bonds. The strength of binding between two proteins is dependent on interface size (number of residues at the interface) and thus its corresponding interface area. It is known that large interfaces have high binding energy (sum of (van der Waals) vdW, H-bonds, electrostatics). However, the selective role played by each of these energy components and more especially that of vdW is not explicitly known. Therefore, it is important to document their individual role in known protein-protein structural complexes. It is of interest to relate interface size with vdW, H-bonds and electrostatic interactions at the interfaces of protein structural complexes with known function using statistical and multiple linear regression analysis methods to identify the prominent force. We used the manually curated non-redundant dataset of 278 hetero-dimeric protein structural complexes grouped using known functions by Sowmya et al. (2015) to gain additional insight to this phenomenon using a robust inter-atomic non-covalent interaction analyzing tool PPCheck (Anshul and Sowdhamini, 2015). This dataset consists of obligatory (enzymes, regulator, biological assembly), immune and nonobligatory (enzyme and regulator inhibitors) complexes. Results show that the total binding energy is more for large interfaces. However, this is not true for its individual energy factors. Analysis shows that vdW energies contribute to about 75% ± 11% on average among all complexes and it also increases with interface size (r2 ranging from 0.67 to 0.89 with p<0.01) at 95% confidence limit irrespective of molecular function. Thus, vdW is both dominant and proportional at the interface independent of molecular function. Nevertheless, H bond energy contributes to 15% ± 6.5% on average in these complexes. It also moderately increases with interface size (r2 ranging from 0.43 to 0.61 with p<0.01) only among obligatory and immune complexes. Moreover, there is about 11.3% ± 8.7% contribution by electrostatic energy. It increases with interface size specifically among non-obligatory regulator-inhibitors (r2 = 0.44). It is implied that both H-bonds and electrostatics are neither dominant nor proportional at the interface. Nonetheless, their presence cannot be ignored in binding. Therefore, H-bonds and (or) electrostatic energy having specific role for improved stability in complexes is implied. Thus, vdW is common at the interface stabilized further with selective H-bonds and (or) electrostatic interactions at an atomic level in almost all complexes. Comparison of this observation with residue level analysis of the interface is compelling. The role by H-bonds (14.83% ± 6.5% and r2 = 0.61 with p<0.01) among obligatory and electrostatic energy (8.8% ± 4.77% and r2 = 0.63 with p <0.01) among non-obligatory complexes within interfaces (class A) having more non-polar residues than surface is influencing our inference. However, interfaces (class B) having less non-polar residues than surface show 1.5 fold more electrostatic energy on average. The interpretation of the interface using inter-atomic (vdW, H-bonds, electrostatic) interactions combined with inter-residue predominance (class A and class B) in relation to known function is the key to reveal its molecular principles with new challenges.
Structure and energetics of Cr(CO)6 and Cr(CO)5
NASA Technical Reports Server (NTRS)
Barnes, Leslie A.; Liu, Bowen; Lindh, Roland
1993-01-01
The geometric structures and energetics of Cr(CO)6 and Cr(CO)5 are determined at the modified coupled-pair functional, single and double excitation coupled-cluster (CCSD), and CCSD(T) levels of theory. For Cr(CO)6, the structure and force constants for the totally symmetric representation are in good agreement with experimental data once basis set constants are taken into account. In the largest basis set at the CCSD(T) level of theory, the total binding energy of CR(CO)6 is estimated at around 140 kcal/mol, or about 86 percent of the experimental value. In contrast, the first bond energy of Cr(CO)6 is very well described at the CCSD(T) level of theory, with the best estimated value of 38 kcal/mol being within the experimental uncertainty.
Sun, Ying-Chieh; Hsu, Wen-Chi; Hsu, Chia-Jen; Chang, Chia-Ming; Cheng, Kai-Hsiang
2015-11-01
Thermodynamic integration (TI) molecular dynamics (MD) simulations for the binding of a pair of a reference ("ref") ligand and an analogous ("analog") ligand to either tagged (with six extra residues at the N-terminus) or untagged p38 kinase proteins were carried out in order to probe how the binding affinity is influenced by the presence or absence of the peptide tag in p38 kinase. This possible effect of protein length on the binding affinity of a ligand-which is seldom addressed in the literature-is important because, even when two labs claim to have performed experiments with the same protein, they may actually have studied variants of the same protein with different lengths because they applied different protein expression conditions/procedures. Thus, if we wanted to compare ligand binding affinities measured in the two labs, it would be necessary to account for any variation in ligand binding affinity with protein length. The pair of ligand-p38 kinase complexes examined in this work (pdb codes: 3d7z and 3lhj, respectively) were ideal for investigating this effect. The experimentally determined binding energy for the ref ligand with the untagged p38 kinase was -10.9 kcal mol(-1), while that for the analog ligand with the tagged p38 kinase was -11.9 kcal mol(-1). The present TI-MD simulation of the mutation of the ref ligand into the analog ligand while the ligand is bound to the untagged p38 kinase predicted that the binding affinity of the analog ligand is 2.0 kcal mol(-1) greater than that of the ref ligand. A similar simulation also indicated that the same was true for ligand binding to the tagged protein, but in this case the binding affinity for the analog ligand is 2.5 kcal mol(-1) larger than that for the ref ligand. These results therefore suggest that the presence of the peptide tag on p38 kinase increased the difference in the binding energies of the ligands by a small amount of 0.5 kcal mol(-1). This result supports the assumption that the presence of a peptide tag has only a minor effect on ΔG values. The error bars in the computed ΔG values were then estimated via confidence interval analysis and a time autocorrelation function for the quantity dV/dλ. The estimated correlation time was ~0.5 ps and the error bar in the ΔG values estimated using nanosecond-scale simulations was ±0.3 kcal mol(-1) at a confidence level of 95%. These predicted results can be verified in future experiments and should prove useful in subsequent similar studies. Graphical Abstract Thermodynamic cycles for binding of two analogous ligands with untagged and tagged p38 kinases and associated Gibbs free energy.
Luitz, Manuel P; Zacharias, Martin
2013-03-01
The endonuclease activity of the bacterial colicin 9 enzyme is controlled by the specific and high-affinity binding of immunity protein 9 (Im9). Molecular dynamics simulation studies in explicit solvent were used to investigate the free energy change associated with the mutation of two hot-spot interface residues [tyrosine (Tyr): Tyr54 and Tyr55] of Im9 to Ala. In addition, the effect of several other mutations (Leu33Ala, Leu52Ala, Val34Ala, Val37Ala, Ser48Ala, and Ile53Ala) with smaller influence on binding affinity was also studied. Good qualitative agreement of calculated free energy changes and experimental data on binding affinity of the mutations was observed. The simulation studies can help to elucidate the molecular details on how the mutations influence protein-protein binding affinity. The role of solvent and conformational flexibility of the partner proteins was studied by comparing the results in the presence or absence of solvent and with or without positional restraints. Restriction of the conformational mobility of protein partners resulted in significant changes of the calculated free energies but of similar magnitude for isolated Im9 and for the complex and therefore in only modest changes of binding free energy differences. Although the overall binding free energy change was similar for the two Tyr-Ala mutations, the physical origin appeared to be different with solvation changes contributing significantly to the Tyr55Ala mutation and to a loss of direct protein-protein interactions dominating the free energy change due to the Tyr54Ala mutation. Copyright © 2012 Wiley Periodicals, Inc.
Trions in bulk and monolayer materials: Faddeev equations and hyperspherical harmonics.
Filikhin, I; Kezerashvili, R Ya; Tsiklauri, Sh M; Vlahovic, B
2018-03-23
The negatively T - and positively T + charged trions in bulk and monolayer semiconductors are studied in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing the Faddeev equation with the Coulomb potential in 3D configuration space. Results of calculations of the binding energies for T - are consistent with previous computational studies, while the T + is unbound for all considered cases. The binding energies of trions in monolayer semiconductors are calculated using the method of hyperspherical harmonics by employing the Keldysh potential. It is shown that 2D T - and T + trions are bound and the binding energy of the positive trion is always greater than for the negative trion due to the heavier effective mass of holes. Our calculations demonstrate that screening effects play an important role in the formation of bound states of trions in 2D semiconductors.
Structure of Co(H2)n + Clusters, for n = 1-6
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Maitre, Philippe
1995-01-01
The geometries and H2 binding energies have been determined for Co(H2)n (sup +), for n = 1-6. The binding energies are in good agreement with experiment. The shape of the clusters is used to explain the pairwise decrease in the binding energies. The bonding in CoH2 (sup +) and Co(H2)2 (sup +) is very similar and is enhanced by sd (sigma) hybridization. The next two H2 molecules add to the side of Co(H2)2 (sup +). These two additional H2 molecules cannot benefit from sd (sigma) hybridization and are less strongly bound. The addition of the fifth and sixth H2 molecules eliminates sd (sigma) hybridization as a mechanism for reducing Co-H2 repulsion. This coupled with the smaller Co to H2 (sigma *) donation results in another decrease in the binding energies.
Trions in bulk and monolayer materials: Faddeev equations and hyperspherical harmonics
NASA Astrophysics Data System (ADS)
Filikhin, I.; Kezerashvili, R. Ya; Tsiklauri, Sh M.; Vlahovic, B.
