Sample records for binding potential measured

  1. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.

    PubMed

    Patching, Simon G

    2014-01-01

    Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effects of flow changes on radiotracer binding: Simultaneous measurement of neuroreceptor binding and cerebral blood flow modulation.

    PubMed

    Sander, Christin Y; Mandeville, Joseph B; Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M; Rosen, Bruce R

    2017-01-01

    The potential effects of changes in blood flow on the delivery and washout of radiotracers has been an ongoing question in PET bolus injection studies. This study provides practical insight into this topic by experimentally measuring cerebral blood flow (CBF) and neuroreceptor binding using simultaneous PET/MRI. Hypercapnic challenges (7% CO 2 ) were administered to non-human primates in order to induce controlled increases in CBF, measured with pseudo-continuous arterial spin labeling. Simultaneously, dopamine D 2 /D 3 receptor binding of [ 11 C]raclopride or [ 18 F]fallypride was monitored with dynamic PET. Experiments showed that neither time activity curves nor quantification of binding through binding potentials ( BP ND ) were measurably affected by CBF increases, which were larger than two-fold. Simulations of experimental procedures showed that even large changes in CBF should have little effect on the time activity curves of radiotracers, given a set of realistic assumptions. The proposed method can be applied to experimentally assess the flow sensitivity of other radiotracers. Results demonstrate that CBF changes, which often occur due to behavioral tasks or pharmacological challenges, do not affect PET [ 11 C]raclopride or [ 18 F]fallypride binding studies and their quantification. The results from this study suggest flow effects may have limited impact on many PET neuroreceptor tracers with similar properties.

  3. Comparison of Relative Binding Affinities for Trout and Human Estrogen Receptor Based upon Different Competitive Binding Assays, oral

    EPA Science Inventory

    The US EPA has been mandated to screen industrial chemicals and pesticides for potential endocrine activity. To evaluate the potential for chemicals to cause endocrine disruption in fish we have previously measured the affinity of a number of chemicals for the rainbow trout estr...

  4. Mononuclear Pd(II) complex as a new therapeutic agent: Synthesis, characterization, biological activity, spectral and DNA binding approaches

    NASA Astrophysics Data System (ADS)

    Saeidifar, Maryam; Mirzaei, Hamidreza; Ahmadi Nasab, Navid; Mansouri-Torshizi, Hassan

    2017-11-01

    The binding ability between a new water-soluble palladium(II) complex [Pd(bpy)(bez-dtc)]Cl (where bpy is 2,2‧-bipyridine and bez-dtc is benzyl dithiocarbamate), as an antitumor agent, and calf thymus DNA was evaluated using various physicochemical methods, such as UV-Vis absorption, Competitive fluorescence studies, viscosity measurement, zeta potential and circular dichroism (CD) spectroscopy. The Pd(II) complex was synthesized and characterized using elemental analysis, molar conductivity measurements, FT-IR, 1H NMR, 13C NMR and electronic spectra studies. The anticancer activity against HeLa cell lines demonstrated lower cytotoxicity than cisplatin. The binding constants and the thermodynamic parameters were determined at different temperatures (300 K, 310 K and 320 K) and shown that the complex can bind to DNA via electrostatic forces. Furthermore, this result was confirmed by the viscosity and zeta potential measurements. The CD spectral results demonstrated that the binding of Pd(II) complex to DNA induced conformational changes in DNA. We hope that these results will provide a basis for further studies and practical clinical use of anticancer drugs.

  5. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: A COMPARISON OF THREE MODELS

    EPA Science Inventory

    A comparative analysis of how three COREPA models for ER binding affinity performed when used to predict potential estrogen receptor (ER) ligands is presented. Models I and II were developed based on training sets of 232 and 279 rat ER binding affinity measurements, respectively....

  6. Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm.

    PubMed

    Meyer, Jeffrey H; McMain, Shelley; Kennedy, Sidney H; Korman, Lorne; Brown, Gregory M; DaSilva, Jean N; Wilson, Alan A; Blak, Thomas; Eynan-Harvey, Rahel; Goulding, Verdell S; Houle, Sylvain; Links, Paul

    2003-01-01

    Dysfunctional attitudes are negatively biased assumptions and beliefs regarding oneself, the world, and the future. In healthy subjects, increasing serotonin (5-HT) agonism with a single dose of d-fenfluramine lowered dysfunctional attitudes. To investigate whether the converse, a low level of 5-HT agonism, could account for the higher levels of dysfunctional attitudes observed in patients with major depression or with self-injurious behavior, cortex 5-HT(2) receptor binding potential and dysfunctional attitudes were measured in patients with major depressive disorder, patients with a history of self-injurious behavior, and healthy comparison subjects (5-HT(2) receptor density increases during 5-HT depletion). Twenty-nine healthy subjects were recruited to evaluate the effect of d-fenfluramine or of clonidine (control condition) on dysfunctional attitudes. Dysfunctional attitudes were assessed with the Dysfunctional Attitude Scale 1 hour before and 1 hour after drug administration. In a second experiment, dysfunctional attitudes and 5-HT(2) binding potential were measured in 22 patients with a major depressive episode secondary to major depressive disorder, 18 patients with a history of self-injurious behavior occurring outside of a depressive episode, and another 29 age-matched healthy subjects. Cortex 5-HT(2) binding potential was measured with [(18)F]setoperone positron emission tomography. In the first experiment, dysfunctional attitudes decreased after administration of d-fenfluramine. In the second experiment, in the depressed group, dysfunctional attitudes were positively associated with cortex 5-HT(2) binding potential, especially in Brodmann's area 9 (after adjustment for age). Depressed subjects with extremely dysfunctional attitudes had higher 5-HT(2) binding potential, compared to healthy subjects, particularly in Brodmann's area 9. Low levels of 5-HT agonism in the brain cortex may explain the severely pessimistic, dysfunctional attitudes associated with major depression.

  7. Diffusing colloidal probes of protein-carbohydrate interactions.

    PubMed

    Eichmann, Shannon L; Meric, Gulsum; Swavola, Julia C; Bevan, Michael A

    2013-02-19

    We present diffusing colloidal probe measurements of weak, multivalent, specific protein-polysaccharide interactions mediated by a competing monosaccharide. Specifically, we used integrated evanescent wave and video microscopy methods to monitor the three-dimensional Brownian excursions of conconavilin A (ConA) decorated colloids interacting with dextran-functionalized surfaces in the presence of glucose. Particle trajectories were interpreted as binding lifetime histograms, binding isotherms, and potentials of mean force. Binding lifetimes and isotherms showed clear trends of decreasing ConA-dextran-specific binding with increasing glucose concentration, consistent with expectations. Net potentials were accurately captured by superposition of a short-range, glucose-independent ConA-dextran repulsion and a longer-range, glucose-dependent dextran bridging attraction modeled as a harmonic potential. For glucose concentrations greater than 100 mM, the net ConA-dextran potential was found to have only a nonspecific repulsion, similar to that of bovine serum albumin (BSA) decorated colloids over dextran determined in control experiments. Our results demonstrate the first use of optical microscopy methods to quantify the connections between potentials of mean force and the binding behavior of ConA-decorated colloids on dextran-functionalized surfaces.

  8. Mucin Binding Reduces Colistin Antimicrobial Activity.

    PubMed

    Huang, Johnny X; Blaskovich, Mark A T; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G; Butler, Mark S; Montgomery, A Bruce; Cooper, Matthew A

    2015-10-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Adaptive Focused Acoustics (AFA) Improves the Performance of Microtiter Plate ELISAs.

    PubMed

    Green, David J; Rudd, Edwin A; Laugharn, James A

    2014-08-01

    We investigated the use of Adaptive Focused Acoustics (AFA) technology to improve the performance of microtiter plate enzyme-linked immunosorbent assays (ELISAs). Experiments were performed with commercially available AFA instrumentation and off-the-shelf 96-well microtiter plate sandwich ELISAs. AFA was applied over a range of acoustic energies, temperatures, and durations to the antigen/antibody binding step of an ELISA for measuring HIV-1 p24 in tissue culture samples. AFA-mediated antigen/antibody binding was enhanced up to 2-fold over passive binding at comparable temperatures and was superior or comparable at low temperature (8-10 °C) to passive binding at 37 °C. Lower nonspecific binding (NSB), lower inter- and intra-assay coefficients of variation (CVs), higher Z' factors, and lower limits of detection (LODs) were measured in AFA-mediated assays compared with conventional passive binding. In a more limited study, AFA enhancement of antigen/antibody binding and lower NSB was measured in an ELISA for measuring IGFBP-3 in human plasma. We conclude from this study that application of AFA to antigen/antibody binding steps in microtiter plate ELISAs can enhance key assay performance parameters, particularly Z' factors and LODs. These features render AFA-mediated binding assays potentially more useful in applications such as high-throughput screening and in vitro diagnostics than assays processed with conventional passive antigen/antibody binding steps. © 2014 Society for Laboratory Automation and Screening.

  10. Photoelectron spectroscopy of aqueous solutions: Streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X{sup −}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurahashi, Naoya; Horio, Takuya; Suzuki, Toshinori, E-mail: suzuki@kuchem.kyoto-u.ac.jp

    2014-05-07

    The streaming potentials of liquid beams of aqueous NaCl, NaBr, and NaI solutions are measured using soft X-ray, He(I), and laser multiphoton ionization photoelectron spectroscopy. Gaseous molecules are ionized in the vicinity of liquid beams and the photoelectron energy shifts are measured as a function of the distance between the ionization point and the liquid beam. The streaming potentials change their polarity with concentration of electrolytes, from which the singular points of concentration eliminating the streaming potentials are determined. The streaming currents measured in air also vanish at these concentrations. The electron binding energies of liquid water and I{sup −},more » Br{sup −}, and Cl{sup −} anions are revisited and determined more accurately than in previous studies.« less

  11. Electrochemical and spectroscopic studies of the interaction of proflavine with DNA.

    PubMed

    Aslanoglu, Mehmet

    2006-03-01

    The interaction of proflavine with herring sperm DNA has been investigated by cyclic voltammetry and UV-Vis spectroscopy as well as viscosity measurements. Shifts in the peak potentials in cyclic voltammetry, spectral changes in UV absorption titration, an increase in viscosity of DNA and the results of the effect of ionic strength on the binding constant strongly support the intercalation of proflavine into the DNA double helix. The binding constant for the interaction between proflavine and DNA was K = 2.32 (+/- 0.41) x 10(4) M(-1) and the binding site size was 2.07 (+/- 0.1) base pairs, estimated in voltammetric measurements. The value of the binding site size was determined to be closer to that expected for a planar intercalating agent. The standard Gibbs free-energy change is ca. -24.90 kJ/mol at 25 degrees C, indicating the spontaneity of the binding interaction. The binding constant determined by UV absorption measurements was K = 2.20 (+/- 0.48) x 10(4) M(-1), which is very close to the value determined by cyclic voltammetry assuming that the binding equilibrium is static.

  12. NMR diffusion and relaxation studies of 2-nitroimidazole and albumin interactions

    NASA Astrophysics Data System (ADS)

    Wijesekera, Dj; Willis, Scott A.; Gupta, Abhishek; Torres, Allan M.; Zheng, Gang; Price, William S.

    2018-03-01

    Nitroimidazole derivatives are of current interest in the development of hypoxia targeting agents and show potential in the establishment of quantitative measures of tumor hypoxia. In this study, the binding of 2-nitroimidazole to albumin was probed using NMR diffusion and relaxation measurements. Binding studies were conducted at three different protein concentrations (0.23, 0.30 and 0.38 mM) with drug concentrations ranging from 0.005-0.16 M at 298 K. Quantitative assessments of the binding model were made by evaluating the number of binding sites, n, and association constant, K. These were determined to be 21 ± 3 and 53 ± 4 M- 1, respectively.

  13. Affinity States of Striatal Dopamine D2 Receptors in Antipsychotic-Free Patients with Schizophrenia

    PubMed Central

    Kubota, Manabu; Nagashima, Tomohisa; Takano, Harumasa; Kodaka, Fumitoshi; Fujiwara, Hironobu; Takahata, Keisuke; Moriguchi, Sho; Higuchi, Makoto; Okubo, Yoshiro; Takahashi, Hidehiko; Ito, Hiroshi

    2017-01-01

    Abstract Background Dopamine D2 receptors are reported to have high-affinity (D2High) and low-affinity (D2Low) states. Although an increased proportion of D2High has been demonstrated in animal models of schizophrenia, few clinical studies have investigated this alteration of D2High in schizophrenia in vivo. Methods Eleven patients with schizophrenia, including 10 antipsychotic-naive and 1 antipsychotic-free individuals, and 17 healthy controls were investigated. Psychopathology was assessed by Positive and Negative Syndrome Scale, and a 5-factor model was used. Two radioligands, [11C]raclopride and [11C]MNPA, were employed to quantify total dopamine D2 receptor and D2High, respectively, in the striatum by measuring their binding potentials. Binding potential values of [11C]raclopride and [11C]MNPA and the binding potential ratio of [11C]MNPA to [11C]raclopride in the striatal subregions were statistically compared between the 2 diagnostic groups using multivariate analysis of covariance controlling for age, gender, and smoking. Correlations between binding potential and Positive and Negative Syndrome Scale scores were also examined. Results Multivariate analysis of covariance demonstrated a significant effect of diagnosis (schizophrenia and control) on the binding potential ratio (P=.018), although the effects of diagnosis on binding potential values obtained with either [11C]raclopride or [11C]MNPA were nonsignificant. Posthoc test showed that the binding potential ratio was significantly higher in the putamen of patients (P=.017). The Positive and Negative Syndrome Scale “depressed” factor in patients was positively correlated with binding potential values of both ligands in the caudate. Conclusions The present study indicates the possibilities of: (1) a higher proportion of D2High in the putamen despite unaltered amounts of total dopamine D2 receptors; and (2) associations between depressive symptoms and amounts of caudate dopamine D2 receptors in patients with schizophrenia. PMID:29016872

  14. A six-year longitudinal PET study of (+)-[11C]DTBZ binding to the VMAT2 in monkey brain.

    PubMed

    Kilbourn, Michael R; Koeppe, Robert A

    2017-12-01

    The longitudinal reproducibility of in vivo binding potential measures for [ 11 C]dihydrotetrabenazine ([ 11 C]DTBZ) binding to the vesicular monoamine transporter 2 (VMAT2) site in primate brain was examined using a unique dataset of repeated control PET imaging studies. Forty-one dynamic [ 11 C]DTBZ PET studies were completed in a single rhesus monkey. Imaging equipment (microPET P4), personnel, radiotracer characteristics (injected mass amounts, molar activity) and image data analysis (BP ND-Logan ) were consistent throughout the entire sequence of PET studies. Same day reproducibility of BP ND-Logan estimates of specific binding was very good (-3% and -7% changes) for two control-control sessions. Over the full 74 months, the average BP ND-Logan value for [ 11 C]DTBZ-PET studies was 4.19±0.52, for a variance of 12%. No age-dependent change in binding potentials was observed over the six-year period. If the technical variables associated with PET scanner are consistently maintained, including PET scanner, imaging procedures and radiotracer preparation, in vivo biochemistry can be reproducibly measured in the primate brain over a multi-year period of time. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  16. Plasmonic Nanoholes in a Multi-Channel Microarray Format for Parallel Kinetic Assays and Differential Sensing

    PubMed Central

    Im, Hyungsoon; Lesuffleur, Antoine; Lindquist, Nathan C.; Oh, Sang-Hyun

    2009-01-01

    We present nanohole arrays in a gold film integrated with a 6-channel microfluidic chip for parallel measurements of molecular binding kinetics. Surface plasmon resonance effects in the nanohole arrays enable real-time label-free measurements of molecular binding events in each channel, while adjacent negative reference channels can record measurement artifacts such as bulk solution index changes, temperature variations, or changing light absorption in the liquid. Using this platform, streptavidin-biotin specific binding kinetics are measured at various concentrations with negative controls. A high-density microarray of 252 biosensing pixels is also demonstrated with a packing density of 106 sensing elements/cm2, which can potentially be coupled with a massively parallel array of microfluidic channels for protein microarray applications. PMID:19284776

  17. Fibrinogen-binding and platelet-aggregation activities of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein.

    PubMed

    Collins, James; van Pijkeren, Jan-Peter; Svensson, Lisbeth; Claesson, Marcus J; Sturme, Mark; Li, Yin; Cooney, Jakki C; van Sinderen, Douwe; Walker, Alan W; Parkhill, Julian; Shannon, Oonagh; O'Toole, Paul W

    2012-09-01

    The marketplace for probiotic foods is burgeoning, measured in billions of euro per annum. It is imperative, however, that all bacterial strains are fully assessed for human safety. The ability to bind fibrinogen is considered a potential pathogenicity trait that can lead to platelet aggregation, serious medical complications, and in some instances, death. Here we examined strains from species frequently used as probiotics for their ability to bind human fibrinogen. Only one strain (CCUG 47825), a Lactobacillus salivarius isolate from a case of septicaemia, was found to strongly adhere to fibrinogen. Furthermore, this strain was found to aggregate human platelets at a level comparable to the human pathogen Staphylococcus aureus. By sequencing the genome of CCUG 47825, we were able to identify candidate genes responsible for fibrinogen binding. Complementing the genetic analysis with traditional molecular microbiological techniques enabled the identification of the novel fibrinogen receptor, CCUG_2371. Although only strain CCUG 47825 bound fibrinogen under laboratory conditions, homologues of the novel fibrinogen binding gene CCUG_2371 are widespread among L. salivarius strains, maintaining their potential to bind fibrinogen if expressed. We highlight the fact that without a full genetic analysis of strains for human consumption, potential pathogenicity traits may go undetected. © 2012 Blackwell Publishing Ltd.

  18. [11C]Harmine Binding to Brain Monoamine Oxidase A: Test-Retest Properties and Noninvasive Quantification.

    PubMed

    Zanderigo, Francesca; D'Agostino, Alexandra E; Joshi, Nandita; Schain, Martin; Kumar, Dileep; Parsey, Ramin V; DeLorenzo, Christine; Mann, J John

    2018-02-08

    Inhibition of the isoform A of monoamine oxidase (MAO-A), a mitochondrial enzyme catalyzing deamination of monoamine neurotransmitters, is useful in treatment of depression and anxiety disorders. [ 11 C]harmine, a MAO-A PET radioligand, has been used to study mood disorders and antidepressant treatment. However, [ 11 C]harmine binding test-retest characteristics have to date only been partially investigated. Furthermore, since MAO-A is ubiquitously expressed, no reference region is available, thus requiring arterial blood sampling during PET scanning. Here, we investigate [ 11 C]harmine binding measurements test-retest properties; assess effects of using a minimally invasive input function estimation on binding quantification and repeatability; and explore binding potentials estimation using a reference region-free approach. Quantification of [ 11 C]harmine distribution volume (V T ) via kinetic models and graphical analyses was compared based on absolute test-retest percent difference (TRPD), intraclass correlation coefficient (ICC), and identifiability. The optimal procedure was also used with a simultaneously estimated input function in place of the measured curve. Lastly, an approach for binding potentials quantification in absence of a reference region was evaluated. [ 11 C]harmine V T estimates quantified using arterial blood and kinetic modeling showed average absolute TRPD values of 7.7 to 15.6 %, and ICC values between 0.56 and 0.86, across brain regions. Using simultaneous estimation (SIME) of input function resulted in V T estimates close to those obtained using arterial input function (r = 0.951, slope = 1.073, intercept = - 1.037), with numerically but not statistically higher test-retest difference (range 16.6 to 22.0 %), but with overall poor ICC values, between 0.30 and 0.57. Prospective studies using [ 11 C]harmine are possible given its test-retest repeatability when binding is quantified using arterial blood. Results with SIME of input function show potential for simplifying data acquisition by replacing arterial catheterization with one arterial blood sample at 20 min post-injection. Estimation of [ 11 C]harmine binding potentials remains a challenge that warrants further investigation.

  19. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    PubMed Central

    Kulkarni, Mukta; Flašker, Ajda; Lokar, Maruša; Mrak-Poljšak, Katjuša; Mazare, Anca; Artenjak, Andrej; Čučnik, Saša; Kralj, Slavko; Velikonja, Aljaž; Schmuki, Patrik; Kralj-Iglič, Veronika; Sodin-Semrl, Snezna; Iglič, Aleš

    2015-01-01

    Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices. PMID:25733829

  20. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xirui; Daaboul, George G.; Spuhler, Philipp S.; Dröge, Peter; Ünlü, M. Selim

    2016-03-01

    DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions. Electronic supplementary information (ESI) available: DNA sequences and nomenclature (Table 1S); SDS-PAGE assay of IHF stock solution (Fig. 1S); determination of the concentration of IHF stock solution by Bradford assay (Fig. 2S); equilibrium binding isotherm fitting results of other DNA sequences (Table 2S); calculation of dissociation constants (Fig. 3S, 4S; Table 2S); geometric model for quantitation of DNA bending angle induced by specific IHF binding (Fig. 4S); customized flow cell assembly (Fig. 5S); real-time measurement of average fluorophore height change by SSFM (Fig. 6S); summary of binding parameters obtained from additive isotherm model fitting (Table 3S); average surface densities of 10 dsDNA spots and bound IHF at equilibrium (Table 4S); effects of surface densities on the binding and bending of dsDNA (Tables 5S, 6S and Fig. 7S-10S). See DOI: 10.1039/c5nr06785e

  1. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    PubMed Central

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates. Conclusions Investigating the low affinity site of α4β2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches. PMID:22112852

  2. Characterization of Receptor Binding Profiles of Influenza A Viruses Using An Ellipsometry-Based Label-Free Glycan Microarray Assay Platform

    PubMed Central

    Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P.; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong

    2015-01-01

    A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10–100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven. PMID:26193329

  3. Characterization of Receptor Binding Profiles of Influenza A Viruses Using An Ellipsometry-Based Label-Free Glycan Microarray Assay Platform.

    PubMed

    Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong

    2015-07-16

    A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10-100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven.

  4. Antioxidative capacity and binding affinity of the complex of green tea catechin and beta-lactoglobulin glycated by the Maillard reaction.

    PubMed

    Perusko, Marija; Al-Hanish, Ayah; Mihailovic, Jelena; Minic, Simeon; Trifunovic, Sara; Prodic, Ivana; Cirkovic Velickovic, Tanja

    2017-10-01

    Major green tea catechin, epigallocatechin-3-gallate (EGCG), binds non-covalently to numerous dietary proteins, including beta-lactoglobulin of cow's milk. The effects of glycation of proteins via Maillard reaction on the binding capacity for polyphenols and the antiradical properties of the formed complexes have not been studied previously. Binding constant of BLG glycated by milk sugar lactose to EGCG was measured by the method of fluorophore quenching. Binding of EGCG was confirmed by CD and FTIR. The antioxidative properties of the complexes were examined by measuring ABTS radical scavenging capacity, superoxide anion scavenging capacity and total reducing power assay. Glycation of BLG does not significantly influence the binding constant of EGCG for the protein. Conformational changes were observed for both native and glycated BLG upon complexation with EGCG. Masking effect of polyphenol complexation on the antioxidative potential of the protein was of the similar degree for both glycated BLG and native BLG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Energy profile of nanobody-GFP complex under force.

    PubMed

    Klamecka, Kamila; Severin, Philip M; Milles, Lukas F; Gaub, Hermann E; Leonhardt, Heinrich

    2015-09-10

    Nanobodies (Nbs)-the smallest known fully functional and naturally occuring antigen-binding fragments-have attracted a lot of attention throughout the last two decades. Exploring their potential beyond the current use requires more detailed characterization of their binding forces as those cannot be directly derived from the binding affinities. Here we used atomic force microscope to measure rupture force of the Nb-green fluorescent protein (GFP) complex in various pulling geometries and derived the energy profile characterizing the interaction along the direction of the pulling force. We found that-despite identical epitopes-the Nb binds stronger (41-56 pN) to enhanced GFP than to wild-type GFP (28-45 pN). Measured forces make the Nb-GFP pair a potent reference for investigating molecular forces in living systems both in and ex vivo.

  6. Reproducibility of quantitative measures of binding potential in rat striatum: A test re-test study using DTBZ dynamic PET studies

    NASA Astrophysics Data System (ADS)

    Avendaño-Estrada, A.; Lara-Camacho, V. M.; Ávila-García, M. C.; Ávila-Rodríguez, M. A.

    2014-11-01

    There is great interest in the study of dopamine (DA) pathways due to the increasing number of patients with illnesses related to the dopaminergic system and molecular imaging based in Positron Emission Tomography (PET) has been proven helpful for this task. Among the different radiopharmaceuticals available to study DA interaction, [11C ]Dihydrotetrabenazine (DTBZ) has a high affinity for the vesicular monoamine transporter type 2 (VMAT2) and its binding potential (BP) is a marker of DA terminal integrity. This paper reports on the intersubject reproducibility of BP measurements in rat striatum with [11C]DTBZ using the Logańs method.

  7. Reproducibility of quantitative measures of binding potential in rat striatum: A test re-test study using DTBZ dynamic PET studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avendaño-Estrada, A., E-mail: avilarod@uwalumni.com; Lara-Camacho, V. M., E-mail: avilarod@uwalumni.com; Ávila-García, M. C., E-mail: avilarod@uwalumni.com

    2014-11-07

    There is great interest in the study of dopamine (DA) pathways due to the increasing number of patients with illnesses related to the dopaminergic system and molecular imaging based in Positron Emission Tomography (PET) has been proven helpful for this task. Among the different radiopharmaceuticals available to study DA interaction, [{sup 11}C]Dihydrotetrabenazine (DTBZ) has a high affinity for the vesicular monoamine transporter type 2 (VMAT2) and its binding potential (BP) is a marker of DA terminal integrity. This paper reports on the intersubject reproducibility of BP measurements in rat striatum with [11C]DTBZ using the Logańs method.

  8. On the binding determinants of the glutamate agonist with the glutamate receptor ligand binding domain.

    PubMed

    Speranskiy, Kirill; Kurnikova, Maria

    2005-08-30

    Ionotropic glutamate receptors (GluRs) are ligand-gated membrane channel proteins found in the central neural system that mediate a fast excitatory response of neurons. In this paper, we report theoretical analysis of the ligand-protein interactions in the binding pocket of the S1S2 (ligand binding) domain of the GluR2 receptor in the closed conformation. By utilizing several theoretical methods ranging from continuum electrostatics to all-atom molecular dynamics simulations and quantum chemical calculations, we were able to characterize in detail glutamate agonist binding to the wild-type and E705D mutant proteins. A theoretical model of the protein-ligand interactions is validated via direct comparison of theoretical and Fourier transform infrared spectroscopy (FTIR) measured frequency shifts of the ligand's carboxylate group vibrations [Jayaraman et al. (2000) Biochemistry 39, 8693-8697; Cheng et al. (2002) Biochemistry 41, 1602-1608]. A detailed picture of the interactions in the binding site is inferred by analyzing contributions to vibrational frequencies produced by protein residues forming the ligand-binding pocket. The role of mobility and hydrogen-bonding network of water in the ligand-binding pocket and the contribution of protein residues exposed in the binding pocket to the binding and selectivity of the ligand are discussed. It is demonstrated that the molecular surface of the protein in the ligand-free state has mainly positive electrostatic potential attractive to the negatively charged ligand, and the potential produced by the protein in the ligand-binding pocket in the closed state is complementary to the distribution of the electrostatic potential produced by the ligand itself. Such charge complementarity ensures specificity to the unique charge distribution of the ligand.

  9. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor.

    PubMed

    Zhang, Xirui; Daaboul, George G; Spuhler, Philipp S; Dröge, Peter; Ünlü, M Selim

    2016-03-14

    DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.

  10. Fluorescence intensity- and lifetime-based glucose sensing using glucose/galactose-binding protein.

    PubMed

    Pickup, John C; Khan, Faaizah; Zhi, Zheng-Liang; Coulter, Jonathan; Birch, David J S

    2013-01-01

    We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested. © 2013 Diabetes Technology Society.

  11. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  12. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.

    PubMed

    Hong, Huixiao; Branham, William S; Ng, Hui Wen; Moland, Carrie L; Dial, Stacey L; Fang, Hong; Perkins, Roger; Sheehan, Daniel; Tong, Weida

    2015-02-01

    One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered. Published by Oxford University Press on behalf of the Society of Toxicology 2014. This work is written by US Government employees and is in the public domain in the US.

  13. 10-N nonyl-acridine orange: a fluorescent probe which stains mitochondria independently of their energetic state.

    PubMed

    Maftah, A; Petit, J M; Ratinaud, M H; Julien, R

    1989-10-16

    The specificity of binding of 10-N Nonyl Acridine Orange to mitochondria, and more precisely to inner membranes, is demonstrated by subcellular fractionation of hepatocytes. Unlike Rhodamine 123, which is a preferential marker of the transmembrane potential, Nonyl Acridine Orange binding is essentially independent of the mitochondria energization state although a low uptake of this dye, in response to the potential, may be measured. So 10-N Nonyl acridine orange is an appropriate marker of the mitochondial membrane surface per unit of cell mass.

  14. A general and fast scoring function for protein-ligand interactions: a simplified potential approach.

    PubMed

    Muegge, I; Martin, Y C

    1999-03-11

    A fast, simplified potential-based approach is presented that estimates the protein-ligand binding affinity based on the given 3D structure of a protein-ligand complex. This general, knowledge-based approach exploits structural information of known protein-ligand complexes extracted from the Brookhaven Protein Data Bank and converts it into distance-dependent Helmholtz free interaction energies of protein-ligand atom pairs (potentials of mean force, PMF). The definition of an appropriate reference state and the introduction of a correction term accounting for the volume taken by the ligand were found to be crucial for deriving the relevant interaction potentials that treat solvation and entropic contributions implicitly. A significant correlation between experimental binding affinities and computed score was found for sets of diverse protein-ligand complexes and for sets of different ligands bound to the same target. For 77 protein-ligand complexes taken from the Brookhaven Protein Data Bank, the calculated score showed a standard deviation from observed binding affinities of 1.8 log Ki units and an R2 value of 0.61. The best results were obtained for the subset of 16 serine protease complexes with a standard deviation of 1.0 log Ki unit and an R2 value of 0.86. A set of 33 inhibitors modeled into a crystal structure of HIV-1 protease yielded a standard deviation of 0.8 log Ki units from measured inhibition constants and an R2 value of 0.74. In contrast to empirical scoring functions that show similar or sometimes better correlation with observed binding affinities, our method does not involve deriving specific parameters that fit the observed binding affinities of protein-ligand complexes of a given training set. We compared the performance of the PMF score, Böhm's score (LUDI), and the SMOG score for eight different test sets of protein-ligand complexes. It was found that for the majority of test sets the PMF score performs best. The strength of the new approach presented here lies in its generality as no knowledge about measured binding affinities is needed to derive atomic interaction potentials. The use of the new scoring function in docking studies is outlined.

  15. Transthyretin-binding activity of contaminants in blood from polar bear (Ursus maritimus) cubs.

    PubMed

    Bytingsvik, Jenny; Simon, Eszter; Leonards, Pim E G; Lamoree, Marja; Lie, Elisabeth; Aars, Jon; Derocher, Andrew E; Wiig, Oystein; Jenssen, Bjørn M; Hamers, Timo

    2013-05-07

    We determined the transthyretin (TTR)-binding activity of blood-accumulating contaminants in blood plasma samples of approximately 4-months-old polar bear (Ursus maritimus) cubs from Svalbard sampled in 1998 and 2008. The TTR-binding activity was measured as thyroxine (T4)-like equivalents (T4-EQMeas). Our findings show that the TTR-binding activity related to contaminant levels was significantly lower (45%) in 2008 than in 1998 (mean ± standard error of mean: 1998, 2265 ± 231 nM; 2008, 1258 ± 170 nM). Although we cannot exclude a potential influence of between-year differences in capture location and cub body mass, our findings most likely reflect reductions of TTR-binding contaminants or their precursors in the arctic environment (e.g., polychlorinated biphenyls [PCBs]). The measured TTR-binding activity correlated positively with the cubs' plasma levels of hydroxylated PCBs (OH-PCBs). No such association was found between TTR-binding activity and the plasma levels of perfluoroalkyl substances (PFASs). The OH-PCBs explained 60 ± 7% and 54 ± 4% of the TTR-binding activity in 1998 and 2008, respectively, and PFASs explained ≤1.2% both years. Still, almost half the TTR-binding activity could not be explained by the contaminants we examined. The considerable levels of TTR-binding contaminants warrant further effect directed analysis (EDA) to identify the contaminants responsible for the unexplained part of the observed TTR-binding activity.

  16. Ligand Binding Analysis and Screening by Chemical Denaturation Shift

    PubMed Central

    Sch n, Arne; Brown, Richard K.; Hutchins, Burleigh M.; Freire, Ernesto

    2013-01-01

    The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Towards this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Since ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities and the ligand rank order obtained at denaturation temperatures (60°C or higher) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations in which binding changes the cooperativity of the unfolding transition. In this paper we develop the basic analytical equations and provide several experimental examples. PMID:23994566

  17. Ligand binding analysis and screening by chemical denaturation shift.

    PubMed

    Schön, Arne; Brown, Richard K; Hutchins, Burleigh M; Freire, Ernesto

    2013-12-01

    The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Toward this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Because ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities, and the ligand rank order obtained at denaturation temperatures (≥60°C) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations where binding changes the cooperativity of the unfolding transition. In this article, we develop the basic analytical equations and provide several experimental examples. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Validation of tautomeric and protomeric binding modes by free energy calculations. A case study for the structure based optimization of D-amino acid oxidase inhibitors.

    PubMed

    Orgován, Zoltán; Ferenczy, György G; Steinbrecher, Thomas; Szilágyi, Bence; Bajusz, Dávid; Keserű, György M

    2018-02-01

    Optimization of fragment size D-amino acid oxidase (DAAO) inhibitors was investigated using a combination of computational and experimental methods. Retrospective free energy perturbation (FEP) calculations were performed for benzo[d]isoxazole derivatives, a series of known inhibitors with two potential binding modes derived from X-ray structures of other DAAO inhibitors. The good agreement between experimental and computed binding free energies in only one of the hypothesized binding modes strongly support this bioactive conformation. Then, a series of 1-H-indazol-3-ol derivatives formerly not described as DAAO inhibitors was investigated. Binding geometries could be reliably identified by structural similarity to benzo[d]isoxazole and other well characterized series and FEP calculations were performed for several tautomers of the deprotonated and protonated compounds since all these forms are potentially present owing to the experimental pKa values of representative compounds in the series. Deprotonated compounds are proposed to be the most important bound species owing to the significantly better agreement between their calculated and measured affinities compared to the protonated forms. FEP calculations were also used for the prediction of the affinities of compounds not previously tested as DAAO inhibitors and for a comparative structure-activity relationship study of the benzo[d]isoxazole and indazole series. Selected indazole derivatives were synthesized and their measured binding affinity towards DAAO was in good agreement with FEP predictions.

  19. Validation of tautomeric and protomeric binding modes by free energy calculations. A case study for the structure based optimization of d-amino acid oxidase inhibitors

    NASA Astrophysics Data System (ADS)

    Orgován, Zoltán; Ferenczy, György G.; Steinbrecher, Thomas; Szilágyi, Bence; Bajusz, Dávid; Keserű, György M.

    2018-02-01

    Optimization of fragment size d-amino acid oxidase (DAAO) inhibitors was investigated using a combination of computational and experimental methods. Retrospective free energy perturbation (FEP) calculations were performed for benzo[d]isoxazole derivatives, a series of known inhibitors with two potential binding modes derived from X-ray structures of other DAAO inhibitors. The good agreement between experimental and computed binding free energies in only one of the hypothesized binding modes strongly support this bioactive conformation. Then, a series of 1-H-indazol-3-ol derivatives formerly not described as DAAO inhibitors was investigated. Binding geometries could be reliably identified by structural similarity to benzo[d]isoxazole and other well characterized series and FEP calculations were performed for several tautomers of the deprotonated and protonated compounds since all these forms are potentially present owing to the experimental pKa values of representative compounds in the series. Deprotonated compounds are proposed to be the most important bound species owing to the significantly better agreement between their calculated and measured affinities compared to the protonated forms. FEP calculations were also used for the prediction of the affinities of compounds not previously tested as DAAO inhibitors and for a comparative structure-activity relationship study of the benzo[d]isoxazole and indazole series. Selected indazole derivatives were synthesized and their measured binding affinity towards DAAO was in good agreement with FEP predictions.

  20. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding

    DOE PAGES

    Newcomb, C. J.; Qafoku, N. P.; Grate, J. W.; ...

    2017-08-30

    Long residence times of soil organic matter have been attributed to reactive mineral surface sites that sorb organic species and cause inaccessibility due to isolation and chemical stabilization at the organic-mineral interface. Instrumentation for probing this interface is limited. As a result, much of the micron- and molecular-scale knowledge about organic-mineral interactions remains largely qualitative. We report the use of force spectroscopy to directly measure the binding between organic ligands with known chemical functionalities to soil minerals in aqueous environments. By systematically studying the role of organic functional group chemistry with model minerals, we demonstrate that the chemistry of bothmore » the organic ligand and mineral contribute to values of binding free energy and that changes in pH and ionic strength produce significant differences in binding energies. These direct measurements of molecular binding provide mechanistic insights into organo-mineral interactions, which could potentially inform land-carbon models that explicitly include mineral-bound C pools.« less

  1. Quantifying domain-ligand affinities and specificities by high-throughput holdup assay

    PubMed Central

    Vincentelli, Renaud; Luck, Katja; Poirson, Juline; Polanowska, Jolanta; Abdat, Julie; Blémont, Marilyne; Turchetto, Jeremy; Iv, François; Ricquier, Kevin; Straub, Marie-Laure; Forster, Anne; Cassonnet, Patricia; Borg, Jean-Paul; Jacob, Yves; Masson, Murielle; Nominé, Yves; Reboul, Jérôme; Wolff, Nicolas; Charbonnier, Sebastian; Travé, Gilles

    2015-01-01

    Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this aim, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to a thousand domain-motif equilibrium binding affinities per day. Extracts of overexpressed domains are incubated with peptide-coated resins and subjected to filtration. Binding affinities are deduced from microfluidic capillary electrophoresis of flow-throughs. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from Human Papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human PDZome. We obtained exquisite sequence-dependent binding profiles, describing quantitatively the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has a wide potential for quantifying the specificities of interactomes. PMID:26053890

  2. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newcomb, C. J.; Qafoku, N. P.; Grate, J. W.

    Long residence times of soil organic matter have been attributed to reactive mineral surface sites that sorb organic species and cause inaccessibility due to isolation and chemical stabilization at the organic-mineral interface. Instrumentation for probing this interface is limited. As a result, much of the micron- and molecular-scale knowledge about organic-mineral interactions remains largely qualitative. We report the use of force spectroscopy to directly measure the binding between organic ligands with known chemical functionalities to soil minerals in aqueous environments. By systematically studying the role of organic functional group chemistry with model minerals, we demonstrate that the chemistry of bothmore » the organic ligand and mineral contribute to values of binding free energy and that changes in pH and ionic strength produce significant differences in binding energies. These direct measurements of molecular binding provide mechanistic insights into organo-mineral interactions, which could potentially inform land-carbon models that explicitly include mineral-bound C pools.« less

  3. On binding energy of trions in bulk materials

    NASA Astrophysics Data System (ADS)

    Filikhin, Igor; Kezerashvili, Roman Ya.; Vlahovic, Branislav

    2018-03-01

    We study the negatively T- and positively T+ charged trions in bulk materials in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing Faddeev equation in configuration space. Results of calculations of the binding energies for T- are consistent with previous computational studies and are in reasonable agreement with experimental measurements, while the T+ is unbound for all considered cases. The mechanism of formation of the binding energy of trions is analyzed by comparing contributions of a mass-polarization term related to kinetic energy operators and a term related to the Coulomb repulsion of identical particles.

  4. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies

    PubMed Central

    Kaur, Randeep; Chitanda, Jackson M; Michel, Deborah; Maley, Jason; Borondics, Ferenc; Yang, Peng; Verrall, Ronald E; Badea, Ildiko

    2012-01-01

    Purpose: Detonation nanodiamonds (NDs) are carbon-based nanomaterials that, because of their size (4–5 nm), stable inert core, alterable surface chemistry, fluorescence, and biocompatibility, are emerging as bioimaging agents and promising tools for the delivery of biochemical molecules into cellular systems. However, diamond particles possess a strong propensity to aggregate in liquid formulation media, restricting their applicability in biomedical sciences. Here, the authors describe the covalent functionalization of NDs with lysine in an attempt to develop nanoparticles able to act as suitable nonviral vectors for transferring genetic materials across cellular membranes. Methods: NDs were oxidized and functionalized by binding lysine moieties attached to a three-carbon-length linker (1,3-diaminopropane) to their surfaces through amide bonds. Raman and Fourier transform infrared spectroscopy, zeta potential measurement, dynamic light scattering, atomic force microscopic imaging, and thermogravimetric analysis were used to characterize the lysine-functionalized NDs. Finally, the ability of the functionalized diamonds to bind plasmid DNA and small interfering RNA was investigated by gel electrophoresis assay and through size and zeta potential measurements. Results: NDs were successfully functionalized with the lysine linker, producing surface loading of 1.7 mmol g−1 of ND. These modified NDs formed highly stable aqueous dispersions with a zeta potential of 49 mV and particle size of approximately 20 nm. The functionalized NDs were found to be able to bind plasmid DNA and small interfering RNA by forming nanosized “diamoplexes”. Conclusion: The lysine-substituted ND particles generated in this study exhibit stable aqueous formulations and show potential for use as carriers for genetic materials. PMID:22904623

  5. The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner

    PubMed Central

    Bell, Kayla M.; Cha, Hyo Keun; Sindelar, Charles V.; Cochran, Jared C.

    2017-01-01

    Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αβ-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single “canonical” site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate (“noncanonical”) sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αβ-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal. PMID:28701465

  6. In situ detection of warfarin using time-correlated single-photon counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosengren, Annika M.; Karlsson, Bjoern C.G.; Naeslund, Inga

    Highlights: {yields} Direct in situ measurement of specific isomeric forms of the anticoagulant warfarin. {yields} TCSPC spectroscopy in conjunction with synthetic Sudlow I binding site receptors. {yields} Development of sensor principle for use in clinical and environmental monitoring. -- Abstract: Here we report on a novel method for the direct in situ measurement of specific isomeric forms of the anticoagulant warfarin using time correlated single-photon counting (TCSPC) spectroscopy in conjunction with synthetic Sudlow I binding site receptors. The method is highly robust over the clinically significant concentration range, and demonstrates the potential of the binding site mimics in conjunction withmore » the spectroscopic strategy employed here for the determination of this important pharmaceutical in clinical or even environmental samples.« less

  7. Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein.

    PubMed

    Epps, D E; Raub, T J; Caiolfa, V; Chiari, A; Zamai, M

    1999-01-01

    Binding of new chemical entities to serum proteins is an issue confronting pharmaceutical companies during development of potential therapeutic agents. Most drugs bind to the most abundant plasma protein, human serum albumin (HSA), at two major binding sites. Excepting fluorescence spectroscopy, existing methods for assaying drug binding to serum albumin are insensitive to higher-affinity compounds and can be labour-intensive, time-consuming, and usually require compound-specific assays. This led us to examine alternative ways to measure drug-albumin interaction. One method described here uses fluorescence quenching of the single tryptophan (Trp) residue in HSA excited at 295 nm to measure drug-binding affinity. Unfortunately, many compounds absorb, fluoresce, or both, in this UV wavelength region of the spectrum. Several types of binding phenomenon and spectral interference were identified by use of six structurally unrelated compounds and the equations necessary to make corrections mathematically were derived and applied to calculate binding constants accurately. The general cases were: direct quenching of Trp fluorescence by optically transparent ligands with low or high affinities; binding of optically transparent, non-fluorescent ligands to two specific sites where both sites or only one site result in Trp fluorescence quenching; and chromophores whose absorption either overlaps the Trp emission and quenches by energy transfer or absorbs light at the Trp fluorescence excitation wavelength producing absorptive screening as well as fluorescence quenching. Unless identification of the site specificity of drug binding to serum albumin is desired, quenching of the Trp fluorescence of albumin by titration with ligand is a rapid and facile method for determining the binding affinities of drugs for serum albumin.

  8. Binding of a cyclic organoselenium compound with gold nanoparticles (GNP) and its effect on electron transfer properties.

    PubMed

    Kumar, Pavitra V; Singh, Beena G; Maiti, Nandita; Iwaoka, Michio; Priyadarsini, K Indira

    2014-12-15

    Binding of a cyclic organoselenium compound, DL-trans-3,4-dihydroxy-1-selenolane (DHSred) with gold nanoparticles (GNP) of different sizes was studied by absorption spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), surface enhanced Raman spectroscopy (SERS) and zeta-potential (ζ) measurements. GNP of different size were synthesized by varying the reaction conditions and their size was determined by DLS and TEM techniques. The absorption spectral data showed red shift in the surface plasmon resonance (SPR) band indicating increase in the size of GNP on binding to DHSred. SERS studies confirmed that the binding of DHSred with GNP is through selenium center with planar orientation of DHSred on the GNP surface. The product of the number of binding sites (n) in GNP and the binding constant (K) was estimated for GNP of different particle size. The zeta potential (ζ) value of GNP decreased marginally in the presence of DHSred. Further, the binding of DHSred with GNP was found to enhance its reactivity with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS(·-)) and the reactivity increased with decrease in the GNP size. Such enhancement in the reducing ability may have a greater impact on the antioxidant activity of DHSred. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. SuperPain—a resource on pain-relieving compounds targeting ion channels

    PubMed Central

    Gohlke, Björn O.; Preissner, Robert; Preissner, Saskia

    2014-01-01

    Pain is more than an unpleasant sensory experience associated with actual or potential tissue damage: it is the most common reason for physician consultation and often dramatically affects quality of life. The management of pain is often difficult and new targets are required for more effective and specific treatment. SuperPain (http://bioinformatics.charite.de/superpain/) is freely available database for pain-stimulating and pain-relieving compounds, which bind or potentially bind to ion channels that are involved in the transmission of pain signals to the central nervous system, such as TRPV1, TRPM8, TRPA1, TREK1, TRESK, hERG, ASIC, P2X and voltage-gated sodium channels. The database consists of ∼8700 ligands, which are characterized by experimentally measured binding affinities. Additionally, 100 000 putative ligands are included. Moreover, the database provides 3D structures of receptors and predicted ligand-binding poses. These binding poses and a structural classification scheme provide hints for the design of new analgesic compounds. A user-friendly graphical interface allows similarity searching, visualization of ligands docked into the receptor, etc. PMID:24271391

  10. SuperPain--a resource on pain-relieving compounds targeting ion channels.

    PubMed

    Gohlke, Björn O; Preissner, Robert; Preissner, Saskia

    2014-01-01

    Pain is more than an unpleasant sensory experience associated with actual or potential tissue damage: it is the most common reason for physician consultation and often dramatically affects quality of life. The management of pain is often difficult and new targets are required for more effective and specific treatment. SuperPain (http://bioinformatics.charite.de/superpain/) is freely available database for pain-stimulating and pain-relieving compounds, which bind or potentially bind to ion channels that are involved in the transmission of pain signals to the central nervous system, such as TRPV1, TRPM8, TRPA1, TREK1, TRESK, hERG, ASIC, P2X and voltage-gated sodium channels. The database consists of ∼8700 ligands, which are characterized by experimentally measured binding affinities. Additionally, 100 000 putative ligands are included. Moreover, the database provides 3D structures of receptors and predicted ligand-binding poses. These binding poses and a structural classification scheme provide hints for the design of new analgesic compounds. A user-friendly graphical interface allows similarity searching, visualization of ligands docked into the receptor, etc.

  11. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements.

    PubMed

    Wierez-Kien, M; Craciun, A D; Pinon, A V; Roux, S Le; Gallani, J L; Rastei, M V

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <10 3 nm 2 ) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  12. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements

    NASA Astrophysics Data System (ADS)

    Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <103 nm2) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  13. Advantages of a dual-tracer model over reference tissue models for binding potential measurement in tumors

    PubMed Central

    Tichauer, K M; Samkoe, K S; Klubben, W S; Hasan, T; Pogue, B W

    2012-01-01

    The quantification of tumor molecular expression in vivo could have a significant impact for informing and monitoring immerging targeted therapies in oncology. Molecular imaging of targeted tracers can be used to quantify receptor expression in the form of a binding potential (BP) if the arterial input curve or a surrogate of it is also measured. However, the assumptions of the most common approaches (reference tissue models) may not be valid for use in tumors. In this study, the validity of reference tissue models is investigated for use in tumors experimentally and in simulations. Three different tumor lines were grown subcutaneously in athymic mice and the mice were injected with a mixture of an epidermal growth factor receptor- (EGFR-) targeted fluorescent tracer and an untargeted fluorescent tracer. A one-compartment plasma input model demonstrated that the transport kinetics of both tracers were significantly different between tumors and all potential reference tissues, and using the reference tissue model resulted in a theoretical underestimation in BP of 50 ± 37%. On the other hand, the targeted and untargeted tracers demonstrated similar transport kinetics, allowing a dual-tracer approach to be employed to accurately estimate binding potential (with a theoretical error of 0.23 ± 9.07%). These findings highlight the potential for using a dual-tracer approach to quantify receptor expression in tumors with abnormal hemodynamics, possibly to inform the choice or progress of molecular cancer therapies. PMID:23022732

  14. β-Amyloid binding in elderly subjects with declining or stable episodic memory function measured with PET and [¹¹C]AZD2184.

    PubMed

    Mattsson, Patrik; Forsberg, Anton; Persson, Jonas; Nyberg, Lars; Nilsson, Lars-Göran; Halldin, Christer; Farde, Lars

    2015-09-01

    Cognitive decline has been suggested as an early marker for later onset of Alzheimer's disease. We therefore explored the relationship between decline in episodic memory and β-amyloid using positron emission tomography (PET) and [(11)C]AZD2184, a radioligand with potential to detect low levels of amyloid deposits. Healthy elderly subjects with declining (n = 10) or stable (n = 10) episodic memory over 15 years were recruited from the population-based Betula study and examined with PET. Brain radioactivity was measured after intravenous administration of [(11)C]AZD2184. The binding potential BP ND was calculated using linear graphical analysis with the cerebellum as reference region. The binding of [(11)C]AZD2184 in total grey matter was generally low in the declining group, whereas some binding could be observed in the stable group. Mean BP ND was significantly higher in the stable group compared to the declining group (p = 0.019). An observation was that the three subjects with the highest BP ND were ApoE ε4 allele carriers. We conclude that cognitive decline in the general population does not seem to stand by itself as an early predictor for amyloid deposits.

  15. [18F]CFT [(18F)WIN 35,428], a radioligand to study the dopamine transporter with PET: characterization in human subjects.

    PubMed

    Laakso, A; Bergman, J; Haaparanta, M; Vilkman, H; Solin, O; Hietala, J

    1998-03-01

    We have characterized the usage of [18F]CFT (also known as [18F]WIN 35,428) as a radioligand for in vivo studies of human dopamine transporter by PET. CFT was labeled with 18F to a high specific activity, and dynamic PET scans were conducted in healthy volunteers at various time points up to 5 h from [18F]CFT injection. The regional distribution of [18F]CFT uptake correlated well with the known distribution of dopaminergic nerve terminals in the human brain and also with that of other dopamine transporter radioligands. Striatal binding peaked at 225 min after injection and declined thereafter, demonstrating the reversible nature of the binding to the dopamine transporter. Therefore, due to the relatively long half-life of 18F (109.8 min), PET scans with [18F]CFT could easily be conducted during the binding equilibrium, allowing estimation of Bmax/Kd values (i.e., binding potential). Binding potentials for putamen and caudate measured at equilibrium were 4.79+/-0.11 and 4.50+/-0.23, respectively. We were able to also visualize midbrain dopaminergic neurons (substantia nigra) with [18F]CFT in some subjects. In conclusion, the labeling of CFT with 18F allows PET scans to be conducted at binding equilibrium, and therefore a high signal-to-noise ratio and reliable quantification of binding potential can be achieved. With a high resolution 3D PET scanner, the quantification of extrastriatal dopamine transporters should become possible.

