Sample records for binding energy model

  1. Conformational Transitions and Convergence of Absolute Binding Free Energy Calculations

    PubMed Central

    Lapelosa, Mauro; Gallicchio, Emilio; Levy, Ronald M.

    2011-01-01

    The Binding Energy Distribution Analysis Method (BEDAM) is employed to compute the standard binding free energies of a series of ligands to a FK506 binding protein (FKBP12) with implicit solvation. Binding free energy estimates are in reasonably good agreement with experimental affinities. The conformations of the complexes identified by the simulations are in good agreement with crystallographic data, which was not used to restrain ligand orientations. The BEDAM method is based on λ -hopping Hamiltonian parallel Replica Exchange (HREM) molecular dynamics conformational sampling, the OPLS-AA/AGBNP2 effective potential, and multi-state free energy estimators (MBAR). Achieving converged and accurate results depends on all of these elements of the calculation. Convergence of the binding free energy is tied to the level of convergence of binding energy distributions at critical intermediate states where bound and unbound states are at equilibrium, and where the rate of binding/unbinding conformational transitions is maximal. This finding mirrors similar observations in the context of order/disorder transitions as for example in protein folding. Insights concerning the physical mechanism of ligand binding and unbinding are obtained. Convergence for the largest FK506 ligand is achieved only after imposing strict conformational restraints, which however require accurate prior structural knowledge of the structure of the complex. The analytical AGBNP2 model is found to underestimate the magnitude of the hydrophobic driving force towards binding in these systems characterized by loosely packed protein-ligand binding interfaces. Rescoring of the binding energies using a numerical surface area model corrects this deficiency. This study illustrates the complex interplay between energy models, exploration of conformational space, and free energy estimators needed to obtain robust estimates from binding free energy calculations. PMID:22368530

  2. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    PubMed

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  3. Large scale affinity calculations of cyclodextrin host-guest complexes: Understanding the role of reorganization in the molecular recognition process

    PubMed Central

    Wickstrom, Lauren; He, Peng; Gallicchio, Emilio; Levy, Ronald M.

    2013-01-01

    Host-guest inclusion complexes are useful models for understanding the structural and energetic aspects of molecular recognition. Due to their small size relative to much larger protein-ligand complexes, converged results can be obtained rapidly for these systems thus offering the opportunity to more reliably study fundamental aspects of the thermodynamics of binding. In this work, we have performed a large scale binding affinity survey of 57 β-cyclodextrin (CD) host guest systems using the binding energy distribution analysis method (BEDAM) with implicit solvation (OPLS-AA/AGBNP2). Converged estimates of the standard binding free energies are obtained for these systems by employing techniques such as parallel Hamitionian replica exchange molecular dynamics, conformational reservoirs and multistate free energy estimators. Good agreement with experimental measurements is obtained in terms of both numerical accuracy and affinity rankings. Overall, average effective binding energies reproduce affinity rank ordering better than the calculated binding affinities, even though calculated binding free energies, which account for effects such as conformational strain and entropy loss upon binding, provide lower root mean square errors when compared to measurements. Interestingly, we find that binding free energies are superior rank order predictors for a large subset containing the most flexible guests. The results indicate that, while challenging, accurate modeling of reorganization effects can lead to ligand design models of superior predictive power for rank ordering relative to models based only on ligand-receptor interaction energies. PMID:25147485

  4. Binding free energy analysis of protein-protein docking model structures by evERdock.

    PubMed

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  5. Binding free energy analysis of protein-protein docking model structures by evERdock

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-01

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  6. Calculation of Host-Guest Binding Affinities Using a Quantum-Mechanical Energy Model.

    PubMed

    Muddana, Hari S; Gilson, Michael K

    2012-06-12

    The prediction of protein-ligand binding affinities is of central interest in computer-aided drug discovery, but it is still difficult to achieve a high degree of accuracy. Recent studies suggesting that available force fields may be a key source of error motivate the present study, which reports the first mining minima (M2) binding affinity calculations based on a quantum mechanical energy model, rather than an empirical force field. We apply a semi-empirical quantum-mechanical energy function, PM6-DH+, coupled with the COSMO solvation model, to 29 host-guest systems with a wide range of measured binding affinities. After correction for a systematic error, which appears to derive from the treatment of polar solvation, the computed absolute binding affinities agree well with experimental measurements, with a mean error 1.6 kcal/mol and a correlation coefficient of 0.91. These calculations also delineate the contributions of various energy components, including solute energy, configurational entropy, and solvation free energy, to the binding free energies of these host-guest complexes. Comparison with our previous calculations, which used empirical force fields, point to significant differences in both the energetic and entropic components of the binding free energy. The present study demonstrates successful combination of a quantum mechanical Hamiltonian with the M2 affinity method.

  7. The electronic and optical properties of quantum nano-structures

    NASA Astrophysics Data System (ADS)

    Ham, Heon

    In semiconducting quantum nano-structures, the excitonic effects play an important role when we fabricate opto-electronic devices, such as lasers, diodes, detectors, etc. To gain a better understanding of the excitonic effects in quantum nano-structures, we investigated the exciton binding energy, oscillator strength, and linewidth in quantum nano-structures using both the infinite and finite well models. We investigated also the hydrogenic impurity binding energy and the photoionization cross section of the hydrogenic impurity in a spherical quantum dot. In our work, the variational approach is used in all calculations, because the Hamiltonian of the system is not separable, due to the different symmetries of the Coulomb and confining potentials. In the infinite well model of the semiconducting quantum nanostructures, the binding energy of the exciton increases with decreasing width of the potential barriers due to the increase in the effective strength of the Coulomb interaction between the electron and hole. In the finite well model, the exciton binding energy reaches a peak value, and the binding energy decreases with further decrease in the width of the potential barriers. The exciton linewidth in the infinite well model increases with decreasing wire radius, because the scattering rate of the exciton increases with decreasing wire radius. In the finite well model, the exciton linewidth in a cylindrical quantum wire reaches a peak value and the exciton linewidth decreases with further decrease in the wire radius, because the exciton is not well confined at very smaller wire radii. The binding energy of the hydrogenic impurity in a spherical quantum dot has also calculated using both the infinite and the finite well models. The binding energy of the hydrogenic impurity was calculated for on center and off center impurities in the spherical quantum dots. With decreasing radii of the dots, the binding energy of the hydrogenic impurity increases in the infinite well model. The binding energy of the hydrogenic impurity in the finite well model reaches a peak value and decreases with further decrease in the dot radii for both on center and off center impurities. We have calculated the photoionization cross section as a function of the radius and the frequency using both the infinite and finite well models. The photoionizaton cross section has a peak value at a frequency where the photon energy equals the difference between the final and initial state energies of the impurity. The behavior of the cross section with dot radius depends upon the location of the impurity and the polarization of the electromagnetic field.

  8. Free Energy-Based Virtual Screening and Optimization of RNase H Inhibitors of HIV-1 Reverse Transcriptase.

    PubMed

    Zhang, Baofeng; D'Erasmo, Michael P; Murelli, Ryan P; Gallicchio, Emilio

    2016-09-30

    We report the results of a binding free energy-based virtual screening campaign of a library of 77 α-hydroxytropolone derivatives against the challenging RNase H active site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus-1. Multiple protonation states, rotamer states, and binding modalities of each compound were individually evaluated. The work involved more than 300 individual absolute alchemical binding free energy parallel molecular dynamics calculations and over 1 million CPU hours on national computing clusters and a local campus computational grid. The thermodynamic and structural measures obtained in this work rationalize a series of characteristics of this system useful for guiding future synthetic and biochemical efforts. The free energy model identified key ligand-dependent entropic and conformational reorganization processes difficult to capture using standard docking and scoring approaches. Binding free energy-based optimization of the lead compounds emerging from the virtual screen has yielded four compounds with very favorable binding properties, which will be the subject of further experimental investigations. This work is one of the few reported applications of advanced-binding free energy models to large-scale virtual screening and optimization projects. It further demonstrates that, with suitable algorithms and automation, advanced-binding free energy models can have a useful role in early-stage drug-discovery programs.

  9. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain.

    PubMed

    Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J; Simonson, Thomas

    2017-01-01

    PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or "PB/LIE" free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α 2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo . The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  10. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain

    PubMed Central

    Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J.; Simonson, Thomas

    2017-01-01

    PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or “PB/LIE” free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo. The overall performance of the model should allow its use in the design of new PDZ ligands in the future. PMID:29018806

  11. Calculations of the binding affinities of protein-protein complexes with the fast multipole method

    NASA Astrophysics Data System (ADS)

    Kim, Bongkeun; Song, Jiming; Song, Xueyu

    2010-09-01

    In this paper, we used a coarse-grained model at the residue level to calculate the binding free energies of three protein-protein complexes. General formulations to calculate the electrostatic binding free energy and the van der Waals free energy are presented by solving linearized Poisson-Boltzmann equations using the boundary element method in combination with the fast multipole method. The residue level model with the fast multipole method allows us to efficiently investigate how the mutations on the active site of the protein-protein interface affect the changes in binding affinities of protein complexes. Good correlations between the calculated results and the experimental ones indicate that our model can capture the dominant contributions to the protein-protein interactions. At the same time, additional effects on protein binding due to atomic details are also discussed in the context of the limitations of such a coarse-grained model.

  12. Prediction of Ras-effector interactions using position energy matrices.

    PubMed

    Kiel, Christina; Serrano, Luis

    2007-09-01

    One of the more challenging problems in biology is to determine the cellular protein interaction network. Progress has been made to predict protein-protein interactions based on structural information, assuming that structural similar proteins interact in a similar way. In a previous publication, we have determined a genome-wide Ras-effector interaction network based on homology models, with a high accuracy of predicting binding and non-binding domains. However, for a prediction on a genome-wide scale, homology modelling is a time-consuming process. Therefore, we here successfully developed a faster method using position energy matrices, where based on different Ras-effector X-ray template structures, all amino acids in the effector binding domain are sequentially mutated to all other amino acid residues and the effect on binding energy is calculated. Those pre-calculated matrices can then be used to score for binding any Ras or effector sequences. Based on position energy matrices, the sequences of putative Ras-binding domains can be scanned quickly to calculate an energy sum value. By calibrating energy sum values using quantitative experimental binding data, thresholds can be defined and thus non-binding domains can be excluded quickly. Sequences which have energy sum values above this threshold are considered to be potential binding domains, and could be further analysed using homology modelling. This prediction method could be applied to other protein families sharing conserved interaction types, in order to determine in a fast way large scale cellular protein interaction networks. Thus, it could have an important impact on future in silico structural genomics approaches, in particular with regard to increasing structural proteomics efforts, aiming to determine all possible domain folds and interaction types. All matrices are deposited in the ADAN database (http://adan-embl.ibmc.umh.es/). Supplementary data are available at Bioinformatics online.

  13. A computational analysis of the binding model of MDM2 with inhibitors

    NASA Astrophysics Data System (ADS)

    Hu, Guodong; Wang, Dunyou; Liu, Xinguo; Zhang, Qinggang

    2010-08-01

    It is a new and promising strategy for anticancer drug design to block the MDM2-p53 interaction using a non-peptide small-molecule inhibitor. We carry out molecular dynamics simulations to study the binding of a set of six non-peptide small-molecule inhibitors with the MDM2. The relative binding free energies calculated using molecular mechanics Poisson-Boltzmann surface area method produce a good correlation with experimentally determined results. The study shows that the van der Waals energies are the largest component of the binding free energy for each complex, which indicates that the affinities of these inhibitors for MDM2 are dominated by shape complementarity. The A-ligands and the B-ligands are the same except for the conformation of 2,2-dimethylbutane group. The quantum mechanics and the binding free energies calculation also show the B-ligands are the more possible conformation of ligands. Detailed binding free energies between inhibitors and individual protein residues are calculated to provide insights into the inhibitor-protein binding model through interpretation of the structural and energetic results from the simulations. The study shows that G1, G2 and G3 group mimic the Phe19, Trp23 and Leu26 residues in p53 and their interactions with MDM2, but the binding model of G4 group differs from the original design strategy to mimic Leu22 residue in p53.

  14. Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge

    PubMed Central

    Gallicchio, Emilio; Deng, Nanjie; He, Peng; Wickstrom, Lauren; Perryman, Alexander L.; Santiago, Daniel N.; Forli, Stefano; Olson, Arthur J.; Levy, Ronald M.

    2014-01-01

    As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization. PMID:24504704

  15. Generalized Skyrme model with the loosely bound potential

    NASA Astrophysics Data System (ADS)

    Gudnason, Sven Bjarke; Zhang, Baiyang; Ma, Nana

    2016-12-01

    We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with a sixth-order derivative term—motivated by its fluidlike properties—and the second-order loosely bound potential—motivated by lowering the classical binding energies of higher-charged Skyrmions. We use the rational map approximation for the Skyrmion of topological charge B =4 , calculate the binding energy of the latter, and estimate the systematic error in using this approximation. In the parameter space that we can explore within the rational map approximation, we find classical binding energies as low as 1.8%, and once taking into account the contribution from spin-isospin quantization, we obtain binding energies as low as 5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density and axial coupling.

  16. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations.

    PubMed

    Hou, Tingjun; Wang, Junmei; Li, Youyong; Wang, Wei

    2011-01-24

    The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods calculate binding free energies for macromolecules by combining molecular mechanics calculations and continuum solvation models. To systematically evaluate the performance of these methods, we report here an extensive study of 59 ligands interacting with six different proteins. First, we explored the effects of the length of the molecular dynamics (MD) simulation, ranging from 400 to 4800 ps, and the solute dielectric constant (1, 2, or 4) on the binding free energies predicted by MM/PBSA. The following three important conclusions could be observed: (1) MD simulation length has an obvious impact on the predictions, and longer MD simulation is not always necessary to achieve better predictions. (2) The predictions are quite sensitive to the solute dielectric constant, and this parameter should be carefully determined according to the characteristics of the protein/ligand binding interface. (3) Conformational entropy often show large fluctuations in MD trajectories, and a large number of snapshots are necessary to achieve stable predictions. Next, we evaluated the accuracy of the binding free energies calculated by three Generalized Born (GB) models. We found that the GB model developed by Onufriev and Case was the most successful model in ranking the binding affinities of the studied inhibitors. Finally, we evaluated the performance of MM/GBSA and MM/PBSA in predicting binding free energies. Our results showed that MM/PBSA performed better in calculating absolute, but not necessarily relative, binding free energies than MM/GBSA. Considering its computational efficiency, MM/GBSA can serve as a powerful tool in drug design, where correct ranking of inhibitors is often emphasized.

  17. Protein surface roughness accounts for binding free energy of Plasmepsin II-ligand complexes.

    PubMed

    Valdés-Tresanco, Mario E; Valdés-Tresanco, Mario S; Valiente, Pedro A; Cocho, Germinal; Mansilla, Ricardo; Nieto-Villar, J M

    2018-01-01

    The calculation of absolute binding affinities for protein-inhibitor complexes remains as one of the main challenges in computational structure-based ligand design. The present work explored the calculations of surface fractal dimension (as a measure of surface roughness) and the relationship with experimental binding free energies of Plasmepsin II complexes. Plasmepsin II is an attractive target for novel therapeutic compounds to treat malaria. However, the structural flexibility of this enzyme is a drawback when searching for specific inhibitors. Concerning that, we performed separate explicitly solvated molecular dynamics simulations using the available high-resolution crystal structures of different Plasmepsin II complexes. Molecular dynamics simulations allowed a better approximation to systems dynamics and, therefore, a more reliable estimation of surface roughness. This constitutes a novel approximation in order to obtain more realistic values of fractal dimension, because previous works considered only x-ray structures. Binding site fractal dimension was calculated considering the ensemble of structures generated at different simulation times. A linear relationship between binding site fractal dimension and experimental binding free energies of the complexes was observed within 20 ns. Previous studies of the subject did not uncover this relationship. Regression model, coined FD model, was built to estimate binding free energies from binding site fractal dimension values. Leave-one-out cross-validation showed that our model reproduced accurately the absolute binding free energies for our training set (R 2  = 0.76; <|error|> =0.55 kcal/mol; SD error  = 0.19 kcal/mol). The fact that such a simple model may be applied raises some questions that are addressed in the article. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Exploring the free-energy landscape of carbohydrate-protein complexes: development and validation of scoring functions considering the binding-site topology

    NASA Astrophysics Data System (ADS)

    Eid, Sameh; Saleh, Noureldin; Zalewski, Adam; Vedani, Angelo

    2014-12-01

    Carbohydrates play a key role in a variety of physiological and pathological processes and, hence, represent a rich source for the development of novel therapeutic agents. Being able to predict binding mode and binding affinity is an essential, yet lacking, aspect of the structure-based design of carbohydrate-based ligands. We assembled a diverse data set comprising 273 carbohydrate-protein crystal structures with known binding affinity and evaluated the prediction accuracy of a large collection of well-established scoring and free-energy functions, as well as combinations thereof. Unfortunately, the tested functions were not capable of reproducing binding affinities in the studied complexes. To simplify the complex free-energy surface of carbohydrate-protein systems, we classified the studied proteins according to the topology and solvent exposure of the carbohydrate-binding site into five distinct categories. A free-energy model based on the proposed classification scheme reproduced binding affinities in the carbohydrate data set with an r 2 of 0.71 and root-mean-squared-error of 1.25 kcal/mol ( N = 236). The improvement in model performance underlines the significance of the differences in the local micro-environments of carbohydrate-binding sites and demonstrates the usefulness of calibrating free-energy functions individually according to binding-site topology and solvent exposure.

  19. On the atomic-number similarity of the binding energies of electrons in filled shells of elements of the periodic table

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpov, V. Ya.; Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru

    An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electronsmore » in an arbitrary atom.« less

  20. Effect of binding in cyclic phosphorylation-dephosphorylation process and in energy transformation.

    PubMed

    Sarkar, A; Beard, D A; Franza, B R

    2006-07-01

    The effects of binding on the phosphorylation-dephosphorylation cycle (PDPC) - one of the key components of the signal transduction processes - is analyzed based on a mathematical model. The model shows that binding of proteins, forming a complex, diminishes the ultrasensitivity of the PDPC to the differences in activity between kinase and phosphatase in the cycle. It is also found that signal amplification depends upon the strength of the binding affinity of the protein (phosphorylated or dephosphorylated) to other proteins . It is also observed that the amplification of signal is not only dependent on phosphorylation potential but also on binding properties and resulting adjustments in binding energies.

  1. Using docking and alchemical free energy approach to determine the binding mechanism of eEF2K inhibitors and prioritizing the compound synthesis.

    PubMed

    Wang, Qiantao; Edupuganti, Ramakrishna; Tavares, Clint D J; Dalby, Kevin N; Ren, Pengyu

    2015-01-01

    A-484954 is a known eEF2K inhibitor with submicromolar IC50 potency. However, the binding mechanism and the crystal structure of the kinase remains unknown. Here, we employ a homology eEF2K model, docking and alchemical free energy simulations to probe the binding mechanism of eEF2K, and in turn, guide the optimization of potential lead compounds. The inhibitor was docked into the ATP-binding site of a homology model first. Three different binding poses, hypothesis 1, 2, and 3, were obtained and subsequently applied to molecular dynamics (MD) based alchemical free energy simulations. The calculated relative binding free energy of the analogs of A-484954 using the binding pose of hypothesis 1 show a good correlation with the experimental IC50 values, yielding an r (2) coefficient of 0.96 after removing an outlier (compound 5). Calculations using another two poses show little correlation with experimental data, (r (2) of less than 0.5 with or without removing any outliers). Based on hypothesis 1, the calculated relative free energy suggests that bigger cyclic groups, at R1 e.g., cyclobutyl and cyclopentyl promote more favorable binding than smaller groups, such as cyclopropyl and hydrogen. Moreover, this study also demonstrates the ability of the alchemical free energy approach in combination with docking and homology modeling to prioritize compound synthesis. This can be an effective means of facilitating structure-based drug design when crystal structures are not available.

  2. Role of Desolvation in Thermodynamics and Kinetics of Ligand Binding to a Kinase

    PubMed Central

    2015-01-01

    Computer simulations are used to determine the free energy landscape for the binding of the anticancer drug Dasatinib to its src kinase receptor and show that before settling into a free energy basin the ligand must surmount a free energy barrier. An analysis based on using both the ligand-pocket separation and the pocket-water occupancy as reaction coordinates shows that the free energy barrier is a result of the free energy cost for almost complete desolvation of the binding pocket. The simulations further show that the barrier is not a result of the reorganization free energy of the binding pocket. Although a continuum solvent model gives the location of free energy minima, it is not able to reproduce the intermediate free energy barrier. Finally, it is shown that a kinetic model for the on rate constant in which the ligand diffuses up to a doorway state and then surmounts the desolvation free energy barrier is consistent with published microsecond time-scale simulations of the ligand binding kinetics for this system [Shaw, D. E. et al. J. Am. Chem. Soc.2011, 133, 9181−918321545110]. PMID:25516727

  3. Postprocessing of docked protein-ligand complexes using implicit solvation models.

    PubMed

    Lindström, Anton; Edvinsson, Lotta; Johansson, Andreas; Andersson, C David; Andersson, Ida E; Raubacher, Florian; Linusson, Anna

    2011-02-28

    Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.

  4. Free energy changes and components implicit in the MWC allosteric model for the cooperative oxygen binding of hemoglobin.#

    PubMed Central

    Bucci, Enrico

    2013-01-01

    Hill’s plots of oxygen binding isotherms reveal the presence of a transition between two different oxygen affinities at the beginning and end of the isotherm. They correspond to the two conformations anticipated by the MWC model, namely the T and R conformations at the beginning and end of oxygen binding, when the lower affinity of the T form develops into the higher affinity of the R form. The difference between the binding Gibbs free energies changes of the two affinities (ΔGL) is the free energy of binding cooperativity. Notably ΔGL is positive in favor of the T form, that moves to a higher energy level upon oxygen release. Osmotic stress reveals a higher volume/surface ratio of deoxyHb, with a positive ΔGW also in favor of the T form . Increasing protein concentration shifts the isotherms to the right indicating the formation of intermediate polymeric forms. Enthalpy of the intermediates show a strong absorption of heat at the third oxygenation step due to polymers formation with quinary, and above, structures. The disassembly of intermediate polymers releases energy with a negative ΔG that compensates and allow the positivity of ΔGL. High energy polymers are the barrier preventing the relaxation of the T and R conformations into one another. The MWC allosteric model is the best justification of oxygen binding cooperativity . PMID:23710673

  5. Application of binding free energy calculations to prediction of binding modes and affinities of MDM2 and MDMX inhibitors.

    PubMed

    Lee, Hui Sun; Jo, Sunhwan; Lim, Hyun-Suk; Im, Wonpil

    2012-07-23

    Molecular docking is widely used to obtain binding modes and binding affinities of a molecule to a given target protein. Despite considerable efforts, however, prediction of both properties by docking remains challenging mainly due to protein's structural flexibility and inaccuracy of scoring functions. Here, an integrated approach has been developed to improve the accuracy of binding mode and affinity prediction and tested for small molecule MDM2 and MDMX antagonists. In this approach, initial candidate models selected from docking are subjected to equilibration MD simulations to further filter the models. Free energy perturbation molecular dynamics (FEP/MD) simulations are then applied to the filtered ligand models to enhance the ability in predicting the near-native ligand conformation. The calculated binding free energies for MDM2 complexes are overestimated compared to experimental measurements mainly due to the difficulties in sampling highly flexible apo-MDM2. Nonetheless, the FEP/MD binding free energy calculations are more promising for discriminating binders from nonbinders than docking scores. In particular, the comparison between the MDM2 and MDMX results suggests that apo-MDMX has lower flexibility than apo-MDM2. In addition, the FEP/MD calculations provide detailed information on the different energetic contributions to ligand binding, leading to a better understanding of the sensitivity and specificity of protein-ligand interactions.

  6. A structure-based design of new C2- and C13-substituted taxanes: tubulin binding affinities and extended quantitative structure-activity relationships using comparative binding energy (COMBINE) analysis.

    PubMed

    Coderch, Claire; Tang, Yong; Klett, Javier; Zhang, Shu-En; Ma, Yun-Tao; Shaorong, Wang; Matesanz, Ruth; Pera, Benet; Canales, Angeles; Jiménez-Barbero, Jesús; Morreale, Antonio; Díaz, J Fernando; Fang, Wei-Shuo; Gago, Federico

    2013-05-14

    Ten novel taxanes bearing modifications at the C2 and C13 positions of the baccatin core have been synthesized and their binding affinities for mammalian tubulin have been experimentally measured. The design strategy was guided by (i) calculation of interaction energy maps with carbon, nitrogen and oxygen probes within the taxane-binding site of β-tubulin, and (ii) the prospective use of a structure-based QSAR (COMBINE) model derived from an earlier series comprising 47 congeneric taxanes. The tubulin-binding affinity displayed by one of the new compounds (CTX63) proved to be higher than that of docetaxel, and an updated COMBINE model provided a good correlation between the experimental binding free energies and a set of weighted residue-based ligand-receptor interaction energies for 54 out of the 57 compounds studied. The remaining three outliers from the original training series have in common a large unfavourable entropic contribution to the binding free energy that we attribute to taxane preorganization in aqueous solution in a conformation different from that compatible with tubulin binding. Support for this proposal was obtained from solution NMR experiments and molecular dynamics simulations in explicit water. Our results shed additional light on the determinants of tubulin-binding affinity for this important class of antitumour agents and pave the way for further rational structural modifications.

  7. Binding energies and modelling of nuclei in semiclassical simulations

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Tsushima, K.; Valcarce, A.

    2008-03-01

    We study the binding energies of spin isospin saturated nuclei with nucleon number 8⩽A⩽100 in semiclassical Monte Carlo many-body simulations. The model Hamiltonian consists of (i) nucleon kinetic energy, (ii) a nucleon nucleon interaction potential, and (iii) an effective Pauli potential which depends on density. The basic ingredients of the nucleon nucleon potential are a short-range repulsion, and a medium-range attraction. Our results demonstrate that one can always expect to obtain the empirical binding energies for a set of nuclei by introducing a proper density dependent Pauli potential in terms of a single variable, the nucleon number, A. The present work shows that in the suggested procedure there is a delicate counterbalance of kinetic and potential energetic contributions allowing a good reproduction of the experimental nuclear binding energies. This type of calculations may be of interest in further reproduction of other properties of nuclei such as radii and also exotic nuclei.

  8. On binding energy of trions in bulk materials

    NASA Astrophysics Data System (ADS)

    Filikhin, Igor; Kezerashvili, Roman Ya.; Vlahovic, Branislav

    2018-03-01

    We study the negatively T- and positively T+ charged trions in bulk materials in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing Faddeev equation in configuration space. Results of calculations of the binding energies for T- are consistent with previous computational studies and are in reasonable agreement with experimental measurements, while the T+ is unbound for all considered cases. The mechanism of formation of the binding energy of trions is analyzed by comparing contributions of a mass-polarization term related to kinetic energy operators and a term related to the Coulomb repulsion of identical particles.

  9. a New Phenomenological Formula for Ground-State Binding Energies

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, G.

    A phenomenological formula based on liquid drop model has been proposed for ground-state binding energies of nuclei. The effect due to bunching of single particle levels has been incorporated through a term resembling the one-body Hamiltonian. The effect of n-p interaction has been included through a function of valence nucleons. A total of 50 parameters has been used in the present calculation. The root mean square (r.m.s.) deviation for the binding energy values for 2140 nuclei comes out to be 0.376 MeV, and that for 1091 alpha decay energies is 0.284 MeV. The correspondence with the conventional liquid drop model is discussed.

  10. Accurate, robust and reliable calculations of Poisson-Boltzmann binding energies

    PubMed Central

    Nguyen, Duc D.; Wang, Bao

    2017-01-01

    Poisson-Boltzmann (PB) model is one of the most popular implicit solvent models in biophysical modeling and computation. The ability of providing accurate and reliable PB estimation of electrostatic solvation free energy, ΔGel, and binding free energy, ΔΔGel, is important to computational biophysics and biochemistry. In this work, we investigate the grid dependence of our PB solver (MIBPB) with SESs for estimating both electrostatic solvation free energies and electrostatic binding free energies. It is found that the relative absolute error of ΔGel obtained at the grid spacing of 1.0 Å compared to ΔGel at 0.2 Å averaged over 153 molecules is less than 0.2%. Our results indicate that the use of grid spacing 0.6 Å ensures accuracy and reliability in ΔΔGel calculation. In fact, the grid spacing of 1.1 Å appears to deliver adequate accuracy for high throughput screening. PMID:28211071

  11. Investigation on the individual contributions of N-H...O=C and C-H...O=C interactions to the binding energies of beta-sheet models.

    PubMed

    Wang, Chang-Sheng; Sun, Chang-Liang

    2010-04-15

    In this article, the binding energies of 16 antiparallel and parallel beta-sheet models are estimated using the analytic potential energy function we proposed recently and the results are compared with those obtained from MP2, AMBER99, OPLSAA/L, and CHARMM27 calculations. The comparisons indicate that the analytic potential energy function can produce reasonable binding energies for beta-sheet models. Further comparisons suggest that the binding energy of the beta-sheet models might come mainly from dipole-dipole attractive and repulsive interactions and VDW interactions between the two strands. The dipole-dipole attractive and repulsive interactions are further obtained in this article. The total of N-H...H-N and C=O...O=C dipole-dipole repulsive interaction (the secondary electrostatic repulsive interaction) in the small ring of the antiparallel beta-sheet models is estimated to be about 6.0 kcal/mol. The individual N-H...O=C dipole-dipole attractive interaction is predicted to be -6.2 +/- 0.2 kcal/mol in the antiparallel beta-sheet models and -5.2 +/- 0.6 kcal/mol in the parallel beta-sheet models. The individual C(alpha)-H...O=C attractive interaction is -1.2 +/- 0.2 kcal/mol in the antiparallel beta-sheet models and -1.5 +/- 0.2 kcal/mol in the parallel beta-sheet models. These values are important in understanding the interactions at protein-protein interfaces and developing a more accurate force field for peptides and proteins. 2009 Wiley Periodicals, Inc.

  12. The positive binding energy envelopes of low-mass helium stars

    NASA Astrophysics Data System (ADS)

    Hall, Philip D.; Jeffery, C. Simon

    2018-04-01

    It has been hypothesized that stellar envelopes with positive binding energy may be ejected if the release of recombination energy can be triggered and the calculation of binding energy includes this contribution. The implications of this hypothesis for the evolution of normal hydrogen-rich stars have been investigated, but the implications for helium stars - which may represent mass-transfer or merger remnants in binary star systems - have not. Making a set of model helium stars, we find that those with masses between 0.9 and 2.4 M⊙ evolve to configurations with positive binding energy envelopes. We discuss consequences of the ejection hypothesis for such stars, and possible observational tests of these predictions.

  13. Methylene blue binding to DNA with alternating AT base sequence: minor groove binding is favored over intercalation.

    PubMed

    Rohs, Remo; Sklenar, Heinz

    2004-04-01

    The results presented in this paper on methylene blue (MB) binding to DNA with AT alternating base sequence complement the data obtained in two former modeling studies of MB binding to GC alternating DNA. In the light of the large amount of experimental data for both systems, this theoretical study is focused on a detailed energetic analysis and comparison in order to understand their different behavior. Since experimental high-resolution structures of the complexes are not available, the analysis is based on energy minimized structural models of the complexes in different binding modes. For both sequences, four different intercalation structures and two models for MB binding in the minor and major groove have been proposed. Solvent electrostatic effects were included in the energetic analysis by using electrostatic continuum theory, and the dependence of MB binding on salt concentration was investigated by solving the non-linear Poisson-Boltzmann equation. We find that the relative stability of the different complexes is similar for the two sequences, in agreement with the interpretation of spectroscopic data. Subtle differences, however, are seen in energy decompositions and can be attributed to the change from symmetric 5'-YpR-3' intercalation to minor groove binding with increasing salt concentration, which is experimentally observed for the AT sequence at lower salt concentration than for the GC sequence. According to our results, this difference is due to the significantly lower non-electrostatic energy for the minor groove complex with AT alternating DNA, whereas the slightly lower binding energy to this sequence is caused by a higher deformation energy of DNA. The energetic data are in agreement with the conclusions derived from different spectroscopic studies and can also be structurally interpreted on the basis of the modeled complexes. The simple static modeling technique and the neglect of entropy terms and of non-electrostatic solute-solvent interactions, which are assumed to be nearly constant for the compared complexes of MB with DNA, seem to be justified by the results.

  14. On the Role of Water Models in Quantifying the Binding Free Energy of Highly Conserved Water Molecules in Proteins: The Case of Concanavalin A.

    PubMed

    Fadda, Elisa; Woods, Robert J

    2011-10-11

    The ability of ligands to displace conserved water molecules in protein binding sites is of significant interest in drug design and is particularly pertinent in the case of glycomimetic drugs. This concept was explored in previous work [ Clarke et al. J. Am. Chem. Soc. 2001 , 123 , 12238 - 12247 and Kadirvelraj et al. J. Am. Chem. Soc. 2008 , 130 , 16933 - 16942 ] for a highly conserved water molecule located in the binding site of the prototypic carbohydrate-binding protein Concanavalin A (Con A). A synthetic ligand was designed with the aim of displacing such water. While the synthetic ligand bound to Con A in an analogous manner to that of the natural ligand, crystallographic analysis demonstrated that it did not displace the conserved water. In order to quantify the affinity of this particular water for the Con A surface, we report here the calculated standard binding free energy for this water in both ligand-bound and free Con A, employing three popular water models: TIP3P, TIP4P, and TIP5P. Although each model was developed to perform well in simulations of bulk-phase water, the computed binding energies for the isolated water molecule displayed a high sensitivity to the model. Both molecular dynamics simulation and free energy results indicate that the choice of water model may greatly influence the characterization of surface water molecules as conserved (TIP5P) or not (TIP3P) in protein binding sites, an observation of considerable significance to rational drug design. Structural and theoretical aspects at the basis of the different behaviors are identified and discussed.

  15. Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank

    Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less

  16. Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides

    DOE PAGES

    Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank

    2017-07-17

    Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less

  17. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    PubMed

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges.

  18. How To Deal with Multiple Binding Poses in Alchemical Relative Protein–Ligand Binding Free Energy Calculations

    PubMed Central

    2016-01-01

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges. PMID:26085821

  19. Fragmentation cross sections and binding energies of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Tsang, M. B.; Lynch, W. G.; Friedman, W. A.; Mocko, M.; Sun, Z. Y.; Aoi, N.; Cook, J. M.; Delaunay, F.; Famiano, M. A.; Hui, H.; Imai, N.; Iwasaki, H.; Motobayashi, T.; Niikura, M.; Onishi, T.; Rogers, A. M.; Sakurai, H.; Suzuki, H.; Takeshita, E.; Takeuchi, S.; Wallace, M. S.

    2007-10-01

    An exponential dependence of the fragmentation cross section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured cross sections. From the systematics of Cu isotope cross sections, the binding energies of Cu76,77,78,79 have been extracted. They are 636.94±0.4,647.1±0.4,651.6±0.4, and 657.8±0.5 MeV, respectively. Specifically, the uncertainty of the binding energy of Cu75 is reduced from 980 keV, as listed in the 2003 mass table of Audi, Wapstra, and Thibault to 400 keV. The predicted cross sections of two near drip-line nuclei, Na39 and Mg40 from the fragmentation of Ca48 are discussed.

  20. Free energy decomposition of protein-protein interactions.

    PubMed

    Noskov, S Y; Lim, C

    2001-08-01

    A free energy decomposition scheme has been developed and tested on antibody-antigen and protease-inhibitor binding for which accurate experimental structures were available for both free and bound proteins. Using the x-ray coordinates of the free and bound proteins, the absolute binding free energy was computed assuming additivity of three well-defined, physical processes: desolvation of the x-ray structures, isomerization of the x-ray conformation to a nearby local minimum in the gas-phase, and subsequent noncovalent complex formation in the gas phase. This free energy scheme, together with the Generalized Born model for computing the electrostatic solvation free energy, yielded binding free energies in remarkable agreement with experimental data. Two assumptions commonly used in theoretical treatments; viz., the rigid-binding approximation (which assumes no conformational change upon complexation) and the neglect of vdW interactions, were found to yield large errors in the binding free energy. Protein-protein vdW and electrostatic interactions between complementary surfaces over a relatively large area (1400--1700 A(2)) were found to drive antibody-antigen and protease-inhibitor binding.

  1. Binding of two-electron metastable states in semiconductor quantum dots under a magnetic field

    NASA Astrophysics Data System (ADS)

    Garagiola, Mariano; Pont, Federico M.; Osenda, Omar

    2018-04-01

    Applying a strong enough magnetic field results in the binding of few-electron resonant states. The mechanism was proposed many years ago but its verification in laboratory conditions is far more recent. In this work we study the binding of two-electron resonant states. The electrons are confined in a cylindrical quantum dot which is embedded in a semiconductor wire. The geometry considered is similar to the one used in actual experimental setups. The low-energy two-electron spectrum is calculated numerically from an effective-mass approximation Hamiltonian modelling the system. Methods for binding threshold calculations in systems with one and two electrons are thoroughly studied; in particular, we use quantum information quantities to assess when the strong lateral confinement approximation can be used to obtain reliable low-energy spectra. For simplicity, only cases without bound states in the absence of an external field are considered. Under these conditions, the binding threshold for the one-electron case is given by the lowest Landau energy level. Moreover, the energy of the one-electron bounded resonance can be used to obtain the two-electron binding threshold. It is shown that for realistic values of the two-electron model parameters it is feasible to bind resonances with field strengths of a few tens of tesla.

  2. New measurements of the sticking coefficient and binding energy of molecules on non-porous amorphous solid water in the submonolayer regime

    NASA Astrophysics Data System (ADS)

    He, Jiao; Acharyya, Kinsuk; Emtiaz, S. M.; Vidali, Gianfranco

    2016-06-01

    Sticking and adsorption of molecules on dust grains are two important processes in gas-grain interactions. We accurately measured both the sticking coefficient and the binding energy of several key molecules on the surface of amorphous solid water as a function of coverage.A time-resolved scattering technique was used to measure sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on non-porous amorphous solid water (np-ASW) in the low coverage limit over a wide range of surface temperatures. We found that the time-resolved scattering technique is advantageous over the conventional King-Wells method that underestimates the sticking coefficient. Based on the measured values we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy.We measured the binding energy of N2, CO, O2, CH4, and CO2 on np-ASW, and of N2 and CO on porous amorphous solid water (p-ASW). We were able to measure binding energies down to a fraction of 1% of a layer, thus making these measurements more appropriate for astrochemistry than the existing values. We found that CO2 forms clusters on np-ASW surface even at very low coverage; this may help in explaining the segregation of CO2 in ices. The binding energies of N2, CO, O2, and CH4 on np-ASW decrease with coverage in the submonolayer regime. Their values in the low coverage limit are much higher than what is commonly used in gas-grain models. An empirical formula was used to describe the coverage dependence of the binding energies. We used the newly determined binding energy distributions in a simulation of gas-grain chemistry for cold dense clouds and hot core models. We found that owing to the higher value of desorption energy in the sub-monlayer regime a fraction of all these ices stays much longer and to higher temperature on the grain surface compared to the case using single value energies as currently done in astrochemical models.This work was supported in part by a grant to GV from NSF --- Astronomy & Astrophysics Division (#1311958)

  3. Theoretical insights into effects of molar ratios on stabilities, mechanical properties and detonation performance of CL-20/RDX cocrystal explosives by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hang, Gui-yun; Yu, Wen-li; Wang, Tao; Wang, Jin-tao; Li, Zhen

    2017-08-01

    The CL-20/RDX cocrystal models with different molar ratios were established by substitution method and molecular dynamics (MD) simulation method was applied to investigate the influences of molar ratios on mechanical properties, stabilities and detonation performance of cocrystal explosives. The crystal parameters, structures, binding energies, mechanical properties and some detonation parameters of different cocrystal explosives were got and compared. The results illustrate that the molar ratio has a direct influence on properties of cocrystal explosive and each of the cocrystal model holds different mechanical properties, binding energies and detonation parameters. The mechanical properties of CL-20/RDX cocrystal explosive can be effectively improved and the cocrystal model with molar ratio in 1:1 has the best mechanical properties. Besides, it has the highest binding energy, so the stability and compatibility is the best. The detonation parameters show that the cocrystal explosive has better detonation performance than RDX. In a word, the cocrystal explosive with molar ratio in 1:1 has the best mechanical properties, highest binding energy and excellent energy density and detonation performance, it is quite promising and can satisfy the requirements of high energy density compounds (HEDC). This paper could offer some theoretical instructions and novel insights for the CL-20 cocrystal explosive designing.

  4. Fragmentation cross sections and binding energies of neutron-rich nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, M. B.; Lynch, W. G.; Mocko, M.

    An exponential dependence of the fragmentation cross section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured cross sections. From the systematics of Cu isotope cross sections, the binding energies of {sup 76,77,78,79}Cu have been extracted. They are 636.94{+-}0.4,647.1{+-}0.4,651.6{+-}0.4, and 657.8{+-}0.5 MeV, respectively. Specifically, the uncertainty of the binding energy of {sup 75}Cu is reduced from 980 keV, as listed in the 2003 mass table of Audi, Wapstra, and Thibault to 400 keV. The predicted cross sections of two near drip-linemore » nuclei, {sup 39}Na and {sup 40}Mg from the fragmentation of {sup 48}Ca are discussed.« less

  5. Simulation of Reversible Protein–Protein Binding and Calculation of Binding Free Energies Using Perturbed Distance Restraints

    PubMed Central

    2017-01-01

    Virtually all biological processes depend on the interaction between proteins at some point. The correct prediction of biomolecular binding free-energies has many interesting applications in both basic and applied pharmaceutical research. While recent advances in the field of molecular dynamics (MD) simulations have proven the feasibility of the calculation of protein–protein binding free energies, the large conformational freedom of proteins and complex free energy landscapes of binding processes make such calculations a difficult task. Moreover, convergence and reversibility of resulting free-energy values remain poorly described. In this work, an easy-to-use, yet robust approach for the calculation of standard-state protein–protein binding free energies using perturbed distance restraints is described. In the binding process the conformations of the proteins were restrained, as suggested earlier. Two approaches to avoid end-state problems upon release of the conformational restraints were compared. The method was evaluated by practical application to a small model complex of ubiquitin and the very flexible ubiquitin-binding domain of human DNA polymerase ι (UBM2). All computed free energy differences were closely monitored for convergence, and the calculated binding free energies had a mean unsigned deviation of only 1.4 or 2.5 kJ·mol–1 from experimental values. Statistical error estimates were in the order of thermal noise. We conclude that the presented method has promising potential for broad applicability to quantitatively describe protein–protein and various other kinds of complex formation. PMID:28898077

  6. Exploring the Origin of Differential Binding Affinities of Human Tubulin Isotypes αβII, αβIII and αβIV for DAMA-Colchicine Using Homology Modelling, Molecular Docking and Molecular Dynamics Simulations

    PubMed Central

    Panda, Dulal; Kunwar, Ambarish

    2016-01-01

    Tubulin isotypes are found to play an important role in regulating microtubule dynamics. The isotype composition is also thought to contribute in the development of drug resistance as tubulin isotypes show differential binding affinities for various anti-cancer agents. Tubulin isotypes αβII, αβIII and αβIV show differential binding affinity for colchicine. However, the origin of differential binding affinity is not well understood at the molecular level. Here, we investigate the origin of differential binding affinity of a colchicine analogue N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) for human αβII, αβIII and αβIV isotypes, employing sequence analysis, homology modeling, molecular docking, molecular dynamics simulation and MM-GBSA binding free energy calculations. The sequence analysis study shows that the residue compositions are different in the colchicine binding pocket of αβII and αβIII, whereas no such difference is present in αβIV tubulin isotypes. Further, the molecular docking and molecular dynamics simulations results show that residue differences present at the colchicine binding pocket weaken the bonding interactions and the correct binding of DAMA-colchicine at the interface of αβII and αβIII tubulin isotypes. Post molecular dynamics simulation analysis suggests that these residue variations affect the structure and dynamics of αβII and αβIII tubulin isotypes, which in turn affect the binding of DAMA-colchicine. Further, the binding free-energy calculation shows that αβIV tubulin isotype has the highest binding free-energy and αβIII has the lowest binding free-energy for DAMA-colchicine. The order of binding free-energy for DAMA-colchicine is αβIV ≃ αβII >> αβIII. Thus, our computational approaches provide an insight into the effect of residue variations on differential binding of αβII, αβIII and αβIV tubulin isotypes with DAMA-colchicine and may help to design new analogues with higher binding affinities for tubulin isotypes. PMID:27227832

  7. Perfect transmission at oblique incidence by trigonal warping in graphene P-N junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-Hui; Yang, Wen

    2018-01-01

    We develop an analytical mode-matching technique for the tight-binding model to describe electron transport across graphene P-N junctions. This method shares the simplicity of the conventional mode-matching technique for the low-energy continuum model and the accuracy of the tight-binding model over a wide range of energies. It further reveals an interesting phenomenon on a sharp P-N junction: the disappearance of the well-known Klein tunneling (i.e., perfect transmission) at normal incidence and the appearance of perfect transmission at oblique incidence due to trigonal warping at energies beyond the linear Dirac regime. We show that this phenomenon arises from the conservation of a generalized pseudospin in the tight-binding model. We expect this effect to be experimentally observable in graphene and other Dirac fermions systems, such as the surface of three-dimensional topological insulators.

  8. Three-state combinatorial switch models as applied to the binding of oxygen by human hemoglobin.

    PubMed

    Straume, M; Johnson, M L

    1988-02-23

    We have generated a series of all 6561 unique, discrete three-state combinatorial switch models to describe the partitioning of the cooperative oxygen-binding free change among the 10 variously ligated forms of human hemoglobin tetramers. These models were inspired by the experimental observation of Smith and Ackers that the cooperative free energy of the intersubunit contact regions of the 10 possible ligated forms of human hemoglobin tetramers can be represented by a particular distribution of three distinct energy levels [Smith, F. R., & Ackers, G. K. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5347-5351]. A statistical thermodynamic formulation accounting for both dimer-tetramer equilibria and ligand binding properties of hemoglobin solutions as a function of oxygen and protein concentrations was utilized to exhaustively test these thermodynamic models. In this series of models each of the 10 ligated forms of the hemoglobin tetramer can exist in one, and only one, of three possible energy levels; i.e., each ligated form was assumed to be associated with a discrete energy state. This series of models includes all possible ways that the 10 ligation states of hemoglobin can be distributed into three distinct cooperative energy levels. The mathematical models, as presented here, do not permit equilibria between energy states to exist for any of the 10 unique ligated forms of hemoglobin tetramers. These models were analyzed by nonlinear least-squares estimation of the free energy parameters characteristic of this statistical thermodynamic development.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. A method for predicting individual residue contributions to enzyme specificity and binding-site energies, and its application to MTH1.

    PubMed

    Stewart, James J P

    2016-11-01

    A new method for predicting the energy contributions to substrate binding and to specificity has been developed. Conventional global optimization methods do not permit the subtle effects responsible for these properties to be modeled with sufficient precision to allow confidence to be placed in the results, but by making simple alterations to the model, the precisions of the various energies involved can be improved from about ±2 kcal mol -1 to ±0.1 kcal mol -1 . This technique was applied to the oxidized nucleotide pyrophosphohydrolase enzyme MTH1. MTH1 is unusual in that the binding and reaction sites are well separated-an advantage from a computational chemistry perspective, as it allows the energetics involved in docking to be modeled without the need to consider any issues relating to reaction mechanisms. In this study, two types of energy terms were investigated: the noncovalent interactions between the binding site and the substrate, and those responsible for discriminating between the oxidized nucleotide 8-oxo-dGTP and the normal dGTP. Both of these were investigated using the semiempirical method PM7 in the program MOPAC. The contributions of the individual residues to both the binding energy and the specificity of MTH1 were calculated by simulating the effect of mutations. Where comparisons were possible, all calculated results were in agreement with experimental observations. This technique provides fresh insight into the binding mechanism that enzymes use for discriminating between possible substrates.

  10. Experimental measurement of binding energy, selectivity, and allostery using fluctuation theorems.

    PubMed

    Camunas-Soler, Joan; Alemany, Anna; Ritort, Felix

    2017-01-27

    Thermodynamic bulk measurements of binding reactions rely on the validity of the law of mass action and the assumption of a dilute solution. Yet, important biological systems such as allosteric ligand-receptor binding, macromolecular crowding, or misfolded molecules may not follow these assumptions and may require a particular reaction model. Here we introduce a fluctuation theorem for ligand binding and an experimental approach using single-molecule force spectroscopy to determine binding energies, selectivity, and allostery of nucleic acids and peptides in a model-independent fashion. A similar approach could be used for proteins. This work extends the use of fluctuation theorems beyond unimolecular folding reactions, bridging the thermodynamics of small systems and the basic laws of chemical equilibrium. Copyright © 2017, American Association for the Advancement of Science.

  11. Seeking potential anticonvulsant agents that target GABAA receptors using experimental and theoretical procedures

    NASA Astrophysics Data System (ADS)

    Saavedra-Vélez, Margarita Virginia; Correa-Basurto, José; Matus, Myrna H.; Gasca-Pérez, Eloy; Bello, Martiniano; Cuevas-Hernández, Roberto; García-Rodríguez, Rosa Virginia; Trujillo-Ferrara, José; Ramos-Morales, Fernando Rafael

    2014-12-01

    The aim of this study was to identify compounds that possess anticonvulsant activity by using a pentylenetetrazol (PTZ)-induced seizure model. Theoretical studies of a set of ligands, explored the binding affinities of the ligands for the GABAA receptor (GABAAR), including some benzodiazepines. The ligands satisfy the Lipinski rules and contain a pharmacophore core that has been previously reported to be a GABAAR activator. To select the ligands with the best physicochemical properties, all of the compounds were analyzed by quantum mechanics and the energies of the highest occupied molecular orbital and lowest unoccupied molecular orbital were determined. Docking calculations between the ligands and the GABAAR were used to identify the complexes with the highest Gibbs binding energies. The identified compound D1 (dibenzo( b,f)(1,4)diazocine-6,11(5H,12H)-dione) was synthesized, experimentally tested, and the GABAAR-D1 complex was submitted to 12-ns-long molecular dynamics (MD) simulations to corroborate the binding conformation obtained by docking techniques. MD simulations were also used to analyze the decomposition of the Gibbs binding energy of the residues involved in the stabilization of the complex. To validate our theoretical results, molecular docking and MD simulations were also performed for three reference compounds that are currently in commercial use: clonazepam (CLZ), zolpidem and eszopiclone. The theoretical results show that the GABAAR-D1, and GABAAR-CLZ complexes bind to the benzodiazepine binding site, share a similar map of binding residues, and have similar Gibbs binding energies and entropic components. Experimental studies using a PTZ-induced seizure model showed that D1 possesses similar activity to CLZ, which corroborates the predicted binding free energy identified by theoretical calculations.

  12. Essential slow degrees of freedom in protein-surface simulations: A metadynamics investigation.

    PubMed

    Prakash, Arushi; Sprenger, K G; Pfaendtner, Jim

    2018-03-29

    Many proteins exhibit strong binding affinities to surfaces, with binding energies much greater than thermal fluctuations. When modelling these protein-surface systems with classical molecular dynamics (MD) simulations, the large forces that exist at the protein/surface interface generally confine the system to a single free energy minimum. Exploring the full conformational space of the protein, especially finding other stable structures, becomes prohibitively expensive. Coupling MD simulations with metadynamics (enhanced sampling) has fast become a common method for sampling the adsorption of such proteins. In this paper, we compare three different flavors of metadynamics, specifically well-tempered, parallel-bias, and parallel-tempering in the well-tempered ensemble, to exhaustively sample the conformational surface-binding landscape of model peptide GGKGG. We investigate the effect of mobile ions and ion charge, as well as the choice of collective variable (CV), on the binding free energy of the peptide. We make the case for explicitly biasing ions to sample the true binding free energy of biomolecules when the ion concentration is high and the binding free energies of the solute and ions are similar. We also make the case for choosing CVs that apply bias to all atoms of the solute to speed up calculations and obtain the maximum possible amount of information about the system. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Calculating binding free energies for protein-carbohydrate complexes.

    PubMed

    Hadden, Jodi A; Tessier, Matthew B; Fadda, Elisa; Woods, Robert J

    2015-01-01

    A variety of computational techniques may be applied to compute theoretical binding free energies for protein-carbohydrate complexes. Elucidation of the intermolecular interactions, as well as the thermodynamic effects, that contribute to the relative strength of receptor binding can shed light on biomolecular recognition, and the resulting initiation or inhibition of a biological process. Three types of free energy methods are discussed here, including MM-PB/GBSA, thermodynamic integration, and a non-equilibrium alternative utilizing SMD. Throughout this chapter, the well-known concanavalin A lectin is employed as a model system to demonstrate the application of these methods to the special case of carbohydrate binding.

  14. Insight into the novel inhibition mechanism of apigenin to Pneumolysin by molecular modeling

    NASA Astrophysics Data System (ADS)

    Niu, Xiaodi; Yang, Yanan; Song, Meng; Wang, Guizhen; Sun, Lin; Gao, Yawen; Wang, Hongsu

    2017-11-01

    In this study, the mechanism of apigenin inhibition was explored using molecular modelling, binding energy calculation, and mutagenesis assays. Energy decomposition analysis indicated that apigenin binds in the gap between domains 3 and 4 of PLY. Using principal component analysis, we found that binding of apigenin to PLY weakens the motion of domains 3 and 4. Consequently, these domains cannot complete the transition from monomer to oligomer, thereby blocking oligomerisation of PLY and counteracting its haemolytic activity. This inhibitory mechanism was confirmed by haemolysis assays, and these findings will promote the future development of an antimicrobial agent.

  15. Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction.

    PubMed

    Yang, Chao-Yie; Sun, Haiying; Chen, Jianyong; Nikolovska-Coleska, Zaneta; Wang, Shaomeng

    2009-09-30

    Accurate prediction of the binding affinities of small-molecule ligands to their biological targets is fundamental for structure-based drug design but remains a very challenging task. In this paper, we have performed computational studies to predict the binding models of 31 small-molecule Smac (the second mitochondria-derived activator of caspase) mimetics to their target, the XIAP (X-linked inhibitor of apoptosis) protein, and their binding affinities. Our results showed that computational docking was able to reliably predict the binding models, as confirmed by experimentally determined crystal structures of some Smac mimetics complexed with XIAP. However, all the computational methods we have tested, including an empirical scoring function, two knowledge-based scoring functions, and MM-GBSA (molecular mechanics and generalized Born surface area), yield poor to modest prediction for binding affinities. The linear correlation coefficient (r(2)) value between the predicted affinities and the experimentally determined affinities was found to be between 0.21 and 0.36. Inclusion of ensemble protein-ligand conformations obtained from molecular dynamic simulations did not significantly improve the prediction. However, major improvement was achieved when the free-energy change for ligands between their free- and bound-states, or "ligand-reorganization free energy", was included in the MM-GBSA calculation, and the r(2) value increased from 0.36 to 0.66. The prediction was validated using 10 additional Smac mimetics designed and evaluated by an independent group. This study demonstrates that ligand reorganization free energy plays an important role in the overall binding free energy between Smac mimetics and XIAP. This term should be evaluated for other ligand-protein systems and included in the development of new scoring functions. To our best knowledge, this is the first computational study to demonstrate the importance of ligand reorganization free energy for the prediction of protein-ligand binding free energy.

  16. Understanding the physical basis of the salt dependence of the electrostatic binding free energy of mutated charged ligand-nucleic acid complexes.

    PubMed

    Harris, Robert C; Bredenberg, Johan H; Silalahi, Alexander R J; Boschitsch, Alexander H; Fenley, Marcia O

    2011-06-01

    The predictions of the derivative of the electrostatic binding free energy of a biomolecular complex, ΔG(el), with respect to the logarithm of the 1:1 salt concentration, d(ΔG(el))/d(ln[NaCl]), SK, by the Poisson-Boltzmann equation, PBE, are very similar to those of the simpler Debye-Hückel equation, DHE, because the terms in the PBE's predictions of SK that depend on the details of the dielectric interface are small compared to the contributions from long-range electrostatic interactions. These facts allow one to obtain predictions of SK using a simplified charge model along with the DHE that are highly correlated with both the PBE and experimental binding data. The DHE-based model developed here, which was derived from the generalized Born model, explains the lack of correlation between SK and ΔG(el) in the presence of a dielectric discontinuity, which conflicts with the popular use of this supposed correlation to parse experimental binding free energies into electrostatic and nonelectrostatic components. Moreover, the DHE model also provides a clear justification for the correlations between SK and various empirical quantities, like the number of ion pairs, the ligand charge on the interface, the Coulomb binding free energy, and the product of the charges on the complex's components, but these correlations are weak, questioning their usefulness. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Calculation of protein-ligand binding affinities.

    PubMed

    Gilson, Michael K; Zhou, Huan-Xiang

    2007-01-01

    Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.

  18. The Formation of Fibrils by Intertwining of Filaments: Model and Application to Amyloid Aβ Protein

    PubMed Central

    van Gestel, Jeroen; de Leeuw, Simon W.

    2007-01-01

    We outline a model that describes the interaction of rods that form intertwined bundles. In this simple model, we compare the elastic energy penalty that arises due to the deformation of the rods to the gain in binding energy upon intertwining. We find that, for proper values of the bending Young's modulus and the binding energy, a helical pitch may be found for which the energy of intertwining is most favorable. We apply our description to the problem of Alzheimer's Aβ protein fibrillization. If we forbid configurations that exhibit steric overlap between the protofilaments that make up a protein fibril, our model predicts that fibrils consisting of three protofilaments shall form. This agrees well with experimental results. Our model can also provide an estimate for the helical pitch of suitable fibrils. PMID:17114229

  19. Donor impurity binding energies of coaxial GaAs / Alx Ga1 - x As cylindrical quantum wires in a parallel applied magnetic field

    NASA Astrophysics Data System (ADS)

    Tshipa, M.; Winkoun, D. P.; Nijegorodov, N.; Masale, M.

    2018-04-01

    Theoretical investigations are carried out of binding energies of a donor charge assumed to be located exactly at the center of symmetry of two concentric cylindrical quantum wires. The intrinsic confinement potential in the region of the inner cylinder is modeled in any one of the three profiles: simple parabolic, shifted parabolic or the polynomial potential. The potential inside the shell is taken to be a potential step or potential barrier of a finite height. Additional confinement of the charge carriers is due to the vector potential of the axial applied magnetic field. It is found that the binding energies attain maxima in their variations with the radius of the inner cylinder irrespective of the particular intrinsic confinement of the inner cylinder. As the radius of the inner cylinder is increased further, the binding energies corresponding to either the parabolic or the polynomial potentials attain minima at some critical core-radius. Finally, as anticipated, the binding energies increase with the increase of the parallel applied magnetic field. This behaviour of the binding energies is irrespective of the particular electric potential of the nanostructure or its specific dimensions.

  20. First-principles study of the binding energy between nanostructures and its scaling with system size

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Jiao, Yang; Mo, Yuxiang; Yang, Zeng-Hui; Zhu, Jian-Xin; Hyldgaard, Per; Perdew, John P.

    2018-04-01

    The equilibrium van der Waals binding energy is an important factor in the design of materials and devices. However, it presents great computational challenges for materials built up from nanostructures. Here we investigate the binding-energy scaling behavior from first-principles calculations. We show that the equilibrium binding energy per atom between identical nanostructures can scale up or down with nanostructure size, but can be parametrized for large N with an analytical formula (in meV/atom), Eb/N =a +b /N +c /N2+d /N3 , where N is the number of atoms in a nanostructure and a , b , c , and d are fitting parameters, depending on the properties of a nanostructure. The formula is consistent with a finite large-size limit of binding energy per atom. We find that there are two competing factors in the determination of the binding energy: Nonadditivities of van der Waals coefficients and center-to-center distance between nanostructures. To decode the detail, the nonadditivity of the static multipole polarizability is investigated from an accurate spherical-shell model. We find that the higher-order multipole polarizability displays ultrastrong intrinsic nonadditivity, no matter if the dipole polarizability is additive or not.

  1. The tightly bound nuclei in the liquid drop model

    NASA Astrophysics Data System (ADS)

    Sree Harsha, N. R.

    2018-05-01

    In this paper, we shall maximise the binding energy per nucleon function in the semi-empirical mass formula of the liquid drop model of the atomic nuclei to analytically prove that the mean binding energy per nucleon curve has local extrema at A ≈ 58.6960, Z ≈ 26.3908 and at A ≈ 62.0178, Z ≈ 27.7506. The Lagrange method of multipliers is used to arrive at these results, while we have let the values of A and Z take continuous fractional values. The shell model that shows why 62Ni is the most tightly bound nucleus is outlined. A brief account on stellar nucleosynthesis is presented to show why 56Fe is more abundant than 62Ni and 58Fe. We believe that the analytical proof presented in this paper can be a useful tool to the instructors to introduce the nucleus with the highest mean binding energy per nucleon.

  2. Energy Fluctuations Shape Free Energy of Nonspecific Biomolecular Interactions

    NASA Astrophysics Data System (ADS)

    Elkin, Michael; Andre, Ingemar; Lukatsky, David B.

    2012-01-01

    Understanding design principles of biomolecular recognition is a key question of molecular biology. Yet the enormous complexity and diversity of biological molecules hamper the efforts to gain a predictive ability for the free energy of protein-protein, protein-DNA, and protein-RNA binding. Here, using a variant of the Derrida model, we predict that for a large class of biomolecular interactions, it is possible to accurately estimate the relative free energy of binding based on the fluctuation properties of their energy spectra, even if a finite number of the energy levels is known. We show that the free energy of the system possessing a wider binding energy spectrum is almost surely lower compared with the system possessing a narrower energy spectrum. Our predictions imply that low-affinity binding scores, usually wasted in protein-protein and protein-DNA docking algorithms, can be efficiently utilized to compute the free energy. Using the results of Rosetta docking simulations of protein-protein interactions from Andre et al. (Proc. Natl. Acad. Sci. USA 105:16148, 2008), we demonstrate the power of our predictions.

  3. Systematic optimization model and algorithm for binding sequence selection in computational enzyme design

    PubMed Central

    Huang, Xiaoqiang; Han, Kehang; Zhu, Yushan

    2013-01-01

    A systematic optimization model for binding sequence selection in computational enzyme design was developed based on the transition state theory of enzyme catalysis and graph-theoretical modeling. The saddle point on the free energy surface of the reaction system was represented by catalytic geometrical constraints, and the binding energy between the active site and transition state was minimized to reduce the activation energy barrier. The resulting hyperscale combinatorial optimization problem was tackled using a novel heuristic global optimization algorithm, which was inspired and tested by the protein core sequence selection problem. The sequence recapitulation tests on native active sites for two enzyme catalyzed hydrolytic reactions were applied to evaluate the predictive power of the design methodology. The results of the calculation show that most of the native binding sites can be successfully identified if the catalytic geometrical constraints and the structural motifs of the substrate are taken into account. Reliably predicting active site sequences may have significant implications for the creation of novel enzymes that are capable of catalyzing targeted chemical reactions. PMID:23649589

  4. Allosteric modulation model of the mu opioid receptor by herkinorin, a potent not alkaloidal agonist

    NASA Astrophysics Data System (ADS)

    Marmolejo-Valencia, A. F.; Martínez-Mayorga, K.

    2017-05-01

    Modulation of opioid receptors is the primary choice for pain management and structural information studies have gained new horizons with the recently available X-ray crystal structures. Herkinorin is one of the most remarkable salvinorin A derivative with high affinity for the mu opioid receptor, moderate selectivity and lack of nitrogen atoms on its structure. Surprisingly, binding models for herkinorin are lacking. In this work, we explore binding models of herkinorin using automated docking, molecular dynamics simulations, free energy calculations and available experimental information. Our herkinorin D-ICM-1 binding model predicted a binding free energy of -11.52 ± 1.14 kcal mol-1 by alchemical free energy estimations, which is close to the experimental values -10.91 ± 0.2 and -10.80 ± 0.05 kcal mol-1 and is in agreement with experimental structural information. Specifically, D-ICM-1 molecular dynamics simulations showed a water-mediated interaction between D-ICM-1 and the amino acid H2976.52, this interaction coincides with the co-crystallized ligands. Another relevant interaction, with N1272.63, allowed to rationalize herkinorin's selectivity to mu over delta opioid receptors. Our suggested binding model for herkinorin is in agreement with this and additional experimental data. The most remarkable observation derived from our D-ICM-1 model is that herkinorin reaches an allosteric sodium ion binding site near N1503.35. Key interactions in that region appear relevant for the lack of β-arrestin recruitment by herkinorin. This interaction is key for downstream signaling pathways involved in the development of side effects, such as tolerance. Future SAR studies and medicinal chemistry efforts will benefit from the structural information presented in this work.