2018-03-01
The negatively T - and positively T + charged trions in bulk and monolayer semiconductors are studied in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing the Faddeev equation with the Coulomb potential in 3D configuration space. Results of calculations of the binding energies for T - are consistent with previous computational studies, while the T + is unbound for all considered cases. The binding energies of trions in monolayer semiconductors are calculated using the method of hyperspherical harmonics by employing the Keldysh potential. It is shown that 2D T - and T + trions are bound and the binding energy of the positive trion is always greater than for the negative trion due to the heavier effective mass of holes. Our calculations demonstrate that screening effects play an important role in the formation of bound states of trions in 2D semiconductors.
Li, Huashan; Lin, Zhibin; Lusk, Mark T; Wu, Zhigang
2014-10-21
The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.
Onset of η-nuclear binding in a pionless EFT approach
NASA Astrophysics Data System (ADS)
Barnea, N.; Bazak, B.; Friedman, E.; Gal, A.
2017-08-01
ηNNN and ηNNNN bound states are explored in stochastic variational method (SVM) calculations within a pionless effective field theory (EFT) approach at leading order. The theoretical input consists of regulated NN and NNN contact terms, and a regulated energy dependent ηN contact term derived from coupled-channel models of the N* (1535) nucleon resonance. A self consistency procedure is applied to deal with the energy dependence of the ηN subthreshold input, resulting in a weak dependence of the calculated η-nuclear binding energies on the EFT regulator. It is found, in terms of the ηN scattering length aηN, that the onset of binding η 3He requires a minimal value of ReaηN close to 1 fm, yielding then a few MeV η binding in η 4He. The onset of binding η 4He requires a lower value of ReaηN, but exceeding 0.7 fm.
Wang, Xiaofeng; Zhang, Aiqun; Ren, Weizheng; Chen, Caiyu; Dong, Jiahong
2012-11-01
The cell growth, development, and regeneration of tissue and organ are associated with a large number of gene regulation events, which are mediated in part by transcription factors (TFs) binding to cis-regulatory elements involved in the genome. Predicting the binding affinity and inferring the binding specificity of TF-DNA interactions at the genomic level would be fundamentally helpful for our understanding of the molecular mechanism and biological implication underlying sequence-specific TF-DNA recognition. In this study, we report the development of a combination method to characterize the interaction behavior of a 11-mer oligonucleotide segment and its mutations with the Gcn4p protein, a homodimeric, basic leucine zipper TF, and to predict the binding affinity and specificity of potential Gcn4p binders in the genome-wide scale. In this procedure, a position-mutated energy matrix is created based on molecular modeling analysis of native and mutated Gcn4p-DNA complex structures to describe the position-independent interaction energy profile of Gcn4p with different nucleotide types at each position of the oligonucleotide, and the energy terms extracted from the matrix and their interactives are then correlated with experimentally measured affinities of 19268 distinct oligonucleotides using statistical modeling methodology. Subsequently, the best one of built regression models is successfully applied to screen those of potential high-affinity Gcn4p binders from the complete genome. The findings arising from this study are briefly listed below: (i) The 11 positions of oligonucleotides are highly interactive and non-additive in contribution to Gcn4p-DNA binding affinity; (ii) Indirect conformational effects upon nucleotide mutations as well as associated subtle changes in interfacial atomic contacts, but not the direct nonbonded interactions, are primarily responsible for the sequence-specific recognition; (iii) The intrinsic synergistic effects among the sequence positions of oligonucleotides determine Gcn4p-DNA binding affinity and specificity; (iv) Linear regression models in conjunction with variable selection seem to perform fairly well in capturing the internal dependences hidden in the Gcn4p-DNA system, albeit ignoring nonlinear factors may lead the models to systematically underestimate and overestimate high- and low-affinity samples, respectively. © 2012 John Wiley & Sons A/S.
Cembran, Alessandro; Kim, Jonggul; Gao, Jiali; Veglia, Gianluigi
2014-01-01
Proteins exist as an ensemble of conformers that are distributed on free energy landscapes resembling folding funnels. While the most stable conformers populate low energy basins, protein function is often carried out through low-populated conformational states that occupy high energy basins. Ligand binding shifts the populations of these states, changing the distribution of these conformers. Understanding how the equilibrium among the states is altered upon ligand binding, interaction with other binding partners, and/or mutations and post-translational modifications is of critical importance for explaining allosteric signaling in proteins. Here, we propose a statistical analysis of the chemical shifts (CONCISE, COordiNated ChemIcal Shifts bEhavior) for the interpretation of protein conformational equilibria following linear trajectories of NMR chemical shifts. CONCISE enables one to quantitatively measure the population shifts associated with ligand titrations and estimate the degree of collectiveness of the protein residues’ response to ligand binding, giving a concise view of the structural transitions. The combination of CONCISE with thermocalorimetric and kinetic data allows one to depict a protein’s approximate conformational energy landscape. We tested this method with the catalytic subunit of cAMP-dependent protein kinase A, a ubiquitous enzyme that undergoes conformational transitions upon both nucleotide and pseudo-substrate binding. When complemented with chemical shift covariance analysis (CHESCA), this new method offers both collective response and residue-specific correlations for ligand binding to proteins. PMID:24604024
Giovannelli, Edoardo; Procacci, Piero; Cardini, Gianni; Pagliai, Marco; Volkov, Victor; Chelli, Riccardo
2017-12-12
The fast-switching decoupling method is a powerful nonequilibrium technique to compute absolute binding free energies of ligand-receptor complexes (Sandberg et al., J. Chem. Theory Comput. 2014, 11, 423-435). Inspired by the theory of noncovalent binding association of Gilson and co-workers (Biophys. J. 1997, 72, 1047-1069), we develop two approaches, termed binded-domain and single-point alchemical-path schemes (BiD-AP and SiP-AP), based on the possibility of performing alchemical trajectories during which the ligand is constrained to fixed positions relative to the receptor. The BiD-AP scheme exploits a recent generalization of nonequilibrium work theorems to estimate the free energy difference between the coupled and uncoupled states of the ligand-receptor complex. With respect to the fast-switching decoupling method without constraints, BiD-AP prevents the ligand from leaving the binding site, but still requires an estimate of the positional binding-site volume, which may not be a simple task. On the other side, the SiP-AP scheme allows avoidance of the calculation of the binding-site volume by introducing an additional equilibrium simulation of ligand and receptor in the bound state. In the companion article (DOI: 10.1021/acs.jctc.7b00595), we show that the extra computational effort required by SiP-AP leads to a significant improvement of accuracy in the free energy estimates.
Ligand recognition by RAR and RXR receptors: binding and selectivity.
Sussman, Fredy; de Lera, Angel R
2005-10-06
Fundamental biological functions, most notably embriogenesis, cell growth, cell differentiation, and cell apoptosis, are in part regulated by a complex genomic network that starts with the binding (and activation) of retinoids to their cognate receptors, members of the superfamily of nuclear receptors. We have studied ligand recognition of retinoic receptors (RXRalpha and RARgamma) using a molecular-mechanics-based docking method. The protocol used in this work is able to rank the affinity of pairs of ligands for a single retinoid receptor, the highest values corresponding to those that adapt better to the shape of the binding site and generate the optimal set of electrostatic and apolar interactions with the receptor. Moreover, our studies shed light onto some of the energetic contributions to retinoid receptor ligand selectivity. In this regard we show that there is a difference in polarity between the binding site regions that anchor the carboxylate in RAR and RXR, which translates itself into large differences in the energy of interaction of both receptors with the same ligand. We observe that the latter energy change is canceled off by the solvation energy penalty upon binding. This energy compensation is borne out as well by experiments that address the effect of site-directed mutagenesis on ligand binding to RARgamma. The hypothesis that the difference in binding site polarity might be exploited to build RXR-selective ligands is tested with some compounds having a thiazolidinedione anchoring group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, G. D.
We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikelymore » to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.« less
Fractional charge and inter-Landau-level states at points of singular curvature.
Biswas, Rudro R; Son, Dam Thanh
2016-08-02
The quest for universal properties of topological phases is fundamentally important because these signatures are robust to variations in system-specific details. Aspects of the response of quantum Hall states to smooth spatial curvature are well-studied, but challenging to observe experimentally. Here we go beyond this prevailing paradigm and obtain general results for the response of quantum Hall states to points of singular curvature in real space; such points may be readily experimentally actualized. We find, using continuum analytical methods, that the point of curvature binds an excess fractional charge and sequences of quantum states split away, energetically, from the degenerate bulk Landau levels. Importantly, these inter-Landau-level states are bound to the topological singularity and have energies that are universal functions of bulk parameters and the curvature. Our exact diagonalization of lattice tight-binding models on closed manifolds demonstrates that these results continue to hold even when lattice effects are significant. An important technological implication of these results is that these inter-Landau-level states, being both energetically and spatially isolated quantum states, are promising candidates for constructing qubits for quantum computation.
Landau level splitting due to graphene superlattices
NASA Astrophysics Data System (ADS)
Pal, G.; Apel, W.; Schweitzer, L.