  16. Single-Molecule Patch-Clamp FRET Anisotropy Microscopy Studies of NMDA Receptor Ion Channel Activation and Deactivation under Agonist Ligand Binding in Living Cells.

    PubMed

    Sasmal, Dibyendu Kumar; Yadav, Rajeev; Lu, H Peter

    2016-07-20

    N-methyl-d-aspartate (NMDA) receptor ion channel is activated by the binding of two pairs of glycine and glutamate along with the application of action potential. Binding and unbinding of ligands changes its conformation that plays a critical role in the open-close activities of NMDA receptor. Conformation states and their dynamics due to ligand binding are extremely difficult to characterize either by conventional ensemble experiments or single-channel electrophysiology method. Here we report the development of a new correlated technical approach, single-molecule patch-clamp FRET anisotropy imaging and demonstrate by probing the dynamics of NMDA receptor ion channel and kinetics of glycine binding with its ligand binding domain. Experimentally determined kinetics of ligand binding with receptor is further verified by computational modeling. Single-channel patch-clamp and four-channel fluorescence measurement are recorded simultaneously to get correlation among electrical on and off states, optically determined conformational open and closed states by FRET, and binding-unbinding states of the glycine ligand by anisotropy measurement at the ligand binding domain of GluN1 subunit. This method has the ability to detect the intermediate states in addition to electrical on and off states. Based on our experimental results, we have proposed that NMDA receptor gating goes through at least one electrically intermediate off state, a desensitized state, when ligands remain bound at the ligand binding domain with the conformation similar to the fully open state.

  17. Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder.

    PubMed

    Tiger, Mikael; Farde, Lars; Rück, Christian; Varrone, Andrea; Forsberg, Anton; Lindefors, Nils; Halldin, Christer; Lundberg, Johan

    2016-07-30

    The pathophysiology of major depressive disorder (MDD) is not fully understood and the diagnosis is largely based on history and clinical examination. So far, several lines of preclinical data and a single imaging study implicate a role for the serotonin1B (5-HT1B) receptor subtype. We sought to study 5-HT1B receptor binding in brain regions of reported relevance in patients with MDD. Subjects were examined at the Karolinska Institutet PET centre using positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369. Ten drug-free patients with recurrent MDD and ten control subjects matched for age and sex were examined. The main outcome measure was [(11)C]AZ10419369 binding in brain regions of reported relevance in the pathophysiology of MDD. The [(11)C]AZ10419369 binding potential was significantly lower in the MDD group compared with the healthy control group in the anterior cingulate cortex (20% between-group difference), the subgenual prefrontal cortex (17% between-group difference), and in the hippocampus (32% between-group difference). The low anterior cingulate [(11)C]AZ10419369 binding potential in patients with recurrent MDD positions 5-HT1B receptor binding in this region as a putative biomarker for MDD and corroborate a role of the anterior cingulate cortex and associated areas in the pathophysiology of recurrent MDD. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Reduced binding potential of GABA-A/benzodiazepine receptors in individuals at ultra-high risk for psychosis: an [18F]-fluoroflumazenil positron emission tomography study.

    PubMed

    Kang, Jee In; Park, Hae-Jeong; Kim, Se Joo; Kim, Kyung Ran; Lee, Su Young; Lee, Eun; An, Suk Kyoon; Kwon, Jun Soo; Lee, Jong Doo

    2014-05-01

    Altered transmission of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter, may contribute to the development of schizophrenia. The purpose of the present study was to investigate the presence of GABA-A/benzodiazepine (BZ) receptor binding abnormalities in individuals at ultra-high risk (UHR) for psychosis in comparison with normal controls using [(18)F]-fluoroflumazenil (FFMZ) positron emission tomography (PET). In particular, we set regions of interest in the striatum (caudate, putamen, and nucleus accumbens) and medial temporal area (hippocampus and parahippocampal gyrus). Eleven BZ-naive people at UHR and 15 normal controls underwent PET scanning using [(18)F]-FFMZ to measure GABA-A/BZ receptor binding potential. The regional group differences between UHR individuals and normal controls were analyzed using Statistical Parametric Mapping 8 software. Participants were evaluated using the structured interview for prodromal syndromes and neurocognitive function tasks. People at UHR demonstrated significantly reduced binding potential of GABA-A/BZ receptors in the right caudate. Altered GABAergic transmission and/or the imbalance of inhibitory and excitatory systems in the striatum may be present at the putative prodromal stage and play a pivotal role in the pathophysiology of psychosis.

  19. The 5-HT1A Receptor PET Radioligand 11C-CUMI-101 Has Significant Binding to α1-Adrenoceptors in Human Cerebellum, Limiting Its Use as a Reference Region.

    PubMed

    Shrestha, Stal S; Liow, Jeih-San; Jenko, Kimberly; Ikawa, Masamichi; Zoghbi, Sami S; Innis, Robert B

    2016-12-01

    Prazosin, a potent and selective α 1 -adrenoceptor antagonist, displaces 25% of 11 C-CUMI-101 ([O-methyl- 11 C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione) binding in monkey cerebellum. We sought to estimate the percentage contamination of 11 C-CUMI-101 binding to α 1 -adrenoceptors in human cerebellum under in vivo conditions. In vitro receptor-binding techniques were used to measure α 1 -adrenoceptor density and the affinity of CUMI-101 for these receptors in human, monkey, and rat cerebellum. Binding potential (maximum number of binding sites × affinity [(1/dissociation constant]) was determined using in vitro homogenate binding assays in human, monkey, and rat cerebellum. 3 H-prazosin was used to determine the maximum number of binding sites, as well as the dissociation constant of 3 H-prazosin and the inhibition constant of CUMI-101. α 1 -adrenoceptor density and the affinity of CUMI-101 for these receptors were similar across species. Cerebellar binding potentials were 3.7 for humans, 2.3 for monkeys, and 3.4 for rats. Reasoning by analogy, 25% of 11 C-CUMI-101 uptake in human cerebellum reflects binding to α 1 -adrenoceptors, suggesting that the cerebellum is of limited usefulness as a reference tissue for quantification in human studies. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. NMR structural studies of the supramolecular adducts between a liver cytosolic bile acid binding protein and gadolinium(III)-chelates bearing bile acids residues: molecular determinants of the binding of a hepatospecific magnetic resonance imaging contrast agent.

    PubMed

    Assfalg, Michael; Gianolio, Eliana; Zanzoni, Serena; Tomaselli, Simona; Russo, Vito Lo; Cabella, Claudia; Ragona, Laura; Aime, Silvio; Molinari, Henriette

    2007-11-01

    The binding affinities of a selected series of Gd(III) chelates bearing bile acid residues, potential hepatospecific MRI contrast agents, to a liver cytosolic bile acid transporter, have been determined through relaxivity measurements. The Ln(III) complexes of compound 1 were selected for further NMR structural analysis aimed at assessing the molecular determinants of binding. A number of NMR experiments have been carried out on the bile acid-like adduct, using both diamagnetic Y(III) and paramagnetic Gd(III) complexes, bound to a liver bile acid binding protein. The identified protein "hot spots" defined a single binding site located at the protein portal region. The presented findings will serve in a medicinal chemistry approach for the design of hepatocytes-selective gadolinium chelates for liver malignancies detection.

  1. The Role of Attention in the Binding of Surface Features to Locations

    PubMed Central

    Hyun, Joo-seok; Woodman, Geoffrey F.; Luck, Steven J.

    2013-01-01

    Previous studies have proposed that attention is not necessary for detecting simple features but is necessary for binding them to spatial locations. The present study tested this hypothesis, using the N2pc component of the event-related potential waveform as a measure of the allocation of attention. A simple feature detection condition, in which observers reported whether a target color was present or not, was compared with feature-location binding conditions, in which observers reported the location of the target color. A larger N2pc component was observed in the binding conditions than in the detection condition, indicating that additional attentional resources are needed to bind a feature to a location than to detect the feature independently of its location. This finding supports theories of attention in which attention plays a special role in binding features. PMID:24235876

  2. Ligand induced stabilization of the melting temperature of the HSV-1 single-strand DNA binding protein using the thermal shift assay.

    PubMed

    Rupesh, Kanchi Ravi; Smith, Aaron; Boehmer, Paul E

    2014-11-28

    We have adapted the thermal shift assay to measure the ligand binding properties of the herpes simplex virus-1 single-strand DNA binding protein, ICP8. By measuring SYPRO Orange fluorescence in microtiter plates using a fluorescence-enabled thermal cycler, we have quantified the effects of oligonucleotide ligands on the melting temperature of ICP8. We found that single-stranded oligomers raise the melting temperature of ICP8 in a length- and concentration-dependent manner, ranging from 1°C for (dT)5 to a maximum of 9°C with oligomers ⩾10 nucleotides, with an apparent Kd of <1μM for (dT)20. Specifically, the results indicate that ICP8 is capable of interacting with oligomers as short as 5 nucleotides. Moreover, the observed increases in melting temperature of up to 9°C, indicates that single-strand DNA binding significantly stabilizes the structure of ICP8. This assay may be applied to investigate the ligand binding proteins of other single-strand DNA binding proteins and used as a high-throughput screen to identify compounds with therapeutic potential that inhibit single-strand DNA binding. As proof of concept, the single-strand DNA binding agent ciprofloxacin reduces the ligand induced stabilization of the melting temperature of ICP8 in a dose-dependent manner. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. RELATIVE BINDING AFFINITY OF ENDOCRINE DISRUPTING CHEMICALS TO ESTROGEN RECEPTOR IN TWO SPECIES OF FRESHWATER FISH

    EPA Science Inventory

    The US EPA has been mandated to screen industrial chemicals and pesticides for potential endocrine activity. To evaluate the potential for chemicals to cause endocrine disruption in fish we have previously measured the affinity of a number of chemicals for the rainbow trout estr...

  4. Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy.

    PubMed

    Stadnik, Yevgeny V

    2018-06-01

    The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1/r^{5} potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.

  5. Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stadnik, Yevgeny V.

    2018-06-01

    The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1 /r5 potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s -wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.

  6. Deciphering the mechanism of interaction of edifenphos with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Ahmad, Ajaz; Ahmad, Masood

    2018-01-01

    Edifenphos is an important organophosphate pesticide with many antifungal and anti-insecticidal properties but it may cause potential hazards to human health. In this work, we have tried to explore the binding mode of action and mechanism of edifenphos to calf thymus DNA (CT-DNA). Several experiments such as ultraviolet-visible absorption spectra and emission spectroscopy showed complex formation between edifenphos and CT-DNA and low binding constant values supporting groove binding mode. These results were further confirmed by circular dichroism (CD), CT-DNA melting studies, viscosity measurements, density functional theory and molecular docking. CD study suggests that edifenphos does not alter native structure of CT-DNA. Isothermal calorimetry reveals that binding of edifenphos with CT-DNA is enthalpy driven process. Competitive binding assay and effect of ionic strength showed that edifenphos binds to CT-DNA via groove binding manner. Hence, edifenphos is a minor groove binder preferably interacting with A-T regions with docking score - 6.84 kJ/mol.

  7. A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects.

    PubMed

    Kinraide, Thomas B; Yermiyahu, Uri

    2007-09-01

    Equilibrium constants for binding to plant plasma membranes have been reported for several metal ions, based upon adsorption studies and zeta-potential measurements. LogK values for the ions are these: Al(3+), 4.30; La(3+), 3.34; Cu(2+), 2.60; Ca(2+) and Mg(2+), 1.48; Na(+) and K(+), 0 M(-1). These values correlate well with logK values for ion binding to many organic and inorganic ligands. LogK values for metal ion binding to 12 ligands were normalized and averaged to produce a scale for the binding of 49 ions. The scale correlates well with the values presented above (R(2)=0.998) and with ion binding to cell walls and other biomass. The scale is closely related to the charge (Z) and Pauling electronegativity (PE) of 48 ions (all but Hg(2+)); R(2)=0.969 for the equation (Scale values)=-1.68+Z(1.22+0.444PE). Minimum rhizotoxicity of metal ions appears to be determined by binding strengths: log a(PM,M)=1.60-2.41exp[0.238(Scale values)] determines the value of ion activities at the plasma membrane surface (a(PM,M)) that will ensure inhibition of root elongation. Additional toxicity appears to be related to softness, accounting for the great toxicity of Ag(+), for example. These binding-strength values correlate with additional physiological effects and are suitable for the computation of cell-surface electrical potentials.

  8. Kinetic modeling of benzodiazepine receptor binding with PET and high specific activity [(11)C]Iomazenil in healthy human subjects.

    PubMed

    Bremner, J D; Horti, A; Staib, L H; Zea-Ponce, Y; Soufer, R; Charney, D S; Baldwin, R

    2000-01-01

    Quantitation of the PET benzodiazepine receptor antagonist, [(11)C]Iomazenil, using low specific activity radioligand was recently described. The purpose of this study was to quantitate benzodiazepine receptor binding in human subjects using PET and high specific activity [(11)C]Iomazenil. Six healthy human subjects underwent PET imaging following a bolus injection of high specific activity (>100 Ci/mmol) [(11)C]iomazenil. Arterial samples were collected at multiple time points after injection for measurement of unmetabolized total and nonprotein-bound parent compound in plasma. Time activity curves of radioligand concentration in brain and plasma were analyzed using two and three compartment model. Kinetic rate constants of transfer of radioligand between plasma, nonspecifically bound brain tissue, and specifically bound brain tissue compartments were fitted to the model. Values for fitted kinetic rate constants were used in the calculation of measures of benzodiazepine receptor binding, including binding potential (the ratio of receptor density to affinity), and product of BP and the fraction of free nonprotein-bound parent compound (V(3)'). Use of the three compartment model improved the goodness of fit in comparison to the two compartment model. Values for kinetic rate constants and measures of benzodiazepine receptor binding, including BP and V(3)', were similar to results obtained with the SPECT radioligand [(123)I]iomazenil, and a prior report with low specific activity [(11)C]Iomazenil. Kinetic modeling using the three compartment model with PET and high specific activity [(11)C]Iomazenil provides a reliable measure of benzodiazepine receptor binding. Synapse 35:68-77, 2000. Published 2000 Wiley-Liss, Inc.

  9. Lipopolysaccharide interactions of C-terminal peptides from human thrombin.

    PubMed

    Singh, Shalini; Kalle, Martina; Papareddy, Praveen; Schmidtchen, Artur; Malmsten, Martin

    2013-05-13

    Interactions with bacterial lipopolysaccharide (LPS), both in aqueous solution and in lipid membranes, were investigated for a series of amphiphilic peptides derived from the C-terminal region of human thrombin, using ellipsometry, dual polarization interferometry, fluorescence spectroscopy, circular dichroism (CD), dynamic light scattering, and z-potential measurements. The ability of these peptides to block endotoxic effects caused by LPS, monitored through NO production in macrophages, was compared to peptide binding to LPS and its endotoxic component lipid A, and to size, charge, and secondary structure of peptide/LPS complexes. While the antiendotoxic peptide GKY25 (GKYGFYTHVFRLKKWIQKVIDQFGE) displayed significant binding to both LPS and lipid A, so did two control peptides with either selected D-amino acid substitutions or with maintained composition but scrambled sequence, both displaying strongly attenuated antiendotoxic effects. Hence, the extent of LPS or lipid A binding is not the sole discriminant for the antiendotoxic effect of these peptides. In contrast, helix formation in peptide/LPS complexes correlates to the antiendotoxic effect of these peptides and is potentially linked to this functionality. Preferential binding to LPS over lipid membrane was furthermore demonstrated for these peptides and preferential binding to the lipid A moiety within LPS inferred.

  10. Applications of Surface Plasmon Resonance for Characterization of Molecules Important in the Pathogenesis and Treatment of Neurodegenerative Diseases

    PubMed Central

    Wittenberg, Nathan J.; Wootla, Bharath; Jordan, Luke R.; Denic, Aleksandar; Warrington, Arthur E.; Oh, Sang-Hyun; Rodriguez, Moses

    2014-01-01

    Characterization of binding kinetics and affinity between a potential new drug and its receptor are key steps in the development of new drugs. Among the techniques available to determine binding affinities, surface plasmon resonance has emerged as the gold standard because it can measure binding and dissociation rates in real-time in a label-free fashion. Surface plasmon resonance is now finding applications in the characterization of molecules for treatment of neurodegenerative diseases, characterization of molecules associated with pathogenesis of neurodegenerative diseases and detection of neurodegenerative disease biomarkers. In addition it has been used in the characterization of a new class of natural autoantibodies that have therapeutic potential in a number of neurologic diseases. In this review we will introduce surface plasmon resonance and describe some applications of the technique that pertain to neurodegenerative disorders and their treatment. PMID:24625008

  11. Recrystallization inhibition in ice due to ice binding protein activity detected by nuclear magnetic resonance.

    PubMed

    Brown, Jennifer R; Seymour, Joseph D; Brox, Timothy I; Skidmore, Mark L; Wang, Chen; Christner, Brent C; Luo, Bing-Hao; Codd, Sarah L

    2014-09-01

    Liquid water present in polycrystalline ice at the interstices between ice crystals results in a network of liquid-filled veins and nodes within a solid ice matrix, making ice a low porosity porous media. Here we used nuclear magnetic resonance (NMR) relaxation and time dependent self-diffusion measurements developed for porous media applications to monitor three dimensional changes to the vein network in ices with and without a bacterial ice binding protein (IBP). Shorter effective diffusion distances were detected as a function of increased irreversible ice binding activity, indicating inhibition of ice recrystallization and persistent small crystal structure. The modification of ice structure by the IBP demonstrates a potential mechanism for the microorganism to enhance survivability in ice. These results highlight the potential of NMR techniques in evaluation of the impact of IBPs on vein network structure and recrystallization processes; information useful for continued development of ice-interacting proteins for biotechnology applications.

  12. Thermodynamic investigation of the binding of dissymmetric pyrenyl-gemini surfactants to DNA.

    PubMed

    Wettig, Shawn D; Deubry, Rubena; Akbar, Javed; Kaur, Tranum; Wang, Haitang; Sheinin, Tatiana; Joseph, Jamie W; Slavcev, Roderick A

    2010-05-14

    Gemini surfactants have demonstrated significant potential for use in constructing non-viral transfection vectors for the delivery of genes into cells to induce protein expression. Previously, two asymmetric gemini surfactants containing pyrenyl groups in one of the alkyl tails of the surfactants were synthesized as fluorescence probes for use in mechanistic studies of the transfection process. Here we present the results of a thermodynamic investigation of the binding interaction(s) between the pyrenyl-modified surfactants and DNA. The thermodynamics of the interactions have been examined using isothermal titration calorimetry, light scattering, zeta potential, and circular dichroism measurements. Distinct differences are observed between the interaction of 12-s-12 vs. the pyrene modified py-s-12 surfactants with DNA; an intercalated binding is found for the py-s-12 surfactants that disrupts the typical interactions observed between DNA and gemini surfactants.

  13. Albumin binding as a potential biomarker of exposure to moderately low levels of organophosphorus pesticides

    PubMed Central

    Tarhoni, Mabruka H.; Lister, Timothy; Ray, David E.; Carter, Wayne G.

    2008-01-01

    We have evaluated the potential of plasma albumin to provide a sensitive biomarker of exposure to commonly used organophosphorus pesticides in order to complement the widely used measure of acetylcholinesterase (AChE) inhibition. Rat or human plasma albumin binding by tritiated-diisopropylfluorophosphate (3H-DFP) was quantified by retention of albumin on glass microfibre filters. Preincubation with unlabelled pesticide in vitro or dosing of F344 rats with pesticide in vivo resulted in a reduction in subsequent albumin radiolabelling with 3H-DFP, the decrease in which was used to quantify pesticide binding. At pesticide exposures producing approximately 30% inhibition of AChE, rat plasma albumin binding in vitro by azamethiphos (oxon), chlorfenvinphos (oxon), chlorpyrifos-oxon, diazinon-oxon and malaoxon was reduced from controls by 9±1%, 67±2%, 56±2%, 54±2% and 8±1%, respectively. After 1 h of incubation with 19 µM 3H-DFP alone, the level of binding to rat or human plasma albumins reached 0.011 or 0.039 moles of DFP per mole of albumin, respectively. This level of binding could be further increased by raising the concentration of 3H-DFP, increasing the 3H-DFP incubation time, or by substitution of commercial albumins for native albumin. Pesticide binding to albumin was presumed covalent since it survived 24 h dialysis. After dosing rats with pirimiphos-methyl (dimethoxy) or chlorfenvinphos (oxon) (diethoxy) pesticides, the resultant albumin binding were still significant 7 days after dosing. As in vitro, dosing of rats with malathion did not result in significant albumin binding in vivo. Our results suggest albumin may be a useful additional biomonitor for moderately low-level exposures to several widely used pesticides, and that this binding differs markedly between pesticides. PMID:18484351

  14. Binding Leverage as a Molecular Basis for Allosteric Regulation

    PubMed Central

    Mitternacht, Simon; Berezovsky, Igor N.

    2011-01-01

    Allosteric regulation involves conformational transitions or fluctuations between a few closely related states, caused by the binding of effector molecules. We introduce a quantity called binding leverage that measures the ability of a binding site to couple to the intrinsic motions of a protein. We use Monte Carlo simulations to generate potential binding sites and either normal modes or pairs of crystal structures to describe relevant motions. We analyze single catalytic domains and multimeric allosteric enzymes with complex regulation. For the majority of the analyzed proteins, we find that both catalytic and allosteric sites have high binding leverage. Furthermore, our analysis of the catabolite activator protein, which is allosteric without conformational change, shows that its regulation involves other types of motion than those modulated at sites with high binding leverage. Our results point to the importance of incorporating dynamic information when predicting functional sites. Because it is possible to calculate binding leverage from a single crystal structure it can be used for characterizing proteins of unknown function and predicting latent allosteric sites in any protein, with implications for drug design. PMID:21935347

  15. Tactics for preclinical validation of receptor-binding radiotracers

    PubMed Central

    Lever, Susan Z.; Fan, Kuo-Hsien; Lever, John R.

    2016-01-01

    Introduction Aspects of radiopharmaceutical development are illustrated through preclinical studies of [125I]-(E)-1-(2-(2,3-dihydrobenzofuran-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA- BF-PE-PIPZE), a radioligand for sigma-1 (σ1) receptors, coupled with examples from the recent literature. Findings are compared to those previously observed for [125I]-(E)-1-(2-(2,3-dimethoxy-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-DM-PE-PIPZE). Methods Syntheses of E-IA-BF-PE-PIPZE and [125I]-E-IA-BF-PE-PIPZE were accomplished by standard methods. In vitro receptor binding studies and autoradiography were performed, and binding potential was predicted. Measurements of lipophilicity and protein binding were obtained. In vivo studies were conducted in mice to evaluate radioligand stability, as well as specific binding to σ1 sites in brain, brain regions and peripheral organs in the presence and absence of potential blockers. Results E-IA-BF-PE-PIPZE exhibited high affinity and selectivity for σ1 receptors (Ki = 0.43 ± 0.03 nM, σ2 / σ1 = 173). [125I]-E-IA-BF-PE-PIPZE was prepared in good yield and purity, with high specific activity. Radioligand binding provided dissociation (koff) and association (kon) rate constants, along with a measured Kd of 0.24 ± 0.01 nM and Bmax of 472 ± 13 fmol / mg protein. The radioligand proved suitable for quantitative autoradiography in vitro using brain sections. Moderate lipophilicity, Log D7.4 2.69 ± 0.28, was determined, and protein binding was 71 ± 0.3%. In vivo, high initial whole brain uptake, > 6% injected dose / g, cleared slowly over 24 h. Specific binding represented 75% to 93% of total binding from 15 min to 24 h. Findings were confirmed and extended by regional brain biodistribution. Radiometabolites were not observed in brain (1%). Conclusions Substitution of dihydrobenzofuranylethyl for dimethoxyphenethyl increased radioligand affinity for σ1 receptors by 16-fold. While high specific binding to σ1 receptors was observed for both radioligands in vivo, [125I]-E-IA-BF-PE-PIPZE displayed much slower clearance kinetics than [125I]-E-IA-DM-PE-PIPZE. Thus, minor structural modifications of σ1 receptor radioligands lead to major differences in binding properties in vitro and in vivo. PMID:27755986

  16. Binding of polychlorinated biphenyls to aquatic humic substances: The role of substrate and sorbate properties on partitioning

    USGS Publications Warehouse

    Uhle, M.E.; Chin, Y.-P.; Aiken, G.R.; McKnight, Diane M.

    1999-01-01

    Two ortho- (2,2',5 and 2,2',5,6') and a non-ortho- (3,3',4,4') substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho- substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1' carbon bond, thereby making the molecule less able to interact effectively with the fulvic acid substrate relative to its non-ortho-substituted congeners. Finally, binding of all three PCBs to the Great Dismal Swamp fulvic acid was significantly higher than for the Pony Lake sample. This observation is attributable to the former substrate's higher degree of aromaticity and polarizability, which can potentially interact more favorably with the PCBs through an increase in van der Waals type interactions.Two ortho- (2,2???,5 and 2,2???,5,6???) and a non-ortho- (3,3???,4,4???) substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho-substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1??? carbon bond, thereby making the molecule less able to interact effectively with the fulvic acid substrate relative to its non-ortho-substituted congeners. Finally, binding of all three PCBs to the Great Dismal Swamp fulvic acid was significantly higher than for the Pony Lake sample. This observation is attributable to the former substrate's higher degree of aromaticity and polarizability, which can potentially interact more favorably with the PCBs through an increase in van der Waals type interactions.

  17. The productive cellulase binding capacity of cellulosic substrates.

    PubMed

    Karuna, Nardrapee; Jeoh, Tina

    2017-03-01

    Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Reduced Binding Potential of GABA-A/Benzodiazepine Receptors in Individuals at Ultra-high Risk for Psychosis: An [18F]-Fluoroflumazenil Positron Emission Tomography Study

    PubMed Central

    Kang, Jee In; Park, Hae-Jeong; An, Suk Kyoon

    2014-01-01

    Background: Altered transmission of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter, may contribute to the development of schizophrenia. The purpose of the present study was to investigate the presence of GABA-A/benzodiazepine (BZ) receptor binding abnormalities in individuals at ultra-high risk (UHR) for psychosis in comparison with normal controls using [18F]-fluoroflumazenil (FFMZ) positron emission tomography (PET). In particular, we set regions of interest in the striatum (caudate, putamen, and nucleus accumbens) and medial temporal area (hippocampus and parahippocampal gyrus). Methods: Eleven BZ-naive people at UHR and 15 normal controls underwent PET scanning using [18F]-FFMZ to measure GABA-A/BZ receptor binding potential. The regional group differences between UHR individuals and normal controls were analyzed using Statistical Parametric Mapping 8 software. Participants were evaluated using the structured interview for prodromal syndromes and neurocognitive function tasks. Results: People at UHR demonstrated significantly reduced binding potential of GABA-A/BZ receptors in the right caudate. Conclusions: Altered GABAergic transmission and/or the imbalance of inhibitory and excitatory systems in the striatum may be present at the putative prodromal stage and play a pivotal role in the pathophysiology of psychosis. PMID:23588475

  19. How maltose influences structural changes to bind to maltose-binding protein: results from umbrella sampling simulation.

    PubMed

    Mascarenhas, Nahren Manuel; Kästner, Johannes

    2013-02-01

    A well-studied periplasmic-binding protein involved in the abstraction of maltose is maltose-binding protein (MBP), which undergoes a ligand-induced conformational transition from an open (ligand-free) to a closed (ligand-bound) state. Umbrella sampling simulations have been us to estimate the free energy of binding of maltose to MBP and to trace the potential of mean force of the unbinding event using the center-of-mass distance between the protein and ligand as the reaction coordinate. The free energy thus obtained compares nicely with the experimentally measured value justifying our theoretical basis. Measurement of the domain angle (N-terminal-domain - hinge - C-terminal-domain) along the unbinding pathway established the existence of three different states. Starting from a closed state, the protein shifts to an open conformation during the initial unbinding event of the ligand then resides in a semi-open conformation and later resides predominantly in an open-state. These transitions along the ligand unbinding pathway have been captured in greater depth using principal component analysis. It is proposed that in mixed-model, both conformational selection and an induced-fit mechanism combine to the ligand recognition process in MBP. Copyright © 2012 Wiley Periodicals, Inc.

  20. Electrochemical surface-enhanced Raman scattering measurement on ligand capped PbS quantum dots at gap of Au nanodimer

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei

    2018-05-01

    The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.

  1. Knowledge-Based Elastic Potentials for Docking Drugs or Proteins with Nucleic Acids

    PubMed Central

    Ge, Wei; Schneider, Bohdan; Olson, Wilma K.

    2005-01-01

    Elastic ellipsoidal functions defined by the observed hydration patterns around the DNA bases provide a new basis for measuring the recognition of ligands in the grooves of double-helical structures. Here a set of knowledge-based potentials suitable for quantitative description of such behavior is extracted from the observed positions of water molecules and amino acid atoms that form hydrogen bonds with the nitrogenous bases in high resolution crystal structures. Energies based on the displacement of hydrogen-bonding sites on drugs in DNA-crystal complexes relative to the preferred locations of water binding around the heterocyclic bases are low, pointing to the reliability of the potentials and the apparent displacement of water molecules by drug atoms in these structures. The validity of the energy functions has been further examined in a series of sequence substitution studies based on the structures of DNA bound to polyamides that have been designed to recognize the minor-groove edges of Watson-Crick basepairs. The higher energies of binding to incorrect sequences superimposed (without conformational adjustment or displacement of polyamide ligands) on observed high resolution structures confirm the hypothesis that the drug subunits associate with specific DNA bases. The knowledge-based functions also account satisfactorily for the measured free energies of DNA-polyamide association in solution and the observed sites of polyamide binding on nucleosomal DNA. The computations are generally consistent with mechanisms by which minor-groove binding ligands are thought to recognize DNA basepairs. The calculations suggest that the asymmetric distributions of hydrogen-bond-forming atoms on the minor-groove edge of the basepairs may underlie ligand discrimination of G·C from C·G pairs, in addition to the commonly believed role of steric hindrance. The analysis of polyamide-bound nucleosomal structures reveals other discrepancies in the expected chemical design, including unexpected contacts to DNA and modified basepair targets of some ligands. The ellipsoidal potentials thus appear promising as a mathematical tool for the study of drug- and protein-DNA interactions and for gaining new insights into DNA-binding mechanisms. PMID:15501936

  2. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    PubMed

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-07

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  3. Binding free energy prediction in strongly hydrophobic biomolecular systems.

    PubMed

    Charlier, Landry; Nespoulous, Claude; Fiorucci, Sébastien; Antonczak, Serge; Golebiowski, Jérome

    2007-11-21

    We present a comparison of various computational approaches aiming at predicting the binding free energy in ligand-protein systems where the ligand is located within a highly hydrophobic cavity. The relative binding free energy between similar ligands is obtained by means of the thermodynamic integration (TI) method and compared to experimental data obtained through isothermal titration calorimetry measurements. The absolute free energy of binding prediction was obtained on a similar system (a pyrazine derivative bound to a lipocalin) by TI, potential of mean force (PMF) and also by means of the MMPBSA protocols. Although the TI protocol performs poorly either with an explicit or an implicit solvation scheme, the PMF calculation using an implicit solvation scheme leads to encouraging results, with a prediction of the binding affinity being 2 kcal mol(-1) lower than the experimental value. The use of an implicit solvation scheme appears to be well suited for the study of such hydrophobic systems, due to the lack of water molecules within the binding site.

  4. Probing electronic binding potentials with attosecond photoelectron wavepackets

    NASA Astrophysics Data System (ADS)

    Kiesewetter, D.; Jones, R. R.; Camper, A.; Schoun, S. B.; Agostini, P.; Dimauro, L. F.

    2018-01-01

    The central goal of attosecond science is to visualize, understand and ultimately control electron dynamics in matter over the fastest relevant timescales. To date, numerous schemes have demonstrated exquisite temporal resolution, on the order of ten attoseconds, in measurements of the response of photo-excited electrons to time-delayed probes. However, attributing this response to specific dynamical mechanisms is difficult, requiring guidance from advanced calculations. Here we show that energy transfer between an oscillating field and low-energy attosecond photoelectron wavepackets directly provides coarse-grained information on the effective binding potential from which the electrons are liberated. We employ a dense extreme ultraviolet (XUV) harmonic comb to photoionize He, Ne and Ar atoms and record the electron spectra as a function of the phase of a mid-infrared dressing field. The amplitude and phase of the resulting interference modulations in the electron spectra reveal the average momentum and change in momentum of the electron wavepackets during the first quarter-period of the dressing field after their creation, reflecting the corresponding coarse characteristics of the binding potential.

  5. Estimation of the Binding Free Energy of AC1NX476 to HIV-1 Protease Wild Type and Mutations Using Free Energy Perturbation Method.

    PubMed

    Ngo, Son Tung; Mai, Binh Khanh; Hiep, Dinh Minh; Li, Mai Suan

    2015-10-01

    The binding mechanism of AC1NX476 to HIV-1 protease wild type and mutations was studied by the docking and molecular dynamics simulations. The binding free energy was calculated using the double-annihilation binding free energy method. It is shown that the binding affinity of AC1NX476 to wild type is higher than not only ritonavir but also darunavir, making AC1NX476 become attractive candidate for HIV treatment. Our theoretical results are in excellent agreement with the experimental data as the correlation coefficient between calculated and experimentally measured binding free energies R = 0.993. Residues Asp25-A, Asp29-A, Asp30-A, Ile47-A, Gly48-A, and Val50-A from chain A, and Asp25-B from chain B play a crucial role in the ligand binding. The mutations were found to reduce the receptor-ligand interaction by widening the binding cavity, and the binding propensity is mainly driven by the van der Waals interaction. Our finding may be useful for designing potential drugs to combat with HIV. © 2015 John Wiley & Sons A/S.

  6. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    PubMed

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  7. POVME 2.0: An Enhanced Tool for Determining Pocket Shape and Volume Characteristics

    PubMed Central

    2015-01-01

    Analysis of macromolecular/small-molecule binding pockets can provide important insights into molecular recognition and receptor dynamics. Since its release in 2011, the POVME (POcket Volume MEasurer) algorithm has been widely adopted as a simple-to-use tool for measuring and characterizing pocket volumes and shapes. We here present POVME 2.0, which is an order of magnitude faster, has improved accuracy, includes a graphical user interface, and can produce volumetric density maps for improved pocket analysis. To demonstrate the utility of the algorithm, we use it to analyze the binding pocket of RNA editing ligase 1 from the unicellular parasite Trypanosoma brucei, the etiological agent of African sleeping sickness. The POVME analysis characterizes the full dynamics of a potentially druggable transient binding pocket and so may guide future antitrypanosomal drug-discovery efforts. We are hopeful that this new version will be a useful tool for the computational- and medicinal-chemist community. PMID:25400521

  8. Effects of Modafinil on Dopamine and Dopamine Transporters in the Male Human Brain: Clinical Implications

    PubMed Central

    Volkow, Nora D.; Fowler, Joanna S.; Logan, Jean; Alexoff, David; Zhu, Wei; Telang, Frank; Wang, Gene-Jack; Jayne, Millard; Hooker, Jacob M.; Wong, Christopher; Hubbard, Barbara; Carter, Pauline; Warner, Donald; King, Payton; Shea, Colleen; Xu, Youwen; Muench, Lisa; Apelskog-Torres, Karen

    2009-01-01

    Context Modafinil, a wake-promoting drug used to treat narcolepsy, is increasingly being used as a cognitive enhancer. Although initially launched as distinct from stimulants that increase extracellular dopamine by targeting dopamine transporters, recent preclinical studies suggest otherwise. Objective To measure the acute effects of modafinil at doses used therapeutically (200 mg and 400 mg given orally) on extracellular dopamine and on dopamine transporters in the male human brain. Design, Setting, and Participants Positron emission tomography with [11C]raclopride (D2/D3 radioligand sensitive to changes in endogenous dopamine) and [11C]cocaine (dopamine transporter radioligand) was used to measure the effects of modafinil on extracellular dopamine and on dopamine transporters in 10 healthy male participants. The study took place over an 8-month period (2007–2008) at Brookhaven National Laboratory. Main Outcome Measures Primary outcomes were changes in dopamine D2/D3 receptor and dopamine transporter availability (measured by changes in binding potential) after modafinil when compared with after placebo. Results Modafinil decreased mean (SD) [11C]raclopride binding potential in caudate (6.1% [6.5%]; 95% confidence interval [CI], 1.5% to 10.8%; P=.02), putamen (6.7% [4.9%]; 95% CI, 3.2% to 10.3%; P=.002), and nucleus accumbens (19.4% [20%]; 95% CI, 5% to 35%; P=.02), reflecting increases in extracellular dopamine. Modafinil also decreased [11C]cocaine binding potential in caudate (53.8% [13.8%]; 95% CI, 43.9% to 63.6%; P<.001), putamen (47.2% [11.4%]; 95% CI, 39.1% to 55.4%; P<.001), and nucleus accumbens (39.3% [10%]; 95% CI, 30% to 49%; P=.001), reflecting occupancy of dopamine transporters. Conclusions In this pilot study, modafinil blocked dopamine transporters and increased dopamine in the human brain (including the nucleus accumbens). Because drugs that increase dopamine in the nucleus accumbens have the potential for abuse, and considering the increasing use of modafinil, these results highlight the need for heightened awareness for potential abuse of and dependence on modafinil in vulnerable populations. PMID:19293415

  9. PET imaging predicts future body weight and cocaine preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaelides M.; Wang G.; Michaelides M.

    Deficits in dopamine D2/D3 receptor (D2R/D3R) binding availability using PET imaging have been reported in obese humans and rodents. Similar deficits have been reported in cocaine-addicts and cocaine-exposed primates. We found that D2R/D3R binding availability negatively correlated with measures of body weight at the time of scan (ventral striatum), at 1 (ventral striatum) and 2 months (dorsal and ventral striatum) post scan in rats. Cocaine preference was negatively correlated with D2R/D3R binding availability 2 months (ventral striatum) post scan. Our findings suggest that inherent deficits in striatal D2R/D3R signaling are related to obesity and drug addiction susceptibility and that ventralmore » and dorsal striatum serve dissociable roles in maintaining weight gain and cocaine preference. Measuring D2R/D3R binding availability provides a way for assessing susceptibility to weight gain and cocaine abuse in rodents and given the translational nature of PET imaging, potentially primates and humans.« less

  10. Reduction of high-affinity beta2-adrenergic receptor binding by hyperforin and hyperoside on rat C6 glioblastoma cells measured by fluorescence correlation spectroscopy.

    PubMed

    Prenner, Lars; Sieben, Anne; Zeller, Karin; Weiser, Dieter; Häberlein, Hanns

    2007-05-01

    Beta-adrenergic receptors (beta-AR) are potential targets for antidepressants. Desensitization and downregulation of beta-AR are discussed as possible modes of action for antidepressants. We have investigated the effects of hyperforin and hyperoside, compounds with potentially antidepressant activity from St. John's Wort, on the binding behavior and dynamics of beta2-AR in living rat C6 glioblastoma cells, compared to desipramine (desmethylimipramine; DMI) by means of fluorescence correlation spectroscopy (FCS) and fluorescence microscopy. FCS-binding studies with the fluorescently labeled ligand Alexa532-noradrenaline (Alexa532-NA) binding to beta2-AR of C6 cells showed a significant reduction in total beta2-AR binding after preincubation with hyperforin and hyperoside for 3 days, respectively, which was also found for DMI. This was mainly observed in high-affinity receptor-ligand complexes with hindered lateral mobility (D2 = 1.1 (+/-0.4) microm2/s) in the biomembrane. However, internalization of beta2-AR was found neither in z-scans of these C6 cells nor in HEK 293 cells stably transfected with GFP-tagged beta2-adrenergic receptors (beta2AR-GFP) after incubation up to 6 days with either DMI, hyperforin, or hyperoside. Thus, under these conditions reduction of beta2-AR binding was not mediated by receptor internalization. Additionally, preincubation of C6 cells with DMI, hyperforin, and hyperoside led to a loss of second messenger cAMP after beta2-adrenergic stimulating conditions with terbutaline. Our current results indicate that hyperforin and hyperoside from St. John's Wort, as well as DMI, reduce beta2-adrenergic sensitivity in C6 cells, emphasizing the potential usefulness of St. John's Wort dry extracts in clinical treatment of depressive symptoms.

  11. Protein adsorption on dopamine-melanin films: role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption.

    PubMed

    Bernsmann, Falk; Frisch, Benoît; Ringwald, Christian; Ball, Vincent

    2010-04-01

    We recently showed the possibility to build dopamine-melanin films of controlled thickness by successive immersions of a substrate in alkaline solutions of dopamine [F. Bernsmann, A. Ponche, C. Ringwald, J. Hemmerlé, J. Raya, B. Bechinger, J.-C. Voegel, P. Schaaf, V. Ball, J. Phys. Chem. C 113 (2009) 8234-8242]. In this work the structure and properties of such films are further explored. The zeta-potential of dopamine-melanin films is measured as a function of the total immersion time to build the film. It appears that the film bears a constant zeta-potential of (-39+/-3) mV after 12 immersion steps. These data are used to calculate the surface density of charged groups of the dopamine-melanin films at pH 8.5 that are mostly catechol or quinone imine chemical groups. Furthermore the zeta-potential is used to explain the adsorption of three model proteins (lysozyme, myoglobin, alpha-lactalbumin), which is monitored by quartz crystal microbalance. We come to the conclusion that protein adsorption on dopamine-melanin is not only determined by possible covalent binding between amino groups of the proteins and catechol groups of dopamine-melanin but that electrostatic interactions contribute to protein binding. Part of the adsorbed proteins can be desorbed by sodium dodecylsulfate solutions at the critical micellar concentration. The fraction of weakly bound proteins decreases with their isoelectric point. Additionally the number of available sites for covalent binding of amino groups on melanin grains is quantified. Copyright 2009 Elsevier Inc. All rights reserved.

  12. Piezoresistive measurement of Swine H1N1 Hemagglutinin peptide binding with microcantilever arrays

    NASA Astrophysics Data System (ADS)

    Bajwa, N.; Maldonado, C. J.; Thundat, T.; Passian, A.

    2014-03-01

    Effective detection of Swine H1N1 Hemagglutinin peptide is crucial as it could be used as a positive control to screen for highly infectious flu strains such as Swine-Origin Influenza A (H1N1). Piezoresistive microcantilever arrays present a pathway towards highly sensitive and label-free detection of biomolecules by transducing the antigen-antibody binding into change in resistivity via induced surface stress variation. We demonstrate a mechanical transduction of Swine H1N1 Hemagglutinin peptide binding and suggest the employed technique may offer a potential platform for detection of the H1N1 virus, which could be clinically used to diagnose and provide subsequent relief.

  13. Application of pulsed field gradient NMR techniques for investigating binding of flavor compounds to macromolecules.

    PubMed

    Jung, Da-Mi; De Ropp, Jeffrey S; Ebeler, Susan E

    2002-07-17

    Two diffusion-based NMR techniques are presented and used to investigate the binding of selected flavor compounds to macromolecules. A pulsed field gradient NMR (PFG-NMR) method was applied to measure the apparent diffusion coefficients of four alkanone compounds as they associated with bovine serum albumin (BSA). The change in the apparent diffusion coefficient as a function of the BSA/alkanone ratio was fitted to yield binding constants (K(a)()) and binding stoichiometry (n) for each alkanone. The results showed that the apparent diffusion coefficients of alkanones increased with a decrease in the BSA/alkanone ratios, and the measured values of K(a)() and n were comparable with those obtained with other methods and depended on the alkanone structure. A diffusion-based nuclear Overhauser effect (called diffusion NOE pumping) method was also applied to screen mixtures of flavor compounds and identify those that have a binding affinity to complex macromolecules. Using this technique benzaldehyde and vanillin were observed to bind with bovine serum albumin, whereas 2-phenylethanol was identified as a nonbinding or weakly binding ligand with BSA. The diffusion NOE pumping method was also applied to a hydro alcoholic solution of cacao bean tannin extracts to which a mixture of ethylbenzoate, benzaldehyde, and 2-phenylethanol was added. The diffusion NOE pumping technique clearly indicated that ethylbenzoate had a stronger binding affinity to the polymeric (-)-epicatechin units of the cacao bean tannin extracts than the other two flavor compounds. The results successfully demonstrate the potential applications of diffusion-based NMR techniques for studying flavors and nonvolatile food matrix interactions.

  14. Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Tao, Mo; Zhang, Guowen; Pan, Junhui; Xiong, Chunhong

    2016-02-01

    Tau-fluvalinate (TFL) and flumethrin (FL), widely used in agriculture and a class of synthetic pyrethroid pesticides with a similar structure, may cause a potential security risk. Herein, the modes of binding in vitro of TFL and FL with calf thymus DNA (ctDNA) were characterized by fluorescence, UV-vis absorption, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy with the aid of viscosity measurements, melting analyses and molecular docking studies. The fluorescence titration indicated that both TFL and FL bound to ctDNA forming complexes through hydrogen bonding and van der Waals forces. The binding constants of TFL and FL with ctDNA were in the range of 104 L mol- 1, and FL exhibited a higher binding propensity than TFL. The iodide quenching effect, single/double-stranded DNA effects, and ctDNA melting and viscosity measurements demonstrated that the binding of both TFL and FL to ctDNA was groove mode. The FT-IR analyses suggested the A-T region of the minor groove of ctDNA as the preferential binding for TFL and FL, which was confirmed by the displacement assays with Hoechst 33258 probe, and the molecular docking visualized the specific binding. The changes in CD spectra indicated that both FL and TFL induced the perturbation on the base stacking and helicity of B-DNA, but the disturbance caused by FL was more obvious. Gel electrophoresis analyses indicated that both TFL and FL did not cause significant DNA cleavage. This study provides novel insights into the binding properties of TFL/FL with ctDNA and its toxic mechanisms.

  15. SPACER: server for predicting allosteric communication and effects of regulation

    PubMed Central

    Goncearenco, Alexander; Mitternacht, Simon; Yong, Taipang; Eisenhaber, Birgit; Eisenhaber, Frank; Berezovsky, Igor N.

    2013-01-01

    The SPACER server provides an interactive framework for exploring allosteric communication in proteins with different sizes, degrees of oligomerization and function. SPACER uses recently developed theoretical concepts based on the thermodynamic view of allostery. It proposes easily tractable and meaningful measures that allow users to analyze the effect of ligand binding on the intrinsic protein dynamics. The server shows potential allosteric sites and allows users to explore communication between the regulatory and functional sites. It is possible to explore, for instance, potential effector binding sites in a given structure as targets for allosteric drugs. As input, the server only requires a single structure. The server is freely available at http://allostery.bii.a-star.edu.sg/. PMID:23737445

  16. Cooperative binding of drugs on human serum albumin

    NASA Astrophysics Data System (ADS)

    Varela, L. M.; Pérez-Rodríguez, M.; García, M.

    In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer-Emmet-Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.

  17. Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids

    PubMed Central

    Konshina, Anastasia G.; Boldyrev, Ivan A.; Utkin, Yuri N.; Omel'kov, Anton V.; Efremov, Roman G.

    2011-01-01

    The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of cells. PMID:21559494

  18. Accurate ab initio binding energies of the benzene dimer.

    PubMed

    Park, Young Choon; Lee, Jae Shin

    2006-04-20

    Accurate binding energies of the benzene dimer at the T and parallel displaced (PD) configurations were determined using the single- and double-coupled cluster method with perturbative triple correction (CCSD(T)) with correlation-consistent basis sets and an effective basis set extrapolation scheme recently devised. The difference between the estimated CCSD(T) basis set limit electronic binding energies for the T and PD shapes appears to amount to more than 0.3 kcal/mol, indicating the PD shape is a more stable configuration than the T shape for this dimer in the gas phase. This conclusion is further strengthened when a vibrational zero-point correction to the electronic binding energies of this dimer is made, which increases the difference between the two configurations to 0.4-0.5 kcal/mol. The binding energies of 2.4 and 2.8 kcal/mol for the T and PD configurations are in good accord with the previous experimental result from ionization potential measurement.

  19. Single-molecule fluorescence measurements reveal the reaction mechanisms of the core RISC, composed of human Argonaute 2 and a guide RNA.

    PubMed

    Jo, Myung Hyun; Song, Ji-Joon; Hohng, Sungchul

    2015-12-01

    In eukaryotes, small RNAs play important roles in both gene regulation and resistance to viral infection. Argonaute proteins have been identified as a key component of the effector complexes of various RNA-silencing pathways, but the mechanistic roles of Argonaute proteins in these pathways are not clearly understood. To address this question, we performed single-molecule fluorescence experiments using an RNA-induced silencing complex (core-RISC) composed of a small RNA and human Argonaute 2. We found that target binding of core-RISC starts at the seed region of the guide RNA. After target binding, four distinct reactions followed: target cleavage, transient binding, stable binding, and Argonaute unloading. Target cleavage required extensive sequence complementarity and accelerated core-RISC dissociation for recycling. In contrast, the stable binding of core-RISC to target RNAs required seed-match only, suggesting a potential explanation for the seed-match rule of microRNA (miRNA) target selection.

  20. In Vitro Determination of the Allergenic Potential of Egg White in Processed Meat

    PubMed Central

    Hildebrandt, Sabine; Schütte, Larsen; Stoyanov, Stefan; Hammer, Günther; Steinhart, Hans; Paschke, Angelika

    2010-01-01

    Hen's egg white has been reported as a causative agent of allergic reactions, with ovalbumin, conalbumin, ovomucoid, and lysozyme being the major allergens. However, little is known about the effects of processing with heat and high pressure on the allergenicity of egg white proteins as ingredients in meat. For this purpose, the allergenic characteristics of such treated preparations were studied. The IgE-binding capacity was analyzed by EAST inhibition in raw and processed meat preparations using sera from patients with hen's egg specific IgE. Increasing heat treatment as well as the application of high pressure decreased IgE binding, which is a measure of allergenic potential. The combined application of heat (70°C) and high pressure had synergistic effects in reducing the allergenic potential nearly twice as the sum of the single treatments conducted separately. PMID:20948881

  1. Sequence-specific binding of counterions to B-DNA

    PubMed Central

    Denisov, Vladimir P.; Halle, Bertil

    2000-01-01

    Recent studies by x-ray crystallography, NMR, and molecular simulations have suggested that monovalent counterions can penetrate deeply into the minor groove of B form DNA. Such groove-bound ions potentially could play an important role in AT-tract bending and groove narrowing, thereby modulating DNA function in vivo. To address this issue, we report here 23Na magnetic relaxation dispersion measurements on oligonucleotides, including difference experiments with the groove-binding drug netropsin. The exquisite sensitivity of this method to ions in long-lived and intimate association with DNA allows us to detect sequence-specific sodium ion binding in the minor groove AT tract of three B-DNA dodecamers. The sodium ion occupancy is only a few percent, however, and therefore is not likely to contribute importantly to the ensemble of B-DNA structures. We also report results of ion competition experiments, indicating that potassium, rubidium, and cesium ions bind to the minor groove with similarly weak affinity as sodium ions, whereas ammonium ion binding is somewhat stronger. The present findings are discussed in the light of previous NMR and diffraction studies of sequence-specific counterion binding to DNA. PMID:10639130

  2. Measurement of Swine H1N1 Hemagglutinin Peptide binding with Piezoresistive Microcantilever Arrays

    DOE PAGES

    Bajwa, Navdeep K; Maldonado, Carlos J.; Thundat, Thomas George; ...

    2014-03-24

    The effective detection of Swine H1N1 Hemagglutinin peptide is crucial as it could be used as a positive control to screen for highly infectious flu strains such as Swine-Origin Influenza A (H1N1). Piezoresistive microcantilever arrays present a pathway towards highly sensitive and label-free detection of biomolecules by transducing the antigen-antibody binding into change in resistivity via induced surface stress variation. We also demonstrate a mechanical transduction of Swine H1N1 Hemagglutinin peptide binding and suggest the employed technique may offer a potential platform for detection of the H1N1 virus, which could be clinically used to diagnose and provide subsequent relief.