  5. Role of polyols (erythritol, xylitol and sorbitol) on the structural stabilization of collagen

    NASA Astrophysics Data System (ADS)

    Usha, R.; Raman, S. Sundar; Subramanian, V.; Ramasami, T.

    2006-10-01

    The effect of erythritol, xylitol and sorbitol on monomeric collagen solution was evaluated with melting temperature, fluorescence studies, conformational stability and binding energy. The emission intensity and the melting temperature increase as the chain length of polyols increases. Circular dichroism (CD) results indicate the possibility of aggregation of collagen in the presence of polyols. The interaction between collagen and polyols were calculated using binding energy, RMS deviation with collagen like models. Molecular mechanics calculations suggest that polyols bind well with collagen models, that have serine in the X position. The stability of collagen decreases as the number of carbon atoms present in the polyols increases.

  6. Automated docking of ligands to an artificial active site: augmenting crystallographic analysis with computer modeling

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Robin J.; Goodsell, David S.; Musah, Rabi A.; Morris, Garrett M.; Goodin, David B.; Olson, Arthur J.

    2003-08-01

    The W191G cavity of cytochrome c peroxidase is useful as a model system for introducing small molecule oxidation in an artificially created cavity. A set of small, cyclic, organic cations was previously shown to bind in the buried, solvent-filled pocket created by the W191G mutation. We docked these ligands and a set of non-binders in the W191G cavity using AutoDock 3.0. For the ligands, we compared docking predictions with experimentally determined binding energies and X-ray crystal structure complexes. For the ligands, predicted binding energies differed from measured values by ± 0.8 kcal/mol. For most ligands, the docking simulation clearly predicted a single binding mode that matched the crystallographic binding mode within 1.0 Å RMSD. For 2 ligands, where the docking procedure yielded an ambiguous result, solutions matching the crystallographic result could be obtained by including an additional crystallographically observed water molecule in the protein model. For the remaining 2 ligands, docking indicated multiple binding modes, consistent with the original electron density, suggesting disordered binding of these ligands. Visual inspection of the atomic affinity grid maps used in docking calculations revealed two patches of high affinity for hydrogen bond donating groups. Multiple solutions are predicted as these two sites compete for polar hydrogens in the ligand during the docking simulation. Ligands could be distinguished, to some extent, from non-binders using a combination of two trends: predicted binding energy and level of clustering. In summary, AutoDock 3.0 appears to be useful in predicting key structural and energetic features of ligand binding in the W191G cavity.

  7. Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces

    NASA Astrophysics Data System (ADS)

    Perry, Thomas D.; Cygan, Randall T.; Mitchell, Ralph

    2006-07-01

    Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these cation-organic interactions are well suited for predictive molecular modeling and the analysis of conformation and configuration of polysaccharides and their influence on cation binding. In this study, alginic acid was chosen as a model polymer system and representative disaccharide and polysaccharide subunits were developed. Molecular dynamics simulation of the torsion angles of the ether linkage between various monomeric subunits identified local and global energy minima for selected disaccharides. The simulations indicate stable disaccharide configurations and a common global energy minimum for all disaccharide models at Φ = 274 ± 7°, Ψ = 227 ± 5°, where Φ and Ψ are the torsion angles about the ether linkage. The ability of disaccharide subunits to bind calcium ions and to associate with the (101¯4) surface of calcite was also investigated. Molecular models of disaccharide interactions with calcite provide binding energy differences for conformations that are related to the proximity and residence densities of the electron-donating moieties with calcium ions on the calcite surface, which are controlled, in part, by the torsion of the ether linkage between monosaccharide units. Dynamically optimized configurations for polymer alginate models with calcium ions were also derived.

  8. Onset of η-meson binding in the He isotopes

    NASA Astrophysics Data System (ADS)

    Barnea, N.; Friedman, E.; Gal, A.

    2017-12-01

    The onset of binding η (548) mesons in nuclei is studied in the He isotopes by doing precise ηNNN and ηNNNN few-body stochastic variational method calculations for two semi-realistic NN potentials and two energy dependent ηN potentials derived from coupled-channel models of the N* (1535) nucleon resonance. The energy dependence of the ηN subthreshold input is treated self consistently. It is found that a minimal value of the real part of the ηN scattering length aηN close to 1 fm is required to bind η mesons in 3He, yielding then a few MeV η binding in 4He. The onset of η-meson binding in 4He requires that Re aηN exceeds 0.7 fm approximately. These results compare well with results of recent ηNNN and ηNNNN pionless effective field theory calculations. Related optical-model calculations are also discussed.

  9. Conformational free energy modeling of druglike molecules by metadynamics in the WHIM space.

    PubMed

    Spiwok, Vojtěch; Hlat-Glembová, Katarína; Tvaroška, Igor; Králová, Blanka

    2012-03-26

    Protein-ligand affinities can be significantly influenced not only by the interaction itself but also by conformational equilibrium of both binding partners, free ligand and free protein. Identification of important conformational families of a ligand and prediction of their thermodynamics is important for efficient ligand design. Here we report conformational free energy modeling of nine small-molecule drugs in explicitly modeled water by metadynamics with a bias potential applied in the space of weighted holistic invariant molecular (WHIM) descriptors. Application of metadynamics enhances conformational sampling compared to unbiased molecular dynamics simulation and allows to predict relative free energies of key conformations. Selected free energy minima and one example of transition state were tested by a series of unbiased molecular dynamics simulation. Comparison of free energy surfaces of free and target-bound Imatinib provides an estimate of free energy penalty of conformational change induced by its binding to the target. © 2012 American Chemical Society

  10. Prediction of potency of protease inhibitors using free energy simulations with polarizable quantum mechanics-based ligand charges and a hybrid water model.

    PubMed

    Das, Debananda; Koh, Yasuhiro; Tojo, Yasushi; Ghosh, Arun K; Mitsuya, Hiroaki

    2009-12-01

    Reliable and robust prediction of the binding affinity for drug molecules continues to be a daunting challenge. We simulated the binding interactions and free energy of binding of nine protease inhibitors (PIs) with wild-type and various mutant proteases by performing GBSA simulations in which each PI's partial charge was determined by quantum mechanics (QM) and the partial charge accounts for the polarization induced by the protease environment. We employed a hybrid solvation model that retains selected explicit water molecules in the protein with surface-generalized Born (SGB) implicit solvent. We examined the correlation of the free energy with the antiviral potency of PIs with regard to amino acid substitutions in protease. The GBSA free energy thus simulated showed strong correlations (r > 0.75) with antiviral IC(50) values of PIs when amino acid substitutions were present in the protease active site. We also simulated the binding free energy of PIs with P2-bis-tetrahydrofuranylurethane (bis-THF) or related cores, utilizing a bis-THF-containing protease crystal structure as a template. The free energy showed a strong correlation (r = 0.93) with experimentally determined anti-HIV-1 potency. The present data suggest that the presence of selected explicit water in protein and protein polarization-induced quantum charges for the inhibitor, compared to lack of explicit water and a static force-field-based charge model, can serve as an improved lead optimization tool and warrants further exploration.

  11. Mechanosensing Potentials Gate Fuel Consumption in a Bipedal DNA Nanowalker

    NASA Astrophysics Data System (ADS)

    Tee, Shern Ren; Hu, Xinpeng; Loh, Iong Ying; Wang, Zhisong

    2018-03-01

    A bipedal DNA nanowalker was recently reported to convert chemical energy into directional motion autonomously and efficiently. To elucidate its chemomechanical coupling mechanisms, three-dimensional molecular modeling is used to obtain coarse-grained foot-track binding potentials of the DNA nanowalker via unbiased and biased sampling techniques (for the potentials' basin and high-energy edges, respectively). The binding state that is protected against fuel-induced dissociation responds asymmetrically to forward versus backward forces, unlike the unprotected state, demonstrating a mechanosensing capability to gate fuel binding. Despite complex DNA mechanics, the foot-track potential exhibits a surprisingly neat three-part profile, offering some general guidelines to rationally design efficient nanowalkers. Subsequent modeling of the bipedal walker attached to the track gives estimates of the free energy for each bipedal state, showing how the mechanosensing foot-track binding breaks the symmetry between the rear and front feet, enabling the rear foot to be selectively dissociated by fuel and generating efficient chemomechanical coupling.

  12. Free energy force field (FEFF) 3D-QSAR analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Santos-Filho, Osvaldo A.; Mishra, Rama K.; Hopfinger, A. J.

    2001-09-01

    Free energy force field (FEFF) 3D-QSAR analysis was used to construct ligand-receptor binding models for a set of 18 structurally diverse antifolates including pyrimethamine, cycloguanil, methotrexate, aminopterin and trimethoprim, and 13 pyrrolo[2,3-d]pyrimidines. The molecular target (`receptor') used was a 3D-homology model of a specific mutant type of Plasmodium falciparum (Pf) dihydrofolate reductase (DHFR). The dependent variable of the 3D-QSAR models is the IC50 inhibition constant for the specific mutant type of PfDHFR. The independent variables of the 3D-QSAR models (the descriptors) are scaled energy terms of a modified first-generation AMBER force field combined with a hydration shell aqueous solvation model and a collection of 2D-QSAR descriptors often used in QSAR studies. Multiple temperature molecular dynamics simulation (MDS) and the genetic function approximation (GFA) were employed using partial least square (PLS) and multidimensional linear regressions as the fitting functions to develop FEFF 3D-QSAR models for the binding process. The significant FEFF energy terms in the best 3D-QSAR models include energy contributions of the direct ligand-receptor interaction. Some changes in conformational energy terms of the ligand due to binding to the enzyme are also found to be important descriptors. The FEFF 3D-QSAR models indicate some structural features perhaps relevant to the mechanism of resistance of the PfDHFR to current antimalarials. The FEFF 3D-QSAR models are also compared to receptor-independent (RI) 4D-QSAR models developed in an earlier study and subsequently refined using recently developed generalized alignment rules.

  13. Targeting the cell wall of Mycobacterium tuberculosis: a molecular modeling investigation of the interaction of imipenem and meropenem with L,D-transpeptidase 2.

    PubMed

    Silva, José Rogério A; Bishai, William R; Govender, Thavendran; Lamichhane, Gyanu; Maguire, Glenn E M; Kruger, Hendrik G; Lameira, Jeronimo; Alves, Cláudio N

    2016-01-01

    The single crystal X-ray structure of the extracellular portion of the L,D-transpeptidase (ex-LdtMt2 - residues 120-408) enzyme was recently reported. It was observed that imipenem and meropenem inhibit activity of this enzyme, responsible for generating L,D-transpeptide linkages in the peptidoglycan layer of Mycobacterium tuberculosis. Imipenem is more active and isothermal titration calorimetry experiments revealed that meropenem is subjected to an entropy penalty upon binding to the enzyme. Herein, we report a molecular modeling approach to obtain a molecular view of the inhibitor/enzyme interactions. The average binding free energies for nine commercially available inhibitors were calculated using MM/GBSA and Solvation Interaction Energy (SIE) approaches and the calculated energies corresponded well with the available experimentally observed results. The method reproduces the same order of binding energies as experimentally observed for imipenem and meropenem. We have also demonstrated that SIE is a reasonably accurate and cost-effective free energy method, which can be used to predict carbapenem affinities for this enzyme. A theoretical explanation was offered for the experimental entropy penalty observed for meropenem, creating optimism that this computational model can serve as a potential computational model for other researchers in the field.

  14. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.

    PubMed

    Tang, Yat T; Marshall, Garland R

    2011-02-28

    Binding affinity prediction is one of the most critical components to computer-aided structure-based drug design. Despite advances in first-principle methods for predicting binding affinity, empirical scoring functions that are fast and only relatively accurate are still widely used in structure-based drug design. With the increasing availability of X-ray crystallographic structures in the Protein Data Bank and continuing application of biophysical methods such as isothermal titration calorimetry to measure thermodynamic parameters contributing to binding free energy, sufficient experimental data exists that scoring functions can now be derived by separating enthalpic (ΔH) and entropic (TΔS) contributions to binding free energy (ΔG). PHOENIX, a scoring function to predict binding affinities of protein-ligand complexes, utilizes the increasing availability of experimental data to improve binding affinity predictions by the following: model training and testing using high-resolution crystallographic data to minimize structural noise, independent models of enthalpic and entropic contributions fitted to thermodynamic parameters assumed to be thermodynamically biased to calculate binding free energy, use of shape and volume descriptors to better capture entropic contributions. A set of 42 descriptors and 112 protein-ligand complexes were used to derive functions using partial least-squares for change of enthalpy (ΔH) and change of entropy (TΔS) to calculate change of binding free energy (ΔG), resulting in a predictive r2 (r(pred)2) of 0.55 and a standard error (SE) of 1.34 kcal/mol. External validation using the 2009 version of the PDBbind "refined set" (n = 1612) resulted in a Pearson correlation coefficient (R(p)) of 0.575 and a mean error (ME) of 1.41 pK(d). Enthalpy and entropy predictions were of limited accuracy individually. However, their difference resulted in a relatively accurate binding free energy. While the development of an accurate and applicable scoring function was an objective of this study, the main focus was evaluation of the use of high-resolution X-ray crystal structures with high-quality thermodynamic parameters from isothermal titration calorimetry for scoring function development. With the increasing application of structure-based methods in molecular design, this study suggests that using high-resolution crystal structures, separating enthalpy and entropy contributions to binding free energy, and including descriptors to better capture entropic contributions may prove to be effective strategies toward rapid and accurate calculation of binding affinity.

  15. Integrating water exclusion theory into βcontacts to predict binding free energy changes and binding hot spots

    PubMed Central

    2014-01-01

    Background Binding free energy and binding hot spots at protein-protein interfaces are two important research areas for understanding protein interactions. Computational methods have been developed previously for accurate prediction of binding free energy change upon mutation for interfacial residues. However, a large number of interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss. Results This work proposes a new method, βACV ASA , to predict the change of binding free energy after alanine mutations. βACV ASA integrates accessible surface area (ASA) and our newly defined β contacts together into an atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396 alanine mutations, our method is found to be superior in classification performance to many other methods, including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACV ASA methods (similar to βACV ASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation; (ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces; (iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a necessary condition for a residue to become a binding hot spot. Conclusions βACV ASA is designed using the advantages of both β contacts and water exclusion. It is an excellent tool to predict binding free energy changes and binding hot spots after alanine mutation. PMID:24568581

  16. Atomistic models for free energy evaluation of drug binding to membrane proteins.

    PubMed

    Durdagi, S; Zhao, C; Cuervo, J E; Noskov, S Y

    2011-01-01

    The binding of various molecules to integral membrane proteins with optimal affinity and specificity is central to normal function of cell. While membrane proteins represent about one third of the whole cell proteome, they are a majority of common drug targets. The quest for the development of computational models capable of accurate evaluation of binding affinities, decomposition of the binding into its principal components and thus mapping molecular mechanisms of binding remains one of the main goals of modern computational biophysics and related drug development. The primary scope of this review will be on the recent extension of computational methods for the study of drug binding to membrane proteins. Several examples of such applications will be provided ranging from secondary transporters to voltage gated channels. In this mini-review, we will provide a short summary on the breadth of different methods for binding affinity evaluation. These methods include molecular docking with docking scoring functions, molecular dynamics (MD) simulations combined with post-processing analysis using Molecular Mechanics/Poisson Boltzmann (Generalized Born) Surface Area (MM/PB(GB)SA), as well as direct evaluation of free energies from Free Energy Perturbation (FEP) with constraining schemes, and Potential of Mean Force (PMF) computations. We will compare advantages and shortcomings of popular techniques and provide discussion on the integrative strategies for drug development aimed at targeting membrane proteins.

  17. Trions in bulk and monolayer materials: Faddeev equations and hyperspherical harmonics.

    PubMed

    Filikhin, I; Kezerashvili, R Ya; Tsiklauri, Sh M; Vlahovic, B

    2018-03-23

    The negatively T - and positively T + charged trions in bulk and monolayer semiconductors are studied in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing the Faddeev equation with the Coulomb potential in 3D configuration space. Results of calculations of the binding energies for T - are consistent with previous computational studies, while the T + is unbound for all considered cases. The binding energies of trions in monolayer semiconductors are calculated using the method of hyperspherical harmonics by employing the Keldysh potential. It is shown that 2D T - and T + trions are bound and the binding energy of the positive trion is always greater than for the negative trion due to the heavier effective mass of holes. Our calculations demonstrate that screening effects play an important role in the formation of bound states of trions in 2D semiconductors.

  18. Trions in bulk and monolayer materials: Faddeev equations and hyperspherical harmonics

    NASA Astrophysics Data System (ADS)

    Filikhin, I.; Kezerashvili, R. Ya; Tsiklauri, Sh M.; Vlahovic, B.

    2018-03-01

    The negatively T - and positively T + charged trions in bulk and monolayer semiconductors are studied in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing the Faddeev equation with the Coulomb potential in 3D configuration space. Results of calculations of the binding energies for T - are consistent with previous computational studies, while the T + is unbound for all considered cases. The binding energies of trions in monolayer semiconductors are calculated using the method of hyperspherical harmonics by employing the Keldysh potential. It is shown that 2D T - and T + trions are bound and the binding energy of the positive trion is always greater than for the negative trion due to the heavier effective mass of holes. Our calculations demonstrate that screening effects play an important role in the formation of bound states of trions in 2D semiconductors.

  19. Onset of η-nuclear binding in a pionless EFT approach

    NASA Astrophysics Data System (ADS)

    Barnea, N.; Bazak, B.; Friedman, E.; Gal, A.

    2017-08-01

    ηNNN and ηNNNN bound states are explored in stochastic variational method (SVM) calculations within a pionless effective field theory (EFT) approach at leading order. The theoretical input consists of regulated NN and NNN contact terms, and a regulated energy dependent ηN contact term derived from coupled-channel models of the N* (1535) nucleon resonance. A self consistency procedure is applied to deal with the energy dependence of the ηN subthreshold input, resulting in a weak dependence of the calculated η-nuclear binding energies on the EFT regulator. It is found, in terms of the ηN scattering length aηN, that the onset of binding η 3He requires a minimal value of ReaηN close to 1 fm, yielding then a few MeV η binding in η 4He. The onset of binding η 4He requires a lower value of ReaηN, but exceeding 0.7 fm.

  20. Cooperative binding of drugs on human serum albumin

    NASA Astrophysics Data System (ADS)

    Varela, L. M.; Pérez-Rodríguez, M.; García, M.

    In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer-Emmet-Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.

  1. Dissociation kinetics of excited ions: PEPICO measurements of Os3(CO)12 - The 7-35 eV single ionization binding energy region.

    PubMed

    Schalk, Oliver; Josefsson, Ida; Geng, Ting; Richter, Robert; Sa'adeh, Hanan; Thomas, Richard D; Mucke, Melanie

    2018-02-28

    In this article, we study the photoinduced dissociation pathways of a metallocarbonyl, Os 3 (CO) 12 , in particular the consecutive loss of CO groups. To do so, we performed photoelectron-photoion coincidence (PEPICO) measurements in the single ionization binding energy region from 7 to 35 eV using 45-eV photons. Zero-energy ion appearance energies for the dissociation steps were extracted by modeling the PEPICO data using the statistical adiabatic channel model. Upon ionization to the excited ionic states above 13 eV binding energy, non-statistical behavior was observed and assigned to prompt CO loss. Double ionization was found to be dominated by the knockout process with an onset of 20.9 ± 0.4 eV. The oscillator strength is significantly larger for energies above 26.6 ± 0.4 eV, corresponding to one electron being ejected from the Os 3 center and one from the CO ligands. The cross section for double ionization was found to increase linearly up to 35 eV ionization energy, at which 40% of the generated ions are doubly charged.

  2. Unveiling the molecular mechanism of brassinosteroids: Insights from structure-based molecular modeling studies.

    PubMed

    Lei, Beilei; Liu, Jiyuan; Yao, Xiaojun

    2015-12-01

    Brassinosteroid (BR) phytohormones play indispensable roles in plant growth and development. Brassinolide (BL) and 24-epibrassinolide (24-epiBL) are the most active ones among the BRs reported thus far. Unfortunately, the extremely low natural content and intricate synthesis process limit their popularization in agricultural production. Earlier reports to discover alternative compounds have resulted in molecules with nearly same scaffold structure and without diversity in chemical space. In the present study, receptors structure based BRs regulation mechanism was analyzed. First, we examined the detailed binding interactions and their dynamic stability between BL and its receptor BRI1 and co-receptor BAK1. Then, the binding modes and binding free energies for 24-epiBL and a series of representative BRs binding with BRI1 and BRI1-BAK1 were carried out by molecular docking, energy minimization and MM-PBSA free energy calculation. The obtained binding structures and energetic results provided vital insights into the structural factors affecting the activity from both receptors and BRs aspects. Subsequently, the obtained knowledge will serve as valuable guidance to build pharmacophore models for rational screening of new scaffold alternative BRs. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Analysis of Immune Complex Structure by Statistical Mechanics and Light Scattering Techniques.

    NASA Astrophysics Data System (ADS)

    Busch, Nathan Adams

    1995-01-01

    The size and structure of immune complexes determine their behavior in the immune system. The chemical physics of the complex formation is not well understood; this is due in part to inadequate characterization of the proteins involved, and in part by lack of sufficiently well developed theoretical techniques. Understanding the complex formation will permit rational design of strategies for inhibiting tissue deposition of the complexes. A statistical mechanical model of the proteins based upon the theory of associating fluids was developed. The multipole electrostatic potential for each protein used in this study was characterized for net protein charge, dipole moment magnitude, and dipole moment direction. The binding sites, between the model antigen and antibodies, were characterized for their net surface area, energy, and position relative to the dipole moment of the protein. The equilibrium binding graphs generated with the protein statistical mechanical model compares favorably with experimental data obtained from radioimmunoassay results. The isothermal compressibility predicted by the model agrees with results obtained from dynamic light scattering. The statistical mechanics model was used to investigate association between the model antigen and selected pairs of antibodies. It was found that, in accordance to expectations from thermodynamic arguments, the highest total binding energy yielded complex distributions which were skewed to higher complex size. From examination of the simulated formation of ring structures from linear chain complexes, and from the joint shape probability surfaces, it was found that ring configurations were formed by the "folding" of linear chains until the ends are within binding distance. By comparing the single antigen/two antibody system which differ only in their respective binding site locations, it was found that binding site location influences complex size and shape distributions only when ring formation occurs. The internal potential energy of a ring complex is considerably less than that of the non-associating system; therefore the ring complexes are quite stable and show no evidence of breaking, and collapsing into smaller complexes. The ring formation will occur only in systems where the total free energy of each complex may be minimized. Thus, ring formation will occur even though entropically unfavorable conformations result if the total free energy can be minimized by doing so.

  4. Computational design of enzyme-ligand binding using a combined energy function and deterministic sequence optimization algorithm.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan

    2015-08-01

    Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.

  5. Converging free energies of binding in cucurbit[7]uril and octa-acid host-guest systems from SAMPL4 using expanded ensemble simulations

    NASA Astrophysics Data System (ADS)

    Monroe, Jacob I.; Shirts, Michael R.

    2014-04-01

    Molecular containers such as cucurbit[7]uril (CB7) and the octa-acid (OA) host are ideal simplified model test systems for optimizing and analyzing methods for computing free energies of binding intended for use with biologically relevant protein-ligand complexes. To this end, we have performed initially blind free energy calculations to determine the free energies of binding for ligands of both the CB7 and OA hosts. A subset of the selected guest molecules were those included in the SAMPL4 prediction challenge. Using expanded ensemble simulations in the dimension of coupling host-guest intermolecular interactions, we are able to show that our estimates in most cases can be demonstrated to fully converge and that the errors in our estimates are due almost entirely to the assigned force field parameters and the choice of environmental conditions used to model experiment. We confirm the convergence through the use of alternative simulation methodologies and thermodynamic pathways, analyzing sampled conformations, and directly observing changes of the free energy with respect to simulation time. Our results demonstrate the benefits of enhanced sampling of multiple local free energy minima made possible by the use of expanded ensemble molecular dynamics and may indicate the presence of significant problems with current transferable force fields for organic molecules when used for calculating binding affinities, especially in non-protein chemistries.

  6. Converging free energies of binding in cucurbit[7]uril and octa-acid host-guest systems from SAMPL4 using expanded ensemble simulations.

    PubMed

    Monroe, Jacob I; Shirts, Michael R

    2014-04-01

    Molecular containers such as cucurbit[7]uril (CB7) and the octa-acid (OA) host are ideal simplified model test systems for optimizing and analyzing methods for computing free energies of binding intended for use with biologically relevant protein-ligand complexes. To this end, we have performed initially blind free energy calculations to determine the free energies of binding for ligands of both the CB7 and OA hosts. A subset of the selected guest molecules were those included in the SAMPL4 prediction challenge. Using expanded ensemble simulations in the dimension of coupling host-guest intermolecular interactions, we are able to show that our estimates in most cases can be demonstrated to fully converge and that the errors in our estimates are due almost entirely to the assigned force field parameters and the choice of environmental conditions used to model experiment. We confirm the convergence through the use of alternative simulation methodologies and thermodynamic pathways, analyzing sampled conformations, and directly observing changes of the free energy with respect to simulation time. Our results demonstrate the benefits of enhanced sampling of multiple local free energy minima made possible by the use of expanded ensemble molecular dynamics and may indicate the presence of significant problems with current transferable force fields for organic molecules when used for calculating binding affinities, especially in non-protein chemistries.

  7. Tight-binding modeling and low-energy behavior of the semi-Dirac point.

    PubMed

    Banerjee, S; Singh, R R P; Pardo, V; Pickett, W E

    2009-07-03

    We develop a tight-binding model description of semi-Dirac electronic spectra, with highly anisotropic dispersion around point Fermi surfaces, recently discovered in electronic structure calculations of VO2-TiO2 nanoheterostructures. We contrast their spectral properties with the well-known Dirac points on the honeycomb lattice relevant to graphene layers and the spectra of bands touching each other in zero-gap semiconductors. We also consider the lowest order dispersion around one of the semi-Dirac points and calculate the resulting electronic energy levels in an external magnetic field. In spite of apparently similar electronic structures, Dirac and semi-Dirac systems support diverse low-energy physics.

  8. Modeling Shear Induced Von Willebrand Factor Binding to Collagen

    NASA Astrophysics Data System (ADS)

    Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong

    2017-11-01

    Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).

  9. Virtual screening of B-Raf kinase inhibitors: A combination of pharmacophore modelling, molecular docking, 3D-QSAR model and binding free energy calculation studies.

    PubMed

    Zhang, Wen; Qiu, Kai-Xiong; Yu, Fang; Xie, Xiao-Guang; Zhang, Shu-Qun; Chen, Ya-Juan; Xie, Hui-Ding

    2017-10-01

    B-Raf kinase has been identified as an important target in recent cancer treatment. In order to discover structurally diverse and novel B-Raf inhibitors (BRIs), a virtual screening of BRIs against ZINC database was performed by using a combination of pharmacophore modelling, molecular docking, 3D-QSAR model and binding free energy (ΔG bind ) calculation studies in this work. After the virtual screening, six promising hit compounds were obtained, which were then tested for inhibitory activities of A375 cell lines. In the result, five hit compounds show good biological activities (IC 50 <50μM). The present method of virtual screening can be applied to find structurally diverse inhibitors, and the obtained five structurally diverse compounds are expected to develop novel BRIs. Copyright © 2017. Published by Elsevier Ltd.

  10. Investigations on the Interactions of 5-Fluorouracil with Herring Sperm DNA: Steady State/Time Resolved and Molecular Modeling Studies

    NASA Astrophysics Data System (ADS)

    Chinnathambi, Shanmugavel; Karthikeyan, Subramani; Velmurugan, Devadasan; Hanagata, Nobutaka; Aruna, Prakasarao; Ganesan, Singaravelu

    2015-04-01

    In the present study, the interaction of 5-Fluorouracil with herring sperm DNA is reported using spectroscopic and molecular modeling techniques. This binding study of 5-FU with hs-DNA is of paramount importance in understanding chemico-biological interactions for drug design, pharmacy and biochemistry without altering the original structure. The challenge of the study was to find the exact binding mode of the drug 5-Fluorouracil with hs-DNA. From the absorption studies, a hyperchromic effect was observed for the herring sperm DNA in the presence of 5-Fluorouracil and a binding constant of 6.153 × 103 M-1 for 5-Fluorouracil reveals the existence of weak interaction between the 5-Fluorouracil and herring sperm DNA. Ethidium bromide loaded herring sperm DNA showed a quenching in the fluorescence intensity after the addition of 5-Fluorouracil. The binding constants for 5-Fluorouracil stranded DNA and competitive bindings of 5-FU interacting with DNA-EB systems were examined by fluorescence spectra. The Stern-Volmer plots and fluorescence lifetime results confirm the static quenching nature of the drug-DNA complex. The binding constant Kb was 2.5 × 104 L mol-1 and the number of binding sites are 1.17. The 5-FU on DNA system was calculated using double logarithmic plot. From the Forster nonradiative energy transfer study it has been found that the distance of 5-FU from DNA was 4.24 nm. In addition to the spectroscopic results, the molecular modeling studies also revealed the major groove binding as well as the partial intercalation mode of binding between the 5-Fluorouracil and herring sperm DNA. The binding energy and major groove binding as -6.04 kcal mol-1 and -6.31 kcal mol-1 were calculated from the modeling studies. All the testimonies manifested that binding modes between 5-Fluorouracil and DNA were evidenced to be groove binding and in partial intercalative mode.

  11. Blockade of Neuronal α7-nAChR by α-Conotoxin ImI Explained by Computational Scanning and Energy Calculations

    PubMed Central

    Yu, Rilei; Craik, David J.; Kaas, Quentin

    2011-01-01

    α-Conotoxins potently inhibit isoforms of nicotinic acetylcholine receptors (nAChRs), which are essential for neuronal and neuromuscular transmission. They are also used as neurochemical tools to study nAChR physiology and are being evaluated as drug leads to treat various neuronal disorders. A number of experimental studies have been performed to investigate the structure-activity relationships of conotoxin/nAChR complexes. However, the structural determinants of their binding interactions are still ambiguous in the absence of experimental structures of conotoxin-receptor complexes. In this study, the binding modes of α-conotoxin ImI to the α7-nAChR, currently the best-studied system experimentally, were investigated using comparative modeling and molecular dynamics simulations. The structures of more than 30 single point mutants of either the conotoxin or the receptor were modeled and analyzed. The models were used to explain qualitatively the change of affinities measured experimentally, including some nAChR positions located outside the binding site. Mutational energies were calculated using different methods that combine a conformational refinement procedure (minimization with a distance dependent dielectric constant or explicit water, or molecular dynamics using five restraint strategies) and a binding energy function (MM-GB/SA or MM-PB/SA). The protocol using explicit water energy minimization and MM-GB/SA gave the best correlations with experimental binding affinities, with an R2 value of 0.74. The van der Waals and non-polar desolvation components were found to be the main driving force for binding of the conotoxin to the nAChR. The electrostatic component was responsible for the selectivity of the various ImI mutants. Overall, this study provides novel insights into the binding mechanism of α-conotoxins to nAChRs and the methodological developments reported here open avenues for computational scanning studies of a rapidly expanding range of wild-type and chemically modified α-conotoxins. PMID:21390272

  12. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding

    DOE PAGES

    Newcomb, C. J.; Qafoku, N. P.; Grate, J. W.; ...

    2017-08-30

    Long residence times of soil organic matter have been attributed to reactive mineral surface sites that sorb organic species and cause inaccessibility due to isolation and chemical stabilization at the organic-mineral interface. Instrumentation for probing this interface is limited. As a result, much of the micron- and molecular-scale knowledge about organic-mineral interactions remains largely qualitative. We report the use of force spectroscopy to directly measure the binding between organic ligands with known chemical functionalities to soil minerals in aqueous environments. By systematically studying the role of organic functional group chemistry with model minerals, we demonstrate that the chemistry of bothmore » the organic ligand and mineral contribute to values of binding free energy and that changes in pH and ionic strength produce significant differences in binding energies. These direct measurements of molecular binding provide mechanistic insights into organo-mineral interactions, which could potentially inform land-carbon models that explicitly include mineral-bound C pools.« less

  13. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newcomb, C. J.; Qafoku, N. P.; Grate, J. W.

    Long residence times of soil organic matter have been attributed to reactive mineral surface sites that sorb organic species and cause inaccessibility due to isolation and chemical stabilization at the organic-mineral interface. Instrumentation for probing this interface is limited. As a result, much of the micron- and molecular-scale knowledge about organic-mineral interactions remains largely qualitative. We report the use of force spectroscopy to directly measure the binding between organic ligands with known chemical functionalities to soil minerals in aqueous environments. By systematically studying the role of organic functional group chemistry with model minerals, we demonstrate that the chemistry of bothmore » the organic ligand and mineral contribute to values of binding free energy and that changes in pH and ionic strength produce significant differences in binding energies. These direct measurements of molecular binding provide mechanistic insights into organo-mineral interactions, which could potentially inform land-carbon models that explicitly include mineral-bound C pools.« less

  14. The Role of Pectin in Pb Binding by Carrot Peel Biosorbents: Isoterm Adsorption Study

    NASA Astrophysics Data System (ADS)

    Hastuti, B.; Totiana, F.; Winiasih, R.

    2018-04-01

    Cheaply and abundantly biosorption available materials such as carrot peels can be a cost-efficient method for removing heavy metals from wastewater. To investigate the role pectin plays in metal binding by carrot peels, commerce pectin was compared. FTIR spectra confirmed the presence of carboxyl and hydroxyl groups in commerce pectin and carrot pectin. Isoterm experiments showed that all materials could remove Pb (II) ion. All of materials binding Pb (II) follow Freundlich models adsorption. The commerce pectin bindsPb (II) by involving energy 16.6 KJ/mole whereas pectin from carrot peel involves energy 21.09 KJ/mole. It indicates that commerce pectin binds the Pb (II) by physics adsorption whereas pectin from carrot peel by physics and chemical adsorption.

  15. Computational screening of functional groups for capture of toxic industrial chemicals in porous materials.

    PubMed

    Kim, Ki Chul; Fairen-Jimenez, David; Snurr, Randall Q

    2017-12-06

    A thermodynamic analysis using quantum chemical methods was carried out to identify optimal functional group candidates that can be included in metal-organic frameworks and activated carbons for the selective capture of toxic industrial chemicals (TICs) in humid air. We calculated the binding energies of 14 critical TICs plus water with a series of 10 functional groups attached to a naphthalene ring model. Using vibrational calculations, the free energies of adsorption were calculated in addition to the binding energies. Our results show that, in these systems, the binding energies and free energies follow similar trends. We identified copper(i) carboxylate as the optimal functional group (among those studied) for the selective binding of the majority of the TICs in humid air, and this functional group exhibits especially strong binding for sulfuric acid. Further thermodynamic analysis shows that the presence of water weakens the binding strength of sulfuric acid with the copper carboxylate group. Our calculations predict that functionalization of aromatic rings would be detrimental to selective capture of COCl 2 , CO 2 , and Cl 2 under humid conditions. Finally, we found that forming an ionic complex, H 3 O + HSO 4 - , between H 2 SO 4 and H 2 O via proton transfer is not favorable on copper carboxylate.

  16. Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics

    PubMed Central

    2015-01-01

    We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design. PMID:26523125

  17. Computational scheme for pH-dependent binding free energy calculation with explicit solvent.

    PubMed

    Lee, Juyong; Miller, Benjamin T; Brooks, Bernard R

    2016-01-01

    We present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pKa shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1) . We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations. © 2015 The Protein Society.

  18. Free-Energy-Based Protein Design: Re-Engineering Cellular Retinoic Acid Binding Protein II Assisted by the Moveable-Type Approach.

    PubMed

    Zhong, Haizhen A; Santos, Elizabeth M; Vasileiou, Chrysoula; Zheng, Zheng; Geiger, James H; Borhan, Babak; Merz, Kenneth M

    2018-03-14

    How to fine-tune the binding free energy of a small-molecule to a receptor site by altering the amino acid residue composition is a key question in protein engineering. Indeed, the ultimate solution to this problem, to chemical accuracy (±1 kcal/mol), will result in profound and wide-ranging applications in protein design. Numerous tools have been developed to address this question using knowledge-based models to more computationally intensive molecular dynamics simulations-based free energy calculations, but while some success has been achieved there remains room for improvement in terms of overall accuracy and in the speed of the methodology. Here we report a fast, knowledge-based movable-type (MT)-based approach to estimate the absolute and relative free energy of binding as influenced by mutations in a small-molecule binding site in a protein. We retrospectively validate our approach using mutagenesis data for retinoic acid binding to the Cellular Retinoic Acid Binding Protein II (CRABPII) system and then make prospective predictions that are borne out experimentally. The overall performance of our approach is supported by its success in identifying mutants that show high or even sub-nano-molar binding affinities of retinoic acid to the CRABPII system.

  19. Determining ERβ Binding Affinity to Singly Mutant ERE Using Dual Polarization Interferometry

    NASA Astrophysics Data System (ADS)

    Song, Hong Yan; Su, Xiaodi

    In a classic mode of estrogen action, estrogen receptors (ERs) bind to estrogen responsive element (ERE) to activate gene transcription. A perfect ERE contains a 13-base pair sequence of a palindromic repeat separated by a three-base spacer, 5‧-GGTCAnnnTGACC-3‧. In addition to the consensus or wild-type ERE (wtERE), naturally occurring EREs often have one or two base pairs’ alternation. Based on the newly constructed Thermodynamic Modeling of ChIP-seq (TherMos) model, binding energy between ERβ and a series of 34-bp mutant EREs (mutERE) was simulated to predict the binding affinity between ERs and EREs with single base pair deviation at different sites of the 13-bp inverted sequence. Experimentally, dual polarization interferometry (DPI) method was developed to measure ERβ-mutEREs binding affinity. On a biotin-NeutrAvidin (NA)-biotin treated DPI chip, wtERE is immobilized. In a direct binding assay, ERβ-wtERE binding affinity is determined. In a competition assay, ERβ was preincubated with mutant EREs before being added for competitive binding to the immobilized wtERE. This competition strategy provided a successful platform to evaluate the binding affinity variation among large number of ERE with different base mutations. The experimental result correlates well with the mathematically predicted binding energy with a Spearman correlation coefficient of 0.97.

  20. E-novo: an automated workflow for efficient structure-based lead optimization.

    PubMed

    Pearce, Bradley C; Langley, David R; Kang, Jia; Huang, Hongwei; Kulkarni, Amit

    2009-07-01

    An automated E-Novo protocol designed as a structure-based lead optimization tool was prepared through Pipeline Pilot with existing CHARMm components in Discovery Studio. A scaffold core having 3D binding coordinates of interest is generated from a ligand-bound protein structural model. Ligands of interest are generated from the scaffold using an R-group fragmentation/enumeration tool within E-Novo, with their cores aligned. The ligand side chains are conformationally sampled and are subjected to core-constrained protein docking, using a modified CHARMm-based CDOCKER method to generate top poses along with CDOCKER energies. In the final stage of E-Novo, a physics-based binding energy scoring function ranks the top ligand CDOCKER poses using a more accurate Molecular Mechanics-Generalized Born with Surface Area method. Correlation of the calculated ligand binding energies with experimental binding affinities were used to validate protocol performance. Inhibitors of Src tyrosine kinase, CDK2 kinase, beta-secretase, factor Xa, HIV protease, and thrombin were used to test the protocol using published ligand crystal structure data within reasonably defined binding sites. In-house Respiratory Syncytial Virus inhibitor data were used as a more challenging test set using a hand-built binding model. Least squares fits for all data sets suggested reasonable validation of the protocol within the context of observed ligand binding poses. The E-Novo protocol provides a convenient all-in-one structure-based design process for rapid assessment and scoring of lead optimization libraries.

  1. MODELING THE INTERACTION OF AGROCHEMICALS WITH ENVIRONMENTAL SURFACES: PESTICIDES ON RUTILE AND ORGANO-RUTILE SURFACES

    EPA Science Inventory

    Non-bonded interactions between model pesticides and organo-mineral surfaces have been studied using molecular mechanical conformational calculations and molecular dynamics simulations. The minimum energy conformations and relative binding energies for the interaction of atrazine...

  2. Protein pharmacophore selection using hydration-site analysis

    PubMed Central

    Hu, Bingjie; Lill, Markus A.

    2012-01-01

    Virtual screening using pharmacophore models is an efficient method to identify potential lead compounds for target proteins. Pharmacophore models based on protein structures are advantageous because a priori knowledge of active ligands is not required and the models are not biased by the chemical space of previously identified actives. However, in order to capture most potential interactions between all potentially binding ligands and the protein, the size of the pharmacophore model, i.e. number of pharmacophore elements, is typically quite large and therefore reduces the efficiency of pharmacophore based screening. We have developed a new method to select important pharmacophore elements using hydration-site information. The basic premise is that ligand functional groups that replace water molecules in the apo protein contribute strongly to the overall binding affinity of the ligand, due to the additional free energy gained from releasing the water molecule into the bulk solvent. We computed the free energy of water released from the binding site for each hydration site using thermodynamic analysis of molecular dynamics (MD) simulations. Pharmacophores which are co-localized with hydration sites with estimated favorable contributions to the free energy of binding are selected to generate a reduced pharmacophore model. We constructed reduced pharmacophore models for three protein systems and demonstrated good enrichment quality combined with high efficiency. The reduction in pharmacophore model size reduces the required screening time by a factor of 200–500 compared to using all protein pharmacophore elements. We also describe a training process using a small set of known actives to reliably select the optimal set of criteria for pharmacophore selection for each protein system. PMID:22397751

  3. An Efficient Metadynamics-Based Protocol To Model the Binding Affinity and the Transition State Ensemble of G-Protein-Coupled Receptor Ligands.

    PubMed

    Saleh, Noureldin; Ibrahim, Passainte; Saladino, Giorgio; Gervasio, Francesco Luigi; Clark, Timothy

    2017-05-22

    A generally applicable metadynamics scheme for predicting the free energy profile of ligand binding to G-protein-coupled receptors (GPCRs) is described. A common and effective collective variable (CV) has been defined using the ideally placed and highly conserved Trp6.48 as a reference point for ligand-GPCR distance measurement and the common orientation of GPCRs in the cell membrane. Using this single CV together with well-tempered multiple-walker metadynamics with a funnel-like boundary allows an efficient exploration of the entire ligand binding path from the extracellular medium to the orthosteric binding site, including vestibule and intermediate sites. The protocol can be used with X-ray structures or high-quality homology models (based on a high-quality template and after thorough refinement) for the receptor and is universally applicable to agonists, antagonists, and partial and reverse agonists. The root-mean-square error (RMSE) in predicted binding free energies for 12 diverse ligands in five receptors (a total of 23 data points) is surprisingly small (less than 1 kcal mol -1 ). The RMSEs for simulations that use receptor X-ray structures and homology models are very similar.

  4. Partial Ionic Character beyond the Pauling Paradigm: Metal Nanoparticles

    DOE PAGES

    Duanmu, Kaining; Truhlar, Donald G.

    2014-11-12

    A canonical perspective on the chemical bond is the Pauling paradigm: a bond in a molecule containing only identical atoms has no ionic character. However, we show that homonuclear silver clusters have very uneven charge distributions (for example, the C 2v structure of Ag 4 has a larger dipole moment than formaldehyde or acetone), and we show how to predict the charge distribution from coordination numbers and Hirshfeld charges. The new charge model is validated against Kohn–Sham calculations of dipole moments with four approximations for the exchange–correlation functional. We report Kohn–Sham studies of the binding energies of CO on silvermore » monomer and silver clusters containing 2–18 atoms. We also find that an accurate charge model is essential for understanding the site dependence of binding. In particular we find that atoms with more positive charges tend to have higher binding energies, which can be used for guidance in catalyst modeling and design. Furthermore, the nonuniform charge distribution of silver clusters predisposes the site preference of binding of carbon monoxide, and we conclude that nonuniform charge distributions are an important property for understanding binding of metal nanoparticles in general.« less

  5. Molecular Modeling Studies of 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors through Receptor-Based 3D-QSAR and Molecular Dynamics Simulations.

    PubMed

    Qian, Haiyan; Chen, Jiongjiong; Pan, Youlu; Chen, Jianzhong

    2016-09-19

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a potential target for the treatment of numerous human disorders, such as diabetes, obesity, and metabolic syndrome. In this work, molecular modeling studies combining molecular docking, 3D-QSAR, MESP, MD simulations and free energy calculations were performed on pyridine amides and 1,2,4-triazolopyridines as 11β-HSD1 inhibitors to explore structure-activity relationships and structural requirement for the inhibitory activity. 3D-QSAR models, including CoMFA and CoMSIA, were developed from the conformations obtained by docking strategy. The derived pharmacophoric features were further supported by MESP and Mulliken charge analyses using density functional theory. In addition, MD simulations and free energy calculations were employed to determine the detailed binding process and to compare the binding modes of inhibitors with different bioactivities. The binding free energies calculated by MM/PBSA showed a good correlation with the experimental biological activities. Free energy analyses and per-residue energy decomposition indicated the van der Waals interaction would be the major driving force for the interactions between an inhibitor and 11β-HSD1. These unified results may provide that hydrogen bond interactions with Ser170 and Tyr183 are favorable for enhancing activity. Thr124, Ser170, Tyr177, Tyr183, Val227, and Val231 are the key amino acid residues in the binding pocket. The obtained results are expected to be valuable for the rational design of novel potent 11β-HSD1 inhibitors.

  6. Molecular modelling study of changes induced by netropsin binding to nucleosome core particles.

    PubMed Central

    Pérez, J J; Portugal, J

    1990-01-01

    It is well known that certain sequence-dependent modulators in structure appear to determine the rotational positioning of DNA on the nucleosome core particle. That preference is rather weak and could be modified by some ligands as netropsin, a minor-groove binding antibiotic. We have undertaken a molecular modelling approach to calculate the relative energy of interaction between a DNA molecule and the protein core particle. The histones particle is considered as a distribution of positive charges on the protein surface that interacts with the DNA molecule. The molecular electrostatic potentials for the DNA, simulated as a discontinuous cylinder, were calculated using the values for all the base pairs. Computing these parameters, we calculated the relative energy of interaction and the more stable rotational setting of DNA. The binding of four molecules of netropsin to this model showed that a new minimum of energy is obtained when the DNA turns toward the protein surface by about 180 degrees, so a new energetically favoured structure appears where netropsin binding sites are located facing toward the histones surface. The effect of netropsin could be explained in terms of an induced change in the phasing of DNA on the core particle. The induced rotation is considered to optimize non-bonded contacts between the netropsin molecules and the DNA backbone. PMID:2165249

  7. Free-energy relationships in ion channels activated by voltage and ligand

    PubMed Central

    Chowdhury, Sandipan

    2013-01-01

    Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866

  8. Virtual screening using molecular simulations.

    PubMed

    Yang, Tianyi; Wu, Johnny C; Yan, Chunli; Wang, Yuanfeng; Luo, Ray; Gonzales, Michael B; Dalby, Kevin N; Ren, Pengyu

    2011-06-01

    Effective virtual screening relies on our ability to make accurate prediction of protein-ligand binding, which remains a great challenge. In this work, utilizing the molecular-mechanics Poisson-Boltzmann (or Generalized Born) surface area approach, we have evaluated the binding affinity of a set of 156 ligands to seven families of proteins, trypsin β, thrombin α, cyclin-dependent kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen activator, β-glucosidase A, and coagulation factor Xa. The effect of protein dielectric constant in the implicit-solvent model on the binding free energy calculation is shown to be important. The statistical correlations between the binding energy calculated from the implicit-solvent approach and experimental free energy are in the range of 0.56-0.79 across all the families. This performance is better than that of typical docking programs especially given that the latter is directly trained using known binding data whereas the molecular mechanics is based on general physical parameters. Estimation of entropic contribution remains the barrier to accurate free energy calculation. We show that the traditional rigid rotor harmonic oscillator approximation is unable to improve the binding free energy prediction. Inclusion of conformational restriction seems to be promising but requires further investigation. On the other hand, our preliminary study suggests that implicit-solvent based alchemical perturbation, which offers explicit sampling of configuration entropy, can be a viable approach to significantly improve the prediction of binding free energy. Overall, the molecular mechanics approach has the potential for medium to high-throughput computational drug discovery. Copyright © 2011 Wiley-Liss, Inc.

  9. Molecular modeling and molecular dynamics simulation studies on the interactions of hydroxylated polychlorinated biphenyls with estrogen receptor-β.

    PubMed

    Li, Xiaolin; Ye, Li; Wang, Xiaoxiang; Shi, Wei; Qian, XiangPing; Zhu, YongLiang; Yu, HongXia

    2013-10-01

    Endocrine-disrupting chemicals have attracted great concern. As major metabolites of polychlorinated biphenyls (PCBs), hydroxylated polychlorinated biphenyls (HO-PCBs) may disrupt estrogen hormone status because of their structural similarity to estrogen endogenous compounds. However, interactions between HO-PCBs and estrogen receptors (ERs) are not fully understood. In the present work, a molecular modeling study combining molecular docking, molecular dynamics simulations, and binding free energy calculations was performed to characterize the interactions of three HO-PCBs (4'-HO-PCB50, 2'-HO-PCB65, and 4'-HO-PCB69) having much different estrogenic activities with ERβ. Docking results showed that binding between ligands and ERβ was stabilized by hydrogen bond and hydrophobic interactions. The binding free energies of three ligands with ERβ were calculated, and further binding free energy decomposition analysis indicated that the dominating driving force of the binding between the ligands and ERβ was the van der Waals interaction. Some key residues, such as Leu298, Phe356, Gly472, His475, and Leu476, played important roles in ligand-receptor interactions by forming hydrophobic and hydrogen bond interactions with ligands. The results may be beneficial to increase understanding of the interactions between HO-PCBs and ERβ.

  10. Nuclear binding energy using semi empirical mass formula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankita,, E-mail: ankitagoyal@gmail.com; Suthar, B.

    2016-05-06

    In the present communication, semi empirical mass formula using the liquid drop model has been presented. Nuclear binding energies are calculated using semi empirical mass formula with various constants given by different researchers. We also compare these calculated values with experimental data and comparative study for finding suitable constants is added using the error plot. The study is extended to find the more suitable constant to reduce the error.

  11. KLK14 interactions with HAI-1 and HAI-2 serine protease inhibitors: A molecular dynamics and relative free-energy calculations study.

    PubMed

    Solís-Calero, Christian; Carvalho, Hernandes F

    2017-11-01

    Kallikrein 14 (KLK14) is a serine protease linked to several pathologies including prostate cancer and positively correlates with Gleason score. Though KLK14 functioning in cancer is poorly understood, it has been implicated in HGF/Met signaling, given that KLK14 proteolytically inhibits HGF activator-inhibitor 1 (HAI-1), which strongly inhibits pro-HGF activators, thereby contributing to tumor progression. In this work, KLK14 binding to either hepatocyte growth factor activator inhibitor type-1 (HAI-1) or type-2 (HAI-2) was essayed using homology modeling, molecular dynamic simulations and free-energy calculations through MM/PBSA and MM/GBSA. KLK14 was successfully modeled. Calculated free energies suggested higher binding affinity for the KLK14/HAI-1 interaction than for KLK14/HAI-2. This difference in binding affinity is largely explained by the higher stability of the hydrogen-bond networks in KLK14/HAI-1 along the simulation trajectory. A key arginine residue in both HAI-1 and HAI-2 is responsible for their interaction with the S1 pocket in KLK14. Additionally, MM/GBSA free-energy decomposition postulates that KLK14 Asp174 and Trp196 are hotspots for binding HAI-1 and HAI-2. © 2017 International Federation for Cell Biology.

  12. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations.

    PubMed

    Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-Kang

    2013-11-01

    To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π-π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met.

  13. Experimentally Determined Binding Energies of Astrophysically Relevant Hydrocarbons in Pure and H2O-Layered Ices

    NASA Astrophysics Data System (ADS)

    Behmard, Aida; Graninger, Dawn; Fayolle, Edith; Oberg, Karin I.

    2017-01-01

    Small hydrocarbons represent an important organic reservoir in a variety of interstellar environments. Constraints on desorption temperatures and binding energies of hydrocarbons are thus necessary for accurate predictions of where and in which phase these molecules exist. Through a series of temperature programmed desorption experiments, we determined binding energies of 1, 2, and 3-carbon interstellar hydrocarbons (CH4, C2H2, C2H4, C2H6, C3H4, C3H6, and C3H8) in pure ices and in relation to water ice, the dominant ice constituent during star and planet formation. These empirically determined values can be used to inform observations and models of the molecular spatial distribution in protoplanetary disks, thus providing insight into planetesimal composition. In addition, knowledge of hydrocarbon binding energies will refine simulations of grain surface chemistry, allowing for better predictions of the chemical conditions that lead to the production of complex organic molecules vital for life.

  14. Studies of the mechanism of selectivity of protein tyrosine phosphatase 1B (PTP1B) bidentate inhibitors using molecular dynamics simulations and free energy calculations.

    PubMed

    Fang, Lei; Zhang, Huai; Cui, Wei; Ji, Mingjun

    2008-10-01

    Bidentate inhibitors of protein tyrosine phosphatase 1B (PTP1B) are considered as a group of ideal inhibitors with high binding potential and high selectivity in treating type II diabetes. In this paper, the binding models of five bidentate inhibitors to PTP1B, TCPTP, and SHP-2 were investigated and compared by using molecular dynamics (MD) simulations and free energy calculations. The binding free energies were computed using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodology. The calculation results show that the predicted free energies of the complexes are well consistent with the experimental data. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition analysis indicates that the residues ARG24, ARG254, and GLN262 in the second binding site of PTP1B are essential for the high selectivity of inhibitors. Furthermore, the residue PHE182 close to the active site is also important for the selectivity and the binding affinity of the inhibitors. According to our analysis, it can be concluded that in most cases the polarity of the portion of the inhibitor that binds to the second binding site of the protein is positive to the affinity of the inhibitors while negative to the selectivity of the inhibitors. We expect that the information we obtained here can help to develop potential PTP1B inhibitors with more promising specificity.

  15. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method

    PubMed Central

    2011-01-01

    Background The reliable and robust estimation of ligand binding affinity continues to be a challenge in drug design. Many current methods rely on molecular mechanics (MM) calculations which do not fully explain complex molecular interactions. Full quantum mechanical (QM) computation of the electronic state of protein-ligand complexes has recently become possible by the latest advances in the development of linear-scaling QM methods such as the ab initio fragment molecular orbital (FMO) method. This approximate molecular orbital method is sufficiently fast that it can be incorporated into the development cycle during structure-based drug design for the reliable estimation of ligand binding affinity. Additionally, the FMO method can be combined with approximations for entropy and solvation to make it applicable for binding affinity prediction for a broad range of target and chemotypes. Results We applied this method to examine the binding affinity for a series of published cyclin-dependent kinase 2 (CDK2) inhibitors. We calculated the binding affinity for 28 CDK2 inhibitors using the ab initio FMO method based on a number of X-ray crystal structures. The sum of the pair interaction energies (PIE) was calculated and used to explain the gas-phase enthalpic contribution to binding. The correlation of the ligand potencies to the protein-ligand interaction energies gained from FMO was examined and was seen to give a good correlation which outperformed three MM force field based scoring functions used to appoximate the free energy of binding. Although the FMO calculation allows for the enthalpic component of binding interactions to be understood at the quantum level, as it is an in vacuo single point calculation, the entropic component and solvation terms are neglected. For this reason a more accurate and predictive estimate for binding free energy was desired. Therefore, additional terms used to describe the protein-ligand interactions were then calculated to improve the correlation of the FMO derived values to experimental free energies of binding. These terms were used to account for the polar and non-polar solvation of the molecule estimated by the Poisson-Boltzmann equation and the solvent accessible surface area (SASA), respectively, as well as a correction term for ligand entropy. A quantitative structure-activity relationship (QSAR) model obtained by Partial Least Squares projection to latent structures (PLS) analysis of the ligand potencies and the calculated terms showed a strong correlation (r2 = 0.939, q2 = 0.896) for the 14 molecule test set which had a Pearson rank order correlation of 0.97. A training set of a further 14 molecules was well predicted (r2 = 0.842), and could be used to obtain meaningful estimations of the binding free energy. Conclusions Our results show that binding energies calculated with the FMO method correlate well with published data. Analysis of the terms used to derive the FMO energies adds greater understanding to the binding interactions than can be gained by MM methods. Combining this information with additional terms and creating a scaled model to describe the data results in more accurate predictions of ligand potencies than the absolute values obtained by FMO alone. PMID:21219630

  16. Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field.

    PubMed

    Bell, David R; Qi, Rui; Jing, Zhifeng; Xiang, Jin Yu; Mejias, Christopher; Schnieders, Michael J; Ponder, Jay W; Ren, Pengyu

    2016-11-09

    Molecular recognition is of paramount interest in many applications. Here we investigate a series of host-guest systems previously used in the SAMPL4 blind challenge by using molecular simulations and the AMOEBA polarizable force field. The free energy results computed by Bennett's acceptance ratio (BAR) method using the AMOEBA polarizable force field ranked favorably among the entries submitted to the SAMPL4 host-guest competition [Muddana, et al., J. Comput.-Aided Mol. Des., 2014, 28, 305-317]. In this work we conduct an in-depth analysis of the AMOEBA force field host-guest binding thermodynamics by using both BAR and the orthogonal space random walk (OSRW) methods. The binding entropy-enthalpy contributions are analyzed for each host-guest system. For systems of inordinate binding entropy-enthalpy values, we further examine the hydrogen bonding patterns and configurational entropy contribution. The binding mechanism of this series of host-guest systems varies from ligand to ligand, driven by enthalpy and/or entropy changes. Convergence of BAR and OSRW binding free energy methods is discussed. Ultimately, this work illustrates the value of molecular modelling and advanced force fields for the exploration and interpretation of binding thermodynamics.

  17. Analytical models of calcium binding in a calcium channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jinn-Liang; Eisenberg, Bob

    2014-08-21

    The anomalous mole fraction effect of L-type calcium channels is analyzed using a Fermi like distribution with the experimental data of Almers and McCleskey [J. Physiol. 353, 585 (1984)] and the atomic resolution model of Lipkind and Fozzard [Biochemistry 40, 6786 (2001)] of the selectivity filter of the channel. Much of the analysis is algebraic, independent of differential equations. The Fermi distribution is derived from the configuration entropy of ions and water molecules with different sizes, different valences, and interstitial voids between particles. It allows us to calculate potentials and distances (between the binding ion and the oxygen ions ofmore » the glutamate side chains) directly from the experimental data using algebraic formulas. The spatial resolution of these results is comparable with those of molecular models, but of course the accuracy is no better than that implied by the experimental data. The glutamate side chains in our model are flexible enough to accommodate different types of binding ions in different bath conditions. The binding curves of Na{sup +} and Ca{sup 2+} for [CaCl{sub 2}] ranging from 10{sup −8} to 10{sup −2} M with a fixed 32 mM background [NaCl] are shown to agree with published Monte Carlo simulations. The Poisson-Fermi differential equation—that includes both steric and correlation effects—is then used to obtain the spatial profiles of energy, concentration, and dielectric coefficient from the solvent region to the filter. The energy profiles of ions are shown to depend sensitively on the steric energy that is not taken into account in the classical rate theory. We improve the rate theory by introducing a steric energy that lumps the effects of excluded volumes of all ions and water molecules and empty spaces between particles created by Lennard-Jones type and electrostatic forces. We show that the energy landscape varies significantly with bath concentrations. The energy landscape is not constant.« less

  18. Using the Concept of Transient Complex for Affinity Predictions in CAPRI Rounds 20–27 and Beyond

    PubMed Central

    Qin, Sanbo; Zhou, Huan-Xiang

    2013-01-01

    Predictions of protein-protein binders and binding affinities have traditionally focused on features pertaining to the native complexes. In developing a computational method for predicting protein-protein association rate constants, we introduced the concept of transient complex after mapping the interaction energy surface. The transient complex is located at the outer boundary of the bound-state energy well, having near-native separation and relative orientation between the subunits but not yet formed most of the short-range native interactions. We found that the width of the binding funnel and the electrostatic interaction energy of the transient complex are among the features predictive of binders and binding affinities. These ideas were very promising for the five affinity-related targets (T43–45, 55, and 56) of CAPRI rounds 20–27. For T43, we ranked the single crystallographic complex as number 1 and were one of only two groups that clearly identified that complex as a true binder; for T44, we ranked the only design with measurable binding affinity as number 4. For the nine docking targets, continuing on our success in previous CAPRI rounds, we produced 10 medium-quality models for T47 and acceptable models for T48 and T49. We conclude that the interaction energy landscape and the transient complex in particular will complement existing features in leading to better prediction of binding affinities. PMID:23873496

  19. Simplified biased random walk model for RecA-protein-mediated homology recognition offers rapid and accurate self-assembly of long linear arrays of binding sites

    NASA Astrophysics Data System (ADS)

    Kates-Harbeck, Julian; Tilloy, Antoine; Prentiss, Mara

    2013-07-01

    Inspired by RecA-protein-based homology recognition, we consider the pairing of two long linear arrays of binding sites. We propose a fully reversible, physically realizable biased random walk model for rapid and accurate self-assembly due to the spontaneous pairing of matching binding sites, where the statistics of the searched sample are included. In the model, there are two bound conformations, and the free energy for each conformation is a weakly nonlinear function of the number of contiguous matched bound sites.

  20. Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot

    NASA Astrophysics Data System (ADS)

    Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.

    2017-02-01

    In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.

  1. Isoelectronic bound-exciton photoluminescence in strained beryllium-doped Si0.92Ge0.08 epilayers and Si0.92Ge0.08/Si superlattices at ambient and elevated hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Kim, Sangsig; Chang, Ganlin; Herman, Irving P.; Bevk, Joze; Moore, Karen L.; Hall, Dennis G.

    1997-03-01

    Photoluminescence (PL) from a beryllium-doped Si0.92Ge0.08 epilayer and three different beryllium-doped Si0.92Ge0.08/Si superlattices (SL's) commensurately grown on Si(100) substrates is examined at 9 K at ambient pressure and, for the epilayer and one SL, as a function of hydrostatic pressure. In each structure, excitons bind to the isoelectronic Be pairs in the strained Si0.92Ge0.08 layers. The zero-phonon PL peaks of the epilayer and the in situ doped 50-Å Si0.92Ge0.08/100-Å Si SL shift linearly with pressure toward lower energy at the rate of 0.68+/-0.03 and 0.97+/-0.03 meV/kbar, respectively, which are near the 0.77-meV/kbar value for Si:Be. The PL energies at ambient and elevated pressure are analyzed by accounting for strain, quantum confinement, and exciton binding. A modified Hopfield-Thomas-Lynch model is used to model exciton binding to the Be pairs. This model, in which potential wells bind electrons to a site (that then trap holes), predicts a distribution of electron binding energies when an inhomogeneous distribution of potential-well depths is used. This accounts for the large PL linewidth and the decrease of linewidth with increasing pressure, among other observations. In SL's, the exciton binding energy is shown to depend on the width of the wells as well as the spatial distribution of Be dopants in the superlattice. Also, at and above 58 kbar a very unusual peak is observed in one of the SL's, which is associated with a free-exciton peak in Si, that shifts very fast with pressure (-6.02+/-0.03 meV/kbar).

  2. Using FRET to Measure the Angle at Which a Protein Bends DNA: TBP Binding a TATA Box as a Model System

    ERIC Educational Resources Information Center

    Kugel, Jennifer F.

    2008-01-01

    An undergraduate biochemistry laboratory experiment that will teach the technique of fluorescence resonance energy transfer (FRET) while analyzing protein-induced DNA bending is described. The experiment uses the protein TATA binding protein (TBP), which is a general transcription factor that recognizes and binds specific DNA sequences known as…

  3. In silico molecular docking analysis of the human Argonaute 2 PAZ domain reveals insights into RNA interference.

    PubMed

    Kandeel, Mahmoud; Kitade, Yukio

    2013-07-01

    RNA interference (RNAi) is a critical cellular pathway activated by double stranded RNA and regulates the gene expression of target mRNA. During RNAi, the 3' end of siRNA binds with the PAZ domain, followed by release and rebinding in a cyclic manner, which deemed essential for proper gene silencing. Recently, we provided the forces underlying the recognition of small interfering RNA by PAZ in a computational study based on the structure of Drosophila Argonaute 2 (Ago2) PAZ domain. We have now reanalyzed these data within the view of the new available structures from human Argonauts. While the parameters of weak binding are correlated with higher (RNAi) in the Drosophila model, a different profile is predicted with the human Ago2 PAZ domain. On the basis of the human Ago2 PAZ models, the indicators of stronger binding as the total binding energy and the free energy were associated with better RNAi efficacy. This discrepancy might be attributable to differences in the binding site topology and the difference in the conformation of the bound nucleotides.

  4. Binding Energies of the Proton-Bound Amino Acid Dimers Gly·Gly, Ala·Ala, Gly·Ala, and Lys·Lys Measured by Blackbody Infrared Radiative Dissociation

    PubMed Central

    Price, William D.; Schnier, Paul D.