2012-06-01
The Landau level spectrum of graphene superlattices is studied using a tight-binding approach. We consider noninteracting particles moving on a hexagonal lattice with an additional one-dimensional superlattice made up of periodic square potential barriers, which are oriented along the zigzag or along the armchair directions of graphene. In the presence of a perpendicular magnetic field, such systems can be described by a set of one-dimensional tight-binding equations, the Harper equations. The qualitative behavior of the energy spectrum with respect to the strength of the superlattice potential depends on the relation between the superlattice period and the magnetic length. When the potential barriers are oriented along the armchair direction of graphene, we find for strong magnetic fields that the zeroth Landau level of graphene splits into two well-separated sublevels, if the width of the barriers is smaller than the magnetic length. In this situation, which persists even in the presence of disorder, a plateau with zero Hall conductivity can be observed around the Dirac point. This Landau level splitting is a true lattice effect that cannot be obtained from the generally used continuum Dirac-fermion model.
Ramifications of codoping SrI2:Eu with isovalent and aliovalent impurities
NASA Astrophysics Data System (ADS)
Feng, Qingguo; Biswas, Koushik
2016-12-01
Eu2+ doped SrI2 is an important scintillator having applications in the field of radiation detection. Codoping techniques are often useful to improve the electronic response of such insulators. Using first-principles based approach, we report on the properties of SrI2:Eu and the influence of codoping with aliovalent (Na, Cs) and isovalent (Mg, Ca, Ba, and Sn) impurities. These codopants do not preferably bind with Eu and are expected to remain as isolated impurities in the SrI2 host. As isolated defects they display amphoteric behavior having, in most cases, significant ionization energies of the donor and acceptor levels. Furthermore, the acceptor states of Na, Cs, and Mg can bind with I-vacancy forming charge compensated donor-acceptor pairs. Such pairs may also bind additional holes or electrons similar to the isolated defects. Lack of deep-to-shallow behavior upon codoping and its ramifications will be discussed.
Interaction of fluorescent sensor with superparamagnetic iron oxide nanoparticles.
Karunakaran, Chockalingam; Jayabharathi, Jayaraman; Sathishkumar, Ramalingam; Jayamoorthy, Karunamoorthy
2013-06-01
To sense superparamagnetic iron oxides (Fe2O3 and Fe3O4) nanocrystals a sensitive bioactive phenanthroimidazole based fluorescent molecule, 2-(4-fluorophenyl)-1-phenyl-1H-phenanthro [9,10-d] imidazole has been designed and synthesized. Electronic spectral studies show that phenanthroimidazole is bound to the surface of iron oxide semiconductors. Fluorescent enhancement has been explained on the basis of photo-induced electron transfer (PET) mechanism and apparent binding constants have been deduced. Binding of phenanthroimidazole with iron oxide nanoparticles lowers the HOMO and LUMO energy levels of phenanthroimidazole molecule. Chemical affinity between the nitrogen atom of the phenanthroimidazole and Fe(2+) and Fe(3+) ions on the surface of the nano-oxide may result in strong binding of the phenanthroimidazole derivative with the nanoparticles. The electron injection from the photoexcited phenanthroimidazole to the iron oxides conduction band explains the enhanced fluorescence. Copyright © 2013 Elsevier B.V. All rights reserved.
Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS2.
Cunningham, Paul D; Hanbicki, Aubrey T; McCreary, Kathleen M; Jonker, Berend T
2017-12-26
Strong Coulomb attraction in monolayer transition metal dichalcogenides gives rise to tightly bound excitons and many-body interactions that dominate their optoelectronic properties. However, this Coulomb interaction can be screened through control of the surrounding dielectric environment as well as through applied voltage, which provides a potential means of tuning the bandgap, exciton binding energy, and emission wavelength. Here, we directly show that the bandgap and exciton binding energy can be optically tuned by means of the intensity of the incident light. Using transient absorption spectroscopy, we identify a sub-picosecond decay component in the excited-state dynamics of WS 2 that emerges for incident photon energies above the A-exciton resonance, which originates from a nonequilibrium population of charge carriers that form excitons as they cool. The generation of this charge-carrier population exhibits two distinct energy thresholds. The higher threshold is coincident with the onset of continuum states and therefore provides a direct optical means of determining both the bandgap and exciton binding energy. Using this technique, we observe a reduction in the exciton binding energy from 310 ± 30 to 220 ± 20 meV as the excitation density is increased from 3 × 10 11 to 1.2 × 10 12 photons/cm 2 . This reduction is due to dynamic dipolar screening of Coulomb interactions by excitons, which is the underlying physical process that initiates bandgap renormalization and leads to the insulator-metal transition in monolayer transition metal dichalcogenides.
Li, Lin; Alper, Joshua; Alexov, Emil
2016-01-01
Dyneins are important molecular motors involved in many essential biological processes, including cargo transport along microtubules, mitosis, and in cilia. Dynein motility involves the coupling of microtubule binding and unbinding to a change in the configuration of the linker domain induced by ATP hydrolysis, which occur some 25 nm apart. This leaves the accuracy of dynein stepping relatively inaccurate and susceptible to thermal noise. Using multi-scale modeling with a computational focusing technique, we demonstrate that the microtubule forms an electrostatic funnel that guides the dynein’s microtubule binding domain (MTBD) as it finally docks to the precise, keyed binding location on the microtubule. Furthermore, we demonstrate that electrostatic component of the MTBD’s binding free energy is linearly correlated with the velocity and run length of dynein, and we use this linearity to predict the effect of mutating each glutamic and aspartic acid located in MTBD domain to alanine. Lastly, we show that the binding of dynein to the microtubule is associated with conformational changes involving several helices, and we localize flexible hinge points within the stalk helices. Taken all together, we demonstrate that long range electrostatic interactions bring a level of precision to an otherwise noisy dynein stepping process. PMID:27531742
Postprocessing of docked protein-ligand complexes using implicit solvation models.
Lindström, Anton; Edvinsson, Lotta; Johansson, Andreas; Andersson, C David; Andersson, Ida E; Raubacher, Florian; Linusson, Anna
2011-02-28
Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.
Luminescence of BaBrI and SrBrI single crystals doped with Eu2+
NASA Astrophysics Data System (ADS)
Shalaev, A. A.; Shendrik, R.; Myasnikova, A. S.; Bogdanov, A.; Rusakov, A.; Vasilkovskyi, A.
2018-05-01
The crystal growth procedure and luminescence properties of pure and Eu2+-doped BaBrI and SrBrI crystals are reported. Emission and excitation spectra were recorded under ultraviolet and vacuum ultraviolet excitations. The energy of the first Eu2+ 4f-5d transition and SrBrI band gap are obtained. The electronic structure calculations were performed within GW approximation as implemented in the Vienna Ab Initio Simulation Package. The energy between lowest Eu2+ 5d state and the bottom of conduction band are found based on luminescence quenching parameters. The vacuum referred binding energy diagram of lanthanide levels was constructed using the chemical shift model.
High-Affinity Quasi-Specific Sites in the Genome: How the DNA-Binding Proteins Cope with Them
Chakrabarti, J.; Chandra, Navin; Raha, Paromita; Roy, Siddhartha
2011-01-01
Many prokaryotic transcription factors home in on one or a few target sites in the presence of a huge number of nonspecific sites. Our analysis of λ-repressor in the Escherichia coli genome based on single basepair substitution experiments shows the presence of hundreds of sites having binding energy within 3 Kcal/mole of the OR1 binding energy, and thousands of sites with binding energy above the nonspecific binding energy. The effect of such sites on DNA-based processes has not been fully explored. The presence of such sites dramatically lowers the occupation probability of the specific site far more than if the genome were composed of nonspecific sites only. Our Brownian dynamics studies show that the presence of quasi-specific sites results in very significant kinetic effects as well. In contrast to λ-repressor, the E. coli genome has orders of magnitude lower quasi-specific sites for GalR, an integral transcription factor, thus causing little competition for the specific site. We propose that GalR and perhaps repressors of the same family have evolved binding modes that lead to much smaller numbers of quasi-specific sites to remove the untoward effects of genomic DNA. PMID:21889449
Evaluation of water displacement energetics in protein binding sites with grid cell theory.
Gerogiokas, G; Southey, M W Y; Mazanetz, M P; Heifetz, A; Hefeitz, A; Bodkin, M; Law, R J; Michel, J
2015-04-07
Excess free energies, enthalpies and entropies of water in protein binding sites were computed via classical simulations and Grid Cell Theory (GCT) analyses for three pairs of congeneric ligands in complex with the proteins scytalone dehydratase, p38α MAP kinase and EGFR kinase respectively. Comparative analysis is of interest since the binding modes for each ligand pair differ in the displacement of one binding site water molecule, but significant variations in relative binding affinities are observed. Protocols that vary in their use of restraints on protein and ligand atoms were compared to determine the influence of protein-ligand flexibility on computed water structure and energetics, and to assess protocols for routine analyses of protein-ligand complexes. The GCT-derived binding affinities correctly reproduce experimental trends, but the magnitude of the predicted changes in binding affinities is exaggerated with respect to results from a previous Monte Carlo Free Energy Perturbation study. Breakdown of the GCT water free energies into enthalpic and entropic components indicates that enthalpy changes dominate the observed variations in energetics. In EGFR kinase GCT analyses revealed that replacement of a pyrimidine by a cyanopyridine perturbs water energetics up three hydration shells away from the ligand.
Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field.