  3. One Crystal, Two Temperatures: Cryocooling Penalties Alter Ligand Binding to Transient Protein Sites

    DOE PAGES

    Fischer, Marcus; Shoichet, Brian K.; Fraser, James S.

    2015-05-28

    Interrogating fragment libraries by X-ray crystallography is a powerful strategy for discovering allosteric ligands for protein targets. Cryocooling of crystals should theoretically increase the fraction of occupied binding sites and decrease radiation damage. However, it might also perturb protein conformations that can be accessed at room temperature. Using data from crystals measured consecutively at room temperature and at cryogenic temperature, we found that transient binding sites could be abolished at the cryogenic temperatures employed by standard approaches. Finally, changing the temperature at which the crystallographic data was collected could provide a deliberate perturbation to the equilibrium of protein conformations andmore » help to visualize hidden sites with great potential to allosterically modulate protein function.« less

  4. Measurement of Swine H1N1 Hemagglutinin Peptide binding with Piezoresistive Microcantilever Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajwa, Navdeep K; Maldonado, Carlos J.; Thundat, Thomas George

    The effective detection of Swine H1N1 Hemagglutinin peptide is crucial as it could be used as a positive control to screen for highly infectious flu strains such as Swine-Origin Influenza A (H1N1). Piezoresistive microcantilever arrays present a pathway towards highly sensitive and label-free detection of biomolecules by transducing the antigen-antibody binding into change in resistivity via induced surface stress variation. We also demonstrate a mechanical transduction of Swine H1N1 Hemagglutinin peptide binding and suggest the employed technique may offer a potential platform for detection of the H1N1 virus, which could be clinically used to diagnose and provide subsequent relief.

  5. Computational investigation of cholesterol binding sites on mitochondrial VDAC.

    PubMed

    Weiser, Brian P; Salari, Reza; Eckenhoff, Roderic G; Brannigan, Grace

    2014-08-21

    The mitochondrial voltage-dependent anion channel (VDAC) allows passage of ions and metabolites across the mitochondrial outer membrane. Cholesterol binds mammalian VDAC, and we investigated the effects of binding to human VDAC1 with atomistic molecular dynamics simulations that totaled 1.4 μs. We docked cholesterol to specific sites on VDAC that were previously identified with NMR, and we tested the reliability of multiple docking results in each site with simulations. The most favorable binding modes were used to build a VDAC model with cholesterol occupying five unique sites, and during multiple 100 ns simulations, cholesterol stably and reproducibly remained bound to the protein. For comparison, VDAC was simulated in systems with identical components but with cholesterol initially unbound. The dynamics of loops that connect adjacent β-strands were most affected by bound cholesterol, with the averaged root-mean-square fluctuation (RMSF) of multiple residues altered by 20-30%. Cholesterol binding also stabilized charged residues inside the channel and localized the surrounding electrostatic potentials. Despite this, ion diffusion through the channel was not significantly affected by bound cholesterol, as evidenced by multi-ion potential of mean force measurements. Although we observed modest effects of cholesterol on the open channel, our model will be particularly useful in experiments that investigate how cholesterol affects VDAC function under applied electrochemical forces and also how other ligands and proteins interact with the channel.

  6. Computational Investigation of Cholesterol Binding Sites on Mitochondrial VDAC

    PubMed Central

    2015-01-01

    The mitochondrial voltage-dependent anion channel (VDAC) allows passage of ions and metabolites across the mitochondrial outer membrane. Cholesterol binds mammalian VDAC, and we investigated the effects of binding to human VDAC1 with atomistic molecular dynamics simulations that totaled 1.4 μs. We docked cholesterol to specific sites on VDAC that were previously identified with NMR, and we tested the reliability of multiple docking results in each site with simulations. The most favorable binding modes were used to build a VDAC model with cholesterol occupying five unique sites, and during multiple 100 ns simulations, cholesterol stably and reproducibly remained bound to the protein. For comparison, VDAC was simulated in systems with identical components but with cholesterol initially unbound. The dynamics of loops that connect adjacent β-strands were most affected by bound cholesterol, with the averaged root-mean-square fluctuation (RMSF) of multiple residues altered by 20–30%. Cholesterol binding also stabilized charged residues inside the channel and localized the surrounding electrostatic potentials. Despite this, ion diffusion through the channel was not significantly affected by bound cholesterol, as evidenced by multi-ion potential of mean force measurements. Although we observed modest effects of cholesterol on the open channel, our model will be particularly useful in experiments that investigate how cholesterol affects VDAC function under applied electrochemical forces and also how other ligands and proteins interact with the channel. PMID:25080204

  7. Donor impurity binding energies of coaxial GaAs / Alx Ga1 - x As cylindrical quantum wires in a parallel applied magnetic field

    NASA Astrophysics Data System (ADS)

    Tshipa, M.; Winkoun, D. P.; Nijegorodov, N.; Masale, M.

    2018-04-01

    Theoretical investigations are carried out of binding energies of a donor charge assumed to be located exactly at the center of symmetry of two concentric cylindrical quantum wires. The intrinsic confinement potential in the region of the inner cylinder is modeled in any one of the three profiles: simple parabolic, shifted parabolic or the polynomial potential. The potential inside the shell is taken to be a potential step or potential barrier of a finite height. Additional confinement of the charge carriers is due to the vector potential of the axial applied magnetic field. It is found that the binding energies attain maxima in their variations with the radius of the inner cylinder irrespective of the particular intrinsic confinement of the inner cylinder. As the radius of the inner cylinder is increased further, the binding energies corresponding to either the parabolic or the polynomial potentials attain minima at some critical core-radius. Finally, as anticipated, the binding energies increase with the increase of the parallel applied magnetic field. This behaviour of the binding energies is irrespective of the particular electric potential of the nanostructure or its specific dimensions.

  8. Quantitation of cell-associated carbon nanotubes: selective binding and accumulation of carboxylated carbon nanotubes by macrophages.

    PubMed

    Wang, Ruhung; Lee, Michael; Kinghorn, Karina; Hughes, Tyler; Chuckaree, Ishwar; Lohray, Rishabh; Chow, Erik; Pantano, Paul; Draper, Rockford

    2018-05-26

    To understand the influence of carboxylation on the interaction of carbon nanotubes with cells, the amount of pristine multi-walled carbon nanotubes (P-MWNTs) or carboxylated multi-walled carbon nanotubes (C-MWNTs) coated with Pluronic ® F-108 that were accumulated by macrophages was measured by quantifying CNTs extracted from cells. Mouse RAW 264.7 macrophages and differentiated human THP-1 (dTHP-1) macrophages accumulated 80-100 times more C-MWNTs than P-MWNTs during a 24-h exposure at 37 °C. The accumulation of C-MWNTs by RAW 264.7 cells was not lethal; however, phagocytosis was impaired as subsequent uptake of polystyrene beads was reduced after a 20-h exposure to C-MWNTs. The selective accumulation of C-MWNTs suggested that there might be receptors on macrophages that bind C-MWNTs. The binding of C-MWNTs to macrophages was measured as a function of concentration at 4 °C in the absence of serum to minimize the potential interference by serum proteins or temperature-dependent uptake processes. The result was that the cells bound 8.7 times more C-MWNTs than P-MWNTs, consistent with the selective accumulation of C-MWNTs at 37 °C. In addition, serum strongly antagonized the binding of C-MWTS to macrophages, suggesting that serum contained inhibitors of binding. Moreover, inhibitors of class A scavenger receptor (SR-As) reduced the binding of C-MWNTs by about 50%, suggesting that SR-As contribute to the binding and endocytosis of C-MWNTs in macrophages but that other receptors may also be involved. Altogether, the evidence supports the hypothesis that macrophages contain binding sites selective for C-MWNTs that facilitate the high accumulation of C-MWNTs compared to P-MWNTs.

  9. Charge effects in the selection of NPF motifs by the EH domain of EHD1.

    PubMed

    Henry, Gillian D; Corrigan, Daniel J; Dineen, Joseph V; Baleja, James D

    2010-04-27

    The Eps15 homology (EH) domain is found in proteins associated with endocytosis and vesicle trafficking. EH domains bind to their target proteins through an asparagine-proline-phenylalanine (NPF) motif. We have measured the interaction energetics of the EH domain from EHD1 with peptides derived from two of its binding partners: Rabenosyn-5 (Ac-GPSLNPFDEED-NH(2)) and Rab11-Fip2 (Ac-YESTNPFTAK-NH(2)). Heteronuclear single quantum coherence (HSQC) spectroscopy shows that both peptides bind in the canonical binding pocket of EHD1 EH and induce identical structural changes, yet the affinity of the negatively charged Ac-GPSLNPFDEED-NH(2) (K(a) = 8 x 10(5) M(-1)) is tighter by 2 orders of magnitude. The thermodynamic profiles (DeltaG, DeltaH, DeltaS) were measured for both peptides as a function of temperature. The enthalpies of binding are essentially identical, and the difference in affinity is a consequence of the difference in entropic cost. Ac-GPSLNPFDEED-NH(2) binding is salt-dependent, demonstrating an electrostatic component to the interaction, whereas Ac-YESTNPFTAK-NH(2) binding is independent of salt. Successive replacement of acidic residues in Ac-GPSLNPFDEED-NH(2) with neutral residues showed that all are important. Lysine side chains in EHD1 EH create a region of strong positive surface potential near the NPF binding pocket. Contributions by lysine epsilon-amino groups to complex formation with Ac-GPSLNPFDEED-NH(2) was shown using direct-observe (15)N NMR spectroscopy. These experiments have enabled us to define a new extended interaction motif for EHD proteins, N-P-F-[DE]-[DE]-[DE], which we have used to predict new interaction partners and hence broaden the range of cellular activities involving the EHD proteins.

  10. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam; Panicker, Lata

    2014-12-01

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a `heme' group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV-vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20-30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the `heme' groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  11. Label-Free Aptasensors for the Detection of Mycotoxins

    PubMed Central

    Rhouati, Amina; Catanante, Gaelle; Nunes, Gilvanda; Hayat, Akhtar; Marty, Jean-Louis

    2016-01-01

    Various methodologies have been reported in the literature for the qualitative and quantitative monitoring of mycotoxins in food and feed samples. Based on their enhanced specificity, selectivity and versatility, bio-affinity assays have inspired many researchers to develop sensors by exploring bio-recognition phenomena. However, a significant problem in the fabrication of these devices is that most of the biomolecules do not generate an easily measurable signal upon binding to the target analytes, and signal-generating labels are required to perform the measurements. In this context, aptamers have been emerged as a potential and attractive bio-recognition element to design label-free aptasensors for various target analytes. Contrary to other bioreceptor-based approaches, the aptamer-based assays rely on antigen binding-induced conformational changes or oligomerization states rather than binding-assisted changes in adsorbed mass or charge. This review will focus on current designs in label-free conformational switchable design strategies, with a particular focus on applications in the detection of mycotoxins. PMID:27999353

  12. Electrical detection of single viruses

    NASA Astrophysics Data System (ADS)

    Patolsky, Fernando; Zheng, Gengfeng; Hayden, Oliver; Lakadamyali, Melike; Zhuang, Xiaowei; Lieber, Charles M.

    2004-09-01

    We report direct, real-time electrical detection of single virus particles with high selectivity by using nanowire field effect transistors. Measurements made with nanowire arrays modified with antibodies for influenza A showed discrete conductance changes characteristic of binding and unbinding in the presence of influenza A but not paramyxovirus or adenovirus. Simultaneous electrical and optical measurements using fluorescently labeled influenza A were used to demonstrate conclusively that the conductance changes correspond to binding/unbinding of single viruses at the surface of nanowire devices. pH-dependent studies further show that the detection mechanism is caused by a field effect, and that the nanowire devices can be used to determine rapidly isoelectric points and variations in receptor-virus binding kinetics for different conditions. Lastly, studies of nanowire devices modified with antibodies specific for either influenza or adenovirus show that multiple viruses can be selectively detected in parallel. The possibility of large-scale integration of these nanowire devices suggests potential for simultaneous detection of a large number of distinct viral threats at the single virus level.

  13. Is There Consistency between the Binding Affinity and Inhibitory Potential of Natural Polyphenols as α-amylase Inhibitors?

    PubMed

    Xu, Wei; Shao, Rong; Xiao, Jianbo

    2016-07-26

    The inhibitory potential of natural polyphenols for α-amylases has attracted great interests among researchers. The structure-affinity properties of natural polyphenols binding to α-amylase and the structure-activity relationship of dietary polyphenols inhibiting α-amylase were deeply investigated. There is a lack of consistency between the structure-affinity relationship and the structure-activity relationship of natural polyphenols as α-amylase inhibitors. Is it consistent between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors? It was found that the consistency between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors is not equivocal. For example, there is no consistency between the binding affinity and the inhibitory potential of quercetin and its glycosides as α-amylase inhibitors. However, catechins with higher α-amylase inhibitory potential exhibited higher affinity with α-amylase.

  14. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE PAGES

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; ...

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  15. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  16. Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: muscovite and talc.

    PubMed

    Yan, Lujie; Masliyah, Jacob H; Xu, Zhenghe

    2013-08-15

    Smooth basal plane and edge surfaces of two platy phyllosilicate minerals (muscovite and talc) were prepared successfully to allow accurate colloidal force measurement using an atomic force microscope (AFM), which allowed us to probe independently interactions of divalent cations with phyllosilicate basal planes and edge surfaces. The Stern potential of basal planes and edge surfaces was obtained by fitting the measured force profiles with the classical DLVO theory. The fitted Stern potential of the muscovite basal plane became less negative with increasing Ca(2+) or Mg(2+) concentration but did not reverse its sign even at Ca(2+) or Mg(2+) concentrations up to 5 mM. In contrast, the Stern potential of the muscovite edge surface reversed at Ca(2+) or Mg(2+) concentrations as low as 0.1 mM. The Stern potential of the talc basal plane became less negative with 0.1 mM Ca(2+) addition and nearly zero with 1 mM Ca(2+) addition. The Stern potential of talc edge surface became reversed with 0.1 mM Ca(2+) or 1 mM Mg(2+) addition, showing not only a different binding mechanism of talc basal planes and edge surfaces with Ca(2+) and Mg(2+), but also different binding mechanism between Ca(2+) and Mg(2+) ions with basal planes and edge surfaces. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Virtual screening of potential inhibitors from TCM for the CPSF30 binding site on the NS1A protein of influenza A virus.

    PubMed

    Ai, Haixin; Zhang, Li; Chang, Alan K; Wei, Hongyun; Che, Yuchen; Liu, Hongsheng

    2014-03-01

    Inhibition of CPSF30 function by the effector domain of influenza A virus of non-structural protein 1 (NS1A) protein plays a critical role in the suppression of host key antiviral response. The CPSF30-binding site of NS1A appears to be a very attractive target for the development of new drugs against influenza A virus. In this study, structure-based molecular docking was utilized to screen more than 30,000 compounds from a Traditional Chinese Medicine (TCM) database. Four drug-like compounds were selected as potential inhibitors for the CPSF30-binding site of NS1A. Docking conformation analysis results showed that these potential inhibitors could bind to the CPSF30-binding site with strong hydrophobic interactions and weak hydrogen bonds. Molecular dynamics simulations and MM-PBSA calculations suggested that two of the inhibitors, compounds 32056 and 31674, could stably bind to the CPSF30-binding site with high binding free energy. These two compounds could be modified to achieve higher binding affinity, so that they may be used as potential leads in the development of new anti-influenza drugs.

  18. T-Epitope Designer: A HLA-peptide binding prediction server.

    PubMed

    Kangueane, Pandjassarame; Sakharkar, Meena Kishore

    2005-05-15

    The current challenge in synthetic vaccine design is the development of a methodology to identify and test short antigen peptides as potential T-cell epitopes. Recently, we described a HLA-peptide binding model (using structural properties) capable of predicting peptides binding to any HLA allele. Consequently, we have developed a web server named T-EPITOPE DESIGNER to facilitate HLA-peptide binding prediction. The prediction server is based on a model that defines peptide binding pockets using information gleaned from X-ray crystal structures of HLA-peptide complexes, followed by the estimation of peptide binding to binding pockets. Thus, the prediction server enables the calculation of peptide binding to HLA alleles. This model is superior to many existing methods because of its potential application to any given HLA allele whose sequence is clearly defined. The web server finds potential application in T cell epitope vaccine design. http://www.bioinformation.net/ted/

  19. Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes.

    PubMed

    Ali, Ramez M; Al Kury, Lina T; Yang, Keun-Hang Susan; Qureshi, Anwar; Rajesh, Mohanraj; Galadari, Sehamuddin; Shuba, Yaroslav M; Howarth, Frank Christopher; Oz, Murat

    2015-04-01

    Cannabidiol (CBD), a major nonpsychotropic cannabinoid found in Cannabis plant, has been shown to influence cardiovascular functions under various physiological and pathological conditions. In the present study, the effects of CBD on contractility and electrophysiological properties of rat ventricular myocytes were investigated. Video edge detection was used to measure myocyte shortening. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator fura-2 AM. Whole-cell patch clamp was used to measure action potential and Ca(2+) currents. Radioligand binding was employed to study pharmacological characteristics of CBD binding. CBD (1μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca(2+) transients. However, the amplitudes of caffeine-evoked Ca(2+) transients and the rate of recovery of electrically evoked Ca(2+) transients following caffeine application were not altered. CBD (1μM) significantly decreased the duration of APs. Further studies on L-type Ca(2+) channels indicated that CBD inhibits these channels with IC50 of 0.1μM in a voltage-independent manner. Radioligand studies indicated that the specific binding of [(3)H]Isradipine, was not altered significantly by CBD. The results suggest that CBD depresses myocyte contractility by suppressing L-type Ca(2+) channels at a site different than dihydropyridine binding site and inhibits excitation-contraction coupling in cardiomyocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Assessment of Homology Templates and an Anesthetic Binding Site within the γ-Aminobutyric Acid Receptor

    PubMed Central

    Bertaccini, Edward J.; Yoluk, Ozge; Lindahl, Erik R.; Trudell, James R.

    2013-01-01

    Background Anesthetics mediate portions of their activity via modulation of the γ-aminobutyric acid receptor (GABAaR). While its molecular structure remains unknown, significant progress has been made towards understanding its interactions with anesthetics via molecular modeling. Methods The structure of the torpedo acetylcholine receptor (nAChRα), the structures of the α4 and β2 subunits of the human nAChR, the structures of the eukaryotic glutamate-gated chloride channel (GluCl), and the prokaryotic pH sensing channels, from Gloeobacter violaceus and Erwinia chrysanthemi, were aligned with the SAlign and 3DMA algorithms. A multiple sequence alignment from these structures and those of the GABAaR was performed with ClustalW. The Modeler and Rosetta algorithms independently created three-dimensional constructs of the GABAaR from the GluCl template. The CDocker algorithm docked a congeneric series of propofol derivatives into the binding pocket and scored calculated binding affinities for correlation with known GABAaR potentiation EC50’s. Results Multiple structure alignments of templates revealed a clear consensus of residue locations relevant to anesthetic effects except for torpedo nAChR. Within the GABAaR models generated from GluCl, the residues notable for modulating anesthetic action within transmembrane segments 1, 2, and 3 converged on the intersubunit interface between alpha and beta subunits. Docking scores of a propofol derivative series into this binding site showed strong linear correlation with GABAaR potentiation EC50. Conclusion Consensus structural alignment based on homologous templates revealed an intersubunit anesthetic binding cavity within the transmembrane domain of the GABAaR, which showed correlation of ligand docking scores with experimentally measured GABAaR potentiation. PMID:23770602

  1. Assessment of homology templates and an anesthetic binding site within the γ-aminobutyric acid receptor.

    PubMed

    Bertaccini, Edward J; Yoluk, Ozge; Lindahl, Erik R; Trudell, James R

    2013-11-01

    Anesthetics mediate portions of their activity via modulation of the γ-aminobutyric acid receptor (GABAaR). Although its molecular structure remains unknown, significant progress has been made toward understanding its interactions with anesthetics via molecular modeling. The structure of the torpedo acetylcholine receptor (nAChRα), the structures of the α4 and β2 subunits of the human nAChR, the structures of the eukaryotic glutamate-gated chloride channel (GluCl), and the prokaryotic pH-sensing channels, from Gloeobacter violaceus and Erwinia chrysanthemi, were aligned with the SAlign and 3DMA algorithms. A multiple sequence alignment from these structures and those of the GABAaR was performed with ClustalW. The Modeler and Rosetta algorithms independently created three-dimensional constructs of the GABAaR from the GluCl template. The CDocker algorithm docked a congeneric series of propofol derivatives into the binding pocket and scored calculated binding affinities for correlation with known GABAaR potentiation EC50s. Multiple structure alignments of templates revealed a clear consensus of residue locations relevant to anesthetic effects except for torpedo nAChR. Within the GABAaR models generated from GluCl, the residues notable for modulating anesthetic action within transmembrane segments 1, 2, and 3 converged on the intersubunit interface between α and β subunits. Docking scores of a propofol derivative series into this binding site showed strong linear correlation with GABAaR potentiation EC50. Consensus structural alignment based on homologous templates revealed an intersubunit anesthetic binding cavity within the transmembrane domain of the GABAaR, which showed a correlation of ligand docking scores with experimentally measured GABAaR potentiation.

  2. How Structure Defines Affinity in Protein-Protein Interactions

    PubMed Central

    Erijman, Ariel; Rosenthal, Eran; Shifman, Julia M.

    2014-01-01

    Protein-protein interactions (PPI) in nature are conveyed by a multitude of binding modes involving various surfaces, secondary structure elements and intermolecular interactions. This diversity results in PPI binding affinities that span more than nine orders of magnitude. Several early studies attempted to correlate PPI binding affinities to various structure-derived features with limited success. The growing number of high-resolution structures, the appearance of more precise methods for measuring binding affinities and the development of new computational algorithms enable more thorough investigations in this direction. Here, we use a large dataset of PPI structures with the documented binding affinities to calculate a number of structure-based features that could potentially define binding energetics. We explore how well each calculated biophysical feature alone correlates with binding affinity and determine the features that could be used to distinguish between high-, medium- and low- affinity PPIs. Furthermore, we test how various combinations of features could be applied to predict binding affinity and observe a slow improvement in correlation as more features are incorporated into the equation. In addition, we observe a considerable improvement in predictions if we exclude from our analysis low-resolution and NMR structures, revealing the importance of capturing exact intermolecular interactions in our calculations. Our analysis should facilitate prediction of new interactions on the genome scale, better characterization of signaling networks and design of novel binding partners for various target proteins. PMID:25329579

  3. Differences in PAR-2 activating potential by king crab (Paralithodes camtschaticus), salmon (Salmo salar), and bovine (Bos taurus) trypsin.

    PubMed

    Larsen, Anett K; Kristiansen, Kurt; Sylte, Ingebrigt; Seternes, Ole-Morten; Bang, Berit E

    2013-07-20

    Salmon trypsin is shown to increase secretion of the pro-inflammatory cytokine interleukin (IL)-8 from human airway epithelial cells through activation of PAR-2. Secretion of IL-8 induced by king crab trypsin is observed in a different concentration range compared to salmon trypsin, and seems to be only partially related to PAR-2 activation. This report aim to identify differences in the molecular structure of king crab trypsin (Paralithodes camtschaticus) compared to salmon (Salmo salar) and bovine trypsin (Bos taurus) that might influence the ability to activate protease-activated receptor-2 (PAR-2). During purification king crab trypsin displayed stronger binding capacity to the anionic column used in fast protein liquid chromatography compared to fish trypsins, and was identified as a slightly bigger molecule. Measurements of enzymatic activity yielded no obvious differences between the trypsins tested. Molecular modelling showed that king crab trypsin has a large area with strong negative electrostatic potential compared to the smaller negative areas in bovine and salmon trypsins. Bovine and salmon trypsins also displayed areas with strong positive electrostatic potential, a feature lacking in the king crab trypsin. Furthermore we have identified 3 divergent positions (Asp196, Arg244, and Tyr247) located near the substrate binding pocket of king crab trypsin that might affect the binding and cleavage of PAR-2. These preliminary results indicate that electrostatic interactions could be of importance in binding, cleavage and subsequent activation of PAR-2.

  4. Simultaneous addition of two ligands: a potential strategy for estimating divalent ion affinities in EF-hand proteins by isothermal titration calorimetry.

    PubMed

    Henzl, Michael T; Markus, Lindsey A; Davis, Meredith E; McMillan, Andrew T

    2013-03-01

    Capable of providing a detailed thermodynamic picture of noncovalent association reactions, isothermal titration calorimetry (ITC) has become a popular method for studying protein-ligand interactions. We routinely employ the technique to study divalent ion-binding by two-site EF-hand proteins from the parvalbumin- and polcalcin lineages. The combination of high Ca(2+) affinity and relatively low Mg(2+) affinity, and the attendant complication of parameter correlation, conspire to make the simultaneous extraction of binding constants and -enthalpies for both ions challenging. Although global analysis of multiple ITC experiments can overcome these hurdles, our current experimental protocol includes upwards of 10 titrations - requiring a substantial investment in labor, machine time, and material. This paper explores the potential for using a smaller suite of experiments that includes simultaneous titrations with Ca(2+) and Mg(2+) at different ratios of the two ions. The results obtained for four proteins, differing substantially in their divalent ion-binding properties, suggest that the approach has merit. The Ca(2+)- and Mg(2+)-binding constants afforded by the streamlined analysis are in reasonable agreement with those obtained from the standard analysis protocol. Likewise, the abbreviated analysis provides comparable values for the Ca(2+)-binding enthalpies. However, the streamlined analysis can yield divergent values for the Mg(2+)-binding enthalpies - particularly those for lower affinity sites. This shortcoming can be remedied, in large measure, by including data from a direct Ca(2+) titration in the presence of a high, fixed Mg(2+) concentration. Copyright © 2013. Published by Elsevier Inc.

  5. Functional neuroimaging in multiple sclerosis with radiolabelled glia markers: preliminary comparative PET studies with [11C]vinpocetine and [11C]PK11195 in patients.

    PubMed

    Vas, Adám; Shchukin, Yevgeni; Karrenbauer, Virginija D; Cselényi, Zsolt; Kostulas, Kosta; Hillert, Jan; Savic, Ivanka; Takano, Akihiro; Halldin, Christer; Gulyás, Balázs

    2008-01-15

    With the purpose of demonstrating the use of positron emission tomography (PET) and radiolabelled glia markers to indicate regional cerebral damage, we measured with PET in four young multiplex sclerosis (MS) patients in two consecutive measurements the global and regional brain uptake as well as regional distribution and binding potential (BP) of [(11)C]vinpocetine and [(11)C]PK11195. Both ligands showed increased uptake and BP in the regions of local brain damage. However, regional BP values for [(11)C]vinpocetine were markedly higher than those for [(11)C]PK11195. This feature of the former radioligand may be related to its high brain uptake and marked affinity to the peripheral benzodiazepine receptor binding sites (PBBS), characteristic for glia cells. As local brain traumas entail reactive glia accumulation in and around the site of the damage, the present findings may indicate that [(11)C]vinpocetine marks the place or boundaries of local brain damage by binding to the PBBS present in glia cells, which, in turn, accumulate in the region of the damage. The present findings (i) confirm earlier observations with [(11)C]PK11195 as a potential glia marker in PET studies and (ii) support the working hypothesis that [(11)C]vinpocetine is a potentially useful PET marker of regional and global brain damage resulting in glia accumulation locally or globally in the human brain. The comparative analysis of the two ligands indicate that [(11)C]vinpocetine shows a number of characteristics favourable in comparison with [(11)C]PK11195.

  6. Stigmatellin Probes the Electrostatic Potential in the QB Site of the Photosynthetic Reaction Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerencsér, László; Boros, Bogáta; Derrien, Valerie

    2015-01-01

    The electrostatic potential in the secondary quinone (QB) binding site of the reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides determines the rate and free energy change (driving force) of electron transfer to QB. It is controlled by the ionization states of residues in a strongly interacting cluster around the QB site. Reduction of the QB induces change of the ionization states of residues and binding of protons from the bulk. Stigmatellin, an inhibitor of the mitochondrial and photosynthetic respiratory chain, has been proven to be a unique voltage probe of the QB binding pocket. It binds to themore » QB site with high affinity, and the pK value of its phenolic group monitors the local electrostatic potential with high sensitivity. Investigations with different types of detergent as a model system of isolated RC revealed that the pK of stigmatellin was controlled overwhelmingly by electrostatic and slightly by hydrophobic interactions. Measurements showed a high pK value (>11) of stigmatellin in the QB pocket of the dark-state wild-type RC, indicating substantial negative potential. When the local electrostatics of the QB site was modulated by a single mutation, L213Asp/Ala, or double mutations, L213Asp-L212Glu/Ala-Ala (AA), the pK of stigmatellin dropped to 7.5 and 7.4, respectively, which corresponds to a >210 mV increase in the electrostatic potential relative to the wild-type RC. This significant pK drop (DpK > 3.5) decreased dramatically to (DpK > 0.75) in the RC of the compensatory mutant (AAþM44Asn/AAþM44Asp). Our results indicate that the L213Asp is the most important actor in the control of the electrostatic potential in the QB site of the dark-state wild-type RC, in good accordance with conclusions of former studies using theoretical calculations or light-induced charge recombination assay.« less

  7. Analysis of Multiplexed Nanosensor Arrays Based on Near-Infrared Fluorescent Single-Walled Carbon Nanotubes.

    PubMed

    Dong, Juyao; Salem, Daniel P; Sun, Jessica H; Strano, Michael S

    2018-04-24

    The high-throughput, label-free detection of biomolecules remains an important challenge in analytical chemistry with the potential of nanosensors to significantly increase the ability to multiplex such assays. In this work, we develop an optical sensor array, printable from a single-walled carbon nanotube/chitosan ink and functionalized to enable a divalent ion-based proximity quenching mechanism for transducing binding between a capture protein or an antibody with the target analyte. Arrays of 5 × 6, 200 μm near-infrared (nIR) spots at a density of ≈300 spots/cm 2 are conjugated with immunoglobulin-binding proteins (proteins A, G, and L) for the detection of human IgG, mouse IgM, rat IgG2a, and human IgD. Binding kinetics are measured in a parallel, multiplexed fashion from each sensor spot using a custom laser scanning imaging configuration with an nIR photomultiplier tube detector. These arrays are used to examine cross-reactivity, competitive and nonspecific binding of analyte mixtures. We find that protein G and protein L functionalized sensors report selective responses to mouse IgM on the latter, as anticipated. Optically addressable platforms such as the one examined in this work have potential to significantly advance the real-time, multiplexed biomolecular detection of complex mixtures.

  8. An examination of dynamics crosstalk between SH2 and SH3 domains by hydrogen/deuterium exchange and mass spectrometry

    PubMed Central

    Hochrein, James M.; Lerner, Edwina C.; Schiavone, Anthony P.; Smithgall, Thomas E.; Engen, John R.

    2006-01-01

    The ability of proteins to regulate their own enzymatic activity can be facilitated by changes in structure or protein dynamics in response to external regulators. Because many proteins contain SH2 and SH3 domains, transmission of information between the domains is a potential method of allosteric regulation. To determine if ligand binding to one modular domain may alter structural dynamics in an adjacent domain, allowing potential transmission of information through the protein, we used hydrogen exchange and mass spectrometry to measure changes in protein dynamics in the SH3 and SH2 domains of hematopoietic cell kinase (Hck). Ligand binding to either domain had little or no effect on hydrogen exchange in the adjacent domain, suggesting that changes in protein structure or dynamics are not a means of SH2/SH3 crosstalk. Furthermore, ligands of varying affinity covalently attached to SH3/SH2 altered dynamics only in the domain to which they bind. Such results demonstrate that ligand binding may not structurally alter adjacent SH3/SH2 domains and implies that other aspects of protein architecture contribute to the multiple levels of regulation in proteins containing SH3 and SH2 domains. PMID:16322569

  9. Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study.

    PubMed

    Brown, Craig M; Liu, Yun; Yildirim, Taner; Peterson, Vanessa K; Kepert, Cameron J

    2009-05-20

    Hydrogen adsorption in high surface area nanoporous coordination polymers has attracted a great deal of interest in recent years due to the potential applications in energy storage. Here we present combined inelastic neutron scattering measurements and detailed first-principles calculations aimed at unraveling the nature of hydrogen adsorption in HKUST-1 (Cu3(1,3,5-benzenetricarboxylate)2), a metal-organic framework (MOF) with unsaturated metal centers. We reveal that, in this system, the major contribution to the overall binding comes from the classical Coulomb interaction which is not screened due to the open metal site; this explains the relatively high binding energies and short H2-metal distances observed in MOFs with exposed metal sites as compared to traditional ones. Despite the short distances, there is no indication of an elongation of the H-H bond for the bound H2 molecule at the metal site. We find that both the phonon and rotational energy levels of the hydrogen molecule are closely similar, making the interpretation of the inelastic neutron scattering data difficult. Finally, we show that the orientation of H2 has a surprisingly large effect on the binding potential, reducing the classical binding energy by almost 30%. The implication of these results for the development of MOF materials for better hydrogen storage is discussed.

  10. Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study

    NASA Astrophysics Data System (ADS)

    Brown, Craig M.; Liu, Yun; Yildirim, Taner; Peterson, Vanessa K.; Kepert, Cameron J.

    2009-05-01

    Hydrogen adsorption in high surface area nanoporous coordination polymers has attracted a great deal of interest in recent years due to the potential applications in energy storage. Here we present combined inelastic neutron scattering measurements and detailed first-principles calculations aimed at unraveling the nature of hydrogen adsorption in HKUST-1 (Cu3(1,3,5-benzenetricarboxylate)2), a metal-organic framework (MOF) with unsaturated metal centers. We reveal that, in this system, the major contribution to the overall binding comes from the classical Coulomb interaction which is not screened due to the open metal site; this explains the relatively high binding energies and short H2-metal distances observed in MOFs with exposed metal sites as compared to traditional ones. Despite the short distances, there is no indication of an elongation of the H-H bond for the bound H2 molecule at the metal site. We find that both the phonon and rotational energy levels of the hydrogen molecule are closely similar, making the interpretation of the inelastic neutron scattering data difficult. Finally, we show that the orientation of H2 has a surprisingly large effect on the binding potential, reducing the classical binding energy by almost 30%. The implication of these results for the development of MOF materials for better hydrogen storage is discussed.

  11. Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics

    PubMed Central

    2015-01-01

    We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design. PMID:26523125

  12. A biomechanical model for actively controlled snow ski bindings.

    PubMed

    Hull, M L; Ramming, J E

    1980-11-01

    Active control of snow ski bindings is a new design concept which potentially offers improved protection from lower extremity injury. Implementation of this concept entails measuring physical variables and calculating loading and/or deformation in injury prone musculoskeletal components. The subject of this paper is definition of a biomechanical model for calculating tibia torsion based on measurements of torsion loading between the boot and ski. Previous control schemes have used leg displacement only to indicate tibia torsion. The contributions of both inertial and velocity-dependent torques to tibia loading are explored and it is shown that both these moments must be included in addition to displacement-dependent moments. A new analog controller design which includes inertia, damping, and stiffness terms in the tibia load calculation is also presented.

  13. Assessment of the binding of hydroxylated polybrominated diphenyl ethers to thyroid hormone transport proteins using a site-specific fluorescence probe.

    PubMed

    Ren, Xiao M; Guo, Liang-Hong

    2012-04-17

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions on experimental animals, and one of the proposed disruption mechanisms is the competitive binding of PBDE metabolites to TH transport proteins. In this report, a nonradioactive, site-specific fluorescein-thyroxine (F-T4) conjugate was designed and synthesized as a fluorescence probe to study the binding interaction of hydroxylated PBDEs to thyroxine-binding globulin (TBG) and transthyretin (TTR), two major TH transport proteins in human plasma. Compared with free F-T4, the fluorescence intensity of TTR-bound conjugate was enhanced by as much as 2-fold, and the fluorescence polarization value of TBG-bound conjugate increased by more than 20-fold. These changes provide signal modulation mechanisms for F-T4 as a fluorescence probe. Based on fluorescence quantum yield and lifetime measurements, the fluorescence intensity enhancement was likely due to the elimination of intramolecular fluorescence quenching of fluorescein by T4 after F-T4 was bound to TTR. In circular dichroism and intrinsic tryptophan fluorescence measurements, F-T4 induced similar spectroscopic changes of the proteins as T4 did, suggesting that F-T4 bound to the proteins at the T4 binding site. By using F-T4 as the fluorescence probe in competitive binding assays, 11 OH-PBDEs with different levels of bromination and different hydroxylation positions were assessed for their binding affinity with TBG and TTR, respectively. The results indicate that the binding affinity generally increased with bromine number and OH position also played an important role. 3-OH-BDE-47 and 3'-OH-BDE-154 bound to TTR and TBG even stronger, respectively, than T4. With rising environmental level and high bioaccumulation capability, PBDEs have the potential to disrupt thyroid homeostasis by competitive binding with TH transport proteins.

  14. Cyclotides Insert into Lipid Bilayers to Form Membrane Pores and Destabilize the Membrane through Hydrophobic and Phosphoethanolamine-specific Interactions*

    PubMed Central

    Wang, Conan K.; Wacklin, Hanna P.; Craik, David J.

    2012-01-01

    Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities. PMID:23129773

  15. GABAergic control of neostriatal dopamine D2 receptor binding and behaviors in the rat.

    PubMed

    Nikolaus, Susanne; Beu, Markus; de Souza Silva, Maria Angelica; Huston, Joseph P; Antke, Christina; Müller, Hans-Wilhelm; Hautzel, Hubertus

    2017-02-01

    The present study assessed the influence of the GABA A receptor agonist muscimol and the GABA A receptor antagonist bicuculline on neostriatal dopamine D 2 receptor binding in relation to motor and exploratory behaviors in the rat. D 2 receptor binding was measured in baseline and after challenge with either 1mg/kg muscimol or 1mg/kg bicuculline. In additional rats, D 2 receptor binding was measured after injection of saline. After treatment with muscimol, bicuculline and saline, motor and exploratory behaviors were assessed for 30min in an open field prior to administration of [ 123 I]S-3-iodo-N-(1-ethyl-2-pyrrolidinyl)methyl-2-hydroxy-6-methoxybenzamide ([ 123 I]IBZM). For baseline and challenges, striatal equilibrium ratios (V 3 ″) were computed as estimation of the binding potential. Muscimol but not bicuculline reduced D 2 receptor binding relative to baseline and to saline. Travelled distance, duration of rearing and frequency of rearing and of head-shoulder motility were lower after muscimol compared to saline. In contrast, duration of rearing and grooming and frequency of rearing, head-shoulder motility and grooming were elevated after bicuculline relative to saline. Moreover, bicuculline decreased duration of sitting and head-shoulder motility. The muscimol-induced decrease of motor/exploratory behaviors can be related to an elevation of striatal dopamine levels. In contrast, bicuculline is likely to elicit a decline of synaptic dopamine, which, however, is compensated by the time of D 2 receptor imaging studies. The results indicate direct GABAergic control over D 2 receptor binding in the neostriatum in relation to behavioral action, and, thus, complement earlier pharmacological studies. Copyright © 2016. Published by Elsevier Inc.

  16. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases*

    PubMed Central

    Kurašin, Mihhail; Kuusk, Silja; Kuusk, Piret; Sørlie, Morten; Väljamäe, Priit

    2015-01-01

    Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (PIntr) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a 14C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site −3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils. PMID:26468285

  17. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases.

    PubMed

    Kurašin, Mihhail; Kuusk, Silja; Kuusk, Piret; Sørlie, Morten; Väljamäe, Priit

    2015-11-27

    Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Force spectroscopy of multivalent binding of riboflavin-conjugated dendrimers to riboflavin binding protein.

    PubMed

    Leistra, Abigail N; Han, Jong Hyun; Tang, Shengzhuang; Orr, Bradford G; Banaszak Holl, Mark M; Choi, Seok Ki; Sinniah, Kumar

    2015-05-07

    Putative riboflavin receptors are considered as biomarkers due to their overexpression in breast and prostate cancers. Hence, these receptors can be potentially exploited for use in targeted drug delivery systems where dendrimer nanoparticles with multivalent ligand attachments can lead to greater specificity in cellular interactions. In this study, the single molecule force spectroscopy technique was used to assess the physical strength of multivalent interactions by employing a riboflavin (RF)-conjugated generation 5 PAMAM dendrimer G5(RF)n nanoparticle. By varying the average RF ligand valency (n = 0, 3, 5), the rupture force was measured between G5(RF)n and the riboflavin binding protein (RFBP). The rupture force increased when the valency of RF increased. We observed at the higher valency (n = 5) three binding events that increased in rupture force with increasing loading rate. Assuming a single energy barrier, the Bell-Evans model was used to determine the kinetic off-rate and barrier width for all binding interactions. The analysis of our results appears to indicate that multivalent interactions are resulting in changes to rupture force and kinetic off-rates.

  19. Streptococcus pyogenes collagen type I-binding Cpa surface protein. Expression profile, binding characteristics, biological functions, and potential clinical impact.

    PubMed

    Kreikemeyer, Bernd; Nakata, Masanobu; Oehmcke, Sonja; Gschwendtner, Caroline; Normann, Jana; Podbielski, Andreas

    2005-09-30

    The Streptococcus pyogenes collagen type I-binding protein Cpa (collagen-binding protein of group A streptococci) expressed by 28 serotypes of group A streptococci has been extensively characterized at the gene and protein levels. Evidence for three distinct families of cpa genes was found, all of which shared a common sequence encoding a 60-amino acid domain that accounted for selective binding to type I collagen. Surface plasmon resonance-based affinity measurements and functional studies indicated that the expression of Cpa was consistent with an attachment role for bacteria to tissue containing collagen type I. A cpa mutant displayed a significantly decreased internalization rate when incubated with HEp-2 cells but had no effect on the host cell viability. By utilizing serum from patients with a positive titer for streptolysin/DNase antibody, an increased anti-Cpa antibody titer was noted for patients with a clinical history of arthritis or osteomyelitis. Taken together, these results suggest Cpa may be a relevant matrix adhesin contributing to the pathogenesis of S. pyogenes infection of bones and joints.

  20. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins.

    PubMed

    Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W

    2014-07-18

    This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Spectroscopic study of binding of chlorogenic acid with the surface of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2017-09-01

    Understanding the interaction properties of biological materials with ZnO NPs is fundamental interest in the field of biotechnological applications as well as in the formation of optoelectronic devices. In this research, the binding of ZnO NPs and chlorogenic acid (CGA) were investigated using fluorescence quenching, UV-Vis absorption spectroscopy, Fourier transform infrared (FTIR), Raman spectroscopy, scanning electron microscopy (TEM), and dynamic light scattering (DLS) techniques. The study results indicated the fluorescence quenching between ZnO NPs and CGA rationalized in terms of static quenching mechanism or the formation of nonfluorescent CGA-ZnO. From fluorescence quenching spectral analysis the binding constant ( K a ), number of binding sites ( n), and thermodynamic properties, were determined. The quenching constants ( K sv) and binding constant ( K a ), decrease with increasing the temperature and their binding sites n are 2. The thermodynamic parameters determined using Van't Hoff equation indicated binding occurs spontaneously involving the hydrogen bond and van der Walls forces played the major role in the reaction of ZnO NPs with CGA. The Raman, SEM, DLS, and Zeta potential measurements were also indicated the differences in the structure, morphology and sizes of CGA, ZnO NPs, and their corresponding CGA-ZnO due to adsorption of CGA on the surface of ZnO NPs

  2. Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging With the Novel Radiotracer [11C]CURB.

    PubMed

    Boileau, Isabelle; Mansouri, Esmaeil; Williams, Belinda; Le Foll, Bernard; Rusjan, Pablo; Mizrahi, Romina; Tyndale, Rachel F; Huestis, Marilyn A; Payer, Doris E; Wilson, Alan A; Houle, Sylvain; Kish, Stephen J; Tong, Junchao

    2016-11-01

    One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH), and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence. However, the status of brain FAAH in cannabis use disorder is unknown. Brain FAAH binding was measured with positron emission tomography and [ 11 C]CURB in 22 healthy control subjects and ten chronic cannabis users during early abstinence. The FAAH genetic polymorphism (rs324420) and blood, urine, and hair levels of cannabinoids and metabolites were determined. In cannabis users, FAAH binding was significantly lower by 14%-20% across the brain regions examined than in matched control subjects (overall Cohen's d = 0.96). Lower binding was negatively correlated with cannabinoid concentrations in blood and urine and was associated with higher trait impulsiveness. Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids. Further studies are needed to examine possible changes in FAAH binding during prolonged cannabis abstinence and whether lower FAAH binding predates drug use. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  3. Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging with the Novel Radiotracer [11C]CURB

    PubMed Central

    Boileau, Isabelle; Mansouri, Esmaeil; Williams, Belinda; Le Foll, Bernard; Rusjan, Pablo; Mizrahi, Romina; Tyndale, Rachel F.; Huestis, Marilyn A.; Payer, Doris E.; Wilson, Alan A.; Houle, Sylvain; Kish, Stephen J.; Tong, Junchao

    2016-01-01

    Background One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH) and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence. However, the status of brain FAAH in cannabis use disorder is unknown. Methods Brain FAAH binding was measured with positron emission tomography and [11C]CURB in 22 healthy control subjects and ten chronic, frequent cannabis users during early abstinence. The FAAH genetic polymorphism (rs324420) and blood, urine and hair levels of cannabinoids and metabolites were determined. Results In cannabis users FAAH binding was significantly lower by 14–20% across the brain regions examined as compared to matched control subjects (overall Cohen’s d=0.96). Lower binding was negatively correlated with cannabinoid concentrations in blood and urine and was associated with higher trait impulsiveness. Conclusions Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids. Further studies are needed to examine possible changes in FAAH binding during prolonged cannabis abstinence and whether lower FAAH binding predates drug use. PMID:27345297

  4. Striatal dopamine transporter binding for predicting the development of delayed neuropsychological sequelae in suicide attempters by carbon monoxide poisoning: A SPECT study.

    PubMed

    Yang, Kai-Chun; Ku, Hsiao-Lun; Wu, Chia-Liang; Wang, Shyh-Jen; Yang, Chen-Chang; Deng, Jou-Fang; Lee, Ming-Been; Chou, Yuan-Hwa

    2011-12-30

    Carbon monoxide poisoning (COP) after charcoal burning results in delayed neuropsychological sequelae (DNS), which show clinical resemblance to Parkinson's disease, without adequate predictors at present. This study examined the role of dopamine transporter (DAT) binding for the prediction of DNS. Twenty-seven suicide attempters with COP were recruited. Seven of them developed DNS, while the remainder did not. The striatal DAT binding was measured by single photon emission computed tomography with (99m)Tc-TRODAT. The specific uptake ratio was derived based on a ratio equilibrium model. Using a logistic regression model, multiple clinical variables were examined as potential predictors for DNS. COP patients with DNS had a lower binding on left striatal DAT binding than patients without DNS. Logistic regression analysis showed that a combination of initial loss of consciousness and lower left striatal DAT binding predicted the development of DNS. Our data indicate that the left striatal DAT binding could help to predict the development of DNS. This finding not only demonstrates the feasibility of brain imaging techniques for predicting the development of DNS but will also help clinicians to improve the quality of care for COP patients. 2011 Elsevier Ireland Ltd. All rights reserved.

  5. eF-seek: prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape.

    PubMed

    Kinoshita, Kengo; Murakami, Yoichi; Nakamura, Haruki

    2007-07-01

    We have developed a method to predict ligand-binding sites in a new protein structure by searching for similar binding sites in the Protein Data Bank (PDB). The similarities are measured according to the shapes of the molecular surfaces and their electrostatic potentials. A new web server, eF-seek, provides an interface to our search method. It simply requires a coordinate file in the PDB format, and generates a prediction result as a virtual complex structure, with the putative ligands in a PDB format file as the output. In addition, the predicted interacting interface is displayed to facilitate the examination of the virtual complex structure on our own applet viewer with the web browser (URL: http://eF-site.hgc.jp/eF-seek).

  6. Cortical Dopamine Transmission as Measured with the [11C]FLB 457 – Amphetamine PET Imaging Paradigm Is Not Influenced by COMT Genotype

    PubMed Central

    Narendran, Rajesh; Tumuluru, Divya; May, Maureen A.; Chowdari, Kodavali V.; Himes, Michael L.; Fasenmyer, Kelli; Frankle, W. Gordon; Nimgaonkar, Vishwajit L.

    2016-01-01

    Basic investigations link a Val158Met polymorphism (rs4680) in the catechol-O-methyltransferase (COMT) gene to not only its enzymatic activity, but also to its dopaminergic tone in the prefrontal cortex. Previous PET studies have documented the relationship between COMT Val158Met polymorphism and D1 and D2/3 receptor binding potential (BP), and interpreted them in terms of dopaminergic tone. The use of baseline dopamine D1 and D2/3 receptor binding potential (BPND) as a proxy for dopaminergic tone is problematic because they reflect both endogenous dopamine levels (a change in radiotracer's apparent affinity) and receptor density. In this analysis of 31 healthy controls genotyped for the Val158Met polymorphism (Val/Val, Val/Met, and Met/Met), we used amphetamine-induced displacement of [11C]FLB 457 as a direct measure of dopamine release. Our analysis failed to show a relationship between COMT genotype status and prefrontal cortical dopamine release. COMT genotype was also not predictive of baseline dopamine D2/3 receptor BPND. PMID:27322568

  7. Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin,R.; Clark, S.; Weeks, A.

    2005-01-01

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimermore » interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.« less

  8. The complex nature of calcium cation interactions with phospholipid bilayers

    PubMed Central

    Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz

    2016-01-01

    Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555

  9. Pectin gelation with chlorhexidine: Physico-chemical studies in dilute solutions.

    PubMed

    Lascol, Manon; Bourgeois, Sandrine; Guillière, Florence; Hangouët, Marie; Raffin, Guy; Marote, Pedro; Lantéri, Pierre; Bordes, Claire

    2016-10-05

    Low methoxyl pectin is known to gel with divalent cations (e.g. Ca(2+), Zn(2+)). In this study, a new way of pectin gelation in the presence of an active pharmaceutical ingredient, chlorhexidine (CX), was highlighted. Thus chlorhexidine interactions with pectin were investigated and compared with the well-known pectin/Ca(2+) binding model. Gelation mechanisms were studied by several physico-chemical methods such as zeta potential, viscosity, size measurements and binding isotherm was determined by Proton Nuclear Magnetic Resonance Spectroscopy ((1)H NMR). The binding process exhibited similar first two steps for both divalent ions: a stoichiometric monocomplexation of the polymer followed by a dimerization step. However, stronger interactions were observed between pectin and chlorhexidine. Moreover, the dimerization step occurred under stoichiometric conditions with chlorhexidine whereas non-stoichiometric conditions were involved with calcium ions. In the case of chlorhexidine, an additional intermolecular binding occurred in a third step. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The complex nature of calcium cation interactions with phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz

    2016-12-01

    Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.

  11. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators

    PubMed Central

    Polstein, Lauren R.; Perez-Pinera, Pablo; Kocak, D. Dewran; Vockley, Christopher M.; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E.; Reddy, Timothy E.; Gersbach, Charles A.

    2015-01-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function. PMID:26025803

  12. 18F-FPEB, a PET radiopharmaceutical for quantifying metabotropic glutamate 5 receptors: a first-in-human study of radiochemical safety, biokinetics, and radiation dosimetry.