    2005-01-01

    Arrhenius activation energies in the zero-pressure limit for dissociation of gas-phase proton-bound homodimers of N,N-dimethylacetamide (N,N-DMA), glycine, alanine, and lysine and the heterodimer alanine·glycine were measured using blackbody infrared radiative dissociation (BIRD). In combination with master equation modeling of the kinetic data, binding energies of these dimers were determined. A value of 1.25 ± 0.05 eV is obtained for N,N-DMA and is in excellent agreement with that reported in the literature. The value obtained from the truncated Boltzmann model is significantly higher, indicating that the assumptions of this model do not apply to these ions. This is due to the competitive rates of photon emission and dissociation for these relatively large ions. The binding energies of the amino acid dimers are ~1.15 ± 0.05 eV and are indistinguishable despite the difference in their gas-phase basicity and structure. The threshold dissociation energies can be accurately modeled using a range of dissociation parameters and absorption/emission rates. However, the absolute values of the dissociation rates depend more strongly on the absorption/emission rates. For N,N-DMA and glycine, an accurate fit was obtained using frequencies and transition dipole moments calculated at the ab initio RHF/2-31G* and MP2/2-31G* level, respectively. In order to obtain a similar accuracy using values obtained from AM1 semiempirical calculations, it was necessary to multiply the transition dipole moments by a factor of 3. These results demonstrate that in combination with master equation modeling, BIRD can be used to obtain accurate threshold dissociation energies of relatively small ions of biological interest. PMID:17235378

  5. Comprehensive and Automated Linear Interaction Energy Based Binding-Affinity Prediction for Multifarious Cytochrome P450 Aromatase Inhibitors

    PubMed Central

    2017-01-01

    Cytochrome P450 aromatase (CYP19A1) plays a key role in the development of estrogen dependent breast cancer, and aromatase inhibitors have been at the front line of treatment for the past three decades. The development of potent, selective and safer inhibitors is ongoing with in silico screening methods playing a more prominent role in the search for promising lead compounds in bioactivity-relevant chemical space. Here we present a set of comprehensive binding affinity prediction models for CYP19A1 using our automated Linear Interaction Energy (LIE) based workflow on a set of 132 putative and structurally diverse aromatase inhibitors obtained from a typical industrial screening study. We extended the workflow with machine learning methods to automatically cluster training and test compounds in order to maximize the number of explained compounds in one or more predictive LIE models. The method uses protein–ligand interaction profiles obtained from Molecular Dynamics (MD) trajectories to help model search and define the applicability domain of the resolved models. Our method was successful in accounting for 86% of the data set in 3 robust models that show high correlation between calculated and observed values for ligand-binding free energies (RMSE < 2.5 kJ mol–1), with good cross-validation statistics. PMID:28776988

  6. Dual binding in cohesin-dockerin complexes: the energy landscape and the role of short, terminal segments of the dockerin module.

    PubMed

    Wojciechowski, Michał; Różycki, Bartosz; Huy, Pham Dinh Quoc; Li, Mai Suan; Bayer, Edward A; Cieplak, Marek

    2018-03-22

    The assembly of the polysaccharide degradating cellulosome machinery is mediated by tight binding between cohesin and dockerin domains. We have used an empirical model known as FoldX as well as molecular mechanics methods to determine the free energy of binding between a cohesin and a dockerin from Clostridium thermocellum in two possible modes that differ by an approximately 180° rotation. Our studies suggest that the full-length wild-type complex exhibits dual binding at room temperature, i.e., the two modes of binding have comparable probabilities at equilibrium. The ability to bind in the two modes persists at elevated temperatures. However, single-point mutations or truncations of terminal segments in the dockerin result in shifting the equilibrium towards one of the binding modes. Our molecular dynamics simulations of mechanical stretching of the full-length wild-type cohesin-dockerin complex indicate that each mode of binding leads to two kinds of stretching pathways, which may be mistakenly taken as evidence of dual binding.

  7. Effect of H2 binding on the nonadiabatic transition probability between singlet and triplet states of the [NiFe]-hydrogenase active site.

    PubMed

    Kaliakin, Danil S; Zaari, Ryan R; Varganov, Sergey A

    2015-02-12

    We investigate the effect of H2 binding on the spin-forbidden nonadiabatic transition probability between the lowest energy singlet and triplet electronic states of [NiFe]-hydrogenase active site model, using a velocity averaged Landau-Zener theory. Density functional and multireference perturbation theories were used to provide parameters for the Landau-Zener calculations. It was found that variation of the torsion angle between the terminal thiolate ligands around the Ni center induces an intersystem crossing between the lowest energy singlet and triplet electronic states in the bare active site and in the active site with bound H2. Potential energy curves between the singlet and triplet minima along the torsion angle and H2 binding energies to the two spin states were calculated. Upon H2 binding to the active site, there is a decrease in the torsion angle at the minimum energy crossing point between the singlet and triplet states. The probability of nonadiabatic transitions at temperatures between 270 and 370 K ranges from 35% to 32% for the active site with bound H2 and from 42% to 38% for the bare active site, thus indicating the importance of spin-forbidden nonadiabatic pathways for H2 binding on the [NiFe]-hydrogenase active site.

  8. Combined 3D-QSAR, molecular docking, molecular dynamics simulation, and binding free energy calculation studies on the 5-hydroxy-2H-pyridazin-3-one derivatives as HCV NS5B polymerase inhibitors.

    PubMed

    Yu, Haijing; Fang, Yu; Lu, Xia; Liu, Yongjuan; Zhang, Huabei

    2014-01-01

    The NS5B RNA-dependent RNA polymerase (RdRP) is a promising therapeutic target for developing novel anti-hepatitis C virus (HCV) drugs. In this work, a combined molecular modeling study was performed on a series of 193 5-hydroxy-2H-pyridazin-3-one derivatives as inhibitors of HCV NS5B Polymerase. The best 3D-QSAR models, including CoMFA and CoMSIA, are based on receptor (or docking). Furthermore, a 40-ns molecular dynamics (MD) simulation and binding free energy calculations using docked structures of NS5B with ten compounds, which have diverse structures and pIC50 values, were employed to determine the detailed binding process and to compare the binding modes of the inhibitors with different activities. On one side, the stability and rationality of molecular docking and 3D-QSAR results were validated by MD simulation. The binding free energies calculated by the MM-PBSA method gave a good correlation with the experimental biological activity. On the other side, by analyzing some differences between the molecular docking and the MD simulation results, we can find that the MD simulation could also remedy the defects of molecular docking. The analyses of the combined molecular modeling results have identified that Tyr448, Ser556, and Asp318 are the key amino acid residues in the NS5B binding pocket. The results from this study can provide some insights into the development of novel potent NS5B inhibitors. © 2013 John Wiley & Sons A/S.

  9. Tight-binding model of the photosystem II reaction center: application to two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Gelzinis, Andrius; Valkunas, Leonas; Fuller, Franklin D.; Ogilvie, Jennifer P.; Mukamel, Shaul; Abramavicius, Darius

    2013-07-01

    We propose an optimized tight-binding electron-hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments.

  10. Binding modes of dihydroquinoxalinones in a homology model of bradykinin receptor 1.

    PubMed

    Ha, Sookhee N; Hey, Pat J; Ransom, Rick W; Harrell, C Meacham; Murphy, Kathryn L; Chang, Ray; Chen, Tsing-Bau; Su, Dai-Shi; Markowitz, M Kristine; Bock, Mark G; Freidinger, Roger M; Hess, Fred J

    2005-05-27

    We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.

  11. Origin of strong dispersion in Hubbard insulators

    DOE PAGES

    Wang, Y.; Wohlfeld, K.; Moritz, B.; ...

    2015-08-10

    Using cluster perturbation theory, we explain the origin of the strongly dispersive feature found at high binding energy in the spectral function of the Hubbard model. By comparing the Hubbard and $t₋J₋3s$ model spectra, we show that this dispersion does not originate from either coupling to spin fluctuations ($∝ J$ ) or the free hopping ($∝ t$ ). Instead, it should be attributed to a long-range, correlated hopping $∝ t²/U$ which allows an effectively free motion of the hole within the same antiferromagnetic sublattice. This origin explains both the formation of the high-energy anomaly in the single-particle spectrum and themore » sensitivity of the high-binding-energy dispersion to the next-nearest-neighbor hopping $t'$ .« less

  12. Molecular modeling studies of HIV-1 reverse transcriptase nonnucleoside inhibitors: total energy of complexation as a predictor of drug placement and activity.

    PubMed Central

    Kroeger Smith, M. B.; Rouzer, C. A.; Taneyhill, L. A.; Smith, N. A.; Hughes, S. H.; Boyer, P. L.; Janssen, P. A.; Moereels, H.; Koymans, L.; Arnold, E.

    1995-01-01

    Computer modeling studies have been carried out on three nonnucleoside inhibitors complexed with human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), using crystal coordinate data from a subset of the protein surrounding the binding pocket region. Results from the minimizations of solvated complexes of 2-cyclopropyl-4-methyl-5,11-dihydro-5H-dipyrido[3,2-b :2',3'-e][1,4] diazepin-6-one (nevirapine), alpha-anilino-2, 6-dibromophenylacetamide (alpha-APA), and 8-chloro-tetrahydro-imidazo(4,5,1-jk)(1,4)-benzodiazepin-2(1H)-thi one (TIBO) show that all three inhibitors maintain a very similar conformational shape, roughly overlay each other in the binding pocket, and appear to function as pi-electron donors to aromatic side-chain residues surrounding the pocket. However, side-chain residues adapt to each bound inhibitor in a highly specific manner, closing down around the surface of the drug to make tight van der Waals contacts. Consequently, the results from the calculated minimizations reveal that only when the inhibitors are modeled in a site constructed from coordinate data obtained from their particular RT complex can the calculated binding energies be relied upon to predict the correct orientation of the drug in the pocket. In the correct site, these binding energies correlate with EC50 values determined for all three inhibitors in our laboratory. Analysis of the components of the binding energy reveals that, for all three inhibitors, solvation of the drug is endothermic, but solvation of the protein is exothermic, and the sum favors complex formation. In general, the protein is energetically more stable and the drug less stable in their complexes as compared to the reactant conformations. For all three inhibitors, interaction with the protein in the complex is highly favorable. Interactions of the inhibitors with individual residues correlate with crystallographic and site-specific mutational data. pi-Stacking interactions are important in binding and correlate with drug HOMO RHF/6-31G* energies. Modeling results are discussed with respect to the mechanism of complex formation and the design of nonnucleoside inhibitors that will be more effective against mutants of HIV-1 RT that are resistant to the currently available drugs. PMID:8535257

  13. Docking and Hydropathic Scoring of Polysubstituted Pyrrole Compounds with Anti-Tubulin Activity

    PubMed Central

    Tripathi, Ashutosh; Fornabaio, Micaela; Kellogg, Glen E.; Gupton, John T.; Gewirtz, David A.; Yeudall, W. Andrew; Vega, Nina E.; Mooberry, Susan L.

    2008-01-01

    Compounds that bind at the colchicine site of tubulin have drawn considerable attention with studies indicating that these agents suppress microtubule dynamics and inhibit tubulin polymerization. Data for eighteen polysubstituted pyrrole compounds are reported, including antiproliferative activity against human MDA-MB-435 cells and calculated free energies of binding following docking the compounds into models of αβ-tubulin. These docking calculations coupled with HINT interaction analyses are able to represent the complex structures and the binding modes of inhibitors such that calculated and measured free energies of binding correlate with an r2 of 0.76. Structural analysis of the binding pocket identifies important intermolecular contacts that mediate binding. As seen experimentally, the complex with JG-03-14 (3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2- carboxylic acid ethyl ester) is the most stable. These results illuminate the binding process and should be valuable in the design of new pyrrole-based colchicine site inhibitors as these compounds have very accessible syntheses. PMID:18083520

  14. Equivalence of two approaches for modeling ion permeation through a transmembrane channel with an internal binding site

    NASA Astrophysics Data System (ADS)

    Zhou, Huan-Xiang

    2011-04-01

    Ion permeation through transmembrane channels has traditionally been modeled using two different approaches. In one approach, the translocation of the permeant ion through the channel pore is modeled as continuous diffusion and the rate of ion transport is obtained from solving the steady-state diffusion equation. In the other approach, the translocation of the permeant ion through the pore is modeled as hopping along a discrete set of internal binding sites and the rate of ion transport is obtained from solving a set of steady-state rate equations. In a recent work [Zhou, J. Phys. Chem. Lett. 1, 1973 (2010)], the rate constants for binding to an internal site were further calculated by modeling binding as diffusion-influenced reactions. That work provided the foundation for bridging the two approaches. Here we show that, by representing a binding site as an energy well, the two approaches indeed give the same result for the rate of ion transport.

  15. Extended Lagrangian formulation of charge-constrained tight-binding molecular dynamics.

    PubMed

    Cawkwell, M J; Coe, J D; Yadav, S K; Liu, X-Y; Niklasson, A M N

    2015-06-09

    The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.

  16. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series.

    PubMed

    Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Lionta, Evanthia; Heil, Jochen; Kast, Stefan M

    2017-07-24

    Water molecules play an essential role for mediating interactions between ligands and protein binding sites. Displacement of specific water molecules can favorably modulate the free energy of binding of protein-ligand complexes. Here, the nature of water interactions in protein binding sites is investigated by 3D RISM (three-dimensional reference interaction site model) integral equation theory to understand and exploit local thermodynamic features of water molecules by ranking their possible displacement in structure-based design. Unlike molecular dynamics-based approaches, 3D RISM theory allows for fast and noise-free calculations using the same detailed level of solute-solvent interaction description. Here we correlate molecular water entities instead of mere site density maxima with local contributions to the solvation free energy using novel algorithms. Distinct water molecules and hydration sites are investigated in multiple protein-ligand X-ray structures, namely streptavidin, factor Xa, and factor VIIa, based on 3D RISM-derived free energy density fields. Our approach allows the semiquantitative assessment of whether a given structural water molecule can potentially be targeted for replacement in structure-based design. Finally, PLS-based regression models from free energy density fields used within a 3D-QSAR approach (CARMa - comparative analysis of 3D RISM Maps) are shown to be able to extract relevant information for the interpretation of structure-activity relationship (SAR) trends, as demonstrated for a series of serine protease inhibitors.

  17. Comparative studies on structures, mechanical properties, sensitivity, stabilities and detonation performance of CL-20/TNT cocrystal and composite explosives by molecular dynamics simulation.

    PubMed

    Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao; Li, Zhen

    2017-09-19

    To investigate and compare the differences of structures and properties of CL-20/TNT cocrystal and composite explosives, the CL-20/TNT cocrystal and composite models were established. Molecular dynamics simulations were performed to investigate the structures, mechanical properties, sensitivity, stabilities and detonation performance of cocrystal and composite models with COMPASS force field in NPT ensemble. The lattice parameters, mechanical properties, binding energies, interaction energy of trigger bond, cohesive energy density and detonation parameters were determined and compared. The results show that, compared with pure CL-20, the rigidity and stiffness of cocrystal and composite models decreased, while plastic properties and ductility increased, so mechanical properties can be effectively improved by adding TNT into CL-20 and the cocrystal model has better mechanical properties. The interaction energy of the trigger bond and the cohesive energy density is in the order of CL-20/TNT cocrystal > CL-20/TNT composite > pure CL-20, i.e., cocrystal model is less sensitive than CL-20 and the composite model, and has the best safety parameters. Binding energies show that the cocrystal model has higher intermolecular interaction energy values than the composite model, thus illustrating the better stability of the cocrystal model. Detonation parameters vary as CL-20 > cocrystal > composite, namely, the energy density and power of cocrystal and composite model are weakened; however, the CL-20/TNT cocrystal explosive still has desirable energy density and detonation performance. This results presented in this paper help offer some helpful guidance to better understand the mechanism of CL-20/TNT cocrystal explosives and provide some theoretical assistance for cocrystal explosive design.

  18. Concepts in receptor optimization: targeting the RGD peptide.

    PubMed

    Chen, Wei; Chang, Chia-en; Gilson, Michael K

    2006-04-12

    Synthetic receptors have a wide range of potential applications, but it has been difficult to design low molecular weight receptors that bind ligands with high, "proteinlike" affinities. This study uses novel computational methods to understand why it is hard to design a high-affinity receptor and to explore the limits of affinity, with the bioactive peptide RGD as a model ligand. The M2 modeling method is found to yield excellent agreement with experiment for a known RGD receptor and then is used to analyze a series of receptors generated in silico with a de novo design algorithm. Forces driving binding are found to be systematically opposed by proportionate repulsions due to desolvation and entropy. In particular, strong correlations are found between Coulombic attractions and the electrostatic desolvation penalty and between the mean energy change on binding and the cost in configurational entropy. These correlations help explain why it is hard to achieve high affinity. The change in surface area upon binding is found to correlate poorly with affinity within this series. Measures of receptor efficiency are formulated that summarize how effectively a receptor uses surface area, total energy, and Coulombic energy to achieve affinity. Analysis of the computed efficiencies suggests that a low molecular weight receptor can achieve proteinlike affinity. It is also found that macrocyclization of a receptor can, unexpectedly, increase the entropy cost of binding because the macrocyclic structure further restricts ligand motion.

  19. Calculations of antiproton-nucleus quasi-bound states using the Paris N bar N potential

    NASA Astrophysics Data System (ADS)

    Hrtánková, Jaroslava; Mareš, Jiří

    2018-01-01

    An optical potential constructed using the p bar N scattering amplitudes derived from the 2009 version of the Paris N bar N potential is applied in calculations of p bar quasi-bound states in selected nuclei across the periodic table. A proper self-consistent procedure for treating energy dependence of the amplitudes in a nucleus appears crucial for evaluating p bar binding energies and widths. Particular attention is paid to the role of P-wave amplitudes. While the P-wave potential nearly does not affect calculated p bar binding energies, it reduces considerably the corresponding widths. The Paris S-wave potential supplemented by a phenomenological P-wave term yields in dynamical calculations p bar binding energies Bpbar ≈ 200 MeV and widths Γpbar ∼ 200- 230 MeV, which is very close to the values obtained within the RMF model consistent with p bar -atom data.

  20. Mechanical work makes important contributions to surface chemistry at steps.

    PubMed

    Francis, M F; Curtin, W A

    2015-02-13

    The effect of mechanical strain on the binding energy of adsorbates to late transition metals is believed to be entirely controlled by electronic factors, with tensile stress inducing stronger binding. Here we show, via computation, that mechanical strain of late transition metals can modify binding at stepped surfaces opposite to well-established trends on flat surfaces. The mechanism driving the trend is mechanical, arising from the relaxation of stored mechanical energy. The mechanical energy change can be larger than, and of opposite sign than, the energy changes due to electronic effects and leads to a violation of trends predicted by the widely accepted electronic 'd-band' model. This trend has a direct impact on catalytic activity, which is demonstrated here for methanation, where biaxial tension is predicted to shift the activity of nickel significantly, reaching the peak of the volcano plot and comparable to cobalt and ruthenium.

  1. Inferring the microscopic surface energy of protein-protein interfaces from mutation data.

    PubMed

    Moal, Iain H; Dapkūnas, Justas; Fernández-Recio, Juan

    2015-04-01

    Mutations at protein-protein recognition sites alter binding strength by altering the chemical nature of the interacting surfaces. We present a simple surface energy model, parameterized with empirical ΔΔG values, yielding mean energies of -48 cal mol(-1) Å(-2) for interactions between hydrophobic surfaces, -51 to -80 cal mol(-1) Å(-2) for surfaces of complementary charge, and 66-83 cal mol(-1) Å(-2) for electrostatically repelling surfaces, relative to the aqueous phase. This places the mean energy of hydrophobic surface burial at -24 cal mol(-1) Å(-2) . Despite neglecting configurational entropy and intramolecular changes, the model correlates with empirical binding free energies of a functionally diverse set of rigid-body interactions (r = 0.66). When used to rerank docking poses, it can place near-native solutions in the top 10 for 37% of the complexes evaluated, and 82% in the top 100. The method shows that hydrophobic burial is the driving force for protein association, accounting for 50-95% of the cohesive energy. The model is available open-source from http://life.bsc.es/pid/web/surface_energy/ and via the CCharpPPI web server http://life.bsc.es/pid/ccharppi/. © 2015 Wiley Periodicals, Inc.

  2. Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: A density functional theory study using a continuum solvation model.

    PubMed

    Choi, Chang Min; Heo, Jiyoung; Kim, Nam Joon

    2012-08-08

    Dibenzo-18-crown-6 (DB18C6) exhibits the binding selectivity for alkali metal cations in solution phase. In this study, we investigate the main forces that determine the binding selectivity of DB18C6 for the metal cations in aqueous solution using the density functional theory (DFT) and the conductor-like polarizable continuum model (CPCM). The bond dissociation free energies (BDFE) of DB18C6 complexes with alkali metal cations (M+-DB18C6, M = Li, Na, K, Rb, and Cs) in aqueous solution are calculated at the B3LYP/6-311++G(d,p)//B3LYP/6-31 + G(d) level using the CPCM. It is found that the theoretical BDFE is the largest for K+-DB18C6 and decreases as the size of the metal cation gets larger or smaller than that of K+, which agrees well with previous experimental results. The solvation energy of M+-DB18C6 in aqueous solution plays a key role in determining the binding selectivity of DB18C6. In particular, the non-electrostatic dispersion interaction between the solute and solvent, which depends strongly on the complex structure, is largely responsible for the different solvation energies of M+-DB18C6. This study shows that the implicit solvation model like the CPCM works reasonably well in predicting the binding selectivity of DB18C6 in aqueous solution.

  3. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations

    PubMed Central

    Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-kang

    2013-01-01

    Aim: To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Methods: Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Results: Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π–π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. Conclusion: The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met. PMID:24056705

  4. A computational approach for predicting off-target toxicity of antiviral ribonucleoside analogues to mitochondrial RNA polymerase.

    PubMed

    Freedman, Holly; Winter, Philip; Tuszynski, Jack; Tyrrell, D Lorne; Houghton, Michael

    2018-06-22

    In the development of antiviral drugs that target viral RNA-dependent RNA polymerases, off-target toxicity caused by the inhibition of the human mitochondrial RNA polymerase (POLRMT) is a major liability. Therefore, it is essential that all new ribonucleoside analogue drugs be accurately screened for POLRMT inhibition. A computational tool that can accurately predict NTP binding to POLRMT could assist in evaluating any potential toxicity and in designing possible salvaging strategies. Using the available crystal structure of POLRMT bound to an RNA transcript, here we created a model of POLRMT with an NTP molecule bound in the active site. Furthermore, we implemented a computational screening procedure that determines the relative binding free energy of an NTP analogue to POLRMT by free energy perturbation (FEP), i.e. a simulation in which the natural NTP molecule is slowly transformed into the analogue and back. In each direction, the transformation was performed over 40 ns of simulation on our IBM Blue Gene Q supercomputer. This procedure was validated across a panel of drugs for which experimental dissociation constants were available, showing that NTP relative binding free energies could be predicted to within 0.97 kcal/mol of the experimental values on average. These results demonstrate for the first time that free-energy simulation can be a useful tool for predicting binding affinities of NTP analogues to a polymerase. We expect that our model, together with similar models of viral polymerases, will be very useful in the screening and future design of NTP inhibitors of viral polymerases that have no mitochondrial toxicity. © 2018 Freedman et al.

  5. Structure-affinity relationships for the binding of actinomycin D to DNA

    NASA Astrophysics Data System (ADS)

    Gallego, José; Ortiz, Angel R.; de Pascual-Teresa, Beatriz; Gago, Federico

    1997-03-01

    Molecular models of the complexes between actinomycin D and 14 different DNA hexamers were built based on the X-ray crystal structure of the actinomycin-d(GAAGCTTC)2 complex. The DNA sequences included the canonical GpC binding step flanked by different base pairs, nonclassical binding sites such as GpG and GpT, and sites containing 2,6-diamino- purine. A good correlation was found between the intermolecular interaction energies calculated for the refined complexes and the relative preferences of actinomycin binding to standard and modified DNA. A detailed energy decomposition into van der Waals and electrostatic components for the interactions between the DNA base pairs and either the chromophore or the peptidic part of the antibiotic was performed for each complex. The resulting energy matrix was then subjected to principal component analysis, which showed that actinomycin D discriminates among different DNA sequences by an interplay of hydrogen bonding and stacking interactions. The structure-affinity relationships for this important antitumor drug are thus rationalized and may be used to advantage in the design of novel sequence-specific DNA-binding agents.

  6. Tension-induced binding of semiflexible biopolymers

    NASA Astrophysics Data System (ADS)

    Benetatos, Panayotis; von der Heydt, Alice; Zippelius, Annette

    2015-03-01

    We investigate theoretically the effect of polymer tension on the collective behaviour of reversible cross-links. We use a model of two parallel-aligned, weakly-bending wormlike chains with a regularly spaced sequence of binding sites subjected to a tensile force. Reversible cross-links attach and detach at the binding sites with an affinity controlled by a chemical potential. In a mean-field approach, we calculate the free energy of the system and we show the emergence of a free energy barrier which controls the reversible (un)binding. The tension affects the conformational entropy of the chains which competes with the binding energy of the cross-links. This competition gives rise to a sudden increase in the fraction of bound sites as the polymer tension increases. The force-induced first-order transition in the number of cross-links implies a sudden force-induced stiffening of the effective stretching modulus of the polymers. This mechanism may be relevant to the formation and stress-induced strengthening of stress fibers in the cytoskeleton. We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) via grant SFB-937/A1.

  7. Binding Energy Calculation of Patchouli Alcohol Isomer Cyclooxygenase Complexes Suggested as COX-1/COX-2 Selective Inhibitor

    PubMed Central

    Mahdi, Chanif; Nurdiana, Nurdiana; Kikuchi, Takheshi; Fatchiyah, Fatchiyah

    2014-01-01

    To understand the structural features that dictate the selectivity of the two isoforms of the prostaglandin H2 synthase (PGHS/COX), the three-dimensional (3D) structure of COX-1/COX-2 was assessed by means of binding energy calculation of virtual molecular dynamic with using ligand alpha-Patchouli alcohol isomers. Molecular interaction studies with COX-1 and COX-2 were done using the molecular docking tools by Hex 8.0. Interactions were further visualized by using Discovery Studio Client 3.5 software tool. The binding energy of molecular interaction was calculated by AMBER12 and Virtual Molecular Dynamic 1.9.1 software. The analysis of the alpha-Patchouli alcohol isomer compounds showed that all alpha-Patchouli alcohol isomers were suggested as inhibitor of COX-1 and COX-2. Collectively, the scoring binding energy calculation (with PBSA Model Solvent) of alpha-Patchouli alcohol isomer compounds (CID442384, CID6432585, CID3080622, CID10955174, and CID56928117) was suggested as candidate for a selective COX-1 inhibitor and CID521903 as nonselective COX-1/COX-2. PMID:25484897

  8. Determination of layer-dependent exciton binding energies in few-layer black phosphorus

    PubMed Central

    Zhang, Guowei; Chaves, Andrey; Huang, Shenyang; Wang, Fanjie; Xing, Qiaoxia; Low, Tony; Yan, Hugen

    2018-01-01

    The attraction between electrons and holes in semiconductors forms excitons, which largely determine the optical properties of the hosting material, and hence the device performance, especially for low-dimensional systems. Mono- and few-layer black phosphorus (BP) are emerging two-dimensional (2D) semiconductors. Despite its fundamental importance and technological interest, experimental investigation of exciton physics has been rather limited. We report the first systematic measurement of exciton binding energies in ultrahigh-quality few-layer BP by infrared absorption spectroscopy, with layer (L) thickness ranging from 2 to 6 layers. Our experiments allow us to determine the exciton binding energy, decreasing from 213 meV (2L) to 106 meV (6L). The scaling behavior with layer numbers can be well described by an analytical model, which takes into account the nonlocal screening effect. Extrapolation to free-standing monolayer yields a large binding energy of ~800 meV. Our study provides insights into 2D excitons and their crossover from 2D to 3D, and demonstrates that few-layer BP is a promising high-quality optoelectronic material for potential infrared applications. PMID:29556530

  9. Computer modeling of the neurotoxin binding site of acetylcholine receptor spanning residues 185 through 196

    NASA Technical Reports Server (NTRS)

    Garduno-Juarez, R.; Shibata, M.; Zielinski, T. J.; Rein, R.

    1987-01-01

    A model of the complex between the acetylcholine receptor and the snake neurotoxin, cobratoxin, was built by molecular model building and energy optimization techniques. The experimentally identified functionally important residues of cobratoxin and the dodecapeptide corresponding to the residues 185-196 of acetylcholine receptor alpha subunit were used to build the model. Both cis and trans conformers of cyclic L-cystine portion of the dodecapeptide were examined. Binding residues independently identified on cobratoxin are shown to interact with the dodecapeptide AChR model.

  10. Generalized virial theorem for massless electrons in graphene and other Dirac materials

    NASA Astrophysics Data System (ADS)

    Sokolik, A. A.; Zabolotskiy, A. D.; Lozovik, Yu. E.

    2016-05-01

    The virial theorem for a system of interacting electrons in a crystal, which is described within the framework of the tight-binding model, is derived. We show that, in the particular case of interacting massless electrons in graphene and other Dirac materials, the conventional virial theorem is violated. Starting from the tight-binding model, we derive the generalized virial theorem for Dirac electron systems, which contains an additional term associated with a momentum cutoff at the bottom of the energy band. Additionally, we derive the generalized virial theorem within the Dirac model using the minimization of the variational energy. The obtained theorem is illustrated by many-body calculations of the ground-state energy of an electron gas in graphene carried out in Hartree-Fock and self-consistent random-phase approximations. Experimental verification of the theorem in the case of graphene is discussed.

  11. Grain boundaries in bcc-Fe: a density-functional theory and tight-binding study

    NASA Astrophysics Data System (ADS)

    Wang, Jingliang; Madsen, Georg K. H.; Drautz, Ralf

    2018-02-01

    Grain boundaries (GBs) have a significant influence on material properties. In the present paper, we calculate the energies of eleven low-Σ ({{Σ }}≤slant 13) symmetrical tilt GBs and two twist GBs in ferromagnetic bcc iron using first-principles density functional theory (DFT) calculations. The results demonstrate the importance of a sufficient sampling of initial rigid body translations in all three directions. We show that the relative GB energies can be explained by the miscoordination of atoms at the GB region. While the main features of the studied GB structures were captured by previous empirical interatomic potential calculations, it is shown that the absolute values of GB energies calculated were substantially underestimated. Based on DFT-calculated GB structures and energies, we construct a new d-band orthogonal tight-binding (TB) model for bcc iron. The TB model is validated by its predictive power on all the studied GBs. We apply the TB model to block boundaries in lath martensite and demonstrate that the experimentally observed GB character distribution can be explained from the viewpoint of interface energy.

  12. Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding.

    PubMed

    Goldman, Nir; Aradi, Bálint; Lindsey, Rebecca K; Fried, Laurence E

    2018-05-08

    We detail the creation of a multicenter density functional tight binding (DFTB) model for hydrogen on δ-plutonium, using a framework of new Slater-Koster interaction parameters and a repulsive energy based on the Chebyshev Interaction Model for Efficient Simulation (ChIMES), where two- and three-center atomic interactions are represented by linear combinations of Chebyshev polynomials. We find that our DFTB/ChIMES model yields a total electron density of states for bulk δ-Pu that compares well to that from Density Functional Theory, as well as to a grid of energy calculations representing approximate H 2 dissociation paths on the δ-Pu (100) surface. We then perform molecular dynamics simulations and minimum energy pathway calculations to determine the energetics of surface dissociation and subsurface diffusion on the (100) and (111) surfaces. Our approach allows for the efficient creation of multicenter repulsive energies with a relatively small investment in initial DFT calculations. Our efforts are particularly pertinent to studies that rely on quantum calculations for interpretation and validation, such as experimental determination of chemical reactivity both on surfaces and in condensed phases.

  13. Binding of cyclic carboxylates to octa-acid deep-cavity cavitand

    NASA Astrophysics Data System (ADS)

    Gibb, Corinne L. D.; Gibb, Bruce C.

    2014-04-01

    As part of the fourth statistical assessment of modeling of proteins and ligands (sampl.eyesopen.com) prediction challenge, the strength of association of nine guests ( 1- 9) binding to octa-acid host was determined by a combination of 1H NMR and isothermal titration calorimetry. Association constants in sodium tetraborate buffered (pH 9.2) aqueous solution ranged from 5.39 × 102 M-1 in the case of benzoate 1, up to 3.82 × 105 M-1 for trans-4-methylcyclohexanoate 7. Overall, the free energy difference between the free energies of complexation of these weakest and strongest binding guests was ΔΔG° = 3.88 kcal mol-1. Based on a multitude of previous studies, the anticipated order of strength of binding was close to that which was actually obtained. However, the binding of guest 3 (4-ethylbenzoate) was considerably stronger than initially estimated.

  14. Structured and Unstructured Binding of an Intrinsically Disordered Protein as Revealed by Atomistic Simulations.

    PubMed

    Ithuralde, Raúl Esteban; Roitberg, Adrián Enrique; Turjanski, Adrián Gustavo

    2016-07-20

    Intrinsically disordered proteins (IDPs) are a set of proteins that lack a definite secondary structure in solution. IDPs can acquire tertiary structure when bound to their partners; therefore, the recognition process must also involve protein folding. The nature of the transition state (TS), structured or unstructured, determines the binding mechanism. The characterization of the TS has become a major challenge for experimental techniques and molecular simulations approaches since diffusion, recognition, and binding is coupled to folding. In this work we present atomistic molecular dynamics (MD) simulations that sample the free energy surface of the coupled folding and binding of the transcription factor c-myb to the cotranscription factor CREB binding protein (CBP). This process has been recently studied and became a model to study IDPs. Despite the plethora of available information, we still do not know how c-myb binds to CBP. We performed a set of atomistic biased MD simulations running a total of 15.6 μs. Our results show that c-myb folds very fast upon binding to CBP with no unique pathway for binding. The process can proceed through both structured or unstructured TS's with similar probabilities. This finding reconciles previous seemingly different experimental results. We also performed Go-type coarse-grained MD of several structured and unstructured models that indicate that coupled folding and binding follows a native contact mechanism. To the best of our knowledge, this is the first atomistic MD simulation that samples the free energy surface of the coupled folding and binding processes of IDPs.

  15. Cooperative Allosteric Ligand Binding in Calmodulin

    NASA Astrophysics Data System (ADS)

    Nandigrami, Prithviraj

    Conformational dynamics is often essential for a protein's function. For example, proteins are able to communicate the effect of binding at one site to a distal region of the molecule through changes in its conformational dynamics. This so called allosteric coupling fine tunes the sensitivity of ligand binding to changes in concentration. A conformational change between a "closed" (apo) and an "open" (holo) conformation upon ligation often produces this coupling between binding sites. Enhanced sensitivity between the unbound and bound ensembles leads to a sharper binding curve. There are two basic conceptual frameworks that guide our visualization about ligand binding mechanisms. First, a ligand can stabilize the unstable "open" state from a dynamic ensemble of conformations within the unbound basin. This binding mechanism is called conformational selection. Second, a ligand can weakly bind to the low-affinity "closed" state followed by a conformational transition to the "open" state. In this dissertation, I focus on molecular dynamics simulations to understand microscopic origins of ligand binding cooperativity. A minimal model of allosteric binding transitions must include ligand binding/unbinding events, while capturing the transition mechanism between two distinct meta-stable free energy basins. Due in part to computational timescales limitations, work in this dissertation describes large-scale conformational transitions through a simplified, coarse-grained model based on the energy basins defined by the open and closed conformations of the protein Calmodulin (CaM). CaM is a ubiquitous calcium-binding protein consisting of two structurally similar globular domains connected by a flexible linker. The two domains of CaM, N-terminal domain (nCaM) and C-terminal domain (cCaM) consists of two helix-loop-helix motifs (the EF-hands) connected by a flexible linker. Each domain of CaM consists of two binding loops and binds 2 calcium ions each. The intact domain binds up to 4 calcium ions. The simulations use a coupled molecular dynamics/monte carlo scheme where the protein dynamics is simulated explicitly, while ligand binding/unbinding are treated implicitly. In the model, ligand binding/unbinding events coupled with a conformational change of the protein within the grand canonical ensemble. Here, ligand concentration is controlled through the chemical potential (micro). This allows us to use a simple thermodynamic model to analyze the simulated data and quantify binding cooperativity. Simulated binding titration curves are calculated through equilibrium simulations at different values of micro. First, I study domain opening transitions of isolated nCaM and cCaM in the absence of calcium. This work is motivated by results from a recent analytic variational model that predicts distinct domain opening transition mechanism for the domains of CaM. This is a surprising result because the domains have the same folded state topology. In the simulations, I find the two domains of CaM have distinct transition mechanism over a broad range of temperature, in harmony with the analytic predictions. In particular, the simulated transition mechanism of nCaM follows a two-state behavior, while domain opening in cCaM involves global unfolding and refolding of the tertiary structure. The unfolded intermediate also appears in the landscape of nCaM, but at a higher temperature than it appears in cCaM's energy landscape. This is consistent with nCaM's higher thermal stability. Under approximate physiological conditions, majority of the sampled transitions in cCaM involves unfolding and refolding during conformational change. Kinetically, the transient unfolding and refolding in cCaM significantly slows the domain opening and closing rates in cCaM. Second, I investigate the structural origins of binding affinity and allosteric cooperativity of binding 2 calcium-ions to each domain of CaM. In my work, I predict the order of binding strength of CaM's loops. I analyze simulated binding curves within the framework of the classic Monod-Wyman-Changeux (MWC) model of allostery to extract the binding free energies to the closed and open ensembles. The simulations predict that cCaM binds calcium with higher affinity and greater cooperativity than nCaM. Where it is possible to compare, these predictions are in good agreement with experimental results. The analysis of the simulations offers a rationale for why the two domains differ in cooperativity: the higher cooperativity of cCaM is due to larger difference in affinity of its binding loops. Third, I extend the work to investigate structural origins of binding cooperativity of 4 calcium-ions to intact CaM. I characterize the microscopic cooperativities of each ligation state and provide a kinetic description of the binding mechanism. Due to the heterogeneous nature of CaM's loops, as predicted in our simulations of isolated domains, I focus on investigating the influence of this heterogeneity on the kinetic flux of binding pathways as a function of concentration. The formalism developed for Network Models of protein folding kinetics, is used to evaluate the directed flux of all possible pathways between unligated and fully loaded CaM. (Abstract shortened by ProQuest.).

  16. In silico evolution of the Drosophila gap gene regulatory sequence under elevated mutational pressure.

    PubMed

    Chertkova, Aleksandra A; Schiffman, Joshua S; Nuzhdin, Sergey V; Kozlov, Konstantin N; Samsonova, Maria G; Gursky, Vitaly V

    2017-02-07

    Cis-regulatory sequences are often composed of many low-affinity transcription factor binding sites (TFBSs). Determining the evolutionary and functional importance of regulatory sequence composition is impeded without a detailed knowledge of the genotype-phenotype map. We simulate the evolution of regulatory sequences involved in Drosophila melanogaster embryo segmentation during early development. Natural selection evaluates gene expression dynamics produced by a computational model of the developmental network. We observe a dramatic decrease in the total number of transcription factor binding sites through the course of evolution. Despite a decrease in average sequence binding energies through time, the regulatory sequences tend towards organisations containing increased high affinity transcription factor binding sites. Additionally, the binding energies of separate sequence segments demonstrate ubiquitous mutual correlations through time. Fewer than 10% of initial TFBSs are maintained throughout the entire simulation, deemed 'core' sites. These sites have increased functional importance as assessed under wild-type conditions and their binding energy distributions are highly conserved. Furthermore, TFBSs within close proximity of core sites exhibit increased longevity, reflecting functional regulatory interactions with core sites. In response to elevated mutational pressure, evolution tends to sample regulatory sequence organisations with fewer, albeit on average, stronger functional transcription factor binding sites. These organisations are also shaped by the regulatory interactions among core binding sites with sites in their local vicinity.

  17. Rapid calculation method for Frenkel-type two-exciton states in one to three dimensions

    NASA Astrophysics Data System (ADS)

    Ajiki, Hiroshi

    2014-07-01

    Biexciton and two-exciton dissociated states of Frenkel-type excitons are well described by a tight-binding model with a nearest-neighbor approximation. Such two-exciton states in a finite-size lattice are usually calculated by numerical diagonalization of the Hamiltonian, which requires an increasing amount of computational time and memory as the lattice size increases. I develop here a rapid, memory-saving method to calculate the energies and wave functions of two-exciton states by employing a bisection method. In addition, an attractive interaction between two excitons in the tight-binding model can be obtained directly so that the biexciton energy agrees with the observed energy, without the need for the trial-and-error procedure implemented in the numerical diagonalization method.

  18. On Mass Polarization Effect in Three-Body Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Filikhin, I.; Kezerashvili, R. Ya.; Suslov, V. M.; Vlahovic, B.

    2018-05-01

    The mass polarization effect is considered for different three-body nuclear AAB systems having a strongly bound AB and unbound AA subsystems. We employ the Faddeev equations for calculations and the Schrödinger equation for analysis of the contribution of the mass polarization term of the kinetic-energy operator. For a three-boson system the mass polarization effect is determined by the difference of the doubled binding energy of the AB subsystem 2E2 and the three-body binding energy E3(V_{AA}=0) when the interaction between the identical particles is omitted. In this case: | E3(V_{AA}=0)| >2| E2| . In the case of a system complicated by isospins(spins), such as the kaonic clusters K-K-p and ppK-, a similar evaluation is impossible. For these systems it is found that | E3(V_{AA}=0)| <2| E2| . A model with an AB potential averaged over spin(isospin) variables transforms the latter case to the first one. The mass polarization effect calculated within this model is essential for the kaonic clusters. In addition we have obtained the relation |E_3|≤|2E_2| for the binding energy of the kaonic clusters.

  19. Material Science Smart Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, A. I.; Sabirianov, R. F.; Namavar, Fereydoon

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics dependsmore » nonmonotonically on the dielectric constant of ceramic, ε C. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate ε C below or about 35 (in particularly ZrO 2 or Ta 2O 5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materials (ε C>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.« less

  20. Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Do, Thanh Nhut; Ong, Xuanwei; Chan, Yinthai; Tan, Howe-Siang

    2016-12-01

    We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.

  1. Interfacial disorder drives charge separation in molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Willard, Adam

    One of the fundamental microscopic processes in photocurrent generation is the dissociation of neutral photo-excitations (i.e., Frenkel excitons) into free charge carriers (i.e., electrons and holes). This process requires the physical separation of oppositely charged electrons and holes, which are held to together by an attractive electrostatic binding energy. In traditional inorganic-based photovoltaic (PV) materials, this binding energy is generally small and easily overcome, however, in organic-based PVs (OPVs) the exciton binding energy can significantly exceed thermal energies. The inability of bound charges to overcome this large binding energy has been implicated as a primary source of efficiency loss in OPVs. Here I present results from our recent efforts to explore the role of static molecular disorder in mediating this process. Using a simple lattice model of exciton dynamics we demonstrate that random spatial variations in the energetic landscape can mitigate the attractive Coulomb interaction between electrons and holes. We show that this effect manifests as a reduction in the free energy barrier for exciton dissociation that grows more pronounced with increasing disorder. By considering the competition between this thermodynamic effect and the disorder-induced slowing of dissociation kinetics we demonstrate that exciton dissociation yields are expected to depend non-monotonically on the degree of static disorder.

  2. In Silico Analyses of Substrate Interactions with Human Serum Paraoxonase 1

    DTIC Science & Technology

    2008-01-01

    substrate interactions of HuPON1 remains elusive. In this study, we apply homology modeling, docking, and molecular dynamic (MD) simulations to probe the...mod- eling; docking; molecular dynamics simulations ; binding free energy decomposition. 486 PROTEINS Published 2008 WILEY-LISS, INC. yThis article is a...apply homology modeling, docking, and molecular dynamic (MD) simulations to probe the binding interactions of HuPON1 with representative substrates. The

  3. Kinetic rate constant prediction supports the conformational selection mechanism of protein binding.

    PubMed

    Moal, Iain H; Bates, Paul A

    2012-01-01

    The prediction of protein-protein kinetic rate constants provides a fundamental test of our understanding of molecular recognition, and will play an important role in the modeling of complex biological systems. In this paper, a feature selection and regression algorithm is applied to mine a large set of molecular descriptors and construct simple models for association and dissociation rate constants using empirical data. Using separate test data for validation, the predicted rate constants can be combined to calculate binding affinity with accuracy matching that of state of the art empirical free energy functions. The models show that the rate of association is linearly related to the proportion of unbound proteins in the bound conformational ensemble relative to the unbound conformational ensemble, indicating that the binding partners must adopt a geometry near to that of the bound prior to binding. Mirroring the conformational selection and population shift mechanism of protein binding, the models provide a strong separate line of evidence for the preponderance of this mechanism in protein-protein binding, complementing structural and theoretical studies.

  4. Specificity in Transition State Binding: The Pauling Model Revisited

    PubMed Central

    Amyes, Tina L.; Richard, John P.

    2013-01-01

    Linus Pauling proposed that the large rate accelerations for enzymes are due to the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogs of the transition states for enzymatic reactions often act as tight-binding binding inhibitors provided early support for this simple and elegant proposal. We review experimental results which support the proposal that Pauling’s model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-CoA:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of CoA are responsible for a rate increase of 3 × 1012-fold, which is close to the estimated total 5 × 1013-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide a ca. 12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5′-monophosphate decarboxylase and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6 – 8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared with the free enzyme. Evidence is presented that supports a model in which the binding energy of the phosphite dianion piece, or the phosphodianion group of the whole substrate, is utilized to drive an enzyme conformational change from an inactive open form EO to an active closed form EC, by closure of a phosphodianion gripper loop. Members of the enolase and haloalkanoic acid dehalogenase superfamilies use variable capping domains to interact with nonreacting portions of the substrate and sequester the substrate from interaction with bulk solvent. Interactions of this capping domain with the phenyl group of mandelate have been shown to activate mandelate racemase for catalysis of deprotonation of α-carbonyl carbon. We propose that an important function of these capping domains is to utilize the binding interactions with nonreacting portions of the substrate to activate the enzyme for catalysis. PMID:23327224

  5. Analysis of weak interactions and Eotvos experiments

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1978-01-01

    The intermediate-vector-boson model is preferred over the current-current model as a basis for calculating effects due to weak self-energy. Attention is given to a possible violation of the equivalence principle by weak-interaction effects, and it is noted that effects due to weak self-energy are at least an order of magnitude greater than those due to the weak binding energy for typical nuclei. It is assumed that the weak and electromagnetic energies are independent.

  6. Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the AMOEBA force field

    NASA Astrophysics Data System (ADS)

    Jing, Zhifeng; Qi, Rui; Liu, Chengwen; Ren, Pengyu

    2017-10-01

    The interactions between metal ions and proteins are ubiquitous in biology. The selective binding of metal ions has a variety of regulatory functions. Therefore, there is a need to understand the mechanism of protein-ion binding. The interactions involving metal ions are complicated in nature, where short-range charge-penetration, charge transfer, polarization, and many-body effects all contribute significantly, and a quantitative description of all these interactions is lacking. In addition, it is unclear how well current polarizable force fields can capture these energy terms and whether these polarization models are good enough to describe the many-body effects. In this work, two energy decomposition methods, absolutely localized molecular orbitals and symmetry-adapted perturbation theory, were utilized to study the interactions between Mg2+/Ca2+ and model compounds for amino acids. Comparison of individual interaction components revealed that while there are significant charge-penetration and charge-transfer effects in Ca complexes, these effects can be captured by the van der Waals (vdW) term in the AMOEBA force field. The electrostatic interaction in Mg complexes is well described by AMOEBA since the charge penetration is small, but the distance-dependent polarization energy is problematic. Many-body effects were shown to be important for protein-ion binding. In the absence of many-body effects, highly charged binding pockets will be over-stabilized, and the pockets will always favor Mg and thus lose selectivity. Therefore, many-body effects must be incorporated in the force field in order to predict the structure and energetics of metalloproteins. Also, the many-body effects of charge transfer in Ca complexes were found to be non-negligible. The absorption of charge-transfer energy into the additive vdW term was a main source of error for the AMOEBA many-body interaction energies.

  7. Nuclear magnetic resonance-based model of a TF1/HmU-DNA complex.

    PubMed

    Silva, M V; Pasternack, L B; Kearns, D R

    1997-12-15

    Transcription factor 1 (TF1), a type II DNA-binding protein encoded by the Bacillus subtilis bacteriophage SPO1, has the capacity for sequence-selective DNA binding and a preference for 5-hydroxymethyl-2'-deoxyuridine (HmU)-containing DNA. In NMR studies of the TF1/HmU-DNA complex, intermolecular NOEs indicate that the flexible beta-ribbon and C-terminal alpha-helix are involved in the DNA-binding site of TF1, placing it in the beta-sheet category of DNA-binding proteins proposed to bind by wrapping two beta-ribbon "arms" around the DNA. Intermolecular and intramolecular NOEs were used to generate an energy-minimized model of the protein-DNA complex in which both DNA bending and protein structure changes are evident.

  8. DD-bar production and their interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yanrui; Oka, Makoto; Takizawa, Makoto

    2011-05-23

    We have explored the bound state problem and the scattering problem of the DD-bar pair in a meson exchange model. When considering their production in the e{sup +}e{sup -} process, we included the DD-bar rescattering effect. Although it is difficult to answer whether the S-wave DD-bar bound state exists or not from the binding energies and the phase shifts, one may get an upper limit of the binding energy from the production of the BB-bar, the bottom analog of DD-bar.

  9. Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies.

    PubMed

    Al Masum, Abdulla; Chakraborty, Maharudra; Ghosh, Soumen; Laha, Dipranjan; Karmakar, Parimal; Islam, Md Maidul; Mukhopadhyay, Subrata

    2016-11-01

    Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 10 6 M -1 . Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Statins in therapy: understanding their hydrophilicity, lipophilicity, binding to 3-hydroxy-3-methylglutaryl-CoA reductase, ability to cross the blood brain barrier and metabolic stability based on electrostatic molecular orbital studies.

    PubMed

    Fong, Clifford W

    2014-10-06

    The atomic electrostatic potentials calculated by the CHELPG method have been shown to be sensitive indicators of the gas phase and solution properties of the statins. Solvation free energies in water, n-octanol and n-octane have been determined using the SMD solvent model. The percentage hydrophilicity and hydrophobicity (or lipophilicity) of the statins in solution have been determined using (a) the differences in solvation free energies between n-octanol and n-octane as a measure of hydrophilicity, and the solvation energy in octane as a measure of hydrophobicity (b) the sum of the atomic electrostatic charges on the hydrogen bonding and polar bonding nuclei of the common pharmacophore combined with a solvent measure of hydrophobicity, and (c) using the buried surface areas after statin binding to HMGCR to calculate the hydrophobicity of the bound statins. The data suggests that clinical definitions of statins as either "hydrophilic" or "lipophilic" based on experimental partition coefficients are misleading. An estimate of the binding energy between rosuvastatin and HMGCR has been made using: (a) a coulombic electrostatic interaction model, (b) the calculated desolvation and resolvation of the statin in water, and (c) the first shell transfer solvation energy as a proxy for the restructuring of the water molecules immediately adjacent to the active binding site of HMGCR prior to binding. Desolvation and resolvation of the statins before and after binding to HMGCR are major determinants of the energetics of the binding process. An analysis of the amphiphilic nature of lovastatin anion, acid and lactone and fluvastatin anion and their abilities to cross the blood brain barrier has indicated that this process may be dominated by desolvation and resolvation effects, rather than the statin molecular size or statin-lipid interactions within the bilayer. The ionization energy and electron affinity of the statins are sensitive physical indicators of the ease that the various statins can undergo endogenous oxidative metabolism. The absolute chemical hardness is also an indicator of the stability of the statins, and may be a useful indicator for drug design. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Modeling Fission Product Sorption in Graphite Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributionsmore » of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).« less

  12. Combined quantum mechanics/molecular mechanics (QM/MM) simulations for protein-ligand complexes: free energies of binding of water molecules in influenza neuraminidase.

    PubMed

    Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J

    2015-01-22

    The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.

  13. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence stability. All of these results lead to a clearer picture for the host's effect on the rare-earth ion's electron binding energies and will motivate fundamental theoretical analysis and accelerate the development of new optical materials.

  14. Discrete persistent-chain model for protein binding on DNA.

    PubMed

    Lam, Pui-Man; Zhen, Yi

    2011-04-01

    We describe and solve a discrete persistent-chain model of protein binding on DNA, involving an extra σ(i) at a site i of the DNA. This variable takes the value 1 or 0, depending on whether or not the site is occupied by a protein. In addition, if the site is occupied by a protein, there is an extra energy cost ɛ. For a small force, we obtain analytic expressions for the force-extension curve and the fraction of bound protein on the DNA. For higher forces, the model can be solved numerically to obtain force-extension curves and the average fraction of bound proteins as a function of applied force. Our model can be used to analyze experimental force-extension curves of protein binding on DNA, and hence deduce the number of bound proteins in the case of nonspecific binding. ©2011 American Physical Society

  15. Effects of pH on the association between the inhibitor cystatin and the proteinase chymopapain.

    PubMed

    Reyes-Espinosa, Francisco; Arroyo-Reyna, Alfonso; Garcia-Gutierrez, Ponciano; Serratos, Iris N; Zubillaga, Rafael A

    2014-01-01

    Cysteine proteinases are involved in many aspects of physiological regulation. In humans, some cathepsins have shown another function in addition to their role as lysosomal proteases in intracellular protein degradation; they have been implicated in the pathogenesis of several heart and blood vessel diseases and in cancer development. In this work, we present a fluorometric and computational study of the binding of one representative plant cysteine proteinase, chymopapain, to one of the most studied inhibitors of these proteinases: chicken cystatin. The binding equilibrium constant, Kb, was determined in the pH range between 3.5 and 10.0, revealing a maximum in the affinity at pH 9.0. We constructed an atomic model for the chymopapain-cystatin dimer by docking the individual 3D protein structures; subsequently, the model was refined using a 100 ns NPT molecular dynamics simulation in explicit water. Upon scrutiny of this model, we identified 14 ionizing residues at the interface of the complex using a cutoff distance of 5.0 Å. Using the pKa values predicted with PROPKA and a modified proton-linkage model, we performed a regression analysis on our data to obtain the composite pKavalues for three isoacidic residues. We also calculated the electrostatic component of the binding energy (ΔGb,elec) at different pH values using an implicit solvent model and APBS software. The pH profile of this calculated energy compares well with the experimentally obtained binding energy, ΔGb. We propose that the residues that form an interchain ionic pair, Lys139A from chymopapain and Glu19B from cystatin, as well as Tyr61A and Tyr67A from chymopapain are the main residues responsible for the observed pH dependence in the chymopapain- cystatin affinity.

  16. Molecular dynamics simulations of energy dissipation and non-thermal diffusion on amorphous solid water.

    PubMed

    Fredon, A; Cuppen, H M

    2018-02-21

    Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. Especially, saturated, hydrogen-rich molecules are formed through surface chemistry where the interstellar grains act as a meeting place and absorbing energy. Here we present the results of thousands of molecular dynamics simulations to quantify the outcome of an energy dissipation process. Admolecules on top of an amorphous solid water surface have been given translational energy between 0.5 and 5 eV. Three different surface species are considered, CO 2 , H 2 O and CH 4 , spanning a range in binding energies, number of internal degrees of freedom and molecular weight. The results are compared against a previous study using a crystalline water ice surface. Possible outcomes of a dissipation process are adsorption - possibly after long-range diffusion-, desorption and desorption of a surface molecule. The three admolecules were found to bind at different locations on the surface, particularly in terms of height. Water preferably binds on top of the surface, whereas methane fills the nanopores on the surface. This has direct consequences for desorption, travelled distance, and kick-out probabilities. The admolecules are found to frequently travel several tens of angstroms before stabilizing on a binding site, allowing follow-up reactions en route. We present kick-out probabilities and we have been able to quantify the desorption probability which depends on the binding energy of the species, the translational excitation, and a factor that accounts for difference in binding site height. We provide expressions that can be incorporated in astrochemical models to predict grain surface formation and return into the gas phase of these products.

  17. Comparison of molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics-three-dimensional reference interaction site model (MM-3D-RISM) method to calculate the binding free energy of protein-ligand complexes: Effect of metal ion and advance statistical test

    NASA Astrophysics Data System (ADS)

    Pandey, Preeti; Srivastava, Rakesh; Bandyopadhyay, Pradipta

    2018-03-01

    The relative performance of MM-PBSA and MM-3D-RISM methods to estimate the binding free energy of protein-ligand complexes is investigated by applying these to three proteins (Dihydrofolate Reductase, Catechol-O-methyltransferase, and Stromelysin-1) differing in the number of metal ions they contain. None of the computational methods could distinguish all the ligands based on their calculated binding free energies (as compared to experimental values). The difference between the two comes from both polar and non-polar part of solvation. For charged ligand case, MM-PBSA and MM-3D-RISM give a qualitatively different result for the polar part of solvation.

  18. Peptide probes derived from pertuzumab by molecular dynamics modeling for HER2 positive tumor imaging.

    PubMed

    Yang, Xiaoliang; Wang, Zihua; Xiang, Zhichu; Li, Dan; Hu, Zhiyuan; Cui, Wei; Geng, Lingling; Fang, Qiaojun

    2017-04-01

    A high level of HER2 expression in breast cancer correlates with a higher tumor growth rate, high metastatic potential, and a poor long-term patient survival rate. Pertuzumab, a human monoclonal antibody, can reduce the effect of HER2 overexpression by preventing HER2 dimerization. In this study, a combination protocol of molecular dynamics modeling and MM/GBSA binding free energy calculations was applied to design peptides that interact with HER2 based on the HER2/pertuzumab crystal structure. Based on a β hairpin in pertuzumab from Glu46 to Lys65-which plays a key role in interacting with HER2-mutations were carried out in silico to improve the binding free energy of the hairpin that interacts with the Phe256-Lys314 of the HER2 protein. Combined the use of one-bead-one-compound library screening, among all the mutations, a peptide (58F63Y) with the lowest binding free energy was confirmed experimentally to have the highest affinity, and it may be used as a new probe in diagnosing and treating HER2-positive breast cancer.

  19. Computational studies of Ras and PI3K

    NASA Technical Reports Server (NTRS)

    Ren, Lei; Cucinotta, Francis A.

    2004-01-01

    Until recently, experimental techniques in molecular cell biology have been the primary means to investigate biological risk upon space radiation. However, computational modeling provides an alternative theoretical approach, which utilizes various computational tools to simulate proteins, nucleotides, and their interactions. In this study, we are focused on using molecular mechanics (MM) and molecular dynamics (MD) to study the mechanism of protein-protein binding and to estimate the binding free energy between proteins. Ras is a key element in a variety of cell processes, and its activation of phosphoinositide 3-kinase (PI3K) is important for survival of transformed cells. Different computational approaches for this particular study are presented to calculate the solvation energies and binding free energies of H-Ras and PI3K. The goal of this study is to establish computational methods to investigate the roles of different proteins played in the cellular responses to space radiation, including modification of protein function through gene mutation, and to support the studies in molecular cell biology and theoretical kinetics models for our risk assessment project.

  20. Genome-wide inference of transcription factor-DNA binding specificity in cell regeneration using a combination strategy.

    PubMed

    Wang, Xiaofeng; Zhang, Aiqun; Ren, Weizheng; Chen, Caiyu; Dong, Jiahong

    2012-11-01

    The cell growth, development, and regeneration of tissue and organ are associated with a large number of gene regulation events, which are mediated in part by transcription factors (TFs) binding to cis-regulatory elements involved in the genome. Predicting the binding affinity and inferring the binding specificity of TF-DNA interactions at the genomic level would be fundamentally helpful for our understanding of the molecular mechanism and biological implication underlying sequence-specific TF-DNA recognition. In this study, we report the development of a combination method to characterize the interaction behavior of a 11-mer oligonucleotide segment and its mutations with the Gcn4p protein, a homodimeric, basic leucine zipper TF, and to predict the binding affinity and specificity of potential Gcn4p binders in the genome-wide scale. In this procedure, a position-mutated energy matrix is created based on molecular modeling analysis of native and mutated Gcn4p-DNA complex structures to describe the position-independent interaction energy profile of Gcn4p with different nucleotide types at each position of the oligonucleotide, and the energy terms extracted from the matrix and their interactives are then correlated with experimentally measured affinities of 19268 distinct oligonucleotides using statistical modeling methodology. Subsequently, the best one of built regression models is successfully applied to screen those of potential high-affinity Gcn4p binders from the complete genome. The findings arising from this study are briefly listed below: (i) The 11 positions of oligonucleotides are highly interactive and non-additive in contribution to Gcn4p-DNA binding affinity; (ii) Indirect conformational effects upon nucleotide mutations as well as associated subtle changes in interfacial atomic contacts, but not the direct nonbonded interactions, are primarily responsible for the sequence-specific recognition; (iii) The intrinsic synergistic effects among the sequence positions of oligonucleotides determine Gcn4p-DNA binding affinity and specificity; (iv) Linear regression models in conjunction with variable selection seem to perform fairly well in capturing the internal dependences hidden in the Gcn4p-DNA system, albeit ignoring nonlinear factors may lead the models to systematically underestimate and overestimate high- and low-affinity samples, respectively. © 2012 John Wiley & Sons A/S.

  1. Insights into the binding of GABA to the insect RDL receptor from atomistic simulations: a comparison of models

    NASA Astrophysics Data System (ADS)

    Comitani, Federico; Cohen, Netta; Ashby, Jamie; Botten, Dominic; Lummis, Sarah C. R.; Molteni, Carla

    2014-01-01

    The resistance to dieldrin (RDL) receptor is an insect pentameric ligand-gated ion channel (pLGIC). It is activated by the neurotransmitter γ-aminobutyric acid (GABA) binding to its extracellular domain; hence elucidating the atomistic details of this interaction is important for understanding how the RDL receptor functions. As no high resolution structures are currently available, we built homology models of the extracellular domain of the RDL receptor using different templates, including the widely used acetylcholine binding protein and two pLGICs, the Erwinia Chrysanthemi ligand-gated ion channel (ELIC) and the more recently resolved GluCl. We then docked GABA into the selected three dimensional structures, which we used as starting points for classical molecular dynamics simulations. This allowed us to analyze in detail the behavior of GABA in the binding sites, including the hydrogen bond and cation-π interaction networks it formed, the conformers it visited and the possible role of water molecules in mediating the interactions; we also estimated the binding free energies. The models were all stable and showed common features, including interactions consistent with experimental data and similar to other pLGICs; differences could be attributed to the quality of the models, which increases with increasing sequence identity, and the use of a pLGIC template. We supplemented the molecular dynamics information with metadynamics, a rare event method, by exploring the free energy landscape of GABA binding to the RDL receptor. Overall, we show that the GluCl template provided the best models. GABA forming direct salt-bridges with Arg211 and Glu204, and cation-π interactions with an aromatic cage including Tyr109, Phe206 and Tyr254, represents a favorable binding arrangement, and the interaction with Glu204 can also be mediated by a water molecule.

  2. Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids

    NASA Astrophysics Data System (ADS)

    Anatole von Lilienfeld, O.; Tkatchenko, Alexandre

    2010-06-01

    We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C6 and C9, are computed "on the fly" from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiricially determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C60 dimer, a peptide (Ala10), an intercalated drug-DNA model [ellipticine-d(CG)2], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.

  3. Two and three-body interatomic dispersion energy contributions to binding in molecules and solids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Lilienfeld-Toal, Otto Anatole; Tkatchenko, Alexandre

    We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C{sub 6} and C{sub 9}, are computed 'on the fly' from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiriciallymore » determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C{sub 60} dimer, a peptide (Ala{sub 10}), an intercalated drug-DNA model [ellipticine-d(CG){sub 2}], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.« less

  4. Free energy component analysis for drug design: a case study of HIV-1 protease-inhibitor binding.

    PubMed

    Kalra, P; Reddy, T V; Jayaram, B

    2001-12-06

    A theoretically rigorous and computationally tractable methodology for the prediction of the free energies of binding of protein-ligand complexes is presented. The method formulated involves developing molecular dynamics trajectories of the enzyme, the inhibitor, and the complex, followed by a free energy component analysis that conveys information on the physicochemical forces driving the protein-ligand complex formation and enables an elucidation of drug design principles for a given receptor from a thermodynamic perspective. The complexes of HIV-1 protease with two peptidomimetic inhibitors were taken as illustrative cases. Four-nanosecond-level all-atom molecular dynamics simulations using explicit solvent without any restraints were carried out on the protease-inhibitor complexes and the free proteases, and the trajectories were analyzed via a thermodynamic cycle to calculate the binding free energies. The computed free energies were seen to be in good accord with the reported data. It was noted that the net van der Waals and hydrophobic contributions were favorable to binding while the net electrostatics, entropies, and adaptation expense were unfavorable in these protease-inhibitor complexes. The hydrogen bond between the CH2OH group of the inhibitor at the scissile position and the catalytic aspartate was found to be favorable to binding. Various implicit solvent models were also considered and their shortcomings discussed. In addition, some plausible modifications to the inhibitor residues were attempted, which led to better binding affinities. The generality of the method and the transferability of the protocol with essentially no changes to any other protein-ligand system are emphasized.