Bell, David R; Qi, Rui; Jing, Zhifeng; Xiang, Jin Yu; Mejias, Christopher; Schnieders, Michael J; Ponder, Jay W; Ren, Pengyu
2016-11-09
Molecular recognition is of paramount interest in many applications. Here we investigate a series of host-guest systems previously used in the SAMPL4 blind challenge by using molecular simulations and the AMOEBA polarizable force field. The free energy results computed by Bennett's acceptance ratio (BAR) method using the AMOEBA polarizable force field ranked favorably among the entries submitted to the SAMPL4 host-guest competition [Muddana, et al., J. Comput.-Aided Mol. Des., 2014, 28, 305-317]. In this work we conduct an in-depth analysis of the AMOEBA force field host-guest binding thermodynamics by using both BAR and the orthogonal space random walk (OSRW) methods. The binding entropy-enthalpy contributions are analyzed for each host-guest system. For systems of inordinate binding entropy-enthalpy values, we further examine the hydrogen bonding patterns and configurational entropy contribution. The binding mechanism of this series of host-guest systems varies from ligand to ligand, driven by enthalpy and/or entropy changes. Convergence of BAR and OSRW binding free energy methods is discussed. Ultimately, this work illustrates the value of molecular modelling and advanced force fields for the exploration and interpretation of binding thermodynamics.
Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides.
Yu, Hua; Wang, Mao-jun; Xuan, Nan-xia; Shang, Zhi-cai; Wu, Jun
2015-10-01
To provide essential information for peptide inhibitor design, the interactions of Eps15 homology domain of Eps15 homology domain-containing protein 1 (EHD1 EH domain) with three peptides containing NPF (asparagine-proline-phenylalanine), DPF (aspartic acid-proline-phenylalanine), and GPF (glycine-proline-phenylalanine) motifs were deciphered at the atomic level. The binding affinities and the underlying structure basis were investigated. Molecular dynamics (MD) simulations were performed on EHD1 EH domain/peptide complexes for 60 ns using the GROMACS package. The binding free energies were calculated and decomposed by molecular mechanics/generalized Born surface area (MM/GBSA) method using the AMBER package. The alanine scanning was performed to evaluate the binding hot spot residues using FoldX software. The different binding affinities for the three peptides were affected dominantly by van der Waals interactions. Intermolecular hydrogen bonds provide the structural basis of contributions of van der Waals interactions of the flanking residues to the binding. van der Waals interactions should be the main consideration when we design peptide inhibitors of EHD1 EH domain with high affinities. The ability to form intermolecular hydrogen bonds with protein residues can be used as the factor for choosing the flanking residues.
Molecular mechanisms underlying deoxy‐ADP.Pi activation of pre‐powerstroke myosin
Nowakowski, Sarah G.
2017-01-01
Abstract Myosin activation is a viable approach to treat systolic heart failure. We previously demonstrated that striated muscle myosin is a promiscuous ATPase that can use most nucleoside triphosphates as energy substrates for contraction. When 2‐deoxy ATP (dATP) is used, it acts as a myosin activator, enhancing cross‐bridge binding and cycling. In vivo, we have demonstrated that elevated dATP levels increase basal cardiac function and rescues function of infarcted rodent and pig hearts. Here we investigate the molecular mechanism underlying this physiological effect. We show with molecular dynamics simulations that the binding of dADP.Pi (dATP hydrolysis products) to myosin alters the structure and dynamics of the nucleotide binding pocket, myosin cleft conformation, and actin binding sites, which collectively yield a myosin conformation that we predict favors weak, electrostatic binding to actin. In vitro motility assays at high ionic strength were conducted to test this prediction and we found that dATP increased motility. These results highlight alterations to myosin that enhance cross‐bridge formation and reveal a potential mechanism that may underlie dATP‐induced improvements in cardiac function. PMID:28097776
Karthikeyan, S; Kim, Kwang S
2009-08-13
Protonated water clusters H+(H2O)n favor two-dimensional (2D) structures for n < or = 7 at low temperatures. At 0 K, the 2D and three-dimensional (3D) structures for n = 8 are almost isoenergetic, and the 3D structures for n > 9 tend to be more stable. However, for n = 9, the netlike structures are likely to be more stable above 150 K. In this regard, we investigate the case of n = 10 to find which structure is more stable between the 3D structure and the netlike structure around 150 and 250 K. We use density functional theory, Møller-Plesset second-order perturbation theory, and coupled cluster theory with single, double, and perturbative triple excitations (CCSD(T)). At the complete basis set limit for the CCSD(T) level of theory, three isomers of 3D cage structure are much more stable in zero point energy corrected binding energy and in free binding energies at 150 K than the lowest energy netlike structures, while the netlike structure would be more stable around approximately 250 K. The predicted vibrational spectra are in good agreement with the experiment. One of the three isomers explains the experimental IR observation of an acceptor (A) type peak of a dangling hydrogen atom.
Bauzá, Antonio; Alkorta, Ibon; Frontera, Antonio; Elguero, José
2013-11-12
In this article, we report a comprehensive theoretical study of halogen, chalcogen, and pnicogen bonding interactions using a large set of pure and hybrid functionals and some ab initio methods. We have observed that the pure and some hybrid functionals largely overestimate the interaction energies when the donor atom is anionic (Cl(-) or Br(-)), especially in the halogen bonding complexes. To evaluate the reliability of the different DFT (BP86, BP86-D3, BLYP, BLYP-D3, B3LYP, B97-D, B97-D3, PBE0, HSE06, APFD, and M06-2X) and ab initio (MP2, RI-MP2, and HF) methods, we have compared the binding energies and equilibrium distances to those obtained using the CCSD(T)/aug-cc-pVTZ level of theory, as reference. The addition of the latest available correction for dispersion (D3) to pure functionals is not recommended for the calculation of halogen, chalcogen, and pnicogen complexes with anions, since it further contributes to the overestimation of the binding energies. In addition, in chalcogen bonding interactions, we have studied how the hybridization of the chalcogen atom influences the interaction energies.
Dauncey, M J; Rudd, B T; White, D A; Shakespear, R A
1993-09-01
The regulation of plasma insulin-like growth factor binding proteins (IGFBPs) by energy status has been assessed in 2-month-old pigs. Energy balance was modified by altering thermoregulatory demand and energy intake, with litter-mates being kept for several weeks at either 35 or 10 degrees C on a high (H) or low (L) level of food intake (where H = 2L); plasma samples were taken 20-24 h after the last meal. The two major forms of circulating IGFBP, as estimated by Western blot analysis, were identified putatively as IGFBP-2 and IGFBP-3 (relative molecular weights of 34 and 40-45 kDa respectively). There were significant differences in IGFBP profiles between the four treatment groups of 35H, 35L, 10H and 10L: the 40-45 kDa IGFBP (putative IGFBP-3) was elevated both in the warm and on a high food intake (P < 0.001), and there was a marked reciprocal relation between the 40-45 and 34 kDa IGFBPs. The relative concentration of the 34 kDa IGFBP (putative IGFBP-2) was greatest in the 10L and least in the 35H group. It is concluded that long-term alterations in energy balance, induced by changes in either intake or thermoregulatory demand, can significantly affect the plasma profile of IGFBPs during the first two months of life.
NASA Astrophysics Data System (ADS)
Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.
2006-09-01
Near thermal energy reactive collisions of small mixed metal cluster cations AgmAun+ (m +n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu3+ and Ag2Au2+ are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu2CO+. In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77to1.09eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag2Au2+ suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.
Estimating Atomic Contributions to Hydration and Binding Using Free Energy Perturbation.
Irwin, Benedict W J; Huggins, David J
2018-06-12
We present a general method called atom-wise free energy perturbation (AFEP), which extends a conventional molecular dynamics free energy perturbation (FEP) simulation to give the contribution to a free energy change from each atom. AFEP is derived from an expansion of the Zwanzig equation used in the exponential averaging method by defining that the system total energy can be partitioned into contributions from each atom. A partitioning method is assumed and used to group terms in the expansion to correspond to individual atoms. AFEP is applied to six example free energy changes to demonstrate the method. Firstly, the hydration free energies of methane, methanol, methylamine, methanethiol, and caffeine in water. AFEP highlights the atoms in the molecules that interact favorably or unfavorably with water. Finally AFEP is applied to the binding free energy of human immunodeficiency virus type 1 protease to lopinavir, and AFEP reveals the contribution of each atom to the binding free energy, indicating candidate areas of the molecule to improve to produce a more strongly binding inhibitor. FEP gives a single value for the free energy change and is already a very useful method. AFEP gives a free energy change for each "part" of the system being simulated, where part can mean individual atoms, chemical groups, amino acids, or larger partitions depending on what the user is trying to measure. This method should have various applications in molecular dynamics studies of physical, chemical, or biochemical phenomena, specifically in the field of computational drug discovery.