    PubMed

    Wong, Dean F; Waterhouse, Rikki; Kuwabara, Hiroto; Kim, Jongho; Brašić, James R; Chamroonrat, Wichana; Stabins, Michael; Holt, Daniel P; Dannals, Robert F; Hamill, Terence G; Mozley, P David

    2013-03-01

    Identification of safe and valid PET radioligands for metabotropic glutamate receptor, type 5 (mGluR5), is essential to measure changes in brain mGluR5 in neuropsychiatric disorders, to confirm central mGluR5 occupancy of drug candidates, and to guide dose selection for obtaining an optimum therapeutic window. Here we present the results of a first-in-human study assessing the safety and effectiveness of a novel PET radiopharmaceutical, (18)F-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile ((18)F-FPEB), for quantifying regional brain concentrations of mGluR5. Quantification of whole-body biokinetics was conducted in 6 healthy adults (3 men and 3 women). The radiation safety profile was estimated with OLINDA/EXM software. Subsequently, pairs of dynamic brain scans were obtained for 11 healthy men to identify optimal methods for derivation of regional distribution volume and binding potential and to determine the repeatability of measurement. The whole-body effective radiation dose was approximately 17 μSv/MBq (62 mrem/mCi), with the gallbladder receiving the highest dose of 190 μSv/MBq. In brain studies, time-activity curves showed high accumulation in the insula/caudate nucleus, moderate uptake in the thalamus, and the lowest concentration in the cerebellum/pons. The plasma reference graphical analysis method appeared optimal for (18)F-FPEB; it showed acceptable test-retest variability of nondisplaceable binding potential (<10%) and identified the highest nondisplaceable binding potential values (from ∼0.5 in the globus pallidus to ∼3.5 in the insula) for target regions. Safety assessments revealed no clinically meaningful changes in vital signs, electrocardiogram, or laboratory values. (18)F-FPEB is safe and well tolerated, and its regional cerebral distribution is consistent with previous reports in the literature for metabotropic glutamate receptors. The repeatability of measurement suggests that (18)F-FPEB is suitable for quantifying mGluR5 in humans.

  13. Insights into distinct modulation of α7 and α7β2 nicotinic acetylcholine receptors by the volatile anesthetic isoflurane.

    PubMed

    Mowrey, David D; Liu, Qiang; Bondarenko, Vasyl; Chen, Qiang; Seyoum, Edom; Xu, Yan; Wu, Jie; Tang, Pei

    2013-12-13

    Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9'). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.

  14. Probing Carbohydrate Product Expulsion from a Processive Cellulase with Multiple Absolute Binding Free Energy Methods*

    PubMed Central

    Bu, Lintao; Beckham, Gregg T.; Shirts, Michael R.; Nimlos, Mark R.; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.

    2011-01-01

    Understanding the enzymatic mechanism that cellulases employ to degrade cellulose is critical to efforts to efficiently utilize plant biomass as a sustainable energy resource. A key component of cellulase action on cellulose is product inhibition from monosaccharide and disaccharides in the product site of cellulase tunnel. The absolute binding free energy of cellobiose and glucose to the product site of the catalytic tunnel of the Family 7 cellobiohydrolase (Cel7A) of Trichoderma reesei (Hypocrea jecorina) was calculated using two different approaches: steered molecular dynamics (SMD) simulations and alchemical free energy perturbation molecular dynamics (FEP/MD) simulations. For the SMD approach, three methods based on Jarzynski's equality were used to construct the potential of mean force from multiple pulling trajectories. The calculated binding free energies, −14.4 kcal/mol using SMD and −11.2 kcal/mol using FEP/MD, are in good qualitative agreement. Analysis of the SMD pulling trajectories suggests that several protein residues (Arg-251, Asp-259, Asp-262, Trp-376, and Tyr-381) play key roles in cellobiose and glucose binding to the catalytic tunnel. Five mutations (R251A, D259A, D262A, W376A, and Y381A) were made computationally to measure the changes in free energy during the product expulsion process. The absolute binding free energies of cellobiose to the catalytic tunnel of these five mutants are −13.1, −6.0, −11.5, −7.5, and −8.8 kcal/mol, respectively. The results demonstrated that all of the mutants tested can lower the binding free energy of cellobiose, which provides potential applications in engineering the enzyme to accelerate the product expulsion process and improve the efficiency of biomass conversion. PMID:21454590

  15. Study of DNA binding sites using the Rényi parametric entropy measure.

    PubMed

    Krishnamachari, A; moy Mandal, Vijnan; Karmeshu

    2004-04-07

    Shannon's definition of uncertainty or surprisal has been applied extensively to measure the information content of aligned DNA sequences and characterizing DNA binding sites. In contrast to Shannon's uncertainty, this study investigates the applicability and suitability of a parametric uncertainty measure due to Rényi. It is observed that this measure also provides results in agreement with Shannon's measure, pointing to its utility in analysing DNA binding site region. For facilitating the comparison between these uncertainty measures, a dimensionless quantity called "redundancy" has been employed. It is found that Rényi's measure at low parameter values possess a better delineating feature of binding sites (of binding regions) than Shannon's measure. The critical value of the parameter is chosen with an outlier criterion.

  16. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP.

    PubMed

    Schneider, Markus; Rosam, Mathias; Glaser, Manuel; Patronov, Atanas; Shah, Harpreet; Back, Katrin Christiane; Daake, Marina Angelika; Buchner, Johannes; Antes, Iris

    2016-10-01

    Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Influence of the lipid phase state and electrostatic surface potential on the conformations of a peripherally bound membrane protein.

    PubMed

    Decca, María B; Galassi, Vanesa V; Perduca, Massimiliano; Monaco, Hugo L; Montich, Guillermo G

    2010-11-25

    Avian liver bile acid-binding protein (L-BABP) binds peripherically to anionic lipid membranes. We previously showed that in the absence of added salt the binding to 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) occurs with changes in the secondary structure, the extent of which depends on the phase state of the lipid. In the present work, we used Fourier transform infrared spectroscopy to study the conformations of L-BABP bound to lipids with phosphoglycerol and phosphatidic acid polar head groups and with different transition temperatures in an aqueous medium with high ionic strength (0.1 M NaCl). When L-BABP was bound to the lipids with saturated acyl chains, DMPG, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), and 1,2-dilauroyl-sn-glycero-3-phosphate (DLPA), the conformation shifted from a native-like secondary structure to an unfolded state at the temperature of lipid chain melting. The protein was in the native-like conformation when it was bound to the unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) in the liquid-crystalline phase. We also measured the electrokinetic surface potential of POPG and DMPG vesicles in the gel and in the liquid-crystalline phase and the protein binding constant to these lipid membranes. We found a correlation indicating that protein unfolding in the interface was due to the increase in the electrostatic surface potential that occurs in the lipid phase transition.

  18. GABA(A) receptors in visual and auditory cortex and neural activity changes during basic visual stimulation.

    PubMed

    Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg

    2012-01-01

    Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  19. Flavonoid Regulation of HCN2 Channels*

    PubMed Central

    Carlson, Anne E.; Rosenbaum, Joel C.; Brelidze, Tinatin I.; Klevit, Rachel E.; Zagotta, William N.

    2013-01-01

    The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels. PMID:24085296

  20. An oxygen pressure sensor using surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  1. The Modified Hartmann Potential Effects on γ-rigid Bohr Hamiltonian

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Nur Pratiwi, Beta

    2018-04-01

    In this paper, we present the solution of Bohr Hamiltonian in the case of γ-rigid for the modified Hartmann potential. The modified Hartmann potential was formed from the original Hartmann potential, consists of β function and θ function. By using the separation method, the three-dimensional Bohr Hamiltonian equation was reduced into three one-dimensional Schrodinger-like equation which was solved analytically. The results for the wavefunction were shown in mathematically, while for the binding energy was solved numerically. The numerical binding energy for the presence of the modified Hartmann potential is lower than the binding energy value in the absence of modified Hartmann potential effect.

  2. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    PubMed

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest that the attenuation of PTH stimulation of cAMP production in treated bone cells may be, at least in part, due to receptor-mediated endocytosis of the hormone.

  3. Nuclear physics from lattice QCD at strong coupling.

    PubMed

    de Forcrand, Ph; Fromm, M

    2010-03-19

    We study numerically the strong coupling limit of lattice QCD with one flavor of massless staggered quarks. We determine the complete phase diagram as a function of temperature and chemical potential, including a tricritical point. We clarify the nature of the low temperature dense phase, which is strongly bound "nuclear" matter. This strong binding is explained by the nuclear potential, which we measure. Finally, we determine, from this first-principles limiting case of QCD, the masses of "atomic nuclei" up to A=12 "carbon".

  4. Thrombopoietin contributes to enhanced platelet activation in patients with unstable angina.

    PubMed

    Lupia, Enrico; Bosco, Ornella; Bergerone, Serena; Dondi, Anna Erna; Goffi, Alberto; Oliaro, Elena; Cordero, Marco; Del Sorbo, Lorenzo; Trevi, Giampaolo; Montrucchio, Giuseppe

    2006-12-05

    We sought to investigate the potential role of elevated levels of thrombopoietin (TPO) in platelet activation during unstable angina (UA). Thrombopoietin is a humoral growth factor that does not induce platelet aggregation per se, but primes platelet activation in response to several agonists. No data concerning its contribution to platelet function abnormalities described in patients with UA are available. We studied 15 patients with UA and, as controls, 15 patients with stable angina (SA) and 15 healthy subjects. We measured TPO and C-reactive protein (CRP), as well as monocyte-platelet binding and the platelet expression of P-selectin and of the TPO receptor, c-Mpl. The priming activity of patient or control plasma on platelet aggregation and monocyte-platelet binding and the role of TPO in this effect also were studied. Patients with UA showed higher circulating TPO levels, as well as increased monocyte-platelet binding, platelet P-selectin expression, and CRP levels, than those with SA and healthy control subjects. The UA patients also showed reduced platelet expression of the TPO receptor, c-Mpl. In vitro, the plasma from UA patients, but not from SA patients or healthy controls, primed platelet aggregation and monocyte-platelet binding, which were both reduced when an inhibitor of TPO was used. Thrombopoietin may enhance platelet activation in the early phases of UA, potentially participating in the pathogenesis of acute coronary syndromes.

  5. Polymorphisms A387P in thrombospondin-4 and N700S in thrombospondin-1 perturb calcium binding sites.

    PubMed

    Stenina, Olga I; Ustinov, Valentin; Krukovets, Irene; Marinic, Tina; Topol, Eric J; Plow, Edward F

    2005-11-01

    Recent genetic studies have associated members of the thrombospondin (TSP) gene family with premature cardiovascular disease. The disease-associated polymorphisms lead to single amino acid changes in TSP-4 (A387P) and TSP-1 (N700S). These substitutions reside in adjacent domains of these highly homologous proteins. Secondary structural predictive programs and the homology of the domains harboring these amino acid substitutions to those in other proteins pointed to potential alterations of putative Ca2+ binding sites that reside in close proximity to the polymorphic amino acids. Since Ca2+ binding is critical for the structure and function of TSP family members, direct evidence for differences in Ca2+ binding by the polymorphic forms was sought. Using synthetic peptides and purified recombinant variant fragments bearing the amino acid substitutions, we measured differences in Tb3+ luminescence as an index of Ca2+ binding. The Tb3+ binding constants placed the TSP-1 region affected by N700S polymorphism among other high-affinity Ca2+ binding sites. The affinity of Ca2+ binding was lower for peptides (3.5-fold) and recombinant fragments (10-fold) containing the S700 vs. the N700 form. In TSP-4, the P387 form acquired an additional Ca2+ binding site absent in the A387 form. The results of our study suggest that both substitutions (A387P in TSP-4 and N700S in TSP-1) alter Ca2+ binding properties. Since these substitutions exert the opposite effects on Ca2+ binding, a decrease in TSP-1 and an increase in TSP-4, the two TSP variants are likely to influence cardiovascular functions in distinct but yet pathogenic ways.

  6. Increased vesicular monoamine transporter binding during early abstinence in human methamphetamine users: Is VMAT2 a stable dopamine neuron biomarker?

    PubMed

    Boileau, Isabelle; Rusjan, Pablo; Houle, Sylvain; Wilkins, Diana; Tong, Junchao; Selby, Peter; Guttman, Mark; Saint-Cyr, Jean A; Wilson, Alan A; Kish, Stephen J

    2008-09-24

    Animal data indicate that methamphetamine can damage striatal dopamine terminals. Efforts to document dopamine neuron damage in living brain of methamphetamine users have focused on the binding of [(11)C]dihydrotetrabenazine (DTBZ), a vesicular monoamine transporter (VMAT2) positron emission tomography (PET) radioligand, as a stable dopamine neuron biomarker. Previous PET data report a slight decrease in striatal [(11)C]DTBZ binding in human methamphetamine users after prolonged (mean, 3 years) abstinence, suggesting that the reduction would likely be substantial in early abstinence. We measured striatal VMAT2 binding in 16 recently withdrawn (mean, 19 d; range, 1-90 d) methamphetamine users and in 14 healthy matched-control subjects during a PET scan with (+)[(11)C]DTBZ. Unexpectedly, striatal (+)[(11)C]DTBZ binding was increased in methamphetamine users relative to controls (+22%, caudate; +12%, putamen; +11%, ventral striatum). Increased (+)[(11)C]DTBZ binding in caudate was most marked in methamphetamine users abstinent for 1-3 d (+41%), relative to the 7-21 d (+15%) and >21 d (+9%) groups. Above-normal VMAT2 binding in some drug users suggests that any toxic effect of methamphetamine on dopamine neurons might be masked by an increased (+)[(11)C]DTBZ binding and that VMAT2 radioligand binding might not be, as is generally assumed, a "stable" index of dopamine neuron integrity in vivo. One potential explanation for increased (+)[(11)C]DTBZ binding is that VMAT2 binding is sensitive to changes in vesicular dopamine storage levels, presumably low in drug users. If correct, (+)[(11)C]DTBZ might be a useful imaging probe to correlate changes in brain dopamine stores and behavior in users of methamphetamine.

  7. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model

    PubMed Central

    2010-01-01

    Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/. PMID:20089173

  8. The binding of activated Gαq to phospholipase C-β exhibits anomalous affinity.

    PubMed

    Navaratnarajah, Punya; Gershenson, Anne; Ross, Elliott M

    2017-10-06

    Upon activation by the G q family of Gα subunits, Gβγ subunits, and some Rho family GTPases, phospholipase C-β (PLC-β) isoforms hydrolyze phosphatidylinositol 4,5-bisphosphate to the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. PLC-β isoforms also function as GTPase-activating proteins, potentiating G q deactivation. To elucidate the mechanism of this mutual regulation, we measured the thermodynamics and kinetics of PLC-β3 binding to Gα q FRET and fluorescence correlation spectroscopy, two physically distinct methods, both yielded K d values of about 200 nm for PLC-β3-Gα q binding. This K d is 50-100 times greater than the EC 50 for Gα q -mediated PLC-β3 activation and for the Gα q GTPase-activating protein activity of PLC-β. The measured K d was not altered either by the presence of phospholipid vesicles, phosphatidylinositol 4,5-bisphosphate and Ca 2+ , or by the identity of the fluorescent labels. FRET-based kinetic measurements were also consistent with a K d of 200 nm We determined that PLC-β3 hysteresis, whereby PLC-β3 remains active for some time following either Gα q -PLC-β3 dissociation or PLC-β3-potentiated Gα q deactivation, is not sufficient to explain the observed discrepancy between EC 50 and K d These results indicate that the mechanism by which Gα q and PLC-β3 mutually regulate each other is far more complex than a simple, two-state allosteric model and instead is probably kinetically determined. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Temperature Effects on Kinetics of KV11.1 Drug Block Have Important Consequences for In Silico Proarrhythmic Risk Prediction.

    PubMed

    Windley, Monique J; Mann, Stefan A; Vandenberg, Jamie I; Hill, Adam P

    2016-07-01

    Drug block of voltage-gated potassium channel subtype 11.1 human ether-a-go-go related gene (Kv11.1) (hERG) channels, encoded by the KCNH2 gene, is associated with reduced repolarization of the cardiac action potential and is the predominant cause of acquired long QT syndrome that can lead to fatal cardiac arrhythmias. Current safety guidelines require that potency of KV11.1 block is assessed in the preclinical phase of drug development. However, not all drugs that block KV11.1 are proarrhythmic, meaning that screening on the basis of equilibrium measures of block can result in high attrition of potentially low-risk drugs. The basis of the next generation of drug-screening approaches is set to be in silico risk prediction, informed by in vitro mechanistic descriptions of drug binding, including measures of the kinetics of block. A critical issue in this regard is characterizing the temperature dependence of drug binding. Specifically, it is important to address whether kinetics relevant to physiologic temperatures can be inferred or extrapolated from in vitro data gathered at room temperature in high-throughout systems. Here we present the first complete study of the temperature-dependent kinetics of block and unblock of a proarrhythmic drug, cisapride, to KV11.1. Our data highlight a complexity to binding that manifests at higher temperatures and can be explained by accumulation of an intermediate, non-blocking encounter-complex. These results suggest that for cisapride, physiologically relevant kinetic parameters cannot be simply extrapolated from those measured at lower temperatures; rather, data gathered at physiologic temperatures should be used to constrain in silico models that may be used for proarrhythmic risk prediction. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay

    PubMed Central

    Sharma, Vasundhara; Jordan, Jennifer J.; Ciribilli, Yari; Resnick, Michael A.; Bisio, Alessandra; Inga, Alberto

    2015-01-01

    The NF-κB transcription factor family plays a central role in innate immunity and inflammation processes and is frequently dysregulated in cancer. We developed an NF-κB functional assay in yeast to investigate the following issues: transactivation specificity of NF-κB proteins acting as homodimers or heterodimers; correlation between transactivation capacity and in vitro DNA binding measurements; impact of co-expressed interacting proteins or of small molecule inhibitors on NF-κB-dependent transactivation. Full-length p65 and p50 cDNAs were cloned into centromeric expression vectors under inducible GAL1 promoter in order to vary their expression levels. Since p50 lacks a transactivation domain (TAD), a chimeric construct containing the TAD derived from p65 was also generated (p50TAD) to address its binding and transactivation potential. The p50TAD and p65 had distinct transactivation specificities towards seventeen different κB response elements (κB-REs) where single nucleotide changes could greatly impact transactivation. For four κB-REs, results in yeast were predictive of transactivation potential measured in the human MCF7 cell lines treated with the NF-κB activator TNFα. Transactivation results in yeast correlated only partially with in vitro measured DNA binding affinities, suggesting that features other than strength of interaction with naked DNA affect transactivation, although factors such as chromatin context are kept constant in our isogenic yeast assay. The small molecules BAY11-7082 and ethyl-pyruvate as well as expressed IkBα protein acted as NF-κB inhibitors in yeast, more strongly towards p65. Thus, the yeast-based system can recapitulate NF-κB features found in human cells, thereby providing opportunities to address various NF-κB functions, interactions and chemical modulators. PMID:26147604

  11. Laboratory Testing for von Willebrand Disease: The Past, Present, and Future State of Play for von Willebrand Factor Assays that Measure Platelet Binding Activity, with or without Ristocetin.

    PubMed

    Just, Sarah

    2017-02-01

    von Willebrand disease (VWD) was first described nearly a century ago in 1924 by Erik Adolf von Willebrand. Diagnostic testing at the time was very limited and it was not until the mid to late 1900s that more tests became available to assist with the diagnosis and classification of VWD. Two of these tests are based on ristocetin, one being ristocetin-induced platelet aggregation (RIPA) and the other the von Willebrand factor (VWF) ristocetin cofactor assay (VWF:RCo). The VWF:RCo assay provides functional assessment of in vitro VWF binding to the platelet glycoprotein (Gp) complex, GPIb-IX-V. Despite some advancements and newer technologies utilizing the principles of the original VWF:RCo assay, the original assay is still referred to as the gold standard for measurement of VWF activity. This article will review the history of VWD diagnostic assays, including RIPA and VWF:RCo over the past 40 years, as well as the newer assays that measure platelet binding with or without ristocetin, and which have been developed with the aim to potentially replace platelet-based ristocetin-dependent assays. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Cd and proton adsorption onto bacterial consortia grown from industrial wastes and contaminated geologic settings.

    PubMed

    Borrok, David M; Fein, Jeremy B; Kulpa, Charles F

    2004-11-01

    To model the effects of bacterial metal adsorption in contaminated environments, results from metal adsorption experiments involving individual pure stains of bacteria must be extrapolated to systems in which potentially dozens of bacterial species are present. This extrapolation may be made easier because bacterial consortia from natural environments appear to exhibit similar metal binding properties. However, bacteria that thrive in highly perturbed contaminated environments may exhibit significantly different adsorptive behavior. Here we measure proton and Cd adsorption onto a range of bacterial consortia grown from heavily contaminated industrial wastes, groundwater, and soils. We model the results using a discrete site surface complexation approach to determine binding constants and site densities for each consortium. The results demonstrate that bacterial consortia from different contaminated environments exhibit a range of total site densities (approximately a 3-fold difference) and Cd-binding constants (approximately a 10-fold difference). These ranges for Cd binding constants may be small enough to suggest that bacteria-metal adsorption in contaminated environments can be described using relatively few "averaged" bacteria-metal binding constants (in conjunction with the necessary binding constants for competing surfaces and ligands). However, if additional precision is necessary, modeling parameters must be developed separately for each contaminated environment of interest.

  13. In Vivo Chromatin Targets of the Transcription Factor Yin Yang 2 in Trophoblast Stem Cells

    PubMed Central

    Pérez-Palacios, Raquel; Macías-Redondo, Sofía; Climent, María; Contreras-Moreira, Bruno; Muniesa, Pedro; Schoorlemmer, Jon

    2016-01-01

    Background Yin Yang 2 (YY2) is a zinc finger protein closely related to the well-characterized Yin Yang 1 (YY1). YY1 is a DNA-binding transcription factor, with defined functions in multiple developmental processes, such as implantation, cell differentiation, X inactivation, imprinting and organogenesis. Yy2 has been treated as a largely immaterial duplication of Yy1, as they share high homology in the Zinc Finger-region and similar if not identical in vitro binding sites. In contrast to these similarities, gene expression alterations in HeLa cells with attenuated levels of either Yy1 or Yy2 were to some extent gene-specific. Moreover, the chromatin binding sites for YY2, except for its association with transposable retroviral elements (RE) and Endogenous Retroviral Elements (ERVs), remain to be identified. As a first step towards defining potential Yy2 functions matching or complementary to Yy1, we considered in vivo DNA binding sites of YY2 in trophoblast stem (TS) cells. Results We report the presence of YY2 protein in mouse-derived embryonic stem (ES) and TS cell lines. Following up on our previous report on ERV binding by YY2 in TS cells, we investigated the tissue-specificity of REX1 and YY2 binding and confirm binding to RE/ERV targets in both ES cells and TS cells. Because of the higher levels of expression, we chose TS cells to understand the role of Yy2 in gene and chromatin regulation. We used in vivo YY2 association as a measure to identify potential target genes. Sequencing of chromatin obtained in chromatin-immunoprecipitation (ChIP) assays carried out with αYY2 serum allowed us to identify a limited number of chromatin targets for YY2. Some putative binding sites were validated in regular ChIP assays and gene expression of genes nearby was altered in the absence of Yy2. Conclusions YY2 binding to ERVs is not confined to TS cells. In vivo binding sites share the presence of a consensus binding motif. Selected sites were uniquely bound by YY2 as opposed to YY1, suggesting that YY2 exerts unique contributions to gene regulation. YY2 binding was not generally associated with gene promoters. However, several YY2 binding sites are linked to long noncoding RNA (lncRNA) genes and we show that the expression levels of a few of those are Yy2-dependent. PMID:27191592

  14. Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion.

    PubMed

    Peacock, Thomas P; Benton, Donald J; Sadeyen, Jean-Remy; Chang, Pengxiang; Sealy, Joshua E; Bryant, Juliet E; Martin, Stephen R; Shelton, Holly; McCauley, John W; Barclay, Wendy S; Iqbal, Munir

    2017-03-22

    H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the 'Eastern' G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages.

  15. Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion

    PubMed Central

    Peacock, Thomas P; Benton, Donald J; Sadeyen, Jean-Remy; Chang, Pengxiang; Sealy, Joshua E; Bryant, Juliet E; Martin, Stephen R; Shelton, Holly; McCauley, John W; Barclay, Wendy S; Iqbal, Munir

    2017-01-01

    H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the ‘Eastern' G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages. PMID:28325922

  16. Decreased GABA-A binding on FMZ-PET in succinic semialdehyde dehydrogenase deficiency.

    PubMed

    Pearl, P L; Gibson, K M; Quezado, Z; Dustin, I; Taylor, J; Trzcinski, S; Schreiber, J; Forester, K; Reeves-Tyer, P; Liew, C; Shamim, S; Herscovitch, P; Carson, R; Butman, J; Jakobs, C; Theodore, W

    2009-08-11

    Succinic semialdehyde dehydrogenase (SSADH) deficiency is an autosomal recessive disorder of GABA metabolism characterized by elevated levels of GABA and gamma-hydroxybutyric acid. Clinical findings include intellectual impairment, hypotonia, hyporeflexia, hallucinations, autistic behaviors, and seizures. Autoradiographic labeling and slice electrophysiology studies in the murine model demonstrate use-dependent downregulation of GABA(A) receptors. We studied GABA(A) receptor activity in human SSADH deficiency utilizing [(11)C]-flumazenil (FMZ)-PET. FMZ binding was measured in 7 patients, 10 unaffected parents, and 8 healthy controls. Data analysis was performed using a reference region compartmental model, with time-activity curve from pons as the input function. Relative parametric binding potential (BP(ND)) was derived, with MRI-based pixel by pixel partial volume correction, in regions of interest drawn on coregistered MRI. In amygdala, hippocampus, cerebellar vermis, frontal, parietal, and occipital cortex, patients with SSADH deficiency had significant reductions in FMZ BP(ND) compared to parents and controls. Mean cortical values were 6.96 +/- 0.79 (controls), 6.89 +/- 0.71 (parents), and 4.88 +/- 0.77 (patients) (F ratio 16.1; p < 0.001). There were no differences between controls and parents in any cortical region. Succinic semialdehyde dehydrogenase (SSADH) deficient patients show widespread reduction in BZPR binding on [(11)C]-flumazenil-PET. Our results suggest that high endogenous brain GABA levels in SSADH deficiency downregulate GABA(A)-BZPR binding site availability. This finding suggests a potential mechanism for neurologic dysfunction in a serious neurodevelopmental disorder, and suggests that PET may be useful to translate studies in animal models to human disease.

  17. Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation.

    PubMed

    Lupia, E; Bosco, O; Mariano, F; Dondi, A E; Goffi, A; Spatola, T; Cuccurullo, A; Tizzani, P; Brondino, G; Stella, M; Montrucchio, G

    2009-06-01

    Thrombopoietin (TPO) is a humoral growth factor that does not induce platelet aggregation per se, but enhances platelet activation in response to several agonists. Circulating levels of TPO are increased in patients with sepsis and are mainly related to sepsis severity. To investigate the potential contribution of elevated TPO levels in platelet activation during burn injury complicated or not by sepsis. We studied 22 burned patients, 10 without and 12 with sepsis, and 10 healthy subjects. We measured plasma levels of TPO, as well as leukocyte-platelet binding and P-selectin expression. The priming activity of plasma from burned patients or healthy subjects on platelet aggregation and leukocyte-platelet binding, and the role of TPO in these effects were also studied in vitro. Burned patients without and with sepsis showed higher circulating TPO levels and increased monocyte-platelet binding compared with healthy subjects. Moreover, TPO levels, monocyte-platelet binding and P-selectin expression were significantly higher in burned patients with sepsis than in burned patients without sepsis. In vitro, plasma from burned patients without and with sepsis, but not from healthy subjects, primed platelet aggregation, monocyte-platelet binding and platelet P-selectin expression. The effect of plasma from burned patients with sepsis was significantly higher than that of plasma from burned patients without sepsis. An inhibitor of TPO prevented the priming effect of plasma from burned patients. Increased TPO levels may enhance platelet activation during burn injury and sepsis, potentially participating in the pathogenesis of multi-organ failure in these diseases.

  18. The Rapamycin-Binding Domain of the Protein Kinase mTOR is a Destabilizing Domain*

    PubMed Central

    Edwards, Sarah R.; Wandless, Thomas J.

    2013-01-01

    Rapamycin is an immunosuppressive drug that binds simultaneously to the 12-kDa FK506- and rapamycin-binding protein (FKBP12, or FKBP) and the FKBP-rapamycin binding domain (FRB) of the mammalian target of rapamycin (mTOR) kinase. The resulting ternary complex has been used to conditionally perturb protein function, and one such method involves perturbation of a protein of interest through its mislocalization. We synthesized two rapamycin derivatives that possess large substituents at the C16 position within the FRB-binding interface, and these derivatives were screened against a library of FRB mutants using a three-hybrid assay in Saccharomyces cerevisiae. Several FRB mutants responded to one of the rapamycin derivatives, and twenty of these mutants were further characterized in mammalian cells. The mutants most responsive to the ligand were fused to yellow fluorescent protein, and fluorescence levels in the presence and absence of the ligand were measured to determine stability of the fusion proteins. Wild-type and mutant FRB domains were expressed at low levels in the absence of the rapamycin derivative, and expression levels rose up to ten-fold upon treatment with ligand. The synthetic rapamycin derivatives were further analyzed using quantitative mass spectrometry, and one of the compounds was found to contain contaminating rapamycin. Furthermore, uncontaminated analogs retain the ability to inhibit mTOR, albeit with diminished potency relative to rapamycin. The ligand-dependent stability displayed by wildtype FRB and FRB mutants as well as the inhibitory potential and purity of the rapamycin derivatives should be considered as potentially confounding experimental variables when using these systems. PMID:17350953

  19. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain.

    PubMed

    Edwards, Sarah R; Wandless, Thomas J

    2007-05-04

    Rapamycin is an immunosuppressive drug that binds simultaneously to the 12-kDa FK506- and rapamycin-binding protein (FKBP12, or FKBP) and the FKBP-rapamycin binding (FRB) domain of the mammalian target of rapamycin (mTOR) kinase. The resulting ternary complex has been used to conditionally perturb protein function, and one such method involves perturbation of a protein of interest through its mislocalization. We synthesized two rapamycin derivatives that possess large substituents at the C-16 position within the FRB-binding interface, and these derivatives were screened against a library of FRB mutants using a three-hybrid assay in Saccharomyces cerevisiae. Several FRB mutants responded to one of the rapamycin derivatives, and twenty of these mutants were further characterized in mammalian cells. The mutants most responsive to the ligand were fused to yellow fluorescent protein, and fluorescence levels in the presence and absence of the ligand were measured to determine stability of the fusion proteins. Wild-type and mutant FRB domains were expressed at low levels in the absence of the rapamycin derivative, and expression levels rose up to 10-fold upon treatment with ligand. The synthetic rapamycin derivatives were further analyzed using quantitative mass spectrometry, and one of the compounds was found to contain contaminating rapamycin. Furthermore, uncontaminated analogs retained the ability to inhibit mTOR, although with diminished potency relative to rapamycin. The ligand-dependent stability displayed by wild-type FRB and FRB mutants as well as the inhibitory potential and purity of the rapamycin derivatives should be considered as potentially confounding experimental variables when using these systems.

  20. 1,2,3-Triazole Tagged 3H-Pyrano[2,3-d]pyrimidine-6-carboxylate Derivatives: Synthesis, in Vitro Cytotoxicity, Molecular Docking and DNA Interaction Studies.

    PubMed

    Boda, Sathish Kumar; Pishka, Vasantha; Lakshmi, P V Anantha; Chinde, Srinivas; Grover, Paramjit

    2018-06-01

    A series of novel ethyl 2,7-dimethyl-4-oxo-3-[(1-phenyl-1H-1,2,3-triazol-4-yl)methyl]-4,5-dihydro-3H-pyrano[2,3-d]pyrimidine-6-carboxylate derivatives 7a - 7m were efficiently synthesized employing click chemistry approach and evaluated for in vitro cytotoxic activity against four tumor cell lines: A549 (human lung adenocarcinoma cell line), HepG2 (human hematoma), MCF-7 (human breast adenocarcinoma), and SKOV3 (human ovarian carcinoma cell line). Among the compounds tested, the compounds 7a, 7b, 7f, 7l, and 7m have shown potential and selective activity against human lung adenocarcinoma cell line (A549) with IC 50 ranging from 0.69 to 6.74 μm. Molecular docking studies revealed that the compounds 7a, 7b, 7f, 7l, and 7m are potent inhibitors of human DNA topoisomerase-II and also showed compliance with stranded parameters of drug likeness. The calculated binding constants, k b , from UV/VIS absorptional binding studies of 7a and 7l with CT-DNA were 10.77 × 10 4 , 6.48 × 10 4 , respectively. Viscosity measurements revealed that the binding could be surface binding mainly due to groove binding. DNA cleavage study showed that 7a and 7l have the potential to cleave pBR322 plasmid DNA without any external agents. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  1. Measuring DNA hybridization using fluorescent DNA-stabilized silver clusters to investigate mismatch effects on therapeutic oligonucleotides.

    PubMed

    de Bruin, Donny; Bossert, Nelli; Aartsma-Rus, Annemieke; Bouwmeester, Dirk

    2018-04-06

    Short nucleic acid oligomers have found a wide range of applications in experimental physics, biology and medicine, and show potential for the treatment of acquired and genetic diseases. These applications rely heavily on the predictability of hybridization through Watson-Crick base pairing to allow positioning on a nanometer scale, as well as binding to the target transcripts, but also off-target binding to transcripts with partial homology. These effects are of particular importance in the development of therapeutic oligonucleotides, where off-target effects caused by the binding of mismatched sequences need to be avoided. We employ a novel method of probing DNA hybridization using optically active DNA-stabilized silver clusters (Ag-DNA) to measure binding efficiencies through a change in fluorescence intensity. In this way we can determine their location-specific sensitivity to individual mismatches in the sequence. The results reveal a strong dependence of the hybridization on the location of the mismatch, whereby mismatches close to the edges and center show a relatively minor impact. In parallel, we propose a simple model for calculating the annealing ratios of mismatched DNA sequences, which supports our experimental results. The primary result shown in this work is a demonstration of a novel technique to measure DNA hybridization using fluorescent Ag-DNA. With this technique, we investigated the effect of mismatches on the hybridization efficiency, and found a significant dependence on the location of individual mismatches. These effects are strongly influenced by the length of the used oligonucleotides. The novel probe method based on fluorescent Ag-DNA functions as a reliable tool in measuring this behavior. As a secondary result, we formulated a simple model that is consistent with the experimental data.

  2. FISim: A new similarity measure between transcription factor binding sites based on the fuzzy integral

    PubMed Central

    Garcia, Fernando; Lopez, Francisco J; Cano, Carlos; Blanco, Armando

    2009-01-01

    Background Regulatory motifs describe sets of related transcription factor binding sites (TFBSs) and can be represented as position frequency matrices (PFMs). De novo identification of TFBSs is a crucial problem in computational biology which includes the issue of comparing putative motifs with one another and with motifs that are already known. The relative importance of each nucleotide within a given position in the PFMs should be considered in order to compute PFM similarities. Furthermore, biological data are inherently noisy and imprecise. Fuzzy set theory is particularly suitable for modeling imprecise data, whereas fuzzy integrals are highly appropriate for representing the interaction among different information sources. Results We propose FISim, a new similarity measure between PFMs, based on the fuzzy integral of the distance of the nucleotides with respect to the information content of the positions. Unlike existing methods, FISim is designed to consider the higher contribution of better conserved positions to the binding affinity. FISim provides excellent results when dealing with sets of randomly generated motifs, and outperforms the remaining methods when handling real datasets of related motifs. Furthermore, we propose a new cluster methodology based on kernel theory together with FISim to obtain groups of related motifs potentially bound by the same TFs, providing more robust results than existing approaches. Conclusion FISim corrects a design flaw of the most popular methods, whose measures favour similarity of low information content positions. We use our measure to successfully identify motifs that describe binding sites for the same TF and to solve real-life problems. In this study the reliability of fuzzy technology for motif comparison tasks is proven. PMID:19615102

  3. A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies.

    PubMed

    Ito, Hiroshi; Yokoi, Takashi; Ikoma, Yoko; Shidahara, Miho; Seki, Chie; Naganawa, Mika; Takahashi, Hidehiko; Takano, Harumasa; Kimura, Yuichi; Ichise, Masanori; Suhara, Tetsuya

    2010-01-01

    In positron emission tomography (PET) studies with radioligands for neuroreceptors, tracer kinetics have been described by the standard two-tissue compartment model that includes the compartments of nondisplaceable binding and specific binding to receptors. In the present study, we have developed a new graphic plot analysis to determine the total distribution volume (V(T)) and nondisplaceable distribution volume (V(ND)) independently, and therefore the binding potential (BP(ND)). In this plot, Y(t) is the ratio of brain tissue activity to time-integrated arterial input function, and X(t) is the ratio of time-integrated brain tissue activity to time-integrated arterial input function. The x-intercept of linear regression of the plots for early phase represents V(ND), and the x-intercept of linear regression of the plots for delayed phase after the equilibrium time represents V(T). BP(ND) can be calculated by BP(ND)=V(T)/V(ND)-1. Dynamic PET scanning with measurement of arterial input function was performed on six healthy men after intravenous rapid bolus injection of [(11)C]FLB457. The plot yielded a curve in regions with specific binding while it yielded a straight line through all plot data in regions with no specific binding. V(ND), V(T), and BP(ND) values calculated by the present method were in good agreement with those by conventional non-linear least-squares fitting procedure. This method can be used to distinguish graphically whether the radioligand binding includes specific binding or not.

  4. Quantitation of benzodiazepine receptor binding with PET [11C]iomazenil and SPECT [123I]iomazenil: preliminary results of a direct comparison in healthy human subjects.

    PubMed

    Bremner, J D; Baldwin, R; Horti, A; Staib, L H; Ng, C K; Tan, P Z; Zea-Ponce, Y; Zoghbi, S; Seibyl, J P; Soufer, R; Charney, D S; Innis, R B

    1999-08-31

    Although positron emission tomography (PET) and single photon emission computed tomography (SPECT) are increasingly used for quantitation of neuroreceptor binding, almost no studies to date have involved a direct comparison of the two. One study found a high level of agreement between the two techniques, although there was a systematic 30% increase in measures of benzodiazepine receptor binding in SPECT compared with PET. The purpose of the current study was to directly compare quantitation of benzodiazepine receptor binding in the same human subjects using PET and SPECT with high specific activity [11C]iomazenil and [123I]iomazenil, respectively. All subjects were administered a single bolus of high specific activity iomazenil labeled with 11C or 123I followed by dynamic PET or SPECT imaging of the brain. Arterial blood samples were obtained for measurement of metabolite-corrected radioligand in plasma. Compartmental modeling was used to fit values for kinetic rate constants of transfer of radioligand between plasma and brain compartments. These values were used for calculation of binding potential (BP = Bmax/Kd) and product of BP and the fraction of free non-protein-bound parent compound (V3'). Mean values for V3' in PET and SPECT were as follows: temporal cortex 23+/-5 and 22+/-3 ml/g, frontal cortex23+/-6 and 22+/-3 ml/g, occipital cortex 28+/-3 and 31+/-5 ml/g, and striatum 4+/-4 and 7+/-4 ml/g. These preliminary findings indicate that PET and SPECT provide comparable results in quantitation of neuroreceptor binding in the human brain.

  5. Zonal Rate Model for Axial and Radial Flow Membrane Chromatography. Part I: Knowledge Transfer Across Operating Conditions and Scales

    PubMed Central

    Ghosh, Pranay; Vahedipour, Kaveh; Lin, Min; Vogel, Jens H; Haynes, Charles A; von Lieres, Eric

    2013-01-01

    The zonal rate model (ZRM) has previously been applied for analyzing the performance of axial flow membrane chromatography capsules by independently determining the impacts of flow and binding related non-idealities on measured breakthrough curves. In the present study, the ZRM is extended to radial flow configurations, which are commonly used at larger scales. The axial flow XT5 capsule and the radial flow XT140 capsule from Pall are rigorously analyzed under binding and non-binding conditions with bovine serum albumin (BSA) as test molecule. The binding data of this molecule is much better reproduced by the spreading model, which hypothesizes different binding orientations, than by the well-known Langmuir model. Moreover, a revised cleaning protocol with NaCl instead of NaOH and minimizing the storage time has been identified as most critical for quantitatively reproducing the measured breakthrough curves. The internal geometry of both capsules is visualized by magnetic resonance imaging (MRI). The flow in the external hold-up volumes of the XT140 capsule was found to be more homogeneous as in the previously studied XT5 capsule. An attempt for model-based scale-up was apparently impeded by irregular pleat structures in the used XT140 capsule, which might lead to local variations in the linear velocity through the membrane stack. However, the presented approach is universal and can be applied to different capsules. The ZRM is shown to potentially help save valuable material and time, as the experiments required for model calibration are much cheaper than the predicted large-scale experiment at binding conditions. Biotechnol. Bioeng. 2013; 110: 1129–1141. © 2012 Wiley Periodicals, Inc. PMID:23097218

  6. Editor's Highlight: Structure-Based Investigation on the Binding and Activation of Typical Pesticides With Thyroid Receptor.

    PubMed

    Xiang, Dandan; Han, Jian; Yao, Tingting; Wang, Qiangwei; Zhou, Bingsheng; Mohamed, Abou Donia; Zhu, Guonian

    2017-12-01

    A broad range of pesticides have been reported to interfere with the normal function of the thyroid endocrine system. However, the precise mechanism(s) of action has not yet been thoroughly elucidated. In this study, 21 pesticides were assessed for their binding interactions and the potential to disrupt thyroid homeostasis. In the GH3 luciferase reporter gene assays, 5 of the pesticides tested had agonistic effects in the order of procymidone > imidacloprid > mancozeb > fluroxypyr > atrazine. 11 pesticides inhibited luciferase activity of T3 to varying degrees, demonstrating their antagonistic activity. And there are 4 pesticides showed mixed effects when treated with different concentrations. Surface plasmon resonance (SPR) biosensor technique was used to directly measure the binding interactions of these pesticides to the human thyroid hormone receptor (hTR). 13 pesticides were observed to bind directly with TR, with a KD ranging from 4.80E-08 M to 9.44E-07 M. The association and disassociation of the hTR/pesticide complex revealed 2 distinctive binding modes between the agonists and antagonists. At the same time, a different binding mode was displayed by the pesticides showed mix agonist and antagonist activity. In addition, the molecular docking simulation analyses indicated that the interaction energy calculated by CDOCKER for the agonists and antagonists correlated well with the KD values measured by the surface plasmon resonance assay. These results help to explain the differences of the TR activities of these tested pesticides. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Circulating Adipokines and Vascular Function: Cross-Sectional Associations in a Community-Based Cohort.

    PubMed

    Zachariah, Justin P; Hwang, Susan; Hamburg, Naomi M; Benjamin, Emelia J; Larson, Martin G; Levy, Daniel; Vita, Joseph A; Sullivan, Lisa M; Mitchell, Gary F; Vasan, Ramachandran S

    2016-02-01

    Adipokines may be potential mediators of the association between excess adiposity and vascular dysfunction. We assessed the cross-sectional associations of circulating adipokines with vascular stiffness in a community-based cohort of younger adults. We related circulating concentrations of leptin and leptin receptor, adiponectin, retinol-binding protein 4, and fatty acid-binding protein 4 to vascular stiffness measured by arterial tonometry in 3505 Framingham Third Generation cohort participants free of cardiovascular disease (mean age 40 years, 53% women). Separate regression models estimated the relations of each adipokine to mean arterial pressure and aortic stiffness, as carotid femoral pulse wave velocity, adjusting for age, sex, smoking, heart rate, height, antihypertensive treatment, total and high-density lipoprotein cholesterol, diabetes mellitus, alcohol consumption, estimated glomerular filtration rate, glucose, and C-reactive protein. Models evaluating aortic stiffness also were adjusted for mean arterial pressure. Mean arterial pressure was positively associated with blood retinol-binding protein 4, fatty acid-binding protein 4, and leptin concentrations (all P<0.001) and inversely with adiponectin (P=0.002). In fully adjusted models, mean arterial pressure was positively associated with retinol-binding protein 4 and leptin receptor levels (P<0.002 both). In fully adjusted models, aortic stiffness was positively associated with fatty acid-binding protein 4 concentrations (P=0.02), but inversely with leptin and leptin receptor levels (P≤0.03 both). In our large community-based sample, circulating concentrations of select adipokines were associated with vascular stiffness measures, consistent with the hypothesis that adipokines may influence vascular function and may contribute to the relation between obesity and hypertension. © 2015 American Heart Association, Inc.

  8. Dieckol, a phlorotannin isolated from a brown seaweed, Ecklonia cava, inhibits adipogenesis through AMP-activated protein kinase (AMPK) activation in 3T3-L1 preadipocytes.

    PubMed

    Ko, Seok-Chun; Lee, Myoungsook; Lee, Ji-Hyeok; Lee, Seung-Hong; Lim, Yunsook; Jeon, You-Jin

    2013-11-01

    In this study, we assessed the potential inhibitory effect of 5 species of brown seaweeds on adipogenesis the differentiation of 3T3-L1 preadipocytes into mature adipocytes by measuring Oil-Red O staining. The Ecklonia cava extract tested herein evidenced profound adipogenesis inhibitory effect, compared to that exhibited by the other four brown seaweed extracts. Thus, E. cava was selected for isolation of active compounds and finally the three polyphenol compounds of phlorotannins were obtained and their inhibitory effect on adipogenesis was observed. Among the phlorotannins, dieckol exhibited greatest potential adipogenesis inhibition and down-regulated the expression of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer-binding proteins (C/EBPα), sterol regulatory element-binding protein 1 (SREBP1) and fatty acid binding protein 4 (FABP4) in a dose-dependent manner. The specific mechanism mediating the effects of dieckol was confirmed by AMP-activated protein kinase (AMPK) activation. These results demonstrate inhibitory effect of dieckol compound on adipogenesis through the activation of the AMPK signal pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Regular square planer bis-(4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione)/copper(II) complex: Trans/cis-DFT isomerization, crystal structure, thermal, solvatochromism, hirshfeld surface and DNA-binding analysis

    NASA Astrophysics Data System (ADS)

    Hema, M. K.; Karthik, C. S.; Warad, Ismail; Lokanath, N. K.; Zarrouk, Abdelkader; Kumara, Karthik; Pampa, K. J.; Mallu, P.

    2018-04-01

    Trans-[Cu(O∩O)2] complex, O∩O = 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione was reported with high potential toward CT-DNA binder. The solved XRD-structure of complex indicated a perfect regular square-planer geometry around the Cu(II) center. The trans/cis-DFT-isomerization calculation supported the XRD seen in reflecting the trans-isomer as the kinetic-favor isomer. The desired complex structure was also characterized by conductivity measurement, CHN-elemental analyses, MS, EDX, SEM, UV-Vis., FT-IR, HAS and TG/DTG. The Solvatochromism behavior of the complex was evaluated using four different polar solvents. MPE and Hirshfeld surface analysis (HSA) come to an agreement that fluoride and thiophene protons atoms are with suitable electro-potential environment to form non-classical H-bonds of type CThsbnd H⋯F. The DNA-binding properties were investigated by viscosity tests and spectrometric titrations, the results revealed the complex as strong calf-thymus DNA binder. High intrinsic-binding constants value ∼1.8 × 105 was collected.

  10. Protein and lipid binding parameters in rainbow trout (Oncorhynchus mykiss) blood and liver fractions to extrapolate from an in vitro metabolic degradation assay to in vivo bioaccumulation potential of hydrophobic organic chemicals.

    PubMed

    Escher, Beate I; Cowan-Ellsberry, Christina E; Dyer, Scott; Embry, Michelle R; Erhardt, Susan; Halder, Marlies; Kwon, Jung-Hwan; Johanning, Karla; Oosterwijk, Mattheus T T; Rutishauser, Sibylle; Segner, Helmut; Nichols, John

    2011-07-18

    Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity. © 2011 American Chemical Society

  11. csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows

    PubMed Central

    Lun, Aaron T.L.; Smyth, Gordon K.

    2016-01-01

    Chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) is widely used to identify binding sites for a target protein in the genome. An important scientific application is to identify changes in protein binding between different treatment conditions, i.e. to detect differential binding. This can reveal potential mechanisms through which changes in binding may contribute to the treatment effect. The csaw package provides a framework for the de novo detection of differentially bound genomic regions. It uses a window-based strategy to summarize read counts across the genome. It exploits existing statistical software to test for significant differences in each window. Finally, it clusters windows into regions for output and controls the false discovery rate properly over all detected regions. The csaw package can handle arbitrarily complex experimental designs involving biological replicates. It can be applied to both transcription factor and histone mark datasets, and, more generally, to any type of sequencing data measuring genomic coverage. csaw performs favorably against existing methods for de novo DB analyses on both simulated and real data. csaw is implemented as a R software package and is freely available from the open-source Bioconductor project. PMID:26578583

  12. Fragment growing and linking lead to novel nanomolar lactate dehydrogenase inhibitors.

    PubMed

    Kohlmann, Anna; Zech, Stephan G; Li, Feng; Zhou, Tianjun; Squillace, Rachel M; Commodore, Lois; Greenfield, Matthew T; Lu, Xiaohui; Miller, David P; Huang, Wei-Sheng; Qi, Jiwei; Thomas, R Mathew; Wang, Yihan; Zhang, Sen; Dodd, Rory; Liu, Shuangying; Xu, Rongsong; Xu, Yongjin; Miret, Juan J; Rivera, Victor; Clackson, Tim; Shakespeare, William C; Zhu, Xiaotian; Dalgarno, David C

    2013-02-14

    Lactate dehydrogenase A (LDH-A) catalyzes the interconversion of lactate and pyruvate in the glycolysis pathway. Cancer cells rely heavily on glycolysis instead of oxidative phosphorylation to generate ATP, a phenomenon known as the Warburg effect. The inhibition of LDH-A by small molecules is therefore of interest for potential cancer treatments. We describe the identification and optimization of LDH-A inhibitors by fragment-based drug discovery. We applied ligand based NMR screening to identify low affinity fragments binding to LDH-A. The dissociation constants (K(d)) and enzyme inhibition (IC(50)) of fragment hits were measured by surface plasmon resonance (SPR) and enzyme assays, respectively. The binding modes of selected fragments were investigated by X-ray crystallography. Fragment growing and linking, followed by chemical optimization, resulted in nanomolar LDH-A inhibitors that demonstrated stoichiometric binding to LDH-A. Selected molecules inhibited lactate production in cells, suggesting target-specific inhibition in cancer cell lines.

  13. Binding energies and modelling of nuclei in semiclassical simulations

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Tsushima, K.; Valcarce, A.

    2008-03-01

    We study the binding energies of spin isospin saturated nuclei with nucleon number 8⩽A⩽100 in semiclassical Monte Carlo many-body simulations. The model Hamiltonian consists of (i) nucleon kinetic energy, (ii) a nucleon nucleon interaction potential, and (iii) an effective Pauli potential which depends on density. The basic ingredients of the nucleon nucleon potential are a short-range repulsion, and a medium-range attraction. Our results demonstrate that one can always expect to obtain the empirical binding energies for a set of nuclei by introducing a proper density dependent Pauli potential in terms of a single variable, the nucleon number, A. The present work shows that in the suggested procedure there is a delicate counterbalance of kinetic and potential energetic contributions allowing a good reproduction of the experimental nuclear binding energies. This type of calculations may be of interest in further reproduction of other properties of nuclei such as radii and also exotic nuclei.

  14. MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.

    PubMed

    Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R

    2016-07-08

    Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Alignment-independent comparison of binding sites based on DrugScore potential fields encoded by 3D Zernike descriptors.

    PubMed

    Nisius, Britta; Gohlke, Holger

    2012-09-24

    Analyzing protein binding sites provides detailed insights into the biological processes proteins are involved in, e.g., into drug-target interactions, and so is of crucial importance in drug discovery. Herein, we present novel alignment-independent binding site descriptors based on DrugScore potential fields. The potential fields are transformed to a set of information-rich descriptors using a series expansion in 3D Zernike polynomials. The resulting Zernike descriptors show a promising performance in detecting similarities among proteins with low pairwise sequence identities that bind identical ligands, as well as within subfamilies of one target class. Furthermore, the Zernike descriptors are robust against structural variations among protein binding sites. Finally, the Zernike descriptors show a high data compression power, and computing similarities between binding sites based on these descriptors is highly efficient. Consequently, the Zernike descriptors are a useful tool for computational binding site analysis, e.g., to predict the function of novel proteins, off-targets for drug candidates, or novel targets for known drugs.