  5. Protocols Utilizing Constant pH Molecular Dynamics to Compute pH-Dependent Binding Free Energies

    PubMed Central

    2015-01-01

    In protein–ligand binding, the electrostatic environments of the two binding partners may vary significantly in bound and unbound states, which may lead to protonation changes upon binding. In cases where ligand binding results in a net uptake or release of protons, the free energy of binding is pH-dependent. Nevertheless, conventional free energy calculations and molecular docking protocols typically do not rigorously account for changes in protonation that may occur upon ligand binding. To address these shortcomings, we present a simple methodology based on Wyman’s binding polynomial formalism to account for the pH dependence of binding free energies and demonstrate its use on cucurbit[7]uril (CB[7]) host–guest systems. Using constant pH molecular dynamics and a reference binding free energy that is taken either from experiment or from thermodynamic integration computations, the pH-dependent binding free energy is determined. This computational protocol accurately captures the large pKa shifts observed experimentally upon CB[7]:guest association and reproduces experimental binding free energies at different levels of pH. We show that incorrect assignment of fixed protonation states in free energy computations can give errors of >2 kcal/mol in these host–guest systems. Use of the methods presented here avoids such errors, thus suggesting their utility in computing proton-linked binding free energies for protein–ligand complexes. PMID:25134690

  6. Interaction of sucralose with whey protein: Experimental and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Sun, Shixin; Wang, Yanqing; Cao, Jian

    2017-12-01

    The objective of this research was to study the interactions of sucralose with whey protein isolate (WPI) by using the three-dimensional fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling. The results showed that the peptide strands structure of WPI had been changed by sucralose. Sucralose binding induced the secondary structural changes and increased content of aperiodic structure of WPI. Sucralose decreased the thermal stability of WPI and acted as a structure destabilizer during the thermal unfolding process of protein. In addition, the existence of sucralose decreased the reversibility of the unfolding of WPI. Nonetheless, sucralose-WPI complex was less stable than protein alone. The molecular modeling result showed that van der Waals and hydrogen bonding interactions contribute to the complexation free binding energy. There are more than one possible binding sites of WPI with sucralose by surface binding mode.

  7. A COMPUTER MODELING STUDY OF BINDING PROPERTIES OF CHIRAL NUCLEOPEPTIDE FOR BIOMEDICAL APPLICATIONS.

    PubMed

    Pirtskhalava, M; Egoyan, A; Mirtskhulava, M; Roviello, G

    2017-12-01

    Nucleopeptides often show interesting properties of molecular binding that render them good candidates for development of innovative drugs for anticancer and antiviral therapies. In this work we present results of computer modeling of interactions between the molecules of hexathymine nucleopeptide (T6) and poly rA RNA (A18). The results of geometry optimization calculated using Hyperchem software and our own computer program for molecular docking show that molecules establish stable complexes due to the complementary-nucleobase interaction and the electrostatic interaction between the negative phosphate group of poly rA and the positively-charged residues present in the cationic nucleopeptide structure. Computer modeling makes it possible to find the optimal binding configuration of the molecules of a nucleopeptide and poly rA RNA and to estimate the binding energy between the molecules.

  8. T-Cell Receptors Binding Orientation over Peptide/MHC Class I Is Driven by Long-Range Interactions

    PubMed Central

    Ferber, Mathias; Zoete, Vincent; Michielin, Olivier

    2012-01-01

    Crystallographic data about T-Cell Receptor – peptide – major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes. PMID:23251658

  9. T-cell receptors binding orientation over peptide/MHC class I is driven by long-range interactions.

    PubMed

    Ferber, Mathias; Zoete, Vincent; Michielin, Olivier

    2012-01-01

    Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.

  10. Receptor-based 3D QSAR analysis of estrogen receptor ligands - merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods

    NASA Astrophysics Data System (ADS)

    Sippl, Wolfgang

    2000-08-01

    One of the major challenges in computational approaches to drug design is the accurate prediction of binding affinity of biomolecules. In the present study several prediction methods for a published set of estrogen receptor ligands are investigated and compared. The binding modes of 30 ligands were determined using the docking program AutoDock and were compared with available X-ray structures of estrogen receptor-ligand complexes. On the basis of the docking results an interaction energy-based model, which uses the information of the whole ligand-receptor complex, was generated. Several parameters were modified in order to analyze their influence onto the correlation between binding affinities and calculated ligand-receptor interaction energies. The highest correlation coefficient ( r 2 = 0.617, q 2 LOO = 0.570) was obtained considering protein flexibility during the interaction energy evaluation. The second prediction method uses a combination of receptor-based and 3D quantitative structure-activity relationships (3D QSAR) methods. The ligand alignment obtained from the docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection, a significant and robust model was obtained ( r 2 = 0.991, q 2 LOO = 0.921). The predictive ability of the established model was further evaluated by using a test set of six additional compounds. The comparison with the generated interaction energy-based model and with a traditional CoMFA model obtained using a ligand-based alignment ( r 2 = 0.951, q 2 LOO = 0.796) indicates that the combination of receptor-based and 3D QSAR methods is able to improve the quality of the underlying model.

  11. Hydrology beyond closing the water balance: energy conservative scaling of gradient flux relations

    NASA Astrophysics Data System (ADS)

    Zehe, Erwin; Loritz, Ralf; Jackisch, Conrad

    2017-04-01

    The value of physically-based models has been doubted since their idea was introduced by Freeze and Harlan. Physically-based models like typically rely on the Darcy-Richards concept for soil water dynamics, the Penman-Monteith equation for soil-vegetation-atmosphere exchange processes and hydraulic approaches for overland and stream flow. Each of these concepts is subject to limitations arising from our imperfect understanding of the related processes and is afflicted by the restricted transferability of process descriptions from idealized laboratory conditions to heterogeneous natural systems. Particularly the non-linearity of soil water characteristics in concert with the baffling heterogeneity subsurface properties is usually seen as the dead end for a meaningful application of physically based models outside of well observed research catchments and, more importantly, for an upscaling of point scale flux - gradient relation-ships. This study provides evidence that an energy conservative scaling of topographic gradients and soil water retention curves allows derivation of useful effective catchment scale topography and retention curve from distributed data, which allow successful simulations of the catchment water balance in two distinctly different landscapes. The starting point of our approach is that subsurface water fluxes are driven by differences in potential energy and chemical/capillary binding energy. The relief of a single hillslope controls the potential energy gradients driving downslope flows of free water, while catchment scale variability in hillslope relief is associated with differences in driving potential energy. It is more important to note that the soil water retention curve characterises the density of capillary binding energy of soil water (usually named soil water potential) at a given soil water content. Spatially variable soil water characteristics hence reflect fluctuations in capillary binding energy of soil water at a given soil water content among different sites. Essentially we propose that a meaning full effective representation of the driving topographic gradient needs to represent the mean distribution of geo-potential energy in a catchment, which leads us to the hypsometric integral. Similarly, we postulate that effective soil water characteristics should characterise the average relation between soil water content and capillary binding energy of soil water. For a given set of soil water retention curve derived from a set of undisturbed soil samples this can be achieved by grouping the observation points of all soil samples, averaging the soil water content at a given matric potential/binding energy density and fitting a parametric relation. We demonstrate that a single hillslope with the proposed effective topography and soil water retention curve is sufficient to simulate the water balance and runoff formation of two distinctly different catchments in the Attert experimental watershed.

  12. Specificity in transition state binding: the Pauling model revisited.

    PubMed

    Amyes, Tina L; Richard, John P

    2013-03-26

    Linus Pauling proposed that the large rate accelerations for enzymes are caused by the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogues of the transition states for enzymatic reactions often act as tight-binding inhibitors provided early support for this simple and elegant proposal. We review experimental results that support the proposal that Pauling's model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high-energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies that aimed to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-coenzyme A:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of coenzyme A (CoA) are responsible for a rate increase of 3 × 10(12)-fold, which is close to the estimated total 5 × 10(13)-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide an ~12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5'-monophosphate decarboxylase, and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6-8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared with that of the free enzyme. Evidence is presented that supports a model in which the binding energy of the phosphite dianion piece, or the phosphodianion group of the whole substrate, is utilized to drive an enzyme conformational change from an inactive open form E(O) to an active closed form E(C), by closure of a phosphodianion gripper loop. Members of the enolase and haloalkanoic acid dehalogenase superfamilies use variable capping domains to interact with nonreacting portions of the substrate and sequester the substrate from interaction with bulk solvent. Interactions of this capping domain with the phenyl group of mandelate have been shown to activate mandelate racemase for catalysis of deprotonation of α-carbonyl carbon. We propose that an important function of these capping domains is to utilize the binding interactions with nonreacting portions of the substrate to activate the enzyme for catalysis.

  13. Comparison of the interaction between lactoferrin and isomeric drugs

    NASA Astrophysics Data System (ADS)

    Guo, Ming; Lu, Xiaowang; Wang, Yan; Brodelius, Peter E.

    2017-02-01

    The binding properties of pentacyclic triterpenoid isomeric drugs, i.e. ursolic acid (UA) and oleanolic acid (OA), to bovine lactoferrin (BLF) have been studied by molecule modeling, fluorescence spectroscopy, UV-visible absorbance spectroscopy and infrared spectroscopy (IR). Molecular docking, performed to reveal the possible binding mode or mechanism, suggested that hydrophobic interaction and hydrogen bonding play important roles to stabilize the complex. The results of spectroscopic measurements showed that the two isomeric drugs both strongly quenched the intrinsic fluorescence of BLF through a static quenching procedure although some differences between UA and OA binding strength and non-radiation energy transfer occurred within the molecules. The number of binding sites was 3.44 and 3.10 for UA and OA, respectively, and the efficiency of Förster energy transfer provided a distance of 0.77 and 1.21 nm for UA and OA, respectively. The conformation transformation of BLF affected by the drugs conformed to the ;all-or-none; pattern. In addition, the changes of the ratios of α-helices, β-sheets and β-turns of BLF during the process of the interaction were obtained. The results of the experiments in combination with the calculations showed that there are two modes of pentacyclic triterpenoid binding to BLF instead of one binding mode only governed by the principle of the lowest bonding energy.

  14. Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson-Boltzmann surface area calculations

    NASA Astrophysics Data System (ADS)

    Tzoupis, Haralambos; Leonis, Georgios; Durdagi, Serdar; Mouchlis, Varnavas; Mavromoustakos, Thomas; Papadopoulos, Manthos G.

    2011-10-01

    The objectives of this study include the design of a series of novel fullerene-based inhibitors for HIV-1 protease (HIV-1 PR), by employing two strategies that can also be applied to the design of inhibitors for any other target. Additionally, the interactions which contribute to the observed exceptionally high binding free energies were analyzed. In particular, we investigated: (1) hydrogen bonding (H-bond) interactions between specific fullerene derivatives and the protease, (2) the regions of HIV-1 PR that play a significant role in binding, (3) protease changes upon binding and (4) various contributions to the binding free energy, in order to identify the most significant of them. This study has been performed by employing a docking technique, two 3D-QSAR models, molecular dynamics (MD) simulations and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. Our computed binding free energies are in satisfactory agreement with the experimental results. The suitability of specific fullerene derivatives as drug candidates was further enhanced, after ADMET (absorption, distribution, metabolism, excretion and toxicity) properties have been estimated to be promising. The outcomes of this study revealed important protein-ligand interaction patterns that may lead towards the development of novel, potent HIV-1 PR inhibitors.

  15. Investigating the binding mechanism of novel 6-aminonicotinate-based antagonists with P2Y12 by 3D-QSAR, docking and molecular dynamics simulations.

    PubMed

    Zhou, Shengfu; Fang, Danqing; Tan, Shepei; Lin, Weicong; Wu, Wenjuan; Zheng, Kangcheng

    2017-10-01

    P2Y 12 receptor is an attractive target for the anti-platelet therapies, treating various thrombotic diseases. In this work, a total of 107 6-aminonicotinate-based compounds as potent P2Y 12 antagonists were studies by a molecular modeling study combining three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations to explore the decisive binding conformations of these antagonists with P2Y 12 and the structural features for the activity. The optimum CoMFA and CoMSIA models identified satisfactory robustness and good predictive ability, with R 2  = .983, q 2  = .805, [Formula: see text] = .881 for CoMFA model, and R 2  = .935, q 2  = .762, [Formula: see text] = .690 for CoMSIA model, respectively. The probable binding modes of compounds and key amino acid residues were revealed by molecular docking. MD simulations and MM/GBSA free energy calculations were further performed to validate the rationality of docking results and to compare the binding modes of several compound pairs with different activities, and the key residues (Val102, Tyr105, Tyr109, His187, Val190, Asn191, Phe252, His253, Arg256, Tyr259, Thr260, Val279, and Lys280) for the higher activity were pointed out. The binding energy decomposition indicated that the hydrophobic and hydrogen bond interactions play important roles for the binding of compounds to P2Y 12 . We hope these results could be helpful in design of potent and selective P2Y 12 antagonists.

  16. Full-potential KKR calculations for vacancies in Al : Screening effect and many-body interactions

    NASA Astrophysics Data System (ADS)

    Hoshino, T.; Asato, M.; Zeller, R.; Dederichs, P. H.

    2004-09-01

    We give ab initio calculations for vacancies in Al . The calculations are based on the generalized-gradient approximation in the density-functional theory and employ the all-electron full-potential Korringa-Kohn-Rostoker Green’s function method for point defects, which guarantees the correct embedding of the cluster of point defects in an otherwise perfect crystal. First, we confirm the recent calculated results of Carling [Phys. Rev. Lett. 85, 3862 (2000)], i.e., repulsion of the first-nearest-neighbor (1NN) divacancy in Al , and elucidate quantitatively the micromechanism of repulsion. Using the calculated results for vacancy formation energies and divacancy binding energies in Na , Mg , Al , and Si of face-centered-cubic, we show that the single vacancy in nearly free-electron systems becomes very stable with increasing free-electron density, due to the screening effect, and that the formation of divacancy destroys the stable electron distribution around the single vacancy, resulting in a repulsion of two vacancies on 1NN sites, so that the 1NN divacancy is unstable. Second, we show that the cluster expansion converges rapidly for the binding energies of vacancy agglomerates in Al . The binding energy of 13 vacancies consisting of a central vacancy and its 12 nearest neighbors, is reproduced within the error of 0.002eV per vacancy, if many-body interaction energies up to the four-body terms are taken into account in the cluster expansion, being compared with the average error (>0.1eV) of the glue models which are very often used to provide interatomic potentials for computer simulations. For the cluster expansion of the binding energies of impurities, we get the same convergence as that obtained for vacancies. Thus, the present cluster-expansion approach for the binding energies of agglomerates of vacancies and impurities in Al may provide accurate data to construct the interaction-parameter model for computer simulations which are strongly requested to study the dynamical process in the initial stage of the formation of the so-called Guinier-Preston zones of low-concentrated Al -based alloys such as Al1-cXc ( X=Cu , Zn ; c<0.05 ).

  17. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP.

    PubMed

    Schneider, Markus; Rosam, Mathias; Glaser, Manuel; Patronov, Atanas; Shah, Harpreet; Back, Katrin Christiane; Daake, Marina Angelika; Buchner, Johannes; Antes, Iris

    2016-10-01

    Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. The bitter barricading of prostaglandin biosynthesis pathway: understanding the molecular mechanism of selective cyclooxygenase-2 inhibition by amarogentin, a secoiridoid glycoside from Swertia chirayita.

    PubMed

    Shukla, Shantanu; Bafna, Khushboo; Sundar, Durai; Thorat, Sunil S

    2014-01-01

    Swertia chirayita, a medicinal herb inhabiting the challenging terrains and high altitudes of the Himalayas, is a rich source of essential phytochemical isolates. Amarogentin, a bitter secoiridoid glycoside from S. chirayita, shows varied activity in several patho-physiological conditions, predominantly in leishmaniasis and carcinogenesis. Experimental analysis has revealed that amarogentin downregulates the cyclooxygenase-2 (COX-2) activity and helps to curtail skin carcinogenesis in mouse models; however, there exists no account on selective inhibition of the inducible cyclooxygenase (COX) isoform by amarogentin. Hence the computer-aided drug discovery methods were used to unravel the COX-2 inhibitory mechanism of amarogentin and to check its selectivity for the inducible isoform over the constitutive one. The generated theoretical models of both isoforms were subjected to molecular docking analysis with amarogentin and twenty-one other Food and Drug Authority (FDA) approved lead molecules. The post-docking binding energy profile of amarogentin was comparable to the binding energy profiles of the FDA approved selective COX-2 inhibitors. Subsequent molecular dynamics simulation analysis delineated the difference in the stability of both complexes, with amarogentin-COX-2 complex being more stable after 40ns simulation. The total binding free energy calculated by MMGBSA for the amarogentin-COX-2 complex was -52.35 KCal/mol against a binding free energy of -8.57 KCal/mol for amarogentin-COX-1 complex, suggesting a possible selective inhibition of the COX-2 protein by the natural inhibitor. Amarogentin achieves this potential selectivity by small, yet significant, structural differences inherent to the binding cavities of the two isoforms. Hypothetically, it might block the entry of the natural substrates in the hydrophobic binding channel of the COX-2, inhibiting the cyclooxygenation step. To sum up briefly, this work highlights the mechanism of the possible selective COX-2 inhibition by amarogentin and endorses the possibility of obtaining efficient, futuristic and targeted therapeutic agents for relieving inflammation and malignancy from this phytochemical source.

  19. Toward a mechanistic understanding of patterns in biomineralization and new insights for old dogmas in geological settings (Invited)

    NASA Astrophysics Data System (ADS)

    Dove, P. M.; Hamm, L.; Giuffre, A. J.; Han, N.; De Yoreo, J. J.

    2013-12-01

    The ability of organisms to mineralize tissues into skeletons and other functional structures is a remarkable achievement of biology. Yet, the physical basis for how macromolecules regulate the placement and onset of mineral formation is not well established. Efforts to understand nucleation onto organic substrates have produced two, seemingly contradictory, lines of thought: The biomineralization community widely assumes the organic matrix promotes nucleation through stereochemical matching to guide the organization of solute ions, while materials synthesis groups use simple binding assays to correlate high binding strength with good promoters of nucleation. This study reconciles the two views and provides a mechanistic explanation for template-directed nucleation by correlating heterogeneous nucleation barriers with crystal-substrate binding free energies. Using surface assembled monolayers (SAM) as simple model systems, we first measure the kinetics of calcite nucleation onto model substrates that present different functional group chemistries (carboxyl, thiol, phosphate, hydroxyl) and conformations (C11, C16 chain lengths). We find rates are substrate-specific and obey predictions of classical nucleation theory at supersaturations that extend above the solubility of amorphous calcium carbonate (ACC). Analysis of the kinetic data shows the thermodynamic barrier to nucleation is reduced by minimizing the interfacial free energy of the system, γ. We then use dynamic force spectroscopy to independently measure calcite-substrate binding free energies, ΔGb. Moreover, we show that within the classical theory of nucleation, γ and ΔGb should be linearly related. The results bear out this prediction and demonstrate that low energy barriers to nucleation correlate with strong crystal-substrate binding. This relationship is general to all functional group chemistries and conformations. These findings reconcile the long-standing concept of templated nucleation through stereochemical matching with the conventional wisdom that ';good binders are good nucleators'. Alternative perspectives become internally consistent when viewed through the lens of crystal-substrate binding and provide a physical basis for how organic chemistry can direct temporal and spatial patterns of carbonate nucleation.

  20. Intrinsic Conformational Preferences and Interactions in α-Synuclein Fibrils: Insights from Molecular Dynamics Simulations.

    PubMed

    Ilie, Ioana M; Nayar, Divya; den Otter, Wouter K; van der Vegt, Nico F A; Briels, Wim J

    2018-06-12

    Amyloid formation by the intrinsically disordered α-synuclein protein is the hallmark of Parkinson's disease. We present atomistic Molecular Dynamics simulations of the core of α-synuclein using enhanced sampling techniques to describe the conformational and binding free energy landscapes of fragments implicated in fibril stabilization. The theoretical framework is derived to combine the free energy profiles of the fragments into the reaction free energy of a protein binding to a fibril. Our study shows that individual fragments in solution have a propensity toward attaining non-β conformations, indicating that in a fibril β-strands are stabilized by interactions with other strands. We show that most dimers of hydrogen-bonded fragments are unstable in solution, while hydrogen bonding stabilizes the collective binding of five fragments to the end of a fibril. Hydrophobic effects make further contributions to the stability of fibrils. This study is the first of its kind where structural and binding preferences of the five major fragments of the hydrophobic core of α-synuclein have been investigated. This approach improves sampling of intrinsically disordered proteins, provides information on the binding mechanism between the core sequences of α-synuclein, and enables the parametrization of coarse grained models.

  1. Binding free energy predictions of farnesoid X receptor (FXR) agonists using a linear interaction energy (LIE) approach with reliability estimation: application to the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Rifai, Eko Aditya; van Dijk, Marc; Vermeulen, Nico P. E.; Geerke, Daan P.

    2018-01-01

    Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds. Using our recently introduced reliability estimation metrics, we could classify predictions with higher confidence by featuring an applicability domain (AD) analysis in combination with protein-ligand interaction profiling. The outcomes of and agreement between our AD and interaction-profile analyses to distinguish and rationalize the performance of our predictions highlighted the relevance of sufficiently exploring protein-ligand interactions during training and it demonstrated the possibility to quantitatively and efficiently evaluate if this is achieved by using simulation data only.

  2. Beyond the benzene dimer: an investigation of the additivity of pi-pi interactions.

    PubMed

    Tauer, Tony P; Sherrill, C David

    2005-11-24

    The benzene dimer is the simplest prototype of pi-pi interactions and has been used to understand the fundamental physics of these interactions as they are observed in more complex systems. In biological systems, however, aromatic rings are rarely found in isolated pairs; thus, it is important to understand whether aromatic pairs remain a good model of pi-pi interactions in clusters. In this study, ab initio methods are used to compute the binding energies of several benzene trimers and tetramers, most of them in 1D stacked configurations. The two-body terms change only slightly relative to the dimer, and except for the cyclic trimer, the three- and four-body terms are negligible. This indicates that aromatic clusters do not feature any large nonadditive effects in their binding energies, and polarization effects in benzene clusters do not greatly change the binding that would be anticipated from unperturbed benzene-benzene interactions, at least for the 1D stacked systems considered. Three-body effects are larger for the cyclic trimer, but for all systems considered, the computed binding energies are within 10% of what would be estimated from benzene dimer energies at the same geometries.

  3. Binding of an adatom to a simple metal surface

    NASA Technical Reports Server (NTRS)

    Huntington, H. B.; Turk, L. A.; White, W. W., III

    1975-01-01

    The density functional formalism of Hohenberg and Kohn is used to investigate the energies, charge densities and forces which hold an adatom on the surface of a simple metal. The valence wavefunction of the adatom is fitted to the Herman-Skillman solutions at large distance and is simplified somewhat in the core region. The field of the ion is represented by the Ashcroft pseudopotential. For the metal the jellium model is used. Detailed calculations are carried out for a sodium adatom on a sodium surface. Simply juxtaposing adatom and surface gives a binding energy of about 1/3 eV. This value is approximately twice the surface energy per atom in the close-packed plane. Charge redistributions as determined variationally increase the binding energy by about 10%. The equilibrium distance for the adatom turns out to be 1.66 A from the surface, as compared with 1.52 A, the observed value for one-half the distance between the close-packed planes.

  4. Free energy surfaces for the interaction of D-glucose with planar aromatic groups in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wohlert, Jakob; Schnupf, Udo; Brady, John W.

    2010-10-01

    Multidimensional potentials of mean force for the interactions in aqueous solution of both anomers of D-glucopyranose with two planar aromatic molecules, indole and para-methyl-phenol, have been calculated using molecular dynamics simulations with umbrella sampling and were subsequently used to estimate binding free energies. Indole and para-methyl-phenol serve as models for the side chains of the amino acids tryptophan and tyrosine, respectively. In all cases, a weak affinity between the glucose molecules and the flat aromatic surfaces was found. The global minimum for these interactions was found to be for the case when the pseudoplanar face of β-D-glucopyranose is stacked against the planar surfaces of the aromatic residues. The calculated binding free energies are in good agreement with both experiment and previous simulations. The multidimensional free energy maps suggest a mechanism that could lend kinetic stability to the complexes formed by sugars bound to sugar-binding proteins.

  5. Magnetic properties and core electron binding energies of liquid water

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Cabral, Benedito J. C.

    2018-01-01

    The magnetic properties and the core and inner valence electron binding energies of liquid water are investigated. The adopted methodology relies on the combination of molecular dynamics and electronic structure calculations. Born-Oppenheimer molecular dynamics with the Becke and Lee-Yang-Parr functionals for exchange and correlation, respectively, and includes an empirical correction (BLYP-D3) functional and classical molecular dynamics with the TIP4P/2005-F model were carried out. The Keal-Tozer functional was applied for predicting magnetic shielding and spin-spin coupling constants. Core and inner valence electron binding energies in liquid water were calculated with symmetry adapted cluster-configuration interaction. The relationship between the magnetic shielding constant σ(17O), the role played by the oxygen atom as a proton acceptor and donor, and the tetrahedral organisation of liquid water are investigated. The results indicate that the deshielding of the oxygen atom in water is very dependent on the order parameter (q) describing the tetrahedral organisation of the hydrogen bond network. The strong sensitivity of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between σ(17O) and the energy gap between the 1a1[O1s] (core) and the 2a1 (inner valence) orbitals of water. Although several studies discussed the eventual connection between magnetic properties and core electron binding energies, such a correlation could not be clearly established. Here, we demonstrate that for liquid water this correlation exists although involving the gap between electron binding energies of core and inner valence orbitals.

  6. Computer-Assisted Drug Formulation Design: Novel Approach in Drug Delivery.

    PubMed

    Metwally, Abdelkader A; Hathout, Rania M

    2015-08-03

    We hypothesize that, by using several chemo/bio informatics tools and statistical computational methods, we can study and then predict the behavior of several drugs in model nanoparticulate lipid and polymeric systems. Accordingly, two different matrices comprising tripalmitin, a core component of solid lipid nanoparticles (SLN), and PLGA were first modeled using molecular dynamics simulation, and then the interaction of drugs with these systems was studied by means of computing the free energy of binding using the molecular docking technique. These binding energies were hence correlated with the loadings of these drugs in the nanoparticles obtained experimentally from the available literature. The obtained relations were verified experimentally in our laboratory using curcumin as a model drug. Artificial neural networks were then used to establish the effect of the drugs' molecular descriptors on the binding energies and hence on the drug loading. The results showed that the used soft computing methods can provide an accurate method for in silico prediction of drug loading in tripalmitin-based and PLGA nanoparticulate systems. These results have the prospective of being applied to other nano drug-carrier systems, and this integrated statistical and chemo/bio informatics approach offers a new toolbox to the formulation science by proposing what we present as computer-assisted drug formulation design (CADFD).

  7. Nucleosome stability and accessibility of its DNA to proteins.

    PubMed

    Prinsen, Peter; Schiessel, Helmut

    2010-12-01

    In this paper we present a theoretical description of the accessibility of nucleosomal DNA to proteins. We reassess the classical analysis of Polach and Widom (1995) who demonstrated that proteins (in their case restriction enzymes) gain access to buried binding sites inside a nucleosome through spontaneous unwrapping of DNA from the protein spool. We introduce a straightforward nucleosome model the predictions of which show good agreement with experimental data. By fitting the model to the data we obtain the values of two quantities: the adsorption energy to the histone octamer per length of DNA and the extra length that the DNA needs to unwrap beyond the binding site of an enzyme before the enzyme can act as effectively as on bare DNA. Our results indicate that the effective binding energy is surprisingly low which suggests that the nucleosomal parameters are tuned such that two large energies, the DNA bending energy and the pure adsorption energy, nearly cancel. This paper is based on a lecture presented at the summer school "DNA and Chromosomes 2009: Physical and Biological Applications". We follow the lecture as closely as possible which is why we spend more time than usual on issues that are already well-known in the field, and why we discuss some well-known results from a different perspective. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  8. Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation.

    PubMed

    Miao, Yinglong; Feher, Victoria A; McCammon, J Andrew

    2015-08-11

    A Gaussian accelerated molecular dynamics (GaMD) approach for simultaneous enhanced sampling and free energy calculation of biomolecules is presented. By constructing a boost potential that follows Gaussian distribution, accurate reweighting of the GaMD simulations is achieved using cumulant expansion to the second order. Here, GaMD is demonstrated on three biomolecular model systems: alanine dipeptide, chignolin folding, and ligand binding to the T4-lysozyme. Without the need to set predefined reaction coordinates, GaMD enables unconstrained enhanced sampling of these biomolecules. Furthermore, the free energy profiles obtained from reweighting of the GaMD simulations allow us to identify distinct low-energy states of the biomolecules and characterize the protein-folding and ligand-binding pathways quantitatively.

  9. Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation

    PubMed Central

    2016-01-01

    A Gaussian accelerated molecular dynamics (GaMD) approach for simultaneous enhanced sampling and free energy calculation of biomolecules is presented. By constructing a boost potential that follows Gaussian distribution, accurate reweighting of the GaMD simulations is achieved using cumulant expansion to the second order. Here, GaMD is demonstrated on three biomolecular model systems: alanine dipeptide, chignolin folding, and ligand binding to the T4-lysozyme. Without the need to set predefined reaction coordinates, GaMD enables unconstrained enhanced sampling of these biomolecules. Furthermore, the free energy profiles obtained from reweighting of the GaMD simulations allow us to identify distinct low-energy states of the biomolecules and characterize the protein-folding and ligand-binding pathways quantitatively. PMID:26300708

  10. Comparison of gas-solid chromatography and MM2 force field molecular binding energies for greenhouse gases on a carbonaceous surface.

    PubMed

    Rybolt, Thomas R; Bivona, Kevin T; Thomas, Howard E; O'Dell, Casey M

    2009-10-01

    Gas-solid chromatography was used to determine B(2s) (gas-solid virial coefficient) values for eight molecular adsorbates interacting with a carbon powder (Carbopack B, Supelco). B(2s) values were determined by multiple size variant injections within the temperature range of 313-553 K. The molecular adsorbates included: carbon dioxide (CO(2)); tetrafluoromethane (CF(4)); hexafluoroethane (C(2)F(6)); 1,1-difluoroethane (C(2)H(4)F(2)); 1-chloro-1,1-difluoroethane (C(2)H(3)ClF(2)); dichlorodifluoromethane (CCl(2)F(2)); trichlorofluoromethane (CCl(3)F); and 1,1,1-trichloroethane (C(2)H(3)Cl(3)). Two of these molecules are of special interest because they are "super greenhouse gases". The global warming potential, GWP, for CF(4) is 6500 and for C(2)F(6) is 9200 relative to the reference value of 1 for CO(2). The GWP index considers both radiative blocking and molecular lifetime. For these and other industrial greenhouse gases, adsorptive trapping on a carbonaceous solid, which depends on molecule-surface binding energy, could avoid atmospheric release. The temperature variations of the gas-solid virial coefficients in conjunction with van't Hoff plots were used to find the experimental adsorption energy or binding energy values (E(*)) for each adsorbate. A molecular mechanics based, rough-surface model was used to calculate the molecule-surface binding energy (Ecal(*)) using augmented MM2 parameters. The surface model consisted of parallel graphene layers with two separated nanostructures each containing 17 benzene rings arranged in linear strips. The separation of the parallel nanostructures had been optimized in a prior study to appropriately represent molecule-surface interactions for Carbopack B. Linear regressions of E(*) versus Ecal(*) for the current data set of eight molecules and the same surface model gave E(*)=0.926 Ecal(*) and r(2)=0.956. A combined set of the current and prior Carbopack B adsorbates studied (linear alkanes, branched alkanes, cyclic alkanes, ethers, and halogenated hydrocarbons) gave a data set with 33 molecules and a regression of E(*)=0.991 Ecal(*) and r(2)=0.968. These results indicated a good correlation between the experimental and the MM2 computed molecule-surface binding energies.

  11. Heavy quarkonia in a potential model: binding energy, decay width, and survival probability

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Chaturvedi, O. S. K.; Thakur, Lata

    2018-06-01

    Recently a lot of progress has been made in deriving the heavy quark potential within a QCD medium. In this article we have considered heavy quarkonium in a hot quark gluon plasma phase. The heavy-quark potential has been modeled properly for short as well as long distances. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. We have numerically solved the 1+1-dimensional Schrodinger equation for this potential and obtained the eigen wavefunction and binding energy for the 1 S and 2 S states of charmonium and bottomonium. Further, we have calculated the decay width and dissociation temperature of quarkonium states in the QCD plasma. Finally, we have used our recently proposed unified model with these new values of decay widths to calculate the survival probability of the various quarkonium states with respect to centrality at relativistic heavy ion collider and large hadron collider energies. This study provides a unified, consistent and comprehensive description of spectroscopic properties of various quarkonium states at finite temperatures along with their nuclear modification factor at different collision energies.

  12. Is Water at the Graphite Interface Vapor-like or Ice-like?

    PubMed

    Qiu, Yuqing; Lupi, Laura; Molinero, Valeria

    2018-04-05

    Graphitic surfaces are the main component of soot, a major constituent of atmospheric aerosols. Experiments indicate that soots of different origins display a wide range of abilities to heterogeneously nucleate ice. The ability of pure graphite to nucleate ice in experiments, however, seems to be almost negligible. Nevertheless, molecular simulations with the monatomic water model mW with water-carbon interactions parameterized to reproduce the experimental contact angle of water on graphite predict that pure graphite nucleates ice. According to classical nucleation theory, the ability of a surface to nucleate ice is controlled by the binding free energy between ice immersed in liquid water and the surface. To establish whether the discrepancy in freezing efficiencies of graphite in mW simulations and experiments arises from the coarse resolution of the model or can be fixed by reparameterization, it is important to elucidate the contributions of the water-graphite, water-ice, and ice-water interfaces to the free energy, enthalpy, and entropy of binding for both water and the model. Here we use thermodynamic analysis and free energy calculations to determine these interfacial properties. We demonstrate that liquid water at the graphite interface is not ice-like or vapor-like: it has similar free energy, entropy, and enthalpy as water in the bulk. The thermodynamics of the water-graphite interface is well reproduced by the mW model. We find that the entropy of binding between graphite and ice is positive and dominated, in both experiments and simulations, by the favorable entropy of reducing the ice-water interface. Our analysis indicates that the discrepancy in freezing efficiencies of graphite in experiments and the simulations with mW arises from the inability of the model to simultaneously reproduce the contact angle of liquid water on graphite and the free energy of the ice-graphite interface. This transferability issue is intrinsic to the resolution of the model, and arises from its lack of rotational degrees of freedom.

  13. The Dual Role of Disorder on the Dissociation of Interfacial Charge Transfer Excitons

    NASA Astrophysics Data System (ADS)

    Shi, Liang; Lee, Chee-Kong; Willard, Adam

    In organic-based photovoltaics (OPV), dissociation of neutral photo-excitations (i.e., Frenkel excitons) into free charge carriers requires the excitons to overcome binding energy that can significantly exceed thermal energies. The inability of bound charges to overcome this large binding energy has been implicated as a primary source of efficiency loss in OPVs. Despite the potential impact on the performance of organic solar cells much remains to be understood about the microscopic mechanism of exciton dissociation in OPV materials. Here we explore the role of static molecular disorder in mediating this charge dissociation process. Using a simple lattice model of exciton dynamics we demonstrate that random spatial variations in the energetic landscape can mitigate the effects of the exciton binding energy by lowering the free energy barrier. By considering the competition between this thermodynamic effect and the disorder-induced slowing of dissociation kinetics we demonstrate that exciton dissociation yields are expected to depend non-monotonically on the degree of static disorder. We conclude that a certain amount of molecular-scale disorder is desirable in order to optimize the performance of organic photovoltaic materials.

  14. Sampling and energy evaluation challenges in ligand binding protein design

    PubMed Central

    Dou, Jiayi; Doyle, Lindsey; Jr. Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L.

    2017-01-01

    Abstract The steroid hormone 17α‐hydroxylprogesterone (17‐OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17‐OHP containing an extended, nonpolar, shape‐complementary binding pocket for the four‐ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17‐OHP with micromolar affinity. A co‐crystal structure of one of the designs revealed that 17‐OHP is rotated 180° around a pseudo‐two‐fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same “flipped” orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two‐fold symmetry of the molecule. PMID:28980354

  15. Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions

    NASA Astrophysics Data System (ADS)

    Crivelli, Joseph J.; Lemmon, Gordon; Kaufmann, Kristian W.; Meiler, Jens

    2013-12-01

    Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain-peptide interactions capable of predicting both affinity and specificity of binding based on X-ray crystal structures and comparative modeling with R osetta. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several R osetta protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain-peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain-peptide interactions.

  16. Wobbled electronic properties of lithium clusters: Deterministic approach through first principles

    NASA Astrophysics Data System (ADS)

    Kushwaha, Anoop Kumar; Nayak, Saroj Kumar

    2018-03-01

    The innate tendency to form dendritic growth promoted through cluster formation leading to the failure of a Li-ion battery system have drawn significant attention of the researchers towards the effective destabilization of the cluster growth through selective implementation of electrolytic media such as acetonitrile (MeCN). In the present work, using first principles density functional theory and continuum dielectric model, we have investigated the origin of oscillatory nature of binding energy per atom of Lin (n ≤ 8) under the influence of MeCN. In the gas phase, we found that static mean polarizability is strongly correlated with binding energy and shows oscillatory nature with cluster size due to the open shell of Lin cluster. However, in acetonitrile medium, the binding energy has been correlated with electrostatic Lin -MeCN interaction and it has been found that both of them possess wobbled behavior characterized by the cluster size.

  17. Advances in free-energy-based simulations of protein folding and ligand binding.

    PubMed

    Perez, Alberto; Morrone, Joseph A; Simmerling, Carlos; Dill, Ken A

    2016-02-01

    Free-energy-based simulations are increasingly providing the narratives about the structures, dynamics and biological mechanisms that constitute the fabric of protein science. Here, we review two recent successes. It is becoming practical: first, to fold small proteins with free-energy methods without knowing substructures and second, to compute ligand-protein binding affinities, not just their binding poses. Over the past 40 years, the timescales that can be simulated by atomistic MD are doubling every 1.3 years--which is faster than Moore's law. Thus, these advances are not simply due to the availability of faster computers. Force fields, solvation models and simulation methodology have kept pace with computing advancements, and are now quite good. At the tip of the spear recently are GPU-based computing, improved fast-solvation methods, continued advances in force fields, and conformational sampling methods that harness external information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Edge currents in frustrated Josephson junction ladders

    NASA Astrophysics Data System (ADS)

    Marques, A. M.; Santos, F. D. R.; Dias, R. G.

    2016-09-01

    We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.

  19. Critical insight into the interaction of naringenin with human haemoglobin: A combined spectroscopic and computational modeling approaches

    NASA Astrophysics Data System (ADS)

    Maity, Subhajit; Chakraborty, Sandipan; Chakraborti, Abhay Sankar

    2017-02-01

    The present study demonstrates critical insight into the binding of a bioactive flavanone naringenin with normal human haemoglobin (NHb). Both spectrophotometric and spectrofluorimetric studies reveal that naringenin interacts with NHb. The binding affinity constant and number of binding sites appear to be approximately (1.5 ± 0.2) × 104 M-1 and 1, respectively. Static quenching seems to be an important factor in binding process, as evident from steady-state and time-resolved fluorescence spectroscopic studies. Far UV circular dichroism spectroscopy depicts that binding of naringenin to NHb causes no change in the secondary structure of the protein, which is also evident from Fourier transform infrared spectroscopic study. Free energy change (ΔG0) for naringenin-NHb interaction, determined by spectroscopic and isothermal calorimetric method, appears to be -5.67 kcal/mol and -6.90 kcal/mol, respectively, and is close to the docking energy -6.84 kcal/mol. Molecular docking suggests that naringenin binds near the cavity of the tetrameric heme protein, forming hydrogen bonds with surrounding amino acid residues. The binding site is away from the heme moieties, implicating naringenin binding does not affect the oxygen binding capacity of NHb, which makes the protein a suitable carrier of the flavonoid.

  20. DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques.

    PubMed

    Shahabadi, Nahid; Falsafi, Monireh; Maghsudi, Maryam

    2017-01-02

    The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 10 4 L mol -1 and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure -20.61 KJ mol -1 . This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.

  1. Exploring the binding mechanism of Heteroaryldihydropyrimidines and Hepatitis B Virus capsid combined 3D-QSAR and molecular dynamics.

    PubMed

    Tu, Jing; Li, Jiao Jiao; Shan, Zhi Jie; Zhai, Hong Lin

    2017-01-01

    The non-nucleoside drugs have been developed to treat HBV infection owing to their increased efficacy and lesser side effects, in which heteroaryldihydropyrimidines (HAPs) have been identified as effective inhibitors of HBV capsid. In this paper, the binding mechanism of HAPs targeting on HBV capsid protein was explored through three-dimensional quantitative structure-activity relationship, molecular dynamics and binding free energy decompositions. The obtained models of comparative molecular field analysis and comparative molecular similarity indices analysis enable the sufficient interpretation of structure-activity relationship of HAPs-HBV. The binding free energy analysis correlates with the experimental data. The computational results disclose that the non-polar contribution is the major driving force and Y132A mutation enhances the binding affinity for inhibitor 2 bound to HBV. The hydrogen bond interactions between the inhibitors and Trp102 help to stabilize the conformation of HAPs-HBV. The study provides insight into the binding mechanism of HAPs-HBV and would be useful for the rational design and modification of new lead compounds of HAP drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Probing ligand binding modes of Mycobacterium tuberculosis MurC ligase by molecular modeling, dynamics simulation and docking.

    PubMed

    Anuradha, C M; Mulakayala, Chaitanya; Babajan, Banaganapalli; Naveen, M; Rajasekhar, Chikati; Kumar, Chitta Suresh

    2010-01-01

    Multi drug resistance capacity for Mycobacterium tuberculosis (MDR-Mtb) demands the profound need for developing new anti-tuberculosis drugs. The present work is on Mtb-MurC ligase, which is an enzyme involved in biosynthesis of peptidoglycan, a component of Mtb cell wall. In this paper the 3-D structure of Mtb-MurC has been constructed using the templates 1GQQ and 1P31. Structural refinement and energy minimization of the predicted Mtb-MurC ligase model has been carried out by molecular dynamics. The streochemical check failures in the energy minimized model have been evaluated through Procheck, Whatif ProSA, and Verify 3D. Further torsion angles for the side chains of amino acid residues of the developed model were determined using Predictor. Docking analysis of Mtb-MurC model with ligands and natural substrates enabled us to identify specific residues viz. Gly125, Lys126, Arg331, and Arg332, within the Mtb-MurC binding pocket to play an important role in ligand and substrate binding affinity and selectivity. The availability of Mtb-MurC ligase built model, together with insights gained from docking analysis will promote the rational design of potent and selective Mtb-MurC ligase inhibitors as antituberculosis therapeutics.

  3. Optimization of binding electrostatics: Charge complementarity in the barnase-barstar protein complex

    PubMed Central

    lee, Lee-Peng; Tidor, Bruce

    2001-01-01

    Theoretical and experimental studies have shown that the large desolvation penalty required for polar and charged groups frequently precludes their involvement in electrostatic interactions that contribute strongly to net stability in the folding or binding of proteins in aqueous solution near room temperature. We have previously developed a theoretical framework for computing optimized electrostatic interactions and illustrated use of the algorithm with simplified geometries. Given a receptor and model assumptions, the method computes the ligand-charge distribution that provides the most favorable balance of desolvation and interaction effects on binding. In this paper the method has been extended to treat complexes using actual molecular shapes. The barnase-barstar protein complex was investigated with barnase treated as a target receptor. The atomic point charges of barstar were varied to optimize the electrostatic binding free energy. Barnase and natural barstar form a tight complex (Kd ∼ 10−14 M) with many charged and polar groups near the interface that make this a particularly relevant system for investigating the role of electrostatic effects on binding. The results show that sets of barstar charges (resulting from optimization with different constraints) can be found that give rise to relatively large predicted improvements in electrostatic binding free energy. Principles for enhancing the effect of electrostatic interactions in molecular binding in aqueous environments are discussed in light of the optima. Our findings suggest that, in general, the enhancements in electrostatic binding free energy resulting from modification of polar and charged groups can be substantial. Moreover, a recently proposed definition of electrostatic complementarity is shown to be a useful tool for examining binding interfaces. Finally, calculational results suggest that wild-type barstar is closer to being affinity optimized than is barnase for their mutual binding, consistent with the known roles of these proteins. PMID:11266622

  4. The potential for fast van der Waals computations for layered materials using a Lifshitz model

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Pellouchoud, Lenson A.; Reed, Evan J.

    2017-06-01

    Computation of the van der Waals (vdW) interactions plays a crucial role in the study of layered materials. The adiabatic-connection fluctuation-dissipation theorem within random phase approximation (ACFDT-RPA) has been empirically reported to be the most accurate of commonly used methods, but it is limited to small systems due to its computational complexity. Without a computationally tractable vdW correction, fictitious strains are often introduced in the study of multilayer heterostructures, which, we find, can change the vdW binding energy by as much as 15%. In this work, we employed for the first time a defined Lifshitz model to provide the vdW potentials for a spectrum of layered materials orders of magnitude faster than the ACFDT-RPA for representative layered material structures. We find that a suitably defined Lifshitz model gives the correlation component of the binding energy to within 8-20% of the ACFDT-RPA calculations for a variety of layered heterostructures. Using this fast Lifshitz model, we studied the vdW binding properties of 210 three-layered heterostructures. Our results demonstrate that the three-body vdW effects are generally small (10% of the binding energy) in layered materials for most cases, and that non-negligible second-nearest neighbor layer interaction and three-body effects are observed for only those cases in which the middle layer is atomically thin (e.g. BN or graphene). We find that there is potential for particular combinations of stacked layers to exhibit repulsive three-body van der Waals effects, although these effects are likely to be much smaller than two-body effects.

  5. A coarse-grained biophysical model of sequence evolution and the population size dependence of the speciation rate

    PubMed Central

    Khatri, Bhavin S.; Goldstein, Richard A.

    2015-01-01

    Speciation is fundamental to understanding the huge diversity of life on Earth. Although still controversial, empirical evidence suggests that the rate of speciation is larger for smaller populations. Here, we explore a biophysical model of speciation by developing a simple coarse-grained theory of transcription factor-DNA binding and how their co-evolution in two geographically isolated lineages leads to incompatibilities. To develop a tractable analytical theory, we derive a Smoluchowski equation for the dynamics of binding energy evolution that accounts for the fact that natural selection acts on phenotypes, but variation arises from mutations in sequences; the Smoluchowski equation includes selection due to both gradients in fitness and gradients in sequence entropy, which is the logarithm of the number of sequences that correspond to a particular binding energy. This simple consideration predicts that smaller populations develop incompatibilities more quickly in the weak mutation regime; this trend arises as sequence entropy poises smaller populations closer to incompatible regions of phenotype space. These results suggest a generic coarse-grained approach to evolutionary stochastic dynamics, allowing realistic modelling at the phenotypic level. PMID:25936759

  6. Prediction of Water Binding to Protein Hydration Sites with a Discrete, Semiexplicit Solvent Model.

    PubMed

    Setny, Piotr

    2015-12-08

    Buried water molecules are ubiquitous in protein structures and are found at the interface of most protein-ligand complexes. Determining their distribution and thermodynamic effect is a challenging yet important task, of great of practical value for the modeling of biomolecular structures and their interactions. In this study, we present a novel method aimed at the prediction of buried water molecules in protein structures and estimation of their binding free energies. It is based on a semiexplicit, discrete solvation model, which we previously introduced in the context of small molecule hydration. The method is applicable to all macromolecular structures described by a standard all-atom force field, and predicts complete solvent distribution within a single run with modest computational cost. We demonstrate that it indicates positions of buried hydration sites, including those filled by more than one water molecule, and accurately differentiates them from sterically accessible to water but void regions. The obtained estimates of water binding free energies are in fair agreement with reference results determined with the double decoupling method.

  7. Resonant scattering due to adatoms in graphene: Top, bridge, and hollow positions

    NASA Astrophysics Data System (ADS)

    Irmer, Susanne; Kochan, Denis; Lee, Jeongsu; Fabian, Jaroslav

    2018-02-01

    We present a theoretical study of resonance characteristics in graphene from adatoms with s or pz character binding in top, bridge, and hollow positions. The adatoms are described by two tight-binding parameters: on-site energy and hybridization strength. We explore a wide range of different magnitudes of these parameters by employing T -matrix calculations in the single adatom limit and by tight-binding supercell calculations for dilute adatom coverage. We calculate the density of states and the momentum relaxation rate and extract the resonance level and resonance width. The top position with a large hybridization strength or, equivalently, small on-site energy, induces resonances close to zero energy. The bridge position, compared to top, is more sensitive to variation in the orbital tight-binding parameters. Resonances within the experimentally relevant energy window are found mainly for bridge adatoms with negative on-site energies. The effect of resonances from the top and bridge positions on the density of states and momentum relaxation rate is comparable and both positions give rise to a power-law decay of the resonant state in graphene. The hollow position with s orbital character is affected from destructive interference, which is seen from the very narrow resonance peaks in the density of states and momentum relaxation rate. The resonant state shows no clear tendency to a power-law decay around the impurity and its magnitude decreases strongly with lowering the adatom content in the supercell calculations. This is in contrast to the top and bridge positions. We conclude our study with a comparison to models of pointlike vacancies and strong midgap scatterers. The latter model gives rise to significantly higher momentum relaxation rates than caused by single adatoms.

  8. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    PubMed Central

    Elengoe, Asita; Naser, Mohammed Abu; Hamdan, Salehhuddin

    2015-01-01

    Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD) of heat shock 70 kDa protein (PDB: 1HJO) with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD) simulation. Human DNA binding domain of p53 motif (SCMGGMNR) retrieved from UniProt (UniProtKB: P04637) was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy. PMID:26098630

  9. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif.

    PubMed

    Elengoe, Asita; Naser, Mohammed Abu; Hamdan, Salehhuddin

    2015-01-01

    Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD) of heat shock 70 kDa protein (PDB: 1HJO) with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD) simulation. Human DNA binding domain of p53 motif (SCMGGMNR) retrieved from UniProt (UniProtKB: P04637) was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were -0.44 Kcal/mol and -9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  10. Guiding lead optimization with GPCR structure modeling and molecular dynamics.

    PubMed

    Heifetz, Alexander; James, Tim; Morao, Inaki; Bodkin, Michael J; Biggin, Philip C

    2016-10-01

    G-protein coupled receptor (GPCR) modeling approaches are widely used in the hit-to-lead and lead optimization stages of drug discovery. Modern protocols that involve molecular dynamics simulation can address key issues such as the free energy of binding (affinity), ligand-induced GPCR flexibility, ligand binding kinetics, conserved water positions and their role in ligand binding and the effects of mutations. The goals of these calculations are to predict the structures of the complexes between existing ligands and their receptors, to understand the key interactions and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this review we present a brief survey of various computational approaches illustrated through a hierarchical GPCR modeling protocol and its prospective application in three industrial drug discovery projects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. a Migration Well Model for the Binding of Ligands to Heme Proteins.

    NASA Astrophysics Data System (ADS)

    Beece, Daniel Kenneth

    The binding of carbon monoxide and dioxygen to heme proteins can be viewed as occurring in distinct stages: diffusion in the solvent, migration through the matrix, and occupation of the pocket before the final binding step. A model is presented which can explain the dominant kinetic behavior of several different heme protein-ligand systems. The model assumes that a ligand molecule in the solvent sequentially encounters discrete energy barriers on the way to the binding site. The rate to surmount each barrier is distributed, except for the pseudofirst order rate corresponding to the step into the protein from the solvent. The migration through the matrix is equivalent to a small number of distinct jumps. Quantitative analysis of the data permit estimates of the barrier heights, preexponentials and solvent coupling factors for each rate. A migration coefficient and a matrix occupation factor are defined.

  12. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    PubMed

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  13. Insights on the Cuprate High Energy Anomaly Observed in ARPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moritz, Brian

    2011-08-16

    Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). The anomaly is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different energy scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA.more » Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the anomaly demarcates a transition, or cross-over, from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character.« less

  14. Bacterial protease uses distinct thermodynamic signatures for substrate recognition.

    PubMed

    Bezerra, Gustavo Arruda; Ohara-Nemoto, Yuko; Cornaciu, Irina; Fedosyuk, Sofiya; Hoffmann, Guillaume; Round, Adam; Márquez, José A; Nemoto, Takayuki K; Djinović-Carugo, Kristina

    2017-06-06

    Porphyromonas gingivalis and Porphyromonas endodontalis are important bacteria related to periodontitis, the most common chronic inflammatory disease in humans worldwide. Its comorbidity with systemic diseases, such as type 2 diabetes, oral cancers and cardiovascular diseases, continues to generate considerable interest. Surprisingly, these two microorganisms do not ferment carbohydrates; rather they use proteinaceous substrates as carbon and energy sources. However, the underlying biochemical mechanisms of their energy metabolism remain unknown. Here, we show that dipeptidyl peptidase 11 (DPP11), a central metabolic enzyme in these bacteria, undergoes a conformational change upon peptide binding to distinguish substrates from end products. It binds substrates through an entropy-driven process and end products in an enthalpy-driven fashion. We show that increase in protein conformational entropy is the main-driving force for substrate binding via the unfolding of specific regions of the enzyme ("entropy reservoirs"). The relationship between our structural and thermodynamics data yields a distinct model for protein-protein interactions where protein conformational entropy modulates the binding free-energy. Further, our findings provide a framework for the structure-based design of specific DPP11 inhibitors.

  15. Coarse-graining, Electrostatics and pH effects in phospholipid systems

    NASA Astrophysics Data System (ADS)

    Travesset, Alex; Vangaveti, Sweta

    2010-03-01

    We introduce a minimal free energy describing the interaction of charged groups and counterions including both classical electrostatic and specific interactions. The predictions of the model are compared against the standard model for describing ions next to charged interfaces, consisting of Poisson-Boltzmann theory with additional constants describing ion binding, which are specific to the counterion and the interfacial charge (``chemical binding''). It is shown that the ``chemical'' model can be appropriately described by an underlying ``physical'' model over several decades in concentration, but the extracted binding constants are not uniquely defined, as they differ depending on the particular observable quantity being studied. It is also shown that electrostatic correlations for divalent (or higher valence) ions enhance the surface charge by increasing deprotonation, an effect not properly accounted within chemical models. The model is applied to the charged phospholipids phosphatidylserine, Phosphatidc acid and Phosphoinositides and implications for different biological processes are discussed.

  16. Model of directed lines for square ice with second-neighbor and third-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Kirov, Mikhail V.

    2018-02-01

    The investigation of the properties of nanoconfined systems is one of the most rapidly developing scientific fields. Recently it has been established that water monolayer between two graphene sheets forms square ice. Because of the energetic disadvantage, in the structure of the square ice there are no longitudinally arranged molecules. The result is that the structure is formed by unidirectional straight-lines of hydrogen bonds only. A simple but accurate discrete model of square ice with second-neighbor and third-neighbor interactions is proposed. According to this model, the ground state includes all configurations which do not contain three neighboring unidirectional chains of hydrogen bonds. Each triplet increases the energy by the same value. This new model differs from an analogous model with long-range interactions where in the ground state all neighboring chains are antiparallel. The new model is suitable for the corresponding system of point electric (and magnetic) dipoles on the square lattice. It allows separately estimating the different contributions to the total binding energy and helps to understand the properties of infinite monolayers and finite nanostructures. Calculations of the binding energy for square ice and for point dipole system are performed using the packages TINKER and LAMMPS.

  17. Homology modeling and in silico site directed mutagenesis of pyruvate ferredoxin oxidoreductase from Clostridium thermocellum.

    PubMed

    Saranyah, Kannuchamy; Kalva, Sukesh; Mukund, Nisha; Singh, Sanjeev Kumar; Saleena, Lilly M

    2015-01-01

    Pyruvate ferredoxin oxidoreductase is the crucial enzyme that involves in bioethanol synthesis pathway of Clostridium thermocellum. It is an ethanologenic organism but has been investigated less on its enzyme structure. The amino acid sequence of Pyruvate ferredoxin oxidoreductase was derived from UNIPROT and the screened crystal structure was taken as the template for homology modeling using MODELLER 9V11. The model was loop refined and was validated using RMSD, ProSA and PROCHECK. The docking and per residue interaction studies were carried out to elucidate the interaction energies of amino acid residues with pyruvate. To enhance the binding of pyruvate with the enzyme, mutation studies were carried out by replacing Thr31 as it had a less interaction energy. Out of 10 mutants, T31N, T31Q and T31G were selected using potential energy and the residual energy calculations. Five nanoseconds explicit MD simulations were run for apo, wild type and mutants T31N, T31Q and T31G using Desmond. RMSD, RMSF, distance plots and H-bonds analysis proved T31G to be a favorable mutant for binding of pyruvate. Thus, modeling PFOR would help in profound understanding of its structural clefts and mutation studies would aid in improving the enzyme efficiency.

  18. Grid-Based Surface Generalized Born Model for Calculation of Electrostatic Binding Free Energies.

    PubMed

    Forouzesh, Negin; Izadi, Saeed; Onufriev, Alexey V

    2017-10-23

    Fast and accurate calculation of solvation free energies is central to many applications, such as rational drug design. In this study, we present a grid-based molecular surface implementation of "R6" flavor of the generalized Born (GB) implicit solvent model, named GBNSR6. The speed, accuracy relative to numerical Poisson-Boltzmann treatment, and sensitivity to grid surface parameters are tested on a set of 15 small protein-ligand complexes and a set of biomolecules in the range of 268 to 25099 atoms. Our results demonstrate that the proposed model provides a relatively successful compromise between the speed and accuracy of computing polar components of the solvation free energies (ΔG pol ) and binding free energies (ΔΔG pol ). The model tolerates a relatively coarse grid size h = 0.5 Å, where the grid artifact error in computing ΔΔG pol remains in the range of k B T ∼ 0.6 kcal/mol. The estimated ΔΔG pol s are well correlated (r 2 = 0.97) with the numerical Poisson-Boltzmann reference, while showing virtually no systematic bias and RMSE = 1.43 kcal/mol. The grid-based GBNSR6 model is available in Amber (AmberTools) package of molecular simulation programs.

  19. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies

    DOE PAGES

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2017-03-09

    The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less

  20. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less

  1. Computational membrane biophysics: From ion channel interactions with drugs to cellular function.

    PubMed

    Miranda, Williams E; Ngo, Van A; Perissinotti, Laura L; Noskov, Sergei Yu

    2017-11-01

    The rapid development of experimental and computational techniques has changed fundamentally our understanding of cellular-membrane transport. The advent of powerful computers and refined force-fields for proteins, ions, and lipids has expanded the applicability of Molecular Dynamics (MD) simulations. A myriad of cellular responses is modulated through the binding of endogenous and exogenous ligands (e.g. neurotransmitters and drugs, respectively) to ion channels. Deciphering the thermodynamics and kinetics of the ligand binding processes to these membrane proteins is at the heart of modern drug development. The ever-increasing computational power has already provided insightful data on the thermodynamics and kinetics of drug-target interactions, free energies of solvation, and partitioning into lipid bilayers for drugs. This review aims to provide a brief summary about modeling approaches to map out crucial binding pathways with intermediate conformations and free-energy surfaces for drug-ion channel binding mechanisms that are responsible for multiple effects on cellular functions. We will discuss post-processing analysis of simulation-generated data, which are then transformed to kinetic models to better understand the molecular underpinning of the experimental observables under the influence of drugs or mutations in ion channels. This review highlights crucial mathematical frameworks and perspectives on bridging different well-established computational techniques to connect the dynamics and timescales from all-atom MD and free energy simulations of ion channels to the physiology of action potentials in cellular models. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Modeling side-chains using molecular dynamics improve recognition of binding region in CAPRI targets.

    PubMed

    Camacho, Carlos J

    2005-08-01

    The CAPRI-II experiment added an extra level of complexity to the problem of predicting protein-protein interactions by including 5 targets for which participants had to build or complete the 3-dimensional (3D) structure of either the receptor or ligand based on the structure of a close homolog. In this article, we describe how modeling key side-chains using molecular dynamics (MD) in explicit solvent improved the recognition of the binding region of a free energy- based computational docking method. In particular, we show that MD is able to predict with relatively high accuracy the rotamer conformation of the anchor side-chains important for molecular recognition as suggested by Rajamani et al. (Proc Natl Acad Sci USA 2004;101:11287-11292). As expected, the conformations are some of the most common rotamers for the given residue, while latch side-chains that undergo induced fit upon binding are forced into less common conformations. Using these models as starting conformations in conjunction with the rigid-body docking server ClusPro and the flexible docking algorithm SmoothDock, we produced valuable predictions for 6 of the 9 targets in CAPRI-II, missing only the 3 targets that underwent significant structural rearrangements upon binding. We also show that our free energy- based scoring function, consisting of the sum of van der Waals, Coulombic electrostatic with a distance-dependent dielectric, and desolvation free energy successfully discriminates the nativelike conformation of our submitted predictions. The latter emphasizes the critical role that thermodynamics plays on our methodology, and validates the generality of the algorithm to predict protein interactions.

  3. Biophysical aspects of cyclodextrin interaction with paraoxon.

    PubMed

    Soni, Sunil-Datta; Bhonsle, Jayendra B; Garcia, Gregory E

    2014-03-01

    Cyclodextrins are torus-shaped polymers of glucose that can bind organophosphorous compounds such as nerve agents and pesticides. We demonstrate here that cyclodextrin can bind up to two paraoxon molecules with a K(av) of 6775 M(-1). Molecular modeling shows that the paraoxon appears to bind in polar opposite orientation and have an average binding energy of -89 Kcals/mol. Published 2013. This article is a U.S. Government work and is in the public domain in the USA. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, J.R.; Lu, Z.; Ring, D.M.

    We have examined a variety of structures for the {l_brace}510{r_brace} symmetric tilt boundary in Si and Ge, using tight-binding and first-principles calculations. These calculations show that the observed structure in Si is the lowest-energy structure, despite the fact that it is more complicated than what is necessary to preserve fourfold coordination. Contrary to calculations using a Tersoff potential, first-principles calculations show that the energy depends strongly upon the structure. A recently developed tight-binding model for Si produces results in very good agreement with the first-principles calculations. Electronic density of states calculations based upon this model show no evidence of midgapmore » states and little evidence of electronic states localized to the grain boundary. {copyright} {ital 1998} {ital The American Physical Society}« less

  5. FAST TRACK COMMUNICATION: Finite-temperature magnetism in bcc Fe under compression

    NASA Astrophysics Data System (ADS)

    Sha, Xianwei; Cohen, R. E.

    2010-09-01

    We investigate the contributions of finite-temperature magnetic fluctuations to the thermodynamic properties of bcc Fe as functions of pressure. First, we apply a tight-binding total-energy model parameterized to first-principles linearized augmented plane-wave computations to examine various ferromagnetic, anti-ferromagnetic, and noncollinear spin spiral states at zero temperature. The tight-binding data are fit to a generalized Heisenberg Hamiltonian to describe the magnetic energy functional based on local moments. We then use Monte Carlo simulations to compute the magnetic susceptibility, the Curie temperature, heat capacity, and magnetic free energy. Including the finite-temperature magnetism improves the agreement with experiment for the calculated thermal expansion coefficients.

  6. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping

    NASA Astrophysics Data System (ADS)

    Henke, Paul S.; Mak, Chi H.

    2014-08-01

    The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg2+ that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.

  7. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping.

    PubMed

    Henke, Paul S; Mak, Chi H

    2014-08-14

    The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg(2+) that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.