Is Einstein the Father of the Atomic Bomb
NASA Astrophysics Data System (ADS)
Lustig, Harry
2009-05-01
Soon after the American atomic bombs were dropped on Hiroshima and Nagasaki, the notion took hold in the popular mind that Albert Einstein was ``the father of the bomb.'' The claim of paternity rests on the belief that E=mc2 is what makes the release of enormous amounts of energy in the fission process possible and that the atomic bomb could not have been built without it. This is a misapprehension. Most physicists have known that all along. Nevertheless in his reaction to the opera Dr. Atomic, a prominent physicist claimed that Einstein's discovery that matter can be transformed into energy ``is precisely what made the bomb possible.'' In fact what makes the fission reaction and one of its applications,the atomic bomb, possible is the smaller binding energies of fission products compared to the binding energies of the nuclei that undergo fission.The binding energies of nuclei are a well understood consequence of the numbers and arrangements of protons and neutrons in the nucleus and of quantum-mechanical effects. The realization that composite systems have binding energies predates relativity. In the 19th century they were ascribed to potential and other forms of energy that reside in the system. With Einstein they became rest mass energy. While E=mc2 is not the cause of fission, measuring the masses of the participants in the reaction does permit an easy calculation of the kinetic energy that is released.
Tropomyosin movement on F-actin during muscle activation explained by energy landscapes
Orzechowski, Marek; Moore, Jeffrey R.; Fischer, Stefan; Lehman, William
2014-01-01
Muscle contraction is regulated by tropomyosin movement across the thin filament surface, which exposes or blocks myosin-binding sites on actin. Recent atomic structures of F-actin-tropomyosin have yielded the positions of tropomyosin on myosin-free and myosin-decorated actin. Here, the repositioning of α-tropomyosin between these locations on F-actin was systematically examined by optimizing the energy of the complex for a wide range of tropomyosin positions on F-actin. The resulting energy landscape provides a full-map of the F-actin surface preferred by tropomyosin, revealing a broad energy basin associated with the tropomyosin position that blocks myosin-binding. This is consistent with previously proposed low-energy oscillations of semi-rigid tropomyosin, necessary for shifting of tropomyosin following troponin-binding. In contrast, the landscape shows much less favorable energies when tropomyosin locates near its myosin-induced “open-state” position. This indicates that spontaneous movement of tropomyosin away from its energetic “ground-state” to the open-state is unlikely in absence of myosin. Instead, myosin-binding must drive tropomyosin toward the open-state to activate the thin filament. Additional energy landscapes were computed for disease-causing actin mutants that distort the topology of the actin-tropomyosin energy landscape, explaining their phenotypes. Thus, the computation of such energy landscapes offers a sensitive way to estimate the impact of mutations. PMID:24412204
Tropomyosin movement on F-actin during muscle activation explained by energy landscapes.
Orzechowski, Marek; Moore, Jeffrey R; Fischer, Stefan; Lehman, William
2014-03-01
Muscle contraction is regulated by tropomyosin movement across the thin filament surface, which exposes or blocks myosin-binding sites on actin. Recent atomic structures of F-actin-tropomyosin have yielded the positions of tropomyosin on myosin-free and myosin-decorated actin. Here, the repositioning of α-tropomyosin between these locations on F-actin was systematically examined by optimizing the energy of the complex for a wide range of tropomyosin positions on F-actin. The resulting energy landscape provides a full-map of the F-actin surface preferred by tropomyosin, revealing a broad energy basin associated with the tropomyosin position that blocks myosin-binding. This is consistent with previously proposed low-energy oscillations of semi-rigid tropomyosin, necessary for shifting of tropomyosin following troponin-binding. In contrast, the landscape shows much less favorable energies when tropomyosin locates near its myosin-induced "open-state" position. This indicates that spontaneous movement of tropomyosin away from its energetic "ground-state" to the open-state is unlikely in absence of myosin. Instead, myosin-binding must drive tropomyosin toward the open-state to activate the thin filament. Additional energy landscapes were computed for disease-causing actin mutants that distort the topology of the actin-tropomyosin energy landscape, explaining their phenotypes. Thus, the computation of such energy landscapes offers a sensitive way to estimate the impact of mutations. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Flowers, E. G.; Ruderman, M. A.; Lee, J.-F.; Sutherland, P. G.; Hillebrandt, W.; Mueller, E.
1977-01-01
Variational calculations of the binding energies of iron atoms and condensed matter in strong magnetic fields (greater than 10 to the 12th gauss). These calculations include the electron exchange energy. The cohesive energy of the condensed matter, which is the difference between these two binding energies, is of interest in pulsar theories and in the description of the surfaces of neutron stars. It is found that the cohesive energy ranges from 2.6 keV to 8.0 keV.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Maitre, Philippe; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The successive binding energies of CO and H2O to Fe(sup +), CO to Fe(sup -), and H2 to Co(sup +) and V(sup +) are presented. Overall the computed results are in good agreement with experiment. The trends in binding energies are analyzed in terms of metal to ligand donation, ligand to metal donation, ligand-ligand repulsion, and changes in the metal atom, such as hybridization, promotion, and spin multiplicity. The geometry and vibrational frequencies are also shown to be directly affected by these effects.
Kaliakin, Danil S; Zaari, Ryan R; Varganov, Sergey A
2015-02-12
We investigate the effect of H2 binding on the spin-forbidden nonadiabatic transition probability between the lowest energy singlet and triplet electronic states of [NiFe]-hydrogenase active site model, using a velocity averaged Landau-Zener theory. Density functional and multireference perturbation theories were used to provide parameters for the Landau-Zener calculations. It was found that variation of the torsion angle between the terminal thiolate ligands around the Ni center induces an intersystem crossing between the lowest energy singlet and triplet electronic states in the bare active site and in the active site with bound H2. Potential energy curves between the singlet and triplet minima along the torsion angle and H2 binding energies to the two spin states were calculated. Upon H2 binding to the active site, there is a decrease in the torsion angle at the minimum energy crossing point between the singlet and triplet states. The probability of nonadiabatic transitions at temperatures between 270 and 370 K ranges from 35% to 32% for the active site with bound H2 and from 42% to 38% for the bare active site, thus indicating the importance of spin-forbidden nonadiabatic pathways for H2 binding on the [NiFe]-hydrogenase active site.
Constrained Surface Complexation Modeling: Rutile in RbCl, NaCl, and NaCF 3SO 3 Media to 250 °C
Machesky, Michael L.; Předota, Milan; Ridley, Moira K.; ...
2015-06-01
In this paper, a comprehensive set of molecular-level results, primarily from classical molecular dynamics (CMD) simulations, are used to constrain CD-MUSIC surface complexation model (SCM) parameters describing rutile powder titrations conducted in RbCl, NaCl, and NaTr (Tr = triflate, CF 3SO 3 –) electrolyte media from 25 to 250 °C. Rb + primarily occupies the innermost tetradentate binding site on the rutile (110) surface at all temperatures (25, 150, 250 °C) and negative charge conditions (-0.1 and -0.2 C/m 2) probed via CMD simulations, reflecting the small hydration energy of this large, monovalent cation. Consequently, variable SCM parameters (Stern-layer capacitancemore » values and intrinsic Rb + binding constants) were adjusted relatively easily to satisfactorily match the CMD and titration data. The larger hydration energy of Na + results in a more complex inner-sphere distribution, which shifts from bidentate to tetradentate binding with increasing negative charge and temperature, and this distribution was not matched well for both negative charge conditions, which may reflect limitations in the CMD and/or SCM approaches. Finally, in particular, the CMD axial density profiles for Rb + and Na + reveal that peak binding distances shift toward the surface with increasing negative charge, suggesting that the CD-MUSIC framework may be improved by incorporating CD or Stern-layer capacitance values that vary with charge.« less
Constrained Surface Complexation Modeling: Rutile in RbCl, NaCl, and NaCF 3SO 3 Media to 250 °C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machesky, Michael L.; Předota, Milan; Ridley, Moira K.
In this paper, a comprehensive set of molecular-level results, primarily from classical molecular dynamics (CMD) simulations, are used to constrain CD-MUSIC surface complexation model (SCM) parameters describing rutile powder titrations conducted in RbCl, NaCl, and NaTr (Tr = triflate, CF 3SO 3 –) electrolyte media from 25 to 250 °C. Rb + primarily occupies the innermost tetradentate binding site on the rutile (110) surface at all temperatures (25, 150, 250 °C) and negative charge conditions (-0.1 and -0.2 C/m 2) probed via CMD simulations, reflecting the small hydration energy of this large, monovalent cation. Consequently, variable SCM parameters (Stern-layer capacitancemore » values and intrinsic Rb + binding constants) were adjusted relatively easily to satisfactorily match the CMD and titration data. The larger hydration energy of Na + results in a more complex inner-sphere distribution, which shifts from bidentate to tetradentate binding with increasing negative charge and temperature, and this distribution was not matched well for both negative charge conditions, which may reflect limitations in the CMD and/or SCM approaches. Finally, in particular, the CMD axial density profiles for Rb + and Na + reveal that peak binding distances shift toward the surface with increasing negative charge, suggesting that the CD-MUSIC framework may be improved by incorporating CD or Stern-layer capacitance values that vary with charge.« less
Universal aspects of adhesion and atomic force microscopy
NASA Technical Reports Server (NTRS)
Banerjea, Amitava; Smith, John R.; Ferrante, John
1990-01-01
Adhesive energies are computed for flat and atomically sharp tips as a function of the normal distance to the substrate. The dependence of binding energies on tip shape is investigated. The magnitudes of the binding energies for the atomic force microscope are found to depend sensitively on tip material, tip shape and the sample site being probed. The form of the energy-distance curve, however, is universal and independent of these variables, including tip shape.
Δ isobars and nuclear saturation
NASA Astrophysics Data System (ADS)
Ekström, A.; Hagen, G.; Morris, T. D.; Papenbrock, T.; Schwartz, P. D.