  16. Binding energy of the donor impurities in GaAs-Ga 1- x Al x As quantum well wires with Morse potential in the presence of electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Aciksoz, Esra; Bayrak, Orhan; Soylu, Asim

    2016-10-01

    The behavior of a donor in the GaAs-Ga1-x Al x As quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters (D e, r e, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential. Project supported by the Turkish Science Research Council (TÜBİTAK) and the Financial Supports from Akdeniz and Nigde Universities.

  17. Estrogen Receptor Binding Affinity of Food Contact Material Components Estimated by QSAR.

    PubMed

    Sosnovcová, Jitka; Rucki, Marián; Bendová, Hana

    2016-09-01

    The presented work characterized components of food contact materials (FCM) with potential to bind to estrogen receptor (ER) and cause adverse effects in the human organism. The QSAR Toolbox, software application designed to identify and fill toxicological data gaps for chemical hazard assessment, was used. Estrogen receptors are much less of a lock-and-key interaction than highly specific ones. The ER is nonspecific enough to permit binding with a diverse array of chemical structures. There are three primary ER binding subpockets, each with different requirements for hydrogen bonding. More than 900 compounds approved as of FCM components were evaluated for their potential to bind on ER. All evaluated chemicals were subcategorized to five groups with respect to the binding potential to ER: very strong, strong, moderate, weak binder, and no binder to ER. In total 46 compounds were characterized as potential disturbers of estrogen receptor. Among the group of selected chemicals, compounds with high and even very high affinity to the ER binding subpockets were found. These compounds may act as gene activators and cause adverse effects in the organism, particularly during pregnancy and breast-feeding. It should be considered to carry out further in vitro or in vivo tests to confirm their potential to disturb the regulation of physiological processes in humans by abnormal ER signaling and subsequently remove these chemicals from the list of approved food contact materials. Copyright© by the National Institute of Public Health, Prague 2016

  18. Rapid analysis of NSAIDs binding to β-cyclodextrin using the simultaneous measurement of absorption and circular dichroism with a novel multi-cell low-volume device.

    PubMed

    Aboel Dahab, Ali; El-Hag, Dhia

    2012-10-01

    One of the relatively recent and most widely used approaches to reduce side effects associated with the use of nonsteroidal anti-inflammatory drugs (NSAIDs) is the complexation of NSAIDs with Cyclodextrins (CyD). So far, CyD interaction with drugs is not well understood. There have been many reports along these lines; however, rarely do these studies exploit the full potential of optical techniques. The purpose of this work is to produce a versatile, compact, low-volume, routine apparatus for the simultaneous measurements of absorbance and circular dichroism (CD) which allows for the concurrent use of three different pathlengths for binding studies of NSAIDs/CyD as a function of pH. A new rotating multi-cell holder which holds four cells was designed and manufactured. The work was achieved using an effective novel method for binding titration employing four separate flow cells connected in series in a flow system involving a titration flask and a pump. The pK(a), binding constants, stoichiometry and structural co-conformations of NSAIDs/β-CyD complexes were elucidated and determined with accuracy. The system proved to be efficient and the analysis time was reduced to less than or equal to one fourth of total analysis time used in one-cell systems, with possible automation for high-throughput analysis.

  19. Unveiling the Mode of Interaction of Berberine Alkaloid in Different Supramolecular Confined Environments: Interplay of Surface Charge between Nano-Confined Charged Layer and DNA.

    PubMed

    Kundu, Niloy; Roy, Arpita; Banik, Debasis; Sarkar, Nilmoni

    2016-02-18

    In this Article, we demonstrate a detailed characterization of binding interaction of berberine chloride (BBCl) with calf-thymus DNA (CT-DNA) in buffer solution as well as in two differently charged reverse micelles (RMs). The photophyscial properties of this alkaloid have been modulated within these microheterogeneous bioassemblies. The mode of binding of this alkaloid with DNA is of debate to date. However, fluorescence spectroscopic measurements, circular dichroism (CD) measurement, and temperature-dependent study unambiguously establish that BBCl partially intercalates into the DNA base pairs. The nonplanarity imposed by partial saturation in their structure causes the nonclassical types of intercalation into DNA. Besides the intercalation, electrostatic interactions also play a significant role in the binding between BBCl and DNA. DNA structure turns into a condensed form after encapsulation into RMs, which is followed by the CD spectra and microscopy study. The probe location and dynamics in the nanopool of the RMs depended on the electrostatic interaction between the charged surfactants and cationic berberine. The structural alteration of CT-DNA from B form to condensed form and the interplay of surface charge between RMs and DNA determine the interaction between the alkaloid and DNA in RMs. Time-resolved study and fluorescence anisotropy measurements successfully provide the binding interaction of BBCl in the nanopool of the RMs in the absence and in the presence of DNA. This study motivates us to judge further the potential applicability of this alkaloid in other biological systems or other biomimicking organized assemblies.

  20. Electron binding energy of uranium-ligand and uranyl-ligand anions

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Horowitz, Steven; Marston, Brad

    2012-02-01

    Electron binding energies of the early actinide element uranium in gas-phase anion complexes are calculated by relativistic density functional theory (DFT) with two different exchange-correlation functions (RPBE and B3LYP) and also in the Hartree-Fock (HF) approximationootnotetextADF2010.02, SCM.com. Scalar and spin-orbit calculations are performed, and the calculated energies are compared to available experimental measurements and shown to disagree by energies of order 1 eV. Strong correlations that are poorly treated in DFT and HF can be included by a hybrid approach in which a generalized Anderson impurity model is numerically diagonalized. Reduction-oxidation (redox) potentials of aqueous actinide ions show improved agreement with measured values in the hybrid approachootnotetextS. E. Horowitz and J. B. Marston, J. Chem. Phys 134 064510 (2011).. We test whether or not similar improvements are found in the gas-phase.

  1. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Justin S; Endres, Christopher; Foss, Catherine

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained frommore » CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.« less

  2. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained frommore » CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.« less

  3. Heme-binding activity of methoxyflavones from Pentzia monodiana Maire (Asteraceae).

    PubMed

    Ortiz, Sergio; Dali-Yahia, Kamel; Vasquez-Ocmin, Pedro; Grougnet, Raphaël; Grellier, Philippe; Michel, Sylvie; Maciuk, Alexandre; Boutefnouchet, Sabrina

    2017-04-01

    A heme-binding assay based on mass spectrometry was performed on P. monodiana Maire (Asteraceae) extracts to identify metabolites able to form adducts with heminic part of haemoglobin, as potential antimalarial drugs. Main adducts were characterized and their stability was measured. Isolation of main constituents of P. monodiana Maire lead to identification of the two methoxyflavones 3'-O-methyleupatorin (7) and artemetin (8) involved in the adducts formation. Four seco-tanapartholides (1-4), a guaianolide (5), a germacranolide (6) and two other methoxyflavones (9, 10) were also characterized. Evaluation of isolated compounds on P. falciparum and T. brucei brucei showed a moderate antiprotozoal activity of the two methoxyflavones. Copyright © 2017. Published by Elsevier B.V.

  4. Changes in the zero-point energy of the protons as the source of the binding energy of water to A-phase DNA.

    PubMed

    Reiter, G F; Senesi, R; Mayers, J

    2010-10-01

    The measured changes in the zero-point kinetic energy of the protons are entirely responsible for the binding energy of water molecules to A phase DNA at the concentration of 6  water molecules/base pair. The changes in kinetic energy can be expected to be a significant contribution to the energy balance in intracellular biological processes and the properties of nano-confined water. The shape of the momentum distribution in the dehydrated A phase is consistent with coherent delocalization of some of the protons in a double well potential, with a separation of the wells of 0.2 Å.

  5. Preparation of Fe 3O 4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride) by emulsifier-free emulsion polymerization and its interaction with DNA

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Liu, Guoqiang; Yan, Wei; Chu, Paul K.; Yeung, Kelvin W. K.; Wu, Shuilin; Yi, Changfeng; Xu, Zushun

    2012-04-01

    Cationic magnetic polymer particles Fe3O4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride), a type of potential gene carrier, were prepared by emulsifier-free emulsion polymerization with oleic acid modified magnetite Fe3O4, styrene, butyl acrylate and [2-(methacryloxy)ethyl]trimethylammonium chloride) (METAC). The morphology of the particles was characterized by transmission electron microscopy and the composites of particles were characterized by FT-IR spectroscopy, X-ray diffraction. These results showed that magnetic particles were well dispersed in polymers with the content of about 15%(wt/wt). The composites exhibited superparamagnetism and possessed a certain level of magnetic response. The interactions between the particles with calf-thymus DNA (ct DNA) were confirmed by zeta potential measurement, UV-vis spectroscopy and fluorescence spectroscopy. The DNA-binding capacity determined by the agarose gel electrophoresis showed good binding capacity of the emulsion to DNA. These results suggested the potential of the cationic magnetic polymer emulsion as gene target delivery carrier.

  6. Targeting Heparin to Collagen within Extracellular Matrix Significantly Reduces Thrombogenicity and Improves Endothelialization of Decellularized Tissues.

    PubMed

    Jiang, Bin; Suen, Rachel; Wertheim, Jason A; Ameer, Guillermo A

    2016-12-12

    Thrombosis within small-diameter vascular grafts limits the development of bioartificial, engineered vascular conduits, especially those derived from extracellular matrix (ECM). Here we describe an easy-to-implement strategy to chemically modify vascular ECM by covalently linking a collagen binding peptide (CBP) to heparin to form a heparin derivative (CBP-heparin) that selectively binds a subset of collagens. Modification of ECM with CBP-heparin leads to increased deposition of functional heparin (by ∼7.2-fold measured by glycosaminoglycan composition) and a corresponding reduction in platelet binding (>70%) and whole blood clotting (>80%) onto the ECM. Furthermore, addition of CBP-heparin to the ECM stabilizes long-term endothelial cell attachment to the lumen of ECM-derived vascular conduits, potentially through recruitment of heparin-binding growth factors that ultimately improve the durability of endothelialization in vitro. Overall, our findings provide a simple yet effective method to increase deposition of functional heparin on the surface of ECM-based vascular grafts and thereby minimize thrombogenicity of decellularized tissue, overcoming a significant challenge in tissue engineering of bioartificial vessels and vascularized organs.

  7. DETECTION OF TWO ISOMERIC BINDING CONFIGURATIONS IN A PROTEIN-APTAMER COMPLEX WITH A BIOLOGICAL NANOPORE

    PubMed Central

    Van Meervelt, Veerle; Soskine, Misha; Maglia, Giovanni

    2015-01-01

    Protein-DNA interactions play critical roles in biological systems, and they often involve complex mechanisms and dynamics that are not easily measured by ensemble experiments. Recently, we have shown that folded proteins can be internalised inside ClyA nanopores and studied by ionic current recordings at the single-molecule level. Here, we use ClyA nanopores to sample the interaction between the G-quadruplex fold of the thrombin binding aptamer (TBA) and human thrombin (HT). Surprisingly, the internalisation of the HT:TBA complex inside the nanopore induced two types of current blockades with distinguished residual current and lifetime. Using single nucleobase substitutions to TBA we showed that these two types of blockades originate from TBA binding to thrombin with two isomeric orientations. Voltage dependencies and the use of ClyA nanopores with two different diameters allowed assessing the effect of the applied potential and confinement, and revealed that the two binding configurations of TBA to HT display different lifetimes. These results show that the ClyA nanopores might provide a new approach to probe conformational heterogeneity in protein:DNA interactions. PMID:25493908

  8. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators.

    PubMed

    Polstein, Lauren R; Perez-Pinera, Pablo; Kocak, D Dewran; Vockley, Christopher M; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2015-08-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function. © 2015 Polstein et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Determination of layer-dependent exciton binding energies in few-layer black phosphorus

    PubMed Central

    Zhang, Guowei; Chaves, Andrey; Huang, Shenyang; Wang, Fanjie; Xing, Qiaoxia; Low, Tony; Yan, Hugen

    2018-01-01

    The attraction between electrons and holes in semiconductors forms excitons, which largely determine the optical properties of the hosting material, and hence the device performance, especially for low-dimensional systems. Mono- and few-layer black phosphorus (BP) are emerging two-dimensional (2D) semiconductors. Despite its fundamental importance and technological interest, experimental investigation of exciton physics has been rather limited. We report the first systematic measurement of exciton binding energies in ultrahigh-quality few-layer BP by infrared absorption spectroscopy, with layer (L) thickness ranging from 2 to 6 layers. Our experiments allow us to determine the exciton binding energy, decreasing from 213 meV (2L) to 106 meV (6L). The scaling behavior with layer numbers can be well described by an analytical model, which takes into account the nonlocal screening effect. Extrapolation to free-standing monolayer yields a large binding energy of ~800 meV. Our study provides insights into 2D excitons and their crossover from 2D to 3D, and demonstrates that few-layer BP is a promising high-quality optoelectronic material for potential infrared applications. PMID:29556530

  10. Specific α4β2 Nicotinic Acetylcholine Receptor Binding of [F-18]Nifene in the Rhesus Monkey

    PubMed Central

    Hillmer, A.T.; Wooten, D.W.; Moirano, J.; Slesarev, M.; Barnhart, T.E.; Engle, J.W.; Nickles, R.J.; Murali, D.; Schneider, M.; Mukherjee, J.; Christian, B.T.

    2013-01-01

    Objective [F-18]Nifene is a PET radioligand developed to image α4β2* nicotinic acetylcholine receptors (nAChR) in the brain. This work assesses the in vivo binding and imaging characteristics of [F-18]nifene in rhesus monkeys for the development of PET experiments examining nAChR binding. Methods Dynamic PET imaging experiments with [F-18]nifene were acquired in 4 anesthetized macaca mulatta (rhesus) monkeys using a microPET P4 scanner. Data acquisition was initiated with a bolus injection of 109 ± 17 MBq [F-18]nifene and the time course of the radioligand in the brain was measured for up to 120 minutes. For two experiments, a displacement dose of (−)nicotine (0.03 mg/kg, i.v.) was given 45–60 minutes post injection and followed 30 minutes later with a second [F-18]nifene injection to measure radioligand nondisplaceable uptake. Time activity curves were extracted in the regions of the antereoventral thalamus (AVT), lateral geniculate nucleus region (LGN), frontal cortex, and the cerebellum (CB). Results The highest levels of [F-18]nifene uptake were observed in the AVT and LGN. Target-to-CB ratios reached maximum values of 3.3 ± 0.4 in the AVT and 3.2 ± 0.3 in the LG 30–45 minutes post-injection. Significant binding of [F-18]nifene was observed in the subiculum, insula cortex, temporal cortex, cingulate gyrus, frontal cortex, striatum, and midbrain areas. The (−)nicotine displaced bound [F-18]nifene to near background levels within 15 minutes post-drug injection. No discernable displacement was observed in the CB, suggesting its potential as a reference region. Logan graphical estimates using the CB as a reference region yielded binding potentials (BPND) of 1.6 ± 0.1 in the AVT, and 1.3 ± 0.1 in the LGN. The post-nicotine injection displayed uniform nondisplaceable uptake of [F-18]nifene throughout gray and white brain matter. Conclusions [F-18]Nifene exhibits rapid equilibration and a moderately high target to background binding profile in the α4β2* nAChR rich regions of the brain, thus providing favorable imaging characteristics as a PET radiotracer for nAChR assay. PMID:21674627

  11. Structure-based characterization of the binding of peptide to the human endophilin-1 Src homology 3 domain using position-dependent noncovalent potential analysis.

    PubMed

    Fu, Chunjiang; Wu, Gang; Lv, Fenglin; Tian, Feifei

    2012-05-01

    Many protein-protein interactions are mediated by a peptide-recognizing domain, such as WW, PDZ, or SH3. In the present study, we describe a new method called position-dependent noncovalent potential analysis (PDNPA), which can accurately characterize the nonbonding profile between the human endophilin-1 Src homology 3 (hEndo1 SH3) domain and its peptide ligands and quantitatively predict the binding affinity of peptide to hEndo1 SH3. In this procedure, structure models of diverse peptides in complex with the hEndo1 SH3 domain are constructed by molecular dynamics simulation and a virtual mutagenesis protocol. Subsequently, three noncovalent interactions associated with each position of the peptide ligand in the complexed state are analyzed using empirical potential functions, and the resulting potential descriptors are then correlated with the experimentally measured affinity on the basis of 1997 hEndo1 SH3-binding peptides with known activities, using linear partial least squares regression (PLS) and the nonlinear support vector machine (SVM). The results suggest that: (i) the electrostatics appears to be more important than steric properties and hydrophobicity in the formation of the hEndo1 SH3-peptide complex; (ii) P(-4) of the core decapeptide ligand with the sequence pattern P(-6)P(-5)P(-4)P(-3)P(-2)P(-1)P(0)P(1)P(2)P(3) is the most important position in terms of determining both the stability and specificity of the architecture of the complex, and; (iii) nonlinear SVM appears to be more effective than linear PLS for accurately predicting the binding affinity of a peptide ligand to hEndo1 SH3, whereas PLS models are straightforward and easy to interpret as compared to those built by SVM.

  12. Exploration of optimal dosing regimens of haloperidol, a D2 Antagonist, via modeling and simulation analysis in a D2 receptor occupancy study.

    PubMed

    Lim, Hyeong-Seok; Kim, Su Jin; Noh, Yook-Hwan; Lee, Byung Chul; Jin, Seok-Joon; Park, Hyun Soo; Kim, Soohyeon; Jang, In-Jin; Kim, Sang Eun

    2013-03-01

    To evaluate the potential usage of D(2) receptor occupancy (D2RO) measured by positron emission tomography (PET) in antipsychotic development. In this randomized, parallel group study, eight healthy male volunteers received oral doses of 0.5 (n = 3), 1 (n = 2), or 3 mg (n = 3) of haloperidol once daily for 7 days. PET's were scanned before haloperidol, and on days 8, 12, with serial pharmacokinetic sampling on day 7. Pharmacokinetics and binding potential to D(2) receptor in putamen and caudate nucleus over time were analyzed using NONMEM, and simulations for the profiles of D2RO over time on various regimens of haloperidol were conducted to find the optimal dosing regimens. One compartment model with a saturable binding compartment, and inhibitory E(max) model in the effect compartment best described the data. Plasma haloperidol concentrations at half-maximal inhibition were 0.791 and 0.650 ng/ml, in putamen and caudate nucleus. Simulation suggested haloperidol 2 mg every 12 h is near the optimal dose. This study showed that sparse D2RO measurements in steady state pharmacodynamic design after multiple dosing could reveal the possibility of treatment effect of D(2) antagonist, and could identify the potential optimal doses for later clinical studies by modeling and simulation.

  13. In vitro DNA binding studies of lenalidomide using spectroscopic in combination with molecular docking techniques

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Hu, Yan-Xi; Li, Yan-Cheng; Zhang, Li; Ai, Hai-Xin; Liu, Yu-Feng; Liu, Hong-Sheng

    2018-02-01

    In the present work, the binding interaction between lenalidomide (LEN) and calf thymus DNA (ct-DNA) was systematically studied by using fluorescence, ultraviolet-visible (UV-vis) absorption, circular dichroism (CD) spectroscopies under imitated physiological conditions (pH = 7.4) coupled with molecular docking. It was found that LEN was bound to ct-DNA with high binding affinity (Ka = 2.308 × 105 M-1 at 283 K) through groove binding as evidenced by a slight decrease in the absorption intensity in combination with CD spectra. Thermodynamic parameters (ΔG < 0, ΔH > 0 and ΔS < 0) of the LEN-DNA system obtained at three different temperatures suggested that the binding process was spontaneous and was primarily driven by hydrogen bonds and hydrophobic interaction. Furthermore, competitive binding experiments with ethidium bromide and 4‧, 6-dia-midino-2-phenylindoleas probes showed that LEN could preferentially bind in the minor groove of double-stranded DNA. The average lifetime of LEN was calculated to be 7.645 ns. The φ of LEN was measured as 0.09 and non-radiation energy transfer between LEN and DNA had occurred. The results of the molecular docking were consistent with the experimental results. This study explored the potential applicability of the spectroscopic properties of LEN and also investigated its interactions with relevant biological targets. In addition, it will provide some theoretical references for the deep research of simultaneous administration of LEN with other drugs.

  14. An ice-binding and tandem beta-sandwich domain-containing protein in Shewanella frigidimarina is a potential new type of ice adhesin.

    PubMed

    Vance, Tyler D R; Graham, Laurie A; Davies, Peter L

    2018-04-01

    Out of the dozen different ice-binding protein (IBP) structures known, the DUF3494 domain is the most widespread, having been passed many times between prokaryotic and eukaryotic microorganisms by horizontal gene transfer. This ~25-kDa β-solenoid domain with an adjacent parallel α-helix is most commonly associated with an N-terminal secretory signal peptide. However, examples of the DUF3494 domain preceded by tandem Bacterial Immunoglobulin-like (BIg) domains are sometimes found, though uncharacterized. Here, we present one such protein (SfIBP_1) from the Antarctic bacterium Shewanella frigidimarina. We have confirmed and characterized the ice-binding activity of its ice-binding domain using thermal hysteresis measurements, fluorescent ice plane affinity analysis, and ice recrystallization inhibition assays. X-ray crystallography was used to solve the structure of the SfIBP_1 ice-binding domain, to further characterize its ice-binding surface and unique method of stabilizing or 'capping' the ends of the solenoid structure. The latter is formed from the interaction of two loops mediated by a combination of tandem prolines and electrostatic interactions. Furthermore, given their domain architecture and membrane association, we propose that these BIg-containing DUF3494 IBPs serve as ice-binding adhesion proteins that are capable of adsorbing their host bacterium onto ice. Submitted new structure to the Protein Data Bank (PDB: 6BG8). © 2018 Federation of European Biochemical Societies.

  15. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system.

    PubMed

    Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui

    2018-02-23

    Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Benzene Polyphosphates as Tools for Cell Signalling: Inhibition of Inositol 1,4,5-Trisphosphate 5-Phosphatase and Interaction with the PH Domain of Protein Kinase Bα

    PubMed Central

    Mills, Stephen J; Vandeput, Fabrice; Trusselle, Melanie N.; Safrany, Stephen T.; Erneux, Christophe; Potter, Barry V. L.

    2009-01-01

    Novel benzene polyphosphates were synthesised as inositol polyphosphate mimics and evaluated against both type-I inositol 1,4,5-trisphosphate 5-phosphatase, which only binds soluble inositol polyphosphates, and the PH domain of protein kinase Bα (PKBα), which can bind both soluble inositol polyphosphates and inositol phospholipids. The most potent trisphosphate 5-phosphatase inhibitor is benzene 1,2,4-trisphosphate 2, (IC50 of 14 μm) a potential mimic of d-myo-inositol 1,4,5-trisphosphate, and the most potent tetrakisphosphate Ins(1,4,5)P3 5-phosphatase inhibitor is benzene 1,2,4,5-tetrakisphosphate, with an IC50 of 4 μm. Biphenyl 2,3′,4,5′,6-pentakisphosphate 4 was the most potent inhibitor evaluated against type I Ins(1,4,5)P3 5-phosphatase (IC50 of 1 μm). All new benzene polyphosphates are resistant to dephosphorylation by type I Ins(1,4,5)P3 5-phosphatase. Unexpectedly, all benzene polyphosphates studied bind to the PH domain of PKBα with apparent higher affinity than type 1 Ins(1,4,5)P3 5-phosphatase. The most potent ligand for PKBα PH domain is biphenyl 2,3′,4,5′,6-pentakisphosphate 4 (Ki = 27 nm), measured by inhibition of biotinylated diC8-PtdIns(3,4)P2 binding. The ca 80-fold enhancement of binding relative to parent benzene trisphosphate is rationalised by the involvement of a cation–π interaction. These new molecular tools will be of potential use in structural and cell signalling studies. PMID:18574825

  17. Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach.

    PubMed

    Hurst, Sarah J; Han, Min Su; Lytton-Jean, Abigail K R; Mirkin, Chad A

    2007-09-15

    We have developed a novel competition assay that uses a gold nanoparticle (Au NP)-based, high-throughput colorimetric approach to screen the sequence selectivity of DNA-binding molecules. This assay hinges on the observation that the melting behavior of DNA-functionalized Au NP aggregates is sensitive to the concentration of the DNA-binding molecule in solution. When short, oligomeric hairpin DNA sequences were added to a reaction solution consisting of DNA-functionalized Au NP aggregates and DNA-binding molecules, these molecules may either bind to the Au NP aggregate interconnects or the hairpin stems based on their relative affinity for each. This relative affinity can be measured as a change in the melting temperature (Tm) of the DNA-modified Au NP aggregates in solution. As a proof of concept, we evaluated the selectivity of 4',6-diamidino-2-phenylindone (an AT-specific binder), ethidium bromide (a nonspecific binder), and chromomycin A (a GC-specific binder) for six sequences of hairpin DNA having different numbers of AT pairs in a five-base pair variable stem region. Our assay accurately and easily confirmed the known trends in selectivity for the DNA binders in question without the use of complicated instrumentation. This novel assay will be useful in assessing large libraries of potential drug candidates that work by binding DNA to form a drug/DNA complex.

  18. Distribution of monoamine oxidase proteins in human brain: implications for brain imaging studies

    PubMed Central

    Tong, Junchao; Meyer, Jeffrey H; Furukawa, Yoshiaki; Boileau, Isabelle; Chang, Li-Jan; Wilson, Alan A; Houle, Sylvain; Kish, Stephen J

    2013-01-01

    Positron emission tomography (PET) imaging of monoamine oxidases (MAO-A: [11C]harmine, [11C]clorgyline, and [11C]befloxatone; MAO-B: [11C]deprenyl-D2) has been actively pursued given clinical importance of MAOs in human neuropsychiatric disorders. However, it is unknown how well PET outcome measures for the different radiotracers are quantitatively related to actual MAO protein levels. We measured regional distribution (n=38) and developmental/aging changes (21 hours to 99 years) of both MAOs by quantitative immunoblotting in autopsied normal human brain. MAO-A was more abundant than MAO-B in infants, which was reversed as MAO-B levels increased faster before 1 year and, unlike MAO-A, kept increasing steadily to senescence. In adults, regional protein levels of both MAOs were positively and proportionally correlated with literature postmortem data of MAO activities and binding densities. With the exception of [11C]befloxatone (binding potential (BP), r=0.61, P=0.15), correlations between regional PET outcome measures of binding in the literature and MAO protein levels were good (P<0.01) for [11C]harmine (distribution volume, r=0.86), [11C]clorgyline (λk3, r=0.82), and [11C]deprenyl-D2 (λk3 or modified Patlak slope, r=0.78 to 0.87), supporting validity of the latter imaging measures. However, compared with in vitro data, the latter PET measures underestimated regional contrast by ∼2-fold. Further studies are needed to address cause of the in vivo vs. in vitro nonproportionality. PMID:23403377

  19. Preparation of poly-L-lysine functionalized magnetic nanoparticles and their influence on viability of cancer cells

    NASA Astrophysics Data System (ADS)

    Khmara, I.; Koneracka, M.; Kubovcikova, M.; Zavisova, V.; Antal, I.; Csach, K.; Kopcansky, P.; Vidlickova, I.; Csaderova, L.; Pastorekova, S.; Zatovicova, M.

    2017-04-01

    This study was aimed at development of biocompatible amino-functionalized magnetic nanoparticles as carriers of specific antibodies able to detect and/or target cancer cells. Poly-L-lysine (PLL)-modified magnetic nanoparticle samples with different PLL/Fe3O4 content were prepared and tested to define the optimal PLL/Fe3O4 weight ratio. The samples were characterized for particle size and morphology (SEM, TEM and DLS), and surface properties (zeta potential measurements). The optimal PLL/Fe3O4 weight ratio of 1.0 based on both zeta potential and DLS measurements was in agreement with the UV/VIS measurements. Magnetic nanoparticles with the optimal PLL content were conjugated with antibody specific for the cancer biomarker carbonic anhydrase IX (CA IX), which is induced by hypoxia, a physiologic stress present in solid tumors and linked with aggressive tumor behavior. CA IX is localized on the cell surface with the antibody-binding epitope facing the extracellular space and is therefore suitable for antibody-based targeting of tumor cells. Here we showed that PLL/Fe3O4 magnetic nanoparticles exhibit cytotoxic activities in a cell type-dependent manner and bind to cells expressing CA IX when conjugated with the CA IX-specific antibody. These data support further investigations of the CA IX antibody-conjugated, magnetic field-guided/activated nanoparticles as tools in anticancer strategies.

  20. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Liu, Jiyuan; Zhang, Yalin

    2016-03-01

    Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses.

  1. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.

    PubMed

    Xu, Youjun; Wang, Shiwei; Hu, Qiwan; Gao, Shuaishi; Ma, Xiaomin; Zhang, Weilin; Shen, Yihang; Chen, Fangjin; Lai, Luhua; Pei, Jianfeng

    2018-05-10

    CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based pharmacophore modelling program, Pocket, to automatically extract pharmacophore features within cavities. CorrSite identifies potential allosteric ligand-binding sites based on motion correlation analyses between cavities. CovCys automatically detects druggable cysteine residues, which is especially useful to identify novel binding sites for designing covalent allosteric ligands. Overall, CavityPlus provides an integrated platform for analysing comprehensive properties of protein binding cavities. Such analyses are useful for many aspects of drug design and discovery, including target selection and identification, virtual screening, de novo drug design, and allosteric and covalent-binding drug design. The CavityPlus web server is freely available at http://repharma.pku.edu.cn/cavityplus or http://www.pkumdl.cn/cavityplus.

  2. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals

    PubMed Central

    Tian, Zhen; Liu, Jiyuan; Zhang, Yalin

    2016-01-01

    Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses. PMID:26928635

  3. Tomography of epidermal growth factor receptor binding to fluorescent Affibody in vivo studied with magnetic resonance guided fluorescence recovery in varying orthotopic glioma sizes

    NASA Astrophysics Data System (ADS)

    Holt, Robert W.; Demers, Jennifer-Lynn H.; Sexton, Kristian J.; Gunn, Jason R.; Davis, Scott C.; Samkoe, Kimberley S.; Pogue, Brian W.

    2015-02-01

    The ability to image targeted tracer binding to epidermal growth factor receptor (EGFR) was studied in vivo in orthotopically grown glioma tumors of different sizes. The binding potential was quantified using a dual-tracer approach, which employs a fluorescently labeled peptide targeted to EGFR and a reference tracer with similar pharmacokinetic properties but no specific binding, to estimate the relative bound fraction from kinetic compartment modeling. The recovered values of binding potential did not vary significantly as a function of tumor size (1 to 33 mm3), suggesting that binding potential may be consistent in the U251 tumors regardless of size or stage after implantation. However, the fluorescence yield of the targeted fluorescent tracers in the tumor was affected significantly by tumor size, suggesting that dual-tracer imaging helps account for variations in absolute uptake, which plague single-tracer imaging techniques. Ex vivo analysis showed relatively high spatial heterogeneity in each tumor that cannot be resolved by tomographic techniques. Nonetheless, the dual-tracer tomographic technique is a powerful tool for longitudinal bulk estimation of receptor binding.

  4. Probing the electrostatics and pharmacologic modulation of sequence-specific binding by the DNA-binding domain of the ETS-family transcription factor PU.1: a binding affinity and kinetics investigation

    PubMed Central

    Munde, Manoj; Poon, Gregory M. K.; Wilson, W. David

    2013-01-01

    Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally-conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤105 M−1 s−1), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt-dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>107 M−1 s−1). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes. PMID:23416556

  5. Genetic variation in HTR2A influences serotonin transporter binding potential as measured using PET and [11C]DASB.

    PubMed

    Laje, Gonzalo; Cannon, Dara M; Allen, Andrew S; Klaver, Jackie M; Peck, Summer A; Liu, Xinmin; Manji, Husseini K; Drevets, Wayne C; McMahon, Francis J

    2010-07-01

    In a previous study we showed that genetic variation in HTR2A, which encodes the serotonin 2A receptor, influenced outcome of citalopram treatment in patients with major depressive disorder. Since chronic administration of citalopram, which selectively and potently inhibits the serotonin transporter (5-HTT), putatively enhances serotonergic transmission, it is conceivable that genetic variation within HTR2A also influences pretreatment 5-HTT function or serotonergic transmission. The present study used positron emission tomography (PET) and the selective 5-HTT ligand, [11C]DASB, to investigate whether the HTR2A marker alleles that predict treatment outcome also predict differences in 5-HTT binding. Brain levels of 5-HTT were assessed in vivo using PET measures of the non-displaceable component of the [11C]DASB binding potential (BPND). DNA from 43 patients and healthy volunteers, all unmedicated, was genotyped with 14 single nucleotide polymorphisms located within or around HTR2A. Allelic association with BPND was assessed in eight brain regions, with covariates to control for race and ethnicity. We detected allelic association between [11C]DASB BPND in thalamus and three markers in a region spanning the 3' untranslated region and second intron of HTR2A (rs7333412, p=0.000045; rs7997012, p=0.000086; rs977003, p=0.000069). The association signal at rs7333412 remained significant (p<0.05) after applying corrections for multiple testing via permutation. Genetic variation in HTR2A that was previously associated with citalopram treatment outcome was also associated with thalamic 5-HTT binding. While further work is needed to identify the actual functional genetic variants involved, these results suggest that a relationship exists between genetic variation in HTR2A and either 5-HTT expression or central serotonergic transmission that influences the therapeutic response to 5-HTT inhibition in major depression.

  6. 21 CFR 862.1685 - Thyroxine-binding globulin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... globulin test system is a device intended to measure thyroxine (thyroid)-binding globulin (TBG), a plasma protein which binds thyroxine, in serum and plasma. Measurements obtained by this device are used in the...

  7. 21 CFR 862.1685 - Thyroxine-binding globulin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... globulin test system is a device intended to measure thyroxine (thyroid)-binding globulin (TBG), a plasma protein which binds thyroxine, in serum and plasma. Measurements obtained by this device are used in the...

  8. 21 CFR 862.1685 - Thyroxine-binding globulin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... globulin test system is a device intended to measure thyroxine (thyroid)-binding globulin (TBG), a plasma protein which binds thyroxine, in serum and plasma. Measurements obtained by this device are used in the...

  9. 21 CFR 862.1685 - Thyroxine-binding globulin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... globulin test system is a device intended to measure thyroxine (thyroid)-binding globulin (TBG), a plasma protein which binds thyroxine, in serum and plasma. Measurements obtained by this device are used in the...

  10. 21 CFR 862.1685 - Thyroxine-binding globulin test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... globulin test system is a device intended to measure thyroxine (thyroid)-binding globulin (TBG), a plasma protein which binds thyroxine, in serum and plasma. Measurements obtained by this device are used in the...

  11. Identification of lanthanum-specific peptides for future recycling of rare earth elements from compact fluorescent lamps.

    PubMed

    Lederer, Franziska L; Curtis, Susan B; Bachmann, Stefanie; Dunbar, W Scott; MacGillivray, Ross T A

    2017-05-01

    As components of electronic scrap, rare earth minerals are an interesting but little used source of raw materials that are highly important for the recycling industry. Currently, there exists no cost-efficient technology to separate rare earth minerals from an electronic scrap mixture. In this study, phage surface display has been used as a key method to develop peptides with high specificity for particular inorganic targets in electronic scrap. Lanthanum phosphate doped with cerium and terbium as part of the fluorescent phosphors of spent compact fluorescent lamps (CFL) was used as a target material of economic interest to test the suitability of the phage display method to the separation of rare earth minerals. One random pVIII phage library was screened for peptide sequences that bind specifically to the fluorescent phosphor LaPO 4 :Ce 3+ ,Tb 3+ (LAP). The library contained at least 100 binding pVIII peptides per phage particle with a diversity of 1 × 10 9 different phage per library. After three rounds of enrichment, a phage clone containing the surface peptide loop RCQYPLCS was found to bind specifically to LAP. Specificity and affinity of the identified phage bound peptide was confirmed by using binding and competition assays, immunofluorescence assays, and zeta potential measurements. Binding and immunofluorescence assays identified the peptide's affinity for the fluorescent phosphor components CAT (CeMgAl 11 O 19 :Tb 3+ ) and BAM (BaMgAl 10 O 17 :Eu 2+ ). No affinity was found for other fluorescent phosphor components such as YOX (Y 2 O 3 :Eu 3+ ). The binding specificity of the RCQYPLCS peptide loop was improved 3-51-fold by using alanine scanning mutagenesis. The identification of peptides with high specificity and affinity for special components in the fluorescent phosphor in CFLs provides a potentially new strategic approach to rare earth recycling. Biotechnol. Bioeng. 2017;114: 1016-1024. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haarmeyer, Carolyn N.; Smith, Matthew D.; Chundawat, Shishir P. S.

    Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterizedmore » 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Altogether, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases.« less

  13. Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein

    DOE PAGES

    Haarmeyer, Carolyn N.; Smith, Matthew D.; Chundawat, Shishir P. S.; ...

    2016-10-17

    Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterizedmore » 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Altogether, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases.« less

  14. Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein.

    PubMed

    Haarmeyer, Carolyn N; Smith, Matthew D; Chundawat, Shishir P S; Sammond, Deanne; Whitehead, Timothy A

    2017-04-01

    Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue toward energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28-0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases. Biotechnol. Bioeng. 2017;114: 740-750. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Energy spectra of small bosonic clusters having a large two-body scattering length

    NASA Astrophysics Data System (ADS)

    Gattobigio, M.; Kievsky, A.; Viviani, M.

    2012-10-01

    In this work we investigate small clusters of bosons using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 particles interacting through a soft interparticle potential. In order to make contact with a real system, we use an attractive Gaussian potential that reproduces the values of the dimer binding energy and the atom-atom scattering length obtained with one of the most widely used 4He-4He interactions, the LM2M2 potential of Aziz and Slaman. The intensity of the potential is varied in order to explore the clusters’ spectra in different regions with large positive and large negative values of the two-body scattering length. In addition, we include a repulsive three-body force to reproduce the trimer binding energy. With this model, consisting in the sum of a two- and three-body potential, we have calculated the spectrum of the four-, five-, and six-particle systems. In all the regions explored, we have found that these systems present two states, one deep and one shallow close to the A-1 threshold. Some universal relations between the energy levels are extracted; in particular, we have estimated the universal ratios between thresholds of the three-, four-, and five-particle continua using the two-body Gaussian potential. They agree with recent measurements and theoretical predictions.

  16. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach

    NASA Astrophysics Data System (ADS)

    Nagasundaram, N.; George Priya Doss, C.; Chakraborty, Chiranjib; Karthick, V.; Thirumal Kumar, D.; Balaji, V.; Siva, R.; Lu, Aiping; Ge, Zhang; Zhu, Hailong

    2016-07-01

    Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs.

  17. Energetic basis for the molecular-scale organization of bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua

    2014-12-24

    The remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption on singlemore » crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less

  18. Comparative innate immune interactions of human and bovine secretory IgA with pathogenic and non-pathogenic bacteria.

    PubMed

    Hodgkinson, Alison J; Cakebread, Julie; Callaghan, Megan; Harris, Paul; Brunt, Rachel; Anderson, Rachel C; Armstrong, Kelly M; Haigh, Brendan

    2017-03-01

    Secretory IgA (SIgA) from milk contributes to early colonization and maintenance of commensal/symbiotic bacteria in the gut, as well as providing defence against pathogens. SIgA binds bacteria using specific antigenic sites or non-specifically via its glycans attached to α-heavy-chain and secretory component. In our study, we tested the hypothesis that human and bovine SIgA have similar innate-binding activity for bacteria. SIgAs, isolated from human and bovine milk, were incubated with a selection of commensal, pathogenic and probiotic bacteria. Using flow cytometry, we measured numbers of bacteria binding SIgA and their level of SIgA binding. The percentage of bacteria bound by human and bovine SIgA varied from 30 to 90% depending on bacterial species and strains, but was remarkably consistent between human and bovine SIgA. The level of SIgA binding per bacterial cell was lower for those bacteria that had a higher percentage of SIgA-bound bacteria, and higher for those bacteria that had lower percentage of SIgA-bound bacteria. Overall, human and bovine SIgA interacted with bacteria in a comparable way. This contributes to longer term research about the potential benefits of bovine SIgA for human consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement.

    PubMed

    Deng, Jianjun; Chen, Fei; Fan, Daidi; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-10-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein-iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (nb) and apparent association constant (Kapp) between iron and phosphorylated HLC were measured at nb=23.7 and log Kapp=4.57, respectively. The amount of iron (Fe(2+) sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. © 2013.

  20. Energetic basis for the molecular-scale organization of bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua

    The remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption on singlemore » crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less

  1. Uncertainty analysis of the nonideal competitive adsorption-donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution.

    PubMed

    Groenenberg, Jan E; Koopmans, Gerwin F; Comans, Rob N J

    2010-02-15

    Ion binding models such as the nonideal competitive adsorption-Donnan model (NICA-Donnan) and model VI successfully describe laboratory data of proton and metal binding to purified humic substances (HS). In this study model performance was tested in more complex natural systems. The speciation predicted with the NICA-Donnan model and the associated uncertainty were compared with independent measurements in soil solution extracts, including the free metal ion activity and fulvic (FA) and humic acid (HA) fractions of dissolved organic matter (DOM). Potentially important sources of uncertainty are the DOM composition and the variation in binding properties of HS. HS fractions of DOM in soil solution extracts varied between 14 and 63% and consisted mainly of FA. Moreover, binding parameters optimized for individual FA samples show substantial variation. Monte Carlo simulations show that uncertainties in predicted metal speciation, for metals with a high affinity for FA (Cu, Pb), are largely due to the natural variation in binding properties (i.e., the affinity) of FA. Predictions for metals with a lower affinity (Cd) are more prone to uncertainties in the fraction FA in DOM and the maximum site density (i.e., the capacity) of the FA. Based on these findings, suggestions are provided to reduce uncertainties in model predictions.

  2. Binding interactions of halogenated bisphenol A with mouse PPARα: In vitro investigation and molecular dynamics simulation.

    PubMed

    Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Guan, Tianzhu; Yu, Hansong; Li, Zhuolin; Wang, Yongzhi; Wang, Yongjun; Zhang, Tiehua

    2018-02-01

    The binding of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to mouse peroxisome proliferator-activated receptor α ligand binding domain (mPPARα-LBD) was examined by a combination of in vitro investigation and in silico simulation. Fluorescence polarization (FP) assay showed that halogenated BPAs could bind to mPPARα-LBD* as the affinity ligands. The calculated electrostatic potential (ESP) illustrated the different charge distributions of halogenated BPAs with altered halogenation patterns. As electron-attracting substituents, halogens decrease the positive electrostatic potential and thereby have a significant influence on the electrostatic interactions of halogenated BPAs with mPPARα-LBD*. The docking results elucidated that hydrophobic and hydrogen-bonding interactions may also contribute to stabilize the binding of the halogenated BPAs to their receptor molecule. Comparison of the calculated binding energies with the experimentally determined affinities yielded a good correlation (R 2 =0.6659) that could provide a rational basis for designing environmentally benign chemicals with reduced toxicities. This work can potentially be used for preliminary screening of halogenated BPAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein.

    PubMed

    Velmurugu, Yogambigai; Vivas, Paula; Connolly, Mitchell; Kuznetsov, Serguei V; Rice, Phoebe A; Ansari, Anjum

    2018-02-28

    The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1-10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.

  4. Human EAG channels are directly modulated by PIP2 as revealed by electrophysiological and optical interference investigations

    PubMed Central

    Han, Bo; He, Kunyan; Cai, Chunlin; Tang, Yin; Yang, Linli; Heinemann, Stefan H.; Hoshi, Toshinori; Hou, Shangwei

    2016-01-01

    Voltage-gated ether à go-go (EAG) K+ channels are expressed in various types of cancer cells and also in the central nervous system. Aberrant overactivation of human EAG1 (hEAG1) channels is associated with cancer and neuronal disorders such as Zimmermann-Laband and Temple-Baraitser syndromes. Although hEAG1 channels are recognized as potential therapeutic targets, regulation of their functional properties is only poorly understood. Here, we show that the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) is a potent inhibitory gating modifier of hEAG1 channels. PIP2 inhibits the channel activity by directly binding to a short N-terminal segment of the channel important for Ca2+/calmodulin (CaM) binding as evidenced by bio-layer interferometry measurements. Conversely, depletion of endogenous PIP2 either by serotonin-induced phospholipase C (PLC) activation or by a rapamycin-induced translocation system enhances the channel activity at physiological membrane potentials, suggesting that PIP2 exerts a tonic inhibitory influence. Our study, combining electrophysiological and direct binding assays, demonstrates that hEAG1 channels are subject to potent inhibitory modulation by multiple phospholipids and suggests that manipulations of the PIP2 signaling pathway may represent a strategy to treat hEAG1 channel-associated diseases. PMID:27005320

  5. Structures of native and affinity-enhanced WT1 epitopes bound to HLA-A*0201: implications for WT1-based cancer therapeutics.

    PubMed

    Borbulevych, Oleg Y; Do, Priscilla; Baker, Brian M

    2010-09-01

    Presentation of peptides by class I or class II major histocompatibility complex (MHC) molecules is required for the initiation and propagation of a T cell-mediated immune response. Peptides from the Wilms Tumor 1 transcription factor (WT1), upregulated in many hematopoetic and solid tumors, can be recognized by T cells and numerous efforts are underway to engineer WT1-based cancer vaccines. Here we determined the structures of the class I MHC molecule HLA-A*0201 bound to the native 126-134 epitope of the WT1 peptide and a recently described variant (R1Y) with improved MHC binding. The R1Y variant, a potential vaccine candidate, alters the positions of MHC charged side chains near the peptide N-terminus and significantly reduces the peptide/MHC electrostatic surface potential. These alterations indicate that the R1Y variant is an imperfect mimic of the native WT1 peptide, and suggest caution in its use as a therapeutic vaccine. Stability measurements revealed how the R1Y substitution enhances MHC binding affinity, and together with the structures suggest a strategy for engineering WT1 variants with improved MHC binding that retain the structural features of the native peptide/MHC complex. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Statins in therapy: understanding their hydrophilicity, lipophilicity, binding to 3-hydroxy-3-methylglutaryl-CoA reductase, ability to cross the blood brain barrier and metabolic stability based on electrostatic molecular orbital studies.

    PubMed

    Fong, Clifford W

    2014-10-06

    The atomic electrostatic potentials calculated by the CHELPG method have been shown to be sensitive indicators of the gas phase and solution properties of the statins. Solvation free energies in water, n-octanol and n-octane have been determined using the SMD solvent model. The percentage hydrophilicity and hydrophobicity (or lipophilicity) of the statins in solution have been determined using (a) the differences in solvation free energies between n-octanol and n-octane as a measure of hydrophilicity, and the solvation energy in octane as a measure of hydrophobicity (b) the sum of the atomic electrostatic charges on the hydrogen bonding and polar bonding nuclei of the common pharmacophore combined with a solvent measure of hydrophobicity, and (c) using the buried surface areas after statin binding to HMGCR to calculate the hydrophobicity of the bound statins. The data suggests that clinical definitions of statins as either "hydrophilic" or "lipophilic" based on experimental partition coefficients are misleading. An estimate of the binding energy between rosuvastatin and HMGCR has been made using: (a) a coulombic electrostatic interaction model, (b) the calculated desolvation and resolvation of the statin in water, and (c) the first shell transfer solvation energy as a proxy for the restructuring of the water molecules immediately adjacent to the active binding site of HMGCR prior to binding. Desolvation and resolvation of the statins before and after binding to HMGCR are major determinants of the energetics of the binding process. An analysis of the amphiphilic nature of lovastatin anion, acid and lactone and fluvastatin anion and their abilities to cross the blood brain barrier has indicated that this process may be dominated by desolvation and resolvation effects, rather than the statin molecular size or statin-lipid interactions within the bilayer. The ionization energy and electron affinity of the statins are sensitive physical indicators of the ease that the various statins can undergo endogenous oxidative metabolism. The absolute chemical hardness is also an indicator of the stability of the statins, and may be a useful indicator for drug design. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Kinetic operational models of agonism for G-protein-coupled receptors.

    PubMed

    Hoare, Samuel R J; Pierre, Nicolas; Moya, Arturo Gonzalez; Larson, Brad

    2018-06-07

    The application of kinetics to research and therapeutic development of G-protein-coupled receptors has become increasingly valuable. Pharmacological models provide the foundation of pharmacology, providing concepts and measurable parameters such as efficacy and potency that have underlain decades of successful drug discovery. Currently there are few pharmacological models that incorporate kinetic activity in such a way as to yield experimentally-accessible drug parameters. In this study, a kinetic model of pharmacological response was developed that provides a kinetic descriptor of efficacy (the transduction rate constant, k τ ) and allows measurement of receptor-ligand binding kinetics from functional data. The model assumes: (1) receptor interacts with a precursor of the response ("Transduction potential") and converts it to the response. (2) The response can decay. Familiar response vs time plots emerge, depending on whether transduction potential is depleted and/or response decays. These are the straight line, the "association" exponential curve, and the rise-and-fall curve. Convenient, familiar methods are described for measuring the model parameters and files are provided for the curve-fitting program Prism (GraphPad Software) that can be used as a guide. The efficacy parameter k τ is straightforward to measure and accounts for receptor reserve; all that is required is measurement of response over time at a maximally-stimulating concentration of agonist. The modular nature of the model framework allows it to be extended. Here this is done to incorporate antagonist-receptor binding kinetics and slow agonist-receptor equilibration. In principle, the modular framework can incorporate other cellular processes, such as receptor desensitization. The kinetic response model described here can be applied to measure kinetic pharmacological parameters than can be used to advance the understanding of GPCR pharmacology and optimize new and improved therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Nickel binding and [NiFe]-hydrogenase maturation by the metallochaperone SlyD with a single metal-binding site in Escherichia coli.

    PubMed

    Kaluarachchi, Harini; Altenstein, Matthias; Sugumar, Sonia R; Balbach, Jochen; Zamble, Deborah B; Haupt, Caroline

    2012-03-16

    SlyD (sensitive to lysis D) is a nickel metallochaperone involved in the maturation of [NiFe]-hydrogenases in Escherichia coli (E. coli) and specifically contributes to the nickel delivery step during enzyme biosynthesis. This protein contains a C-terminal metal-binding domain that is rich in potential metal-binding residues that enable SlyD to bind multiple nickel ions with high affinity. The SlyD homolog from Thermus thermophilus does not contain the extended cysteine- and histidine-rich C-terminal tail of the E. coli protein, yet it binds a single Ni(II) ion tightly. To investigate whether a single metal-binding motif can functionally replace the full-length domain, we generated a truncation of E. coli SlyD, SlyD155. Ni(II) binding to SlyD155 was investigated by using isothermal titration calorimetry, NMR and electrospray ionization mass spectrometry measurements. This in vitro characterization revealed that SlyD155 contains a single metal-binding motif with high affinity for nickel. Structural characterization by X-ray absorption spectroscopy and NMR indicated that nickel was coordinated in an octahedral geometry with at least two histidines as ligands. Heterodimerization between SlyD and another hydrogenase accessory protein, HypB, is essential for optimal hydrogenase maturation and was confirmed for SlyD155 via cross-linking experiments and NMR titrations, as were conserved chaperone and peptidyl-prolyl isomerase activities. Although these properties of SlyD are preserved in the truncated version, it does not modulate nickel binding to HypB in vitro or contribute to the maturation of [NiFe]-hydrogenases in vivo, unlike the full-length protein. This study highlights the importance of the unusual metal-binding domain of E. coli SlyD in hydrogenase biogenesis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Surface electronic properties of polycrystalline bulk and thin film In2O3(ZnO)k compounds

    NASA Astrophysics Data System (ADS)

    Hopper, E. Mitchell; Zhu, Qimin; Gassmann, Jürgen; Klein, Andreas; Mason, Thomas O.