  8. Spectroscopic and molecular modeling study on the separate and simultaneous bindings of alprazolam and fluoxetine hydrochloride to human serum albumin (HSA): With the aim of the drug interactions probing

    NASA Astrophysics Data System (ADS)

    Dangkoob, Faeze; Housaindokht, Mohmmad Reza; Asoodeh, Ahmad; Rajabi, Omid; Rouhbakhsh Zaeri, Zeinab; Verdian Doghaei, Asma

    2015-02-01

    The objective of the present research is to study the interaction of separate and simultaneous of alprazolam (ALP) and fluoxetine hydrochloride (FLX) with human serum albumin (HSA) in phosphate buffer (pH 7.4) using different kinds of spectroscopic, cyclic voltammetry and molecular modeling techniques. The absorbance spectra of protein, drugs and protein-drug showed complex formation between the drugs and HSA. Fluorescence analysis demonstrated that ALP and FLX could quench the fluorescence spectrum of HSA and demonstrated the conformational change of HSA in the presence of both drugs. Also, fluorescence quenching mechanism of HSA-drug complexes both separately and simultaneously was suggested as static quenching. The analysis of UV absorption data and the fluorescence quenching of HSA in the binary and ternary systems showed that FLX decreased the binding affinity between ALP and HSA. On the contrary, ALP increased the binding affinity of FLX and HSA. The results of synchronous fluorescence and three-dimensional fluorescence spectra indicated that the binding of drugs to HSA would modify the microenvironment around the Trp and Tyr residues and the conformation of HSA. The distances between Trp residue and the binding sites of the drugs were estimated according to the Förster theory, and it was demonstrated that non-radiative energy transfer from HSA to the drugs occurred with a high probability. Moreover, according to CV measurements, the decrease of peak current in the cyclic voltammogram of the both drugs in the presence of HSA revealed that they interacted with albumin and binding constants were calculated for binary systems which were in agreement with the binding constants obtained from UV absorption and fluorescence spectroscopy. The prediction of the best binding sites of ALP and FLX in binary and ternary systems in molecular modeling approach was done using of Gibbs free energy.

  9. Spectroscopic and molecular modeling study on the separate and simultaneous bindings of alprazolam and fluoxetine hydrochloride to human serum albumin (HSA): with the aim of the drug interactions probing.

    PubMed

    Dangkoob, Faeze; Housaindokht, Mohmmad Reza; Asoodeh, Ahmad; Rajabi, Omid; Rouhbakhsh Zaeri, Zeinab; Verdian Doghaei, Asma

    2015-02-25

    The objective of the present research is to study the interaction of separate and simultaneous of alprazolam (ALP) and fluoxetine hydrochloride (FLX) with human serum albumin (HSA) in phosphate buffer (pH 7.4) using different kinds of spectroscopic, cyclic voltammetry and molecular modeling techniques. The absorbance spectra of protein, drugs and protein-drug showed complex formation between the drugs and HSA. Fluorescence analysis demonstrated that ALP and FLX could quench the fluorescence spectrum of HSA and demonstrated the conformational change of HSA in the presence of both drugs. Also, fluorescence quenching mechanism of HSA-drug complexes both separately and simultaneously was suggested as static quenching. The analysis of UV absorption data and the fluorescence quenching of HSA in the binary and ternary systems showed that FLX decreased the binding affinity between ALP and HSA. On the contrary, ALP increased the binding affinity of FLX and HSA. The results of synchronous fluorescence and three-dimensional fluorescence spectra indicated that the binding of drugs to HSA would modify the microenvironment around the Trp and Tyr residues and the conformation of HSA. The distances between Trp residue and the binding sites of the drugs were estimated according to the Förster theory, and it was demonstrated that non-radiative energy transfer from HSA to the drugs occurred with a high probability. Moreover, according to CV measurements, the decrease of peak current in the cyclic voltammogram of the both drugs in the presence of HSA revealed that they interacted with albumin and binding constants were calculated for binary systems which were in agreement with the binding constants obtained from UV absorption and fluorescence spectroscopy. The prediction of the best binding sites of ALP and FLX in binary and ternary systems in molecular modeling approach was done using of Gibbs free energy. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. External electric field effect on the binding energy of a hydrogenic donor impurity in InGaAsP/InP concentric double quantum rings

    NASA Astrophysics Data System (ADS)

    Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin

    2018-04-01

    Within the framework of effective-mass envelope-function theory, the ground state binding energy of a hydrogenic donor impurity is calculated in the InGaAsP/InP concentric double quantum rings (CDQRs) using the plane wave method. The effects of geometry, impurity position, external electric field and alloy composition on binding energy are considered. It is shown that the peak value of the binding energy appears in two rings with large gap as the donor impurity moves along the radial direction. The binding energy reaches the peak value at the center of ring height when the donor impurity moves along the axial direction. The binding energy shows nonlinear variation with the increase of ring height. With the external electric field applied along the z-axis, the binding energy of the donor impurity located at zi ≥ 0 decreases while that located at zi < 0 increases. In addition, the binding energy decreases with increasing Ga composition, but increases with the increasing As composition.

  11. Drug-binding energetics of human α-1-acid glycoprotein assessed by isothermal titration calorimetry and molecular docking simulations

    PubMed Central

    Huang, Johnny X.; Cooper, Matthew A.; Baker, Mark A.; Azad, Mohammad A.K.; Nation, Roger L.; Li, Jian; Velkov, Tony

    2012-01-01

    This study utilizes sensitive, modern isothermal titration calorimetric (ITC) methods to characterize the microscopic thermodynamic parameters that drive the binding of basic drugs to α-1-acid glycoprotein (AGP) and thereby rationalize the thermodynamic data in relation to docking models and crystallographic structures of the drug-AGP complexes. The binding of basic compounds from the tricyclic antidepressant series, together with miaserine, chlorpromazine, disopyramide and cimetidine all displayed an exothermically driven binding interaction with AGP. The impact of protonation/deprotonation events, ionic strength, temperature and the individual selectivity of the A and F1*S AGP variants on drug-binding thermodynamics were characterized. A correlation plot of the thermodynamic parameters for all of the test compounds revealed enthalpy-entropy compensation is in effect. The exothermic binding energetics of the test compounds were driven by a combination of favorable (negative) enthalpic (ΔH°) and favorable (positive) entropic (ΔS°) contributions to the Gibbs free energy (ΔG°). Collectively, the data imply that the free energies that drive drug binding to AGP and its relationship to drug-serum residency evolve from the complex interplay of enthalpic and entropic forces from interactions with explicit combinations of hydrophobic and polar side-chain sub-domains within the multi-lobed AGP ligand binding cavity. PMID:23192962

  12. Core Binding Site of a Thioflavin-T-Derived Imaging Probe on Amyloid β Fibrils Predicted by Computational Methods.

    PubMed

    Kawai, Ryoko; Araki, Mitsugu; Yoshimura, Masashi; Kamiya, Narutoshi; Ono, Masahiro; Saji, Hideo; Okuno, Yasushi

    2018-05-16

    Development of new diagnostic imaging probes for Alzheimer's disease, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes, has been strongly desired. In this study, we investigated the most accessible amyloid β (Aβ) binding site of [ 123 I]IMPY, a Thioflavin-T-derived SPECT probe, using experimental and computational methods. First, we performed a competitive inhibition assay with Orange-G, which recognizes the KLVFFA region in Aβ fibrils, suggesting that IMPY and Orange-G bind to different sites in Aβ fibrils. Next, we precisely predicted the IMPY binding site on a multiple-protofilament Aβ fibril model using computational approaches, consisting of molecular dynamics and docking simulations. We generated possible IMPY-binding structures using docking simulations to identify candidates for probe-binding sites. The binding free energy of IMPY with the Aβ fibril was calculated by a free energy simulation method, MP-CAFEE. These computational results suggest that IMPY preferentially binds to an interfacial pocket located between two protofilaments and is stabilized mainly through hydrophobic interactions. Finally, our computational approach was validated by comparing it with the experimental results. The present study demonstrates the possibility of computational approaches to screen new PET/SPECT probes for Aβ imaging.

  13. Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment

    PubMed Central

    Hughes, Samantha J; Tanner, Julian A; Hindley, Alison D; Miller, Andrew D; Gould, Ian R

    2003-01-01

    Background Charging of transfer-RNA with cognate amino acid is accomplished by the aminoacyl-tRNA synthetases, and proceeds through an aminoacyl adenylate intermediate. The lysyl-tRNA synthetase has evolved an active site that specifically binds lysine and ATP. Previous molecular dynamics simulations of the heat-inducible Escherichia coli lysyl-tRNA synthetase, LysU, have revealed differences in the binding of ATP and aspects of asymmetry between the nominally equivalent active sites of this dimeric enzyme. The possibility that this asymmetry results in different binding affinities for the ligands is addressed here by a parallel computational and biochemical study. Results Biochemical experiments employing isothermal calorimetry, steady-state fluorescence and circular dichroism are used to determine the order and stoichiometries of the lysine and nucleotide binding events, and the associated thermodynamic parameters. An ordered mechanism of substrate addition is found, with lysine having to bind prior to the nucleotide in a magnesium dependent process. Two lysines are found to bind per dimer, and trigger a large conformational change. Subsequent nucleotide binding causes little structural rearrangement and crucially only occurs at a single catalytic site, in accord with the simulations. Molecular dynamics based free energy calculations of the ATP binding process are used to determine the binding affinities of each site. Significant differences in ATP binding affinities are observed, with only one active site capable of realizing the experimental binding free energy. Half-of-the-sites models in which the nucleotide is only present at one active site achieve their full binding potential irrespective of the subunit choice. This strongly suggests the involvement of an anti-cooperative mechanism. Pathways for relaying information between the two active sites are proposed. Conclusions The asymmetry uncovered here appears to be a common feature of oligomeric aminoacyl-tRNA synthetases, and may play an important functional role. We suggest a manner in which catalytic efficiency could be improved by LysU operating in an alternating sites mechanism. PMID:12787471

  14. Simultaneous effects of temperature and pressure on the donor binding energy in a V-groove quantum wire

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2010-03-01

    The influence of temperature and pressure, simultaneously, on the binding energy of a hydrogenic donor impurity in a ridge GaAs/Ga 1- xAl xAs quantum wire is studied using a variational procedure within the effective mass approximation. The subband energy and the binding energy of the donor impurity in its ground state as a function of the wire bend width and impurity location at different temperatures and pressures are calculated. The results show that, when the temperature increases, the donor binding energy decreases for a constant applied pressure for all wire bend widths. Also, the binding energy increases by increasing the pressure for a constant temperature for all wire bend widths. In addition, when the temperature and pressure are applied simultaneously the binding energy decreases as the quantum wire bend width increases. On the whole, it is deduced that the temperature and pressure have important effects on the donor binding energy in a V-groove quantum wire.

  15. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Fouladi-Oskouei, J.; Shojaei, S.; Liu, Z.

    2018-04-01

    The effects of quantum confinement on excitons in parabolic quantum dots of monolayer transition metal dichalcogenides (TMDC QDs) are investigated within a massive Dirac fermion model. A giant spin-valley coupling of the TMDC QDs is obtained, larger than that of monolayer TMDC sheets and consistent with recent experimental measurements. The exciton transition energy and the binding energy are calculated, and it is found that the strong quantum confinement results in extremely high exciton binding energies. The enormously large exciton binding energy in TMDC QDs (({{E}{{B2D}}}∼ 500 meV)<{{E}{{BQD}}}~≲ 1800 meV for different kinds of TMDC QDs) ensures that the many body interactions play a significant role in the investigation of the optical properties of these novel nanostructures. The estimated oscillator strength and radiative lifetime of excitons are strongly size-dependent and indicate a giant oscillator strength enhancement and ultrafast radiative annihilation of excitons, varying from a few tens of femtoseconds to a few picoseconds. We found that the spin-dependent band gap, spin-valley coupling, binding energy and excitonic effects can be tuned by quantum confinements, leading to tunable quantum dots in monolayer TMDCs. This finding offers new functionality in engineering the interaction of a 2D material with light and creates promise for the quantum manipulation of spin and valley degrees of freedom in TMDC nanostructures, enabling versatile novel 2D quantum photonic and optoelectronic nanodevices.

  16. Hydrogen storage in engineered carbon nanospaces.

    PubMed

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.

  17. Towards accurate free energy calculations in ligand protein-binding studies.

    PubMed

    Steinbrecher, Thomas; Labahn, Andreas

    2010-01-01

    Cells contain a multitude of different chemical reaction paths running simultaneously and quite independently next to each other. This amazing feat is enabled by molecular recognition, the ability of biomolecules to form stable and specific complexes with each other and with their substrates. A better understanding of this process, i.e. of the kinetics, structures and thermodynamic properties of biomolecule binding, would be invaluable in the study of biological systems. In addition, as the mode of action of many pharmaceuticals is based upon their inhibition or activation of biomolecule targets, predictive models of small molecule receptor binding are very helpful tools in rational drug design. Since the goal here is normally to design a new compound with a high inhibition strength, one of the most important thermodynamic properties is the binding free energy DeltaG(0). The prediction of binding constants has always been one of the major goals in the field of computational chemistry, because the ability to reliably assess a hypothetical compound's binding properties without having to synthesize it first would save a tremendous amount of work. The different approaches to this question range from fast and simple empirical descriptor methods to elaborate simulation protocols aimed at putting the computation of free energies onto a solid foundation of statistical thermodynamics. While the later methods are still not suited for the screenings of thousands of compounds that are routinely performed in computational drug design studies, they are increasingly put to use for the detailed study of protein ligand interactions. This review will focus on molecular mechanics force field based free energy calculations and their application to the study of protein ligand interactions. After a brief overview of other popular methods for the calculation of free energies, we will describe recent advances in methodology and a variety of exemplary studies of molecular dynamics simulation based free energy calculations.

  18. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    PubMed

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  19. Energetic basis for the molecular-scale organization of bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua

    2014-12-24

    The remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption on singlemore » crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less

  20. Energetic basis for the molecular-scale organization of bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua

    The remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption on singlemore » crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less

  1. Investigation of Trimethyllysine Binding by the HP1 Chromodomain via Unnatural Amino Acid Mutagenesis.

    PubMed

    Baril, Stefanie A; Koenig, Amber L; Krone, Mackenzie W; Albanese, Katherine I; He, Cyndi Qixin; Lee, Ga Young; Houk, Kendall N; Waters, Marcey L; Brustad, Eric M

    2017-12-06

    Trimethyllysine (Kme3) reader proteins are targets for inhibition due to their role in mediating gene expression. Although all such reader proteins bind Kme3 in an aromatic cage, the driving force for binding may differ; some readers exhibit evidence for cation-π interactions whereas others do not. We report a general unnatural amino acid mutagenesis approach to quantify the contribution of individual tyrosines to cation binding using the HP1 chromodomain as a model system. We demonstrate that two tyrosines (Y24 and Y48) bind to a Kme3-histone tail peptide via cation-π interactions, but linear free energy trends suggest they do not contribute equally to binding. X-ray structures and computational analysis suggest that the distance and degree of contact between Tyr residues and Kme3 plays an important role in tuning cation-π-mediated Kme3 recognition. Although cation-π interactions have been studied in a number of proteins, this work is the first to utilize direct binding assays, X-ray crystallography, and modeling, to pinpoint factors that influence the magnitude of the individual cation-π interactions.

  2. Crystal molecular dynamics simulations to speed up MM/PB(GB)SA evaluation of binding free energies of di-mannose deoxy analogs with P51G-m4-Cyanovirin-N.

    PubMed

    Vorontsov, Ivan I; Miyashita, Osamu

    2011-04-30

    Complexes of two Cyanovirin-N (CVN) mutants, m4-CVN and P51G-m4-CVN, with deoxy di-mannose analogs were employed as models to generate conformational ensembles using explicit water Molecular Dynamics (MD) simulations in solution and in crystal environment. The results were utilized for evaluation of binding free energies with the molecular mechanics Poisson-Boltzmann (or Generalized Born) surface area, MM/PB(GB)SA, methods. The calculations provided the ranking of deoxy di-mannose ligands affinity in agreement with available qualitative experimental evidences. This confirms the importance of the hydrogen-bond network between di-mannose 3'- and 4'-hydroxyl groups and the protein binding site B(M) as a basis of the CVN activity as an effective HIV fusion inhibitor. Comparison of binding free energies averaged over snapshots from the solution and crystal simulations showed high promises in the use of the crystal matrix for acceleration of the conformational ensemble generation, the most time consuming step in MM/PB(GB)SA approach. Correlation between energy values based on solution versus crystal ensembles is 0.95 for both MM/PBSA and MM/GBSA methods. Copyright © 2010 Wiley Periodicals, Inc.

  3. Sampling and energy evaluation challenges in ligand binding protein design.

    PubMed

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  4. A general intermolecular force field based on tight-binding quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas

    2017-10-01

    A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.

  5. The Free Energy Profile of Tubulin Straight-Bent Conformational Changes, with Implications for Microtubule Assembly and Drug Discovery

    PubMed Central

    Bonomi, Massimiliano; Agard, David A.; Jacobson, Matthew P.

    2014-01-01

    αβ-tubulin dimers need to convert between a ‘bent’ conformation observed for free dimers in solution and a ‘straight’ conformation required for incorporation into the microtubule lattice. Here, we investigate the free energy landscape of αβ-tubulin using molecular dynamics simulations, emphasizing implications for models of assembly, and modulation of the conformational landscape by colchicine, a tubulin-binding drug that inhibits microtubule polymerization. Specifically, we performed molecular dynamics, potential-of-mean force simulations to obtain the free energy profile for unpolymerized GDP-bound tubulin as a function of the ∼12° intradimer rotation differentiating the straight and bent conformers. Our results predict that the unassembled GDP-tubulin heterodimer exists in a continuum of conformations ranging between straight and bent, but, in agreement with existing structural data, suggests that an intermediate bent state has a lower free energy (by ∼1 kcal/mol) and thus dominates in solution. In agreement with predictions of the lattice model of microtubule assembly, lateral binding of two αβ-tubulins strongly shifts the conformational equilibrium towards the straight state, which is then ∼1 kcal/mol lower in free energy than the bent state. Finally, calculations of colchicine binding to a single αβ-tubulin dimer strongly shifts the equilibrium toward the bent states, and disfavors the straight state to the extent that it is no longer thermodynamically populated. PMID:24516374

  6. Improving the iterative Linear Interaction Energy approach using automated recognition of configurational transitions.

    PubMed

    Vosmeer, C Ruben; Kooi, Derk P; Capoferri, Luigi; Terpstra, Margreet M; Vermeulen, Nico P E; Geerke, Daan P

    2016-01-01

    Recently an iterative method was proposed to enhance the accuracy and efficiency of ligand-protein binding affinity prediction through linear interaction energy (LIE) theory. For ligand binding to flexible Cytochrome P450s (CYPs), this method was shown to decrease the root-mean-square error and standard deviation of error prediction by combining interaction energies of simulations starting from different conformations. Thereby, different parts of protein-ligand conformational space are sampled in parallel simulations. The iterative LIE framework relies on the assumption that separate simulations explore different local parts of phase space, and do not show transitions to other parts of configurational space that are already covered in parallel simulations. In this work, a method is proposed to (automatically) detect such transitions during the simulations that are performed to construct LIE models and to predict binding affinities. Using noise-canceling techniques and splines to fit time series of the raw data for the interaction energies, transitions during simulation between different parts of phase space are identified. Boolean selection criteria are then applied to determine which parts of the interaction energy trajectories are to be used as input for the LIE calculations. Here we show that this filtering approach benefits the predictive quality of our previous CYP 2D6-aryloxypropanolamine LIE model. In addition, an analysis is performed of the gain in computational efficiency that can be obtained from monitoring simulations using the proposed filtering method and by prematurely terminating simulations accordingly.

  7. Excitons, trions, and biexcitons in transition-metal dichalcogenides: Magnetic-field dependence

    NASA Astrophysics Data System (ADS)

    Van der Donck, M.; Zarenia, M.; Peeters, F. M.

    2018-05-01

    The influence of a perpendicular magnetic field on the binding energy and structural properties of excitons, trions, and biexcitons in monolayers of semiconducting transition metal dichalcogenides (TMDs) is investigated. The stochastic variational method (SVM) with a correlated Gaussian basis is used to calculate the different properties of these few-particle systems. In addition, we present a simplified variational approach which supports the SVM results for excitons as a function of magnetic field. The exciton diamagnetic shift is compared with recent experimental results, and we extend this concept to trions and biexcitons. The effect of a local potential fluctuation, which we model by a circular potential well, on the binding energy of trions and biexcitons is investigated and found to significantly increase the binding of those excitonic complexes.

  8. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    PubMed

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparing alchemical and physical pathway methods for computing the absolute binding free energy of charged ligands.

    PubMed

    Deng, Nanjie; Cui, Di; Zhang, Bin W; Xia, Junchao; Cruz, Jeffrey; Levy, Ronald

    2018-06-13

    Accurately predicting absolute binding free energies of protein-ligand complexes is important as a fundamental problem in both computational biophysics and pharmaceutical discovery. Calculating binding free energies for charged ligands is generally considered to be challenging because of the strong electrostatic interactions between the ligand and its environment in aqueous solution. In this work, we compare the performance of the potential of mean force (PMF) method and the double decoupling method (DDM) for computing absolute binding free energies for charged ligands. We first clarify an unresolved issue concerning the explicit use of the binding site volume to define the complexed state in DDM together with the use of harmonic restraints. We also provide an alternative derivation for the formula for absolute binding free energy using the PMF approach. We use these formulas to compute the binding free energy of charged ligands at an allosteric site of HIV-1 integrase, which has emerged in recent years as a promising target for developing antiviral therapy. As compared with the experimental results, the absolute binding free energies obtained by using the PMF approach show unsigned errors of 1.5-3.4 kcal mol-1, which are somewhat better than the results from DDM (unsigned errors of 1.6-4.3 kcal mol-1) using the same amount of CPU time. According to the DDM decomposition of the binding free energy, the ligand binding appears to be dominated by nonpolar interactions despite the presence of very large and favorable intermolecular ligand-receptor electrostatic interactions, which are almost completely cancelled out by the equally large free energy cost of desolvation of the charged moiety of the ligands in solution. We discuss the relative strengths of computing absolute binding free energies using the alchemical and physical pathway methods.

  10. Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition

    PubMed Central

    Chu, Xiakun; Gan, Linfeng; Wang, Erkang; Wang, Jin

    2013-01-01

    Biomolecular functions are determined by their interactions with other molecules. Biomolecular recognition is often flexible and associated with large conformational changes involving both binding and folding. However, the global and physical understanding for the process is still challenging. Here, we quantified the intrinsic energy landscapes of flexible biomolecular recognition in terms of binding–folding dynamics for 15 homodimers by exploring the underlying density of states, using a structure-based model both with and without considering energetic roughness. By quantifying three individual effective intrinsic energy landscapes (one for interfacial binding, two for monomeric folding), the association mechanisms for flexible recognition of 15 homodimers can be classified into two-state cooperative “coupled binding–folding” and three-state noncooperative “folding prior to binding” scenarios. We found that the association mechanism of flexible biomolecular recognition relies on the interplay between the underlying effective intrinsic binding and folding energy landscapes. By quantifying the whole global intrinsic binding–folding energy landscapes, we found strong correlations between the landscape topography measure Λ (dimensionless ratio of energy gap versus roughness modulated by the configurational entropy) and the ratio of the thermodynamic stable temperature versus trapping temperature, as well as between Λ and binding kinetics. Therefore, the global energy landscape topography determines the binding–folding thermodynamics and kinetics, crucial for the feasibility and efficiency of realizing biomolecular function. We also found “U-shape” temperature-dependent kinetic behavior and a dynamical cross-over temperature for dividing exponential and nonexponential kinetics for two-state homodimers. Our study provides a unique way to bridge the gap between theory and experiments. PMID:23754431

  11. Exhaustive search and solvated interaction energy (SIE) for virtual screening and affinity prediction

    NASA Astrophysics Data System (ADS)

    Sulea, Traian; Hogues, Hervé; Purisima, Enrico O.

    2012-05-01

    We carried out a prospective evaluation of the utility of the SIE (solvation interaction energy) scoring function for virtual screening and binding affinity prediction. Since experimental structures of the complexes were not provided, this was an exercise in virtual docking as well. We used our exhaustive docking program, Wilma, to provide high-quality poses that were rescored using SIE to provide binding affinity predictions. We also tested the combination of SIE with our latest solvation model, first shell of hydration (FiSH), which captures some of the discrete properties of water within a continuum model. We achieved good enrichment in virtual screening of fragments against trypsin, with an area under the curve of about 0.7 for the receiver operating characteristic curve. Moreover, the early enrichment performance was quite good with 50% of true actives recovered with a 15% false positive rate in a prospective calculation and with a 3% false positive rate in a retrospective application of SIE with FiSH. Binding affinity predictions for both trypsin and host-guest complexes were generally within 2 kcal/mol of the experimental values. However, the rank ordering of affinities differing by 2 kcal/mol or less was not well predicted. On the other hand, it was encouraging that the incorporation of a more sophisticated solvation model into SIE resulted in better discrimination of true binders from binders. This suggests that the inclusion of proper Physics in our models is a fruitful strategy for improving the reliability of our binding affinity predictions.

  12. Free energy profiles of cocaine esterase-cocaine binding process by molecular dynamics and potential of mean force simulations.

    PubMed

    Zhang, Yuxin; Huang, Xiaoqin; Han, Keli; Zheng, Fang; Zhan, Chang-Guo

    2016-11-25

    The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profile of the CocE)-(+)-cocaine binding process in comparison with that of the corresponding CocE-(-)-cocaine binding process. According to the MD simulations, the equilibrium CocE-(+)-cocaine binding mode is similar to the CocE-(-)-cocaine binding mode. However, based on the simulated free energy profiles, a significant free energy barrier (∼5 kcal/mol) exists in the CocE-(+)-cocaine binding process whereas no obvious free energy barrier exists in the CocE-(-)-cocaine binding process, although the free energy barrier of ∼5 kcal/mol is not high enough to really slow down the CocE-(+)-cocaine binding process. In addition, the obtained free energy profiles also demonstrate that (+)-cocaine and (-)-cocaine have very close binding free energies with CocE, with a negligible difference (∼0.2 kcal/mol), which is qualitatively consistent with the nearly same experimental K M values of the CocE enzyme for (+)-cocaine and (-)-cocaine. The consistency between the computational results and available experimental data suggests that the mechanistic insights obtained from this study are reasonable. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Docking and free energy simulations to predict conformational domains involved in hCG-LH receptor interactions using recombinant antibodies.

    PubMed

    Majumdar, Ritankar; Railkar, Reema; Dighe, Rajan R

    2011-11-01

    Single chain fragment variables (ScFvs) have been extensively employed in studying the protein-protein interactions. ScFvs derived from phage display libraries have an additional advantage of being generated against a native antigen, circumventing loss of information on conformational epitopes. In the present study, an attempt has been made to elucidate human chorionic gonadotropin (hCG)-luteinizing hormone (LH) receptor interactions by using a neutral and two inhibitory ScFvs against hCG. The objective was to dock a computationally derived model of these ScFvs onto the crystal structure of hCG and understand the differential roles of the mapped epitopes in hCG-LH receptor interactions. An anti-hCG ScFv, whose epitope was mapped previously using biochemical tools, served as the positive control for assessing the quality of docking analysis. To evaluate the role of specific side chains at the hCG-ScFv interface, binding free energy as well as residue interaction energies of complexes in solution were calculated using molecular mechanics Poisson-Boltzmann/surface area method after performing the molecular dynamic simulations on the selected hCG-ScFv models and validated using biochemical and SPR analysis. The robustness of these calculations was demonstrated by comparing the theoretically determined binding energies with the experimentally obtained kinetic parameters for hCG-ScFv complexes. Superimposition of hCG-ScFv model onto a model of hCG complexed with the 51-266 residues of LH receptor revealed importance of the residues previously thought to be unimportant for hormone binding and response. This analysis provides an alternate tool for understanding the structure-function analysis of ligand-receptor interactions. Copyright © 2011 Wiley-Liss, Inc.

  14. Deciphering the fluorescence resonance energy transfer from denatured transport protein to anthracene 1,5 disulphonate in reverse micellar environment

    NASA Astrophysics Data System (ADS)

    Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2017-12-01

    Constrained environmental effect inside AOT reverse micellar media has been employed in this work to collect the information about energy transfer efficacy between sodium salt of anthracene 1,5 disulphonate (1,5-AS) with model transport proteins, bovine serum albumin (BSA), and human serum albumin (HSA). Steady state, time-resolved fluorescence and circular dichroism techniques have been used for this purpose and corresponding Fӧrster-type resonance energy transfer (FRET) from tryptophan residues to 1,5-AS indicates that 1,5-AS binds in the vicinity of the tryptophan residue (BSA and HSA) with equal strength. Indication of protein damage from fluorescence data and its confirmation has been measured from CD measurement. Molecular modeling study hereby plays a crucial role to predict the minimum energy docked conformation of the probe inside the protein environment. From the docked conformation the distance between 1,5-AS and tryptophan moiety of BSA/HSA has successfully explained the FRET possibility between them. A comparative modeling study between BSA and HSA with 1,5-AS assigning their binding site within specific amino acids plays a crucial role in support of the FRET study.

  15. Identification of Ideal Multi-targeting Bioactive Compounds Against Mur Ligases of Enterobacter aerogenes and Its Binding Mechanism in Comparison with Chemical Inhibitors.

    PubMed

    Chakkyarath, Vijina; Natarajan, Jeyakumar

    2017-10-31

    Enterobacter aerogenes have been reported as important opportunistic and multi-resistant bacterial pathogens for humans during the last three decades in hospital wards. The emergence of drug-resistant E. aerogenes demands the need for developing new drugs. Peptidoglycan is an important component of the cell wall of bacteria and the peptidoglycan biochemical pathway is considered as the best source of antibacterial targets. Within this pathway, four Mur ligases MurC, MurD, MurE, and MurF are responsible for the successive additions of L-alanine and suitable targets for developing novel antibacterial drugs. As an inference from this fact, we modeled the three-dimensional structure of above Mur ligases using best template structures available in PDB and analyzed its common binding features. Structural refinement and energy minimization of the predicted Mur ligases models is also being done using molecular dynamics studies. The models of Mur ligases were further investigated for in silico docking studies using bioactive plant compounds from the literature. Interestingly, these results indicate that four plant compounds Isojuripidine, Atroviolacegenin, Porrigenin B, and Nummularogenin showing better docking results in terms of binding energy and number of hydrogen bonds. All these four compounds are spirostan-based compounds with differences in side chains and the amino acid such as ASN, LYS, THR, HIS, ARG (polar) and PHE, GLY, VAL, ALA, MET (non-polar) playing active role in binding site of all four Mur ligases. Overall, in the predicted model, the four plant compounds with its binding features could pave way to design novel multi-targeted antibacterial plant-based bioactive compounds specific to Mur ligases for the treatment of Enterobacter infections.

  16. New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces.

    PubMed

    Simões, Inês C M; Costa, Inês P D; Coimbra, João T S; Ramos, Maria J; Fernandes, Pedro A

    2017-01-23

    Knowing how proteins make stable complexes enables the development of inhibitors to preclude protein-protein (P:P) binding. The identification of the specific interfacial residues that mostly contribute to protein binding, denominated as hot spots, is thus critical. Here, we refine an in silico alanine scanning mutagenesis protocol, based on a residue-dependent dielectric constant version of the Molecular Mechanics/Poisson-Boltzmann Surface Area method. We have used a large data set of structurally diverse P:P complexes to redefine the residue-dependent dielectric constants used in the determination of binding free energies. The accuracy of the method was validated through comparison with experimental data, considering the per-residue P:P binding free energy (ΔΔG binding ) differences upon alanine mutation. Different protocols were tested, i.e., a geometry optimization protocol and three molecular dynamics (MD) protocols: (1) one using explicit water molecules, (2) another with an implicit solvation model, and (3) a third where we have carried out an accelerated MD with explicit water molecules. Using a set of protein dielectric constants (within the range from 1 to 20) we showed that the dielectric constants of 7 for nonpolar and polar residues and 11 for charged residues (and histidine) provide optimal ΔΔG binding predictions. An overall mean unsigned error (MUE) of 1.4 kcal mol -1 relative to the experiment was achieved in 210 mutations only with geometry optimization, which was further reduced with MD simulations (MUE of 1.1 kcal mol -1 for the MD employing explicit solvent). This recalibrated method allows for a better computational identification of hot spots, avoiding expensive and time-consuming experiments or thermodynamic integration/ free energy perturbation/ uBAR calculations, and will hopefully help new drug discovery campaigns in their quest of searching spots of interest for binding small drug-like molecules at P:P interfaces.

  17. Docking Simulation of the Binding Interactions of Saxitoxin Analogs Produced by the Marine Dinoflagellate Gymnodinium catenatum to the Voltage-Gated Sodium Channel Nav1.4.

    PubMed

    Durán-Riveroll, Lorena M; Cembella, Allan D; Band-Schmidt, Christine J; Bustillos-Guzmán, José J; Correa-Basurto, José

    2016-05-06

    Saxitoxin (STX) and its analogs are paralytic alkaloid neurotoxins that block the voltage-gated sodium channel pore (Nav), impeding passage of Na⁺ ions into the intracellular space, and thereby preventing the action potential in the peripheral nervous system and skeletal muscle. The marine dinoflagellate Gymnodinium catenatum produces an array of such toxins, including the recently discovered benzoyl analogs, for which the mammalian toxicities are essentially unknown. We subjected STX and its analogs to a theoretical docking simulation based upon two alternative tri-dimensional models of the Nav1.4 to find a relationship between the binding properties and the known mammalian toxicity of selected STX analogs. We inferred hypothetical toxicities for the benzoyl analogs from the modeled values. We demonstrate that these toxins exhibit different binding modes with similar free binding energies and that these alternative binding modes are equally probable. We propose that the principal binding that governs ligand recognition is mediated by electrostatic interactions. Our simulation constitutes the first in silico modeling study on benzoyl-type paralytic toxins and provides an approach towards a better understanding of the mode of action of STX and its analogs.

  18. Docking Simulation of the Binding Interactions of Saxitoxin Analogs Produced by the Marine Dinoflagellate Gymnodinium catenatum to the Voltage-Gated Sodium Channel Nav1.4

    PubMed Central

    Durán-Riveroll, Lorena M.; Cembella, Allan D.; Band-Schmidt, Christine J.; Bustillos-Guzmán, José J.; Correa-Basurto, José

    2016-01-01

    Saxitoxin (STX) and its analogs are paralytic alkaloid neurotoxins that block the voltage-gated sodium channel pore (Nav), impeding passage of Na+ ions into the intracellular space, and thereby preventing the action potential in the peripheral nervous system and skeletal muscle. The marine dinoflagellate Gymnodinium catenatum produces an array of such toxins, including the recently discovered benzoyl analogs, for which the mammalian toxicities are essentially unknown. We subjected STX and its analogs to a theoretical docking simulation based upon two alternative tri-dimensional models of the Nav1.4 to find a relationship between the binding properties and the known mammalian toxicity of selected STX analogs. We inferred hypothetical toxicities for the benzoyl analogs from the modeled values. We demonstrate that these toxins exhibit different binding modes with similar free binding energies and that these alternative binding modes are equally probable. We propose that the principal binding that governs ligand recognition is mediated by electrostatic interactions. Our simulation constitutes the first in silico modeling study on benzoyl-type paralytic toxins and provides an approach towards a better understanding of the mode of action of STX and its analogs. PMID:27164145

  19. Binding Mode Analyses and Pharmacophore Model Development for Stilbene Derivatives as a Novel and Competitive Class of α-Glucosidase Inhibitors

    PubMed Central

    Kim, Jun Young; Arooj, Mahreen; Kim, Siu; Hwang, Swan; Kim, Byeong-Woo; Park, Ki Hun; Lee, Keun Woo

    2014-01-01

    Stilbene urea derivatives as a novel and competitive class of non-glycosidic α-glucosidase inhibitors are effective for the treatment of type II diabetes and obesity. The main purposes of our molecular modeling study are to explore the most suitable binding poses of stilbene derivatives with analyzing the binding affinity differences and finally to develop a pharmacophore model which would represents critical features responsible for α-glucosidase inhibitory activity. Three-dimensional structure of S. cerevisiae α-glucosidase was built by homology modeling method and the structure was used for the molecular docking study to find out the initial binding mode of compound 12, which is the most highly active one. The initial structure was subjected to molecular dynamics (MD) simulations for protein structure adjustment at compound 12-bound state. Based on the adjusted conformation, the more reasonable binding modes of the stilbene urea derivatives were obtained from molecular docking and MD simulations. The binding mode of the derivatives was validated by correlation analysis between experimental Ki value and interaction energy. Our results revealed that the binding modes of the potent inhibitors were engaged with important hydrogen bond, hydrophobic, and π-interactions. With the validated compound 12-bound structure obtained from combining approach of docking and MD simulation, a proper four featured pharmacophore model was generated. It was also validated by comparison of fit values with the Ki values. Thus, these results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better inhibitors from stilbene derivatives. PMID:24465730

  20. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization.

    PubMed

    Grasso, Gianvito; Deriu, Marco Agostino; Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea

    2017-01-01

    The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.

  1. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization

    PubMed Central

    Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea

    2017-01-01

    The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine. PMID:29088239

  2. Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations.

    PubMed

    Godschalk, Frithjof; Genheden, Samuel; Söderhjelm, Pär; Ryde, Ulf

    2013-05-28

    Molecular mechanics with generalised Born and surface area solvation (MM/GBSA) is a popular method to calculate the free energy of the binding of ligands to proteins. It involves molecular dynamics (MD) simulations with an explicit solvent of the protein-ligand complex to give a set of snapshots for which energies are calculated with an implicit solvent. This change in the solvation method (explicit → implicit) would strictly require that the energies are reweighted with the implicit-solvent energies, which is normally not done. In this paper we calculate MM/GBSA energies with two generalised Born models for snapshots generated by the same methods or by explicit-solvent simulations for five synthetic N-acetyllactosamine derivatives binding to galectin-3. We show that the resulting energies are very different both in absolute and relative terms, showing that the change in the solvent model is far from innocent and that standard MM/GBSA is not a consistent method. The ensembles generated with the various solvent models are quite different with root-mean-square deviations of 1.2-1.4 Å. The ensembles can be converted to each other by performing short MD simulations with the new method, but the convergence is slow, showing mean absolute differences in the calculated energies of 6-7 kJ mol(-1) after 2 ps simulations. Minimisations show even slower convergence and there are strong indications that the energies obtained from minimised structures are different from those obtained by MD.

  3. Experimental and molecular docking studies on DNA binding interaction of adefovir dipivoxil: Advances toward treatment of hepatitis B virus infections

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Falsafi, Monireh

    The toxic interaction of adefovir dipivoxil with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multi-spectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove binding mode. The binding constant of UV-visible and the number of binding sites were 3.33 ± 0.2 × 104 L mol-1and 0.99, respectively. The fluorimetric studies showed that the reaction between the drug and CT-DNA is exothermic (ΔH = 34.4 kJ mol-1; ΔS = 184.32 J mol-1 K-1). Circular dichroism spectroscopy (CD) was employed to measure the conformational change of CT-DNA in the presence of adefovir dipivoxil, which verified the groove binding mode. Furthermore, the drug induces detectable changes in its viscosity. The molecular modeling results illustrated that adefovir strongly binds to groove of DNA by relative binding energy of docked structure -16.83 kJ mol-1. This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the toxic interaction of small molecular pollutants and drugs with bio macromolecules, which contributes to clarify the molecular mechanism of toxicity or side effect in vivo.

  4. Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization.

    PubMed Central

    Henriques, D. A.; Ladbury, J. E.; Jackson, R. M.

    2000-01-01

    The prediction of binding energies from the three-dimensional (3D) structure of a protein-ligand complex is an important goal of biophysics and structural biology. Here, we critically assess the use of empirical, solvent-accessible surface area-based calculations for the prediction of the binding of Src-SH2 domain with a series of tyrosyl phosphopeptides based on the high-affinity ligand from the hamster middle T antigen (hmT), where the residue in the pY+ 3 position has been changed. Two other peptides based on the C-terminal regulatory site of the Src protein and the platelet-derived growth factor receptor (PDGFR) are also investigated. Here, we take into account the effects of proton linkage on binding, and test five different surface area-based models that include different treatments for the contributions to conformational change and protein solvation. These differences relate to the treatment of conformational flexibility in the peptide ligand and the inclusion of proximal ordered solvent molecules in the surface area calculations. This allowed the calculation of a range of thermodynamic state functions (deltaCp, deltaS, deltaH, and deltaG) directly from structure. Comparison with the experimentally derived data shows little agreement for the interaction of SrcSH2 domain and the range of tyrosyl phosphopeptides. Furthermore, the adoption of the different models to treat conformational change and solvation has a dramatic effect on the calculated thermodynamic functions, making the predicted binding energies highly model dependent. While empirical, solvent-accessible surface area based calculations are becoming widely adopted to interpret thermodynamic data, this study highlights potential problems with application and interpretation of this type of approach. There is undoubtedly some agreement between predicted and experimentally determined thermodynamic parameters: however, the tolerance of this approach is not sufficient to make it ubiquitously applicable. PMID:11106171

  5. The Strength of Hydrogen Bonds between Fluoro-Organics and Alcohols, a Theoretical Study.

    PubMed

    Rosenberg, Robert E

    2018-05-10

    Fluorinated organic compounds are ubiquitous in the pharmaceutical and agricultural industries. To better discern the mode of action of these compounds, it is critical to understand the strengths of hydrogen bonds involving fluorine. There are only a few published examples of the strengths of these bonds. This study provides a high level ab initio study of inter- and intramolecular hydrogen bonds between RF and R'OH, where R and R' are aryl, vinyl, alkyl, and cycloalkyl. Intermolecular binding energies average near 5 kcal/mol, while intramolecular binding energies average about 3 kcal/mol. Inclusion of zero-point energies and applying a counterpoise correction lessen the difference. In both series, modest increases in binding energies are seen with increased acidity of R'OH and increased electron donation of R in RF. In the intramolecular compounds, binding energy increases with the rigidity of the F-(C) n -OH ring. Inclusion of free energy corrections at 298 K results in exoergic binding energies for the intramolecular compounds and endoergic binding energies for the intermolecular compounds. Parameters such as bond lengths, vibrational frequencies, and atomic populations are consistent with formation of a hydrogen bond and with slightly stronger binding in the intermolecular cases over the intramolecular cases. However, these parameters correlated poorly with binding energies.

  6. Activation of the edema factor of Bacillus anthracis by calmodulin: evidence of an interplay between the EF-calmodulin interaction and calcium binding.

    PubMed

    Laine, Elodie; Martínez, Leandro; Blondel, Arnaud; Malliavin, Thérèse E

    2010-10-06

    Calmodulin (CaM) is a remarkably flexible protein which can bind multiple targets in response to changes in intracellular calcium concentration. It contains four calcium-binding sites, arranged in two globular domains. The calcium affinity of CaM N-terminal domain (N-CaM) is dramatically reduced when the complex with the edema factor (EF) of Bacillus anthracis is formed. Here, an atomic explanation for this reduced affinity is proposed through molecular dynamics simulations and free energy perturbation calculations of the EF-CaM complex starting from different crystallographic models. The simulations show that electrostatic interactions between CaM and EF disfavor the opening of N-CaM domains usually induced by calcium binding. Relative calcium affinities of the N-CaM binding sites are probed by free energy perturbation, and dissociation probabilities are evaluated with locally enhanced sampling simulations. We show that EF impairs calcium binding on N-CaM through a direct conformational restraint on Site 1, by an indirect destabilization of Site 2, and by reducing the cooperativity between the two sites. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Exploring interaction of TNF and orthopoxviral CrmB protein by surface plasmon resonance and free energy calculation.

    PubMed

    Ivanisenko, Nikita V; Tregubchak, Tatiana V; Saik, Olga V; Ivanisenko, Vladimir A; Shchelkunov, Sergei N

    2014-01-01

    Inhibition of the activity of the tumor necrosis factor (TNF) has become the main strategy for treating inflammatory diseases. The orthopoxvirus TNF-binding proteins can bind and efficiently neutralize TNF. To analyze the mechanisms of the interaction between human (hTNF) or mouse (mTNF) TNF and the cowpox virus N-terminal binding domain (TNFBD-CPXV), also the variola virus N-terminal binding domain (TNFBD-VARV) and to define the amino acids most importantly involved in the formation of complexes, computer models, derived from the X-ray structure of a homologous hTNF/TNFRII complex, were used together with experiments. The hTNF/TNFBD-CPXV, hTNF/TNFBD-VARV, mTNF/TNFBD-CPXV, and mTNF/TNFBD-VARV complexes were used in the molecular dynamics (MD) simulations and MM/GBSA free energy calculations. The complexes were ordered as hTNF/TNFBD-CPXV, hTNF/TNFBD-VARV, mTNF/TNFBD-CPXV and mTNF/TNFBD-VARV according to increase in the binding affinity. The calculations were in agreement with surface plasmon resonance (SPR) measurements of the binding constants. Key residues involved in complex formation were identified.

  8. Theoretical study on the interaction of pyrrolopyrimidine derivatives as LIMK2 inhibitors: insight into structure-based inhibitor design.

    PubMed

    Shen, Mingyun; Zhou, Shunye; Li, Youyong; Li, Dan; Hou, Tingjun

    2013-10-01

    LIM kinases (LIMKs), downstream of Rho-associated protein kinases (ROCKs) and p21-activated protein kinases (PAKs), are shown to be promising targets for the treatment of cancers. In this study, the inhibition mechanism of 41 pyrrolopyrimidine derivatives as LIMK2 inhibitors was explored through a series of theoretical approaches. First, a model of LIMK2 was generated through molecular homology modeling, and the studied inhibitors were docked into the binding active site of LIMK2 by the docking protocol, taking into consideration the flexibility of the protein. The binding poses predicted by molecular docking for 17 selected inhibitors with different bioactivities complexed with LIMK2 underwent molecular dynamics (MD) simulations, and the binding free energies for the complexes were predicted by using the molecular mechanics/generalized born surface area (MM/GBSA) method. The predicted binding free energies correlated well with the experimental bioactivities (r(2) = 0.63 or 0.62). Next, the free energy decomposition analysis was utilized to highlight the following key structural features related to biological activity: (1) the important H-bond between Ile408 and pyrrolopyrimidine, (2) the H-bonds between the inhibitors and Asp469 and Gly471 which maintain the stability of the DFG-out conformation, and (3) the hydrophobic interactions between the inhibitors and several key residues (Leu337, Phe342, Ala345, Val358, Lys360, Leu389, Ile408, Leu458 and Leu472). Finally, a variety of LIMK2 inhibitors with a pyrrolopyrimidine scaffold were designed, some of which showed improved potency according to the predictions. Our studies suggest that the use of molecular docking with MD simulations and free energy calculations could be a powerful tool for understanding the binding mechanism of LIMK2 inhibitors and for the design of more potent LIMK2 inhibitors.

  9. The selectivity of the Na+/K+-pump is controlled by binding site protonation and self-correcting occlusion

    PubMed Central

    Rui, Huan; Artigas, Pablo; Roux, Benoît

    2016-01-01

    The Na+/K+-pump maintains the physiological K+ and Na+ electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle. DOI: http://dx.doi.org/10.7554/eLife.16616.001 PMID:27490484

  10. Zinc binding in HDAC inhibitors: a DFT study.

    PubMed

    Wang, Difei; Helquist, Paul; Wiest, Olaf

    2007-07-06

    Histone deacetylases (HDACs) are attractive targets for the treatment of cancers and a variety of other diseases. Most currently studied HDAC inhibitors contain hydroxamic acids, which are potentially problematic in the development of practical drugs. DFT calculations of the binding modes and free energies of binding for a variety of other functionalities in a model active site of HDAC are described. The protonation state of hydroxamic acids in the active site and the origin of the high affinity are discussed. These results emphasize the importance of a carefully chosen pKa for zinc binding and provide guidance for the design of novel, non-hydroxamic acid HDAC inhibitors.

  11. Influence of polarization and self-polarization charges on impurity binding energy in spherical quantum dot with parabolic confinement

    NASA Astrophysics Data System (ADS)

    Sarkar, Supratik; Sarkar, Samrat; Bose, Chayanika

    2018-07-01

    We present a general formulation of the ground state binding energy of a shallow hydrogenic impurity in spherical quantum dot with parabolic confinement, considering the effects of polarization and self energy. The variational approach within the effective mass approximation is employed here. The binding energy of an on-center impurity is computed for a GaAs/AlxGa1-xAs quantum dot as a function of the dot size with the dot barrier as parameter. The influence of polarization and self energy are also treated separately. Results indicate that the binding energy increases due to the presence of polarization charge, while decreases due to the self energy of the carrier. An overall enhancement in impurity binding energy, especially for small dots is noted.

  12. Transition model for ricin-aptamer interactions with multiple pathways and energy barriers

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xu, Bingqian

    2014-02-01

    We develop a transition model to interpret single-molecule ricin-aptamer interactions with multiple unbinding pathways and energy barriers measured by atomic force microscopy dynamic force spectroscopy. Molecular simulations establish the relationship between binding conformations and the corresponding unbinding pathways. Each unbinding pathway follows a Bell-Evans multiple-barrier model. Markov-type transition matrices are developed to analyze the redistribution of unbinding events among the pathways under different loading rates. Our study provides detailed information about complex behaviors in ricin-aptamer unbinding events.

  13. Universal binding energy relations in metallic adhesion

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1981-01-01

    Scaling relations which map metallic adhesive binding energy onto a single universal binding energy curve are discussed in relation to adhesion, friction, and wear in metals. The scaling involved normalizing the energy to the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. The universal curve was found to be accurately represented by E*(A*)= -(1+beta A) exp (-Beta A*) where E* is the normalized binding energy, A* is the normalized separation, and beta is the normalized decay constant. The calculated cohesive energies of potassium, barium, copper, molybdenum, and samarium were also found to scale by similar relations, suggesting that the universal relation may be more general than for the simple free electron metals.

  14. The Bitter Barricading of Prostaglandin Biosynthesis Pathway: Understanding the Molecular Mechanism of Selective Cyclooxygenase-2 Inhibition by Amarogentin, a Secoiridoid Glycoside from Swertia chirayita

    PubMed Central

    Sundar, Durai; Thorat, Sunil S.

    2014-01-01

    Swertia chirayita, a medicinal herb inhabiting the challenging terrains and high altitudes of the Himalayas, is a rich source of essential phytochemical isolates. Amarogentin, a bitter secoiridoid glycoside from S. chirayita, shows varied activity in several patho-physiological conditions, predominantly in leishmaniasis and carcinogenesis. Experimental analysis has revealed that amarogentin downregulates the cyclooxygenase-2 (COX-2) activity and helps to curtail skin carcinogenesis in mouse models; however, there exists no account on selective inhibition of the inducible cyclooxygenase (COX) isoform by amarogentin. Hence the computer-aided drug discovery methods were used to unravel the COX-2 inhibitory mechanism of amarogentin and to check its selectivity for the inducible isoform over the constitutive one. The generated theoretical models of both isoforms were subjected to molecular docking analysis with amarogentin and twenty-one other Food and Drug Authority (FDA) approved lead molecules. The post-docking binding energy profile of amarogentin was comparable to the binding energy profiles of the FDA approved selective COX-2 inhibitors. Subsequent molecular dynamics simulation analysis delineated the difference in the stability of both complexes, with amarogentin-COX-2 complex being more stable after 40ns simulation. The total binding free energy calculated by MMGBSA for the amarogentin-COX-2 complex was −52.35 KCal/mol against a binding free energy of −8.57 KCal/mol for amarogentin-COX-1 complex, suggesting a possible selective inhibition of the COX-2 protein by the natural inhibitor. Amarogentin achieves this potential selectivity by small, yet significant, structural differences inherent to the binding cavities of the two isoforms. Hypothetically, it might block the entry of the natural substrates in the hydrophobic binding channel of the COX-2, inhibiting the cyclooxygenation step. To sum up briefly, this work highlights the mechanism of the possible selective COX-2 inhibition by amarogentin and endorses the possibility of obtaining efficient, futuristic and targeted therapeutic agents for relieving inflammation and malignancy from this phytochemical source. PMID:24603686

  15. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch.

    PubMed

    Manz, Christoph; Kobitski, Andrei Yu; Samanta, Ayan; Keller, Bettina G; Jäschke, Andres; Nienhaus, G Ulrich

    2017-11-01

    S-adenosyl-L-methionine (SAM) ligand binding induces major structural changes in SAM-I riboswitches, through which gene expression is regulated via transcription termination. Little is known about the conformations and motions governing the function of the full-length Bacillus subtilis yitJ SAM-I riboswitch. Therefore, we have explored its conformational energy landscape as a function of Mg 2+ and SAM ligand concentrations using single-molecule Förster resonance energy transfer (smFRET) microscopy and hidden Markov modeling analysis. We resolved four conformational states both in the presence and the absence of SAM and determined their Mg 2+ -dependent fractional populations and conformational dynamics, including state lifetimes, interconversion rate coefficients and equilibration timescales. Riboswitches with terminator and antiterminator folds coexist, and SAM binding only gradually shifts the populations toward terminator states. We observed a pronounced acceleration of conformational transitions upon SAM binding, which may be crucial for off-switching during the brief decision window before expression of the downstream gene.

  16. GREEN: A program package for docking studies in rational drug design

    NASA Astrophysics Data System (ADS)

    Tomioka, Nobuo; Itai, Akiko

    1994-08-01

    A program package, GREEN, has been developed that enables docking studies between ligand molecules and a protein molecule. Based on the structure of the protein molecule, the physical and chemical environment of the ligand-binding site is expressed as three-dimensional grid-point data. The grid-point data are used for the real-time evaluation of the protein-ligand interaction energy, as well as for the graphical representation of the binding-site environment. The interactive docking operation is facilitated by various built-in functions, such as energy minimization, energy contribution analysis and logging of the manipulation trajectory. Interactive modeling functions are incorporated for designing new ligand molecules while considering the binding-site environment and the protein-ligand interaction. As an example of the application of GREEN, a docking study is presented on the complex between trypsin and a synthetic trypsin inhibitor. The program package will be useful for rational drug design, based on the 3D structure of the target protein.

  17. Free Energy Perturbation Calculation of Relative Binding Free Energy between Broadly Neutralizing Antibodies and the gp120 Glycoprotein of HIV-1.

    PubMed

    Clark, Anthony J; Gindin, Tatyana; Zhang, Baoshan; Wang, Lingle; Abel, Robert; Murret, Colleen S; Xu, Fang; Bao, Amy; Lu, Nina J; Zhou, Tongqing; Kwong, Peter D; Shapiro, Lawrence; Honig, Barry; Friesner, Richard A

    2017-04-07

    Direct calculation of relative binding affinities between antibodies and antigens is a long-sought goal. However, despite substantial efforts, no generally applicable computational method has been described. Here, we describe a systematic free energy perturbation (FEP) protocol and calculate the binding affinities between the gp120 envelope glycoprotein of HIV-1 and three broadly neutralizing antibodies (bNAbs) of the VRC01 class. The protocol has been adapted from successful studies of small molecules to address the challenges associated with modeling protein-protein interactions. Specifically, we built homology models of the three antibody-gp120 complexes, extended the sampling times for large bulky residues, incorporated the modeling of glycans on the surface of gp120, and utilized continuum solvent-based loop prediction protocols to improve sampling. We present three experimental surface plasmon resonance data sets, in which antibody residues in the antibody/gp120 interface were systematically mutated to alanine. The RMS error in the large set (55 total cases) of FEP tests as compared to these experiments, 0.68kcal/mol, is near experimental accuracy, and it compares favorably with the results obtained from a simpler, empirical methodology. The correlation coefficient for the combined data set including residues with glycan contacts, R 2 =0.49, should be sufficient to guide the choice of residues for antibody optimization projects, assuming that this level of accuracy can be realized in prospective prediction. More generally, these results are encouraging with regard to the possibility of using an FEP approach to calculate the magnitude of protein-protein binding affinities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.

    PubMed

    Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto

    2012-11-21

    This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.

  19. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data

    PubMed Central

    2012-01-01

    Background This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor. PMID:23171000

  20. Different binding mechanisms of neutral and anionic poly-/perfluorinated chemicals to human transthyretin revealed by In silico models.

    PubMed

    Yang, Xianhai; Lyakurwa, Felichesmi; Xie, Hongbin; Chen, Jingwen; Li, Xuehua; Qiao, Xianliang; Cai, Xiyun

    2017-09-01

    Chemical forms-dependent binding interactions between phenolic compounds and human transthyretin (hTTR) have been elaborated previously. However, it is not known whether the binding interactions between ionizable halogenated alphatic compounds and hTTR also have the same manner. In this study, poly-/perfluorinated chemicals (PFCs) were selected as model compounds and molecular dynamic simulation was performed to investigate the binding mechanisms between PFCs and hTTR. Results show the binding interactions between the halogenated aliphatic compounds and hTTR are related to the chemical forms. The ionized groups of PFCs can form electrostatic interactions with the -NH + 3 groups of Lys 15 residues in hTTR and form hydrogen bonds with the residues of hTTR. By analyzing the molecular orbital energies of PFCs, we also found that the anionic groups (nucleophile) in PFCs could form electron donor - acceptor interactions with the -NH + 3 groups (electrophile) in Lys 15. The aforementioned orientational interactions make the ionized groups of the PFCs point toward the entry port of the binding site. The roles of fluorine atoms in the binding interactions were also explored. The fluorine atoms can influence the binding interactions via inductive effects. Appropriate molecular descriptors were selected to characterize these interactions, and two quantitative structure-activity relationship models were developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Theory for rates, equilibrium constants, and Brønsted slopes in F1-ATPase single molecule imaging experiments

    PubMed Central

    Volkán-Kacsó, Sándor; Marcus, Rudolph A.

    2015-01-01

    A theoretical model of elastically coupled reactions is proposed for single molecule imaging and rotor manipulation experiments on F1-ATPase. Stalling experiments are considered in which rates of individual ligand binding, ligand release, and chemical reaction steps have an exponential dependence on rotor angle. These data are treated in terms of the effect of thermodynamic driving forces on reaction rates, and lead to equations relating rate constants and free energies to the stalling angle. These relations, in turn, are modeled using a formalism originally developed to treat electron and other transfer reactions. During stalling the free energy profile of the enzymatic steps is altered by a work term due to elastic structural twisting. Using biochemical and single molecule data, the dependence of the rate constant and equilibrium constant on the stall angle, as well as the Børnsted slope are predicted and compared with experiment. Reasonable agreement is found with stalling experiments for ATP and GTP binding. The model can be applied to other torque-generating steps of reversible ligand binding, such as ADP and Pi release, when sufficient data become available. PMID:26483483

  2. Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs.

    PubMed

    Qiu, Ling; Xiao, Heming

    2009-05-15

    To investigate the effect of polymer binders on the monoexplosive, molecular dynamics simulations were performed to study the binding energies, mechanical properties, and detonation performances of the bicyclo-HMX-based polymer-bonded explosives (PBXs). The results show that the binding energies on different crystalline surfaces of bicyclo-HMX decrease in the order of (010)>(100)>(001). On each crystalline surface, binding properties of different polymers with the same chain segment are different from each other, while those of the polymers in the same content decrease in the sequence of PVDF>F(2311)>F(2314) approximately PCTFE. The mechanical properties of a dozen of model systems (elastic coefficients, various moduli, Cauchy pressure, and Poisson's ratio) have been obtained. It is found that mechanical properties are effectively improved by adding small amounts of fluorine polymers, and the overall effect of fluorine polymers on three crystalline surfaces of bicyclo-HMX changes in the order of (010)>(001) approximately (100). In comparison with the base explosive, detonation performances of the PBXs decrease slightly, but they are still superior to TNT. These suggestions may be useful for the formulation design of bicyclo-HMX-based PBXs.

  3. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model.

    PubMed

    Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi

    2017-09-19

    Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.

  4. Insights into regioselective metabolism of mefenamic acid by cytochrome P450 BM3 mutants through crystallography, docking, molecular dynamics, and free energy calculations.

    PubMed

    Capoferri, Luigi; Leth, Rasmus; ter Haar, Ernst; Mohanty, Arun K; Grootenhuis, Peter D J; Vottero, Eduardo; Commandeur, Jan N M; Vermeulen, Nico P E; Jørgensen, Flemming Steen; Olsen, Lars; Geerke, Daan P

    2016-03-01

    Cytochrome P450 BM3 (CYP102A1) mutant M11 is able to metabolize a wide range of drugs and drug-like compounds. Among these, M11 was recently found to be able to catalyze formation of human metabolites of mefenamic acid and other nonsteroidal anti-inflammatory drugs (NSAIDs). Interestingly, single active-site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain of the protein mutant M11 was expressed, purified, and crystallized, and its X-ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free-energy calculations to address protein flexibility. In this way, preferred binding modes that are consistent with oxidation at the experimentally observed sites of metabolism (SOMs) were identified. Whereas docking could not be used to retrospectively predict experimental trends in regioselectivity, we were able to rank binding modes in line with the preferred SOMs of mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free-energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active-site mutations. Our findings confirm that use of MD and binding free-energy calculation is useful for studying biocatalysis in those cases in which enzyme binding is a critical event in determining the selective metabolism of a substrate. © 2016 Wiley Periodicals, Inc.

  5. Inhibition of Metalloprotease Botulinum Serotype A from a Pseudo-Peptide Binding Mode to a Small Molecule that is Active in Primary Neurons

    DTIC Science & Technology

    2007-02-16

    a modeled binding mode for inhibitor 2-mercapto-3-phenylpropionyl-RATKML (Ki 330 nM) was generated, and required the use of a molecular dynamic ...2-mercapto-3-phenylpropionyl-RATKML (K(i) = 330 nM) was generated, and required the use of a molecular dynamic conformer of the enzyme displaying the...SiliconGraphicsOctane 2. Insight II (Accelrys, San Diego, CA) was used to build and inspect models. Energy refinement and molecular dynamics were performed using the

  6. Binding free energy calculations between bovine β-lactoglobulin and four fatty acids using the MMGBSA method.

    PubMed

    Bello, Martiniano

    2014-10-01

    The bovine dairy protein β-lactoglobulin (βlg) is a promiscuous protein that has the ability to bind several hydrophobic ligands. In this study, based on known experimental data, the dynamic interaction mechanism between bovine βlg and four fatty acids was investigated by a protocol combining molecular dynamics (MD) simulations and molecular mechanics generalized Born surface area (MMGBSA) binding free energy calculations. Energetic analyses revealed binding free energy trends that corroborated known experimental findings; larger ligand size corresponded to greater binding affinity. Finally, binding free energy decomposition provided detailed information about the key residues stabilizing the complex. © 2014 Wiley Periodicals, Inc.

  7. A Prediction Method of Binding Free Energy of Protein and Ligand

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Wang, Xicheng

    2010-05-01

    Predicting the binding free energy is an important problem in bimolecular simulation. Such prediction would be great benefit in understanding protein functions, and may be useful for computational prediction of ligand binding strengths, e.g., in discovering pharmaceutical drugs. Free energy perturbation (FEP)/thermodynamics integration (TI) is a classical method to explicitly predict free energy. However, this method need plenty of time to collect datum, and that attempts to deal with some simple systems and small changes of molecular structures. Another one for estimating ligand binding affinities is linear interaction energy (LIE) method. This method employs averages of interaction potential energy terms from molecular dynamics simulations or other thermal conformational sampling techniques. Incorporation of systematic deviations from electrostatic linear response, derived from free energy perturbation studies, into the absolute binding free energy expression significantly enhances the accuracy of the approach. However, it also is time-consuming work. In this paper, a new prediction method based on steered molecular dynamics (SMD) with direction optimization is developed to compute binding free energy. Jarzynski's equality is used to derive the PMF or free-energy. The results for two numerical examples are presented, showing that the method has good accuracy and efficiency. The novel method can also simulate whole binding proceeding and give some important structural information about development of new drugs.

  8. DFT-based ranking of zinc-binding groups in histone deacetylase inhibitors.

    PubMed

    Vanommeslaeghe, K; Loverix, S; Geerlings, P; Tourwé, D

    2005-11-01

    Histone deacetylases (HDACs) have recently attracted considerable interest as targets in the treatment of cell proliferative diseases such as cancer. In the present work, a general framework is proposed for chemical groups that bind into the HDAC catalytic core. Based on this framework, a series of groups was selected for further investigation. A method was developed to rank the HDAC inhibitory potential of these moieties at the B3LYP/6-31G* level, making use of extra diffuse functions and of the PCM solvation model where appropriate. The resulting binding geometries indicate that very stringent constraints should be satisfied in order to have bidental zinc chelation, and even more so to have a strong binding affinity, which makes it difficult to predict the binding mode and affinity of such zinc-binding groups. The chemical hardness and the pK(a) were identified as important criteria for the binding affinity. Also, the hydrophilicity may have a direct influence on the binding affinity. The calculated binding energies were qualitatively validated with experimental results from the literature, and were shown to be meaningful for the purpose of ranking. Additionally, the insights gained from the present work may be useful for increasing the accuracy of QSAR models by providing a rational basis for selecting descriptors.

  9. Zinc finger protein binding to DNA: an energy perspective using molecular dynamics simulation and free energy calculations on mutants of both zinc finger domains and their specific DNA bases.