2018-02-01
We construct a nuclear interaction in chiral effective field theory with explicit inclusion of the Δ -isobar Δ (1232 ) degree of freedom at all orders up to next-to-next-to-leading order (NNLO). We use pion-nucleon (π N ) low-energy constants (LECs) from a Roy-Steiner analysis of π N scattering data, optimize the LECs in the contact potentials up to NNLO to reproduce low-energy nucleon-nucleon scattering phase shifts, and constrain the three-nucleon interaction at NNLO to reproduce the binding energy and point-proton radius of 4He. For heavier nuclei we use the coupled-cluster method to compute binding energies, radii, and neutron skins. We find that radii and binding energies are much improved for interactions with explicit inclusion of Δ (1232 ) , while Δ -less interactions produce nuclei that are not bound with respect to breakup into α particles. The saturation of nuclear matter is significantly improved, and its symmetry energy is consistent with empirical estimates.
Weak interactions and cooperativity effects on disiloxane: a look at the building block of silicones
NASA Astrophysics Data System (ADS)
Martín-Fernández, Carlos; Montero-Campillo, M. Merced; Alkorta, Ibon; Elguero, José
2018-06-01
The behaviour of disiloxane 1 towards a set of Lewis acids (LA) and Lewis bases (LB) forming complexes through its oxygen and silicon atoms, respectively, was studied at the MP2/aug‧-cc-pVTZ level of theory, exploring a wide variety of non-covalent interactions. Disiloxane is a moderate electron acceptor and a good electron donor, exhibiting in the latter case binding energies up to almost -100 kJ/mol with BeCl2. Cooperativity effects were also analysed by looking at ternary 1:LA:LB complexes. Shorter intermolecular distances than in the corresponding binary complexes and a negative contribution of the three-body term to the binding energy indicate that the non-covalent interactions allowed by disiloxane through its acid and basic centres cooperate between them to reinforce both donor-acceptor pairs. These effects are particularly strong in complexes involving beryllium and triel bonds, but are also relevant for complexes containing hydrogen bonds.
Nishizawa, Hiroaki; Nishimura, Yoshifumi; Kobayashi, Masato; Irle, Stephan; Nakai, Hiromi
2016-08-05
The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Energetics of protein-DNA interactions.
Donald, Jason E; Chen, William W; Shakhnovich, Eugene I
2007-01-01
Protein-DNA interactions are vital for many processes in living cells, especially transcriptional regulation and DNA modification. To further our understanding of these important processes on the microscopic level, it is necessary that theoretical models describe the macromolecular interaction energetics accurately. While several methods have been proposed, there has not been a careful comparison of how well the different methods are able to predict biologically important quantities such as the correct DNA binding sequence, total binding free energy and free energy changes caused by DNA mutation. In addition to carrying out the comparison, we present two important theoretical models developed initially in protein folding that have not yet been tried on protein-DNA interactions. In the process, we find that the results of these knowledge-based potentials show a strong dependence on the interaction distance and the derivation method. Finally, we present a knowledge-based potential that gives comparable or superior results to the best of the other methods, including the molecular mechanics force field AMBER99.
NASA Astrophysics Data System (ADS)
Huang, Dao-Ling; Zhu, Guo-Zhu; Liu, Yuan; Wang, Lai-Sheng
2017-02-01
We report a photodetachment and high-resolution photoelectron imaging study of cold deprotonated 2-hydroxypyrimidine anions, C4H3N2O-. Photodetachment spectroscopy reveals an excited dipole-bound state (DBS) of C4H3N2O- with a binding energy of 598 ± 5 cm-1 below the detachment threshold of 26,010 ± 5 cm-1. Twenty vibrational levels of the DBS are observed as resonances in the photodetachment spectrum, with three below the detachment threshold and seventeen above the threshold. By tuning the detachment laser to the above-threshold vibrational resonances, highly non-Franck-Condon photoelectron spectra are obtained. Nine fundamental vibrational frequencies are resolved, including six symmetry-forbidden modes. The 598 cm-1 binding energy for the DBS is quite high due to the large dipole moment of the C4H3N2Orad (>6 D). However, no evidence of a second DBS is observed below the detachment threshold.
Observation of a shape resonance of the positronium negative ion
Michishio, Koji; Kanai, Tsuneto; Kuma, Susumu; Azuma, Toshiyuki; Wada, Ken; Mochizuki, Izumi; Hyodo, Toshio; Yagishita, Akira; Nagashima, Yasuyuki
2016-01-01
When an electron binds to its anti-matter counterpart, the positron, it forms the exotic atom positronium (Ps). Ps can further bind to another electron to form the positronium negative ion, Ps− (e−e+e−). Since its constituents are solely point-like particles with the same mass, this system provides an excellent testing ground for the three-body problem in quantum mechanics. While theoretical works on its energy level and dynamics have been performed extensively, experimental investigations of its characteristics have been hampered by the weak ion yield and short annihilation lifetime. Here we report on the laser spectroscopy study of Ps−, using a source of efficiently produced ions, generated from the bombardment of slow positrons onto a Na-coated W surface. A strong shape resonance of 1Po symmetry has been observed near the Ps (n=2) formation threshold. The resonance energy and width measured are in good agreement with the result of three-body calculations. PMID:26983496
Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-Kang
2013-11-01
To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π-π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met.
Introducing various ligands into superhalogen anions reduces their electronic stabilities
NASA Astrophysics Data System (ADS)
Smuczyńska, Sylwia; Skurski, Piotr
2008-02-01
The vertical electron detachment energies (VDE) of six NaX2- anions (where X = F, Cl, Br) were calculated at the OVGF level with the 6-311++G(3df) basis sets. In all the cases studied the VDE exceeds the electron affinity of chlorine atom and thus those species were classified as superhalogen anions. The largest vertical binding energy was found for the NaF2- system (6.644 eV). The strong VDE dependence on the ligand type, ligand-central atom distance, and the character of the highest occupied molecular orbital (HOMO) was observed and discussed.
Viricel, Clément; de Givry, Simon; Schiex, Thomas; Barbe, Sophie
2018-02-20
Accurate and economic methods to predict change in protein binding free energy upon mutation are imperative to accelerate the design of proteins for a wide range of applications. Free energy is defined by enthalpic and entropic contributions. Following the recent progresses of Artificial Intelligence-based algorithms for guaranteed NP-hard energy optimization and partition function computation, it becomes possible to quickly compute minimum energy conformations and to reliably estimate the entropic contribution of side-chains in the change of free energy of large protein interfaces. Using guaranteed Cost Function Network algorithms, Rosetta energy functions and Dunbrack's rotamer library, we developed and assessed EasyE and JayZ, two methods for binding affinity estimation that ignore or include conformational entropic contributions on a large benchmark of binding affinity experimental measures. If both approaches outperform most established tools, we observe that side-chain conformational entropy brings little or no improvement on most systems but becomes crucial in some rare cases. as open-source Python/C ++ code at sourcesup.renater.fr/projects/easy-jayz. thomas.schiex@inra.fr and sophie.barbe@insa-toulouse.fr. Supplementary data are available at Bioinformatics online.
Stretched proton-neutron configurations in fp-shell nuclei (II). Systematics
NASA Astrophysics Data System (ADS)
von Neumann-Cosel, P.; Fister, U.; Jahn, R.; Schenk, P.; Trelle, T. K.; Wenzel, D.; Wienands, U.
1994-03-01
The systematics of the binding energies of stretched proton-neutron configurations ( f{7}/{2}, g{9}/{2}) 8 -, ( p{3}/{2}, g{9}/{2}) 6 -, ( g{9}/{2}, p{3}/{2}) 6- and ( g{9}/{2}) 29 + are studied over a wide range of f p-shell nuclei. The effective proton-neutron interaction energies deduced from the data are nearly constant for ( p{3}/{2}, g{9}/{2}) 6 -and ( g{9}/{2}) 29 + states while the ( f{7}/{2}, g{9}/{2}) 8 - configuration reveals an additional repulsive term proportional to the partial filling of the f{7}/{2} orbit in the target ground state. Two-body matrix elements are extracted. A crude shell model, which predicts that the excitation energy of a stretched state is equal to the sum of the single-particle energies, works well for the 6 - and 9 + states, but fails for the 8 - levels due to neglect of the additional interactions described above. The physics underlying the empirically introduced basic assumptions of the crude shell model is discussed. The binding energies are found to be linearly dependent on the mass number A and the isospin Tz component and are well described by the weak-coupling model of Bansal and French. The derived parameters agree with averaged values of a similar analysis for the single-particle states in the corresponding odd-even neighbours. The data indicate a significant change of the particle-hole energies with closure of the proton f{7}/{2} shell.
NASA Astrophysics Data System (ADS)
Tracy, James L., Jr.