    2013-01-01

    The surface electronic potentials of In2O3(ZnO)k compounds were measured by X-ray and ultraviolet photoelectron spectroscopy. Both thin film (k = 2) and bulk specimens (k = 3, 5, 7, 9) were studied. All bulk specimens exhibited In enrichment at the surface. All samples showed an increase of In core level binding energies compared to pure and Sn-doped In2O3. The work functions and Fermi levels spanned a range similar to those of the basis oxides In2O3 and ZnO, and the ionization potential was similar to that of both In2O3 and ZnO processed under similar conditions (7.7 eV). This ionization potential was independent of both composition and post-deposition oxidation and reduction treatments. Kelvin probe measurements of cleaned and UV-ozone treated specimens under ambient conditions were in agreement with the photoelectron spectroscopy measurements.

  10. Estimation of the electric plasma membrane potential difference in yeast with fluorescent dyes: comparative study of methods.

    PubMed

    Peña, Antonio; Sánchez, Norma Silvia; Calahorra, Martha

    2010-10-01

    Different methods to estimate the plasma membrane potential difference (PMP) of yeast cells with fluorescent monitors were compared. The validity of the methods was tested by the fluorescence difference with or without glucose, and its decrease by the addition of 10 mM KCl. Low CaCl₂ concentrations avoid binding of the dye to the cell surface, and low CCCP concentrations avoid its accumulation by mitochondria. Lower concentrations of Ba²+ produce a similar effect as Ca²+, without producing the fluorescence changes derived from its transport. Fluorescence changes without considering binding of the dyes to the cells and accumulation by mitochondria are overshadowed by their distribution between this organelle and the cytoplasm. Other factors, such as yeast starvation, dye used, parameters of the fluorescence changes, as well as buffers and incubation times were analyzed. An additional approach to measure the actual or relative values of PMP, determining the accumulation of the dye, is presented.

  11. Measuring binding of protein to gel-bound ligands using magnetic levitation.

    PubMed

    Shapiro, Nathan D; Mirica, Katherine A; Soh, Siowling; Phillips, Scott T; Taran, Olga; Mace, Charles R; Shevkoplyas, Sergey S; Whitesides, George M

    2012-03-28

    This paper describes the use of magnetic levitation (MagLev) to measure the association of proteins and ligands. The method starts with diamagnetic gel beads that are functionalized covalently with small molecules (putative ligands). Binding of protein to the ligands within the bead causes a change in the density of the bead. When these beads are suspended in a paramagnetic aqueous buffer and placed between the poles of two NbFeB magnets with like poles facing, the changes in the density of the bead on binding of protein result in changes in the levitation height of the bead that can be used to quantify the amount of protein bound. This paper uses a reaction-diffusion model to examine the physical principles that determine the values of rate and equilibrium constants measured by this system, using the well-defined model system of carbonic anhydrase and aryl sulfonamides. By tuning the experimental protocol, the method is capable of quantifying either the concentration of protein in a solution, or the binding affinities of a protein to several resin-bound small molecules simultaneously. Since this method requires no electricity and only a single piece of inexpensive equipment, it may find use in situations where portability and low cost are important, such as in bioanalysis in resource-limited settings, point-of-care diagnosis, veterinary medicine, and plant pathology. It still has several practical disadvantages. Most notably, the method requires relatively long assay times and cannot be applied to large proteins (>70 kDa), including antibodies. The design and synthesis of beads with improved characteristics (e.g., larger pore size) has the potential to resolve these problems.

  12. Measuring Binding of Protein to Gel-Bound Ligands Using Magnetic Levitation

    PubMed Central

    Shapiro, Nathan D.; Mirica, Katherine A.; Soh, Siowling; Phillips, Scott T.; Taran, Olga; Mace, Charles R.; Shevkoplyas, Sergey S.; Whitesides, George M.

    2012-01-01

    This paper describes the use of magnetic levitation (MagLev) to measure the association of proteins and ligands. The method starts with diamagnetic gel beads that are functionalized covalently with small molecules (putative ligands). Binding of protein to the ligands within the bead causes a change in the density of the bead. When these beads are suspended in a paramagnetic aqueous buffer and placed between the poles of two NbFeB magnets with like poles facing, the changes in the density of the bead on binding of protein result in changes in the levitation height of the bead that can be used to quantify the amount of protein bound. This paper uses a reaction-diffusion model to examine the physical principles that determine the values of rate and equilibrium constants measured by this system, using the well-defined model system of carbonic anhydrase and aryl sulfonamides. By tuning the experimental protocol, the method is capable of quantifying either the concentration of protein in a solution, or the binding affinities of a protein to several resin-bound small molecules simultaneously. Since this method requires no electricity and only a single piece of inexpensive equipment, it may find use in situations where portability and low cost are important, such as in bioanalysis in resource-limited settings, point-of-care diagnosis, veterinary medicine, and plant pathology. It still has several practical disadvantages. Most notably, the method requires relatively long assay times and cannot be applied to large proteins (> 70 kDa), including antibodies. The design and synthesis of beads with improved characteristics (e.g., larger pore size) has the potential to resolve these problems. PMID:22364170

  13. Identification of Small Molecules against Botulinum Neurotoxin B Binding to Neuronal Cells at Ganglioside GT1b Binding Site with Low to Moderate Affinity

    DTIC Science & Technology

    2014-10-01

    BoNT serotype B (BoNT/B) for the trisaccharide GT1b were identified from the x-ray crystal structure of the BoNT/B/trisaccharide (GT1b) complex ( PDB ...trisaccharide and all the water from the structure and identified four potential binding pockets (Pocket-1, Pocket-2, and Pocket-4) as shown in...four potential binding sites or pockets on BoNT serotype B (BoNT/B) for the trisaccharide GT1b were identified from the x-ray crystal structure of the

  14. Allosteric binding sites in Rab11 for potential drug candidates

    PubMed Central

    2018-01-01

    Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously. PMID:29874286

  15. Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus.

    PubMed

    Reich, Peggy; Stoltenburg, Regina; Strehlitz, Beate; Frense, Dieter; Beckmann, Dieter

    2017-11-21

    In combination with electrochemical impedance spectroscopy, aptamer-based biosensors are a powerful tool for fast analytical devices. Herein, we present an impedimetric aptasensor for the detection of the human pathogen Staphylococcus aureus . The used aptamer targets protein A, a surface bound virulence factor of S. aureus . The thiol-modified protein A-binding aptamer was co-immobilized with 6-mercapto-1-hexanol onto gold electrodes by self-assembly. Optimization of the ratio of aptamer to 6-mercapto-1-hexanol resulted in an average density of 1.01 ± 0.44 × 10 13 aptamer molecules per cm². As shown with quartz crystal microbalance experiments, the immobilized aptamer retained its functionality to bind recombinant protein A. Our impedimetric biosensor is based on the principle that binding of target molecules to the immobilized aptamer decreases the electron transfer between electrode and ferri-/ferrocyanide in solution, which is measured as an increase of impedance. Microscale thermophoresis measurements showed that addition of the redox probe ferri-/ferrocyanide has no influence on the binding of aptamer and its target. We demonstrated that upon incubation with various concentrations of S. aureus , the charge-transfer resistance increased proportionally. The developed biosensor showed a limit of detection of 10 CFU·mL -1 and results were available within 10 minutes. The biosensor is highly selective, distinguishing non-target bacteria such as Escherichia coli and Staphylococcus epidermidis . This work highlights the immense potential of impedimetric aptasensors for future biosensing applications.

  16. Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus

    PubMed Central

    Strehlitz, Beate; Beckmann, Dieter

    2017-01-01

    In combination with electrochemical impedance spectroscopy, aptamer-based biosensors are a powerful tool for fast analytical devices. Herein, we present an impedimetric aptasensor for the detection of the human pathogen Staphylococcus aureus. The used aptamer targets protein A, a surface bound virulence factor of S. aureus. The thiol-modified protein A-binding aptamer was co-immobilized with 6-mercapto-1-hexanol onto gold electrodes by self-assembly. Optimization of the ratio of aptamer to 6-mercapto-1-hexanol resulted in an average density of 1.01 ± 0.44 × 1013 aptamer molecules per cm2. As shown with quartz crystal microbalance experiments, the immobilized aptamer retained its functionality to bind recombinant protein A. Our impedimetric biosensor is based on the principle that binding of target molecules to the immobilized aptamer decreases the electron transfer between electrode and ferri-/ferrocyanide in solution, which is measured as an increase of impedance. Microscale thermophoresis measurements showed that addition of the redox probe ferri-/ferrocyanide has no influence on the binding of aptamer and its target. We demonstrated that upon incubation with various concentrations of S. aureus, the charge-transfer resistance increased proportionally. The developed biosensor showed a limit of detection of 10 CFU·mL−1 and results were available within 10 minutes. The biosensor is highly selective, distinguishing non-target bacteria such as Escherichia coli and Staphylococcus epidermidis. This work highlights the immense potential of impedimetric aptasensors for future biosensing applications. PMID:29160851

  17. UV-SPR biosensor for biomolecular interaction studies

    NASA Astrophysics Data System (ADS)

    Geiss, F. A.; Fossati, S.; Khan, I.; Gisbert Quilis, N.; Knoll, W.; Dostalek, J.

    2017-05-01

    UV surface plasmon resonance (SPR) for direct in situ detection of protein binding events is reported. A crossed relief aluminum grating was employed for diffraction coupling to surface plasmons as an alternative to more commonly used attenuated total reflection method. Wavelength interrogation of SPR was carried out by using transmission measurements in order to probe odorant-binding protein 14 (OBP14) of the honey bee (Apis mellifera). The native oxide layer on the top of an aluminum grating sensor chip allows for covalent coupling of protein molecules by using regular silane-based linkers. The probing of bound OBP14 protein at UV with confined field of surface plasmons holds potential for further studies of interaction with recently developed artificial fluorescent odorants.

  18. Acute effect of intravenously applied alcohol in the human striatal and extrastriatal D2 /D3 dopamine system.

    PubMed

    Pfeifer, Philippe; Tüscher, Oliver; Buchholz, Hans Georg; Gründer, Gerhard; Vernaleken, Ingo; Paulzen, Michael; Zimmermann, Ulrich S; Maus, Stephan; Lieb, Klaus; Eggermann, Thomas; Fehr, Christoph; Schreckenberger, Mathias

    2017-09-01

    Investigations on the acute effects of alcohol in the human mesolimbic dopamine D 2 /D 3 receptor system have yielded conflicting results. With respect to the effects of alcohol on extrastriatal D 2 /D 3 dopamine receptors no investigations have been reported yet. Therefore we applied PET imaging using the postsynaptic dopamine D 2 /D 3 receptor ligand [ 18 F]fallypride addressing the question, whether intravenously applied alcohol stimulates the extrastriatal and striatal dopamine system. We measured subjective effects of alcohol and made correlation analyses with the striatal and extrastriatal D 2 /D 3 binding potential. Twenty-four healthy male μ-opioid receptor (OPRM1)118G allele carriers underwent a standardized intravenous and placebo alcohol administration. The subjective effects of alcohol were measured with a visual analogue scale. For the evaluation of the dopamine response we calculated the binding potential (BP ND ) by using the simplified reference tissue model (SRTM). In addition, we calculated distribution volumes (target and reference regions) in 10 subjects for which metabolite corrected arterial samples were available. In the alcohol condition no significant dopamine response in terms of a reduction of BP ND was observed in striatal and extrastriatal brain regions. We found a positive correlation for 'liking' alcohol and the BP ND in extrastriatal brain regions (Inferior frontal cortex (IFC) (r = 0.533, p = 0.007), orbitofrontal cortex (OFC) (r = 0.416, p = 0.043) and prefrontal cortex (PFC) (r = 0.625, p = 0.001)). The acute alcohol effects on the D 2 /D 3 dopamine receptor binding potential of the striatal and extrastriatal system in our experiment were insignificant. A positive correlation of the subjective effect of 'liking' alcohol with cortical D 2 /D 3 receptors may hint at an addiction relevant trait. © 2016 Society for the Study of Addiction.

  19. Drug-DNA interactions at single molecule level: A view with optical tweezers

    NASA Astrophysics Data System (ADS)

    Paramanathan, Thayaparan

    Studies of small molecule--DNA interactions are essential for developing new drugs for challenging diseases like cancer and HIV. The main idea behind developing these molecules is to target and inhibit the reproduction of the tumor cells and infected cells. We mechanically manipulate single DNA molecule using optical tweezers to investigate two molecules that have complex and multiple binding modes. Mononuclear ruthenium complexes have been extensively studied as a test for rational drug design. Potential drug candidates should have high affinity to DNA and slow dissociation kinetics. To achieve this, motifs of the ruthenium complexes are altered. Our collaborators designed a dumb-bell shaped binuclear ruthenium complex that can only intercalate DNA by threading through its bases. Studying the binding properties of this complex in bulk studies took hours. By mechanically manipulating a single DNA molecule held with optical tweezers, we lower the barrier to thread and make it fast compared to the bulk experiments. Stretching single DNA molecules with different concentration of drug molecules and holding it at a constant force allows the binding to reach equilibrium. By this we can obtain the equilibrium fractional ligand binding and length of DNA at saturated binding. Fitting these results yields quantitative measurements of the binding thermodynamics and kinetics of this complex process. The second complex discussed in this study is Actinomycin D (ActD), a well studied anti-cancer agent that is used as a prototype for developing new generations of drugs. However, the biophysical basis of its activity is still unclear. Because ActD is known to intercalate double stranded DNA (dsDNA), it was assumed to block replication by stabilizing dsDNA in front of the replication fork. However, recent studies have shown that ActD binds with even higher affinity to imperfect duplexes and some sequences of single stranded DNA (ssDNA). We directly measure the on and off rates by stretching the DNA molecule to a certain force and holding it at constant force while adding the drug and then while washing off the drug. Our finding resolves the long lasting controversy of ActD binding modes, clearly showing that both the dsDNA binding and ssDNA binding converge to the same single mode. The result supports the hypothesis that the primary characteristic of ActD that contributes to its biological activity is its ability to inhibit cellular replication by binding to transcription bubbles and causing cell death.

  20. Electrokinetic Microstrirring to Enhance Immunoassays

    NASA Astrophysics Data System (ADS)

    Feldman, Hope; Sigurdson, Marin; Meinhart, Carl

    2006-11-01

    Electrokinetic microstirring is used to improve the sensitivity of microfluidic heterogeneous immuno-sensors by enhancing the transport in diffusion-limited reactions. The AC electrokinetic force, Electrothermal Flow, is exploited to create a circular stirring fluid motion, thereby providing more binding opportunities between suspended and wall-immobilized molecules. This process can significantly reduce test times, important for both field-portable biosensors and for lab-based assays. A 2-D numerical simulation model is used to predict the effect of electrothermal flow on a heterogeneous immunoassay resulting from an AC potential applied to two parallel electrodes. The binding is increased by a factor of 7 for an applied voltage of 10 Vrms. The effect was investigated experimentally using a high affinity biotin-streptavidin reaction. Microstirred reaction rates were compared with passive reactions. The measurements show on average an order of magnitude increase in binding between immobilized biotin and fluorescently-labeled streptavidin after 5 minutes. Therefore, this technique shows significant promise for reducing incubation time and enhancing the sensitivity of immunoassays.

  1. Simple method for determining binding energies of fullerene and complex atomic negative ions

    NASA Astrophysics Data System (ADS)

    Felfli, Zineb; Msezane, Alfred

    2017-04-01

    A robust potential which embeds fully the vital core polarization interaction has been used in the Regge pole method to explore low-energy electron scattering from C60, Eu and Nb through the total cross sections (TCSs) calculations. From the characteristic dramatically sharp resonances in the TCSs manifesting negative ion formation in these systems, we extracted the binding energies for the C60, Euand Nbanions they are found to be in outstanding agreement with the measured electron affinities of C60, Eu and Nb. Common among these considered systems, including the standard atomic Au is the formation of their ground state negative ions at the second Ramsauer-Townsend (R-T) minima of their TCSs. Indeed, this is a signature of all the fullerenes and complex atoms considered thus far. Shape resonances, R-T minima and binding energies of the resultant anions are presented. This work was supported by U.S. DOE, Basic Energy Sciences, Office of Energy Research.

  2. Predicting Nonspecific Ion Binding Using DelPhi

    PubMed Central

    Petukh, Marharyta; Zhenirovskyy, Maxim; Li, Chuan; Li, Lin; Wang, Lin; Alexov, Emil

    2012-01-01

    Ions are an important component of the cell and affect the corresponding biological macromolecules either via direct binding or as a screening ion cloud. Although some ion binding is highly specific and frequently associated with the function of the macromolecule, other ions bind to the protein surface nonspecifically, presumably because the electrostatic attraction is strong enough to immobilize them. Here, we test such a scenario and demonstrate that experimentally identified surface-bound ions are located at a potential that facilitates binding, which indicates that the major driving force is the electrostatics. Without taking into consideration geometrical factors and structural fluctuations, we show that ions tend to be bound onto the protein surface at positions with strong potential but with polarity opposite to that of the ion. This observation is used to develop a method that uses a DelPhi-calculated potential map in conjunction with an in-house-developed clustering algorithm to predict nonspecific ion-binding sites. Although this approach distinguishes only the polarity of the ions, and not their chemical nature, it can predict nonspecific binding of positively or negatively charged ions with acceptable accuracy. One can use the predictions in the Poisson-Boltzmann approach by placing explicit ions in the predicted positions, which in turn will reduce the magnitude of the local potential and extend the limits of the Poisson-Boltzmann equation. In addition, one can use this approach to place the desired number of ions before conducting molecular-dynamics simulations to neutralize the net charge of the protein, because it was shown to perform better than standard screened Coulomb canned routines, or to predict ion-binding sites in proteins. This latter is especially true for proteins that are involved in ion transport, because such ions are loosely bound and very difficult to detect experimentally. PMID:22735539

  3. Lack of effect of reserpine-induced dopamine depletion on the binding of the dopamine-D3 selective radioligand, [11C]RGH-1756.

    PubMed

    Sóvágó, Judit; Farde, Lars; Halldin, Christer; Schukin, Evgenij; Schou, Magnus; Laszlovszky, István; Kiss, Béla; Gulyás, Balázs

    2005-10-15

    The effect of reserpine induced dopamine depletion on the binding of the putative dopamine-D3 receptor ligand, [(11)C]RGH-1756 was examined in the monkey brain with positron emission tomography (PET). In a previous series of experiments, we have made an attempt to selectively label D3 receptors in the monkey brain using [(11)C]RGH-1756. Despite high selectivity and affinity of RGH-1756 in vitro, [(11)C]RGH-1756 displayed only low specific binding to D3 receptors in vivo. The aim of the present study was to examine whether low specific binding of [(11)C]RGH-1756 is caused by insufficient in vivo affinity of the ligand, or by high physiological occupancy of D3 receptors by endogenous dopamine (DA). PET experiments were performed in three monkeys under baseline conditions and after administration of reserpine (0.5 mg/kg). The results of the baseline measurements corresponded well to our earlier observations with [(11)C]RGH-1756. Reserpine caused no evident change in the regional distribution of [(11)C]RGH-1756 in the monkey brain, and no conspicuous regional accumulation of activity could be observed. After reserpine treatment there was no evident increase of specific binding and binding potential (BP) of [(11)C]RGH-1756. The lack of increased [(11)C]RGH-1756 binding after reserpine treatment indicates that competition with endogenous DA is not the predominant reason for the failure of the radioligand to label D3 receptors. Therefore, the low binding of [(11)C]RGH-1756 could largely be explained by the need for very high affinity of radioligand for D3 receptors in vivo, to obtain a suitable signal for the minute densities of D3 receptors expressed in the primate brain.

  4. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study

    NASA Astrophysics Data System (ADS)

    Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad

    2018-06-01

    Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.

  5. The Sequence-specific Peptide-binding Activity of the Protein Sulfide Isomerase AGR2 Directs Its Stable Binding to the Oncogenic Receptor EpCAM.

    PubMed

    Mohtar, M Aiman; Hernychova, Lenka; O'Neill, J Robert; Lawrence, Melanie L; Murray, Euan; Vojtesek, Borek; Hupp, Ted R

    2018-04-01

    AGR2 is an oncogenic endoplasmic reticulum (ER)-resident protein disulfide isomerase. AGR2 protein has a relatively unique property for a chaperone in that it can bind sequence-specifically to a specific peptide motif (TTIYY). A synthetic TTIYY-containing peptide column was used to affinity-purify AGR2 from crude lysates highlighting peptide selectivity in complex mixtures. Hydrogen-deuterium exchange mass spectrometry localized the dominant region in AGR2 that interacts with the TTIYY peptide to within a structural loop from amino acids 131-135 (VDPSL). A peptide binding site consensus of Tx[IL][YF][YF] was developed for AGR2 by measuring its activity against a mutant peptide library. Screening the human proteome for proteins harboring this motif revealed an enrichment in transmembrane proteins and we focused on validating EpCAM as a potential AGR2-interacting protein. AGR2 and EpCAM proteins formed a dose-dependent protein-protein interaction in vitro Proximity ligation assays demonstrated that endogenous AGR2 and EpCAM protein associate in cells. Introducing a single alanine mutation in EpCAM at Tyr251 attenuated its binding to AGR2 in vitro and in cells. Hydrogen-deuterium exchange mass spectrometry was used to identify a stable binding site for AGR2 on EpCAM, adjacent to the TLIYY motif and surrounding EpCAM's detergent binding site. These data define a dominant site on AGR2 that mediates its specific peptide-binding function. EpCAM forms a model client protein for AGR2 to study how an ER-resident chaperone can dock specifically to a peptide motif and regulate the trafficking a protein destined for the secretory pathway. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    NASA Astrophysics Data System (ADS)

    Endres, Christopher J.; Hammoud, Dima A.; Pomper, Martin G.

    2011-04-01

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [11C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (kr2) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BPND). Compared with standard SRTM, either coupling of kr2 across regions or constraining kr2 to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BPND between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining kr2 to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the variance of parameter estimates and may better discriminate between-group differences in specific binding.

  7. F104S c-Mpl responds to a transmembrane domain-binding thrombopoietin receptor agonist: proof of concept that selected receptor mutations in congenital amegakaryocytic thrombocytopenia can be stimulated with alternative thrombopoietic agents.

    PubMed

    Fox, Norma E; Lim, Jihyang; Chen, Rose; Geddis, Amy E

    2010-05-01

    To determine whether specific c-Mpl mutations might respond to thrombopoietin receptor agonists. We created cell line models of type II c-Mpl mutations identified in congenital amegakaryocytic thrombocytopenia. We selected F104S c-Mpl for further study because it exhibited surface expression of the receptor. We measured proliferation of cell lines expressing wild-type or F104S c-Mpl in response to thrombopoietin receptor agonists targeting the extracellular (m-AMP4) or transmembrane (LGD-4665) domains of the receptor by 1-methyltetrazole-5-thiol assay. We measured thrombopoietin binding to the mutant receptor using an in vitro thrombopoietin uptake assay and identified F104 as a potentially critical residue for the interaction between the receptor and its ligand by aligning thrombopoietin and erythropoietin receptors from multiple species. Cells expressing F104S c-Mpl proliferated in response to LGD-4665, but not thrombopoietin or m-AMP4. Compared to thrombopoietin, LGD-4665 stimulates signaling with delayed kinetics in both wild-type and F104S c-Mpl-expressing cells. Although F104S c-Mpl is expressed on the cell surface in our BaF3 cell line model, the mutant receptor does not bind thrombopoietin. Comparison to the erythropoietin receptor suggests that F104 engages in hydrogen-bonding interactions that are critical for binding to thrombopoietin. These findings suggest that a small subset of patients with congenital amegakaryocytic thrombocytopenia might respond to treatment with thrombopoietin receptor agonists, but that responsiveness will depend on the type of mutation and agonist used. We postulate that F104 is critical for thrombopoietin binding. The kinetics of signaling in response to a transmembrane domain-binding agonist are delayed in comparison to thrombopoietin. 2010 ISEH Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  8. A novel reagentless sensing system for measuring glucose based on the galactose/glucose-binding protein

    NASA Technical Reports Server (NTRS)

    Salins, L. L.; Ware, R. A.; Ensor, C. M.; Daunert, S.

    2001-01-01

    The galactose/glucose-binding protein (GBP) is synthesized in the cytoplasm of Escherichia coli in a precursor form and exported into the periplasmic space upon cleavage of a 23-amino-acid leader sequence. GBP binds galactose and glucose in a highly specific manner. The ligand induces a hinge motion in GBP and the resultant protein conformational change constitutes the basis of the sensing system. The mglB gene, which codes for GBP, was isolated from the chromosome of E. coli using the polymerase chain reaction (PCR). Since wild-type GBP lacks cysteines in its structure, introducing this amino acid by site-directed mutagenesis ensures single-label attachment at specific sites with a sulfhydro-specific fluorescent probe. Site-directed mutagenesis by overlap extension PCR was performed to prepare three different mutants to introduce a single cysteine residue at positions 148, 152, and 182. Since these residues are not involved in ligand binding and since they are located at the edge of the binding cleft, they experience a significant change in environment upon binding of galactose or glucose. The sensing system strategy is based on the fluorescence changes of the probe as the protein undergoes a structural change on binding. In this work a reagentless sensing system has been rationally designed that can detect submicromolar concentrations of glucose. The calibration plots have a linear working range of three orders of magnitude. Although the system can sense galactose as well, this epimer is not a potential interfering substance since its concentration in blood is negligible. Copyright 2001 Academic Press.

  9. Autoinhibition of ETV6 DNA Binding Is Established by the Stability of Its Inhibitory Helix

    PubMed Central

    De, Soumya; Okon, Mark; Graves, Barbara J.; McIntosh, Lawrence P.

    2017-01-01

    The ETS transcriptional repressor ETV6 (or TEL) is autoinhibited by an α-helix that sterically blocks its DNA-binding ETS domain. The inhibitory helix is marginally stable and unfolds when ETV6 binds to either specific or non-specific DNA. Using NMR spectroscopy, we show that folding of the inhibitory helix requires a buried charge–dipole interaction with helix H1 of the ETS domain. This interaction also contributes directly to autoinhibition by precluding a highly conserved dipole-enhanced hydrogen bond between the phosphodiester backbone of bound DNA and the N terminus of helix H1. To probe further the thermodynamic basis of autoinhibition, ETV6 variants were generated with amino acid substitutions introduced along the solvent exposed surface of the inhibitory helix. These changes were designed to increase the intrinsic helical propensity of the inhibitory helix without perturbing its packing interactions with the ETS domain. NMR-monitored amide hydrogen exchange measurements confirmed that the stability of the folded inhibitory helix increases progressively with added helix-promoting substitutions. This also results in progressively reinforced autoinhibition and decreased DNA-binding affinity. Surprisingly, locking the inhibitory helix onto the ETS domain by a disulfide bridge severely impairs, but does not abolish DNA binding. Weak interactions still occur via an interface displaced from the canonical ETS domain DNA-binding surface. Collectively, these studies establish a direct thermodynamic linkage between inhibitory helix stability and ETV6 autoinhibition, and demonstrate that helix unfolding does not strictly precede DNA binding. Modulating inhibitory helix stability provides a potential route for the in vivo regulation of ETV6 activity. PMID:26920109

  10. Enhancing the Breadth and Efficacy of Therapeutic Vaccines for Breast Cancer

    DTIC Science & Technology

    2013-10-01

    function ...discovery,  we  isolated  CD8  TILs  as  indicated  in  Figure  1,  and  then  determined  their   function   after... functionality  can  be  assessed  by  binding  to  a  potential   target  and  measuring  the  release  of  IL-­‐2

  11. Electronic Structure of Tl2Ba2CuO(6+Delta) Epitaxial Films Measured by X-Ray Photoemission

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Ren, Z. F.; Wang, J. H.

    1996-01-01

    The valence electronic structure and core levels of Tl2Ba2CuO(6 + delta) (Tl-2201) epitaxial films have been measured with X-ray photoelectron spectroscopy and are compared to those of Tl2Ba2CaCu2O(8 + delta) (Tl-2212). Changes in the Tl-2201 core-level binding energies with oxygen doping are consistent with a change in the chemical potential. Differences between the Tl-2201 and Tl-2212 measured densities of states are consistent with the calculated Cu 3d and Tl 6s partial densities of states.

  12. Effect of tyrosinase-aided crosslinking on the IgE binding potential and conformational structure of shrimp (Metapenaeus ensis) tropomyosin.

    PubMed

    Ahmed, Ishfaq; Lv, Liangtao; Lin, Hong; Li, Zhenxing; Ma, Jiaju; Guanzhi, Chen; Sun, Lirui; Xu, Lili

    2018-05-15

    The present study was performed to determine crosslinking and oxidative reactions catalyzed by tyrosinase (Tyr), caffeic acid (CA) and their combination with respect to IgE binding potential and conformational structure of shrimp tropomyosin (TM). Cross-links and IgE binding potentials were analyzed by SDS-PAGE, western blot and indirect ELISA. While structural changes were characterized using surface hydrophobicity, ultraviolet (UV), fluorescence and circular dichroism (CD) spectroscopies. Maximum reduction in the IgG (37.19%) and IgE binding potentials (49.41%) were observed when treated with 2000 nkat/g Tyr + CA, as indicated by ELISA analyses. These findings correlated well with the denaturation of protein, as evident by slight blue shift and alterations in the ellipticities observed via structural analyses. The results demonstrated that addition of CA mediator with Tyr pronouncedly enhanced crosslinking, and altered the conformational structure, thereby mitigated allergenicity of TM, thus showing promise in developing novel food structures with reduced allergenic potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations.

    PubMed

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  14. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  15. Binding modes of environmental endocrine disruptors to human serum albumin: insights from STD-NMR, ITC, spectroscopic and molecular docking studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; Liu, Jiuyang; Tang, Peixiao; Sun, Qiaomei; Xiong, Xinnuo; Tang, Bin; He, Jiawei; Li, Hui

    2017-09-11

    Given that bisphenols have an endocrine-disrupting effect on human bodies, thoroughly exposing their potential effects at the molecular level is important. Saturation transfer difference (STD) NMR-based binding studies were performed to investigate the binding potential of two bisphenol representatives, namely, bisphenol B (BPB) and bisphenol E (BPE), toward human serum albumin (HSA). The relative STD (%) suggested that BPB and BPE show similar binding modes and orientations, in which the phenolic rings were spatially close to HSA binding site. ITC analysis results showed that BPB and BPE were bound to HSA with moderately strong binding affinity through electrostatic interactions and hydrogen bonds. The order of binding affinity of HSA for two test bisphenols is as follows: BPE > BPB. The results of fluorescence competitive experiments using 5-dimethylaminonaphthalene-1-sulfonamide and dansylsarcosine as competitors, combined with molecular docking indicated that both bisphenols are prone to attach to the binding site II in HSA. Spectroscopic results (FT-IR, CD, synchronous and 3D fluorescence spectra) showed that BPB/BPE induces different degrees of microenvironmental and conformational changes to HSA.

  16. The Roles of Hemagglutinin Phe-95 in Receptor Binding and Pathogenicity of Influenza B Virus

    PubMed Central

    Ni, Fengyun; Mbawuike, Innocent Nnadi; Kondrashkina, Elena; Wang, Qinghua

    2014-01-01

    Diverged ~4,000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1~H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H3 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus. PMID:24503069

  17. Identifying DNA-binding proteins using structural motifs and the electrostatic potential

    PubMed Central

    Shanahan, Hugh P.; Garcia, Mario A.; Jones, Susan; Thornton, Janet M.

    2004-01-01

    Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix–turn-helix (HTH), helix–hairpin–helix (HhH) and helix–loop–helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif. PMID:15356290

  18. [(11)C]UCB-A, a novel PET tracer for synaptic vesicle protein 2A.

    PubMed

    Estrada, Sergio; Lubberink, Mark; Thibblin, Alf; Sprycha, Margareta; Buchanan, Tim; Mestdagh, Nathalie; Kenda, Benoit; Mercier, Joel; Provins, Laurent; Gillard, Michel; Tytgat, Dominique; Antoni, Gunnar

    2016-06-01

    Development of a selective and specific high affinity PET tracer, [(11)C]UCB-A, for the in vivo study of SV2A expression in humans. Radiochemistry and preclinical studies in rats and pigs including development of a tracer kinetic model to determine VT. A method for the measurement of percent intact tracer in plasma was developed and the radiation dosimetry was determined in rats. 3-5GBq of [(11)C]UCB-A could be produced with radiochemical purity exceeding 98% with a specific radioactivity of around 65GBq/μmol. In vitro binding showed high selective binding towards SV2A. [(11)C]UCB-A displayed a dose-dependent and reversible binding to SV2A as measured with PET in rats and pigs and the VT could be determined by Logan analysis. The dosimetry was favorable and low enough to allow multiple administrations of [(11)C]UCB-A to healthy volunteers, and the metabolite analysis showed no sign of labeled metabolites in brain. We have developed the novel PET tracer, [(11)C]UCB-A, that can be used to measure SV2A expression in vivo. The dosimetry allows up to 5 administrations of 400MBq of [(11)C]UCB-A in humans. Apart from measuring drug occupancy, as we have shown, the tracer can potentially be used to compare SV2A expression between individuals because of the rather narrow range of baseline VT values. This will have to be further validated in human studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Method for measuring the unbinding energy of strongly-bound membrane-associated proteins

    DOE PAGES

    La Bauve, Elisa; Vernon, Briana C.; Ye, Dongmei; ...

    2016-07-15

    Here, we describe a new method to measure the activation energy for unbinding (enthalpy ΔH* u and free energy ΔG* u) of a strongly-bound membrane-associated protein from a lipid membrane. It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method is used to determine ΔH*u and ΔG*u for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. ΔH*u is determined from the Arrhenius equation whereas ΔG*u is determined by fitting the data to a modelmore » based on mean first passage time for escape from a potential well. The binding free energy ΔG b of sE was also measured at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The unbinding free energy (20 ± 3 kcal/mol, 20% PG) was found to be roughly three times the binding energy per monomer, (7.8 ± 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. Furthermore, this new method to determine unbinding energies should be useful to understand better the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less

  20. Method for measuring the unbinding energy of strongly-bound membrane-associated proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Bauve, Elisa; Vernon, Briana C.; Ye, Dongmei

    Here, we describe a new method to measure the activation energy for unbinding (enthalpy ΔH* u and free energy ΔG* u) of a strongly-bound membrane-associated protein from a lipid membrane. It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method is used to determine ΔH*u and ΔG*u for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. ΔH*u is determined from the Arrhenius equation whereas ΔG*u is determined by fitting the data to a modelmore » based on mean first passage time for escape from a potential well. The binding free energy ΔG b of sE was also measured at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The unbinding free energy (20 ± 3 kcal/mol, 20% PG) was found to be roughly three times the binding energy per monomer, (7.8 ± 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. Furthermore, this new method to determine unbinding energies should be useful to understand better the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less

  1. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films.

    PubMed

    Tang, Bolin; Zhang, Bo; Zhuang, Junjun; Wang, Qi; Dong, Lingqing; Cheng, Kui; Weng, Wenjian

    2018-07-01

    Surface potential of biomaterials can dramatically influence cellular osteogenic differentiation. In this work, a wide range of surface potential on ferroelectric polyvinylidene fluoride trifluoroethylene (P(VDF-TrFE)) films was designed to get insight into the interfacial interaction of cell-charged surface. The P(VDF-TrFE) films poled by contact electric poling at various electric fields obtained well stabilized surface potential, with wide range from -3 to 915 mV. The osteogenic differentiation level of cells cultured on the films was strongly dependent on surface potential and reached the optimum at 391 mV in this system. Binding specificity assay indicated that surface potential could effectively govern the binding state of the adsorbed fibronectin (FN) with integrin. Molecular dynamic (MD) simulation further revealed that surface potential brought a significant difference in the relative distance between RGD and synergy PHSRN sites of adsorbed FN, resulting in a distinct integrin-FN binding state. These results suggest that the full binding of integrin α5β1 with both RGD and PHSRN sites of FN possesses a strong ability to activate osteogenic signaling pathway. This work sheds light on the underlying mechanism of osteogenic differentiation behavior on charged material surfaces, and also provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. The ferroelectric P(VDF-TrFE) films with steady and a wide range of surface potential were designed to understand underlying mechanism of cell-charged surface interaction. The results showed that the charged surface well favored upregulation of osteogenic differentiation of MC3T3-E1 cells, and more importantly, a highest level occurred on the film with a moderate surface potential. Experiments and molecular dynamics simulation demonstrated that the surface potential could govern fibronectin conformation and then the integrin-fibronectin binding. We propose that a full binding state of integrin α5β1 with fibronectin induces effective activation of integrin-mediated FAK/ERK signaling pathway to upregulate cellular osteogenic differentiation. This work provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    PubMed

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps-LTP1 displayed a high thermal and digestive proteolytic resistance proper for food allergens. The reported structural and immunological findings seem to describe Ps-LTP1 as potential cross-reactive allergen in LTP-sensitized patients, mostly Pru p 3(+) ones. Similarly to allergenic LTPs the potential IgE-binding epitope of Ps-LTP1 is located near the proposed entrance into internal cavity and could be involved in lipid-binding.

  3. Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize

    PubMed Central

    Li, Zhao; Hu, Guanghui; Liu, Xiangfeng; Zhou, Yao; Li, Yu; Zhang, Xu; Yuan, Xiaohui; Zhang, Qian; Yang, Deguang; Wang, Tianyu; Zhang, Zhiwu

    2016-01-01

    Originating in a tropical climate, maize has faced great challenges as cultivation has expanded to the majority of the world's temperate zones. In these zones, frost and cold temperatures are major factors that prevent maize from reaching its full yield potential. Among 30 elite maize inbred lines adapted to northern China, we identified two lines of extreme, but opposite, freezing tolerance levels—highly tolerant and highly sensitive. During the seedling stage of these two lines, we used RNA-seq to measure changes in maize whole genome transcriptome before and after freezing treatment. In total, 19,794 genes were expressed, of which 4550 exhibited differential expression due to either treatment (before or after freezing) or line type (tolerant or sensitive). Of the 4550 differently expressed genes, 948 exhibited differential expression due to treatment within line or lines under freezing condition. Analysis of gene ontology found that these 948 genes were significantly enriched for binding functions (DNA binding, ATP binding, and metal ion binding), protein kinase activity, and peptidase activity. Based on their enrichment, literature support, and significant levels of differential expression, 30 of these 948 genes were selected for quantitative real-time PCR (qRT-PCR) validation. The validation confirmed our RNA-Seq-based findings, with squared correlation coefficients of 80% and 50% in the tolerance and sensitive lines, respectively. This study provided valuable resources for further studies to enhance understanding of the molecular mechanisms underlying maize early freezing response and enable targeted breeding strategies for developing varieties with superior frost resistance to achieve yield potential. PMID:27774095

  4. Immobilization of sodium alginate sulfates on polysulfone ultrafiltration membranes for selective adsorption of low-density lipoprotein.

    PubMed

    Wang, Wei; Huang, Xiao-Jun; Cao, Jian-Da; Lan, Ping; Wu, Wen

    2014-01-01

    A novel method for the immobilization of sodium alginate sulfates (SAS) on polysulfone (PSu) ultrafiltration membranes to achieve selective adsorption of low-density lipoprotein (LDL) was developed, which involved the photoinduced graft polymerization of acrylamide on the membrane and the Hofmann rearrangement reaction of grafted acrylamide followed by chemical binding of SAS with glutaraldehyde. The surface modification processes were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy characterization. Zeta potential and water contact angle measurements were performed to investigate the surface charge and wettability of the membranes. An enzyme-linked immunosorbent assay was used to measure the binding of LDL on plain and modified PSu membranes. It was found that the PSu membrane immobilized with sodium alginate sulfates (PSu-SAS) greatly enhanced the selective adsorption of LDL from protein solutions and the absorbed LDL could be easily eluted with sodium chloride solution, indicating a specific and reversible binding of LDL to SAS, mainly driven by electrostatic forces. Furthermore, the PSu-SAS membrane showed good blood compatibility as examined by platelet adhesion. The results suggest that the PSu-SAS membranes are promising for application in simultaneous hemodialysis and LDL apheresis therapy. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Correlating single-molecule and ensemble-average measurements of peptide adsorption onto different inorganic materials.

    PubMed

    Kim, Seong-Oh; Jackman, Joshua A; Mochizuki, Masahito; Yoon, Bo Kyeong; Hayashi, Tomohiro; Cho, Nam-Joon

    2016-06-07

    The coating of solid-binding peptides (SBPs) on inorganic material surfaces holds significant potential for improved surface functionalization at nano-bio interfaces. In most related studies, the goal has been to engineer peptides with selective and high binding affinity for a target material. The role of the material substrate itself in modulating the adsorption behavior of a peptide molecule remains less explored and there are few studies that compare the interaction of one peptide with different inorganic substrates. Herein, using a combination of two experimental techniques, we investigated the adsorption of a 16 amino acid-long random coil peptide to various inorganic substrates - gold, silicon oxide, titanium oxide and aluminum oxide. Quartz crystal microbalance-dissipation (QCM-D) experiments were performed in order to measure the peptide binding affinity for inorganic solid supports at the ensemble average level, and atomic force microscopy (AFM) experiments were conducted in order to determine the adhesion force of a single peptide molecule. A positive trend was observed between the total mass uptake of attached peptide and the single-molecule adhesion force on each substrate. Peptide affinity for gold was appreciably greater than for the oxide substrates. Collectively, the results obtained in this study offer insight into the ways in which inorganic materials can differentially influence and modulate the adhesion of SBPs.

  6. Measurement of free glucocorticoids: quantifying corticosteroid-binding globulin binding affinity and its variation within and among mammalian species.

    PubMed

    Delehanty, Brendan; Hossain, Sabrina; Jen, Chao Ching; Crawshaw, Graham J; Boonstra, Rudy

    2015-01-01

    Plasma glucocorticoids (GCs) are commonly used as measures of stress in wildlife. A great deal of evidence indicates that only free GC (GC not bound by the specific binding protein, corticosteroid-binding globulin, CBG) leaves the circulation and exerts biological effects on GC-sensitive tissues. Free hormone concentrations are difficult to measure directly, so researchers estimate free GC using two measures: the binding affinity and the binding capacity in plasma. We provide an inexpensive saturation binding method for calculating the binding affinity (equilibrium dissociation constant, K d) of CBG that can be run without specialized laboratory equipment. Given that other plasma proteins, such as albumin, also bind GCs, the method compensates for this non-specific binding. Separation of bound GC from free GC was achieved with dextran-coated charcoal. The method provides repeatable estimates (12% coefficient of variation in the red squirrel, Tamiasciurus hudsonicus), and there is little evidence of inter-individual variation in K d (range 2.0-7.3 nM for 16 Richardson's ground squirrels, Urocitellus richardsonii). The K d values of 28 mammalian species we assessed were mostly clustered around a median of 4 nM, but five species had values between 13 and 61 nM. This pattern may be distinct from birds, for which published values are more tightly distributed (1.5-5.1 nM). The charcoal separation method provides a reliable and robust method for measuring the K d in a wide range of species. It uses basic laboratory equipment to provide rapid results at very low cost. Given the importance of CBG in regulating the biological activity of GCs, this method is a useful tool for physiological ecologists.

  7. Mechanosensing Potentials Gate Fuel Consumption in a Bipedal DNA Nanowalker

    NASA Astrophysics Data System (ADS)

    Tee, Shern Ren; Hu, Xinpeng; Loh, Iong Ying; Wang, Zhisong

    2018-03-01

    A bipedal DNA nanowalker was recently reported to convert chemical energy into directional motion autonomously and efficiently. To elucidate its chemomechanical coupling mechanisms, three-dimensional molecular modeling is used to obtain coarse-grained foot-track binding potentials of the DNA nanowalker via unbiased and biased sampling techniques (for the potentials' basin and high-energy edges, respectively). The binding state that is protected against fuel-induced dissociation responds asymmetrically to forward versus backward forces, unlike the unprotected state, demonstrating a mechanosensing capability to gate fuel binding. Despite complex DNA mechanics, the foot-track potential exhibits a surprisingly neat three-part profile, offering some general guidelines to rationally design efficient nanowalkers. Subsequent modeling of the bipedal walker attached to the track gives estimates of the free energy for each bipedal state, showing how the mechanosensing foot-track binding breaks the symmetry between the rear and front feet, enabling the rear foot to be selectively dissociated by fuel and generating efficient chemomechanical coupling.

  8. Molecular modeling and structural analysis of nAChR variants uncovers the mechanism of resistance to snake toxins.

    PubMed

    Gunasekaran, D; Sridhar, J; Suryanarayanan, V; Manimaran, N C; Singh, Sanjeev Kumar

    2017-06-01

    Nicotinic acetylcholine receptors (nAChRs) are neuromuscular proteins responsible for muscle contraction upon binding with chemical stimulant acetylcholine (ACh). The α-neurotoxins of snake mimic the structure of ACh and attacks nAChRs, which block the flow of ACh and leads to numbness and paralysis. The toxin-binding site of alpha subunit in the nAChRs is highly conserved throughout chordate lineages with few exceptions in resistance organisms. In this study, we have analyzed the sequence and structures of toxin-binding/resistant nAChRs and their interaction stability with toxins through molecular docking and molecular dynamics simulation (MDS). We have reported the potential glycosylation residues within the toxin-binding cleft adding sugar moieties through N-linked glycosylation in resistant organisms. Residue variations at key positions alter the secondary structure of binding cleft, which might interfere with toxin binding and it could be one of the possible explanations for the resistance to snake venoms. Analysis of nAChR-α-neurotoxin complexes has confirmed the key interacting residues. In addition, drastic variation in the binding stability of Mongoose nAChR-α-Bungarotoxin (α-BTX) and human nAChR-α-BTX complexes were found at specific phase of MDS. Our findings suggest that specific mutations in the binding site of toxin are potentially preventing the formation of stable complex of receptor-toxin, which might lead to mechanism of resistance. This in silico study on the binding cleft of nAChR and the findings of interacting residues will assist in designing potential inhibitors as therapeutic targets.

  9. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chao-Feng

    Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [{sup 3}H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At themore » concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.« less

  10. DNA binding site characterization by means of Rényi entropy measures on nucleotide transitions.

    PubMed

    Perera, A; Vallverdu, M; Claria, F; Soria, J M; Caminal, P

    2008-06-01

    In this work, parametric information-theory measures for the characterization of binding sites in DNA are extended with the use of transitional probabilities on the sequence. We propose the use of parametric uncertainty measures such as Rényi entropies obtained from the transition probabilities for the study of the binding sites, in addition to nucleotide frequency-based Rényi measures. Results are reported in this work comparing transition frequencies (i.e., dinucleotides) and base frequencies for Shannon and parametric Rényi entropies for a number of binding sites found in E. Coli, lambda and T7 organisms. We observe that the information provided by both approaches is not redundant. Furthermore, under the presence of noise in the binding site matrix we observe overall improved robustness of nucleotide transition-based algorithms when compared with nucleotide frequency-based method.

  11. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  12. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  13. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  14. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  15. Rostrocaudal gradients of dopamine D2/3 receptor binding in striatal subregions measured with [(11)C]raclopride and high-resolution positron emission tomography.

    PubMed

    Alakurtti, Kati; Johansson, Jarkko J; Tuokkola, Terhi; Någren, Kjell; Rinne, Juha O

    2013-11-15

    The human striatum has structural and functional subdivisions, both dorsoventrally and rostrocaudally. To date, the gradients of dopamine D2/3 receptor binding in the human striatum have not been measured with positron emission tomography (PET). Seven healthy male subjects aged 24.5 ± 3.5 years were scanned with brain-dedicated high-resolution research tomography (HRRT, Siemens Medical Solutions, Knoxville, TN, USA) and [(11)C]raclopride. Coronally defined regions of interest (ROIs) of the caudate nucleus, putamen and ventral striatum (VST) were sampled plane-by-plane, 1.5mm apart, on spatially normalized binding potential (BPND) images. Regional [(11)C]raclopride BPND values were calculated using the simplified reference tissue model (SRTM) from a total of 25 coronal planes. An increasing rostrocaudal gradient of the D2/3 receptor binding was detected in the putamen, which is consistent with the known distribution of D2/3 dopamine receptors. In the caudate nucleus, there was an initial increase in the BPND values in the most anterior planes, suggesting that the highest D2/3 receptor binding occurred in the head; however, there was an overall descending gradient. A declining trend was also observed in the VST. The novelty of this study lies in the presentation, for the first time, of the D2/3 receptor binding gradients in each striatal subregion in the brains of living healthy humans. The high spatial resolution provided by HRRT enables frequent sampling of BPND along the longitudinal extent of striatum; this method is superior to the sectioning used in previous post mortem studies. Regarding the functional organization of the striatum, our findings can inform future investigations of normal neurophysiology as well as efforts to differentiate neuropsychiatric disorders affecting the brain dopamine (DA) system. Furthermore, the average distribution of D2/3 receptor binding revealed in this study could serve as a basis for a database that includes distributions of various DA markers as a function of healthy aging. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The Minamata Convention on Mercury: attempting to address the global controversy of dental amalgam use and mercury waste disposal.

    PubMed

    Mackey, Tim K; Contreras, John T; Liang, Bryan A

    2014-02-15

    In October 2013, a new international binding treaty instrument called the Minamata Convention on Mercury opened for signature in Minamata City, Japan, the site of arguably the worst public health and environmental disaster involving mercury contamination. The treaty aims to curb the significant health and environmental impacts of mercury pollution and includes provisions addressing the mining, export and import, storage, and waste management of products containing mercury. Importantly, a provision heavily negotiated in the treaty addresses the use of dental fillings using mercury amalgam, an issue that has been subject to decades of global controversy. Though use of dental amalgam is widespread and has benefits, concerns have been raised regarding the potential for human health risk and environmental damage from emissions and improper waste management. While the Minamata Convention attempts to address these issues by calling for a voluntary phase-down of dental amalgam use and commitment to other measures, it falls short by failing to require binding and measurable targets to achieve these goals. In response, the international community should begin exploring ways to strengthen the implementation of the dental amalgam treaty provisions by establishing binding phase-down targets and milestones as well as exploring financing mechanisms to support treaty measures. Through strengthening of the Convention, stakeholders can ensure equitable access to global oral health treatment while also promoting responsible environmental stewardship. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles.

    PubMed

    Axnanda, Stephanus; Scheele, Marcus; Crumlin, Ethan; Mao, Baohua; Chang, Rui; Rani, Sana; Faiz, Mohamed; Wang, Suidong; Alivisatos, A Paul; Liu, Zhi

    2013-01-01

    Work function is a fundamental property of a material's surface. It is playing an ever more important role in engineering new energy materials and efficient energy devices, especially in the field of photovoltaic devices, catalysis, semiconductor heterojunctions, nanotechnology, and electrochemistry. Using ambient pressure X-ray photoelectron spectroscopy (APXPS), we have measured the binding energies of core level photoelectrons of Ar gas in the vicinity of several reference materials with known work functions (Au(111), Pt(111), graphite) and PbS nanoparticles. We demonstrate an unambiguously negative correlation between the work functions of reference samples and the binding energies of Ar 2p core level photoelectrons detected from the Ar gas near the sample surface region. Using this experimentally determined linear relationship between the surface work function and Ar gas core level photoelectron binding energy, we can measure the surface work function of different materials under different gas environments. To demonstrate the potential applications of this ambient pressure XPS technique in nanotechnology and solar energy research, we investigate the work functions of PbS nanoparticles with various capping ligands: methoxide, mercaptopropionic acid, and ethanedithiol. Significant Fermi level position changes are observed for PbS nanoparticles when the nanoparticle size and capping ligands are varied. The corresponding changes in the valence band maximum illustrate that an efficient quantum dot solar cell design has to take into account the electrochemical effect of the capping ligand as well.

  18. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    PubMed

    de Witte, Wilhelmus E A; Wong, Yin Cheong; Nederpelt, Indira; Heitman, Laura H; Danhof, Meindert; van der Graaf, Piet H; Gilissen, Ron A H J; de Lange, Elizabeth C M

    2016-01-01

    Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.