    PubMed

    Hamed, Mazen Y; Arya, Gaurav

    2016-05-01

    Energy calculations based on MM-GBSA were employed to study various zinc finger protein (ZF) motifs binding to DNA. Mutants of both the DNA bound to their specific amino acids were studied. Calculated energies gave evidence for a relationship between binding energy and affinity of ZF motifs to their sites on DNA. ΔG values were -15.82(12), -3.66(12), and -12.14(11.6) kcal/mol for finger one, finger two, and finger three, respectively. The mutations in the DNA bases reduced the value of the negative energies of binding (maximum value for ΔΔG = 42Kcal/mol for F1 when GCG mutated to GGG, and ΔΔG = 22 kcal/mol for F2, the loss in total energy of binding originated in the loss in electrostatic energies upon mutation (r = .98). The mutations in key amino acids in the ZF motif in positions-1, 2, 3, and 6 showed reduced binding energies to DNA with correlation coefficients between total free energy and electrostatic was .99 and with Van der Waal was .93. Results agree with experimentally found selectivity which showed that Arginine in position-1 is specific to G, while Aspartic acid (D) in position 2 plays a complicated role in binding. There is a correlation between the MD calculated free energies of binding and those obtained experimentally for prepared ZF motifs bound to triplet bases in other reports (), our results may help in the design of ZF motifs based on the established recognition codes based on energies and contributing energies to the total energy.

  10. Effect of urea on protein-ligand association.

    PubMed

    Stepanian, Lora; Son, Ikbae; Chalikian, Tigran V

    2017-12-01

    We combine experimental and theoretical approaches to investigate the influence of a cosolvent on a ligand-protein association event. We apply fluorescence measurements to determining the affinity of the inhibitor tri-N-acetylglucosamine [(GlcNAc) 3 ] for lysozyme at urea concentrations ranging from 0 to 8M. Notwithstanding that, at room temperature and neutral pH, lysozyme retains its native conformation up to the solubility limit of urea, the affinity of (GlcNAc) 3 for the protein steadily decreases as the concentration of urea increases. We analyze the urea dependence of the binding free energy within the framework of a simplified statistical thermodynamics-based model that accounts for the excluded volume effect and direct solute-solvent interactions. The analysis reveals that the detrimental action of urea on the inhibitor-lysozyme binding originates from competition between the free energy contributions of the excluded volume effect and direct solute-solvent interactions. The free energy contribution of direct urea-solute interactions narrowly overcomes the excluded volume contribution thereby resulting in urea weakening the protein-ligand association. More broadly, the successful application of the simple model employed in this work points to the possibility of its use in quantifying the stabilizing/destabilizing action of individual cosolvents on biochemical folding and binding reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Convergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association

    PubMed Central

    2016-01-01

    Potential of mean force (PMF) calculations are used to characterize the free energy landscape of protein–lipid and protein–protein association within membranes. Coarse-grained simulations allow binding free energies to be determined with reasonable statistical error. This accuracy relies on defining a good collective variable to describe the binding and unbinding transitions, and upon criteria for assessing the convergence of the simulation toward representative equilibrium sampling. As examples, we calculate protein–lipid binding PMFs for ANT/cardiolipin and Kir2.2/PIP2, using umbrella sampling on a distance coordinate. These highlight the importance of replica exchange between windows for convergence. The use of two independent sets of simulations, initiated from bound and unbound states, provide strong evidence for simulation convergence. For a model protein–protein interaction within a membrane, center-of-mass distance is shown to be a poor collective variable for describing transmembrane helix–helix dimerization. Instead, we employ an alternative intermolecular distance matrix RMS (DRMS) coordinate to obtain converged PMFs for the association of the glycophorin transmembrane domain. While the coarse-grained force field gives a reasonable Kd for dimerization, the majority of the bound population is revealed to be in a near-native conformation. Thus, the combination of a refined reaction coordinate with improved sampling reveals previously unnoticed complexities of the dimerization free energy landscape. We propose the use of replica-exchange umbrella sampling starting from different initial conditions as a robust approach for calculation of the binding energies in membrane simulations. PMID:27807980

  12. The molecular mechanism studies of chirality effect of PHA-739358 on Aurora kinase A by molecular dynamics simulation and free energy calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Yuanhua; Cui, Wei; Chen, Quan; Tung, Chen-Ho; Ji, Mingjuan; Zhang, Fushi

    2011-02-01

    Aurora kinase family is one of the emerging targets in oncology drug discovery and several small molecules targeting aurora kinases have been discovered and evaluated under early phase I/II trials. Among them, PHA-739358 (compound 1r) is a 3-aminopyrazole derivative with strong activity against Aurora A under early phase II trial. Inhibitory potency of compound 1r (the benzylic substituent at the pro-R position) is 30 times over that of compound 1s (the benzylic substituent at the pro-S position). In present study, the mechanism of how different configurations influence the binding affinity was investigated using molecular dynamics (MD) simulations, free energy calculations and free energy decomposition analysis. The predicted binding free energies of these two complexes are consistent with the experimental data. The analysis of the individual energy terms indicates that although the van der Waals contribution is important for distinguishing the binding affinities of these two inhibitors, the electrostatic contribution plays a more crucial role in that. Moreover, it is observed that different configurations of the benzylic substituent could form different binding patterns with protein, thus leading to variant inhibitory potency of compounds 1r and 1s. The combination of different molecular modeling techniques is an efficient way to interpret the chirality effects of inhibitors and our work gives valuable information for the chiral drug design in the near future.

  13. Convergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association.

    PubMed

    Domański, Jan; Hedger, George; Best, Robert B; Stansfeld, Phillip J; Sansom, Mark S P

    2017-04-20

    Potential of mean force (PMF) calculations are used to characterize the free energy landscape of protein-lipid and protein-protein association within membranes. Coarse-grained simulations allow binding free energies to be determined with reasonable statistical error. This accuracy relies on defining a good collective variable to describe the binding and unbinding transitions, and upon criteria for assessing the convergence of the simulation toward representative equilibrium sampling. As examples, we calculate protein-lipid binding PMFs for ANT/cardiolipin and Kir2.2/PIP 2 , using umbrella sampling on a distance coordinate. These highlight the importance of replica exchange between windows for convergence. The use of two independent sets of simulations, initiated from bound and unbound states, provide strong evidence for simulation convergence. For a model protein-protein interaction within a membrane, center-of-mass distance is shown to be a poor collective variable for describing transmembrane helix-helix dimerization. Instead, we employ an alternative intermolecular distance matrix RMS (D RMS ) coordinate to obtain converged PMFs for the association of the glycophorin transmembrane domain. While the coarse-grained force field gives a reasonable K d for dimerization, the majority of the bound population is revealed to be in a near-native conformation. Thus, the combination of a refined reaction coordinate with improved sampling reveals previously unnoticed complexities of the dimerization free energy landscape. We propose the use of replica-exchange umbrella sampling starting from different initial conditions as a robust approach for calculation of the binding energies in membrane simulations.

  14. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory

    NASA Astrophysics Data System (ADS)

    Mrugalla, Florian; Kast, Stefan M.

    2016-09-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.

  15. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory.

    PubMed

    Mrugalla, Florian; Kast, Stefan M

    2016-09-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.

  16. A study of planar anchor groups for graphene-based single-molecule electronics.

    PubMed

    Bailey, Steven; Visontai, David; Lambert, Colin J; Bryce, Martin R; Frampton, Harry; Chappell, David

    2014-02-07

    To identify families of stable planar anchor groups for use in single molecule electronics, we report detailed results for the binding energies of two families of anthracene and pyrene derivatives adsorbed onto graphene. We find that all the selected derivatives functionalized with either electron donating or electron accepting substituents bind more strongly to graphene than the parent non-functionalized anthracene or pyrene. The binding energy is sensitive to the detailed atomic alignment of substituent groups over the graphene substrate leading to larger than expected binding energies for -OH and -CN derivatives. Furthermore, the ordering of the binding energies within the anthracene and pyrene series does not simply follow the electron affinities of the substituents. Energy barriers to rotation or displacement on the graphene surface are much lower than binding energies for adsorption and therefore at room temperature, although the molecules are bound to the graphene, they are almost free to move along the graphene surface. Binding energies can be increased by incorporating electrically inert side chains and are sensitive to the conformation of such chains.

  17. A study of planar anchor groups for graphene-based single-molecule electronics

    NASA Astrophysics Data System (ADS)

    Bailey, Steven; Visontai, David; Lambert, Colin J.; Bryce, Martin R.; Frampton, Harry; Chappell, David

    2014-02-01

    To identify families of stable planar anchor groups for use in single molecule electronics, we report detailed results for the binding energies of two families of anthracene and pyrene derivatives adsorbed onto graphene. We find that all the selected derivatives functionalized with either electron donating or electron accepting substituents bind more strongly to graphene than the parent non-functionalized anthracene or pyrene. The binding energy is sensitive to the detailed atomic alignment of substituent groups over the graphene substrate leading to larger than expected binding energies for -OH and -CN derivatives. Furthermore, the ordering of the binding energies within the anthracene and pyrene series does not simply follow the electron affinities of the substituents. Energy barriers to rotation or displacement on the graphene surface are much lower than binding energies for adsorption and therefore at room temperature, although the molecules are bound to the graphene, they are almost free to move along the graphene surface. Binding energies can be increased by incorporating electrically inert side chains and are sensitive to the conformation of such chains.

  18. Cloud computing approaches for prediction of ligand binding poses and pathways.

    PubMed

    Lawrenz, Morgan; Shukla, Diwakar; Pande, Vijay S

    2015-01-22

    We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.

  19. Multi-Site λ-dynamics for simulated Structure-Activity Relationship studies

    PubMed Central

    Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    Multi-Site λ-dynamics (MSλD) is a new free energy simulation method that is based on λ-dynamics. It has been developed to enable multiple substituents at multiple sites on a common ligand core to be modeled simultaneously and their free energies assessed. The efficacy of MSλD for estimating relative hydration free energies and relative binding affinties is demonstrated using three test systems. Model compounds representing multiple identical benzene, dihydroxybenzene and dimethoxybenzene molecules show total combined MSλD trajectory lengths of ~1.5 ns are sufficient to reliably achieve relative hydration free energy estimates within 0.2 kcal/mol and are less sensitive to the number of trajectories that are used to generate these estimates for hybrid ligands that contain up to ten substituents modeled at a single site or five substituents modeled at each of two sites. Relative hydration free energies among six benzene derivatives calculated from MSλD simulations are in very good agreement with those from alchemical free energy simulations (with average unsigned differences of 0.23 kcal/mol and R2=0.991) and experiment (with average unsigned errors of 1.8 kcal/mol and R2=0.959). Estimates of the relative binding affinities among 14 inhibitors of HIV-1 reverse transcriptase obtained from MSλD simulations are in reasonable agreement with those from traditional free energy simulations and experiment (average unsigned errors of 0.9 kcal/mol and R2=0.402). For the same level of accuracy and precision MSλD simulations are achieved ~20–50 times faster than traditional free energy simulations and thus with reliable force field parameters can be used effectively to screen tens to hundreds of compounds in structure-based drug design applications. PMID:22125476

  20. Energy-resolved collision-induced dissociation studies of 1,10-phenanthroline complexes of the late first-row divalent transition metal cations: determination of the third sequential binding energies.

    PubMed

    Nose, Holliness; Chen, Yu; Rodgers, M T

    2013-05-23

    The third sequential binding energies of the late first-row divalent transition metal cations to 1,10-phenanthroline (Phen) are determined by energy-resolved collision-induced dissociation (CID) techniques using a guided ion beam tandem mass spectrometer. Five late first-row transition metal cations in their +2 oxidation states are examined including: Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). The kinetic energy dependent CID cross sections for loss of an intact Phen ligand from the M(2+)(Phen)3 complexes are modeled to obtain 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of the internal energy of the complexes, multiple ion-neutral collisions, and unimolecular decay rates. Electronic structure theory calculations at the B3LYP, BHandHLYP, and M06 levels of theory are employed to determine the structures and theoretical estimates for the first, second, and third sequential BDEs of the M(2+)(Phen)x complexes. B3LYP was found to deliver results that are most consistent with the measured values. Periodic trends in the binding of these complexes are examined and compared to the analogous complexes to the late first-row monovalent transition metal cations, Co(+), Ni(+), Cu(+), and Zn(+), previously investigated.

  1. Quantitative analysis on electric dipole energy in Rashba band splitting.

    PubMed

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-09-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.

  2. Quantitative analysis on electric dipole energy in Rashba band splitting

    PubMed Central

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-01-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime. PMID:26323493

  3. Energetic basis for the molecular-scale organization of bone

    DOE PAGES

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua; ...

    2014-12-24

    Here, the remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption onmore » single crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less

  4. Energetic basis for the molecular-scale organization of bone.

    PubMed

    Tao, Jinhui; Battle, Keith C; Pan, Haihua; Salter, E Alan; Chien, Yung-Ching; Wierzbicki, Andrzej; De Yoreo, James J

    2015-01-13

    The remarkable properties of bone derive from a highly organized arrangement of coaligned nanometer-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the nonmineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and atomic force microscopy (AFM) observations of collagen adsorption on single crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and transmission electron microscopy (TEM) analyses of native tissues shows that only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations, and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular-scale organization of bone.

  5. Theoretical study of transition-metal ions bound to benzene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1992-01-01

    Theoretical binding energies are reported for all first-row and selected second-row transition metal ions (M+) bound to benzene. The calculations employ basis sets of at least double-zeta plus polarization quality and account for electron correlation using the modified coupled-pair functional method. While the bending is predominantly electrostatic, the binding energies are significantly increased by electron correlation, because the donation from the metal d orbitals to the benzene pi* orbitals is not well described at the self-consistent-field level. The uncertainties in the computed binding energies are estimated to be about 5 kcal/mol. Although the calculated and experimental binding energies generally agree to within their combined uncertainties, it is likely that the true binding energies lie in the lower portion of the experimental range. This is supported by the very good agreement between the theoretical and recent experimental binding energies for AgC6H6(+).

  6. Are Anion/π Interactions Actually a Case of Simple Charge–Dipole Interactions?†

    PubMed Central

    Wheeler, Steven E.; Houk, K. N.

    2011-01-01

    Substituent effects in Cl− ••• C6H6−nXn complexes, models for anion/π interactions, have been examined using density functional theory and robust ab initio methods paired with large basis sets. Predicted interaction energies for 83 model Cl− ••• C6H6−nXn complexes span almost 40 kcal mol−1 and show an excellent correlation (r = 0.99) with computed electrostatic potentials. In contrast to prevailing models of anion/π interactions, which rely on substituent-induced changes in the aryl π-system, it is shown that substituent effects in these systems are due mostly to direct interactions between the anion and the substituents. Specifically, interaction energies for Cl− ••• C6H6−nXn complexes are recovered using a model system in which the substituents are isolated from the aromatic ring and π-resonance effects are impossible. Additionally, accurate potential energy curves for Cl− interacting with prototypical anion-binding arenes can be qualitatively reproduced by adding a classical charge–dipole interaction to the Cl− ••• C6H6 interaction potential. In substituted benzenes, binding of anions arises primarily from interactions of the anion with the local dipoles induced by the substituents, not changes in the interaction with the aromatic ring itself. When designing anion-binding motifs, phenyl rings should be viewed as a scaffold upon which appropriate substituents can be placed, because there are no attractive interactions between anions and the aryl π-system of substituted benzenes. PMID:20433187

  7. Molecular modeling of class I and II alleles of the major histocompatibility complex in Salmo salar.

    PubMed

    Cárdenas, Constanza; Bidon-Chanal, Axel; Conejeros, Pablo; Arenas, Gloria; Marshall, Sergio; Luque, F Javier

    2010-12-01

    Knowledge of the 3D structure of the binding groove of major histocompatibility (MHC) molecules, which play a central role in the immune response, is crucial to shed light into the details of peptide recognition and polymorphism. This work reports molecular modeling studies aimed at providing 3D models for two class I and two class II MHC alleles from Salmo salar (Sasa), as the lack of experimental structures of fish MHC molecules represents a serious limitation to understand the specific preferences for peptide binding. The reliability of the structural models built up using bioinformatic tools was explored by means of molecular dynamics simulations of their complexes with representative peptides, and the energetics of the MHC-peptide interaction was determined by combining molecular mechanics interaction energies and implicit continuum solvation calculations. The structural models revealed the occurrence of notable differences in the nature of residues at specific positions in the binding groove not only between human and Sasa MHC proteins, but also between different Sasa alleles. Those differences lead to distinct trends in the structural features that mediate the binding of peptides to both class I and II MHC molecules, which are qualitatively reflected in the relative binding affinities. Overall, the structural models presented here are a valuable starting point to explore the interactions between MHC receptors and pathogen-specific interactions and to design vaccines against viral pathogens.

  8. Energy economy in the actomyosin interaction: lessons from simple models.

    PubMed

    Lehman, Steven L

    2010-01-01

    The energy economy of the actomyosin interaction in skeletal muscle is both scientifically fascinating and practically important. This chapter demonstrates how simple cross-bridge models have guided research regarding the energy economy of skeletal muscle. Parameter variation on a very simple two-state strain-dependent model shows that early events in the actomyosin interaction strongly influence energy efficiency, and late events determine maximum shortening velocity. Addition of a weakly-bound state preceding force production allows weak coupling of cross-bridge mechanics and ATP turnover, so that a simple three-state model can simulate the velocity-dependence of ATP turnover. Consideration of the limitations of this model leads to a review of recent evidence regarding the relationship between ligand binding states, conformational states, and macromolecular structures of myosin cross-bridges. Investigation of the fine structure of the actomyosin interaction during the working stroke continues to inform fundamental research regarding the energy economy of striated muscle.

  9. Energy transport pathway in proteins: Insights from non-equilibrium molecular dynamics with elastic network model.

    PubMed

    Wang, Wei Bu; Liang, Yu; Zhang, Jing; Wu, Yi Dong; Du, Jian Jun; Li, Qi Ming; Zhu, Jian Zhuo; Su, Ji Guo

    2018-06-22

    Intra-molecular energy transport between distant functional sites plays important roles in allosterically regulating the biochemical activity of proteins. How to identify the specific intra-molecular signaling pathway from protein tertiary structure remains a challenging problem. In the present work, a non-equilibrium dynamics method based on the elastic network model (ENM) was proposed to simulate the energy propagation process and identify the specific signaling pathways within proteins. In this method, a given residue was perturbed and the propagation of energy was simulated by non-equilibrium dynamics in the normal modes space of ENM. After that, the simulation results were transformed from the normal modes space to the Cartesian coordinate space to identify the intra-protein energy transduction pathways. The proposed method was applied to myosin and the third PDZ domain (PDZ3) of PSD-95 as case studies. For myosin, two signaling pathways were identified, which mediate the energy transductions form the nucleotide binding site to the 50 kDa cleft and the converter subdomain, respectively. For PDZ3, one specific signaling pathway was identified, through which the intra-protein energy was transduced from ligand binding site to the distant opposite side of the protein. It is also found that comparing with the commonly used cross-correlation analysis method, the proposed method can identify the anisotropic energy transduction pathways more effectively.

  10. Comparative assessment of computational methods for the determination of solvation free energies in alcohol-based molecules.

    PubMed

    Martins, Silvia A; Sousa, Sergio F

    2013-06-05

    The determination of differences in solvation free energies between related drug molecules remains an important challenge in computational drug optimization, when fast and accurate calculation of differences in binding free energy are required. In this study, we have evaluated the performance of five commonly used polarized continuum model (PCM) methodologies in the determination of solvation free energies for 53 typical alcohol and alkane small molecules. In addition, the performance of these PCM methods, of a thermodynamic integration (TI) protocol and of the Poisson-Boltzmann (PB) and generalized Born (GB) methods, were tested in the determination of solvation free energies changes for 28 common alkane-alcohol transformations, by the substitution of an hydrogen atom for a hydroxyl substituent. The results show that the solvation model D (SMD) performs better among the PCM-based approaches in estimating solvation free energies for alcohol molecules, and solvation free energy changes for alkane-alcohol transformations, with an average error below 1 kcal/mol for both quantities. However, for the determination of solvation free energy changes on alkane-alcohol transformation, PB and TI yielded better results. TI was particularly accurate in the treatment of hydroxyl groups additions to aromatic rings (0.53 kcal/mol), a common transformation when optimizing drug-binding in computer-aided drug design. Copyright © 2013 Wiley Periodicals, Inc.

  11. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, WC; Zhuang, ZB; Gao, MR

    2015-01-08

    The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearlymore » increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.« less

  12. Anisotropic energy flow and allosteric ligand binding in albumin

    NASA Astrophysics Data System (ADS)

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.

  13. Anisotropic energy flow and allosteric ligand binding in albumin.

    PubMed

    Li, Guifeng; Magana, Donny; Dyer, R Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.

  14. Anisotropic energy flow and allosteric ligand binding in albumin

    PubMed Central

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. PMID:24445265

  15. A molecular modeling based method to predict elution behavior and binding patches of proteins in multimodal chromatography.

    PubMed

    Banerjee, Suvrajit; Parimal, Siddharth; Cramer, Steven M

    2017-08-18

    Multimodal (MM) chromatography provides a powerful means to enhance the selectivity of protein separations by taking advantage of multiple weak interactions that include electrostatic, hydrophobic and van der Waals interactions. In order to increase our understanding of such phenomena, a computationally efficient approach was developed that combines short molecular dynamics simulations and continuum solvent based coarse-grained free energy calculations in order to study the binding of proteins to Self Assembled Monolayers (SAM) presenting MM ligands. Using this method, the free energies of protein-MM SAM binding over a range of incident orientations of the protein can be determined. The resulting free energies were then examined to identify the more "strongly bound" orientations of different proteins with two multimodal surfaces. The overall free energy of protein-MM surface binding was then determined and correlated to retention factors from isocratic chromatography. This correlation, combined with analytical expressions from the literature, was then employed to predict protein gradient elution salt concentrations as well as selectivity reversals with different MM resin systems. Patches on protein surfaces that interacted strongly with MM surfaces were also identified by determining the frequency of heavy atom contacts with the atoms of the MM SAMs. A comparison of these patches to Electrostatic Potential and hydrophobicity maps indicated that while all of these patches contained significant positive charge, only the highest frequency sites also possessed hydrophobicity. The ability to identify key binding patches on proteins may have significant impact on process development for the separation of bioproduct related impurities. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Binding Energy and Enzymatic Catalysis.

    ERIC Educational Resources Information Center

    Hansen, David E.; Raines, Ronald T.

    1990-01-01

    Discussed is the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis. The principle that all of the catalytic factors discussed are realized by the use of this binding energy is reviewed. (CW)

  17. Dynamical fate of wide binaries in the solar neighborhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, M.D.; Shapiro, S.L.; Wasserman, I.

    1987-01-01

    An analytical model is presented for the evolution of wide binaries in the Galaxy. The study is pertinent to the postulated solar companion, Nemesis, which may disturb the Oort cloud and cause catastrophic comet showers to strike the earth every 26 Myr. Distant gravitational encounters are modeled by Fokker-Planck coefficients for advection and diffusion of the orbital binding energy. It is shown that encounters with passing stars cause a diffusive evolution of the binding energy and semimajor axis. Encounters with subclumps in giant molecular clouds disrupt orbits to a degree dependent on the cumulative number of stellar encounters. The timemore » scales of the vents and the limitations of scaling laws used are discussed. Results are provided from calculations of galactic distribution of wide binaries and the evolution of wide binary orbits. 38 references.« less

  18. Faddeev calculation for ^9_ΛBe hypernucleus

    NASA Astrophysics Data System (ADS)

    Suslov, Vladimir; Filikhin, Igor; Vlahovic, Branislav

    2003-04-01

    Faddeev calculations are performed for the ^9_ΛBe hypernucleus in terms of α's and Λ clusters using various Λα potential models. The main goal of our calculations is to estimate higher partial waves contribution in binding energy of ^9_ΛBe ground state (1/2^+) and particularly contribution from the high partial waves of the Λα pair. Phenomenological Ali-Bodmer potential is employed for description of the αα interaction. This potential has s, d and g - waves components. For a Λα potential both form and parameters are uncertain, because Λα interaction data are limited by the experimental value of binding energy of the ^5_ΛHe hypernucleus, which is considered as the bound s-wave state of the Λα system. The binding energy of the ^9_ΛBe is calculated for two different cases. First the s-wave Λα potential acting in all partial waves in the Λα subsystem is used. Second, a recent more realistic Λα potential model including the s and p-partial components from work [1] is employed. We compared these models and discussed validity of the s-wave approximation for calculation of ^9_ΛBe hypernucleus. This work was partially supported by Department of Defenses through the grant No.DAAD 19-01-1-0795. The work of V.M.S and I.N.F was supported by the RFFI under Grant No. 02-02-16562. References: [1] K.S. Myint, S. Shinmura and Y. Akaishi, nucl-th/0209090.

  19. In Silico Molecular Modeling and Docking Studies on Novel Mutants (E229V, H225P and D230C) of the Nucleotide-Binding Domain of Homo sapiens Hsp70.

    PubMed

    Elengoe, Asita; Hamdan, Salehhuddin

    2017-12-01

    In this study, we explored the possibility of determining the synergistic interactions between nucleotide-binding domain (NBD) of Homo sapiens heat-shock 70 kDa protein (Hsp70) and E1A 32 kDa of adenovirus serotype 5 motif (PNLVP) in the efficiency of killing of tumor cells in cancer treatment. At present, the protein interaction between NBD and PNLVP motif is still unknown, but believed to enhance the rate of virus replication in tumor cells. Three mutant models (E229V, H225P and D230C) were built and simulated, and their interactions with PNLVP motif were studied. The PNLVP motif showed the binding energy and intermolecular energy values with the novel E229V mutant at -7.32 and -11.2 kcal/mol. The E229V mutant had the highest number of hydrogen bonds (7). Based on the root mean square deviation, root mean square fluctuation, hydrogen bonds, salt bridge, secondary structure, surface-accessible solvent area, potential energy and distance matrices analyses, it was proved that the E229V had the strongest and most stable interaction with the PNLVP motif among all the four protein-ligand complex structures. The knowledge of this protein-ligand complex model would help in designing Hsp70 structure-based drug for cancer therapy.

  20. Determination of the absolute binding free energies of HIV-1 protease inhibitors using non-equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ngo, Son Tung; Nguyen, Minh Tung; Nguyen, Minh Tho

    2017-05-01

    The absolute binding free energy of an inhibitor to HIV-1 Protease (PR) was determined throughout evaluation of the non-bonded interaction energy difference between the two bound and unbound states of the inhibitor and surrounding molecules by the fast pulling of ligand (FPL) process using non-equilibrium molecular dynamics (NEMD) simulations. The calculated free energy difference terms help clarifying the nature of the binding. Theoretical binding affinities are in good correlation with experimental data, with R = 0.89. The paradigm used is able to rank two inhibitors having the maximum difference of ∼1.5 kcal/mol in absolute binding free energies.

  1. Simultaneous effects of pressure and temperature on donor binding energy in Pöschl-Teller quantum well

    NASA Astrophysics Data System (ADS)

    Hakimyfard, Alireza; Barseghyan, M. G.; Duque, C. A.; Kirakosyan, A. A.

    2009-12-01

    In the frame of the variational method and the effective-mass approximation, the effects of hydrostatic pressure and temperature on the binding energy for donor impurities in the Pöschl-Teller quantum well are studied. The binding energy dependencies on the width of the quantum well, the hydrostatic pressure, the impurity position, the temperature, and the parameters of the confining potential are reported. The results show that the binding energy increases (decreases) with the increasing of the hydrostatic pressure (temperature). It is also found that, associated with the symmetry breaking in the Pöschl-Teller quantum well, and depending on the impurity position, the binding energy can increase or decrease.

  2. A Computational Analysis of ATP Binding of SV40 Large Tumor Antigen Helicase Motor

    PubMed Central

    Shi, Yemin; Liu, Hanbin; Gai, Dahai; Ma, Jianpeng; Chen, Xiaojiang S.

    2009-01-01

    Simian Virus 40 Large Tumor Antigen (LTag) is an efficient helicase motor that unwinds and translocates DNA. The DNA unwinding and translocation of LTag is powered by ATP binding and hydrolysis at the nucleotide pocket between two adjacent subunits of an LTag hexamer. Based on the set of high-resolution hexameric structures of LTag helicase in different nucleotide binding states, we simulated a conformational transition pathway of the ATP binding process using the targeted molecular dynamics method and calculated the corresponding energy profile using the linear response approximation (LRA) version of the semi-macroscopic Protein Dipoles Langevin Dipoles method (PDLD/S). The simulation results suggest a three-step process for the ATP binding from the initial interaction to the final tight binding at the nucleotide pocket, in which ATP is eventually “locked” by three pairs of charge-charge interactions across the pocket. Such a “cross-locking” ATP binding process is similar to the binding zipper model reported for the F1-ATPase hexameric motor. The simulation also shows a transition mechanism of Mg2+ coordination to form the Mg-ATP complex during ATP binding, which is accompanied by the large conformational changes of LTag. This simulation study of the ATP binding process to an LTag and the accompanying conformational changes in the context of a hexamer leads to a refined cooperative iris model that has been proposed previously. PMID:19779548

  3. Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T.

    2014-02-07

    In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe getteringmore » processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.« less

  4. Modeling the Binding of Neurotransmitter Transporter Inhibitors with Molecular Dynamics and Free Energy Calculations

    NASA Astrophysics Data System (ADS)

    Jean, Bernandie

    The monoamine transporter (MAT) proteins responsible for the reuptake of the neurotransmitter substrates, dopamine, serotonin, and norepinephrine, are drug targets for the treatment of psychiatric disorders including depression, anxiety, and attention deficit hyperactivity disorder. Small molecules that inhibit these proteins can serve as useful therapeutic agents. However, some dopamine transporter (DAT) inhibitors, such as cocaine and methamphetamine, are highly addictive and abusable. Efforts have been made to develop small molecules that will inhibit the transporters and elucidate specific binding site interactions. This work provides knowledge of molecular interactions associated with MAT inhibitors by offering an atomistic perspective that can guide designs of new pharmacotherapeutics with enhanced activity. The work described herein evaluates intermolecular interactions using computational methods to reveal the mechanistic detail of inhibitors binding in the DAT. Because cocaine recognizes the extracellular-facing or outward-facing (OF) DAT conformation and benztropine recognizes the intracellular-facing or inward-facing (IF) conformation, it was postulated that behaviorally "typical" (abusable, locomotor psychostimulant) inhibitors stabilize the OF DAT and "atypical" (little or no abuse potential) inhibitors favor IF DAT. Indeed, behaviorally-atypical cocaine analogs have now been shown to prefer the OF DAT conformation. Specifically, the binding interactions of two cocaine analogs, LX10 and LX11, were studied in the OF DAT using molecular dynamics simulations. LX11 was able to interact with residues of transmembrane helix 8 and bind in a fashion that allowed for hydration of the primary binding site (S1) from the intracellular space, thus impacting the intracellular interaction network capable of regulating conformational transitions in DAT. Additionally, a novel serotonin transporter (SERT) inhibitor previously discovered through virtual screening at the SERT secondary binding site (S2) was studied. Intermolecular interactions between SM11 and SERT have been assessed using binding free energy calculations to predict the ligand-binding site and optimize ligand-binding interactions. Results indicate the addition of atoms to the 4-chlorobenzyl moiety were most energetically favorable. The simulations carried out in DAT and SERT were supported by experimental results. Furthermore, the co-crystal structures of DAT and SERT share similar ligand-binding interactions with the homology models used in this study.

  5. Implicit ligand theory for relative binding free energies

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Hai; Minh, David D. L.

    2018-03-01

    Implicit ligand theory enables noncovalent binding free energies to be calculated based on an exponential average of the binding potential of mean force (BPMF)—the binding free energy between a flexible ligand and rigid receptor—over a precomputed ensemble of receptor configurations. In the original formalism, receptor configurations were drawn from or reweighted to the apo ensemble. Here we show that BPMFs averaged over a holo ensemble yield binding free energies relative to the reference ligand that specifies the ensemble. When using receptor snapshots from an alchemical simulation with a single ligand, the new statistical estimator outperforms the original.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.

    Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M 2(dobdc) and M 3(btc) 2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements.more » A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.« less

  7. Experimental and molecular docking studies on DNA binding interaction of adefovir dipivoxil: advances toward treatment of hepatitis B virus infections.

    PubMed

    Shahabadi, Nahid; Falsafi, Monireh

    2014-05-05

    The toxic interaction of adefovir dipivoxil with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multi-spectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove binding mode. The binding constant of UV-visible and the number of binding sites were 3.33±0.2×10(4) L mol(-1)and 0.99, respectively. The fluorimetric studies showed that the reaction between the drug and CT-DNA is exothermic (ΔH=34.4 kJ mol(-1); ΔS=184.32 J mol(-1) K(-1)). Circular dichroism spectroscopy (CD) was employed to measure the conformational change of CT-DNA in the presence of adefovir dipivoxil, which verified the groove binding mode. Furthermore, the drug induces detectable changes in its viscosity. The molecular modeling results illustrated that adefovir strongly binds to groove of DNA by relative binding energy of docked structure -16.83 kJ mol(-1). This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the toxic interaction of small molecular pollutants and drugs with bio macromolecules, which contributes to clarify the molecular mechanism of toxicity or side effect in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction

    PubMed Central

    Gleitsman, Kristin R.

    2014-01-01

    Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very slow association rate constants. These and additional literature observations support a model in which the free ribozyme is not conformationally competent to bind G and in which the probability of assuming the binding-competent state is determined by tertiary interactions of peripheral elements. As proposed previously, the slow binding of guanosine may play a role in the specificity of group I intron self-splicing, and slow binding may be used analogously in other biological processes. The internal equilibrium between ribozyme-bound substrates and products is similar for these ribozymes, but the Azoarcus ribozyme does not display the coupling in the binding of substrates that is observed with the Tetrahymena ribozyme, suggesting that local preorganization of the active site and rearrangements within the active site upon substrate binding are different for these ribozymes. Our results also confirm the much greater tertiary binding energy of the 5′-splice site analog with the Azoarcus ribozyme, binding energy that presumably compensates for the fewer base-pairing interactions to allow the 5′-exon intermediate in self splicing to remain bound subsequent to 5′-exon cleavage and prior to exon ligation. Most generally, these frameworks provide a foundation for design and interpretation of experiments investigating fundamental properties of these and other structured RNAs. PMID:25246656

  9. Magnetic quantization in monolayer bismuthene

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Chao; Chiu, Chih-Wei; Lin, Hui-Chi; Lin, Ming-Fa

    The magnetic quantization in monolayer bismuthene is investigated by the generalized tight-binding model. The quite large Hamiltonian matrix is built from the tight-binding functions of the various sublattices, atomic orbitals and spin states. Due to the strong spin orbital coupling and sp3 bonding, monolayer bismuthene has the diverse low-lying energy bands such as the parabolic, linear and oscillating energy bands. The main features of band structures are further reflected in the rich magnetic quantization. Under a uniform perpendicular magnetic field (Bz) , three groups of Landau levels (LLs) with distinct features are revealed near the Fermi level. Their Bz-dependent energy spectra display the linear, square-root and non-monotonous dependences, respectively. These LLs are dominated by the combinations of the 6pz orbital and (6px,6py) orbitals as a result of strong sp3 bonding. Specifically, the LL anti-crossings only occur between LLs originating from the oscillating energy band.

  10. Electron binding energy of uranium-ligand and uranyl-ligand anions

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Horowitz, Steven; Marston, Brad

    2012-02-01

    Electron binding energies of the early actinide element uranium in gas-phase anion complexes are calculated by relativistic density functional theory (DFT) with two different exchange-correlation functions (RPBE and B3LYP) and also in the Hartree-Fock (HF) approximationootnotetextADF2010.02, SCM.com. Scalar and spin-orbit calculations are performed, and the calculated energies are compared to available experimental measurements and shown to disagree by energies of order 1 eV. Strong correlations that are poorly treated in DFT and HF can be included by a hybrid approach in which a generalized Anderson impurity model is numerically diagonalized. Reduction-oxidation (redox) potentials of aqueous actinide ions show improved agreement with measured values in the hybrid approachootnotetextS. E. Horowitz and J. B. Marston, J. Chem. Phys 134 064510 (2011).. We test whether or not similar improvements are found in the gas-phase.

  11. An investigation on the effect of impurity position on the binding energy of quantum box under electric field with pressure and temperature

    NASA Astrophysics Data System (ADS)

    Yilmaz, S.; Kirak, M.

    2018-05-01

    In the present study, we have studied theoretically the influences of donor impurity position on the binding energy of a GaAs cubic quantum box structure. The binding energy is calculated as functions of the position of impurity, electric field, temperature and hydrostatic pressure. The variational method is employed to obtain the energy eigenvalues of the structure in the framework of the effective mass approximation. It has been found that the impurity positions with electric field, pressure and temperature have an important effect on the binding energy of structure considered. The results can be used to manufacture semiconductor device application by manipulating the binding energy with the impurity positions, electric field, pressure and temperature.

  12. Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain.

    PubMed

    Hou, Tingjun; Zhang, Wei; Case, David A; Wang, Wei

    2008-02-29

    Many important protein-protein interactions are mediated by peptide recognition modular domains, such as the Src homology 3 (SH3), SH2, PDZ, and WW domains. Characterizing the interaction interface of domain-peptide complexes and predicting binding specificity for modular domains are critical for deciphering protein-protein interaction networks. Here, we propose the use of an energetic decomposition analysis to characterize domain-peptide interactions and the molecular interaction energy components (MIECs), including van der Waals, electrostatic, and desolvation energy between residue pairs on the binding interface. We show a proof-of-concept study on the amphiphysin-1 SH3 domain interacting with its peptide ligands. The structures of the human amphiphysin-1 SH3 domain complexed with 884 peptides were first modeled using virtual mutagenesis and optimized by molecular mechanics (MM) minimization. Next, the MIECs between domain and peptide residues were computed using the MM/generalized Born decomposition analysis. We conducted two types of statistical analyses on the MIECs to demonstrate their usefulness for predicting binding affinities of peptides and for classifying peptides into binder and non-binder categories. First, combining partial least squares analysis and genetic algorithm, we fitted linear regression models between the MIECs and the peptide binding affinities on the training data set. These models were then used to predict binding affinities for peptides in the test data set; the predicted values have a correlation coefficient of 0.81 and an unsigned mean error of 0.39 compared with the experimentally measured ones. The partial least squares-genetic algorithm analysis on the MIECs revealed the critical interactions for the binding specificity of the amphiphysin-1 SH3 domain. Next, a support vector machine (SVM) was employed to build classification models based on the MIECs of peptides in the training set. A rigorous training-validation procedure was used to assess the performances of different kernel functions in SVM and different combinations of the MIECs. The best SVM classifier gave satisfactory predictions for the test set, indicated by average prediction accuracy rates of 78% and 91% for the binding and non-binding peptides, respectively. We also showed that the performance of our approach on both binding affinity prediction and binder/non-binder classification was superior to the performances of the conventional MM/Poisson-Boltzmann solvent-accessible surface area and MM/generalized Born solvent-accessible surface area calculations. Our study demonstrates that the analysis of the MIECs between peptides and the SH3 domain can successfully characterize the binding interface, and it provides a framework to derive integrated prediction models for different domain-peptide systems.

  13. Modeling Conformational Transitions and Energetics of Ligand Binding with the Glutamate Receptor Ligand Binding Domain

    NASA Astrophysics Data System (ADS)

    Kurnikova, Maria

    2009-03-01

    Understanding of protein motion and energetics of conformational transitions is crucial to understanding protein function. The glutamate receptor ligand binding domain (GluR2 S1S2) is a two lobe protein, which binds ligand at the interface of two lobes and undergoes conformational transition. The cleft closure conformational transition of S1S2 has been implicated in gating of the ion channel formed by the transmembrane domain of the receptor. In this study we present a composite multi-faceted theoretical analysis of the detailed mechanism of this conformational transition based on rigid cluster decomposition of the protein structure [1] and identifying hydrogen bonds that are responsible for stabilizing the closed conformation [2]. Free energy of the protein reorganization upon ligand binding was calculated using combined Thermodynamic Integration (TI) and Umbrella Sampling (US) simulations [3]. Ligand -- protein interactions in the binding cleft were analyzed using Molecular Dynamics, continuum electrostatics and QM/MM models [4]. All model calculations compare well with corresponding experimental measurements. [4pt] [1] Protein Flexibility using Constraints from Molecular Dynamics Simulations T. Mamonova, B. Hespenheide, R. Straub, M. F. Thorpe, M. G. Kurnikova , Phys. Biol., 2, S137 (2005)[0pt] [2] Theoretical Study of the Glutamate Receptor Ligand Binding Domain Flexibility and Conformational Reorganization T. Mamonova, K. Speranskiy, and M. Kurnikova , Prot.: Struct., Func., Bioinf., 73,656 (2008)[0pt] [3] Energetics of the cleft closing transition and glutamate binding in the Glutamate Receptor ligand Binding Domain T. Mamonova, M. Yonkunas, and M. Kurnikova Biochemistry 47, 11077 (2008)[0pt] [4] On the Binding Determinants of the Glutamate Agonist with the Glutamate Receptor Ligand Binding Domain K. Speranskiy and M. Kurnikova Biochemistry 44, 11208 (2005)

  14. Carbohydrate binding specificity of pea lectin studied by NMR spectroscopy and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cheong, Youngjoo; Shim, Gyuchang; Kang, Dongil; Kim, Yangmee

    1999-02-01

    The conformational details of Man( α1,6)Man( α)OMe are investigated through NMR spectroscopy in conjunction with molecular modeling. The lowest energy structure (M1) in the adiabatic energy map calculated with a dielectric constant of 50 has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=180°. The other low energy structure (M2) has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=-60°. Molecular dynamics simulations and NMR experiments prove that Man( α1,6)Man( α)OMe in the free form exists with conformational averaging of M1 and M2 conformers predominantly. Molecular dynamics simulations of the pea lectin-carbohydrate complex with explicit water molecules starting from the X-ray crystallographic structure of pea lectin show that the protein-carbohydrate interaction centers mainly on the hydrogen bonds and van der Waals interactions between protein and carbohydrate. From the molecular dynamics simulation, it is found that the M1 structure can bind to pea lectin better than the M2 structure. The origin of this selectivity is the water- mediated hydrogen bond interactions between the remote mannose and the binding site of pea lectin as well as the direct hydrogen bond interaction between the terminal mannose and pea lectin. Extensive networks of interactions in the carbohydrate binding site and the metal binding site are important in maintaining the carbohydrate binding properties of pea lectin. Especially, the predominant factors of mannose binding specificity of pea lectin are the hydrogen bond interactions between the 4th hydroxyl groups of the terminal sugar ring and the side chains of Asp-81 and Asn-125 in the carbohydrate binding site, and the additional interactions between these side chains of Asp-81 and Asn-125 and the calcium ion in the metal binding site of pea lectin.

  15. Screening of benzamidine-based thrombin inhibitors via a linear interaction energy in continuum electrostatics model

    NASA Astrophysics Data System (ADS)

    Nicolotti, Orazio; Giangreco, Ilenia; Miscioscia, Teresa Fabiola; Convertino, Marino; Leonetti, Francesco; Pisani, Leonardo; Carotti, Angelo

    2010-02-01

    A series of 27 benzamidine inhibitors covering a wide range of biological activity and chemical diversity was analysed to derive a Linear Interaction Energy in Continuum Electrostatics (LIECE) model for analysing the thrombin inhibitory activity. The main interactions occurring at the thrombin binding site and the preferred binding conformations of inhibitors were explicitly biased by including into the LIECE model 10 compounds extracted from X-ray solved thrombin-inhibitor complexes available from the Protein Data Bank (PDB). Supported by a robust statistics ( r 2 = 0.698; q 2 = 0.662), the LIECE model was successful in predicting the inhibitory activity for about 76% of compounds ( r ext 2 ≥ 0.600) from a larger external test set encompassing 88 known thrombin inhibitors and, more importantly, in retrieving, at high sensitivity and with better performance than docking and shape-based methods, active compounds from a thrombin combinatorial library of 10240 mimetic chemical products. The herein proposed LIECE model has the potential for successfully driving the design of novel thrombin inhibitors with benzamidine and/or benzamidine-like chemical structure.

  16. First-principle calculation of core level binding energies of Li{sub x}PO{sub y}N{sub z} solid electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guille, Émilie; Vallverdu, Germain, E-mail: germain.vallverdu@univ-pau.fr; Baraille, Isabelle

    2014-12-28

    We present first-principle calculations of core-level binding energies for the study of insulating, bulk phase, compounds, based on the Slater-Janak transition state model. Those calculations were performed in order to find a reliable model of the amorphous Li{sub x}PO{sub y}N{sub z} solid electrolyte which is able to reproduce its electronic properties gathered from X-ray photoemission spectroscopy (XPS) experiments. As a starting point, Li{sub 2}PO{sub 2}N models were investigated. These models, proposed by Du et al. on the basis of thermodynamics and vibrational properties, were the first structural models of Li{sub x}PO{sub y}N{sub z}. Thanks to chemical and structural modifications appliedmore » to Li{sub 2}PO{sub 2}N structures, which allow to demonstrate the relevance of our computational approach, we raise an issue concerning the possibility of encountering a non-bridging kind of nitrogen atoms (=N{sup −}) in Li{sub x}PO{sub y}N{sub z} compounds.« less

  17. Gas-Phase Interaction of Anions with Polyisobutylenes: Collision-Induced Dissociation Study and Quantum Chemical Modeling.

    PubMed

    Nagy, Lajos; Kuki, Ákos; Deák, György; Purgel, Mihály; Vékony, Ádám; Zsuga, Miklós; Kéki, Sándor

    2016-09-01

    The gas-phase interaction of anions including fluoride, chloride, bromide, iodide, ethyl sulfate, chlorate, and nitrate with polyisobutylene (PIB) derivatives was studied using collision-induced dissociation (CID). The gas-phase adducts of anions with PIBs ([PIB + anion](-)) were generated from the electrosprayed solution of PIBs in the presence of the corresponding anions. The so-formed adducts subjected to CID showed a loss of anion at different characteristic collision energies, thus allowing the study of the strength of interaction between the anions and nonpolar PIBs having different end-groups. The values of characteristic collision energies (the energy needed to obtain 50% fragmentation) obtained by CID experiments correlated linearly with the binding enthalpies between the anion and PIB, as determined by density functional theory calculations. In the case of halide ions, the critical energies for dissociation, that is, the binding enthalpies for [PIB + anion](-) adducts, increased in the order of I(-) < Br(-) < Cl(-) < F(-). Furthermore, it was found that the binding enthalpies for the adducts formed with halide ions decreased approximately with the square radius of the halide ion, suggesting that the strength of interaction is mainly determined by the "surface" charge density of the halide ion. In addition, the characteristic collision energy versus the number of isobutylene units revealed a linear dependence.

  18. Dicyanovinylnaphthalenes for neuroimaging of amyloids and relationships of electronic structures and geometries to binding affinities

    PubMed Central

    Petrič, Andrej; Johnson, Scott A.; Pham, Hung V.; Li, Ying; Čeh, Simon; Golobič, Amalija; Agdeppa, Eric D.; Timbol, Gerald; Liu, Jie; Keum, Gyochang; Satyamurthy, Nagichettiar; Kepe, Vladimir; Houk, Kendall N.; Barrio, Jorge R.

    2012-01-01

    The positron-emission tomography (PET) probe 2-(1-[6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene) (FDDNP) is used for the noninvasive brain imaging of amyloid-β (Aβ) and other amyloid aggregates present in Alzheimer’s disease and other neurodegenerative diseases. A series of FDDNP analogs has been synthesized and characterized using spectroscopic and computational methods. The binding affinities of these molecules have been measured experimentally and explained through the use of a computational model. The analogs were created by systematically modifying the donor and the acceptor sides of FDDNP to learn the structural requirements for optimal binding to Aβ aggregates. FDDNP and its analogs are neutral, environmentally sensitive, fluorescent molecules with high dipole moments, as evidenced by their spectroscopic properties and dipole moment calculations. The preferred solution-state conformation of these compounds is directly related to the binding affinities. The extreme cases were a nonplanar analog t-butyl-FDDNP, which shows low binding affinity for Aβ aggregates (520 nM Ki) in vitro and a nearly planar tricyclic analog cDDNP, which displayed the highest binding affinity (10 pM Ki). Using a previously published X-ray crystallographic model of 1,1-dicyano-2-[6-(dimethylamino)naphthalen-2-yl]propene (DDNP) bound to an amyloidogenic Aβ peptide model, we show that the binding affinity is inversely related to the distortion energy necessary to avoid steric clashes along the internal surface of the binding channel. PMID:23012452

  19. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo.

    PubMed

    Gill, Samuel C; Lim, Nathan M; Grinaway, Patrick B; Rustenburg, Ariën S; Fass, Josh; Ross, Gregory A; Chodera, John D; Mobley, David L

    2018-05-31

    Accurately predicting protein-ligand binding affinities and binding modes is a major goal in computational chemistry, but even the prediction of ligand binding modes in proteins poses major challenges. Here, we focus on solving the binding mode prediction problem for rigid fragments. That is, we focus on computing the dominant placement, conformation, and orientations of a relatively rigid, fragment-like ligand in a receptor, and the populations of the multiple binding modes which may be relevant. This problem is important in its own right, but is even more timely given the recent success of alchemical free energy calculations. Alchemical calculations are increasingly used to predict binding free energies of ligands to receptors. However, the accuracy of these calculations is dependent on proper sampling of the relevant ligand binding modes. Unfortunately, ligand binding modes may often be uncertain, hard to predict, and/or slow to interconvert on simulation time scales, so proper sampling with current techniques can require prohibitively long simulations. We need new methods which dramatically improve sampling of ligand binding modes. Here, we develop and apply a nonequilibrium candidate Monte Carlo (NCMC) method to improve sampling of ligand binding modes. In this technique, the ligand is rotated and subsequently allowed to relax in its new position through alchemical perturbation before accepting or rejecting the rotation and relaxation as a nonequilibrium Monte Carlo move. When applied to a T4 lysozyme model binding system, this NCMC method shows over 2 orders of magnitude improvement in binding mode sampling efficiency compared to a brute force molecular dynamics simulation. This is a first step toward applying this methodology to pharmaceutically relevant binding of fragments and, eventually, drug-like molecules. We are making this approach available via our new Binding modes of ligands using enhanced sampling (BLUES) package which is freely available on GitHub.

  20. Pairwise additivity of energy components in protein-ligand binding: The HIV II protease-Indinavir case

    NASA Astrophysics Data System (ADS)

    Ucisik, Melek N.; Dashti, Danial S.; Faver, John C.; Merz, Kenneth M.

    2011-08-01

    An energy expansion (binding energy decomposition into n-body interaction terms for n ≥ 2) to express the receptor-ligand binding energy for the fragmented HIV II protease-Indinavir system is described to address the role of cooperativity in ligand binding. The outcome of this energy expansion is compared to the total receptor-ligand binding energy at the Hartree-Fock, density functional theory, and semiempirical levels of theory. We find that the sum of the pairwise interaction energies approximates the total binding energy to ˜82% for HF and to >95% for both the M06-L density functional and PM6-DH2 semiempirical method. The contribution of the three-body interactions amounts to 18.7%, 3.8%, and 1.4% for HF, M06-L, and PM6-DH2, respectively. We find that the expansion can be safely truncated after n = 3. That is, the contribution of the interactions involving more than three parties to the total binding energy of Indinavir to the HIV II protease receptor is negligible. Overall, we find that the two-body terms represent a good approximation to the total binding energy of the system, which points to pairwise additivity in the present case. This basic principle of pairwise additivity is utilized in fragment-based drug design approaches and our results support its continued use. The present results can also aid in the validation of non-bonded terms contained within common force fields and in the correction of systematic errors in physics-based score functions.

  1. From small sweeteners to sweet proteins: anatomy of the binding sites of the human T1R2_T1R3 receptor.

    PubMed

    Morini, Gabriella; Bassoli, Angela; Temussi, Piero A

    2005-08-25

    The sweet taste receptor, a heterodimeric G protein coupled receptor (GPCR) protein, formed by the T1R2 and T1R3 subunits, recognizes several sweet compounds including carbohydrates, amino acids, peptides, proteins, and synthetic sweeteners. Its similarity with the metabotropic glutamate mGluR1 receptor allowed us to build homology models. All possible dimers formed by combinations of the human T1R2 and T1R3 subunits, modeled on the A (closed) or B (open) chains of the extracellular ligand binding domain of the mGluR1 template, yield four ligand binding sites for low-molecular-weight sweeteners. These sites were probed by docking a set of molecules representative of all classes of sweet compounds and calculating the free energy of ligand binding. These sites are not easily accessible to sweet proteins, but docking experiments in silico showed that sweet proteins can bind to a secondary site without entering the deep cleft. Our models account for many experimental observations on the tastes of sweeteners, including sweetness synergy, and can help to design new sweeteners.

  2. Tight-Binding study of Boron structures

    NASA Astrophysics Data System (ADS)

    McGrady, Joseph W.; Papaconstantopoulos, Dimitrios A.; Mehl, Michael J.

    2014-10-01

    We have performed Linearized Augmented Plane Wave (LAPW) calculations for five crystal structures (alpha, dhcp, sc, fcc, bcc) of Boron which we then fitted to a non-orthogonal tight-binding model following the Naval Research Laboratory Tight-Binding (NRL-TB) method. The predictions of the NRL-TB approach for complicated Boron structures such as R105 (or β-rhombohedral) and T190 are in agreement with recent first-principles calculations. Fully utilizing the computational speed of the NRL-TB method we calculated the energy differences of various structures, including those containing vacancies using supercells with up to 5000 atoms.

  3. Stretched proton-neutron configurations in fp-shell nuclei (II). Systematics

    NASA Astrophysics Data System (ADS)

    von Neumann-Cosel, P.; Fister, U.; Jahn, R.; Schenk, P.; Trelle, T. K.; Wenzel, D.; Wienands, U.

    1994-03-01

    The systematics of the binding energies of stretched proton-neutron configurations ( f{7}/{2}, g{9}/{2}) 8 -, ( p{3}/{2}, g{9}/{2}) 6 -, ( g{9}/{2}, p{3}/{2}) 6- and ( g{9}/{2}) 29 + are studied over a wide range of f p-shell nuclei. The effective proton-neutron interaction energies deduced from the data are nearly constant for ( p{3}/{2}, g{9}/{2}) 6 -and ( g{9}/{2}) 29 + states while the ( f{7}/{2}, g{9}/{2}) 8 - configuration reveals an additional repulsive term proportional to the partial filling of the f{7}/{2} orbit in the target ground state. Two-body matrix elements are extracted. A crude shell model, which predicts that the excitation energy of a stretched state is equal to the sum of the single-particle energies, works well for the 6 - and 9 + states, but fails for the 8 - levels due to neglect of the additional interactions described above. The physics underlying the empirically introduced basic assumptions of the crude shell model is discussed. The binding energies are found to be linearly dependent on the mass number A and the isospin Tz component and are well described by the weak-coupling model of Bansal and French. The derived parameters agree with averaged values of a similar analysis for the single-particle states in the corresponding odd-even neighbours. The data indicate a significant change of the particle-hole energies with closure of the proton f{7}/{2} shell.

  4. All-atomic simulations on human telomeric G-quadruplex DNA binding with thioflavin T.

    PubMed

    Luo, Di; Mu, Yuguang

    2015-04-16

    Ligand-stabilized human telomeric G-quadruplex DNA is believed to be an anticancer agent, as it can impede the continuous elongation of telomeres by telomerase in cancer cells. In this study, five well-established human telomeric G-quadruplex DNA models were probed on their binding behaviors with thioflavin T (ThT) via both conventional molecular dynamics (MD) and well-tempered metadynamics (WT-MetaD) simulations. Novel dynamics and characteristic binding patterns were disclosed by the MD simulations. It was observed that the K(+) promoted parallel and hybridized human telomeric G-quadruplex conformations pose higher binding affinities to ThT than the Na(+) and K(+) promoted basket conformations. It is the end, sandwich, and base stacking driven by π-π interactions that are identified as the major binding mechanisms. As the most energy favorable binding mode, the sandwich stacking observed in (3 + 1) hybridized form 1 G-quadruplex conformation is triggered by reversible conformational change of the G-quadruplex. To further examine the free energy landscapes, WT-MetaD simulations were utilized on G-quadruplex-ThT systems. It is found that all of the major binding modes predicted by the MD simulations are confirmed by the WT-MetaD simulations. The results in this work not only accord with existing experimental findings, but also reinforce our understanding on the dynamics of G-quadruplexes and aid future drug developments for G-quadruplex stabilization ligands.

  5. Electronic and optical properties of exciton, trions and biexciton in II-VI parabolic quantum dot

    NASA Astrophysics Data System (ADS)

    Sujanah, P.; John Peter, A.; Woo Lee, Chang

    2015-08-01

    Binding energies of exciton, trions and biexciton and their interband optical transition energies are studied in a CdTe/ZnTe quantum dot nanostructure taking into consideration the geometrical confinement effect. The radial spread of the wavefunctions, binding energies, optical transition energies, oscillator strength, radiative life time and the absorption coefficients of exciton, positively and negatively charged excitons and biexciton are carried out. It is found that the ratio of the radiative life time of exciton with the trions and biexciton enhances with the reduction of geometrical confinement. The results show that (i) the binding energies of exciton, positive and negative trions and the biexciton have strong influence on the reduction of geometrical confinement effect, (ii) the binding energy is found to decrease from the binding energies of exciton to positive trion through biexciton and negative trion binding energies, (iii) the oscillator strength of trions is found to be lesser than exciton and the biexciton and (iv) the electronic and optical properties of exciton, trions and the biexciton are considerably dependent on the spatial confinement, incident photon energy and the radiative life time. The obtained results are in good agreement with the other existing literature.

  6. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.

    PubMed

    de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira

    2017-12-09

    Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. How maltose influences structural changes to bind to maltose-binding protein: results from umbrella sampling simulation.

    PubMed

    Mascarenhas, Nahren Manuel; Kästner, Johannes

    2013-02-01

    A well-studied periplasmic-binding protein involved in the abstraction of maltose is maltose-binding protein (MBP), which undergoes a ligand-induced conformational transition from an open (ligand-free) to a closed (ligand-bound) state. Umbrella sampling simulations have been us to estimate the free energy of binding of maltose to MBP and to trace the potential of mean force of the unbinding event using the center-of-mass distance between the protein and ligand as the reaction coordinate. The free energy thus obtained compares nicely with the experimentally measured value justifying our theoretical basis. Measurement of the domain angle (N-terminal-domain - hinge - C-terminal-domain) along the unbinding pathway established the existence of three different states. Starting from a closed state, the protein shifts to an open conformation during the initial unbinding event of the ligand then resides in a semi-open conformation and later resides predominantly in an open-state. These transitions along the ligand unbinding pathway have been captured in greater depth using principal component analysis. It is proposed that in mixed-model, both conformational selection and an induced-fit mechanism combine to the ligand recognition process in MBP. Copyright © 2012 Wiley Periodicals, Inc.

  8. Estimation of the Binding Free Energy of AC1NX476 to HIV-1 Protease Wild Type and Mutations Using Free Energy Perturbation Method.

    PubMed

    Ngo, Son Tung; Mai, Binh Khanh; Hiep, Dinh Minh; Li, Mai Suan

    2015-10-01

    The binding mechanism of AC1NX476 to HIV-1 protease wild type and mutations was studied by the docking and molecular dynamics simulations. The binding free energy was calculated using the double-annihilation binding free energy method. It is shown that the binding affinity of AC1NX476 to wild type is higher than not only ritonavir but also darunavir, making AC1NX476 become attractive candidate for HIV treatment. Our theoretical results are in excellent agreement with the experimental data as the correlation coefficient between calculated and experimentally measured binding free energies R = 0.993. Residues Asp25-A, Asp29-A, Asp30-A, Ile47-A, Gly48-A, and Val50-A from chain A, and Asp25-B from chain B play a crucial role in the ligand binding. The mutations were found to reduce the receptor-ligand interaction by widening the binding cavity, and the binding propensity is mainly driven by the van der Waals interaction. Our finding may be useful for designing potential drugs to combat with HIV. © 2015 John Wiley & Sons A/S.

  9. Isothermal Maxwell demon as a quantum ``sewing machine''

    NASA Astrophysics Data System (ADS)

    Čápek, V.

    1998-04-01

    A model of an open microscopic quantum system interacting with an isothermal bath and able to bind actively particles from a reservoir to their even excited bound states at the cost of the bath energy is presented. The binding (potentially important in, e.g., chain reactions-hence ``sewing'') is due to dynamic processes in a central part of the system accompanying the particle transfer. The outcome thus challenges the second law of thermodynamics.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolmann, Stephen J.; D'Arcy, Jordan H.; Jordan, Meredith J. T., E-mail: m.jordan@chem.usyd.edu.au

    Quantum and anharmonic effects are investigated in H{sub 2}-Li{sup +}-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H{sub 2} binding enthalpy estimates, ΔH{sub bind} (0 K), being 16.5 kJ mol{sup −1} and 12.4 kJ mol{sup −1}, respectively: 0.1 and 0.6more » kJ mol{sup −1} higher than harmonic values. Zero-point energy effects are 35% of the value of ΔH{sub bind} (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔH{sub bind} (0 K) by at least 6 kJ mol{sup −1}. Harmonic intermolecular binding enthalpies can be corrected by treating the H{sub 2} “helicopter” and “ferris wheel” rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H{sub 2} molecule is delocalized above the Li{sup +}-benzene system at 0 K.« less

  11. Tight-binding model for borophene and borophane

    NASA Astrophysics Data System (ADS)

    Nakhaee, M.; Ketabi, S. A.; Peeters, F. M.

    2018-03-01

    Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.

  12. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.

    PubMed

    Li, Huameng; Li, Chenglong

    2010-07-30

    Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively. 2010 Wiley Periodicals, Inc.

  13. Protein-Protein Interface Predictions by Data-Driven Methods: A Review

    PubMed Central

    Xue, Li C; Dobbs, Drena; Bonvin, Alexandre M.J.J.; Honavar, Vasant

    2015-01-01

    Reliably pinpointing which specific amino acid residues form the interface(s) between a protein and its binding partner(s) is critical for understanding the structural and physicochemical determinants of protein recognition and binding affinity, and has wide applications in modeling and validating protein interactions predicted by high-throughput methods, in engineering proteins, and in prioritizing drug targets. Here, we review the basic concepts, principles and recent advances in computational approaches to the analysis and prediction of protein-protein interfaces. We point out caveats for objectively evaluating interface predictors, and discuss various applications of data-driven interface predictors for improving energy model-driven protein-protein docking. Finally, we stress the importance of exploiting binding partner information in reliably predicting interfaces and highlight recent advances in this emerging direction. PMID:26460190

  14. Specificity and non-specificity in RNA–protein interactions

    PubMed Central

    Jankowsky, Eckhard; Harris, Michael E.

    2016-01-01

    Gene expression is regulated by complex networks of interactions between RNAs and proteins. Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative measurements of protein binding to large numbers of RNA variants, and the concepts aimed as describing resulting binding spectra: affinity distributions, comprehensive binding models and free energy landscapes. We discuss how these new methodologies and associated concepts enable work towards inclusive, quantitative models for specific and non-specific RNA–protein interactions. PMID:26285679

  15. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  16. Molecular modeling and residue interaction network studies on the mechanism of binding and resistance of the HCV NS5B polymerase mutants to VX-222 and ANA598.

    PubMed

    Xue, Weiwei; Jiao, Pingzu; Liu, Huanxiang; Yao, Xiaojun

    2014-04-01

    Hepatitis C virus (HCV) NS5B protein is an RNA-dependent RNA polymerase (RdRp) with essential functions in viral genome replication and represents a promising therapeutic target to develop direct-acting antivirals (DAAs). Multiple nonnucleoside inhibitors (NNIs) binding sites have been identified within the polymerase. VX-222 and ANA598 are two NNIs targeting thumb II site and palm I site of HCV NS5B polymerase, respectively. These two molecules have been shown to be very effective in phase II clinical trials. However, the emergence of resistant HCV replicon variants (L419M, M423T, I482L mutants to VX-222 and M414T, M414L, G554D mutants to ANA598) has significantly decreased their efficacy. To elucidate the molecular mechanism about how these mutations influenced the drug binding mode and decreased drug efficacy, we studied the binding modes of VX-222 and ANA598 to wild-type and mutant polymerase by molecular modeling approach. Molecular dynamics (MD) simulations results combined with binding free energy calculations indicated that the mutations significantly altered the binding free energy and the interaction for the drugs to polymerase. The further per-residue binding free energy decomposition analysis revealed that the mutations decreased the interactions with several key residues, such as L419, M423, L474, S476, I482, L497, for VX-222 and L384, N411, M414, Y415, Q446, S556, G557 for ANA598. These were the major origins for the resistance to these two drugs. In addition, by analyzing the residue interaction network (RIN) of the complexes between the drugs with wild-type and the mutant polymerase, we found that the mutation residues in the networks involved in the drug resistance possessed a relatively lower size of topology centralities. The shift of betweenness and closeness values of binding site residues in the mutant polymerase is relevant to the mechanism of drug resistance of VX-222 and ANA598. These results can provide an atomic-level understanding about the mechanisms of drug resistance conferred by the studied mutations and will be helpful to design more potent inhibitors which could effectively overcome drug resistance of antivirus agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Sequence and structure insights of kazal type thrombin inhibitor protein: Studied with phylogeny, homology modeling and dynamic MM/GBSA studies.