A study of ground state binding energy values listed in the Atomic Mass Evaluation 2012 (AME2012) using an interpretive approach, as opposed to the exploratory methods of previous models, is presented. This model is based on a postulate requiring all protons to pair with available neutrons to form bound alpha clusters as the ground state for an N = Z core upon which excess neutrons are added. For each core, the trend of the binding energy as a function of excess neutrons in the isotopic chain can be fit with a three-term quadratic function. The quadratic parameter reveals a smooth decaying exponential function. By re-envisioning the determination of mass excess, the constant-term fit parameters, representing N = Z nuclei, reveal a near-symmetry around Z = 50. The linear fit parameters exhibit trends which are linear functions of core size. A neutron drip-line prediction is compared against current models. By considering the possibility of an alpha-cluster core, a new ground-state structure grouping scheme is presented; nucleon-nucleon pairing is shown to have a greater role in level filling. This model, referred to as the Alpha-Deuteron-Neutron Model, yields promising first results when considering root-mean-square variances from the AME2012. The beta-decay of the neutron-rich isotope 74Cu has been studied using three high-purity Germanium clover detectors at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. A high-resolution mass separator greatly improved the purity of the 74Cu beam by removing isobaric contaminants, thus allowing decay through its isobar chain to the stable 74Ge at the center of the LeRIBSS detector array without any decay chain member dominating. Using coincidence gating techniques, 121 gamma-rays associated with 74Cu were isolated from the collective singles spectrum. Eighty-seven of these were placed in an expanded level scheme, and updated beta-feeding level intensities and log( ft) values are presented based on multiple newly-placed excited states up to 6.8 MeV. The progression of simulated Total Absorption gamma-ray Spectroscopy (TAGS) based on known levels and beta feeding values from previous measurements to this evaluation are presented and demonstrate the need for a TAGS measurement of this isotope to gain a more complete understanding of its decay scheme.
Three essays on the links between agriculture and energy policies in the U.S
NASA Astrophysics Data System (ADS)
Whistance, Jarrett
The first essay develops and applies a structural, partial equilibrium model of United States biomass supply and demand. The aim is to examine the biomass price and expenditure effects of domestic biofuel policies. The results indicate that the cellulosic biofuel sub-mandate alone could increase biomass prices by an average of 50% to 100% over the baseline values. Biomass expenditures by sectors competing with biofuel producers increase by an average of 26% relative to the baseline suggesting those sectors cannot fully shift away from biomass energy sources. A sensitivity analysis focusing on supply response indicates that the results are not very sensitive to the supply elasticity. This study contributes to the literature by providing policymakers and other energy policy stakeholders with a forward looking analysis of potential policy effects on the U.S. biomass market. The second essay develops a similar type of model applied toward the domestic and international petroleum and petroleum products markets as well as the domestic biofuel market and the domestic light-duty vehicle sector. The goal is to investigate the impact of CAFE standards and alternative-fuel vehicle production incentives on the biofuel market and RFS compliance, in particular. The results suggest that holding CAFE standards at the 2010 level could significantly reduce the blendwall problem in the U.S. ethanol market. Furthermore, the alternative fuel production incentives appear to have only minimal effects. However, there is much uncertainty surrounding the appropriate level of automaker response to those incentives, and a sensitivity analysis indicates the model is fairly sensitive to the assumed level of response. The third essay highlights a few of the theories put forth regarding the expected price behavior of Renewable Identification Numbers (RINs). The theories are tested both observationally and empirically with a dataset containing daily RIN price observations going back to January 2009. The behavior does not always match expectations, although the exact causes remain uncertain. In addition, the information provided by RIN prices is used to test the implications of a binding renewable fuel standard (RFS) versus a non-binding RFS on the ethanol-gasoline price relationship. Cointegration tests provide some evidence that the relationship between conventional ethanol and gasoline prices at the wholesale level is weaker in the presence of a binding RFS.
Nascimento, Érica C M; Oliva, Mónica; Andrés, Juan
2018-05-01
In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.
Adhesion of a bimetallic interface. Ph.D. Thesis - Case Western Reserve Univ.; [for Al, Mg, and Zn
NASA Technical Reports Server (NTRS)
Ferrante, J.
1978-01-01
The Hohenberg-Kohn and Kohn-Sham formalisms are used to examine binding (binding energy as a function of separation) for combinations of the simple metals Al(111), Zn(0001), Mg(0001), and Na(110) in contact. Similar metal contacts between Al, Zn, Mg, and Na are examined self-consistently in an ab initio calculation using the Kohn-Sham formalism. Crystallinity is included using the Aschroft pseudopotential via first order perturbation theory for the electron-ion interaction; and the ion-ion interaction is included exactly via a lattice sum. Binding energy was determined both in the local-density approximation and including gradient corrections to the exchange and correlation energy. Binding was found in all cases. In dissimilar metal contacts, interfacial bonding was greater than that in the weaker material predicting the possibility of metallic transfer. The nonzero position of the energy minimum in like metal contacts is explained in terms of consistency between the Ashcroft pseudopotential and the bulk charge density. Good agreement with experimental surface energies is obtained in the self-consistent calculation when nonlocal terms are included.
NASA Astrophysics Data System (ADS)
Nascimento, Érica C. M.; Oliva, Mónica; Andrés, Juan
2018-03-01
In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.
NASA Astrophysics Data System (ADS)
Nascimento, Érica C. M.; Oliva, Mónica; Andrés, Juan
2018-05-01
In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.
Lin, Yen -Lin; Meng, Yilin; Huang, Lei; ...
2014-10-22
Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to themore » DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.« less
NASA Astrophysics Data System (ADS)
Cholko, Timothy; Chen, Wei; Tang, Zhiye; Chang, Chia-en A.
2018-05-01
Abnormal activity of cyclin-dependent kinase 8 (CDK8) along with its partner protein cyclin C (CycC) is a common feature of many diseases including colorectal cancer. Using molecular dynamics (MD) simulations, this study determined the dynamics of the CDK8-CycC system and we obtained detailed breakdowns of binding energy contributions for four type-I and five type-II CDK8 inhibitors. We revealed system motions and conformational changes that will affect ligand binding, confirmed the essentialness of CycC for inclusion in future computational studies, and provide guidance in development of CDK8 binders. We employed unbiased all-atom MD simulations for 500 ns on twelve CDK8-CycC systems, including apoproteins and protein-ligand complexes, then performed principal component analysis (PCA) and measured the RMSF of key regions to identify protein dynamics. Binding pocket volume analysis identified conformational changes that accompany ligand binding. Next, H-bond analysis, residue-wise interaction calculations, and MM/PBSA were performed to characterize protein-ligand interactions and find the binding energy. We discovered that CycC is vital for maintaining a proper conformation of CDK8 to facilitate ligand binding and that the system exhibits motion that should be carefully considered in future computational work. Surprisingly, we found that motion of the activation loop did not affect ligand binding. Type-I and type-II ligand binding is driven by van der Waals interactions, but electrostatic energy and entropic penalties affect type-II binding as well. Binding of both ligand types affects protein flexibility. Based on this we provide suggestions for development of tighter-binding CDK8 inhibitors and offer insight that can aid future computational studies.
Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study.
Shao, Qing; Hall, Carol K
2016-08-09
A better understanding of the binding preference of amino acids for gold nanoparticles of different diameters could aid in the design of peptides that bind specifically to nanoparticles of a given diameter. Here we identify the binding preference of 19 natural amino acids for three gold nanoparticles with diameters of 1.0, 2.0, and 4.0 nm, and investigate the mechanisms that govern these preferences. We calculate potentials of mean force between 36 entities (19 amino acids and 17 side chains) and the three gold nanoparticles in explicit water using well-tempered metadynamics simulations. Comparing these potentials of mean force determines the amino acids' nanoparticle binding preferences and if these preferences are controlled by the backbone, the side chain, or both. Twelve amino acids prefer to bind to the 4.0 nm gold nanoparticle, and seven prefer to bind to the 2.0 nm one. We also use atomistic molecular dynamics simulations to investigate how water molecules near the nanoparticle influence the binding of the amino acids. The solvation shells of the larger nanoparticles have higher water densities than those of the smaller nanoparticles while the orientation distributions of the water molecules in the shells of all three nanoparticles are similar. The nanoparticle preferences of the amino acids depend on whether their binding free energy is determined mainly by their ability to replace or to reorient water molecules in the nanoparticle solvation shell. The amino acids whose binding free energy depends mainly on the replacement of water molecules are likely to prefer to bind to the largest nanoparticle and tend to have relatively simple side chain structures. Those whose binding free energy depends mainly on their ability to reorient water molecules prefer a smaller nanoparticle and tend to have more complex side chain structures.
Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank
Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less
Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides
Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank
2017-07-17
Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less
Energy levels of double triangular graphene quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, F. X.; Jiang, Z. T., E-mail: ztjiang616@hotmail.com; Zhang, H. Y.