  19. Red blood cell membrane viscoelasticity, agglutination and zeta potential measurements with double optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Fernandes, Heloise P.; Barjas-Castro, Maria L.; de Thomaz, André A.; de Ysasa Pozzo, Liliana; Barbosa, Luiz C.; Cesar, Carlos L.

    2006-02-01

    The red blood cell (RBC) viscoelastic membrane contains proteins and glycolproteins embedded in, or attached, to a fluid lipid bilayer and are negatively charged, which creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. There are techniques, however, to decrease the zeta potential to allow cell agglutination which are the basis of most of the tests of antigen-antibody interactions in blood banks. This report shows the use of a double optical tweezers to measure RBC membrane viscosity, agglutination and zeta potential. In our technique one of the optical tweezers trap a silica bead that binds strongly to a RBC at the end of a RBCs rouleaux and, at the same time, acts as a pico-Newton force transducer, after calibration through its displacement from the equilibrium position. The other optical tweezers trap the RBC at the other end. To measure the membrane viscosity the optical force is measured as a function of the velocity between the RBCs. To measure the adhesion the tweezers are slowly displaced apart until the RBCs disagglutination happens. The RBC zeta potential is measured in two complimentary ways, by the force on the silica bead attached to a single RBC in response to an applied electric field, and the conventional way, by the measurement of terminal velocity of the RBC after released from the optical trap. These two measurements provide information about the RBC charges and, also, electrolytic solution properties. We believe this can improve the methods of diagnosis in blood banks.

  20. In Vivo Quantification of Human Serotonin 1A Receptor Using 11C-CUMI-101, an Agonist PET Radiotracer

    PubMed Central

    Milak, Matthew S.; DeLorenzo, Christine; Zanderigo, Francesca; Prabhakaran, Jaya; Kumar, J.S. Dileep; Majo, Vattoly J.; Mann, J. John; Parsey, Ramin V.

    2013-01-01

    The serotonin (5-hydroxytryptamine, or 5-HT) type 1A receptor (5-HT1AR) is implicated in the pathophysiology of numerous neuropsychiatric disorders. We have published the initial evaluation and reproducibility in vivo of [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5 (2H,4H)dione (11C-CUMI-101), a novel 5-HT1A agonist radiotracer, in Papio anubis. Here, we report the optimal modeling parameters of 11C-CUMI-101 for human PET studies. Methods PET scans were obtained for 7 adult human volunteers. 11C-CUMI-101 was injected as an intravenous bolus, and emission data were collected for 120 min in 3-dimensional mode. We evaluated 10 different models using metabolite-corrected arterial input functions or reference region approaches and several outcome measures. Results When using binding potential (BPF = Bavail/KD [total available receptor concentration divided by the equilibrium dissociation constant]) as the outcome measure, the likelihood estimation in the graphical analysis (LEGA) model performed slightly better than the other methods evaluated at full scan duration. The average test–retest percentage difference was 9.90% ± 5.60%. When using BPND (BPND = fnd × Bavail/KD; BPND equals the product of BPF and fnd [free fraction in the nondisplaceable compartment]), the simplified reference tissue method (SRTM) achieved the lowest percentage difference and smallest bias when compared with nondisplaceable binding potential obtained from LEGA using the metabolite-corrected plasma input function (r2 = 0.99; slope = 0.92). The time–stability analysis indicates that a 120-min scan is sufficient for the stable estimation of outcome measures. Voxel results were comparable to region-of-interest–based analysis, with higher spatial resolution. Conclusion On the basis of its measurable and stable free fraction, high affinity and selectivity, good blood–brain barrier permeability, and plasma and brain kinetics, 11C-CUMI-101 is suitable for the imaging of high-affinity 5-HT1A binding in humans. PMID:21098796

  1. Geochemical investigation of potentially harmful elements in household dust from a mercury-contaminated site, the town of Idrija (Slovenia).

    PubMed

    Bavec, Špela; Gosar, Mateja; Miler, Miloš; Biester, Harald

    2017-06-01

    A comprehensive geochemical investigation of potentially harmful elements (PHEs) in household dust from the town of Idrija (Slovenia), once a world-famous Hg mining town that is now seriously polluted, was performed for the first time. After aqua regia digestion, the content of mercury (Hg), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn) was measured. PHE-bearing particles were recognised and observed by scanning electron microscopy and energy-dispersive spectrometry before and after exposure to simulated stomach acid (SSA). Mercury binding forms were identified by Hg thermal desorption technique and gastric bioaccessible Hg was estimated after SSA extraction by ICP-MS. With regard to rural and urban background values for Slovenia, high Hg content (6-120 mg/kg) and slightly elevated As content (1-13 mg/kg) were found. Mercury pollution is a result of past mining and ore processing activities. Arsenic content is potentially associated with As enrichment in local soils. Four Hg binding forms were identified: all samples contained Hg bound to the dust matrix, 14 samples contained cinnabar, two samples contained metallic Hg (Hg 0 ), and one sample assumingly contained mercury oxide. After exposure to SSA, Hg-bearing phases showed no signs of dissolution, while other PHE-bearing phases were significantly morphologically and/or chemically altered. Estimated gastric Hg bioaccessibility was low (<0.006-0.09 %), which is in accordance with identified Hg binding forms and high organic carbon content (15.9-31.5 %) in the dust samples.

  2. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a

    PubMed Central

    Casanueva, Felipe F.; Camiña, Jesus P.; Carreira, Marcos C.; Pazos, Yolanda; Varga, Jozsef L.; Schally, Andrew V.

    2008-01-01

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1–29)NH2 (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of 125I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1–42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control. PMID:19088192

  3. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a.

    PubMed

    Casanueva, Felipe F; Camiña, Jesus P; Carreira, Marcos C; Pazos, Yolanda; Varga, Jozsef L; Schally, Andrew V

    2008-12-23

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1-29)NH(2) (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of (125)I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1-42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control.

  4. GM1 ganglioside in Parkinson's disease: Pilot study of effects on dopamine transporter binding.

    PubMed

    Schneider, Jay S; Cambi, Franca; Gollomp, Stephen M; Kuwabara, Hiroto; Brašić, James R; Leiby, Benjamin; Sendek, Stephanie; Wong, Dean F

    2015-09-15

    GM1 ganglioside has been suggested as a treatment for Parkinson's disease (PD), potentially having symptomatic and disease modifying effects. The current pilot imaging study was performed to examine effects of GM1 on dopamine transporter binding, as a surrogate measure of disease progression, studied longitudinally. Positron emission tomography (PET) imaging data were obtained from a subset of subjects enrolled in a delayed start clinical trial of GM1 in PD [1]: 15 Early-start (ES) subjects, 14 Delayed-start (DS) subjects, and 11 Comparison (standard-of-care) subjects. Treatment subjects were studied over a 2.5 year period while Comparison subjects were studied over 2 years. Dynamic PET scans were performed over 90 min following injection of [(11)C]methylphenidate. Regional values of binding potential (BPND) were analyzed for several striatal volumes of interest. Clinical results for this subset of subjects were similar to those previously reported for the larger study group. ES subjects showed early symptomatic improvement and slow symptom progression over the study period. DS and Comparison subjects were initially on the same symptom progression trajectory but diverged once DS subjects received GM1 treatment. Imaging results showed significant slowing of BPND loss in several striatal regions in GM1-treated subjects and in some cases, an increased BPND in some striatal regions was detected after GM1 use. Results of this pilot imaging study provide additional data to suggest a potential disease modifying effect of GM1 on PD. These results need to be confirmed in a larger number of subjects. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Drug development and manufacturing

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  6. Copper(II) binding by dissolved organic matter: Importance of the copper-to-dissolved organic matter ratio and implications for the Biotic Ligand Model

    USGS Publications Warehouse

    Craven, Alison M.; Aiken, George R.; Ryan, Joseph N.

    2012-01-01

    The ratio of copper to dissolved organic matter (DOM) is known to affect the strength of copper binding by DOM, but previous methods to determine the Cu2+–DOM binding strength have generally not measured binding constants over the same Cu:DOM ratios. In this study, we used a competitive ligand exchange–solid-phase extraction (CLE-SPE) method to determine conditional stability constants for Cu2+–DOM binding at pH 6.6 and 0.01 M ionic strength over a range of Cu:DOM ratios that bridge the detection windows of copper-ion-selective electrode and voltammetry measurements. As the Cu:DOM ratio increased from 0.0005 to 0.1 mg of Cu/mg of DOM, the measured conditional binding constant (cKCuDOM) decreased from 1011.5 to 105.6 M–1. A comparison of the binding constants measured by CLE-SPE with those measured by copper-ion-selective electrode and voltammetry demonstrates that the Cu:DOM ratio is an important factor controlling Cu2+–DOM binding strength even for DOM isolates of different types and different sources and for whole water samples. The results were modeled with Visual MINTEQ and compared to results from the biotic ligand model (BLM). The BLM was found to over-estimate Cu2+ at low total copper concentrations and under-estimate Cu2+ at high total copper concentrations.

  7. Determination of Ion Atmosphere Effects on the Nucleic Acid Electrostatic Potential and Ligand Association Using AH+·C Wobble Formation in Double-Stranded DNA

    PubMed Central

    2017-01-01

    The high charge density of nucleic acids and resulting ion atmosphere profoundly influence the conformational landscape of RNA and DNA and their association with small molecules and proteins. Electrostatic theories have been applied to quantitatively model the electrostatic potential surrounding nucleic acids and the effects of the surrounding ion atmosphere, but experimental measures of the potential and tests of these models have often been complicated by conformational changes and multisite binding equilibria, among other factors. We sought a simple system to further test the basic predictions from electrostatics theory and to measure the energetic consequences of the nucleic acid electrostatic field. We turned to a DNA system developed by Bevilacqua and co-workers that involves a proton as a ligand whose binding is accompanied by formation of an internal AH+·C wobble pair [Siegfried, N. A., et al. Biochemistry, 2010, 49, 3225]. Consistent with predictions from polyelectrolyte models, we observed logarithmic dependences of proton affinity versus salt concentration of −0.96 ± 0.03 and −0.52 ± 0.01 with monovalent and divalent cations, respectively, and these results help clarify prior results that appeared to conflict with these fundamental models. Strikingly, quantitation of the ion atmosphere content indicates that divalent cations are preferentially lost over monovalent cations upon A·C protonation, providing experimental indication of the preferential localization of more highly charged cations to the inner shell of the ion atmosphere. The internal AH+·C wobble system further allowed us to parse energetic contributions and extract estimates for the electrostatic potential at the position of protonation. The results give a potential near the DNA surface at 20 mM Mg2+ that is much less substantial than at 20 mM K+ (−120 mV vs −210 mV). These values and difference are similar to predictions from theory, and the potential is substantially reduced at higher salt, also as predicted; however, even at 1 M K+ the potential remains substantial, counter to common assumptions. The A·C protonation module allows extraction of new properties of the ion atmosphere and provides an electrostatic meter that will allow local electrostatic potential and energetics to be measured within nucleic acids and their complexes with proteins. PMID:28489947

  8. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects.

    PubMed

    Cala, Olivier; Pinaud, Noël; Simon, Cécile; Fouquet, Eric; Laguerre, Michel; Dufourc, Erick J; Pianet, Isabelle

    2010-11-01

    In organoleptic science, the association of tannins to saliva proteins leads to the poorly understood phenomenon of astringency. To decipher this interaction at molecular and colloidal levels, the binding of 4 procyanidin dimers (B1-4) and 1 trimer (C2) to a human saliva proline-rich peptide, IB7(14), was studied. Interactions have been characterized by measuring dissociation constants, sizes of complexes, number, and nature of binding sites using NMR (chemical shift variations, diffusion-ordered spectroscopy, and saturation transfer diffusion). The binding sites were identified using molecular mechanics, and the hydrophilic/hydrophobic nature of the interactions was resolved by calculating the molecular lipophilicity potential within the complexes. The following comprehensive scheme can be proposed: 1) below the tannin critical micelle concentration (CMC), interaction is specific, and the procyanidin anchorage always occurs on the same three IB7(14) sites. The tannin 3-dimensional structure plays a key role in the binding force and in the tannin's ability to act as a bidentate ligand: tannins adopting an extended conformation exhibit higher affinity toward protein and initiate the formation of a network. 2) Above the CMC, after the first specific hydrophilic interaction has taken place, a random hydrophobic stacking occurs between tannins and proteins. The whole process is discussed in the general frame of wine tannins eliciting astringency.

  9. Energetic basis for the molecular-scale organization of bone

    DOE PAGES

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua; ...

    2014-12-24

    Here, the remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption onmore » single crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less

  10. Concepts in receptor optimization: targeting the RGD peptide.

    PubMed

    Chen, Wei; Chang, Chia-en; Gilson, Michael K

    2006-04-12

    Synthetic receptors have a wide range of potential applications, but it has been difficult to design low molecular weight receptors that bind ligands with high, "proteinlike" affinities. This study uses novel computational methods to understand why it is hard to design a high-affinity receptor and to explore the limits of affinity, with the bioactive peptide RGD as a model ligand. The M2 modeling method is found to yield excellent agreement with experiment for a known RGD receptor and then is used to analyze a series of receptors generated in silico with a de novo design algorithm. Forces driving binding are found to be systematically opposed by proportionate repulsions due to desolvation and entropy. In particular, strong correlations are found between Coulombic attractions and the electrostatic desolvation penalty and between the mean energy change on binding and the cost in configurational entropy. These correlations help explain why it is hard to achieve high affinity. The change in surface area upon binding is found to correlate poorly with affinity within this series. Measures of receptor efficiency are formulated that summarize how effectively a receptor uses surface area, total energy, and Coulombic energy to achieve affinity. Analysis of the computed efficiencies suggests that a low molecular weight receptor can achieve proteinlike affinity. It is also found that macrocyclization of a receptor can, unexpectedly, increase the entropy cost of binding because the macrocyclic structure further restricts ligand motion.

  11. Effects of gene carrier polyethyleneimines on the structure and binding capability of bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyong; Kong, Zhijie; Wei, Yanshan; Li, Hua; Wang, Yajing; Huang, Aimin; Ma, Lin

    2017-02-01

    Polyethyleneimine (PEI), one of the most effective non-viral gene carriers, is also cytotoxic, however the molecular basis is poorly understood. Little is known about the effects of PEI on the structure and functions of the biomacromolecules. In this work, fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy and zeta-potential measurement were conducted to reveal the interaction between PEIs (average molecular weight 25, 10 and 1.8 kDa) and bovine serum albumin (BSA), and to evaluate the effects on the conformation of BSA as long as its binding capability to the model compounds, 8-anilino-1-naphthalenesulfonic acid (ANS) and quercetin. PEIs were found to complex with BSA and induced a conformational change of the protein by a major reduction of α-helix at PEI concentration < 0.2 mg·mL- 1 and an increase at higher PEI concentration. The binding efficacy of ANS and quercetin to BSA was greatly reduced by the competitive binding by PEI and influenced by the conformational change of BSA, which was found to display a similar trend to the change of the α-helix content of the protein. The polymer size played an important role in PEI-BSA interaction. PEI of higher molecular weight was more favorable to interact with BSA and more efficient to perturb the conformation and binding capability of the protein.

  12. Energetic basis for the molecular-scale organization of bone.

    PubMed

    Tao, Jinhui; Battle, Keith C; Pan, Haihua; Salter, E Alan; Chien, Yung-Ching; Wierzbicki, Andrzej; De Yoreo, James J

    2015-01-13

    The remarkable properties of bone derive from a highly organized arrangement of coaligned nanometer-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the nonmineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and atomic force microscopy (AFM) observations of collagen adsorption on single crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and transmission electron microscopy (TEM) analyses of native tissues shows that only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations, and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular-scale organization of bone.

  13. MMPP Attenuates Non-Small Cell Lung Cancer Growth by Inhibiting the STAT3 DNA-Binding Activity via Direct Binding to the STAT3 DNA-Binding Domain.

    PubMed

    Son, Dong Ju; Zheng, Jie; Jung, Yu Yeon; Hwang, Chul Ju; Lee, Hee Pom; Woo, Ju Rang; Baek, Song Yi; Ham, Young Wan; Kang, Min Woong; Shong, Minho; Kweon, Gi Ryang; Song, Min Jong; Jung, Jae Kyung; Han, Sang-Bae; Kim, Bo Yeon; Yoon, Do Young; Choi, Bu Young; Hong, Jin Tae

    2017-01-01

    Rationale: Signal transducer and activator of transcription-3 (STAT3) plays a pivotal role in cancer biology. Many small-molecule inhibitors that target STAT3 have been developed as potential anticancer drugs. While designing small-molecule inhibitors that target the SH2 domain of STAT3 remains the leading focus for drug discovery, there has been a growing interest in targeting the DNA-binding domain (DBD) of the protein. Methods: We demonstrated the potential antitumor activity of a novel, small-molecule (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) that directly binds to the DBD of STAT3, in patient-derived non-small cell lung cancer (NSCLC) xenograft model as well as in NCI-H460 cell xenograft model in nude mice. Results: MMPP effectively inhibited the phosphorylation of STAT3 and its DNA binding activity in vitro and in vivo . It induced G1-phase cell cycle arrest and apoptosis through the regulation of cell cycle- and apoptosis-regulating genes by directly binding to the hydroxyl residue of threonine 456 in the DBD of STAT3. Furthermore, MMPP showed a similar or better antitumor activity than that of docetaxel or cisplatin. Conclusion: MMPP is suggested to be a potential candidate for further development as an anticancer drug that targets the DBD of STAT3.

  14. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  15. Avoiding false positives and optimizing identification of true negatives in estrogen receptor binding and agonist/antagonist assays

    EPA Science Inventory

    The potential for chemicals to affect endocrine signaling is commonly evaluated via in vitro receptor binding and gene activation, but these assays, especially antagonism assays, have potential artifacts that must be addressed for accurate interpretation. Results are presented fr...

  16. Detection of Salmonella enteritidis Using a Miniature Optical Surface Plasmon Resonance Biosensor

    NASA Astrophysics Data System (ADS)

    Son, J. R.; Kim, G.; Kothapalli, A.; Morgan, M. T.; Ess, D.

    2007-04-01

    The frequent outbreaks of foodborne illness demand rapid detection of foodborne pathogens. Unfortunately, conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Surface plasmon resonance (SPR) sensors have been widely adapted as an analysis tool for the study of various biological binding reactions. SPR biosensors could detect antibody-antigen bindings on the sensor surface by measuring either a resonance angle or refractive index value. In this study, the feasibility of a miniature SPR sensor (Spreeta, TI, USA) for detection of Salmonella enteritidis has been evaluated. Anti-Salmonella antibodies were immobilized on the gold sensor surface by using neutravidin. Salmonella could be detected by the Spreeta biosensor at concentrations down to 105 cfu/ml.

  17. Ferrocene labelings as inhibitors and dual electrochemical sensors of human glutathione S-transferase P1-1.

    PubMed

    Martos-Maldonado, Manuel C; Quesada-Soriano, Indalecio; García-Maroto, Federico; Vargas-Berenguel, Antonio; García-Fuentes, Luís

    2012-12-01

    The inhibitory and sensor properties of two ferrocene conjugates, in which the ferrocene and glutathione are linked through a spacer arm of different length and chemical structure, on human Pi glutathione S-transferase, were examined by activity assays, ITC, fluorescence spectroscopy and voltammetry. Such ferrocene conjugates are strong competitive inhibitors of this enzyme with an enhanced binding affinity, the one bearing the longest spacer arm being the most potent inhibitor. Voltammetric measurements showed a strong decrease of the peak current intensity and an increase of the oxidation potential upon binding of ferrocene-glutathione conjugates to GST P1-1 showing that both conjugates can be used as dual electrochemical sensors for GST P1-1. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Trions in bulk and monolayer materials: Faddeev equations and hyperspherical harmonics.

    PubMed

    Filikhin, I; Kezerashvili, R Ya; Tsiklauri, Sh M; Vlahovic, B

    2018-03-23

    The negatively T - and positively T + charged trions in bulk and monolayer semiconductors are studied in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing the Faddeev equation with the Coulomb potential in 3D configuration space. Results of calculations of the binding energies for T - are consistent with previous computational studies, while the T + is unbound for all considered cases. The binding energies of trions in monolayer semiconductors are calculated using the method of hyperspherical harmonics by employing the Keldysh potential. It is shown that 2D T - and T + trions are bound and the binding energy of the positive trion is always greater than for the negative trion due to the heavier effective mass of holes. Our calculations demonstrate that screening effects play an important role in the formation of bound states of trions in 2D semiconductors.

  19. Trions in bulk and monolayer materials: Faddeev equations and hyperspherical harmonics

    NASA Astrophysics Data System (ADS)

    Filikhin, I.; Kezerashvili, R. Ya; Tsiklauri, Sh M.; Vlahovic, B.

    2018-03-01

    The negatively T - and positively T + charged trions in bulk and monolayer semiconductors are studied in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing the Faddeev equation with the Coulomb potential in 3D configuration space. Results of calculations of the binding energies for T - are consistent with previous computational studies, while the T + is unbound for all considered cases. The binding energies of trions in monolayer semiconductors are calculated using the method of hyperspherical harmonics by employing the Keldysh potential. It is shown that 2D T - and T + trions are bound and the binding energy of the positive trion is always greater than for the negative trion due to the heavier effective mass of holes. Our calculations demonstrate that screening effects play an important role in the formation of bound states of trions in 2D semiconductors.

  20. Multi-capillary based optical sensors for highly sensitive protein detection

    NASA Astrophysics Data System (ADS)

    Okuyama, Yasuhira; Katagiri, Takashi; Matsuura, Yuji

    2017-04-01

    A fluorescence measuring method based on glass multi-capillary for detecting trace amounts of proteins is proposed. It promises enhancement of sensitivity due to effects of the adsorption area expansion and the longitudinal excitation. The sensitivity behavior of this method was investigated by using biotin-streptavidin binding. According to experimental examinations, it was found that the sensitivity was improved by a factor of 70 from common glass wells. We also confirmed our measuring system could detect 1 pg/mL of streptavidin. These results suggest that multi-capillary has a potential as a high-sensitive biosensor.

  1. 5-HT(1A) receptor binding in euthymic bipolar patients using positron emission tomography with [carbonyl-(11)C]WAY-100635.

    PubMed

    Sargent, Peter A; Rabiner, Eugenii A; Bhagwagar, Zubin; Clark, Luke; Cowen, Philip; Goodwin, Guy M; Grasby, Paul M

    2010-06-01

    This study was undertaken to examine whether brain 5-HT(1A) receptor binding is reduced in euthymic bipolar patients. Eight medicated euthymic bipolar patients and 8 healthy volunteers underwent positron emission tomography scanning using the selective 5-HT(1A) receptor radioligand [carbonyl-(11)C]WAY-100635. No significant difference in global postsynaptic parametric binding potential (BP(ND)) was found between euthymic bipolar patients (mean + or - SD, 4.24 + or - 0.76) and healthy volunteers (mean + or - SD, 4.34 + or - 0.86). Ninety five percent Confidence Intervals for the difference in group mean global postsynaptic BP(ND) were -0.77 to 0.97. Analysis of regional BP(ND) did not reveal regional differences between patients and healthy controls. The number of subjects studied was limited and all subjects were on medication. In contrast to previous findings of reduced 5-HT(1A) receptor binding in untreated unipolar and bipolar depressed patients [Sargent, P.A., Kjaer, K.H., Bench, C.J., Rabiner, E.A., Messa, C., Meyer, J., Gunn, R.N., Grasby, P.M., Cowen, P.J., 2000. Brain serotonin1A receptor binding measured by positron emission tomography with [(11)C]WAY-100635: effects of depression and antidepressant treatment. Arch. Gen. Psychiatry 57, 174-180]; [Drevets, W.C., Frank, E., Price, J.C., Kupfer, D.J., Holt, D., Greer, P.J., Huang, Y., Gautier, C., Mathis, C., 1999. PET imaging of serotonin1A receptor binding in depression. Biol. Psychiatry 46, 1375-1387] and in recovered unipolar depressed patients [Bhagwagar, Z., Rabiner, E.A., Sargent, P.A., Grasby, P.M., Cowen, P.J., 2004. Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [(11)C]WAY-100635. Mol. Psychiatry 9, 386-92], this study found no difference in 5-HT(1A) receptor BP(ND) between medicated euthymic bipolar patients and healthy controls. Normal 5-HT(1A) receptor BP(ND) in these patients may be a result of drug treatment or could indicate that reduced 5-HT(1A) receptor binding is specific to the depressed state in bipolar patients. Copyright 2009 Elsevier B.V. All rights reserved.

  2. A surface-charge study on cellular-uptake behavior of F3-peptide-conjugated iron oxide nanoparticles.

    PubMed

    Zhang, Yu; Yang, Mo; Park, Ji-Ho; Singelyn, Jennifer; Ma, Huiqing; Sailor, Michael J; Ruoslahti, Erkki; Ozkan, Mihrimah; Ozkan, Cengiz

    2009-09-01

    Surface-charge measurements of mammalian cells in terms of Zeta potential are demonstrated as a useful biological characteristic in identifying cellular interactions with specific nanomaterials. A theoretical model of the changes in Zeta potential of cells after incubation with nanoparticles is established to predict the possible patterns of Zeta-potential change to reveal the binding and internalization effects. The experimental results show a distinct pattern of Zeta-potential change that allows the discrimination of human normal breast epithelial cells (MCF-10A) from human cancer breast epithelial cells (MCF-7) when the cells are incubated with dextran coated iron oxide nanoparticles that contain tumor-homing F3 peptides, where the tumor-homing F3 peptide specifically bound to nucleolin receptors that are overexpressed in cancer breast cells.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shizhong; White, Michael G.; Liu, Ping

    Here, we report a detailed mechanistic study of the oxygen reduction reaction (ORR) on Pt(111) in alkaline solution, combining density functional theory and kinetic Monte Carlo simulations. A complex reaction network including four possible pathways via either 2e – or 4e – transfer is established and is able to reproduce the experimental measured polarization curve at both low- and high-potential regions. Our results show that it is essential to account for solvation by water and the dynamic coverage of *OH to describe the reaction kinetics well. In addition, a chemisorbed water (*H 2O)-mediated mechanism including 4e – transfers is identified,more » where the reduction steps via *H 2O on the surface are potential-independent and only the final removal of *OH from the surface in the form of OH –(aq) contributes to the current. For the ORR in alkaline solutions, such a mechanism is more competitive than the associative and dissociative mechanisms typically used to describe the ORR in acid solution. Finally, *OH and **O 2 intermediates are found to be critically important for tuning the ORR activity of Pt in alkaline solution. To enhance the activity, the binding of Pt should be tuned in such a way that *OH binding is weak enough to release more surface sites under working conditions, while **O 2 binding is strong enough to enable the ORR via the 4e – transfer mechanism.« less

  4. Isothermal titration calorimetry study of the interaction of sweeteners with fullerenols as an artificial sweet taste receptor model.

    PubMed

    Chen, Zhong-Xiu; Guo, Gang-Min; Deng, Shao-Ping

    2009-04-08

    A fullerenol-based synthetic sweetness receptor model, consisting of polyhydroxy groups for potential hydrogen bond donor along with a spherical hydrophobic center, was proposed according to the widely accepted sweetness hypothesis. An isothermal titration calorimetry (ITC) technique was used to study mimetic interaction of this sweet receptor model with a series of sweeteners having increasing sweetness intensity. The results showed that ITC is an effective method to provide thorough and precise characterization of the energies of molecular complex formation. Binding of all of the studied sweeteners with fullerenols was found through two sets of site models. More heat was released from sweeter synthetic compounds binding with fullerenols than from less sweet carbohydrates. The results imply that hydrogen bond formation is necessary for the sweeteners to bind to the fullerenol receptor in the first stage, whereas hydrophobic effect and conformation changes that lead to favorable entropy changes occur in most cases. The preliminary results of this study help to cover the lack of information about the thermodynamic basis of understanding of the initiation of the sweet sensation. It also adds complementary physicochemical measurements available for comparison with the sweetness hypothesis. On the other hand, a correlation between the thermodynamic parameters and sweetness intensity has been made as well, which exhibits potential as a useful tool in sensory analysis.

  5. Macroscopic modeling and simulations of supercoiled DNA with bound proteins

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Schlick, Tamar

    2002-11-01

    General methods are presented for modeling and simulating DNA molecules with bound proteins on the macromolecular level. These new approaches are motivated by the need for accurate and affordable methods to simulate slow processes (on the millisecond time scale) in DNA/protein systems, such as the large-scale motions involved in the Hin-mediated inversion process. Our approaches, based on the wormlike chain model of long DNA molecules, introduce inhomogeneous potentials for DNA/protein complexes based on available atomic-level structures. Electrostatically, treat those DNA/protein complexes as sets of effective charges, optimized by our discrete surface charge optimization package, in which the charges are distributed on an excluded-volume surface that represents the macromolecular complex. We also introduce directional bending potentials as well as non-identical bead hydrodynamics algorithm to further mimic the inhomogeneous effects caused by protein binding. These models thus account for basic elements of protein binding effects on DNA local structure but remain computational tractable. To validate these models and methods, we reproduce various properties measured by both Monte Carlo methods and experiments. We then apply the developed models to study the Hin-mediated inversion system in long DNA. By simulating supercoiled, circular DNA with or without bound proteins, we observe significant effects of protein binding on global conformations and long-time dynamics of the DNA on the kilo basepair length.

  6. Atomic Force Microscopy Probing of Receptor–Nanoparticle Interactions for Riboflavin Receptor Targeted Gold–Dendrimer Nanocomposites

    PubMed Central

    2015-01-01

    Riboflavin receptors are overexpressed in malignant cells from certain human breast and prostate cancers, and they constitute a group of potential surface markers important for cancer targeted delivery of therapeutic agents and imaging molecules. Here we report on the fabrication and atomic force microscopy (AFM) characterization of a core–shell nanocomposite consisting of a gold nanoparticle (AuNP) coated with riboflavin receptor-targeting poly(amido amine) dendrimer. We designed this nanocomposite for potential applications such as a cancer targeted imaging material based on its surface plasmon resonance properties conferred by AuNP. We employed AFM as a technique for probing the binding interaction between the nanocomposite and riboflavin binding protein (RfBP) in solution. AFM enabled precise measurement of the AuNP height distribution before (13.5 nm) and after chemisorption of riboflavin-conjugated dendrimer (AuNP–dendrimer; 20.5 nm). Binding of RfBP to the AuNP–dendrimer caused a height increase to 26.7 nm, which decreased to 22.8 nm when coincubated with riboflavin as a competitive ligand, supporting interaction of AuNP–dendrimer and its target protein. In summary, physical determination of size distribution by AFM imaging can serve as a quantitative approach to monitor and characterize the nanoscale interaction between a dendrimer-covered AuNP and target protein molecules in vitro. PMID:24571134

  7. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking

    PubMed Central

    Gjedde, Albert; Kumakura, Yoshitaka; Cumming, Paul; Linnet, Jakob; Møller, Arne

    2010-01-01

    Sensation seeking is a core personality trait that declines with age in both men and women, as do also both density and availability of the dopamine D2/3 receptors in striatum and cortical regions. In contrast, novelty seeking at a given age relates inversely to dopamine receptor availability. The simplest explanation of these findings is an inverted-U-shaped correlation between ratings of sensation seeking on the Zuckerman scale and dopamine D2/3 receptor availability. To test the claim of an inverted-U-shaped relation between ratings of the sensation-seeking personality and measures of dopamine receptor availability, we used PET to record [11C]raclopride binding in striatum of 18 healthy men. Here we report that an inverted-U shape significantly matched the receptor availability as a function of the Zuckerman score, with maximum binding potentials observed in the midrange of the scale. The inverted-U shape is consistent with a negative correlation between sensation seeking and the reactivity (“gain”) of dopaminergic neurotransmission to dopamine. The correlation reflects Zuckerman scores that are linearly linked to dopamine receptor densities in the striatum but nonlinearly linked to dopamine concentrations. Higher dopamine occupancy and dopamine concentrations explain the motivation that drives afflicted individuals to seek sensations, in agreement with reduced protection against addictive behavior that is characteristic of individuals with low binding potentials. PMID:20133675

  8. Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry

    PubMed Central

    Sedlak, Steffen M.; Bauer, Magnus S.; Kluger, Carleen; Schendel, Leonard C.; Milles, Lukas F.; Pippig, Diana A.

    2017-01-01

    The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin’s tetravalency results in diverse force propagation pathways through the different binding interfaces. This multiplicity gives rise to polydisperse force spectroscopy data. Here, we present an engineered monovalent streptavidin tetramer with a single cysteine in its functional subunit that allows for site-specific immobilization of the molecule, orthogonal to biotin binding. Functionality of streptavidin and its binding properties for biotin remain unaffected. We thus created a stable and reliable molecular anchor with a unique high-affinity binding site for biotinylated molecules or nanoparticles, which we expect to be useful for many single-molecule applications. To characterize the mechanical properties of the bond between biotin and our monovalent streptavidin, we performed force spectroscopy experiments using an atomic force microscope. We were able to conduct measurements at the single-molecule level with 1:1-stoichiometry and a well-defined geometry, in which force exclusively propagates through a single subunit of the streptavidin tetramer. For different force loading rates, we obtained narrow force distributions of the bond rupture forces ranging from 200 pN at 1,500 pN/s to 230 pN at 110,000 pN/s. The data are in very good agreement with the standard Bell-Evans model with a single potential barrier at Δx0 = 0.38 nm and a zero-force off-rate koff,0 in the 10−6 s-1 range. PMID:29206886

  9. Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry.

    PubMed

    Sedlak, Steffen M; Bauer, Magnus S; Kluger, Carleen; Schendel, Leonard C; Milles, Lukas F; Pippig, Diana A; Gaub, Hermann E

    2017-01-01

    The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin's tetravalency results in diverse force propagation pathways through the different binding interfaces. This multiplicity gives rise to polydisperse force spectroscopy data. Here, we present an engineered monovalent streptavidin tetramer with a single cysteine in its functional subunit that allows for site-specific immobilization of the molecule, orthogonal to biotin binding. Functionality of streptavidin and its binding properties for biotin remain unaffected. We thus created a stable and reliable molecular anchor with a unique high-affinity binding site for biotinylated molecules or nanoparticles, which we expect to be useful for many single-molecule applications. To characterize the mechanical properties of the bond between biotin and our monovalent streptavidin, we performed force spectroscopy experiments using an atomic force microscope. We were able to conduct measurements at the single-molecule level with 1:1-stoichiometry and a well-defined geometry, in which force exclusively propagates through a single subunit of the streptavidin tetramer. For different force loading rates, we obtained narrow force distributions of the bond rupture forces ranging from 200 pN at 1,500 pN/s to 230 pN at 110,000 pN/s. The data are in very good agreement with the standard Bell-Evans model with a single potential barrier at Δx0 = 0.38 nm and a zero-force off-rate koff,0 in the 10-6 s-1 range.

  10. DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafaye, Céline; Barbier, Ewa; Miscioscia, Audrey

    2014-03-28

    Highlights: • 5-hmC epigenetic modification is measurable in HeLa, SH-SY5Y and UT7-MPL cell lines. • ZBTB2 binds to DNA probes containing 5-mC but not to sequences containing 5-hmC. • This differential binding is verified with DNA sequences involved in p21 regulation. - Abstract: Recent studies have demonstrated that the modified base 5-hydroxymethylcytosine (5-hmC) is detectable at various rates in DNA extracted from human tissues. This oxidative product of 5-methylcytosine (5-mC) constitutes a new and important actor of epigenetic mechanisms. We designed a DNA pull down assay to trap and identify nuclear proteins bound to 5-hmC and/or 5-mC. We applied thismore » strategy to three cancerous cell lines (HeLa, SH-SY5Y and UT7-MPL) in which we also measured 5-mC and 5-hmC levels by HPLC-MS/MS. We found that the putative oncoprotein Zinc finger and BTB domain-containing protein 2 (ZBTB2) is associated with methylated DNA sequences and that this interaction is inhibited by the presence of 5-hmC replacing 5-mC. As published data mention ZBTB2 recognition of p21 regulating sequences, we verified that this sequence specific binding was also alleviated by 5-hmC. ZBTB2 being considered as a multifunctional cell proliferation activator, notably through p21 repression, this work points out new epigenetic processes potentially involved in carcinogenesis.« less

  11. Characterization of the Sterol and Phosphatidylinositol 4-Phosphate Binding Properties of Golgi-Associated OSBP-Related Protein 9 (ORP9)

    PubMed Central

    Liu, Xinwei; Ridgway, Neale D.

    2014-01-01

    Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus. PMID:25255026

  12. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9).

    PubMed

    Liu, Xinwei; Ridgway, Neale D

    2014-01-01

    Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.

  13. Identification and therapeutic potential of a vitronectin binding region of meningococcal msf.

    PubMed

    Hill, Darryl J; Griffiths, Natalie J; Borodina, Elena; Andreae, Clio A; Sessions, Richard B; Virji, Mumtaz

    2015-01-01

    The human pathogen Neisseria meningitides (Nm) attains serum resistance via a number of mechanisms, one of which involves binding to the host complement regulator protein vitronectin. We have shown previously that the Meningococcal surface fibril (Msf), a trimeric autotransporter, binds to the activated form of vitronectin (aVn) to increase Nm survival in human serum. In this study, we aimed to identify the aVn-binding region of Msf to assess its potential as an antigen which can elicit antibodies that block aVn binding and/or possess bactericidal properties. Using several recombinant Msf fragments spanning its surface-exposed region, the smallest aVn-binding recombinants were found to span residues 1-86 and 39-124. The use of further deletion constructs and overlapping recombinant Msf fragments suggested that a region of Msf comprising residues 39-82 may be primarily important for aVn binding and that other regions may also be involved but to a lesser extent. Molecular modelling implicated K66 and K68, conserved in all available Msf sequences, to be involved in the interaction. Recombinant fragments which bound to aVn were able to reduce the survival advantage conveyed by aVn-interaction in serum bactericidal assays. Antibodies raised against one such fragment inhibited aVn binding to Msf. In addition, the antibodies enhanced specific killing of Msf-expressing Nm in a dose-dependent manner. Overall, this study identifies an aVn-binding region of Msf, an adhesin known to impart serum resistance properties to the pathogen; and shows that this region of Msf can elicit antibodies with dual properties which reduce pathogen survival within the host and thus has potential as a vaccine antigen.

  14. Identification and Therapeutic Potential of a Vitronectin Binding Region of Meningococcal Msf

    PubMed Central

    Hill, Darryl J.; Griffiths, Natalie J.; Borodina, Elena; Andreae, Clio A.; Sessions, Richard B.; Virji, Mumtaz

    2015-01-01

    The human pathogen Neisseria meningitides (Nm) attains serum resistance via a number of mechanisms, one of which involves binding to the host complement regulator protein vitronectin. We have shown previously that the Meningococcal surface fibril (Msf), a trimeric autotransporter, binds to the activated form of vitronectin (aVn) to increase Nm survival in human serum. In this study, we aimed to identify the aVn-binding region of Msf to assess its potential as an antigen which can elicit antibodies that block aVn binding and/or possess bactericidal properties. Using several recombinant Msf fragments spanning its surface-exposed region, the smallest aVn-binding recombinants were found to span residues 1-86 and 39-124. The use of further deletion constructs and overlapping recombinant Msf fragments suggested that a region of Msf comprising residues 39-82 may be primarily important for aVn binding and that other regions may also be involved but to a lesser extent. Molecular modelling implicated K66 and K68, conserved in all available Msf sequences, to be involved in the interaction. Recombinant fragments which bound to aVn were able to reduce the survival advantage conveyed by aVn-interaction in serum bactericidal assays. Antibodies raised against one such fragment inhibited aVn binding to Msf. In addition, the antibodies enhanced specific killing of Msf-expressing Nm in a dose-dependent manner. Overall, this study identifies an aVn-binding region of Msf, an adhesin known to impart serum resistance properties to the pathogen; and shows that this region of Msf can elicit antibodies with dual properties which reduce pathogen survival within the host and thus has potential as a vaccine antigen. PMID:25826209

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Wenfei; Wang, Ying; Wang, Nianshuang

    Middle East respiratory syndrome coronavirus (MERS-CoV) infects host cells through binding the receptor binding domain (RBD) on its spike glycoprotein to human receptor dipeptidyl peptidase 4 (hDPP4). Here, we report identification of critical residues on hDPP4 for RBD binding and virus entry through analysis of a panel of hDPP4 mutants. Based on the RBD–hDPP4 crystal structure we reported, the mutated residues were located at the interface between RBD and hDPP4, which potentially changed the polarity, hydrophobic or hydrophilic properties of hDPP4, thereby interfering or disrupting their interaction with RBD. Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay,more » we showed that several residues in hDPP4–RBD binding interface were important on hDPP4–RBD binding and viral entry. These results provide atomic insights into the features of interactions between hDPP4 and MERS-CoV RBD, and also provide potential explanation for cellular and species tropism of MERS-CoV infection. - Highlights: • It has been demonstrated that MERS-CoV infects host cells through binding its envelope spike (S) glycoprotein to the host cellular receptor dipeptidyl peptidase 4 (DPP4). • To identify the critical residues on hDPP4 for RBD binding and virus entry, we constructed a panel of hDPP4 mutants based on structure-guided mutagenesis. • Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues on hDPP4 had significant impacts on virus/receptor interactions and viral entry. • Our study has provided new insights into the features of interactions between hDPP4 and MERS-CoV RBD, and provides potential explanation for cellular and species tropism of MERS-CoV infection.« less

  16. A High Content Drug Screen Identifies Ursolic Acid as an Inhibitor of Amyloid β Protein Interactions with Its Receptor CD36*

    PubMed Central

    Wilkinson, Kim; Boyd, Justin D.; Glicksman, Marcie; Moore, Kathryn J.; El Khoury, Joseph

    2011-01-01

    A pathological hallmark of Alzheimer disease (AD) is deposition of amyloid β (Aβ) in the brain. Aβ binds to microglia via a receptor complex that includes CD36 leading to production of proinflammatory cytokines and neurotoxic reactive oxygen species and subsequent neurodegeneration. Interruption of Aβ binding to CD36 is a potential therapeutic strategy for AD. To identify pharmacologic inhibitors of Aβ binding to CD36, we developed a 384-well plate assay for binding of fluorescently labeled Aβ to Chinese hamster ovary cells stably expressing human CD36 (CHO-CD36) and screened an Food and Drug Administration-approved compound library. The assay was optimized based on the cells' tolerance to dimethyl sulfoxide, Aβ concentration, time required for Aβ binding, reproducibility, and signal-to-background ratio. Using this assay, we identified four compounds as potential inhibitors of Aβ binding to CD36. These compounds were ursolic acid, ellipticine, zoxazolamine, and homomoschatoline. Of these compounds, only ursolic acid, a naturally occurring pentacyclic triterpenoid, successfully inhibited binding of Aβ to CHO-CD36 cells in a dose-dependent manner. The ursolic acid effect reached a plateau at ∼20 μm, with a maximal inhibition of 64%. Ursolic acid also blocked binding of Aβ to microglial cells and subsequent ROS production. Our data indicate that cell-based high-content screening of small molecule libraries for their ability to block binding of Aβ to its receptors is a useful tool to identify novel inhibitors of receptors involved in AD pathogenesis. Our data also suggest that ursolic acid is a potential therapeutic agent for AD via its ability to block Aβ-CD36 interactions. PMID:21835916

  17. Exploring DNA-binding Proteins with In Vivo Chemical Cross-linking and Mass Spectrometry

    PubMed Central

    Qiu, Haibo; Wang, Yinsheng

    2009-01-01

    DNA-binding proteins are very important constituents of proteomes of all species and play crucial roles in transcription, DNA replication, recombination, repair and other activities associated with DNA. Although a number of DNA-binding proteins have been identified, many proteins involved in gene regulation and DNA repair are likely still unknown because of their dynamic and/or weak interactions with DNA. In this report, we described an approach for the comprehensive identification of DNA-binding proteins with in vivo formaldehyde cross-linking and LC-MS/MS. DNA-binding proteins could be purified via the isolation of DNA-protein complexes and released from the complexes by reversing the cross-linking. By using this method, we were able to identify more than one hundred DNA-binding proteins, such as proteins involved in transcription, gene regulation, DNA replication and repair, and a large number of proteins which are potentially associated with DNA and DNA-binding proteins. This method should be generally applicable to the investigation of other nucleic acid-binding proteins, and hold great potential in the comprehensive study of gene regulation, DNA damage response and repair, as well as many other critical biological processes at proteomic level. PMID:19714816

  18. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    PubMed

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  19. Piracetam Defines a New Binding Site for Allosteric Modulators of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors§

    PubMed Central

    Ahmed, Ahmed H.; Oswald, Robert E.

    2010-01-01

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to both GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators. PMID:20163115

  20. Detailed Analysis of the Binding Mode of Vanilloids to Transient Receptor Potential Vanilloid Type I (TRPV1) by a Mutational and Computational Study

    PubMed Central

    Mori, Yoshikazu; Ogawa, Kazuo; Warabi, Eiji; Yamamoto, Masahiro; Hirokawa, Takatsugu

    2016-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel and a multimodal sensor protein. Since the precise structure of TRPV1 was obtained by electron cryo-microscopy, the binding mode of representative agonists such as capsaicin and resiniferatoxin (RTX) has been extensively characterized; however, detailed information on the binding mode of other vanilloids remains lacking. In this study, mutational analysis of human TRPV1 was performed, and four agonists (capsaicin, RTX, [6]-shogaol and [6]-gingerol) were used to identify amino acid residues involved in ligand binding and/or modulation of proton sensitivity. The detailed binding mode of each ligand was then simulated by computational analysis. As a result, three amino acids (L518, F591 and L670) were newly identified as being involved in ligand binding and/or modulation of proton sensitivity. In addition, in silico docking simulation and a subsequent mutational study suggested that [6]-gingerol might bind to and activate TRPV1 in a unique manner. These results provide novel insights into the binding mode of various vanilloids to the channel and will be helpful in developing a TRPV1 modulator. PMID:27606946

  1. Calculations of antiproton-nucleus quasi-bound states using the Paris N bar N potential

    NASA Astrophysics Data System (ADS)

    Hrtánková, Jaroslava; Mareš, Jiří

    2018-01-01

    An optical potential constructed using the p bar N scattering amplitudes derived from the 2009 version of the Paris N bar N potential is applied in calculations of p bar quasi-bound states in selected nuclei across the periodic table. A proper self-consistent procedure for treating energy dependence of the amplitudes in a nucleus appears crucial for evaluating p bar binding energies and widths. Particular attention is paid to the role of P-wave amplitudes. While the P-wave potential nearly does not affect calculated p bar binding energies, it reduces considerably the corresponding widths. The Paris S-wave potential supplemented by a phenomenological P-wave term yields in dynamical calculations p bar binding energies Bpbar ≈ 200 MeV and widths Γpbar ∼ 200- 230 MeV, which is very close to the values obtained within the RMF model consistent with p bar -atom data.

  2. Differentiating sepsis from non-infectious systemic inflammation based on microvesicle-bacteria aggregation

    NASA Astrophysics Data System (ADS)

    Herrmann, I. K.; Bertazzo, S.; O'Callaghan, D. J. P.; Schlegel, A. A.; Kallepitis, C.; Antcliffe, D. B.; Gordon, A. C.; Stevens, M. M.

    2015-08-01

    Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (<=1.5 hour) and reliable diagnostic differentiation of bacterial infection from non-infectious inflammation in a double-blind pilot study. Our study demonstrates the potential of microvesicle activities for sepsis diagnosis and introduces microvesicle-bacteria aggregation as a potentially useful parameter for making early clinical management decisions.Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (<=1.5 hour) and reliable diagnostic differentiation of bacterial infection from non-infectious inflammation in a double-blind pilot study. Our study demonstrates the potential of microvesicle activities for sepsis diagnosis and introduces microvesicle-bacteria aggregation as a potentially useful parameter for making early clinical management decisions. Electronic supplementary information (ESI) available: Fig. S1: Markers of inflammation and microvesicle characteristics in patient plasma samples, Fig. S2: Experimental sepsis model, Table S1: Patient characteristics. Table S2: Inclusion/exclusion criteria. See DOI: 10.1039/c5nr01851j

  3. Free energy profiles of cocaine esterase-cocaine binding process by molecular dynamics and potential of mean force simulations.

    PubMed

    Zhang, Yuxin; Huang, Xiaoqin; Han, Keli; Zheng, Fang; Zhan, Chang-Guo

    2016-11-25

    The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profile of the CocE)-(+)-cocaine binding process in comparison with that of the corresponding CocE-(-)-cocaine binding process. According to the MD simulations, the equilibrium CocE-(+)-cocaine binding mode is similar to the CocE-(-)-cocaine binding mode. However, based on the simulated free energy profiles, a significant free energy barrier (∼5 kcal/mol) exists in the CocE-(+)-cocaine binding process whereas no obvious free energy barrier exists in the CocE-(-)-cocaine binding process, although the free energy barrier of ∼5 kcal/mol is not high enough to really slow down the CocE-(+)-cocaine binding process. In addition, the obtained free energy profiles also demonstrate that (+)-cocaine and (-)-cocaine have very close binding free energies with CocE, with a negligible difference (∼0.2 kcal/mol), which is qualitatively consistent with the nearly same experimental K M values of the CocE enzyme for (+)-cocaine and (-)-cocaine. The consistency between the computational results and available experimental data suggests that the mechanistic insights obtained from this study are reasonable. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Effects of serotonin-2A receptor binding and gender on personality traits and suicidal behavior in borderline personality disorder.