    PubMed

    Jadhav, Aparna; Dash, RadhaCharan; Hirwani, Raj; Abdin, Malik

    2018-03-01

    Despite the wide medical importance of serine protease inhibitors, many of kazal type proteins are still to be explored. These thrombin inhibiting proteins are found in the digestive system of hematophagous organisms mainly Arthropods. We studied one of such protein i.e. Kazal type-1 protein from sand-fly Phlebotomus papatasi as its structure and interaction with thrombin is unclear. Initially, Dipetalin a kazal-follistasin domain protein was run through PSI-BLAST to retrieve related sequences. Using this set of sequence a phylogenetic tree was constructed, which identified a distantly related kazal type-1 protein. A three-dimensional structure was predicted for this protein and was aligned with Rhodniin for further evaluation. To have a comparative understanding of it's binding at the thrombin active site, the aligned kazal model-thrombin and rhodniin-thrombin complexes were subjected to molecular dynamics simulations. Dynamics analysis with reference to main chain RMSD, H-chain residue RMSF and total energy showed rhodniin-thrombin complex as a more stable system. Further, the MM/GBSA method was applied that calculated the binding free energy (ΔG binding ) for rhodniin and kazal model as -220.32kcal/Mol and -90.70kcal/Mol, respectively. Thus, it shows that kazal model has weaker bonding with thrombin, unlike rhodniin. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Edible oil structures at low and intermediate concentrations. I. Modeling, computer simulation, and predictions for X ray scattering

    NASA Astrophysics Data System (ADS)

    Pink, David A.; Quinn, Bonnie; Peyronel, Fernanda; Marangoni, Alejandro G.

    2013-12-01

    Triacylglycerols (TAGs) are biologically important molecules which form the recently discovered highly anisotropic crystalline nanoplatelets (CNPs) and, ultimately, the large-scale fat crystal networks in edible oils. Identifying the hierarchies of these networks and how they spontaneously self-assemble is important to understanding their functionality and oil binding capacity. We have modelled CNPs and studied how they aggregate under the assumption that all CNPs are present before aggregation begins and that their solubility in the liquid oil is very low. We represented CNPs as rigid planar arrays of spheres with diameter ≈50 nm and defined the interaction between spheres in terms of a Hamaker coefficient, A, and a binding energy, VB. We studied three cases: weak binding, |VB|/kBT ≪ 1, physically realistic binding, VB = Vd(R, Δ), so that |VB|/kBT ≈ 1, and Strong binding with |VB|/kBT ≫ 1. We divided the concentration of CNPs, ϕ, with 0≤ϕ= 10-2 (solid fat content) ≤1, into two regions: Low and intermediate concentrations with 0<ϕ<0.25 and high concentrations with 0.25 < ϕ and considered only the first case. We employed Monte Carlo computer simulation to model CNP aggregation and analyzed them using static structure functions, S(q). We found that strong binding cases formed aggregates with fractal dimension, D, 1.7≤D ≤1.8, in accord with diffusion limited cluster-cluster aggregation (DLCA) and weak binding formed aggregates with D =3, indicating a random distribution of CNPs. We found that models with physically realistic intermediate binding energies formed linear multilayer stacks of CNPs (TAGwoods) with fractal dimension D =1 for ϕ =0.06,0.13, and 0.22. TAGwood lengths were greater at lower ϕ than at higher ϕ, where some of the aggregates appeared as thick CNPs. We increased the spatial scale and modelled the TAGwoods as rigid linear arrays of spheres of diameter ≈500 nm, interacting via the attractive van der Waals interaction. We found that TAGwoods aggregated via DLCA into clusters with fractal dimension D =1.7-1.8. As the simulations were run further, TAGwoods relaxed their positions in order to maximize the attractive interaction making the process look like reaction limited cluster-cluster aggregation with the fractal dimension increasing to D =2.0-2.1. For higher concentrations of CNPs, many TAGwood clusters were formed and, because of their weak interactions, were distributed randomly with D =3.0. We summarize the hierarchy of structures and make predictions for X-ray scattering.

  19. Solution of the Dirac Coulomb equation for helium-like ions in the Poet-Temkin model

    NASA Astrophysics Data System (ADS)

    Tang, Li-Yan; Tang, Yong-Bo; Shi, Ting-Yun; Mitroy, J.

    2013-10-01

    The Dirac-Coulomb equation for the helium atom is studied under the restrictions of the Poet-Temkin model which replaces the 1/r12 interaction by the simplified 1/r> form. The effective reduction in the dimensionality made it possible to obtain binding energies for the singlet and triplet states in this model problem with a relative precision from 10-8 to 10-10. The energies for the singlet state were consistent with a previous configuration interaction calculation [H. Tatewaki and Y. Watanabe, Chem. Phys. 389, 58 (2011)]. Manifestations of Brown-Ravenhall disease were noted at higher values of nuclear charge and ultimately limited the accuracy of the Poet-Temkin model energy. The energies from a no-pair configuration interaction (CI) calculation (the negative-energy states for the appropriate hydrogen-like ion were excluded from the CI expansion) were found to be different from the unrestricted B-spline calculation.

  20. Solution of the Dirac Coulomb equation for helium-like ions in the Poet-Temkin model.

    PubMed

    Tang, Li-Yan; Tang, Yong-Bo; Shi, Ting-Yun; Mitroy, J

    2013-10-07

    The Dirac-Coulomb equation for the helium atom is studied under the restrictions of the Poet-Temkin model which replaces the 1/r12 interaction by the simplified 1/r> form. The effective reduction in the dimensionality made it possible to obtain binding energies for the singlet and triplet states in this model problem with a relative precision from 10(-8) to 10(-10). The energies for the singlet state were consistent with a previous configuration interaction calculation [H. Tatewaki and Y. Watanabe, Chem. Phys. 389, 58 (2011)]. Manifestations of Brown-Ravenhall disease were noted at higher values of nuclear charge and ultimately limited the accuracy of the Poet-Temkin model energy. The energies from a no-pair configuration interaction (CI) calculation (the negative-energy states for the appropriate hydrogen-like ion were excluded from the CI expansion) were found to be different from the unrestricted B-spline calculation.

  1. Assigning crystallographic electron densities with free energy calculations—The case of the fluoride channel Fluc

    PubMed Central

    2018-01-01

    Approximately 90% of the structures in the Protein Data Bank (PDB) were obtained by X-ray crystallography or electron microscopy. Whereas the overall quality of structure is considered high, thanks to a wide range of tools for structure validation, uncertainties may arise from density maps of small molecules, such as organic ligands, ions or water, which are non-covalently bound to the biomolecules. Even with some experience and chemical intuition, the assignment of such disconnected electron densities is often far from obvious. In this study, we suggest the use of molecular dynamics (MD) simulations and free energy calculations, which are well-established computational methods, to aid in the assignment of ambiguous disconnected electron densities. Specifically, estimates of (i) relative binding affinities, for instance between an ion and water, (ii) absolute binding free energies, i.e., free energies for transferring a solute from bulk solvent to a binding site, and (iii) stability assessments during equilibrium simulations may reveal the most plausible assignments. We illustrate this strategy using the crystal structure of the fluoride specific channel (Fluc), which contains five disconnected electron densities previously interpreted as four fluoride and one sodium ion. The simulations support the assignment of the sodium ion. In contrast, calculations of relative and absolute binding free energies as well as stability assessments during free MD simulations suggest that four of the densities represent water molecules instead of fluoride. The assignment of water is compatible with the loss of these densities in the non-conductive F82I/F85I mutant of Fluc. We critically discuss the role of the ion force fields for the calculations presented here. Overall, these findings indicate that MD simulations and free energy calculations are helpful tools for modeling water and ions into crystallographic density maps. PMID:29771936

  2. Prediction of Binding Energy of Keap1 Interaction Motifs in the Nrf2 Antioxidant Pathway and Design of Potential High-Affinity Peptides.

    PubMed

    Karttunen, Mikko; Choy, Wing-Yiu; Cino, Elio A

    2018-06-07

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor and principal regulator of the antioxidant pathway. The Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) binds to motifs in the N-terminal region of Nrf2, promoting its degradation. There is interest in developing ligands that can compete with Nrf2 for binding to Kelch, thereby activating its transcriptional activities and increasing antioxidant levels. Using experimental Δ G bind values of Kelch-binding motifs determined previously, a revised hydrophobicity-based model was developed for estimating Δ G bind from amino acid sequence and applied to rank potential uncharacterized Kelch-binding motifs identified from interaction databases and BLAST searches. Model predictions and molecular dynamics (MD) simulations suggested that full-length MAD2A binds Kelch more favorably than a high-affinity 20-mer Nrf2 E78P peptide, but that the motif in isolation is not a particularly strong binder. Endeavoring to develop shorter peptides for activating Nrf2, new designs were created based on the E78P peptide, some of which showed considerable propensity to form binding-competent structures in MD, and were predicted to interact with Kelch more favorably than the E78P peptide. The peptides could be promising new ligands for enhancing the oxidative stress response.

  3. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    NASA Astrophysics Data System (ADS)

    Veiga, R. G. A.; Perez, M.; Becquart, C. S.; Domain, C.

    2013-01-01

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  4. Dynamic allostery of protein alpha helical coiled-coils

    PubMed Central

    Hawkins, Rhoda J; McLeish, Tom C.B

    2005-01-01

    Alpha helical coiled-coils appear in many important allosteric proteins such as the dynein molecular motor and bacteria chemotaxis transmembrane receptors. As a mechanism for transmitting the information of ligand binding to a distant site across an allosteric protein, an alternative to conformational change in the mean static structure is an induced change in the pattern of the internal dynamics of the protein. We explore how ligand binding may change the intramolecular vibrational free energy of a coiled-coil, using parameterized coarse-grained models, treating the case of dynein in detail. The models predict that coupling of slide, bend and twist modes of the coiled-coil transmits an allosteric free energy of ∼2kBT, consistent with experimental results. A further prediction is a quantitative increase in the effective stiffness of the coiled-coil without any change in inherent flexibility of the individual helices. The model provides a possible and experimentally testable mechanism for transmission of information through the alpha helical coiled-coil of dynein. PMID:16849225

  5. Effect of metal in M 3(btc) 2 and M 2(dobdc) MOFs for O 2/N 2 separations: A combined density functional theory and experimental study

    DOE PAGES

    Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.; ...

    2015-03-02

    Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M 2(dobdc) and M 3(btc) 2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements.more » A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.« less

  6. Binding free energies for nicotine analogs inhibiting cytochrome P450 2A6 by a combined use of molecular dynamics simulations and QM/MM-PBSA calculations.

    PubMed

    Lu, Haiting; Huang, Xiaoqin; AbdulHameed, Mohamed Diwan M; Zhan, Chang-Guo

    2014-04-01

    Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations have been performed to explore the dynamic behaviors of cytochrome P450 2A6 (CYP2A6) binding with nicotine analogs (that are typical inhibitors) and to calculate their binding free energies in combination with Poisson-Boltzmann surface area (PBSA) calculations. The combined MD simulations and QM/MM-PBSA calculations reveal that the most important structural parameters affecting the CYP2A6-inhibitor binding affinity are two crucial internuclear distances, that is, the distance between the heme iron atom of CYP2A6 and the coordinating atom of the inhibitor, and the hydrogen-bonding distance between the N297 side chain of CYP2A6 and the pyridine nitrogen of the inhibitor. The combined MD simulations and QM/MM-PBSA calculations have led to dynamic CYP2A6-inhibitor binding structures that are consistent with the observed dynamic behaviors and structural features of CYP2A6-inhibitor binding, and led to the binding free energies that are in good agreement with the experimentally-derived binding free energies. The agreement between the calculated binding free energies and the experimentally-derived binding free energies suggests that the combined MD and QM/MM-PBSA approach may be used as a valuable tool to accurately predict the CYP2A6-inhibitor binding affinities in future computational design of new, potent and selective CYP2A6 inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A thermodynamic approach to link self-organization, preferential flow and rainfall-runoff behaviour

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Ehret, U.; Blume, T.; Kleidon, A.; Scherer, U.; Westhoff, M.

    2013-11-01

    This study investigates whether a thermodynamically optimal hillslope structure can, if existent, serve as a first guess for uncalibrated predictions of rainfall-runoff. To this end we propose a thermodynamic framework to link rainfall-runoff processes and dynamics of potential energy, kinetic energy and capillary binding energy in catchments and hillslopes. The starting point is that hydraulic equilibrium in soil corresponds to local thermodynamic equilibrium (LTE), characterized by a local maximum entropy/minimum of free energy of soil water. Deviations from LTE occur either due to evaporative losses, which increase absolute values of negative capillary binding energy of soil water and reduce its potential energy, or due to infiltration of rainfall, which increases potential energy of soil water and reduces the strength of capillary binding energy. The amplitude and relaxation time of these deviations depend on climate, vegetation, soil hydraulic functions, topography and density of macropores. Based on this framework we analysed the free energy balance of hillslopes within numerical experiments that perturbed model structures with respect to the surface density of macropores. These model structures have been previously shown to allow successful long-term simulations of the water balances of the Weiherbach and the Malalcahuello catchments, which are located in distinctly different pedological and climatic settings. Our findings offer a new perspective on different functions of preferential flow paths depending on the pedological setting. Free energy dynamics of soil water in the cohesive soils of the Weiherbach is dominated by dynamics of capillary binding energy. Macropores act as dissipative wetting structures by enlarging water flows against steep gradients in soil water potential after long dry spells. This implies accelerated depletion of these gradients and faster relaxation back towards LTE. We found two local optima in macropore density that maximize reduction rates of free energy of soil water during rainfall-driven conditions. These two optima exist because reduction rates of free energy are, in this case, a second-order polynomial of the wetting rate, which implicitly depends on macroporosity. An uncalibrated long-term simulation of the water balance of the Weiherbach catchment based on the first optimum macroporosity performed almost as well as the best fit when macroporosity was calibrated to match rainfall-runoff. In the Malalcahuello catchment we did not find an apparent optimum density of macropores, because free energy dynamics of soil water during rainfall-driven conditions is dominated by increases of potential energy. Macropores act as dissipative drainage structures by enhancing export of potential energy. No optimum macropore density exists in this case because potential energy change rates scale linearly with the wetting rate. We found, however, a distinguished macroporosity that assures steady-state conditions of the potential energy balance of the soil, in the sense that average storage of potential energy is compensated by average potential energy export. This distinguished macroporosity was close to the value that yielded the best fit of rainfall-runoff behaviour during a calibration exercise and allowed a robust estimate of the annual runoff coefficient. Our findings are promising for predictions in ungauged catchments (PUB) as the optimal/distinguished model structures can serve as a first guess for uncalibrated predictions of rainfall-runoff. They also offer an alternative for classifying catchments according to their similarity of the free energy balance components.

  8. Reexamine structures and relative stability of medium-sized silicon clusters: Low-lying endohedral fullerene-like clusters Si 30-Si 38

    NASA Astrophysics Data System (ADS)

    Yoo, Soohaeng; Shao, Nan; Zeng, X. C.

    2009-10-01

    We report improved results of lowest-lying silicon clusters Si 30-Si 38. A large population of low-energy clusters are collected from previous searches by several research groups and the binding energies of these clusters are computed using density-functional theory (DFT) methods. Best candidates (isomers with high binding energies) are identified from the screening calculations. Additional constrained search is then performed for the best candidates using the basin-hopping method combined with DFT geometry optimization. The obtained low-lying clusters are classified according to binding energies computed using either the Perdew-Burke-Ernzerhof (PBE) functional or the Becke exchange and Lee-Yang-Parr correlation (BLYP) functional. We propose to rank low-lying clusters according to the mean PBE/BLYP binding energies in view that the PBE functional tends to give greater binding energies for more compact clusters whereas the BLYP functional tends to give greater binding energies for less compact clusters or clusters composed of small-sized magic-number clusters. Except for Si 30, the new search confirms again that medium-size silicon clusters Si 31-Si 38 constructed with proper fullerene cage motifs are most promising to be the lowest-energy structures.

  9. Novel thrombopoietin mimetic peptides bind c-Mpl receptor: Synthesis, biological evaluation and molecular modeling.

    PubMed

    Liu, Yaquan; Tian, Fang; Zhi, Dejuan; Wang, Haiqing; Zhao, Chunyan; Li, Hongyu

    2017-02-01

    Thrombopoietin (TPO) acts in promoting the proliferation of hematopoietic stem cells and by initiating specific maturation events in megakaryocytes. Now, TPO-mimetic peptides with amino acid sequences unrelated to TPO are of considerable pharmaceutical interest. In the present paper, four new TPO mimetic peptides that bind and activate c-Mpl receptor have been identified, synthesized and tested by Dual-Luciferase reporter gene assay for biological activities. The molecular modeling research was also approached to understand key molecular mechanisms and structural features responsible for peptide binding with c-Mpl receptor. The results presented that three of four mimetic peptides showed significant activities. In addition, the molecular modeling approaches proved hydrophobic interactions were the driven positive forces for binding behavior between peptides and c-Mpl receptor. TPO peptide residues in P7, P13 and P7' positions were identified by the analysis of hydrogen bonds and energy decompositions as the key ones for benefiting better biological activities. Our data suggested the synthesized peptides have considerable potential for the future development of stable and highly active TPO mimetic peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Dimerization of a flocculent protein from Moringa oleifera: experimental evidence and in silico interpretation.

    PubMed

    Pavankumar, Asalapuram R; Kayathri, Rajarathinam; Murugan, Natarajan A; Zhang, Qiong; Srivastava, Vaibhav; Okoli, Chuka; Bulone, Vincent; Rajarao, Gunaratna K; Ågren, Hans

    2014-01-01

    Many proteins exist in dimeric and other oligomeric forms to gain stability and functional advantages. In this study, the dimerization property of a coagulant protein (MO2.1) from Moringa oleifera seeds was addressed through laboratory experiments, protein-protein docking studies and binding free energy calculations. The structure of MO2.1 was predicted by homology modelling, while binding free energy and residues-distance profile analyses provided insight into the energetics and structural factors for dimer formation. Since the coagulation activities of the monomeric and dimeric forms of MO2.1 were comparable, it was concluded that oligomerization does not affect the biological activity of the protein.

  11. A theoretical investigation on bio-transformation of third generation anti-cancer drug Heptaplatin and its interaction with DNA purine bases

    NASA Astrophysics Data System (ADS)

    Reddy B., Venkata P.; Mukherjee, Subhajit; Mitra, Ishani; Moi, Sankar Ch.

    2017-12-01

    Heptaplatin is an approved platinum based cytostatic drug for the treatment of gastric cancers. The hydrolytic bio-transformation of Heptaplatin and the platination processes of guanine (G) and adenine (A) with resulting mono and di-aquated species of Heptaplatin have been investigated using density functional theory (DFT) combined with the conductor like dielectric continuum model (CPCM) approach, to spotlight the drug activation energy profiles and their binding mechanisms. The stationary points on the potential energy surfaces were fully optimized and characterized. The mono-functional binding of Heptaplatin, guanine as target over adenine due to electronic factors and more favorable hydrogen-bonds pattern.

  12. Decrypting the structural, dynamic, and energetic basis of a monomeric kinesin interacting with a tubulin dimer in three ATPase states by all-atom molecular dynamics simulation.

    PubMed

    Chakraborty, Srirupa; Zheng, Wenjun

    2015-01-27

    We have employed molecular dynamics (MD) simulation to investigate, with atomic details, the structural dynamics and energetics of three major ATPase states (ADP, APO, and ATP state) of a human kinesin-1 monomer in complex with a tubulin dimer. Starting from a recently solved crystal structure of ATP-like kinesin-tubulin complex by the Knossow lab, we have used flexible fitting of cryo-electron-microscopy maps to construct new structural models of the kinesin-tubulin complex in APO and ATP state, and then conducted extensive MD simulations (total 400 ns for each state), followed by flexibility analysis, principal component analysis, hydrogen bond analysis, and binding free energy analysis. Our modeling and simulation have revealed key nucleotide-dependent changes in the structure and flexibility of the nucleotide-binding pocket (featuring a highly flexible and open switch I in APO state) and the tubulin-binding site, and allosterically coupled motions driving the APO to ATP transition. In addition, our binding free energy analysis has identified a set of key residues involved in kinesin-tubulin binding. On the basis of our simulation, we have attempted to address several outstanding issues in kinesin study, including the possible roles of β-sheet twist and neck linker docking in regulating nucleotide release and binding, the structural mechanism of ADP release, and possible extension and shortening of α4 helix during the ATPase cycle. This study has provided a comprehensive structural and dynamic picture of kinesin's major ATPase states, and offered promising targets for future mutational and functional studies to investigate the molecular mechanism of kinesin motors.

  13. Interactions of cephalexin with bovine serum albumin: displacement reaction and molecular docking.

    PubMed

    Hamishehkar, Hamed; Hosseini, Soheila; Naseri, Abdolhossein; Safarnejad, Azam; Rasoulzadeh, Farzaneh

    2016-01-01

    Introduction: The drug-plasma protein interaction is a fundamental issue in guessing and checking the serious drug side effects related with other drugs. The purpose of this research was to study the interaction of cephalexin with bovine serum albumin (BSA) and displacement reaction using site probes. Methods: The interaction mechanism concerning cephalexin (CPL) with BSA was investigated using various spectroscopic methods and molecular modeling method. The binding sites number, n, apparent binding constant, K, and thermodynamic parameters, ΔG 0 , ΔH 0 , and ΔS 0 were considered at different temperatures. To evaluate the experimental results, molecular docking modeling was calculated. Results: The distance, r=1.156 nm between BSA and CPL were found in accordance with the Forster theory of non-radiation energy transfer (FRET) indicating energy transfer occurs between BSA and CPL. According to the binding parameters and ΔG 0 = negative values and ΔS 0 = 28.275 j mol -1 K -1 , a static quenching process is effective in the CPL-BSA interaction spontaneously. ΔG 0 for the CPL-BSA complex obtained from the docking simulation is -28.99 kj mol -1 , which is close to experimental ΔG of binding, -21.349 kj mol -1 that indicates a good agreement between the results of docking methods and experimental data. Conclusion: The outcomes of spectroscopic methods revealed that the conformation of BSA changed during drug-BSA interaction. The results of FRET propose that CPL quenches the fluorescence of BSA by static quenching and FRET. The displacement study showed that phenylbutazon and ketoprofen displaced CPL, indicating that its binding site on albumin is site I and Gentamicin cannot be displaced from the binding site of CPL. All results of molecular docking method agreed with the results of experimental data.

  14. Low-temperature binding of NO adsorbed on MIL-100(Al)-A case study for the application of high resolution pulsed EPR methods and DFT calculations.

    PubMed

    Mendt, Matthias; Barth, Benjamin; Hartmann, Martin; Pöppl, Andreas

    2017-12-14

    The low-temperature binding of nitric oxide (NO) in the metal-organic framework MIL-100(Al) has been investigated by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Three NO adsorption species have been identified. Among them, one species has been verified experimentally to bind directly to an 27 Al atom and all its relevant 14 N and 27 Al hyperfine interaction parameters have been determined spectroscopically. Those parameters fit well to the calculated ones of a theoretical cluster model, which was derived by density functional theory (DFT) in the present work and describes the low temperature binding of NO to the regular coordinatively unsaturated Al 3+ site of the MIL-100(Al) structure. As a result, the Lewis acidity of that site has been characterized using the NO molecule as an electron paramagnetic resonance active probe. The DFT derived wave function analysis revealed a bent end-on coordination of the NO molecule adsorbed at that site which is almost purely ionic and has a weak binding energy. The calculated flat potential energy surface of this species indicates the ability of the NO molecule to freely rotate at intermediate temperatures while it is still binding to the Al 3+ site. For the other two NO adsorption species, no structural models could be derived, but one of them is indicated to be adsorbed at the organic part of the metal-organic framework. Hyperfine interactions with protons, weakly coupled to the observed NO adsorption species, have also been measured by pulsed electron paramagnetic resonance and found to be consistent with their attribution to protons of the MIL-100(Al) benzenetricarboxylate ligand molecules.

  15. Insights from molecular modeling and dynamics simulation of pathogen resistance (R) protein from brinjal.

    PubMed

    Shrivastava, Dipty; Nain, Vikrant; Sahi, Shakti; Verma, Anju; Sharma, Priyanka; Sharma, Prakash Chand; Kumar, Polumetla Ananda

    2011-01-22

    Resistance (R) protein recognizes molecular signature of pathogen infection and activates downstream hypersensitive response signalling in plants. R protein works as a molecular switch for pathogen defence signalling and represent one of the largest plant gene family. Hence, understanding molecular structure and function of R proteins has been of paramount importance for plant biologists. The present study is aimed at predicting structure of R proteins signalling domains (CC-NBS) by creating a homology model, refining and optimising the model by molecular dynamics simulation and comparing ADP and ATP binding. Based on sequence similarity with proteins of known structures, CC-NBS domains were initially modelled using CED- 4 (cell death abnormality protein) and APAF-1 (apoptotic protease activating factor) as multiple templates. The final CC-NBS structural model was built and optimized by molecular dynamic simulation for 5 nanoseconds (ns). Docking of ADP and ATP at active site shows that both ligand bind specifically with same residues and with minor difference (1 Kcal/mol) in binding energy. Sharing of binding site by ADP and ATP and low difference in their binding site makes CC-NBS suitable for working as molecular switch. Furthermore, structural superimposition elucidate that CC-NBS and CARD (caspase recruitment domains) domain of CED-4 have low RMSD value of 0.9 A° Availability of 3D structural model for both CC and NBS domains will . help in getting deeper insight in these pathogen defence genes.

  16. Electrostatic correlations at the Stern layer: Physics or chemistry?

    NASA Astrophysics Data System (ADS)

    Travesset, A.; Vangaveti, S.

    2009-11-01

    We introduce a minimal free energy describing the interaction of charged groups and counterions including both classical electrostatic and specific interactions. The predictions of the model are compared against the standard model for describing ions next to charged interfaces, consisting of Poisson-Boltzmann theory with additional constants describing ion binding, which are specific to the counterion and the interfacial charge ("chemical binding"). It is shown that the "chemical" model can be appropriately described by an underlying "physical" model over several decades in concentration, but the extracted binding constants are not uniquely defined, as they differ depending on the particular observable quantity being studied. It is also shown that electrostatic correlations for divalent (or higher valence) ions enhance the surface charge by increasing deprotonation, an effect not properly accounted within chemical models. The charged phospholipid phosphatidylserine is analyzed as a concrete example with good agreement with experimental results. We conclude with a detailed discussion on the limitations of chemical or physical models for describing the rich phenomenology of charged interfaces in aqueous media and its relevance to different systems with a particular emphasis on phospholipids.

  17. Towards better modelling of drug-loading in solid lipid nanoparticles: Molecular dynamics, docking experiments and Gaussian Processes machine learning.

    PubMed

    Hathout, Rania M; Metwally, Abdelkader A

    2016-11-01

    This study represents one of the series applying computer-oriented processes and tools in digging for information, analysing data and finally extracting correlations and meaningful outcomes. In this context, binding energies could be used to model and predict the mass of loaded drugs in solid lipid nanoparticles after molecular docking of literature-gathered drugs using MOE® software package on molecularly simulated tripalmitin matrices using GROMACS®. Consequently, Gaussian processes as a supervised machine learning artificial intelligence technique were used to correlate the drugs' descriptors (e.g. M.W., xLogP, TPSA and fragment complexity) with their molecular docking binding energies. Lower percentage bias was obtained compared to previous studies which allows the accurate estimation of the loaded mass of any drug in the investigated solid lipid nanoparticles by just projecting its chemical structure to its main features (descriptors). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Visualizing the orientational dependence of an intermolecular potential

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Rashid, Mohammad A.; Jarvis, Samuel P.; Dunn, Janette L.; Rahe, Philipp; Moriarty, Philip

    2016-02-01

    Scanning probe microscopy can now be used to map the properties of single molecules with intramolecular precision by functionalization of the apex of the scanning probe tip with a single atom or molecule. Here we report on the mapping of the three-dimensional potential between fullerene (C60) molecules in different relative orientations, with sub-Angstrom resolution, using dynamic force microscopy (DFM). We introduce a visualization method which is capable of directly imaging the variation in equilibrium binding energy of different molecular orientations. We model the interaction using both a simple approach based around analytical Lennard-Jones potentials, and with dispersion-force-corrected density functional theory (DFT), and show that the positional variation in the binding energy between the molecules is dominated by the onset of repulsive interactions. Our modelling suggests that variations in the dispersion interaction are masked by repulsive interactions even at displacements significantly larger than the equilibrium intermolecular separation.

  19. Modeling chain folding in protein-constrained circular DNA.

    PubMed Central

    Martino, J A; Olson, W K

    1998-01-01

    An efficient method for sampling equilibrium configurations of DNA chains binding one or more DNA-bending proteins is presented. The technique is applied to obtain the tertiary structures of minimal bending energy for a selection of dinucleosomal minichromosomes that differ in degree of protein-DNA interaction, protein spacing along the DNA chain contour, and ring size. The protein-bound portions of the DNA chains are represented by tight, left-handed supercoils of fixed geometry. The protein-free regions are modeled individually as elastic rods. For each random spatial arrangement of the two nucleosomes assumed during a stochastic search for the global minimum, the paths of the flexible connecting DNA segments are determined through a numerical solution of the equations of equilibrium for torsionally relaxed elastic rods. The minimal energy forms reveal how protein binding and spacing and plasmid size differentially affect folding and offer new insights into experimental minichromosome systems. PMID:9591675

  20. Hierarchical sampling for metastable conformers determines biomolecular recognition: the case of malectin and diglucosylated N-glycan interactions.

    PubMed

    Mamidi, Ashalatha Sreshty; Surolia, Avadhesha

    2015-01-01

    Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin's exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate-aromatic interactions including CH-π and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to β-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.

  1. Nanobiological studies on drug design using molecular mechanic method.

    PubMed

    Ghaheh, Hooria Seyedhosseini; Mousavi, Maryam; Araghi, Mahmood; Rasoolzadeh, Reza; Hosseini, Zahra

    2015-01-01

    Influenza H1N1 is very important worldwide and point mutations that occur in the virus gene are a threat for the World Health Organization (WHO) and druggists, since they could make this virus resistant to the existing antibiotics. Influenza epidemics cause severe respiratory illness in 30 to 50 million people and kill 250,000 to 500,000 people worldwide every year. Nowadays, drug design is not done through trial and error because of its cost and waste of time; therefore bioinformatics studies is essential for designing drugs. This paper, infolds a study on binding site of Neuraminidase (NA) enzyme, (that is very important in drug design) in 310K temperature and different dielectrics, for the best drug design. Information of NA enzyme was extracted from Protein Data Bank (PDB) and National Center for Biotechnology Information (NCBI) websites. The new sequences of N1 were downloaded from the NCBI influenza virus sequence database. Drug binding sites were assimilated and homologized modeling using Argus lab 4.0, HyperChem 6.0 and Chem. D3 softwares. Their stability was assessed in different dielectrics and temperatures. Measurements of potential energy (Kcal/mol) of binding sites of NA in different dielectrics and 310K temperature revealed that at time step size = 0 pSec drug binding sites have maximum energy level and at time step size = 100 pSec have maximum stability and minimum energy. Drug binding sites are more dependent on dielectric constants rather than on temperature and the optimum dielectric constant is 39/78.

  2. Efficient computation of optimal oligo-RNA binding.

    PubMed

    Hodas, Nathan O; Aalberts, Daniel P

    2004-01-01

    We present an algorithm that calculates the optimal binding conformation and free energy of two RNA molecules, one or both oligomeric. This algorithm has applications to modeling DNA microarrays, RNA splice-site recognitions and other antisense problems. Although other recent algorithms perform the same calculation in time proportional to the sum of the lengths cubed, O((N1 + N2)3), our oligomer binding algorithm, called bindigo, scales as the product of the sequence lengths, O(N1*N2). The algorithm performs well in practice with the aid of a heuristic for large asymmetric loops. To demonstrate its speed and utility, we use bindigo to investigate the binding proclivities of U1 snRNA to mRNA donor splice sites.

  3. Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions: I. Construction of an affinity binding model.

    PubMed

    Zhang, Lin; Sun, Yan

    2014-04-29

    Platelet adhesion on a collagen surface through integrin α2β1 has been proven to be significant for the formation of arterial thrombus. However, the molecular determinants mediating the integrin-collagen complex remain unclear. In the present study, the dynamics of integrin-collagen binding and molecular interactions were investigated using molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction is identified as the major driving force for the formation of the integrin-collagen complex. On the basis of the MD simulation and MM-PBSA results, an affinity binding model (ABM) of integrin for collagen is constructed; it is composed of five residues, including Y157, N154, S155, R288, and L220. The ABM has been proven to capture the major binding motif contributing 84.8% of the total binding free energy. On the basis of the ABM, we expect to establish a biomimetic design strategy of platelet adhesion inhibitors, which would be beneficial for the development of potent peptide-based drugs for thrombotic diseases.

  4. Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents.

    PubMed

    Borodin, Oleg; Smith, Grant D

    2006-03-30

    Classical many-body polarizable force fields were developed for n-alkanes, perflouroalkanes, polyethers, ketones, and linear and cyclic carbonates on the basis of quantum chemistry dimer energies of model compounds and empirical thermodynamic liquid-state properties. The dependence of the electron correlation contribution to the dimer binding energy on basis-set size and level of theory was investigated as a function of molecular separation for a number of alkane, ether, and ketone dimers. Molecular dynamics (MD) simulations of the force fields accurately predicted structural, dynamic, and transport properties of liquids and unentangled polymer melts. On average, gas-phase dimer binding energies predicted with the force field were between those from MP2/aug-cc-pvDz and MP2/aug-cc-pvTz quantum chemistry calculations.

  5. Chirality dependent interaction of ammonia with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2018-04-01

    For the specific structure and extraordinary properties, carbon nanotubes (CNTs) have many applications in diversified fields. The interaction of CNTs with ammonia is a very interesting matter to study as it is related to the application of CNTs as ammonia sensor. Here the interaction of single walled zigzag, armchair and chiral carbon nanotubes is studied in respect of the change in energies before and after binding with ammonia by molecular dynamics simulation. Their deformation after simulation is modeled. The change of thermal conductivity of the CNTs is also found by simulation. The potential energy before and after absorption of ammonia gives useful information of the system. Thermal conductivities of the ammonia bound CNTs are changed considerably. It is observed that the potential energy and thermal conductivity both are changing for the interaction with ammonia and hence they are sensitive to ammonia binding.

  6. Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy.

    PubMed

    Lawrenz, Morgan; Wereszczynski, Jeff; Amaro, Rommie; Walker, Ross; Roitberg, Adrian; McCammon, J Andrew

    2010-08-15

    The highly pathogenic influenza strains H5N1 and H1N1 are currently treated with inhibitors of the viral surface protein neuraminidase (N1). Crystal structures of N1 indicate a conserved, high affinity calcium binding site located near the active site. The specific role of this calcium in the enzyme mechanism is unknown, though it has been shown to be important for enzymatic activity and thermostability. We report molecular dynamics (MD) simulations of calcium-bound and calcium-free N1 complexes with the inhibitor oseltamivir (marketed as the drug Tamiflu), independently using both the AMBER FF99SB and GROMOS96 force fields, to give structural insight into calcium stabilization of key framework residues. Y347, which demonstrates similar sampling patterns in the simulations of both force fields, is implicated as an important N1 residue that can "clamp" the ligand into a favorable binding pose. Free energy perturbation and thermodynamic integration calculations, using two different force fields, support the importance of Y347 and indicate a +3 to +5 kcal/mol change in the binding free energy of oseltamivir in the absence of calcium. With the important role of structure-based drug design for neuraminidase inhibitors and the growing literature on emerging strains and subtypes, inclusion of this calcium for active site stability is particularly crucial for computational efforts such as homology modeling, virtual screening, and free energy methods. 2010 Wiley-Liss, Inc.

  7. A Comprehensive Docking and MM/GBSA Rescoring Study of Ligand Recognition upon Binding Antithrombin

    DOE PAGES

    Zhang, Xiaohua; Perez-Sanchez, Horacio; C. Lightstone, Felice

    2017-04-06

    A high-throughput virtual screening pipeline has been extended from single energetically minimized structure Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring to ensemble-average MM/GBSA rescoring. The correlation coefficient (R2) of calculated and experimental binding free energies for a series of antithrombin ligands has been improved from 0.36 to 0.69 when switching from the single-structure MM/GBSA rescoring to ensemble-average one. The electrostatic interactions in both solute and solvent are identified to play an important role in determining the binding free energy after the decomposition of the calculated binding free energy. Furthermore, the increasing negative charge of the compounds provides a more favorablemore » electrostatic energy change but creates a higher penalty for the solvation free energy. Such a penalty is compensated by the electrostatic energy change, which results in a better binding affinity. A highly hydrophobic ligand is determined by the docking program to be a non-specific binder. Finally, these results have demonstrated that it is very important to keep a few top poses for rescoring, if the binding is non-specific or the binding mode is not well determined by the docking calculation.« less

  8. A Comprehensive Docking and MM/GBSA Rescoring Study of Ligand Recognition upon Binding Antithrombin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaohua; Perez-Sanchez, Horacio; C. Lightstone, Felice

    A high-throughput virtual screening pipeline has been extended from single energetically minimized structure Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring to ensemble-average MM/GBSA rescoring. The correlation coefficient (R2) of calculated and experimental binding free energies for a series of antithrombin ligands has been improved from 0.36 to 0.69 when switching from the single-structure MM/GBSA rescoring to ensemble-average one. The electrostatic interactions in both solute and solvent are identified to play an important role in determining the binding free energy after the decomposition of the calculated binding free energy. Furthermore, the increasing negative charge of the compounds provides a more favorablemore » electrostatic energy change but creates a higher penalty for the solvation free energy. Such a penalty is compensated by the electrostatic energy change, which results in a better binding affinity. A highly hydrophobic ligand is determined by the docking program to be a non-specific binder. Finally, these results have demonstrated that it is very important to keep a few top poses for rescoring, if the binding is non-specific or the binding mode is not well determined by the docking calculation.« less

  9. Tight-Binding Description of Impurity States in Semiconductors

    ERIC Educational Resources Information Center

    Dominguez-Adame, F.

    2012-01-01

    Introductory textbooks in solid state physics usually present the hydrogenic impurity model to calculate the energy of carriers bound to donors or acceptors in semiconductors. This model treats the pure semiconductor as a homogeneous medium and the impurity is represented as a fixed point charge. This approach is only valid for shallow impurities…

  10. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    NASA Astrophysics Data System (ADS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  11. Absolute binding free energies between T4 lysozyme and 141 small molecules: calculations based on multiple rigid receptor configurations

    PubMed Central

    Xie, Bing; Nguyen, Trung Hai; Minh, David D. L.

    2017-01-01

    We demonstrate the feasibility of estimating protein-ligand binding free energies using multiple rigid receptor configurations. Based on T4 lysozyme snapshots extracted from six alchemical binding free energy calculations with a flexible receptor, binding free energies were estimated for a total of 141 ligands. For 24 ligands, the calculations reproduced flexible-receptor estimates with a correlation coefficient of 0.90 and a root mean square error of 1.59 kcal/mol. The accuracy of calculations based on Poisson-Boltzmann/Surface Area implicit solvent was comparable to previously reported free energy calculations. PMID:28430432

  12. The DINGO dataset: a comprehensive set of data for the SAMPL challenge

    NASA Astrophysics Data System (ADS)

    Newman, Janet; Dolezal, Olan; Fazio, Vincent; Caradoc-Davies, Tom; Peat, Thomas S.

    2012-05-01

    Part of the latest SAMPL challenge was to predict how a small fragment library of 500 commercially available compounds would bind to a protein target. In order to assess the modellers' work, a reasonably comprehensive set of data was collected using a number of techniques. These included surface plasmon resonance, isothermal titration calorimetry, protein crystallization and protein crystallography. Using these techniques we could determine the kinetics of fragment binding, the energy of binding, how this affects the ability of the target to crystallize, and when the fragment did bind, the pose or orientation of binding. Both the final data set and all of the raw images have been made available to the community for scrutiny and further work. This overview sets out to give the parameters of the experiments done and what might be done differently for future studies.

  13. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure whilemore » gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.« less

  14. A computational analysis of the binding mode of closantel as inhibitor of the Onchocerca volvulus chitinase: insights on macrofilaricidal drug design

    NASA Astrophysics Data System (ADS)

    Segura-Cabrera, Aldo; Bocanegra-García, Virgilio; Lizarazo-Ortega, Cristian; Guo, Xianwu; Correa-Basurto, José; Rodríguez-Pérez, Mario A.

    2011-12-01

    Onchocerciasis is a leading cause of blindness with at least 37 million people infected and more than 120 million people at risk of contracting the disease; most (99%) of this population, threatened by infection, live in Africa. The drug of choice for mass treatment is the microfilaricidal Mectizan® (ivermectin); it does not kill the adult stages of the parasite at the standard dose which is a single annual dose aimed at disease control. However, multiple treatments a year with ivermectin have effects on adult worms. The discovery of new therapeutic targets and drugs directed towards the killing of the adult parasites are thus urgently needed. The chitinase of filarial nematodes is a new drug target due to its essential function in the metabolism and molting of the parasite. Closantel is a potent and specific inhibitor of chitinase of Onchocerca volvulus (OvCHT1) and other filarial chitinases. However, the binding mode and specificity of closantel towards OvCHT1 remain unknown. In the absence of a crystallographic structure of OvCHT1, we developed a homology model of OvCHT1 using the currently available X-ray structures of human chitinases as templates. Energy minimization and molecular dynamics (MD) simulation of the model led to a high quality of 3D structure of OvCHIT1. A flexible docking study using closantel as the ligand on the binding site of OvCHIT1 and human chitinases was performed and demonstrated the differences in the closantel binding mode between OvCHIT1 and human chitinase. Furthermore, molecular dynamics simulations and free-energy calculation were employed to determine and compare the detailed binding mode of closantel with OvCHT1 and the structure of human chitinase. This comparative study allowed identification of structural features and properties responsible for differences in the computationally predicted closantel binding modes. The homology model and the closantel binding mode reported herein might help guide the rational development of novel drugs against the adult parasite of O. volvulus and such findings could be extrapolated to other filarial neglected diseases.

  15. Structure-based design of ligands for protein basic domains: Application to the HIV-1 Tat protein

    NASA Astrophysics Data System (ADS)

    Filikov, Anton V.; James, Thomas L.

    1998-05-01

    A methodology has been developed for designing ligands to bind a flexible basic protein domain where the structure of the domain is essentially known. It is based on an empirical binding free energy function developed for highly charged complexes and on Monte Carlo simulations in internal coordinates with both the ligand and the receptor being flexible. HIV-1 encodes a transactivating regulatory protein called Tat. Binding of the basic domain of Tat to TAR RNA is required for efficient transcription of the viral genome. The structure of a biologically active peptide containing the Tat basic RNA-binding domain is available from NMR studies. The goal of the current project is to design a ligand which will bind to that basic domain and potentially inhibit the TAR-Tat interaction. The basic domain contains six arginine and two lysine residues. Our strategy was to design a ligand for arginine first and then a superligand for the basic domain by joining arginine ligands with a linker. Several possible arginine ligands were obtained by searching the Available Chemicals Directory with DOCK 3.5 software. Phytic acid, which can potentially bind multiple arginines, was chosen as a building block for the superligand. Calorimetric binding studies of several compounds to methylguanidine and Arg-/Lys-containing peptides were performed. The data were used to develop an empirical binding free energy function for prediction of affinity of the ligands for the Tat basic domain. Modeling of the conformations of the complexes with both the superligand and the basic domain being flexible has been carried out via Biased Probability Monte Carlo (BPMC) simulations in internal coordinates (ICM 2.6 suite of programs). The simulations used parameters to ensure correct folding, i.e., consistent with the experimental NMR structure of a 25-residue Tat peptide, from a random starting conformation. Superligands for the basic domain were designed by joining together two molecules of phytic acid with peptidic and peptidomimetic linkers. The linkers were refined by varying the length and side chains of the linking residues, carrying out BPMC simulations, and evaluation of the binding free energy for the best energy conformation. The dissociation constant of the best ligand designed is estimated to be in the low- to mid-nanomolar range.

  16. Interaction between Pin1 and its natural product inhibitor epigallocatechin-3-gallate by spectroscopy and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Wang, Yu; He, Qing; Zhang, Qingyan; Du, Linfang

    2016-12-01

    The binding of epigallocatechin-3-gallate (EGCG) to wild type Pin1 in solution was studied by spectroscopic methods and molecular dynamics simulations in this research to explore the binding mode and inhibition mechanism. The binding constants and number of binding sites per Pin1 for EGCG were calculated through the Stern-Volmer equation. The values of binding free energy and thermodynamic parameters were calculated and indicated that hydrogen bonds, electrostatic interaction and Van der Waals interaction played the major role in the binding process. The alterations of Pin1 secondary structure in the presence of EGCG were confirmed by far-UV circular dichroism spectra. The binding model at atomic-level revealed that EGCG was bound to the Glu12, Lys13, Arg14, Met15 and Arg17 in WW domain. Furthermore, EGCG could also interact with Arg69, Asp112, Cys113 and Ser114 in PPIase domain.

  17. Allosteric Ligand Binding and Anisotropic Energy Flow in Albumin

    NASA Astrophysics Data System (ADS)

    Dyer, Brian

    2014-03-01

    Protein allostery usually involves propagation of local structural changes through the protein to a remote site. Coupling of structural changes at remote sites is thought to occur through anisotropic energy transport, but the nature of this process is poorly understood. We have studied the relationship between allosteric interactions of remote ligand binding sites of the protein and energy flow through the structure of bovine serum albumin (BSA). We applied ultrafast infrared spectroscopy to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic flow through the protein structure following input of thermal energy into the flexible ligand binding sites. We also observe anisotropic heat flow through the structure, without local heating of the rigid helix bundles that connect these sites. We will discuss the implications of this efficient energy transport mechanism with regard to the allosteric propagation of binding energy through the connecting helix structures.

  18. Funnel metadynamics as accurate binding free-energy method

    PubMed Central

    Limongelli, Vittorio; Bonomi, Massimiliano; Parrinello, Michele

    2013-01-01

    A detailed description of the events ruling ligand/protein interaction and an accurate estimation of the drug affinity to its target is of great help in speeding drug discovery strategies. We have developed a metadynamics-based approach, named funnel metadynamics, that allows the ligand to enhance the sampling of the target binding sites and its solvated states. This method leads to an efficient characterization of the binding free-energy surface and an accurate calculation of the absolute protein–ligand binding free energy. We illustrate our protocol in two systems, benzamidine/trypsin and SC-558/cyclooxygenase 2. In both cases, the X-ray conformation has been found as the lowest free-energy pose, and the computed protein–ligand binding free energy in good agreement with experiments. Furthermore, funnel metadynamics unveils important information about the binding process, such as the presence of alternative binding modes and the role of waters. The results achieved at an affordable computational cost make funnel metadynamics a valuable method for drug discovery and for dealing with a variety of problems in chemistry, physics, and material science. PMID:23553839

  19. Enzyme activation through the utilization of intrinsic dianion binding energy.

    PubMed

    Amyes, T L; Malabanan, M M; Zhai, X; Reyes, A C; Richard, J P

    2017-03-01

    We consider 'the proposition that the intrinsic binding energy that results from the noncovalent interaction of a specific substrate with the active site of the enzyme is considerably larger than is generally believed. An important part of this binding energy may be utilized to provide the driving force for catalysis, so that the observed binding energy represents only what is left over after this utilization' [Jencks,W.P. (1975) Adv. Enzymol. Relat. Areas. Mol. Biol. , , 219-410]. The large ~12 kcal/mol intrinsic substrate phosphodianion binding energy for reactions catalyzed by triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase and glycerol-3-phosphate dehydrogenase is divided into 4-6 kcal/mol binding energy that is expressed on the formation of the Michaelis complex in anchoring substrates to the respective enzyme, and 6-8 kcal/mol binding energy that is specifically expressed at the transition state in activating the respective enzymes for catalysis. A structure-based mechanism is described where the dianion binding energy drives a conformational change that activates these enzymes for catalysis. Phosphite dianion plays the active role of holding TIM in a high-energy closed active form, but acts as passive spectator in showing no effect on transition-state structure. The result of studies on mutant enzymes is presented, which support the proposal that the dianion-driven enzyme conformational change plays a role in enhancing the basicity of side chain of E167, the catalytic base, by clamping the base between a pair of hydrophobic side chains. The insight these results provide into the architecture of enzyme active sites and the development of strategies for the de novo design of protein catalysts is discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  20. Deep insights into the mode of ATP-binding mechanism in Zebrafish cyclin-dependent protein kinase-like 1 (zCDKL1): A molecular dynamics approach.

    PubMed

    Rout, Ajaya Kumar; Dehury, Budheswar; Maharana, Jitendra; Nayak, Chirasmita; Baisvar, Vishwamitra Singh; Behera, Bijay Kumar; Das, Basanta Kumar

    2018-05-01

    In eukaryotes, the serine/threonine kinases (STKs) belonging to cyclin-dependent protein kinases (CDKs) play significant role in control of cell division and curb transcription in response to several extra and intra-cellular signals indispensable for enzymatic activity. The zebrafish cyclin-dependent protein kinase-like 1 protein (zCDKL1) shares a high degree of sequence and structural similarity with mammalian orthologs and express in brain, ovary, testis, and low levels in other tissues. Regardless of its importance in the developmental process, the structure, function and mode of ATP recognition have not been investigated yet due to lack of experimental data. Henceforth, to gain atomistic insights in to the structural dynamics and mode of ATP binding, a series of computational techniques involving theoretical modeling, docking, molecular dynamics (MD) simulations and MM/PBSA binding free energies were employed. The modeled bi-lobed zCDKL1 shares a high degree of secondary structure topology with human orthologs where ATP prefers to lie in the central cavity of the bi-lobed catalytic domain enclosed by strong hydrogen bonding, electrostatic and hydrophobic contacts. Long range MD simulation portrayed that catalytic domain of zCDKL1 to be highly rigid in nature as compared to the complex (zCDKL1-ATP) form. Comparative analysis with its orthologs revealed that conserved amino acids i.e., Ile10, Gly11, Glu12, Val18, Arg31, Phe80, Glu 130, Cys143 and Asp144 were crucial for ATP binding mechanism, which needs further investigation for legitimacy. MM/PBSA method revealed that van der Waals, electrostatic and polar solvation energy mostly contributes towards negative free energy. The implications of ATP binding mechanism inferred through these structural bioinformatics approaches will help in understanding the catalytic mechanisms of important STKs in eukaryotic system. Copyright © 2018. Published by Elsevier Inc.

  1. Biophysical Fitness Landscapes for Transcription Factor Binding Sites

    PubMed Central

    Haldane, Allan; Manhart, Michael; Morozov, Alexandre V.

    2014-01-01

    Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions. PMID:25010228

  2. Implications of Climate Volatility for Agricultural Commodity Markets in the Presence of Biofuel Mandates

    NASA Astrophysics Data System (ADS)

    Verma, M.; Diffenbaugh, N. S.; Hertel, T. W.; Beckman, J.

    2011-12-01

    In presence of bio-fuels, link between energy and agricultural commodity markets has become more complex. An increase in ethanol production to minimum 15bn gallons a year - Renewable Fuel Standard (RFS) and current technically permissible maximum 10% blending limit - Blend Wall (BW); make the link even stronger. If oil prices in future do not rise significantly from their current levels, this minimum production requirement would likely be binding. In such a scenario any fluctuation in crop production will have to be absorbed by the non-ethanol usage of the crop and would translate into crop prices adjusting to clear the markets and therefore the commodity prices will be more volatile. At high oil prices it is possible that the BW may become binding, severing the link between oil prices and commodity prices as well, potentially leading to higher price volatility. Hertel and Beckman (2010) find that, with both RFS and BW simultaneously binding, corn price volatility due to supply side shocks (which could arise from extreme climate events) could be more than 50% as large as in the absence of bio-fuel policies. So energy markets are important determinants of agricultural commodity price volatility. This proposal intends to introduce the increased supply side volatility on account of climate change and volatility, in the framework. Global warming on account of increased GHG concentrations is expected to increase the intensity and frequency of hot extremes in US (Diffenbaugh et al. 2008) and therefore affect corn yields. With supply shocks expected to increase, binding RFS and BW will exacerbate the volatility, while if they are non-binding then the price changes could be cushioned. We propose to model the impacts of climate changes and volatility on commodity prices by linking three main components - a. Projections for change in temperature and precipitation using climate model b. A statistical model to predict impacts of change in climate variable on corn yields in US c. Computable General Equilibrium economic model that uses the results of the two above as inputs, to predict commodity prices under alternative energy price scenarios We start with the high resolution projections on temperature and precipitation for US corn-belt for years 2020-2040. A modified version of statistical relationship estimated by Schlenker and Roberts, is used to translate climate variables' change into yield changes for each. Shocks are sampled from this distribution to decipher the corresponding volatility in commodity prices. All else constant, the increased supply side variability should result in increased price volatility; high oil prices however give markets an incentive to produce more than 15bn gallons ethanol a year (non-binding RFS) and part of supply fluctuation in crop production can be borne by ethanol production and impact of climate change on crop prices would be less dramatic than it would have been if the entire adjustment was to come through non-ethanol usage. So impact of climate change clearly depends on energy markets and policy decisions and results should provide insights into impact of climate change on agricultural prices under different energy market scenarios.

  3. Lanthanide and transition metal complexes of bioactive coumarins: molecular modeling and spectroscopic studies.

    PubMed

    Georgieva, I; Mihaylov, Tz; Trendafilova, N

    2014-06-01

    The present paper summarizes theoretical and spectroscopic investigations on a series of active coumarins and their lanthanide and transition metal complexes with application in medicine and pharmacy. Molecular modeling as well as IR, Raman, NMR and electronic spectral simulations at different levels of theory were performed to obtain important molecular descriptors: total energy, formation energy, binding energy, stability, conformations, structural parameters, electron density distribution, molecular electrostatic potential, Fukui functions, atomic charges, and reactive indexes. The computations are performed both in gas phase and in solution with consideration of the solvent effect on the molecular structural and energetic parameters. The investigations have shown that the advanced computational methods are reliable for prediction of the metal-coumarin binding mode, electron density distribution, thermodynamic properties as well as the strength and nature of the metal-coumarin interaction (not experimentally accessible) and correctly interpret the experimental spectroscopic data. Known results from biological tests for cytotoxic, antimicrobial, anti-fungal, spasmolytic and anti-HIV activities on the studied metal complexes are reported and discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Non-covalent binding analysis of sulfamethoxazole to human serum albumin: Fluorescence spectroscopy, UV-vis, FT-IR, voltammetric and molecular modeling.

    PubMed

    Naik, Praveen N; Nandibewoor, Sharanappa T; Chimatadar, Shivamurthi A

    2015-06-01

    This study was designed to examine the interaction of sulfamethoxazole (SMZ) with human serum albumin(HSA). Spectroscopic analysis of the emission quenching at different temperatures revealed that the quenching mechanism of human serum albumin by SMZ was static mechanism. The binding constant values for the SMZ-HSA system were obtained to be 22,500 L/mol at 288 K, 15,600 L/mol at 298 K, and 8500 L/mol at 308 K. The distance r between donor and acceptor was evaluated according to the theory of Föster energy transfer. The results of spectroscopic analysis and molecular modeling techniques showed that the conformation of human serum albumin had been changed in the presence of SMZ. The thermodynamic parameters, namely enthalpy change (∆ H 0 ) -36.0 kJ/mol, entropy change (∆ S 0 ) -41.3 J/mol K and free energy change (∆ G 0 ) -23.7 kJ/mol, were calculated by using van׳t Hoff equation. The effect of common ions on the binding of SMZ to HSA was tested.

  5. Homology modeling, simulation and molecular docking studies of catechol-2, 3-Dioxygenase from Burkholderia cepacia: Involved in degradation of Petroleum hydrocarbons.

    PubMed

    Ajao, At; Kannan, M; Yakubu, Se; Vj, Umoh; Jb, Ameh

    2012-01-01

    Catechol 2, 3-dioxygenase is present in several types of bacteria and undergoes degradation of environmental pollutants through an important key biochemical pathways. Specifically, this enzyme cleaves aromatic rings of several environmental pollutants such as toluene, xylene, naphthalene and biphenyl derivatives. Hence, the importance of Catechol 2, 3-dioxygenase and its role in the degradation of environmental pollutants made us to predict the three-dimensional structure of Catechol 2, 3-dioxygenase from Burkholderia cepacia. The 10ns molecular dynamics simulation was carried out to check the stability of the modeled Catechol 2, 3- dioxygenase. The results show that the model was energetically stable, and it attains their equilibrium within 2000 ps of production MD run. The docking of various petroleum hydrocarbons into the Catechol 2,3-dioxygenase reveals that the benzene, O-xylene, Toluene, Fluorene, Naphthalene, Carbazol, Pyrene, Dibenzothiophene, Anthracene, Phenanthrene, Biphenyl makes strong hydrogen bond and Van der waals interaction with the active site residues of H150, L152, W198, H206, H220, H252, I254, T255, Y261, E271, L276 and F309. Free energy of binding and estimated inhibition constant of these compounds demonstrates that they are energetically stable in their binding cavity. Chrysene shows positive energy of binding in the active site atom of Fe. Except Pyrene all the substrates made close contact with Fe atom by the distance ranges from 1.67 to 2.43 Å. In addition to that, the above mentioned substrate except pyrene all other made π-π stacking interaction with H252 by the distance ranges from 3.40 to 3.90 Å. All these docking results reveal that, except Chrysene all other substrate has good free energy of binding to hold enough in the active site and makes strong VdW interaction with Catechol-2,3-dioxygenase. These results suggest that, the enzyme is capable of catalyzing the above-mentioned substrate.

  6. Homology modeling, simulation and molecular docking studies of catechol-2, 3-Dioxygenase from Burkholderia cepacia: Involved in degradation of Petroleum hydrocarbons

    PubMed Central

    Ajao, AT; Kannan, M; Yakubu, SE; VJ, Umoh; JB, Ameh

    2012-01-01

    Catechol 2, 3-dioxygenase is present in several types of bacteria and undergoes degradation of environmental pollutants through an important key biochemical pathways. Specifically, this enzyme cleaves aromatic rings of several environmental pollutants such as toluene, xylene, naphthalene and biphenyl derivatives. Hence, the importance of Catechol 2, 3-dioxygenase and its role in the degradation of environmental pollutants made us to predict the three-dimensional structure of Catechol 2, 3-dioxygenase from Burkholderia cepacia. The 10ns molecular dynamics simulation was carried out to check the stability of the modeled Catechol 2, 3- dioxygenase. The results show that the model was energetically stable, and it attains their equilibrium within 2000 ps of production MD run. The docking of various petroleum hydrocarbons into the Catechol 2,3-dioxygenase reveals that the benzene, O-xylene, Toluene, Fluorene, Naphthalene, Carbazol, Pyrene, Dibenzothiophene, Anthracene, Phenanthrene, Biphenyl makes strong hydrogen bond and Van der waals interaction with the active site residues of H150, L152, W198, H206, H220, H252, I254, T255, Y261, E271, L276 and F309. Free energy of binding and estimated inhibition constant of these compounds demonstrates that they are energetically stable in their binding cavity. Chrysene shows positive energy of binding in the active site atom of Fe. Except Pyrene all the substrates made close contact with Fe atom by the distance ranges from 1.67 to 2.43 Å. In addition to that, the above mentioned substrate except pyrene all other made π-π stacking interaction with H252 by the distance ranges from 3.40 to 3.90 Å. All these docking results reveal that, except Chrysene all other substrate has good free energy of binding to hold enough in the active site and makes strong VdW interaction with Catechol-2,3-dioxygenase. These results suggest that, the enzyme is capable of catalyzing the above-mentioned substrate. PMID:23144539

  7. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation

    NASA Astrophysics Data System (ADS)

    Grudinin, Sergei; Kadukova, Maria; Eisenbarth, Andreas; Marillet, Simon; Cazals, Frédéric

    2016-09-01

    The 2015 D3R Grand Challenge provided an opportunity to test our new model for the binding free energy of small molecules, as well as to assess our protocol to predict binding poses for protein-ligand complexes. Our pose predictions were ranked 3-9 for the HSP90 dataset, depending on the assessment metric. For the MAP4K dataset the ranks are very dispersed and equal to 2-35, depending on the assessment metric, which does not provide any insight into the accuracy of the method. The main success of our pose prediction protocol was the re-scoring stage using the recently developed Convex-PL potential. We make a thorough analysis of our docking predictions made with AutoDock Vina and discuss the effect of the choice of rigid receptor templates, the number of flexible residues in the binding pocket, the binding pocket size, and the benefits of re-scoring. However, the main challenge was to predict experimentally determined binding affinities for two blind test sets. Our affinity prediction model consisted of two terms, a pairwise-additive enthalpy, and a non pairwise-additive entropy. We trained the free parameters of the model with a regularized regression using affinity and structural data from the PDBBind database. Our model performed very well on the training set, however, failed on the two test sets. We explain the drawback and pitfalls of our model, in particular in terms of relative coverage of the test set by the training set and missed dynamical properties from crystal structures, and discuss different routes to improve it.

  8. Topology-based modeling of intrinsically disordered proteins: balancing intrinsic folding and intermolecular interactions.

    PubMed

    Ganguly, Debabani; Chen, Jianhan

    2011-04-01

    Coupled binding and folding is frequently involved in specific recognition of so-called intrinsically disordered proteins (IDPs), a newly recognized class of proteins that rely on a lack of stable tertiary fold for function. Here, we exploit topology-based Gō-like modeling as an effective tool for the mechanism of IDP recognition within the theoretical framework of minimally frustrated energy landscape. Importantly, substantial differences exist between IDPs and globular proteins in both amino acid sequence and binding interface characteristics. We demonstrate that established Gō-like models designed for folded proteins tend to over-estimate the level of residual structures in unbound IDPs, whereas under-estimating the strength of intermolecular interactions. Such systematic biases have important consequences in the predicted mechanism of interaction. A strategy is proposed to recalibrate topology-derived models to balance intrinsic folding propensities and intermolecular interactions, based on experimental knowledge of the overall residual structure level and binding affinity. Applied to pKID/KIX, the calibrated Gō-like model predicts a dominant multistep sequential pathway for binding-induced folding of pKID that is initiated by KIX binding via the C-terminus in disordered conformations, followed by binding and folding of the rest of C-terminal helix and finally the N-terminal helix. This novel mechanism is consistent with key observations derived from a recent NMR titration and relaxation dispersion study and provides a molecular-level interpretation of kinetic rates derived from dispersion curve analysis. These case studies provide important insight into the applicability and potential pitfalls of topology-based modeling for studying IDP folding and interaction in general. Copyright © 2011 Wiley-Liss, Inc.

  9. Role of Ligand Reorganization and Conformational Restraints on the Binding Free Energies of DAPY Non-Nucleoside Inhibitors to HIV Reverse Transcriptase

    PubMed Central

    Gallicchio, Emilio

    2012-01-01

    The results of computer simulations of the binding of etravirine (TMC125) and rilpivirine (TMC278) to HIV reverse transcriptase are reported. It is confirmed that consistent binding free energy estimates are obtained with or without the application of torsional restraints when the free energies of imposing the restraints are taken into account. The restraints have a smaller influence on the thermodynamics and apparent kinetics of binding of TMC125 compared to the more flexible TMC278 inhibitor. The concept of the reorganization free energy of binding is useful to understand and categorize these effects. Contrary to expectations, the use of conformational restraints did not consistently enhance convergence of binding free energy estimates due to suppression of binding/unbinding pathways and due to the influence of rotational degrees of freedom not directly controlled by the restraints. Physical insights concerning the thermodynamic driving forces for binding and the role of “jiggling” and “wiggling” motion of the ligands are discussed. Based on these insights we conclude that an ideal inhibitor, if chemically realizable, would possess the electrostatic charge distribution of TMC125, so as to form strong interactions with the receptor, and the larger and more flexible substituents of TMC278, so as to minimize reorganization free energy penalties and the effects of resistance mutations, suitably modified, as in TMC125, so as to disfavor the formation of non-binding competent extended conformations when free in solution. PMID:22708073

  10. Force-field and quantum-mechanical binding study of selected SAMPL3 host-guest complexes

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Nobuko; Fusti-Molnar, Laszlo; Wlodek, Stanislaw

    2012-05-01

    A Merck molecular force field classical potential combined with Poisson-Boltzmann electrostatics (MMFF/PB) has been used to estimate the binding free energy of seven guest molecules (six tertiary amines and one primary amine) into a synthetic receptor (acyclic cucurbit[4]uril congener) and two benzimidazoles into cyclic cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]) hosts. In addition, binding enthalpies for the benzimidazoles were calculated with density functional theory (DFT) using the B3LYP functional and a polarizable continuum model (PCM). Although in most cases the MMFF/PB approach returned reasonable agreements with the experiment (±2 kcal/mol), significant, much larger deviations were reported in the case of three host-guest pairs. All four binding enthalpy predictions with the DFT/PCM method suffered 70% or larger deviations from the calorimetry data. Results are discussed in terms of the molecular models used for guest-host complexation and the quality of the intermolecular potentials.