2014-09-28
We investigate theoretically the energy levels of the coupled double triangular graphene quantum dots (GQDs) based on the tight-binding Hamiltonian model. The double GQDs including the ZZ-type, ZA-type, and AA-type GQDs with the two GQDs having the zigzag or armchair boundaries can be coupled together via different interdot connections, such as the direct coupling, the chains of benzene rings, and those of carbon atoms. It is shown that the energy spectrum of the coupled double GQDs is the amalgamation of those spectra of the corresponding two isolated GQDs with the modification triggered by the interdot connections. The interdot connection ismore » inclined to lift up the degeneracies of the energy levels in different degree, and as the connection changes from the direct coupling to the long chains, the removal of energy degeneracies is suppressed in ZZ-type and AA-type double GQDs, which indicates that the two coupled GQDs are inclined to become decoupled. Then we consider the influences on the spectra of the coupled double GQDs induced by the electric fields applied on the GQDs or the connection, which manifests as the global spectrum redistribution or the local energy level shift. Finally, we study the symmetrical and asymmetrical energy spectra of the double GQDs caused by the substrates supporting the two GQDs, clearly demonstrating how the substrates affect the double GQDs' spectrum. This research elucidates the energy spectra of the coupled double GQDs, as well as the mechanics of manipulating them by the electric field and the substrates, which would be a significant reference for designing GQD-based devices.« less
Fredon, A; Cuppen, H M
2018-02-21
Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. Especially, saturated, hydrogen-rich molecules are formed through surface chemistry where the interstellar grains act as a meeting place and absorbing energy. Here we present the results of thousands of molecular dynamics simulations to quantify the outcome of an energy dissipation process. Admolecules on top of an amorphous solid water surface have been given translational energy between 0.5 and 5 eV. Three different surface species are considered, CO 2 , H 2 O and CH 4 , spanning a range in binding energies, number of internal degrees of freedom and molecular weight. The results are compared against a previous study using a crystalline water ice surface. Possible outcomes of a dissipation process are adsorption - possibly after long-range diffusion-, desorption and desorption of a surface molecule. The three admolecules were found to bind at different locations on the surface, particularly in terms of height. Water preferably binds on top of the surface, whereas methane fills the nanopores on the surface. This has direct consequences for desorption, travelled distance, and kick-out probabilities. The admolecules are found to frequently travel several tens of angstroms before stabilizing on a binding site, allowing follow-up reactions en route. We present kick-out probabilities and we have been able to quantify the desorption probability which depends on the binding energy of the species, the translational excitation, and a factor that accounts for difference in binding site height. We provide expressions that can be incorporated in astrochemical models to predict grain surface formation and return into the gas phase of these products.
Hung, Pei-hsuan; Miller, Marion G.; Meyers, Stuart A.; VandeVoort, Catherine A.
2008-01-01
Whether the main energy source for sperm motility is from oxidative phosphorylation or glycolysis has been long-debated in the field of reproductive biology. Using the rhesus monkey as a model, we examined the role of glycolysis and oxidative phosphorylation in sperm function by using alpha-chlorohydrin (ACH), a glycolysis inhibitor, and pentachlorophenol (PCP), an oxidative phosphorylation uncoupler. Sperm treated with ACH showed no change in percentage of motile sperm, although sperm motion was impaired. The ACH-treated sperm did not display either hyperactivity- or hyperactivation-associated changes in protein tyrosine phosphorylation. When treated with PCP, sperm motion parameters were affected by the highest level of PCP (200 μM); however, PCP did not cause motility impairments even after chemical activation. Sperm treated with PCP were able to display hyperactivity and tyrosine phosphorylation after chemical activation. In contrast with motility measurements, treatment with either the glycolytic inhibitor or the oxidative phosphorylation inhibitor did not affect sperm-zona binding and zona-induced acrosome reaction. The results suggest glycolysis is essential to support sperm motility, hyperactivity, and protein tyrosine phosphorylation, while energy from oxidative phosphorylation is not necessary for hyperactivated sperm motility, tyrosine phosphorylation, sperm-zona binding, and acrosome reaction in the rhesus macaque. PMID:18480469
Mantri, Yogita; Fioroni, Marco; Baik, Mu-Hyun
2008-11-01
One of the many hypotheses on the pathogenesis of Alzheimer's disease is that the amyloid-beta peptide (Abeta) binds CuII and can catalytically generate H2O2, leading to oxidative damage in brain tissues. For a molecular level understanding of such catalysis it is critical to know the structure of the Abeta-CuII complex precisely. Unfortunately, no high-resolution structure is available to date and there is considerable debate over the copper coordination environment with no clear consensus on which residues are directly bound to CuII. Considering all plausible isomers of the copper-bound Abeta42 and Abeta40 using a combination of density functional theory and classical molecular dynamics methods, we report an atomic resolution structure for each possible complex. We evaluated the relative energies of these isomeric structures and surprisingly found that Abeta42 and Abeta40 display very different binding modes, suggesting that shorter peptides that are truncated at the C-terminus may not be realistic models for understanding the chemistry of the most neurotoxic peptide, Abeta42.
Abel, Robert; Wang, Lingle; Mobley, David L; Friesner, Richard A
2017-01-01
Protein-ligand binding is among the most fundamental phenomena underlying all molecular biology, and a greater ability to more accurately and robustly predict the binding free energy of a small molecule ligand for its cognate protein is expected to have vast consequences for improving the efficiency of pharmaceutical drug discovery. We briefly reviewed a number of scientific and technical advances that have enabled alchemical free energy calculations to recently emerge as a preferred approach, and critically considered proper validation and effective use of these techniques. In particular, we characterized a selection bias effect which may be important in prospective free energy calculations, and introduced a strategy to improve the accuracy of the free energy predictions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Intermolecular symmetry-adapted perturbation theory study of large organic complexes.
Heßelmann, Andreas; Korona, Tatiana
2014-09-07
Binding energies for the complexes of the S12L database by Grimme [Chem. Eur. J. 18, 9955 (2012)] were calculated using intermolecular symmetry-adapted perturbation theory combined with a density-functional theory description of the interacting molecules. The individual interaction energy decompositions revealed no particular change in the stabilisation pattern as compared to smaller dimer systems at equilibrium structures. This demonstrates that, to some extent, the qualitative description of the interaction of small dimer systems may be extrapolated to larger systems, a method that is widely used in force-fields in which the total interaction energy is decomposed into atom-atom contributions. A comparison of the binding energies with accurate experimental reference values from Grimme, the latter including thermodynamic corrections from semiempirical calculations, has shown a fairly good agreement to within the error range of the reference binding energies.
Mahmoodi, Yasaman; Mehrnejad, Faramarz; Khalifeh, Khosrow
2018-01-01
Interactions of carbon nanotubes (CNTs) and blood proteins are of interest for nanotoxicology and nanomedicine. It is believed that the interactions of blood proteins and glycoproteins with CNTs may have important biological effects. In spite of many experimental studies of single-walled carbon nanotubes (SWCNT) and glycoproteins with different methods, little is known about the atomistic details of their association process or of structural alterations occurring in adsorbed glycoproteins. In this study, we have applied molecular dynamics simulation to investigate the interaction of follicle stimulating hormone (hFSH) with SWCNT. The aim of this work is to investigate possible mechanisms of nanotoxicity at a molecular level. We present details of the molecular dynamics, structure, and free energy of binding of hFSH on the surface of SWCNT. We find that hFSH in aqueous solution strongly adsorbs onto SWCNT via their concave surface as evidenced by high binding free energies for residues in both protein subunits. It was found that hydrophobic, π-cation, and π-π stacking interactions are the main driving forces for the adsorption of the protein at the nanotube surface.
Latha, P; Kodisundaram, P; Sundararajan, M L; Jeyakumar, T
2014-08-14
2-(Thiophen-2-yl)-1-((thiophen-2-yl)methyl)-1H-1,3-benzodiazole (HL) is synthesized and characterized by elemental analysis, UV-Vis, FT-IR, (1)H, (13)C NMR, mass spectra, scanning electron microscope (SEM) and single crystal X-ray diffraction. The crystal structure is stabilized by intermolecular CH⋯N and CH⋯π interactions. The molecular structure is also optimized at the B3LYP/6-31G level using density functional theory (DFT). The structural parameters from the theory are nearer to those of crystal, the calculated total energy of coordination is -1522.814a.u. The energy of HOMO-LUMO and the energy gap are -0.20718, -0.04314, 0.16404a.u, respectively. All data obtained from the spectral studies support the structural properties of the compound HL. The benzimidazole ring is essentially planar. The in vitro biological screening effects of the synthesized compound is tested against four bacterial and four fungal strains by well diffusion method. Antioxidant property and DNA binding behaviour of the compound has been investigated using spectrophotometric method. Copyright © 2014 Elsevier B.V. All rights reserved.
Multiscale computational models in physical systems biology of intracellular trafficking.
Tourdot, Richard W; Bradley, Ryan P; Ramakrishnan, Natesan; Radhakrishnan, Ravi
2014-10-01
In intracellular trafficking, a definitive understanding of the interplay between protein binding and membrane morphology remains incomplete. The authors describe a computational approach by integrating coarse-grained molecular dynamics (CGMD) simulations with continuum Monte Carlo (CM) simulations of the membrane to study protein-membrane interactions and the ensuing membrane curvature. They relate the curvature field strength discerned from the molecular level to its effect at the cellular length-scale. They perform thermodynamic integration on the CM model to describe the free energy landscape of vesiculation in clathrin-mediated endocytosis. The method presented here delineates membrane morphologies and maps out the free energy changes associated with membrane remodeling due to varying coat sizes, coat curvature strengths, membrane bending rigidities, and tensions; furthermore several constraints on mechanisms underlying clathrin-mediated endocytosis have also been identified, Their CGMD simulations have revealed the importance of PIP2 for stable binding of proteins essential for curvature induction in the bilayer and have provided a molecular basis for the positive curvature induction by the epsin N-terminal homology (EIMTH) domain. Calculation of the free energy landscape for vesicle budding has identified the critical size and curvature strength of a clathrin coat required for nucleation and stabilisation of a mature vesicle.