  11. Growth of AlGaN under the conditions of significant gallium evaporation: Phase separation and enhanced lateral growth

    NASA Astrophysics Data System (ADS)

    Mayboroda, I. O.; Knizhnik, A. A.; Grishchenko, Yu. V.; Ezubchenko, I. S.; Zanaveskin, Maxim L.; Kondratev, O. A.; Presniakov, M. Yu.; Potapkin, B. V.; Ilyin, V. A.

    2017-09-01

    The growth kinetics of AlGaN in NH3 MBE under significant Ga desorption was studied. It was found that the addition of gallium stimulates 2D growth and provides better morphology of films compared to pure AlN. The effect was experimentally observed at up to 98% desorption of the impinging gallium. We found that under the conditions of significant thermal desorption, larger amounts of gallium were retained at lateral boundaries of 3D surface features than at flat terraces because of the higher binding energy of Ga atoms at specific surface defects. The selective accumulation of gallium resulted in an increase in the lateral growth component through the formation of the Ga-enriched AlGaN phase at boundaries of 3D surface features. We studied the temperature dependence of AlGaN growth rate and developed a kinetic model analytically describing this dependence. As the model was in good agreement with the experimental data, we used it to estimate the increase in the binding energy of Ga atoms at surface defects compared to terrace surface sites using data on the Ga content in different AlGaN phases. We also applied first-principles calculations to the thermodynamic analysis of stable configurations on the AlN surface and then used these surface configurations to compare the binding energy of Ga atoms at terraces and steps. Both first-principles calculations and analytical estimations of the experimental results gave similar values of difference in binding energies; this value is 0.3 eV. Finally, it was studied experimentally whether gallium can act as a surfactant in AlN growth by NH3 MBE at elevated temperatures. Gallium application has allowed us to grow a 300 nm thick AlN film with a RMS surface roughness of 2.2 Å over an area of 10 × 10 μm and a reduced density of screw dislocations.

  12. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.

    PubMed

    Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M

    2016-09-01

    We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.

  13. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015

    NASA Astrophysics Data System (ADS)

    Deng, Nanjie; Flynn, William F.; Xia, Junchao; Vijayan, R. S. K.; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M.

    2016-09-01

    We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.

  14. Effects of the Hydroxyl Group on Phenyl Based Ligand/ERRγ Protein Binding

    PubMed Central

    2015-01-01

    Bisphenol-A (4,4′-dihydroxy-2,2-diphenylpropane, BPA, or BPA-A) and its derivatives, when exposed to humans, may affect functions of multiple organs by specific binding to the human estrogen-related receptor γ (ERRγ). We carried out atomistic molecular dynamics (MD) simulations of three ligand compounds including BPA-A, 4-α-cumylphenol (BPA-C), and 2,2-diphenylpropane (BPA-D) binding to the ligand binding domain (LBD) of a human ERRγ to study the structures and energies associated with the binding. We used the implicit Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method to estimate the free energies of binding for the phenyl based compound/ERRγ systems. The addition of hydroxyl groups to the aromatic ring had only a minor effect on binding structures and a significant effect on ligand/protein binding energy in an aqueous solution. Free binding energies of BPA-D to the ERRγ were found to be considerably less than those of BPA-A and BPA-C to the ERRγ. These results are well correlated with those from experiments where no binding affinities were determined in the BPA-D/ERRγ complex. No conformational change was observed for the helix 12 (H-12) of ERRγ upon binding of these compounds preserving an active transcriptional conformation state. PMID:25098505

  15. Quantum chemistry of the minimal CdSe clusters

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Tretiak, Sergei; Masunov, Artëm E.; Ivanov, Sergei

    2008-08-01

    Colloidal quantum dots are semiconductor nanocrystals (NCs) which have stimulated a great deal of research and have attracted technical interest in recent years due to their chemical stability and the tunability of photophysical properties. While internal structure of large quantum dots is similar to bulk, their surface structure and passivating role of capping ligands (surfactants) are not fully understood to date. We apply ab initio wavefunction methods, density functional theory, and semiempirical approaches to study the passivation effects of substituted phosphine and amine ligands on the minimal cluster Cd2Se2, which is also used to benchmark different computational methods versus high level ab initio techniques. Full geometry optimization of Cd2Se2 at different theory levels and ligand coverage is used to understand the affinities of various ligands and the impact of ligands on cluster structure. Most possible bonding patterns between ligands and surface Cd/Se atoms are considered, including a ligand coordinated to Se atoms. The degree of passivation of Cd and Se atoms (one or two ligands attached to one atom) is also studied. The results suggest that B3LYP/LANL2DZ level of theory is appropriate for the system modeling, whereas frequently used semiempirical methods (such as AM1 and PM3) produce unphysical results. The use of hydrogen atom for modeling of the cluster passivating ligands is found to yield unphysical results as well. Hence, the surface termination of II-VI semiconductor NCs with hydrogen atoms often used in computational models should probably be avoided. Basis set superposition error, zero-point energy, and thermal corrections, as well as solvent effects simulated with polarized continuum model are found to produce minor variations on the ligand binding energies. The effects of Cd-Se complex structure on both the electronic band gap (highest occupied molecular orbital-lowest unoccupied molecular orbital energy difference) and ligand binding energies are systematically examined. The role played by positive charges on ligand binding is also explored. The calculated binding energies for various ligands L are found to decrease in the order OPMe3>OPH3>NH2Me>=NH3>=NMe3>PMe3>PH3 for neutral clusters and OPMe3>OPH3>PMe3>=NMe3>=NH2Me>=NH3>PH3 and OPMe3>OPH3>NH2Me>=NMe3>=PMe3>=NH3>PH3 for single and double ligations of positively charged Cd2Se22+ cluster, respectively.

  16. Planck-Benzinger thermal work function: Monoclonal antibody-DNA duplex binding interactions

    NASA Astrophysics Data System (ADS)

    Chun, Paul W.

    We have reexamined the van't Hoff plots and delineation of thermodynamic data of the monoclonal antibodies of Jel 274 and Jel 241 binding to DNA duplex at high ionic strength using fluorescein-labeled oligonucleotide titration with increasing concentrations of the antibody as reported by Tanha and Lee (Nucleic Acid Res, 1997, 25, 1442). To compare the thermodynamic parameters from data over the experimental temperature range of 277-312.5 K, the binding constant from van't Hoff plots is used to evaluate ΔGo(T) from 0 to 400 K using our general linear T3 model, ΔGo(T) = α +βT2+γT3. The limited information provided by the van't Hoff plots and their extensions is not sufficient to describe the variations in the Gibbs free energy change as a function of temperature and other thermodynamic functions observed in these and other biological interactions. Rather, it is necessary to determine a number of thermodynamic parameters, including the heat of reaction, (Th), (Tm), and (TCp), and the thermal set point, (TS), all of which can be precisely assessed using our general linear T3 model. To date, no experimental measurement offers this degree of accuracy. In evaluating the thermodynamic parameters in the binding interaction of monoclonal IgG Jel 241-d[AT]20DNA duplex, it is apparent that at a high NaCl concentration, the range of the compensatory temperatures, (Th) = 155 K and (Tm) = 450 K, is much broader than observed in any other sample, whereas the thermal set points, (TS) = 330 K, is 20-30 K higher. The inherent chemical bond energy ΔHo(T0) is much lower in this sample. The values of thermal agitation energy (heat capacity integrals) are of similar magnitude for all the samples tested. It appears that increasing the NaCl concentration to 130 mM will greatly enhance the binding interaction between the monoclonal antibody and DNA duplex. It is not clear, however, from the limited data available, whether the binding interaction is sequence specific, although logic would suggest it is.

  17. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A.

    PubMed

    Mann, G; Hermans, J

    2000-09-29

    The complexes of phage T4 lysozyme L99A with noble gases have been studied by molecular dynamics simulation. In a long simulation of the complex with one Xe atom, the structure was found to undergo global conformation change involving a reversible opening and closing of the entrance to the substrate-binding site, during which the conformations of the N and C-terminal domains varied little. The distributions of Xe positions sampled in dynamics simulations were refined in terms of anisotropic Gaussian distributions via least-squares minimization of the difference between Fourier transforms. In addition, molecular transformation simulations have been applied in order to calculate the binding free energies of Xe, Kr and Ar relative to a standard state at a pressure of 1 bar. A single bound Xe is found to assume an equilibrium distribution over three adjacent preferred sites, while in a two-Xe complex, the two Xe atoms preferentially occupy two of these. The positions of the three sites agree closely with the positions of bound Xe determined in the refined crystal structure of a complex formed at a pressure of 8 bar Xe, and the calculated affinities agree well with the observed partial occupancies. At a pressure of 8 bar, a mixture of one-Xe and two-Xe complexes is present, and similarly for complexes with Kr and Ar, with single occupancy relatively more prevalent with Kr and Ar. (Binding of a third Xe atom is found to be quite unfavorable.) A comparison with simulation results for the binding of benzene to the same site leads to the conclusion that binding of Xe within cavities in proteins is common because of several favorable factors: (1) Xe has a large atomic polarizability; (2) Xe can be applied at a relatively high pressure, i.e. high chemical potential; (3) an unfavorable entropic term related to the need to orient the ligand in the binding site is absent. Finally, it is found that the model's binding energy of a water molecule in the cavity is insufficient to overcome the unfavorable binding entropy. Copyright 2000 Academic Press.

  18. Interactions of solute (3p, 4p, 5p and 6p) with solute, vacancy and divacancy in bcc Fe

    NASA Astrophysics Data System (ADS)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xue-Bang; Liu, Wei; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.; Wang, Zhiguang

    2014-12-01

    Solute-vacancy binding energy is a key quantity in understanding solute diffusion kinetics and phase segregation, and may help choice of alloy compositions for future material design. However, the binding energy of solute with vacancy is notoriously difficult to measure and largely unknown in bcc Fe. With first-principles method, we systemically calculate the binding energies of solute (3p, 4p, 5p and 6p alloying solutes are included) with vacancy, divacancy and solute in bcc Fe. The binding energy of Si with vacancy in the present work is in good consistent with experimental value available. All the solutes considered are able to form stable solute-vacancy, solute-divacancy complexes, and the binding strength of solute-divacancy is about two times larger than that of solute-vacancy. Most solutes could not form stable solute-solute complexes except S, Se, In and Tl. The factors controlling the binding energies are analyzed at last.

  19. Molecular basis of endosomal-membrane association for the dengue virus envelope protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, David M.; Kent, Michael S.; Rempe, Susan B.

    Dengue virus is coated by an icosahedral shell of 90 envelope protein dimers that convert to trimers at low pH and promote fusion of its membrane with the membrane of the host endosome. We provide the first estimates for the free energy barrier and minimum for two key steps in this process: host membrane bending and protein–membrane binding. Both are studied using complementary membrane elastic, continuum electrostatics and all-atom molecular dynamics simulations. The predicted host membrane bending required to form an initial fusion stalk presents a 22–30 kcal/mol free energy barrier according to a constrained membrane elastic model. Combined continuummore » and molecular dynamics results predict a 15 kcal/mol free energy decrease on binding of each trimer of dengue envelope protein to a membrane with 30% anionic phosphatidylglycerol lipid. The bending cost depends on the preferred curvature of the lipids composing the host membrane leaflets, while the free energy gained for protein binding depends on the surface charge density of the host membrane. The fusion loop of the envelope protein inserts exactly at the level of the interface between the membrane's hydrophobic and head-group regions. As a result, the methods used in this work provide a means for further characterization of the structures and free energies of protein-assisted membrane fusion.« less

  20. Molecular basis of endosomal-membrane association for the dengue virus envelope protein

    DOE PAGES

    Rogers, David M.; Kent, Michael S.; Rempe, Susan B.

    2015-01-02

    Dengue virus is coated by an icosahedral shell of 90 envelope protein dimers that convert to trimers at low pH and promote fusion of its membrane with the membrane of the host endosome. We provide the first estimates for the free energy barrier and minimum for two key steps in this process: host membrane bending and protein–membrane binding. Both are studied using complementary membrane elastic, continuum electrostatics and all-atom molecular dynamics simulations. The predicted host membrane bending required to form an initial fusion stalk presents a 22–30 kcal/mol free energy barrier according to a constrained membrane elastic model. Combined continuummore » and molecular dynamics results predict a 15 kcal/mol free energy decrease on binding of each trimer of dengue envelope protein to a membrane with 30% anionic phosphatidylglycerol lipid. The bending cost depends on the preferred curvature of the lipids composing the host membrane leaflets, while the free energy gained for protein binding depends on the surface charge density of the host membrane. The fusion loop of the envelope protein inserts exactly at the level of the interface between the membrane's hydrophobic and head-group regions. As a result, the methods used in this work provide a means for further characterization of the structures and free energies of protein-assisted membrane fusion.« less

  1. Predicting bioactive conformations and binding modes of macrocycles

    NASA Astrophysics Data System (ADS)

    Anighoro, Andrew; de la Vega de León, Antonio; Bajorath, Jürgen

    2016-10-01

    Macrocyclic compounds experience increasing interest in drug discovery. It is often thought that these large and chemically complex molecules provide promising candidates to address difficult targets and interfere with protein-protein interactions. From a computational viewpoint, these molecules are difficult to treat. For example, flexible docking of macrocyclic compounds is hindered by the limited ability of current docking approaches to optimize conformations of extended ring systems for pose prediction. Herein, we report predictions of bioactive conformations of macrocycles using conformational search and binding modes using docking. Conformational ensembles generated using specialized search technique of about 70 % of the tested macrocycles contained accurate bioactive conformations. However, these conformations were difficult to identify on the basis of conformational energies. Moreover, docking calculations with limited ligand flexibility starting from individual low energy conformations rarely yielded highly accurate binding modes. In about 40 % of the test cases, binding modes were approximated with reasonable accuracy. However, when conformational ensembles were subjected to rigid body docking, an increase in meaningful binding mode predictions to more than 50 % of the test cases was observed. Electrostatic effects did not contribute to these predictions in a positive or negative manner. Rather, achieving shape complementarity at macrocycle-target interfaces was a decisive factor. In summary, a combined computational protocol using pre-computed conformational ensembles of macrocycles as a starting point for docking shows promise in modeling binding modes of macrocyclic compounds.

  2. Unraveling the Molecular Mechanism of Benzothiophene and Benzofuran scaffold merged compounds binding to anti-apoptotic Myeloid cell leukemia 1.

    PubMed

    Marimuthu, Parthiban; Singaravelu, Kalaimathy

    2018-05-10

    Myeloid cell leukemia 1 (Mcl1), is an anti-apoptotic member of the Bcl-2 family proteins, has gained considerable importance due to its overexpression activity prevents the oncogenic cells to undergo apoptosis. This overexpression activity of Mcl1 eventually develops strong resistance to a wide variety of anticancer agents. Therefore, designing novel inhibitors with potentials to elicit higher binding affinity and specificity to inhibit Mcl1 activity is of greater importance. Thus, Mcl1 acts as an attractive cancer target. Despite recent experimental advancement in the identification and characterization of Benzothiophene and Benzofuran scaffold merged compounds the molecular mechanisms of their binding to Mcl1 are yet to be explored. The current study demonstrates an integrated approach -pharmacophore-based 3D-QSAR, docking, Molecular Dynamics (MD) simulation and free-energy estimation- to access the precise and comprehensive effects of current inhibitors targeting Mcl1 together with its known activity values. The pharmacophore -ANRRR.240- based 3D-QSAR model from the current study provided high confidence (R 2 =0.9154, Q 2 =0.8736, and RMSE=0.3533) values. Furthermore, the docking correctly predicted the binding mode of highly active compound 42. Additionally, the MD simulation for docked complex under explicit-solvent conditions together with free-energy estimation exhibited stable interaction and binding strength over the time period. Also, the decomposition analysis revealed potential energy contributing residues -M231, M250, V253, R265, L267, and F270- to the complex stability. Overall, the current investigation might serve as a valuable insight, either to (i) improve the binding affinity of the current compounds or (ii) discover new generation anti-cancer agents that can effectively downregulate Mcl1 activity.

  3. Role of water molecules in structure and energetics of Pseudomonas aeruginosa lectin I interacting with disaccharides.

    PubMed

    Nurisso, Alessandra; Blanchard, Bertrand; Audfray, Aymeric; Rydner, Lina; Oscarson, Stefan; Varrot, Annabelle; Imberty, Anne

    2010-06-25

    Calcium-dependent lectin I from Pseudomonas aeruginosa (PA-IL) binds specifically to oligosaccharides presenting an alpha-galactose residue at their nonreducing end, such as the disaccharides alphaGal1-2betaGalOMe, alphaGal1-3betaGalOMe, and alphaGal1-4betaGalOMe. This provides a unique model for studying the effect of the glycosidic linkage of the ligands on structure and thermodynamics of the complexes by means of experimental and theoretical tools. The structural features of PA-IL in complex with the three disaccharides were established by docking and molecular dynamics simulations and compared with those observed in available crystal structures, including PA-IL.alphaGal1-2betaGalOMe complex, which was solved at 2.4 A resolution and reported herein. The role of a structural bridge water molecule in the binding site of PA-IL was also elucidated through molecular dynamics simulations and free energy calculations. This water molecule establishes three very stable hydrogen bonds with O6 of nonreducing galactose, oxygen from Pro-51 main chain, and nitrogen from Gln-53 main chain of the lectin binding site. Binding free energies for PA-IL in complex with the three disaccharides were investigated, and the results were compared with the experimental data determined by titration microcalorimetry. When the bridge water molecule was included in the free energy calculations, the simulations predicted the correct binding affinity trends with the 1-2-linked disaccharide presenting three times stronger affinity ligand than the other two. These results highlight the role of the water molecule in the binding site of PA-IL and indicate that it should be taken into account when designing glycoderivatives active against P. aeruginosa adhesion.

  4. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    PubMed Central

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; Mcdougal, Owen M.

    2017-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635

  5. Exciton binding energy in GaAsBiN spherical quantum dot heterostructures

    NASA Astrophysics Data System (ADS)

    Das, Subhasis; Dhar, S.

    2017-03-01

    The ground state exciton binding energies (EBE) of heavy hole excitons in GaAs1-x-yBixNy - GaAs spherical quantum dots (QD) are calculated using a variational approach under 1s hydrogenic wavefunctions within the framework of effective mass approximation. Both the nitrogen and the bismuth content in the material are found to affect the binding energy, in particular for larger nitrogen content and lower dot radii. Calculations also show that the ground state exciton binding energies of heavy holes increase more at smaller dot sizes as compared to that for the light hole excitons.

  6. Energetics of Glutamate Binding to an Ionotropic Glutamate Receptor.

    PubMed

    Yu, Alvin; Lau, Albert Y

    2017-11-22

    Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are responsible for the majority of excitatory transmission at the synaptic cleft. Mechanically speaking, agonist binding to the ligand binding domain (LBD) activates the receptor by triggering a conformational change that is transmitted to the transmembrane region, opening the ion channel pore. We use fully atomistic molecular dynamics simulations to investigate the binding process in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, an iGluR subtype. The string method with swarms of trajectories was applied to calculate the possible pathways glutamate traverses during ligand binding. Residues peripheral to the binding cleft are found to metastably bind the ligand prior to ligand entry into the binding pocket. Umbrella sampling simulations were performed to compute the free energy barriers along the binding pathways. The calculated free energy profiles demonstrate that metastable interactions contribute substantially to the energetics of ligand binding and form local minima in the overall free energy landscape. Protein-ligand interactions at sites outside of the orthosteric agonist-binding site may serve to lower the transition barriers of the binding process.

  7. Rational computational design for the development of andrographolide molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Krishnan, Hemavathi; Islam, K. M. Shafiqul; Hamzah, Zainab; Ahmad, Mohd Noor

    2017-10-01

    Andrographolide is a popular medicinal compound derived from Andrographis Paniculata (AP). Molecularly Imprint Polymer (MIP) is a "Lock and Key" approach, where MIP is the lock and Andrographolide is the key which fits to the MIP lock by both physically and chemically. MIP will be used as selective extraction tool to enrich Andrographolide bioactive compound. Pre-polymerization step is crucial to design MIP. This work investigates molecular interactions and the Gibbs free binding energies on the development of MIP. The structure of Andrographolide (template) and functional monomers were drawn in HyperChem 8.0.10. A hybrid quantum chemical model was used with a few functional monomers. Possible conformations of template and functional monomer as 1:n (n < 4) were designed and simulated to geometrically optimize the complex to the lowest energy in gas phase. The Gibbs free binding energies of each conformation were calculated using semi-empirical PM3 simulation method. Results proved that functional monomers that contain carboxylic group shows higher binding energy compared to those with amine functional group. Itaconic acid (IA) chosen as the best functional monomer at optimum ratio (1:3) of template: monomer to prepare andrographolide MIP. This study demonstrates the importance of studying intermolecular interaction among template, functional monomer and template-monomer ratio in developing MIP.

  8. Quantum mechanics capacitance molecular mechanics modeling of core-electron binding energies of methanol and methyl nitrite on Ag(111) surface.

    PubMed

    Löytynoja, T; Li, X; Jänkälä, K; Rinkevicius, Z; Ågren, H

    2016-07-14

    We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.

  9. Quantum mechanics capacitance molecular mechanics modeling of core-electron binding energies of methanol and methyl nitrite on Ag(111) surface

    NASA Astrophysics Data System (ADS)

    Löytynoja, T.; Li, X.; Jänkälä, K.; Rinkevicius, Z.; Ågren, H.

    2016-07-01

    We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.

  10. Interaction of D2 with H2O amorphous ice studied by temperature-programmed desorption experiments.

    PubMed

    Amiaud, L; Fillion, J H; Baouche, S; Dulieu, F; Momeni, A; Lemaire, J L

    2006-03-07

    The gas-surface interaction of molecular hydrogen D2 with a thin film of porous amorphous solid water (ASW) grown at 10 K by slow vapor deposition has been studied by temperature-programmed-desorption (TPD) experiments. Molecular hydrogen diffuses rapidly into the porous network of the ice. The D2 desorption occurring between 10 and 30 K is considered here as a good probe of the effective surface of ASW interacting with the gas. The desorption kinetics have been systematically measured at various coverages. A careful analysis based on the Arrhenius plot method has provided the D2 binding energies as a function of the coverage. Asymmetric and broad distributions of binding energies were found, with a maximum population peaking at low energy. We propose a model for the desorption kinetics that assumes a complete thermal equilibrium of the molecules with the ice film. The sample is characterized by a distribution of adsorption sites that are filled according to a Fermi-Dirac statistic law. The TPD curves can be simulated and fitted to provide the parameters describing the distribution of the molecules as a function of their binding energy. This approach contributes to a correct description of the interaction of molecular hydrogen with the surface of possibly porous grain mantles in the interstellar medium.

  11. On the contribution of vibrational anharmonicity to the binding energies of water clusters.

    PubMed

    Diri, Kadir; Myshakin, Evgeniy M; Jordan, Kenneth D

    2005-05-05

    The second-order vibrational perturbation theory method has been used together with the B3LYP and MP2 electronic structure methods to investigate the effects of anharmonicity on the vibrational zero-point energy (ZPE) contributions to the binding energies of (H2O)n, n = 2-6, clusters. For the low-lying isomers of (H2O)6, the anharmonicity correction to the binding energy is calculated to range from -248 to -355 cm(-1). It is also demonstrated that although high-order electron correlation effects are important for the individual vibrational frequencies, they are relatively unimportant for the net ZPE contributions to the binding energies of water clusters.

  12. The volume- and surface-binding energies of ice systems containing CO, CO2, and H2O

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1990-01-01

    Laboratory-measured, temperature-dependent sticking efficiencies are presently used to derive the surface-binding energies of CO and CO2 on H2O-rich ices, with a view to determining the condensation and vaporization properties of these systems as well as to the measured energies' implications for both cometary behavior and the evolution of interstellar ices. The molecular volume and the surface binding energies are not found to be necessarily related on the basis of simple nearest-neighbor scaling in surface and bulk sites; this may be due to the physical constraints associated with matrix structure-associated physical constraints, which sometimes dominate the volume-binding energies.

  13. The tight binding model study of the role of anisotropic AFM spin ordering in the charge ordered CMR manganites

    NASA Astrophysics Data System (ADS)

    Kar, J. K.; Panda, Saswati; Rout, G. C.

    2017-05-01

    We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.

  14. Alchemical Free Energy Calculations for Nucleotide Mutations in Protein-DNA Complexes.

    PubMed

    Gapsys, Vytautas; de Groot, Bert L

    2017-12-12

    Nucleotide-sequence-dependent interactions between proteins and DNA are responsible for a wide range of gene regulatory functions. Accurate and generalizable methods to evaluate the strength of protein-DNA binding have long been sought. While numerous computational approaches have been developed, most of them require fitting parameters to experimental data to a certain degree, e.g., machine learning algorithms or knowledge-based statistical potentials. Molecular-dynamics-based free energy calculations offer a robust, system-independent, first-principles-based method to calculate free energy differences upon nucleotide mutation. We present an automated procedure to set up alchemical MD-based calculations to evaluate free energy changes occurring as the result of a nucleotide mutation in DNA. We used these methods to perform a large-scale mutation scan comprising 397 nucleotide mutation cases in 16 protein-DNA complexes. The obtained prediction accuracy reaches 5.6 kJ/mol average unsigned deviation from experiment with a correlation coefficient of 0.57 with respect to the experimentally measured free energies. Overall, the first-principles-based approach performed on par with the molecular modeling approaches Rosetta and FoldX. Subsequently, we utilized the MD-based free energy calculations to construct protein-DNA binding profiles for the zinc finger protein Zif268. The calculation results compare remarkably well with the experimentally determined binding profiles. The software automating the structure and topology setup for alchemical calculations is a part of the pmx package; the utilities have also been made available online at http://pmx.mpibpc.mpg.de/dna_webserver.html .

  15. [Supercomputer investigation of the protein-ligand system low-energy minima].

    PubMed

    Oferkin, I V; Sulimov, A V; Katkova, E V; Kutov, D K; Grigoriev, F V; Kondakova, O A; Sulimov, V B

    2015-01-01

    The accuracy of the protein-ligand binding energy calculations and ligand positioning is strongly influenced by the choice of the docking target function. This work demonstrates the evaluation of the five different target functions used in docking: functions based on MMFF94 force field and functions based on PM7 quantum-chemical method accounting or without accounting the implicit solvent model (PCM, COSMO or SGB). For these purposes the ligand positions corresponding to the minima of the target function and the experimentally known ligand positions in the protein active site (crystal ligand positions) were compared. Each function was examined on the same test-set of 16 protein-ligand complexes. The new parallelized docking program FLM based on Monte Carlo search algorithm was developed to perform the comprehensive low-energy minima search and to calculate the protein-ligand binding energy. This study demonstrates that the docking target function based on the MMFF94 force field can be used to detect the crystal or near crystal positions of the ligand by the finding the low-energy local minima spectrum of the target function. The importance of solvent accounting in the docking process for the accurate ligand positioning is also shown. The accuracy of the ligand positioning as well as the correlation between the calculated and experimentally determined protein-ligand binding energies are improved when the MMFF94 force field is substituted by the new PM7 method with implicit solvent accounting.

  16. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    PubMed

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-04-12

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.

  17. Polarizable atomistic calculation of site energy disorder in amorphous Alq3.

    PubMed

    Nagata, Yuki

    2010-02-01

    A polarizable molecular dynamics simulation and calculation scheme for site energy disorder is presented in amorphous tris(8-hydroxyquinolinato)aluminum (Alq(3)) by means of the charge response kernel (CRK) method. The CRK fit to the electrostatic potential and the tight-binding approximation are introduced, which enables modeling of the polarizable electrostatic interaction for a large molecule systematically from an ab initio calculation. The site energy disorder for electron and hole transfers is calculated in amorphous Alq(3) and the effect of the polarization on the site energy disorder is discussed.

  18. Analytical RISM-MP2 free energy gradient method: Application to the Schlenk equilibrium of Grignard reagent

    NASA Astrophysics Data System (ADS)

    Mori, Toshifumi; Kato, Shigeki

    2007-03-01

    We present a method to evaluate the analytical gradient of reference interaction site model Møller-Plesset second order free energy with respect to solute nuclear coordinates. It is applied to calculate the geometries and energies in the equilibria of the Grignard reagent (CH 3MgCl) in dimethylether solvent. The Mg-Mg and Mg-Cl distances as well as the binding energies of solvents are largely affected by the dynamical electron correlation. The solvent effect on the Schlenk equilibrium is examined.

  19. Free Energy Simulations of Ligand Binding to the Aspartate Transporter GltPh

    PubMed Central

    Heinzelmann, Germano; Baştuğ, Turgut; Kuyucak, Serdar

    2011-01-01

    Glutamate/Aspartate transporters cotransport three Na+ and one H+ ions with the substrate and countertransport one K+ ion. The binding sites for the substrate and two Na+ ions have been observed in the crystal structure of the archeal homolog GltPh, while the binding site for the third Na+ ion has been proposed from computational studies and confirmed by experiments. Here we perform detailed free energy simulations of GltPh, giving a comprehensive characterization of the substrate and ion binding sites, and calculating their binding free energies in various configurations. Our results show unequivocally that the substrate binds after the binding of two Na+ ions. They also shed light into Asp/Glu selectivity of GltPh, which is not observed in eukaryotic glutamate transporters. PMID:22098736

  20. Influences of Mutations on the Electrostatic Binding Free Energies of Chloride Ions in Escherichia Coli ClC

    PubMed Central

    Yu, Tao; Wang, Xiao-Qing; Sang, Jian-Ping; Pan, Chun-Xu; Zou, Xian-Wu; Chen, Tsung-Yu; Zou, Xiaoqin

    2012-01-01

    Mutations in ClC channel proteins may cause serious functional changes and even diseases. The function of ClC proteins mainly manifests as Cl− transport, which is related to the binding free energies of chloride ions. Therefore, the influence of a mutation on ClC function can be studied by investigating the mutational effect on the binding free energies of chloride ions. The present study provides quantitative and systematic investigations on the influences of residue mutations on the electrostatic binding free energies in Escherichia coli ClC (EcClC) proteins, using all-atom molecular dynamics simulations. It was found that the change of the electrostatic binding free energy decreases linearly with the increase of the residue-chloride ion distance for a mutation. This work reveals how changes in the charge of a mutated residue and in the distance between the mutated residue and the binding site govern the variations in the electrostatic binding free energies, and therefore influence the transport of chloride ions and conduction in EcClC. This work would facilitate our understanding of the mutational effects on transport of chloride ions and functions of ClC proteins, and provide a guideline to estimate which residue mutations will have great influences on ClC functions. PMID:22612693

  1. Free energy landscape for the binding process of Huperzine A to acetylcholinesterase

    PubMed Central

    Bai, Fang; Xu, Yechun; Chen, Jing; Liu, Qiufeng; Gu, Junfeng; Wang, Xicheng; Ma, Jianpeng; Li, Honglin; Onuchic, José N.; Jiang, Hualiang

    2013-01-01

    Drug-target residence time (t = 1/koff, where koff is the dissociation rate constant) has become an important index in discovering better- or best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, koff and activation free energy of dissociation (). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated. We applied this method to simulate the binding event of the anti-Alzheimer’s disease drug (−)−Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/mol. The method also provides atomic resolution information for the (−)−Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect this methodology to be widely applicable to drug discovery and development. PMID:23440190

  2. Free energy landscape for the binding process of Huperzine A to acetylcholinesterase.

    PubMed

    Bai, Fang; Xu, Yechun; Chen, Jing; Liu, Qiufeng; Gu, Junfeng; Wang, Xicheng; Ma, Jianpeng; Li, Honglin; Onuchic, José N; Jiang, Hualiang

    2013-03-12

    Drug-target residence time (t = 1/k(off), where k(off) is the dissociation rate constant) has become an important index in discovering better- or best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, k(off) and activation free energy of dissociation (ΔG(off)≠). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated. We applied this method to simulate the binding event of the anti-Alzheimer's disease drug (-)-Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/mol. The method also provides atomic resolution information for the (-)-Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect this methodology to be widely applicable to drug discovery and development.

  3. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.

    PubMed

    Mackie, Iain D; DiLabio, Gino A

    2011-10-07

    The first-principles calculation of non-covalent (particularly dispersion) interactions between molecules is a considerable challenge. In this work we studied the binding energies for ten small non-covalently bonded dimers with several combinations of correlation methods (MP2, coupled-cluster single double, coupled-cluster single double (triple) (CCSD(T))), correlation-consistent basis sets (aug-cc-pVXZ, X = D, T, Q), two-point complete basis set energy extrapolations, and counterpoise corrections. For this work, complete basis set results were estimated from averaged counterpoise and non-counterpoise-corrected CCSD(T) binding energies obtained from extrapolations with aug-cc-pVQZ and aug-cc-pVTZ basis sets. It is demonstrated that, in almost all cases, binding energies converge more rapidly to the basis set limit by averaging the counterpoise and non-counterpoise corrected values than by using either counterpoise or non-counterpoise methods alone. Examination of the effect of basis set size and electron correlation shows that the triples contribution to the CCSD(T) binding energies is fairly constant with the basis set size, with a slight underestimation with CCSD(T)∕aug-cc-pVDZ compared to the value at the (estimated) complete basis set limit, and that contributions to the binding energies obtained by MP2 generally overestimate the analogous CCSD(T) contributions. Taking these factors together, we conclude that the binding energies for non-covalently bonded systems can be accurately determined using a composite method that combines CCSD(T)∕aug-cc-pVDZ with energy corrections obtained using basis set extrapolated MP2 (utilizing aug-cc-pVQZ and aug-cc-pVTZ basis sets), if all of the components are obtained by averaging the counterpoise and non-counterpoise energies. With such an approach, binding energies for the set of ten dimers are predicted with a mean absolute deviation of 0.02 kcal/mol, a maximum absolute deviation of 0.05 kcal/mol, and a mean percent absolute deviation of only 1.7%, relative to the (estimated) complete basis set CCSD(T) results. Use of this composite approach to an additional set of eight dimers gave binding energies to within 1% of previously published high-level data. It is also shown that binding within parallel and parallel-crossed conformations of naphthalene dimer is predicted by the composite approach to be 9% greater than that previously reported in the literature. The ability of some recently developed dispersion-corrected density-functional theory methods to predict the binding energies of the set of ten small dimers was also examined. © 2011 American Institute of Physics

  4. Density-functional tight-binding investigation of the structure, stability and material properties of nickel hydroxide nanotubes

    NASA Astrophysics Data System (ADS)

    Jahangiri, Soran; Mosey, Nicholas J.

    2018-01-01

    Nickel hydroxide is a material composed of two-dimensional layers that can be rolled up to form cylindrical nanotubes belonging to a class of inorganic metal hydroxide nanotubes that are candidates for applications in catalysis, energy storage, and microelectronics. The stabilities and other properties of this class of inorganic nanotubes have not yet been investigated in detail. The present study uses self-consistent-charge density-functional tight-binding calculations to examine the stabilities, mechanical properties, and electronic properties of nickel hydroxide nanotubes along with the energetics associated with the adsorption of water by these systems. The tight-binding model was parametrized for this system based on the results of first-principles calculations. The stabilities of the nanotubes were examined by calculating strain energies and performing molecular dynamics simulations. The results indicate that single-walled nickel hydroxide nanotubes are stable at room temperature, which is consistent with experimental investigations. The nanotubes possess size-dependent mechanical properties that are similar in magnitude to those of other inorganic nanotubes. The electronic properties of the nanotubes were also found to be size-dependent and small nickel oxyhydroxide nanotubes are predicted to be semiconductors. Despite this size-dependence, both the mechanical and electronic properties were found to be almost independent of the helical structure of the nanotubes. The calculations also show that water molecules have higher adsorption energies when binding to the interior of the nickel hydroxide nanotubes when compared to adsorption in nanotubes formed from other two-dimensional materials such as graphene. The increased adsorption energy is due to the hydrophilic nature of nickel hydroxide. Due to the broad applications of nickel hydroxide, the nanotubes investigated here are also expected to be used in catalysis, electronics, and clean energy production.

  5. Single d-metal atoms on F(s) and F(s+) defects of MgO(001): a theoretical study across the periodic table.

    PubMed

    Neyman, Konstantin M; Inntam, Chan; Matveev, Alexei V; Nasluzov, Vladimir A; Rösch, Notker

    2005-08-24

    Single d-metal atoms on oxygen defects F(s) and F(s+) of the MgO(001) surface were studied theoretically. We employed an accurate density functional method combined with cluster models, embedded in an elastic polarizable environment, and we applied two gradient-corrected exchange-correlation functionals. In this way, we quantified how 17 metal atoms from groups 6-11 of the periodic table (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; and Cr, Mo, W) interact with terrace sites of MgO. We found bonding with F(s) and F(s+) defects to be in general stronger than that with O2- sites, except for Mn-, Re-, and Fe/F(s) complexes. In M/F(s) systems, electron density is accumulated on the metal center in a notable fashion. The binding energy on both kinds of O defects increases from 3d- to 4d- to 5d-atoms of a given group, at variance with the binding energy trend established earlier for the M/O2- complexes, 4d < 3d < 5d. Regarding the evolution of the binding energy along a period, group 7 atoms are slightly destabilized compared to their group 6 congeners in both the F(s) and F(s+) complexes; for later transition elements, the binding energy increases gradually up to group 10 and finally decreases again in group 11, most strongly on the F(s) site. This trend is governed by the negative charge on the adsorbed atoms. We discuss implications for an experimental detection of metal atoms on oxide supports based on computed core-level energies.

  6. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies

    NASA Astrophysics Data System (ADS)

    Pang, Yuan-Ping; Kozikowski, Alan P.

    1994-12-01

    We have performed docking studies with the SYSDOC program on acetylcholinesterase (AChE) to predict the binding sites in AChE of huperzine A (HA), which is a potent and selective, reversible inhibitor of AChE. The unique aspects of our docking studies include the following: (i) Molecular flexibility of the guest and the host is taken into account, which permits both to change their conformations upon binding. (ii) The binding energy is evaluated by a sum of energies of steric, electrostatic and hydrogen bonding interactions. In the energy calculation no grid approximation is used, and all hydrogen atoms of the system are treated explicitly. (iii) The energy of cation-π interactions between the guest and the host, which is important in the binding of AChE, is included in the calculated binding energy. (iv) Docking is performed in all regions of the host's binding cavity. Based on our docking studies and the pharmacological results reported for HA and its analogs, we predict that HA binds to the bottom of the binding cavity of AChE (the gorge) with its ammonium group interacting with Trp84, Phe330, Glu199 and Asp72 (catalytic site). At the the opening of the gorge with its ammonium group partially interacting with Trp279 (peripheral site). At the catalytic site, three partially overlapping subsites of HA were identified which might provide a dynamic view of binding of HA to the catalytic site.

  7. A New Concept to Reveal Protein Dynamics Based on Energy Dissipation

    PubMed Central

    Ma, Cheng-Wei; Xiu, Zhi-Long; Zeng, An-Ping

    2011-01-01

    Protein dynamics is essential for its function, especially for intramolecular signal transduction. In this work we propose a new concept, energy dissipation model, to systematically reveal protein dynamics upon effector binding and energy perturbation. The concept is applied to better understand the intramolecular signal transduction during allostery of enzymes. The E. coli allosteric enzyme, aspartokinase III, is used as a model system and special molecular dynamics simulations are designed and carried out. Computational results indicate that the number of residues affected by external energy perturbation (i.e. caused by a ligand binding) during the energy dissipation process shows a sigmoid pattern. Using the two-state Boltzmann equation, we define two parameters, the half response time and the dissipation rate constant, which can be used to well characterize the energy dissipation process. For the allostery of aspartokinase III, the residue response time indicates that besides the ACT2 signal transduction pathway, there is another pathway between the regulatory site and the catalytic site, which is suggested to be the β15-αK loop of ACT1. We further introduce the term “protein dynamical modules” based on the residue response time. Different from the protein structural modules which merely provide information about the structural stability of proteins, protein dynamical modules could reveal protein characteristics from the perspective of dynamics. Finally, the energy dissipation model is applied to investigate E. coli aspartokinase III mutations to better understand the desensitization of product feedback inhibition via allostery. In conclusion, the new concept proposed in this paper gives a novel holistic view of protein dynamics, a key question in biology with high impacts for both biotechnology and biomedicine. PMID:22022616

  8. Noncovalent Interactions of Tiopronin-Protected Gold Nanoparticles with DNA: Two Methods to Quantify Free Energy of Binding

    PubMed Central

    Prado-Gotor, R.; Grueso, E.

    2014-01-01

    The binding of gold nanoparticles capped with N-(2-mercaptopropionyl)glycine (Au@tiopronin) with double-stranded DNA has been investigated and quantified in terms of free energies by using two different approaches. The first approach follows the DNA conformational changes induced by gold nanoparticles using the CD technique. The second methodology consists in the use of pyrene-1-carboxaldehyde as a fluorescent probe. This second procedure implies the determination of the “true” free energy of binding of the probe with DNA, after corrections through solubility measurements. Working at different salt concentrations, the nonelectrostatic and electrostatic components of the binding free energy have been separated. The results obtained revealed that the binding is of nonelectrostatic character, fundamentally. The procedure used in this work could be extended to quantify the binding affinity of other AuNPs/DNA systems. PMID:24587710

  9. Study of degenerate four-quark states with SU(2) lattice Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Green, A. M.; Lukkarinen, J.; Pennanen, P.; Michael, C.

    1996-01-01

    The energies of four-quark states are calculated for geometries in which the quarks are situated on the corners of a series of tetrahedra and also for geometries that correspond to gradually distorting these tetrahedra into a plane. The interest in tetrahedra arises because they are composed of three degenerate partitions of the four quarks into two two-quark color singlets. This is an extension of earlier work showing that geometries with two degenerate partitions (e.g., squares) experience a large binding energy. It is now found that even larger binding energies do not result, but that for the tetrahedra the ground and first excited states become degenerate in energy. The calculation is carried out using SU(2) for static quarks in the quenched approximation with β=2.4 on a 163×32 lattice. The results are analyzed using the correlation matrix between different Euclidean times and the implications of these results are discussed for a model based on two-quark potentials.

  10. Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy.

    PubMed

    Stadnik, Yevgeny V

    2018-06-01

    The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1/r^{5} potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.

  11. Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stadnik, Yevgeny V.

    2018-06-01

    The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1 /r5 potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s -wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.

  12. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing

    PubMed Central

    Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric

    2017-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457

  13. Using the fast fourier transform in binding free energy calculations.

    PubMed

    Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L

    2018-04-30

    According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Molecular mechanics and dynamics studies on the interaction of gallic acid with collagen-like peptides

    NASA Astrophysics Data System (ADS)

    Madhan, B.; Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, Balachandran; Ramasami, T.

    2001-10-01

    Molecular modelling approaches have been used to understand the interaction of collagen-like peptides with gallic acid, which mimic vegetable tanning processes involved in protein stabilization. Several interaction sites have been identified and the binding energies of the complexes have been calculated. The calculated binding energies for various geometries are in the range 6-13 kcal/mol. It is found that some complexes exhibit hydrogen bonding, and electrostatic interaction plays a dominant role in the stabilization of the peptide by gallic acid. The π-OH type of interaction is also observed in the peptide stabilization. Molecular dynamics (MD) simulation for 600 ps revealed the possibility of hydrogen bonding between the collagen-like peptide and gallic acid.

  15. Engineering Transition-Metal-Coated Tungsten Carbides for Efficient and Selective Electrochemical Reduction of CO2 to Methane.

    PubMed

    Wannakao, Sippakorn; Artrith, Nongnuch; Limtrakul, Jumras; Kolpak, Alexie M

    2015-08-24

    The design of catalysts for CO2 reduction is challenging because of the fundamental relationships between the binding energies of the reaction intermediates. Metal carbides have shown promise for transcending these relationships and enabling low-cost alternatives. Herein, we show that directional bonding arising from the mixed covalent/metallic character plays a critical role in governing the surface chemistry. This behavior can be described by consideration of individual d-band components. We use this model to predict efficient catalysts based on tungsten carbide with a sub-monolayer of iron adatoms. Our approach can be used to predict site-preference and binding-energy trends for complex catalyst surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Inner reorganization limiting electron transfer controlled hydrogen bonding: intra- vs. intermolecular effects.

    PubMed

    Martínez-González, Eduardo; Frontana, Carlos

    2014-05-07

    In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.

  17. On the role of electrostatics in protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Witham, Shawn; Alexov, Emil

    2011-06-01

    The role of electrostatics in protein-protein interactions and binding is reviewed in this paper. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and the basic electrostatic effects occurring upon the formation of the complex are discussed. The effect of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated which indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartments. The similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity.

  18. On the role of electrostatics on protein-protein interactions

    PubMed Central

    Zhang, Zhe; Witham, Shawn; Alexov, Emil

    2011-01-01

    The role of electrostatics on protein-protein interactions and binding is reviewed in this article. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and basic electrostatic effects occurring upon the formation of the complex are discussed. The role of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated and indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartment. At the end, the similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity. PMID:21572182

  19. Structure-activity relationships of diphenyl-ether as protoporphyrinogen oxidase inhibitors: insights from computational simulations

    NASA Astrophysics Data System (ADS)

    Hao, Ge-Fei; Tan, Ying; Yu, Ning-Xi; Yang, Guang-Fu

    2011-03-01

    Protoporphyrinogen oxidase (PPO, EC 1.3.3.4), which has been identified as a significant target for a great family of herbicides with diverse chemical structures, is the last common enzyme responsible for the seventh step in the biosynthetic pathway to heme and chlorophyll. Among the existing PPO inhibitors, diphenyl-ether is the first commercial family of PPO inhibitors and used as agriculture herbicides for decades. Most importantly, diphenyl-ether inhibitors have been found recently to possess the potential in Photodynamic therapy (PDT) to treat cancer. Herein, molecular dynamics simulations, approximate free energy calculations and hydrogen bond energy calculations were integrated together to uncover the structure-activity relationships of this type of PPO inhibitors. The calculated binding free energies are correlated very well with the values derived from the experimental k i data. According to the established computational models and the results of approximate free energy calculation, the substitution effects at different position were rationalized from the view of binding free energy. Some outlier ( e.g. LS) in traditional QSAR study can also be explained reasonably. In addition, the hydrogen bond energy calculation and interaction analysis results indicated that the carbonyl oxygen on position-9 and the NO2 group at position-8 are both vital for the electrostatic interaction with Arg98, which made a great contribution to the binding free energy. These insights from computational simulations are not only helpful for understanding the molecular mechanism of PPO-inhibitor interactions, but also beneficial to the future rational design of novel promising PPO inhibitors.

  20. Pseudopotential theoretical study of the alkali metals under arbitrary pressure: Density, bulk modulus, and shear moduli

    NASA Astrophysics Data System (ADS)

    Rasky, Daniel J.; Milstein, Frederick

    1986-02-01

    Milstein and Hill previously derived formulas for computing the bulk and shear moduli, κ, μ, and μ', at arbitrary pressures, for cubic crystals in which interatomic interaction energies are modeled by pairwise functions, and they carried out the moduli computations using the complete family of Morse functions. The present study extends their work to a pseudopotential description of atomic binding. Specifically: (1) General formulas are derived for determining these moduli under hydrostatic loading within the framework of a pseudopotential model. (2) A two-parameter pseudopotential model is used to describe atomic binding of the alkali metals, and the two parameters are determined from experimental data (the model employs the Heine-Abarenkov potential with the Taylor dielectric function). (3) For each alkali metal (Li, Na, K, Rb, and Cs), the model is used to compute the pressure-versus-volume behavior and, at zero pressure, the binding energy, the density, and the elastic moduli and their pressure derivatives; the theoretical behavior is found to be in excellent agreement with experiment. (4) Calculations are made of κ, μ, and μ' of the bcc alkali metals over wide ranges of hydrostatic compression and expansion. (5) The pseudopotential results are compared with those of arbitrary-central-force models (wherein κ-(2/3)μ=μ'+2P) and with the specific Morse-function results. The pressures, bulk moduli, and zero-pressure shear moduli (as determined for the Morse and pseudopotential models) are in excellent agreement, but important differences appear in the shear moduli under high compressions. The computations in the present paper are for the bcc metals; a subsequent paper will extend this work to include both the bcc and fcc structures, at compressions and expansions where elastic stability or lattice cohesion is, in practice, lost.

  1. E1 and M1 γ-strength functions in 144Nd

    DOE PAGES

    Voinov, A. V.; Grimes, S. M.

    2015-12-14

    Both E1 and M1 γ-strength functions below the neutron separation energy were analyzed based on experimental data from 143Nd(n,γ) 144Nd and 143Nd(n,γα) 140Ce reactions. It is confirmed that the commonly adopted E1 model based on the temperature dependence of the width of the giant dipole resonance works well. The popular M1 strength function due to the spin-flip magnetic resonance located near the neutron binding energy is not capable of reproducing experimental data. As a result, the low-energy enhancement of the M1 strength or the energy-independent model of Weisskopf, both leading to the low-energy strength sizable to E1 one, fit experimentalmore » data best.« less

  2. Universal binding energy relations in metallic adhesion

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. J.

    1984-01-01

    Rose, Smith, and Ferrante have discovered scaling relations which map the adhesive binding energy calculated by Ferrante and Smith onto a single universal binding energy curve. These binding energies are calculated for all combinations of Al(111), Zn(0001), Mg(0001), and Na(110) in contact. The scaling involves normalizing the energy by the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. Rose et al. have also found that the calculated cohesive energies of K, Ba, Cu, Mo, and Sm scale by similar simple relations, suggesting the universal relation may be more general than for the simple free electron metals for which it was derived. In addition, the scaling length was defined more generally in order to relate it to measurable physical properties. Further this universality can be extended to chemisorption. A simple and yet quite accurate prediction of a zero temperature equation of state (volume as a function of pressure for metals and alloys) is presented. Thermal expansion coefficients and melting temperatures are predicted by simple, analytic expressions, and results compare favorably with experiment for a broad range of metals.

  3. Exciton size and binding energy limitations in one-dimensional organic materials.

    PubMed

    Kraner, S; Scholz, R; Plasser, F; Koerner, C; Leo, K

    2015-12-28

    In current organic photovoltaic devices, the loss in energy caused by the charge transfer step necessary for exciton dissociation leads to a low open circuit voltage, being one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy to a value of the order of thermal energy, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley-Queisser limit. We determine the size of the excitons for different organic molecules and polymers by time dependent density functional theory calculations. For optically relevant transitions, the exciton size saturates around 0.7 nm for one-dimensional molecules with a size longer than about 4 nm. For the ladder-type polymer poly(benzimidazobenzophenanthroline), we obtain an exciton binding energy of about 0.3 eV, serving as a lower limit of the exciton binding energy for the organic materials investigated. Furthermore, we show that charge transfer transitions increase the exciton size and thus identify possible routes towards a further decrease of the exciton binding energy.

  4. Quantitative structure-property relationship modeling of beta-cyclodextrin complexation free energies.

    PubMed

    Katritzky, Alan R; Fara, Dan C; Yang, Hongfang; Karelson, Mati; Suzuki, Takahiro; Solov'ev, Vitaly P; Varnek, Alexandre

    2004-01-01

    CODESSA-PRO was used to model binding energies for 1:1 complexation systems between 218 organic guest molecules and beta-cyclodextrin, using a seven-parameter equation with R2 = 0.796 and Rcv2 = 0.779. Fragment-based TRAIL calculations gave a better fit with R2 = 0.943 and Rcv2 = 0.848 for 195 data points in the database. The advantages and disadvantages of each approach are discussed, and it is concluded that a combination of the two approaches has much promise from a practical viewpoint.

  5. Modeling of protein binary complexes using structural mass spectrometry data

    PubMed Central

    Kamal, J.K. Amisha; Chance, Mark R.

    2008-01-01

    In this article, we describe a general approach to modeling the structure of binary protein complexes using structural mass spectrometry data combined with molecular docking. In the first step, hydroxyl radical mediated oxidative protein footprinting is used to identify residues that experience conformational reorganization due to binding or participate in the binding interface. In the second step, a three-dimensional atomic structure of the complex is derived by computational modeling. Homology modeling approaches are used to define the structures of the individual proteins if footprinting detects significant conformational reorganization as a function of complex formation. A three-dimensional model of the complex is constructed from these binary partners using the ClusPro program, which is composed of docking, energy filtering, and clustering steps. Footprinting data are used to incorporate constraints—positive and/or negative—in the docking step and are also used to decide the type of energy filter—electrostatics or desolvation—in the successive energy-filtering step. By using this approach, we examine the structure of a number of binary complexes of monomeric actin and compare the results to crystallographic data. Based on docking alone, a number of competing models with widely varying structures are observed, one of which is likely to agree with crystallographic data. When the docking steps are guided by footprinting data, accurate models emerge as top scoring. We demonstrate this method with the actin/gelsolin segment-1 complex. We also provide a structural model for the actin/cofilin complex using this approach which does not have a crystal or NMR structure. PMID:18042684

  6. A flexible docking scheme to explore the binding selectivity of PDZ domains.

    PubMed

    Gerek, Z Nevin; Ozkan, S Banu

    2010-05-01

    Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using ROSETTALIGAND, we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density-95/Dlg/ZO-1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 A. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately.

  7. A flexible docking scheme to explore the binding selectivity of PDZ domains

    PubMed Central

    Gerek, Z Nevin; Ozkan, S Banu

    2010-01-01

    Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using RosettaLigand, we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density-95/Dlg/ZO-1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 Å. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately. PMID:20196074

  8. An overview on the delivery of antitumor drug doxorubicin by carrier proteins.

    PubMed

    Agudelo, D; Bérubé, G; Tajmir-Riahi, H A

    2016-07-01

    Serum proteins play an increasing role as drug carriers in the clinical settings. In this review, we have compared the binding modalities of anticancer drug doxorubicin (DOX) to three model carrier proteins, human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (β-LG) in order to determine the potential application of these model proteins in DOX delivery. Molecular modeling studies showed stronger binding of DOX with HSA than BSA and β-LG with the free binding energies of -10.75 (DOX-HSA), -9.31 (DOX-BSA) and -8.12kcal/mol (DOX-β-LG). Extensive H-boding network stabilizes DOX-protein conjugation and played a major role in drug-protein complex formation. DOX complexation induced major alterations of HSA and BSA conformations, while did not alter β-LG secondary structure. The literature review shows that these proteins can potentially be used for delivery of DOX in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The effect of desolvation on the binding of inhibitors to HIV-1 protease and cyclin-dependent kinases: Causes of resistance.

    PubMed

    Fong, Clifford W

    2016-08-01

    Studies of the cyclin-dependent kinase inhibitors and HIV-1 protease inhibitors have confirmed that ligand-protein binding is dependent on desolvation effects. It has been found that a four parameter linear model incorporating desolvation energy, lipophilicity, dipole moment and molecular volume of the ligands is a good model to describe the binding between ligands and kinases or proteases. The resistance shown by MDR proteases to the anti-viral drugs is multi-faceted involving varying changes in desolvation, lipophilicity and dipole moment interaction compared to the non-resistant protease. Desolvation has been shown to be the dominant factor influencing the effect of inhibitors against the cyclin-dependent kinases, but lipophilicity and dipole moment are also significant factors. The model can differentiate between the inhibitory activity of CDK2/cycE, CDK1/cycB and CDK4/cycD enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Modelling free and oxide-supported nanoalloy catalysts: comparison of bulk-immiscible Pd-Ir and Au-Rh systems and influence of a TiO2 support.

    PubMed

    Demiroglu, Ilker; Fan, Tian-E; Li, Z Y; Yuan, Jun; Liu, Tun-Dong; Piccolo, Laurent; Johnston, Roy L

    2018-05-24

    The relative stabilities of different chemical arrangements of Pd-Ir and Au-Rh nanoalloys (and their pure metal equivalents) are studied, for a range of compositions, for fcc truncated octahedral 38- and 79-atom nanoparticles (NPs). For the 38-atom NPs, comparisons are made of pure and alloy NPs supported on a TiO2(110) slab. The relative energies of different chemical arrangements are found to be similar for Pd-Ir and Au-Rh nanoalloys, and depend on the cohesive and surface energies of the component metals. For supported nanoalloys on TiO2, the interaction with the surface is greater for Ir (Rh) than Pd (Au): most of the pure NPs and nanoalloys preferentially bind to the TiO2 surface in an edge-on configuration. When Au-Rh nanoalloys are bound to the surface through Au, the surface binding strength is lower than for the pure Au NP, while the Pd-surface interaction is found to be greater for Pd-Ir nanoalloys than for the pure Pd NP. However, alloying leads to very little difference in Ir-surface and Rh-surface binding strength. Comparing the relative stabilities of the TiO2-supported NPs, the results for Pd-Ir and Au-Rh nanoalloys are the same: supported Janus NPs, whose Ir (Rh) atoms bind to the TiO2 surface, bind most strongly to the surface, becoming closer in energy to the core-shell configurations (Ir@Pd and Rh@Au) which are favoured for the free particles.

  11. BFEE: A User-Friendly Graphical Interface Facilitating Absolute Binding Free-Energy Calculations.

    PubMed

    Fu, Haohao; Gumbart, James C; Chen, Haochuan; Shao, Xueguang; Cai, Wensheng; Chipot, Christophe

    2018-03-26

    Quantifying protein-ligand binding has attracted the attention of both theorists and experimentalists for decades. Many methods for estimating binding free energies in silico have been reported in recent years. Proper use of the proposed strategies requires, however, adequate knowledge of the protein-ligand complex, the mathematical background for deriving the underlying theory, and time for setting up the simulations, bookkeeping, and postprocessing. Here, to minimize human intervention, we propose a toolkit aimed at facilitating the accurate estimation of standard binding free energies using a geometrical route, coined the binding free-energy estimator (BFEE), and introduced it as a plug-in of the popular visualization program VMD. Benefitting from recent developments in new collective variables, BFEE can be used to generate the simulation input files, based solely on the structure of the complex. Once the simulations are completed, BFEE can also be utilized to perform the post-treatment of the free-energy calculations, allowing the absolute binding free energy to be estimated directly from the one-dimensional potentials of mean force in simulation outputs. The minimal amount of human intervention required during the whole process combined with the ergonomic graphical interface makes BFEE a very effective and practical tool for the end-user.

  12. Models of charge pair generation in organic solar cells.

    PubMed

    Few, Sheridan; Frost, Jarvist M; Nelson, Jenny

    2015-01-28

    Efficient charge pair generation is observed in many organic photovoltaic (OPV) heterojunctions, despite nominal electron-hole binding energies which greatly exceed the average thermal energy. Empirically, the efficiency of this process appears to be related to the choice of donor and acceptor materials, the resulting sequence of excited state energy levels and the structure of the interface. In order to establish a suitable physical model for the process, a range of different theoretical studies have addressed the nature and energies of the interfacial states, the energetic profile close to the heterojunction and the dynamics of excited state transitions. In this paper, we review recent developments underpinning the theory of charge pair generation and phenomena, focussing on electronic structure calculations, electrostatic models and approaches to excited state dynamics. We discuss the remaining challenges in achieving a predictive approach to charge generation efficiency.

  13. Toward an Experimental Quantum Chemistry: Exploring a New Energy Partitioning.

    PubMed

    Rahm, Martin; Hoffmann, Roald

    2015-08-19

    Following the work of L. C. Allen, this work begins by relating the central chemical concept of electronegativity with the average binding energy of electrons in a system. The average electron binding energy, χ̅, is in principle accessible from experiment, through photoelectron and X-ray spectroscopy. It can also be estimated theoretically. χ̅ has a rigorous and understandable connection to the total energy. That connection defines a new kind of energy decomposition scheme. The changing total energy in a reaction has three primary contributions to it: the average electron binding energy, the nuclear-nuclear repulsion, and multielectron interactions. This partitioning allows one to gain insight into the predominant factors behind a particular energetic preference. We can conclude whether an energy change in a transformation is favored or resisted by collective changes to the binding energy of electrons, the movement of nuclei, or multielectron interactions. For example, in the classical formation of H2 from atoms, orbital interactions dominate nearly canceling nuclear-nuclear repulsion and two-electron interactions. While in electron attachment to an H atom, the multielectron interactions drive the reaction. Looking at the balance of average electron binding energy, multielectron, and nuclear-nuclear contributions one can judge when more traditional electronegativity arguments can be justifiably invoked in the rationalization of a particular chemical event.

  14. Using DNA mechanics to predict in vitro nucleosome positions and formation energies

    PubMed Central

    Morozov, Alexandre V.; Fortney, Karissa; Gaykalova, Daria A.; Studitsky, Vasily M.; Widom, Jonathan; Siggia, Eric D.

    2009-01-01

    In eukaryotic genomes, nucleosomes function to compact DNA and to regulate access to it both by simple physical occlusion and by providing the substrate for numerous covalent epigenetic tags. While competition with other DNA-binding factors and action of chromatin remodeling enzymes significantly affect nucleosome formation in vivo, nucleosome positions in vitro are determined by steric exclusion and sequence alone. We have developed a biophysical model, DNABEND, for the sequence dependence of DNA bending energies, and validated it against a collection of in vitro free energies of nucleosome formation and a set of in vitro nucleosome positions mapped at high resolution. We have also made a first ab initio prediction of nucleosomal DNA geometries, and checked its accuracy against the nucleosome crystal structure. We have used DNABEND to design both strong and weak histone- binding sequences, and measured the corresponding free energies of nucleosome formation. We find that DNABEND can successfully predict in vitro nucleosome positions and free energies, providing a physical explanation for the intrinsic sequence dependence of histone–DNA interactions. PMID:19509309

  15. Application of the docking program SOL for CSAR benchmark.

    PubMed

    Sulimov, Alexey V; Kutov, Danil C; Oferkin, Igor V; Katkova, Ekaterina V; Sulimov, Vladimir B

    2013-08-26

    This paper is devoted to results obtained by the docking program SOL and the post-processing program DISCORE at the CSAR benchmark. SOL and DISCORE programs are described. SOL is the original docking program developed on the basis of the genetic algorithm, MMFF94 force field, rigid protein, precalculated energy grid including desolvation in the frame of simplified GB model, vdW, and electrostatic interactions and taking into account the ligand internal strain energy. An important SOL feature is the single- or multi-processor performance for up to hundreds of CPUs. DISCORE improves the binding energy scoring by the local energy optimization of the ligand docked pose and a simple linear regression on the base of available experimental data. The docking program SOL has demonstrated a good ability for correct ligand positioning in the active sites of the tested proteins in most cases of CSAR exercises. SOL and DISCORE have not demonstrated very exciting results on the protein-ligand binding free energy estimation. Nevertheless, for some target proteins, SOL and DISCORE were among the first in prediction of inhibition activity. Ways to improve SOL and DISCORE are discussed.

  16. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane

    NASA Astrophysics Data System (ADS)

    Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S.; Gray, C. G.

    2008-03-01

    Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05±0.39kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.

  17. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane.

    PubMed

    Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S; Gray, C G

    2008-03-01

    Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05+/-0.39 kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.

  18. Atomic Mass and Nuclear Binding Energy for I-131 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-131 (Iodine, atomic number Z = 53, mass number A = 131).

  19. Atomic Mass and Nuclear Binding Energy for F-22 (Fluorine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-22 (Fluorine, atomic number Z = 9, mass number A = 22).

  20. Investigation of electronic transport through a ladder-like graphene nanoribbon including random distributed impurities

    NASA Astrophysics Data System (ADS)

    Esmaili, Esmat; Mardaani, Mohammad; Rabani, Hassan

    2018-01-01

    The electronic transport of a ladder-like graphene nanoribbon which the on-site or hopping energies of a small part of it can be random is modeled by using the Green's function technique within the nearest neighbor tight-binding approach. We employ a unitary transformation in order to convert the Hamiltonian of the nanoribbon to the Hamiltonian of a tight-binding ladder-like network. In this case, the disturbed part of the system includes the second neighbor hopping interactions. While, the converted Hamiltonian of each ideal part is equivalent to the Hamiltonian of two periodic on-site chains. Therefore, we can insert the self-energies of the alternative on-site tight-binding chains to the inverse of the Green's function matrix of the ladder-like part. In this viewpoint, the conductance is constructed from two trans and cis contributions. The results show that increasing the disorder strength causes the increase and decrease of the conductance of the trans and cis contributions, respectively.

Top