    PubMed

    Soloff, Paul H; Chiappetta, Laurel; Mason, Neale Scott; Becker, Carl; Price, Julie C

    2014-06-30

    Impulsivity and aggressiveness are personality traits associated with a vulnerability to suicidal behavior. Behavioral expression of these traits differs by gender and has been related to central serotonergic function. We assessed the relationships between serotonin-2A receptor function, gender, and personality traits in borderline personality disorder (BPD), a disorder characterized by impulsive-aggression and recurrent suicidal behavior. Participants, who included 33 BPD patients and 27 healthy controls (HC), were assessed for Axis I and II disorders with the Structured Clinical Interview for DSM-IV and the International Personality Disorders Examination, and with the Diagnostic Interview for Borderline Patients-Revised for BPD. Depressed mood, impulsivity, aggression, and temperament were assessed with standardized measures. Positron emission tomography with [(18)F]altanserin as ligand and arterial blood sampling was used to determine the binding potentials (BPND) of serotonin-2A receptors in 11 regions of interest. Data were analyzed using Logan graphical analysis, controlling for age and non-specific binding. Among BPD subjects, aggression, Cluster B co-morbidity, antisocial PD, and childhood abuse were each related to altanserin binding. BPND values predicted impulsivity and aggression in BPD females (but not BPD males), and in HC males (but not HC females.) Altanserin binding was greater in BPD females than males in every contrast, but it did not discriminate suicide attempters from non-attempters. Region-specific differences in serotonin-2A receptor binding related to diagnosis and gender predicted clinical expression of aggression and impulsivity. Vulnerability to suicidal behavior in BPD may be related to serotonin-2A binding through expression of personality risk factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Evaluation of the endotoxin binding efficiency of clay minerals using the Limulus Amebocyte lysate test: an in vitro study

    PubMed Central

    2014-01-01

    Endotoxins are part of the cell wall of Gram-negative bacteria. They are potent immune stimulators and can lead to death if present in high concentrations. Feed additives, which bind endotoxins in the gastrointestinal tract of animals, could help to prevent their negative impact. The objective of our study was to determine the potential of a bentonite (Bentonite 1), a sodium bentonite (Bentonite 2), a chemically treated smectite (Organoclay 1) and a modified attapulgite (Organoclay 2) to bind endotoxins in vitro. Polymyxin B served as positive control. The kinetic chromogenic Limulus Amebocyte lysate test was adapted to measure endotoxin activity. Firstly, a single sorption experiment (10 endotoxin units/mL (EU/mL)) was performed. Polymyxin B and organoclays showed 100% binding efficiency. Secondly, the adsorption efficiency of sorbents in aqueous solution with increasing endotoxin concentrations (2,450 – 51,700 EU/mL) was investigated. Organoclay 1 (0.1%) showed a good binding efficiency in aqueous solution (average 81%), whereas Bentonite 1 (0.1%) obtained a lower binding efficiency (21-54%). The following absorbent capacities were calculated in highest endotoxin concentration: 5.59 mg/g (Organoclay 1) > 3.97 mg/g (Polymyxin B) > 2.58mg/g (Organoclay 2) > 1.55 mg/g (Bentonite 1) > 1.23 mg/g (Bentonite 2). Thirdly, a sorption experiment in artificial intestinal fluid was conducted. Especially for organoclays, which are known to be unspecific adsorbents, the endotoxin binding capacity was significantly reduced. In contrast, Bentonite 1 showed comparable results in artificial intestinal fluid and aqueous solution. Based on the results of this in vitro study, the effect of promising clay minerals will be investigated in in vivo trials. PMID:24383578

  6. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations

    PubMed Central

    Ratheal, Ian M.; Virgin, Gail K.; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-01-01

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na+ ions for two extracellular K+ ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na+ or K+; site III binds only Na+) are poorly understood. We studied cation selectivity by outward-facing sites (high K+ affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium+, methylguanidinium+, and aminoguanidinium+ produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K+, and (ii) induction of pump-mediated, guanidinium-derivative–carried inward current at negative potentials without Na+ and K+. In contrast, formamidinium+ and acetamidinium+ induced K+-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K+ congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li+ induced Na+-like VDI, whereas all metals tested except Na+ induced K+-like outward currents. Pump-mediated K+-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium+ derivatives suggest that Na+ binds to site III in a hydrated form and that the inward current observed without external Na+ and K+ represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites. PMID:20937860

  7. Common Anesthetic-binding Site for Inhibition of Pentameric Ligand-gated Ion Channels.

    PubMed

    Kinde, Monica N; Bu, Weiming; Chen, Qiang; Xu, Yan; Eckenhoff, Roderic G; Tang, Pei

    2016-03-01

    Identifying functionally relevant anesthetic-binding sites in pentameric ligand-gated ion channels (pLGICs) is an important step toward understanding the molecular mechanisms underlying anesthetic action. The anesthetic propofol is known to inhibit cation-conducting pLGICs, including a prokaryotic pLGIC from Erwinia chrysanthemi (ELIC), but the sites responsible for functional inhibition remain undetermined. We photolabeled ELIC with a light-activated derivative of propofol (AziPm) and performed fluorine-19 nuclear magnetic resonance experiments to support propofol binding to a transmembrane domain (TMD) intrasubunit pocket. To differentiate sites responsible for propofol inhibition from those that are functionally irrelevant, we made an ELIC-γ-aminobutyric acid receptor (GABAAR) chimera that replaced the ELIC-TMD with the α1β3GABAAR-TMD and compared functional responses of ELIC-GABAAR and ELIC with propofol modulations. Photolabeling showed multiple AziPm-binding sites in the extracellular domain (ECD) but only one site in the TMD with labeled residues M265 and F308 in the resting state of ELIC. Notably, this TMD site is an intrasubunit pocket that overlaps with binding sites for anesthetics, including propofol, found previously in other pLGICs. Fluorine-19 nuclear magnetic resonance experiments supported propofol binding to this TMD intrasubunit pocket only in the absence of agonist. Functional measurements of ELIC-GABAAR showed propofol potentiation of the agonist-elicited current instead of inhibition observed on ELIC. The distinctly different responses of ELIC and ELIC-GABAAR to propofol support the functional relevance of propofol binding to the TMD. Combining the newly identified TMD intrasubunit pocket in ELIC with equivalent TMD anesthetic sites found previously in other cationic pLGICs, we propose this TMD pocket as a common site for anesthetic inhibition of pLGICs.

  8. Structural and Functional Characterization of the Kindlin-1 Pleckstrin Homology Domain*

    PubMed Central

    Yates, Luke A.; Lumb, Craig N.; Brahme, Nina N.; Zalyte, Ruta; Bird, Louise E.; De Colibus, Luigi; Owens, Raymond J.; Calderwood, David A.; Sansom, Mark S. P.; Gilbert, Robert J. C.

    2012-01-01

    Inside-out activation of integrins is mediated via the binding of talin and kindlin to integrin β-subunit cytoplasmic tails. The kindlin FERM domain is interrupted by a pleckstrin homology (PH) domain within its F2 subdomain. Here, we present data confirming the importance of the kindlin-1 PH domain for integrin activation and its x-ray crystal structure at a resolution of 2.1 Å revealing a C-terminal second α-helix integral to the domain but found only in the kindlin protein family. An isoform-specific salt bridge occludes the canonical phosphoinositide binding site, but molecular dynamics simulations display transient switching to an alternative open conformer. Molecular docking reveals that the opening of the pocket would enable potential ligands to bind within it. Although lipid overlay assays suggested the PH domain binds inositol monophosphates, surface plasmon resonance demonstrated weak affinities for inositol 3,4,5-triphosphate (Ins(3,4,5)P3; KD ∼100 μm) and no monophosphate binding. Removing the salt bridge by site-directed mutagenesis increases the PH domain affinity for Ins(3,4,5)P3 as measured by surface plasmon resonance and enables it to bind PtdIns(3,5)P2 on a dot-blot. Structural comparison with other PH domains suggests that the phosphate binding pocket in the kindlin-1 PH domain is more occluded than in kindlins-2 and -3 due to its salt bridge. In addition, the apparent affinity for Ins(3,4,5)P3 is affected by the presence of PO4 ions in the buffer. We suggest the physiological ligand of the kindlin-1 PH domain is most likely not an inositol phosphate but another phosphorylated species. PMID:23132860

  9. Peptidomimetic Escape Mechanisms Arise via Genetic Diversity in the Ligand-Binding Site of the Hepatitis C Virus NS3/4A Serine Protease

    PubMed Central

    Welsch, Christoph; Shimakami, Tetsuro; Hartmann, Christoph; Yang, Yan; Domingues, Francisco S.; Lengauer, Thomas; Zeuzem, Stefan; Lemon, Stanley M.

    2011-01-01

    Background & Aims It is a challenge to develop direct-acting antiviral agents (DAAs) that target the NS3/4A protease of hepatitis C virus (HCV) because resistant variants develop. Ketoamide compounds, designed to mimic the natural protease substrate, have been developed as inhibitors. However, clinical trials have revealed rapid selection of resistant mutants, most of which are considered to be pre-existing variants. Methods We identified residues near the ketoamide-binding site in X-ray structures of the genotype 1a protease, co-crystallized with boceprevir or a telaprevir-like ligand, and then identified variants at these positions in 219 genotype 1 sequences from a public database. We used side-chain modeling to assess the potential effects of these variants on the interaction between ketoamide and the protease, and compared these results with the phenotypic effects on ketoamide resistance, RNA replication capacity, and infectious virus yields in a cell culture model of infection. Results Thirteen natural binding-site variants with potential for ketoamide resistance were identified at 10 residues in the protease, near the ketoamide binding site. Rotamer analysis of amino acid side-chain conformations indicated that 2 variants (R155K and D168G) could affect binding of telaprevir more than boceprevir. Measurements of antiviral susceptibility in cell culture studies were consistent with this observation. Four variants (Q41H, I132V, R155K, and D168G) caused low-to-moderate levels of ketoamide resistance; 3 of these were highly fit (Q41H, I132V, and R155K). Conclusions Using a comprehensive sequence and structure-based analysis, we showed how natural variation in the HCV protease NS3/4A sequences might affect susceptibility to first-generation DAAs. These findings increase our understanding of the molecular basis of ketoamide resistance among naturally existing viral variants. PMID:22155364

  10. Missing Fragments: Detecting Cooperative Binding in Fragment-Based Drug Design

    PubMed Central

    2012-01-01

    The aim of fragment-based drug design (FBDD) is to identify molecular fragments that bind to alternate subsites within a given binding pocket leading to cooperative binding when linked. In this study, the binding of fragments to human phenylethanolamine N-methyltransferase is used to illustrate how (a) current protocols may fail to detect fragments that bind cooperatively, (b) theoretical approaches can be used to validate potential hits, and (c) apparent false positives obtained when screening against cocktails of fragments may in fact indicate promising leads. PMID:24900472

  11. Cholinergic Receptor Binding in Alzheimer Disease and Healthy Aging: Assessment In Vivo with Positron Emission Tomography Imaging.

    PubMed

    Sultzer, David L; Melrose, Rebecca J; Riskin-Jones, Hannah; Narvaez, Theresa A; Veliz, Joseph; Ando, Timothy K; Juarez, Kevin O; Harwood, Dylan G; Brody, Arthur L; Mandelkern, Mark A

    2017-04-01

    To compare regional nicotinic cholinergic receptor binding in older adults with Alzheimer disease (AD) and healthy older adults in vivo and to assess relationships between receptor binding and clinical symptoms. Using cross-sectional positron emission tomography (PET) neuroimaging and structured clinical assessment, outpatients with mild to moderate AD (N = 24) and healthy older adults without cognitive complaints (C group; N = 22) were studied. PET imaging of α4β2* nicotinic cholinergic receptor binding using 2-[ 18 F]fluoro-3-(2(S)azetidinylmethoxy)pyridine (2FA) and clinical measures of global cognition, attention/processing speed, verbal memory, visuospatial memory, and neuropsychiatric symptoms were used. 2FA binding was lower in the AD group compared with the C group in the medial thalamus, medial temporal cortex, anterior cingulate, insula/opercula, inferior caudate, and brainstem (p < 0.05, corrected cluster), but binding was not associated with cognition. The C group had significant inverse correlations between 2FA binding in the thalamus (left: r s  = -0.55, p = 0.008; right: r s  = -0.50, p = 0.02; N = 22) and hippocampus (left: r s  = -0.65, p = 0.001; right: r s  = -0.55, p = 0.009; N = 22) and the Trails A score. The AD group had inverse correlation between 2FA binding in anterior cingulate (left: r s  = -0.50, p = 0.01; right: r s  = -0.50, p = 0.01; N = 24) and Neurobehavioral Rating Scale agitation/disinhibition factor score. Cholinergic receptor binding is reduced in specific brain regions in mild to moderate AD and is related to neuropsychiatric symptoms. Among healthy older adults, lower receptor binding may be associated with slower processing speed. Cholinergic receptor binding in vivo may reveal links to other key brain changes associated with aging and AD and may provide a potential molecular treatment target. Published by Elsevier Inc.

  12. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A.; Gatley, J.; Gifford, A.

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with amore » half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.« less

  13. DNA binding sites characterization by means of Rényi entropy measures on nucleotide transitions.

    PubMed

    Perera, Alexandre; Vallverdu, Montserrat; Claria, Francesc; Soria, José Manuel; Caminal, Pere

    2006-01-01

    In this work, parametric information-theory measures for the characterization of binding sites in DNA are extended with the use of transitional probabilities on the sequence. We propose the use of parametric uncertainty measure such as Renyi entropies obtained from the transition probabilities for the study of the binding sites, in addition to nucleotide frequency based Renyi measures. Results are reported in this manuscript comparing transition frequencies (i.e. dinucelotides) and base frequencies for Shannon and parametric Renyi for a number of binding sites found in E. Coli, lambda and T7 organisms. We observe that, for the evaluated datasets, the information provided by both approaches is not redundant, as they evolve differently under increasing Renyi orders.

  14. Structure and Sequence Search on Aptamer-Protein Docking

    NASA Astrophysics Data System (ADS)

    Xiao, Jiajie; Bonin, Keith; Guthold, Martin; Salsbury, Freddie

    2015-03-01

    Interactions between proteins and deoxyribonucleic acid (DNA) play a significant role in the living systems, especially through gene regulation. However, short nucleic acids sequences (aptamers) with specific binding affinity to specific proteins exhibit clinical potential as therapeutics. Our capillary and gel electrophoresis selection experiments show that specific sequences of aptamers can be selected that bind specific proteins. Computationally, given the experimentally-determined structure and sequence of a thrombin-binding aptamer, we can successfully dock the aptamer onto thrombin in agreement with experimental structures of the complex. In order to further study the conformational flexibility of this thrombin-binding aptamer and to potentially develop a predictive computational model of aptamer-binding, we use GPU-enabled molecular dynamics simulations to both examine the conformational flexibility of the aptamer in the absence of binding to thrombin, and to determine our ability to fold an aptamer. This study should help further de-novo predictions of aptamer sequences by enabling the study of structural and sequence-dependent effects on aptamer-protein docking specificity.

  15. Relationship between Hot Spot Residues and Ligand Binding Hot Spots in Protein-Protein Interfaces

    PubMed Central

    Zerbe, Brandon S.; Hall, David R.

    2013-01-01

    In the context of protein-protein interactions, the term “hot spot” refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening. PMID:22770357

  16. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    PubMed

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  17. Polyvalent immunoglobulin binding is an obstacle to accurate measurement of specific antibodies with ELISA despite inclusion of blocking agents.

    PubMed

    Loeffler, David A; Klaver, Andrea C

    2017-11-01

    Specific antibody concentrations are frequently measured in serum (and plasma and intravenous immunoglobulin) samples by enzyme-linked immunosorbent assay (ELISA). The standard negative control involves incubation of buffer alone on antigen-coated wells. The immunoreactivity that develops in antigen-coated wells in which diluted serum has been incubated is assumed to represent specific antibody binding. This approach can result in marked overestimation of specific antibody levels, because serum contains specific polyvalent antibodies which bind, primarily with low affinity, to multiple antigens (including those on ELISA plates) despite the use of blocking agents. Non-denaturing purification of serum IgG, followed by assessment of the antigen binding or antigen-binding affinity of this purified IgG, can reduce but not eliminate the problem of polyvalent antibody binding in indirect ELISAs. Alternatively, polyvalent antibody binding can be estimated by incubating a diluted serum sample on wells coated with an irrelevant protein (such as bovine serum albumin or a scrambled peptide sequence) or buffer alone, then subtracting this reactivity from the sample's binding to wells coated with the antigen of interest. Polyvalent binding of immunoglobulins must be accounted for in order to obtain accurate ELISA measurements of serum, plasma, or intravenous immunoglobulin antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. What Do We Learn from Binding Features? Evidence for Multilevel Feature Integration

    ERIC Educational Resources Information Center

    Colzato, Lorenza S.; Raffone, Antonino; Hommel, Bernhard

    2006-01-01

    Four experiments were conducted to investigate the relationship between the binding of visual features (as measured by their after-effects on subsequent binding) and the learning of feature-conjunction probabilities. Both binding and learning effects were obtained, but they did not interact. Interestingly, (shape-color) binding effects…

  19. Improved flow cytometer measurement of binding assays

    DOEpatents

    Saunders, G.C.

    1984-05-30

    The invention relates to a method of measuring binding assays carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also a known quantity of smaller particles with a coating of binder reactant. The binding reactant is the same as the binding reactant present in the sample. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number and strength of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating. (LEW)

  20. Self-energy effect and Coulomb potential modulation of the exciton in monolayer MoS2 on polar substrate

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Wu; Xiao, Yao; Li, Run-Ze; Li, Wei-Ping; Li, Zhi-Qing

    2017-11-01

    We theoretically investigate the correction of exciton binding energy in monolayer MoS2 resulting from the exciton couples with surface optical (SO) phonons induced by polar substrate. The total correction of binding energy can be divided into the self-energy effect and modification of Coulomb potential using the unitary transformation method. We find that both the self-energy and Coulomb potential vary from tens of meV to several hundreds of meV depending on the cut-off wave vector of SO phonon modes, polarizability of substrate materials and internal distance between the monolayer MoS2 and polar substrate. An effective Coulomb potential is obtained by combining the modified term into the Coulomb potential. This potentially could be widely used in various two-dimensional materials. Our theoretical results not only propose the ways to externally control the exciton binding energy in experiment, but also enrich the understanding of the exciton properties in the dielectric environment.

  1. Influence of cationic lipid concentration on properties of lipid-polymer hybrid nanospheres for gene delivery.

    PubMed

    Bose, Rajendran J C; Arai, Yoshie; Ahn, Jong Chan; Park, Hansoo; Lee, Soo-Hong

    2015-01-01

    Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(D,L-lactic-co-glycolic acid) (PLGA) core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybrid nanocarriers investigated. Lipid-polymer hybrid nanospheres (LPHNSs) were fabricated by the emulsion-solvent evaporation method using different concentrations of cationic lipids and characterized for size, surface charge, stability, plasmid DNA-binding capacity, cytotoxicity, and transfection efficiency. All LPHNSs had narrow size distribution with positive surface charges (ζ-potential 52-60 mV), and showed excellent plasmid DNA-binding capacity. In vitro cytotoxicity measurements with HEK293T, HeLa, HaCaT, and HepG2 cells also showed that LPHNSs exhibited less cytotoxicity than conventional transfection agents, such as Lipofectamine and polyethyleneimine-PLGA. As cationic lipid concentrations increased, the particle size of LPHNSs decreased while their ζ-potential increased. In addition, the in vitro transfection efficiency of LPHNSs increased as lipid concentration increased.

  2. Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid.

    PubMed

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-02-26

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6-8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity.

  3. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    PubMed Central

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  4. Annexin A5 Binds to Lipopolysaccharide and Reduces Its Endotoxin Activity

    PubMed Central

    Rand, Jacob H.; Wu, Xiao-Xuan; Lin, Elaine Y.; Griffel, Alexander; Gialanella, Philip; McKitrick, John C.

    2012-01-01

    ABSTRACT Annexin A5 (AnxA5) has a high affinity for phosphatidylserine. The protein is widely used to detect apoptotic cells because phosphatidylserine, a phospholipid that is normally present in the inner leaflets of cytoplasmic membranes, becomes translocated to the outer leaflets during programmed cell death. Here we report the novel observation that AnxA5 binds to Gram-negative bacteria via the lipid A domain of lipopolysaccharide (LPS). Binding of AnxA5 to bacteria was measured quantitatively, confirmed by fluorescence microscopy, and found to be inhibited by antibodies against lipid A. AnxA5 also bound to purified dot-blotted LPS and lipid A. Through ellipsometry, we found that the binding of AnxA5 to purified LPS was calcium dependent and rapid and showed a high affinity—characteristics similar to those of AnxA5 binding to phosphatidylserine. Initial functional studies indicated that AnxA5 can affect LPS activities. AnxA5 inhibited LPS-mediated gelation in the Limulus amebocyte lysate assay. Incubation of LPS with the protein reduced the quantity of tumor necrosis factor alpha (TNF-α) released by cultured monocytes compared to that released upon incubation with LPS alone. Initial in vivo experiments indicated that injection of mice with LPS preincubated with AnxA5 produced serum TNF-α levels lower than those seen after injection of LPS alone. These data demonstrate that AnxA5 binds to LPS and open paths to investigation of the potential biological and therapeutic implications of this interaction. PMID:22415004

  5. Refrigeration-Induced Binding of von Willebrand Factor Facilitates Fast Clearance of Refrigerated Platelets.

    PubMed

    Chen, Wenchun; Druzak, Samuel A; Wang, Yingchun; Josephson, Cassandra D; Hoffmeister, Karin M; Ware, Jerry; Li, Renhao

    2017-12-01

    Apheresis platelets for transfusion treatment are currently stored at room temperature because after refrigeration platelets are rapidly cleared on transfusion. In this study, the role of von Willebrand factor (VWF) in the clearance of refrigerated platelets is addressed. Human and murine platelets were refrigerated in gas-permeable bags at 4°C for 24 hours. VWF binding, platelet signaling events, and platelet post-transfusion recovery and survival were measured. After refrigeration, the binding of plasma VWF to platelets was drastically increased, confirming earlier studies. The binding was blocked by peptide OS1 that bound specifically to platelet glycoprotein (GP)Ibα and was absent in VWF - / - plasma. Although surface expression of GPIbα was reduced after refrigeration, refrigeration-induced VWF binding under physiological shear induced unfolding of the GPIbα mechanosensory domain on the platelet, as evidenced by increased exposure of a linear epitope therein. Refrigeration and shear treatment also induced small elevation of intracellular Ca 2+ , phosphatidylserine exposure, and desialylation of platelets, which were absent in VWF -/- platelets or inhibited by OS1, which is a monomeric 11-residue peptide (CTERMALHNLC). Furthermore, refrigerated VWF -/- platelets displayed increased post-transfusion recovery and survival than wild-type ones. Similarly, adding OS1 to transgenic murine platelets expressing only human GPIbα during refrigeration improved their post-transfusion recovery and survival. Refrigeration-induced binding of VWF to platelets facilitates their rapid clearance by inducing GPIbα-mediated signaling. Our results suggest that inhibition of the VWF-GPIbα interaction may be a potential strategy to enable refrigeration of platelets for transfusion treatment. © 2017 American Heart Association, Inc.

  6. Stoichiometry for activation of neuronal α7 nicotinic receptors

    PubMed Central

    Andersen, Natalia; Corradi, Jeremías; Sine, Steven M.; Bouzat, Cecilia

    2013-01-01

    Neuronal α7 nicotinic receptors elicit rapid cation influx in response to acetylcholine (ACh) or its hydrolysis product choline. They contribute to cognition, synaptic plasticity, and neuroprotection and have been implicated in neurodegenerative and neuropsychiatric disorders. α7, however, often localizes distal to sites of nerve-released ACh and binds ACh with low affinity, and thus elicits its biological response with low agonist occupancy. To assess the function of α7 when ACh occupies fewer than five of its identical binding sites, we measured the open-channel lifetime of individual receptors in which four of the five ACh binding sites were disabled. To improve the time resolution of the inherently brief α7 channel openings, background mutations or a potentiator was used to increase open duration. We find that, in receptors with only one intact binding site, the open-channel lifetime is indistinguishable from receptors with five intact binding sites, counter to expectations from prototypical neurotransmitter-gated ion channels where the open-channel lifetime increases with the number of binding sites occupied by agonist. Replacing the membrane-embedded domain of α7 by that of the related 5-HT3A receptor increases the number of sites that need to be occupied to achieve the maximal open-channel lifetime, thus revealing a unique interdependence between the detector and actuator domains of these receptors. The distinctive ability of a single occupancy to elicit a full biological response adapts α7 to volume transmission, a prevalent mechanism of ACh-mediated signaling in the nervous system and nonneuronal cells. PMID:24297903

  7. Method for measuring the unbinding energy of strongly-bound membrane-associated proteins.

    PubMed

    Bauve, Elisa La; Vernon, Briana C; Ye, Dongmei; Rogers, David M; Siegrist, Cathryn M; Carson, Bryan D; Rempe, Susan B; Zheng, Aihua; Kielian, Margaret; Shreve, Andrew P; Kent, Michael S

    2016-11-01

    We describe a new method to measure the activation energy for unbinding (enthalpy ΔH* u and free energy ΔG* u ) of a strongly-bound membrane-associated protein from a lipid membrane. It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method is used to determine ΔH* u and ΔG* u for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH5.5. ΔH* u is determined from the Arrhenius equation whereas ΔG* u is determined by fitting the data to a model based on mean first passage time for escape from a potential well. The binding free energy ΔG b of sE was also measured at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The unbinding free energy (20±3kcal/mol, 20% PG) was found to be roughly three times the binding energy per monomer, (7.8±0.3kcal/mol for 30% PG, or est. 7.0kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH5.5, but assembles into trimers after associating with membranes. This new method to determine unbinding energies should be useful to understand better the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Interaction between serotonin transporter and dopamine D2/D3 receptor radioligand measures is associated with harm avoidant symptoms in anorexia and bulimia nervosa.

    PubMed

    Bailer, Ursula F; Frank, Guido K; Price, Julie C; Meltzer, Carolyn C; Becker, Carl; Mathis, Chester A; Wagner, Angela; Barbarich-Marsteller, Nicole C; Bloss, Cinnamon S; Putnam, Karen; Schork, Nicholas J; Gamst, Anthony; Kaye, Walter H

    2013-02-28

    Individuals with anorexia nervosa (AN) and bulimia nervosa (BN) have alterations of measures of serotonin (5-HT) and dopamine (DA) function, which persist after long-term recovery and are associated with elevated harm avoidance (HA), a measure of anxiety and behavioral inhibition. Based on theories that 5-HT is an aversive motivational system that may oppose a DA-related appetitive system, we explored interactions of positron emission tomography (PET) radioligand measures that reflect portions of these systems. Twenty-seven individuals recovered (REC) from eating disorders (EDs) (7 AN-BN, 11 AN, 9 BN) and nine control women (CW) were analyzed for correlations between [(11)C]McN5652 and [(11)C]raclopride binding. There was a significant positive correlation between [(11)C]McN5652 binding potential (BP(non displaceable(ND))) and [(11)C]Raclopride BP(ND) for the dorsal caudate, antero-ventral striatum (AVS), middle caudate, and ventral and dorsal putamen. No significant correlations were found in CW. [(11)C]Raclopride BP(ND), but not [(11)C]McN5652 BP(ND), was significantly related to HA in REC EDs. A linear regression analysis showed that the interaction between [(11)C]McN5652 BP(ND) and [(11)C]raclopride BP(ND) in the dorsal putamen significantly predicted HA. This is the first study using PET and the radioligands [(11)C]McN5652 and [(11)C]raclopride to show a direct relationship between 5-HT transporter and striatal DA D2/D3 receptor binding in humans, supporting the possibility that 5-HT and DA interactions contribute to HA behaviors in EDs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. In vitro digestion with bile acids enhances the bioaccessibility of kale polyphenols.

    PubMed

    Yang, Isabelle; Jayaprakasha, Guddarangavvanahally K; Patil, Bhimanagouda

    2018-02-21

    Kale (Brassica oleracea) is a leafy green vegetable belonging to the Brassicaceae family, and kale leaves have large amounts of dietary fiber and polyphenolics. Dietary fiber can bind bile acids, thus potentially decreasing cholesterol levels; however, whether the polyphenols from kale contribute to in vitro bile acid binding capacity remains unclear. In the present study, kale was extracted with hexane, acetone, and MeOH : water and the dried extracts, as well as the fiber-rich residue, were tested for their bile acid binding capacity. The fiber-rich residue bound total bile acids in amounts equivalent to that bound by raw kale. The lyophilized acetone extract bound significantly more glycochenodeoxycholate and glycodeoxycholate and less of other bile acids. To test whether bile acid binding enhanced the bioaccessibility of polyphenolic compounds from kale, we used ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry to identify chemical constituents and measure their bioaccessibility in an in vitro digestion reaction. This identified 36 phenolic compounds in kale, including 18 kaempferol derivatives, 13 quercetin derivatives, 4 sinapoyl derivatives, and one caffeoylquinic acid. The bioaccessibility of these phenolics was significantly higher (69.4%) in digestions with bile acids. Moreover, bile acids enhanced the bioaccessibility of quercetin by 25 times: only 2.7% of quercetin derivatives were bioaccessible in the digestion without bile acids, but with bile acids, their accessibility increased to 69.5%. Bile acids increased the bioaccessibility of kaempferol from 37.7% to 69.2%. The extractability and biostability of total phenolics in the digested residue increased 1.8 fold in the digestions with bile acids. These results demonstrated the potential use of kale to improve human health.

  10. Glutamate 338 is an electrostatic facilitator of C–Co bond breakage in a dynamic/electrostatic model of catalysis by ornithine aminomutase

    PubMed Central

    Menon, Binuraj R K; Menon, Navya; Fisher, Karl; Rigby, Stephen E J; Leys, David; Scrutton, Nigel S

    2015-01-01

    How cobalamin-dependent enzymes promote C–Co homolysis to initiate radical catalysis has been debated extensively. For the pyridoxal 5′-phosphate and cobalamin-dependent enzymes lysine 5,6-aminomutase and ornithine 4,5-aminomutase (OAM), large-scale re-orientation of the cobalamin-binding domain linked to C–Co bond breakage has been proposed. In these models, substrate binding triggers dynamic sampling of the B12-binding Rossmann domain to achieve a catalytically competent ‘closed’ conformational state. In ‘closed’ conformations of OAM, Glu338 is thought to facilitate C–Co bond breakage by close association with the cobalamin adenosyl group. We investigated this using stopped-flow continuous-wave photolysis, viscosity dependence kinetic measurements, and electron paramagnetic resonance spectroscopy of a series of Glu338 variants. We found that substrate-induced C–Co bond homolysis is compromised in Glu388 variant forms of OAM, although photolysis of the C–Co bond is not affected by the identity of residue 338. Electrostatic interactions of Glu338 with the 5′-deoxyadenosyl group of B12 potentiate C–Co bond homolysis in ‘closed’ conformations only; these conformations are unlocked by substrate binding. Our studies extend earlier models that identified a requirement for large-scale motion of the cobalamin domain. Our findings indicate that large-scale motion is required to pre-organize the active site by enabling transient formation of ‘closed’ conformations of OAM. In ‘closed’ conformations, Glu338 interacts with the 5′-deoxyadenosyl group of cobalamin. This interaction is required to potentiate C–Co homolysis, and is a crucial component of the approximately 1012 rate enhancement achieved by cobalamin-dependent enzymes for C–Co bond homolysis. PMID:25627283

  11. Characterization of Lactic Acid Bacteria as Poultry Probiotic Candidates with Aflatoxin B1 Binding Activities

    NASA Astrophysics Data System (ADS)

    Damayanti, E.; Istiqomah, L.; Saragih, J. E.; Purwoko, T.; Sardjono

    2017-12-01

    Our previous studies have selected lactic acid bacteria (LAB) with antifungal activities from traditional fermented foods made from cassava (G7) and silage feed palm leaf (PDS5 and PDS3). In this study we evaluated their ability to bind aflatoxin B1 (AFB1) and probiotic characteristic. The probiotic characteristic assays of LAB consisted of resistance to acidic conditions (pH 3), gastric juice and bile salts 0.3%. We also carried out an in vitro evaluation of LAB aflatoxin binding ability in viable and non-viable cell for 24 and 48 hours of incubation. The measurement of aflatoxin content was performed by ELISA method using AgraQuant Total Aflatoxin Assay kit. The results showed that all isolates were potential as probiotics and the G7 isolate had the highest viability among other isolates in pH 3 (92.61 %) and the bile salts assay (97.71 %). The percentage of aflatoxin reduction between viable and non-viable cell from each LAB isolate were different. The highest aflatoxin reduction in viable cell assay was performed by G7 isolate (69.11 %) whereas in non-viable cell assay was performed by PDS3 isolate (73.75 %) during incubation time 48 hours. In this study, G7 isolate performed the best probiotic characteristics with the highest viability in acid pH assay, bile salt 0.3% assay and percentage of aflatoxin B1 reduction in viable cell condition. Molecular identification using 16S rRNA sequence analysis showed that G7 isolate had homology with Lactobacillus plantarum (99.9%). It was concluded that Lactobacillus plantarum G7 was potential as probiotic with aflatoxin binding activities.

  12. ESR and X-ray Structure Investigations on the Binding and Mechanism of Inhibition of the Native State of Myeloperoxidase with Low Molecular Weight Fragments

    DOE PAGES

    Chavali, Balagopalakrishna; Masquelin, Thierry; Nilges, Mark J.; ...

    2015-05-19

    As an early visitor to the injured loci, neutrophil-derived human Myeloperoxidase (hMPO) offers an attractive protein target to modulate the inflammation of the host tissue through suitable inhibitors. We describe a novel methodology of using low temperature ESR spectroscopy (6 K) and FAST™ technology to screen a diverse series of small molecules that inhibit the peroxidase function through reversible binding to the native state of MPO. Also, our initial efforts to profile molecules on the inhibition of MPO-initiated nitration of the Apo-A1 peptide (AEYHAKATEHL) assay showed several potent (with sub-micro molar IC50s) but spurious inhibitors that either do not bindmore » to the heme pocket in the enzyme or retain high (>50 %) anti oxidant potential. Such molecules when taken forward for X-ray did not yield inhibitor-bound co-crystals. We then used ESR to confirm direct binding to the native state enzyme, by measuring the binding-induced shift in the electronic parameter g to rank order the molecules. Molecules with a higher rank order—those with g-shift R relative ≥15—yielded well-formed protein-bound crystals (n = 33 structures). The co-crystal structure with the LSN217331 inhibitor reveals that the chlorophenyl group projects away from the heme along the edges of the Phe366 and Phe407 side chain phenyl rings thereby sterically restricting the access to the heme by the substrates like H 2O 2. Both ESR and antioxidant screens were used to derive the mechanism of action (reversibility, competitive substrate inhibition, and percent antioxidant potential). In conclusion, our results point to a viable path forward to target the native state of MPO to tame local inflammation.« less

  13. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  14. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    PubMed

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  15. Inhibition of Human Metapneumovirus Binding to Heparan Sulfate Blocks Infection in Human Lung Cells and Airway Tissues

    PubMed Central

    Klimyte, Edita M.; Smith, Stacy E.; Oreste, Pasqua; Lembo, David

    2016-01-01

    ABSTRACT Human metapneumovirus (HMPV), a recently discovered paramyxovirus, infects nearly 100% of the world population and causes severe respiratory disease in infants, the elderly, and immunocompromised patients. We previously showed that HMPV binds heparan sulfate proteoglycans (HSPGs) and that HMPV binding requires only the viral fusion (F) protein. To characterize the features of this interaction critical for HMPV binding and the role of this interaction in infection in relevant models, we utilized sulfated polysaccharides, heparan sulfate mimetics, and occluding compounds. Iota-carrageenan demonstrated potent anti-HMPV activity by inhibiting binding to lung cells mediated by the F protein. Furthermore, analysis of a minilibrary of variably sulfated derivatives of Escherichia coli K5 polysaccharide mimicking the HS structure revealed that the highly O-sulfated K5 polysaccharides inhibited HMPV infection, identifying a potential feature of HS critical for HMPV binding. The peptide dendrimer SB105-A10, which binds HS, reduced binding and infection in an F-dependent manner, suggesting that occlusion of HS at the target cell surface is sufficient to prevent infection. HMPV infection was also inhibited by these compounds during apical infection of polarized airway tissues, suggesting that these interactions take place during HMPV infection in a physiologically relevant model. These results reveal key features of the interaction between HMPV and HS, supporting the hypothesis that apical HS in the airway serves as a binding factor during infection, and HS modulating compounds may serve as a platform for potential antiviral development. IMPORTANCE Human metapneumovirus (HMPV) is a paramyxovirus that causes respiratory disease worldwide. It has been previously shown that HMPV requires binding to heparan sulfate on the surfaces of target cells for attachment and infection. In this study, we characterize the key features of this binding interaction using heparan sulfate mimetics, identify an important sulfate modification, and demonstrate that these interactions occur at the apical surface of polarized airway tissues. These findings provide insights into the initial binding step of HMPV infection that has potential for antiviral development. PMID:27489270

  16. Bound H dibaryon in flavor SU(3) limit of lattice QCD.

    PubMed

    Inoue, Takashi; Ishii, Noriyoshi; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2011-04-22

    The flavor-singlet H dibaryon, which has strangeness -2 and baryon number 2, is studied by the approach recently developed for the baryon-baryon interactions in lattice QCD. The flavor-singlet central potential is derived from the spatial and imaginary-time dependence of the Nambu-Bethe-Salpeter wave function measured in N(f)=3 full QCD simulations with the lattice size of L≃2,3,4  fm. The potential is found to be insensitive to the volume, and it leads to a bound H dibaryon with the binding energy of 30-40 MeV for the pseudoscalar meson mass of 673-1015 MeV.

  17. Genome-wide inference of transcription factor-DNA binding specificity in cell regeneration using a combination strategy.

    PubMed

    Wang, Xiaofeng; Zhang, Aiqun; Ren, Weizheng; Chen, Caiyu; Dong, Jiahong

    2012-11-01

    The cell growth, development, and regeneration of tissue and organ are associated with a large number of gene regulation events, which are mediated in part by transcription factors (TFs) binding to cis-regulatory elements involved in the genome. Predicting the binding affinity and inferring the binding specificity of TF-DNA interactions at the genomic level would be fundamentally helpful for our understanding of the molecular mechanism and biological implication underlying sequence-specific TF-DNA recognition. In this study, we report the development of a combination method to characterize the interaction behavior of a 11-mer oligonucleotide segment and its mutations with the Gcn4p protein, a homodimeric, basic leucine zipper TF, and to predict the binding affinity and specificity of potential Gcn4p binders in the genome-wide scale. In this procedure, a position-mutated energy matrix is created based on molecular modeling analysis of native and mutated Gcn4p-DNA complex structures to describe the position-independent interaction energy profile of Gcn4p with different nucleotide types at each position of the oligonucleotide, and the energy terms extracted from the matrix and their interactives are then correlated with experimentally measured affinities of 19268 distinct oligonucleotides using statistical modeling methodology. Subsequently, the best one of built regression models is successfully applied to screen those of potential high-affinity Gcn4p binders from the complete genome. The findings arising from this study are briefly listed below: (i) The 11 positions of oligonucleotides are highly interactive and non-additive in contribution to Gcn4p-DNA binding affinity; (ii) Indirect conformational effects upon nucleotide mutations as well as associated subtle changes in interfacial atomic contacts, but not the direct nonbonded interactions, are primarily responsible for the sequence-specific recognition; (iii) The intrinsic synergistic effects among the sequence positions of oligonucleotides determine Gcn4p-DNA binding affinity and specificity; (iv) Linear regression models in conjunction with variable selection seem to perform fairly well in capturing the internal dependences hidden in the Gcn4p-DNA system, albeit ignoring nonlinear factors may lead the models to systematically underestimate and overestimate high- and low-affinity samples, respectively. © 2012 John Wiley & Sons A/S.

  18. Measuring Norfloxacin Binding to Trypsin Using a Fluorescence Quenching Assay in an Upper-Division, Integrated Laboratory Course

    ERIC Educational Resources Information Center

    Hicks, Katherine A.

    2016-01-01

    Fluorescence quenching assays are often used to measure dissociation constants that quantify the binding affinity between small molecules and proteins. In an upper-division undergraduate laboratory course, where students work on projects using a guided inquiry-based approach, a binding titration experiment at physiological pH is performed to…

  19. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  20. Insight into the mechanism of action and selectivity of caspase-3 reversible inhibitors through in silico studies

    NASA Astrophysics Data System (ADS)

    Minini, Lucía; Ferraro, Florencia; Cancela, Saira; Merlino, Alicia

    2017-11-01

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide for which there is currently no cure. Recently, caspase-3 has been proposed as a potential therapeutic target for treating AD. Since this enzyme is overexpressed in brains from AD patients its selective modulation by non-covalent inhibitors becomes an interesting strategy in the search of potential drugs against this neuropathology. With this in mind, we have combined molecular docking, molecular dynamics simulations and QM calculations of unliganded caspase-3 and caspase-7 and in complex with a series of known inhibitors of caspase-3 described in the literature in order to assess the structural features responsible for good inhibitory activity and selectivity against this potential target. This work has allowed us to identify hotspots for drug binding as well as the importance of shape and charge distribution for interacting into the substrate binding cleft or into the dimer interface in each enzyme. Our results showed that most selective compounds against caspsase-3 bind into the substrate binding cleft acting as competitive inhibitors whereas in caspase-7 they bind close to an allosteric site at the dimer interface but since they are weakly bound their presence would not be affecting enzyme dynamics or function. In addition, for both enzymes we have found evidence indicating that differences in shape and accessibility exist between the substrate binding site of each monomer which could be modulating the binding affinity of non-covalent molecules.

  1. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  2. Onset of η-meson binding in the He isotopes

    NASA Astrophysics Data System (ADS)

    Barnea, N.; Friedman, E.; Gal, A.

    2017-12-01

    The onset of binding η (548) mesons in nuclei is studied in the He isotopes by doing precise ηNNN and ηNNNN few-body stochastic variational method calculations for two semi-realistic NN potentials and two energy dependent ηN potentials derived from coupled-channel models of the N* (1535) nucleon resonance. The energy dependence of the ηN subthreshold input is treated self consistently. It is found that a minimal value of the real part of the ηN scattering length aηN close to 1 fm is required to bind η mesons in 3He, yielding then a few MeV η binding in 4He. The onset of η-meson binding in 4He requires that Re aηN exceeds 0.7 fm approximately. These results compare well with results of recent ηNNN and ηNNNN pionless effective field theory calculations. Related optical-model calculations are also discussed.

  3. Radiotracer properties determined by high performance liquid chromatography: a potential tool for brain radiotracer discovery.

    PubMed

    Tavares, Adriana Alexandre S; Lewsey, James; Dewar, Deborah; Pimlott, Sally L

    2012-01-01

    Previously, development of novel brain radiotracers has largely relied on simple screening tools. Improved selection methods at the early stages of radiotracer discovery and an increased understanding of the relationships between in vitro physicochemical and in vivo radiotracer properties are needed. We investigated if high performance liquid chromatography (HPLC) methodologies could provide criteria for lead candidate selection by comparing HPLC measurements with radiotracer properties in humans. Ten molecules, previously used as radiotracers in humans, were analysed to obtain the following measures: partition coefficient (Log P); permeability (P(m)); percentage of plasma protein binding (%PPB); and membrane partition coefficient (K(m)). Relationships between brain entry measurements (Log P, P(m) and %PPB) and in vivo brain percentage injected dose (%ID); and K(m) and specific binding in vivo (BP(ND)) were investigated. Log P values obtained using in silico packages and flask methods were compared with Log P values obtained using HPLC. The modelled associations with %ID were stronger for %PPB (r(2)=0.65) and P(m) (r(2)=0.77) than for Log P (r(2)=0.47) while 86% of BP(ND) variance was explained by K(m). Log P values were variable dependant on the methodology used. Log P should not be relied upon as a predictor of blood-brain barrier penetration during brain radiotracer discovery. HPLC measurements of permeability, %PPB and membrane interactions may be potentially useful in predicting in vivo performance and hence allow evaluation and ranking of compound libraries for the selection of lead radiotracer candidates at early stages of radiotracer discovery. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Testing the Formation Scenarios of Binary Neutron Star Systems with Measurements of the Neutron Star Moment of Inertia

    NASA Astrophysics Data System (ADS)

    Newton, William G.; Steiner, Andrew W.; Yagi, Kent

    2018-03-01

    Two low-mass (M < 1.4 M ⊙) neutron stars, J0737-3039B and the companion to J1756-2251, show strong evidence of being formed in an ultra-stripped supernova explosion (US-SN) with a ONeMg or Fe progenitor. Using systematically generated sets of equations of state we map out the relationship between the moment of inertia of J0737-3039A, a candidate for a moment of inertia measurement within a decade, and the binding energy of the two low-mass neutron stars. This relationship, similar to the I-Love-Q relations, is more robust than a previously explored correlation between the binding energy and the slope of the nuclear symmetry energy L. We find that, if either J0737-3039B or the J1756-2251 companion were formed in a US-SN, no more than 0.06 M ⊙ could have been lost from the progenitor core. Furthermore, a measurement of the moment of inertia of J0737-3039A to within 10% accuracy can discriminate between formation scenarios and, given current constraints on the predicted core mass loss, potentially rule them out. Advanced LIGO can potentially measure the neutron star tidal polarizability to equivalent accuracy which, using the I-Love-Q relations, would obtain similar constraints on the formation scenarios. Such information would help constrain important aspects of binary evolution used for population synthesis predictions of the rate of binary neutron star mergers and resulting electromagnetic and gravitational wave signals. Further progress needs to be made in modeling the core-collapse process that leads to low-mass neutron stars, particularly in making robust predictions for the mass loss from the progenitor core.

  5. Steam cooking significantly improves in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage.

    PubMed

    Kahlon, Talwinder Singh; Chiu, Mei-Chen M; Chapman, Mary H

    2008-06-01

    Bile acid binding capacity has been related to the cholesterol-lowering potential of foods and food fractions. Lowered recirculation of bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of cancer. Bile acid binding potential has been related to lowering the risk of heart disease and that of cancer. Previously, we have reported bile acid binding by several uncooked vegetables. However, most vegetables are consumed after cooking. How cooking would influence in vitro bile acid binding of various vegetables was investigated using a mixture of bile acids secreted in human bile under physiological conditions. Eight replicate incubations were conducted for each treatment simulating gastric and intestinal digestion, which included a substrate only, a bile acid mixture only, and 6 with substrate and bile acid mixture. Cholestyramine (a cholesterol-lowering, bile acid binding drug) was the positive control treatment and cellulose was the negative control. Relative to cholestyramine, in vitro bile acid binding on dry matter basis was for the collard greens, kale, and mustard greens, 13%; broccoli, 10%; Brussels sprouts and spinach, 8%; green bell pepper, 7%; and cabbage, 5%. These results point to the significantly different (P < or = .05) health-promoting potential of collard greens = kale = mustard greens > broccoli > Brussels sprouts = spinach = green bell pepper > cabbage as indicated by their bile acid binding on dry matter basis. Steam cooking significantly improved the in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage compared with previously observed bile acid binding values for these vegetables raw (uncooked). Inclusion of steam-cooked collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage in our daily diet as health-promoting vegetables should be emphasized. These green/leafy vegetables, when consumed regularly after steam cooking, would lower the risk of cardiovascular disease and cancer, advance human nutrition research, and improve public health.

  6. Oriented covalent immobilization of antibodies for measurement of intermolecular binding forces between zipper-like contact surfaces of split inteins.

    PubMed

    Sorci, Mirco; Dassa, Bareket; Liu, Hongwei; Anand, Gaurav; Dutta, Amit K; Pietrokovski, Shmuel; Belfort, Marlene; Belfort, Georges

    2013-06-18

    In order to measure the intermolecular binding forces between two halves (or partners) of naturally split protein splicing elements called inteins, a novel thiol-hydrazide linker was designed and used to orient immobilized antibodies specific for each partner. Activation of the surfaces was achieved in one step, allowing direct intermolecular force measurement of the binding of the two partners of the split intein (called protein trans-splicing). Through this binding process, a whole functional intein is formed resulting in subsequent splicing. Atomic force microscopy (AFM) was used to directly measure the split intein partner binding at 1 μm/s between native (wild-type) and mixed pairs of C- and N-terminal partners of naturally occurring split inteins from three cyanobacteria. Native and mixed pairs exhibit similar binding forces within the error of the measurement technique (~52 pN). Bioinformatic sequence analysis and computational structural analysis discovered a zipper-like contact between the two partners with electrostatic and nonpolar attraction between multiple aligned ion pairs and hydrophobic residues. Also, we tested the Jarzynski's equality and demonstrated, as expected, that nonequilibrium dissipative measurements obtained here gave larger energies of interaction as compared with those for equilibrium. Hence, AFM coupled with our immobilization strategy and computational studies provides a useful analytical tool for the direct measurement of intermolecular association of split inteins and could be extended to any interacting protein pair.

  7. Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (aβ) self-assembly.

    PubMed

    Jameson, Laramie P; Smith, Nicholas W; Dzyuba, Sergei V

    2012-11-21

    Dye-binding assays, such as those utilizing Congo red and thioflavin T, are among the most widely used tools to probe the aggregation of amyloidogenic biomolecules and for the evaluation of small molecule inhibitors of amyloid aggregation and fibrillization. A number of recent reports have indicated that these dye-binding assays could be prone to false positive effects when assessing inhibitors' potential toward Aβ peptides, species involved in Alzheimer's disease. Specifically, this review focuses on the application of thioflavin T for determining the efficiency of small molecule inhibitors of Aβ aggregation and addresses potential reasons that might be associated with the false positive effects in an effort to increase reliability of dye-binding assays.

  8. Dye-Binding Assays for Evaluation of the Effects of Small Molecule Inhibitors on Amyloid (Aβ) Self-Assembly

    PubMed Central

    2012-01-01

    Dye-binding assays, such as those utilizing Congo red and thioflavin T, are among the most widely used tools to probe the aggregation of amyloidogenic biomolecules and for the evaluation of small molecule inhibitors of amyloid aggregation and fibrillization. A number of recent reports have indicated that these dye-binding assays could be prone to false positive effects when assessing inhibitors’ potential toward Aβ peptides, species involved in Alzheimer’s disease. Specifically, this review focuses on the application of thioflavin T for determining the efficiency of small molecule inhibitors of Aβ aggregation and addresses potential reasons that might be associated with the false positive effects in an effort to increase reliability of dye-binding assays. PMID:23173064

  9. Structure of the Nucleoprotein Binding Domain of Mokola Virus Phosphoprotein▿

    PubMed Central

    Assenberg, René; Delmas, Olivier; Ren, Jingshan; Vidalain, Pierre-Olivier; Verma, Anil; Larrous, Florence; Graham, Stephen C.; Tangy, Frédéric; Grimes, Jonathan M.; Bourhy, Hervé

    2010-01-01

    Mokola virus (MOKV) is a nonsegmented, negative-sense RNA virus that belongs to the Lyssavirus genus and Rhabdoviridae family. MOKV phosphoprotein P is an essential component of the replication and transcription complex and acts as a cofactor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. Here we present a structure for this domain of MOKV P, obtained by expression of full-length P in Escherichia coli, which was subsequently truncated during crystallization. The structure has a high degree of homology with P of rabies virus, another member of Lyssavirus genus, and to a lesser degree with P of vesicular stomatitis virus (VSV), a member of the related Vesiculovirus genus. In addition, analysis of the crystal packing of this domain reveals a potential binding site for the nucleoprotein N. Using both site-directed mutagenesis and yeast two-hybrid experiments to measure P-N interaction, we have determined the relative roles of key amino acids involved in this interaction to map the region of P that binds N. This analysis also reveals a structural relationship between the N-RNA binding domain of the P proteins of the Rhabdoviridae and the Paramyxoviridae. PMID:19906936

  10. Investigation of molecular mechanism of recognition between citral and MARK4: A newer therapeutic approach to attenuate cancer cell progression.

    PubMed

    Naz, Farha; Khan, Faez Iqbal; Mohammad, Taj; Khan, Parvez; Manzoor, Saaliqa; Hasan, Gulam Mustafa; Lobb, Kevin A; Luqman, Suaib; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2018-02-01

    Microtubule affinity regulating kinase 4 (MARK4) is a member of AMP-activated protein kinase, found to be involved in apoptosis, inflammation and many other regulatory pathways. Since, its aberrant expression is directly associated with the cell cycle and thus cancer. Therefore, MARK4 is being considered as a potential drug target for cancer therapy. Here, we investigated the mechanism of inhibition of MARK4 activity by citral. Docking studies suggested that citral effectively binds to the active site cavity, and complex is stabilized by several interactions. We further performed molecular dynamics simulation of MARK4-citral complex under explicit water condition for 100ns and observed that binding of citral to MARK4 was quite stable. Fluorescence binding studies suggested that citral strongly binds to MARK4 and thereby inhibits its enzyme activity which was measured by the kinase inhibition assay. We further performed MTT assay and observed that citral inhibits proliferation of breast cancer cell line MCF-7. This work provides a newer insight into the use of citral as novel cancer therapeutics through the MARK4 inhibition. Results may be employed to design novel therapeutic molecule using citral as a scaffold for MARK4 inhibition to fight related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Reconstitution of the Escherichia coli pyruvate dehydrogenase complex.

    PubMed Central

    Reed, L J; Pettit, F H; Eley, M H; Hamilton, L; Collins, J H; Oliver, R M

    1975-01-01

    The binding of pyruvate dehydrogenase and dihydrolipoyl dehydrogenase (flavoprotein) to dihydrolipoyl transacetylase, the core enzyme of the E. coli pyruvate dehydrogenase complex [EC 1.2.4.1:pyruvate:lipoate oxidoreductase (decaryboxylating and acceptor-acetylating)], has been studied using sedimentation equilibrium analysis and radioactive enzymes in conjunction with gel filtration chromatography. The results show that the transacetylase, which consists of 24 apparently identical polypeptide chains organized into a cube-like structure, has the potential to bind 24 pyruvate dehydrogenase dimers in the absence of flavoprotein and 24 flavoprotein dimers in the absence of pyruvate dehydrogenase. The results of reconstitution experiments, utilizing binding and activity measurements, indicate that the transacetylase can accommodate a total of only about 12 pyruvate dehydrogenase dimers and six flavoprotein dimers and that this stoichiometry, which is the same as that of the native pyruvate dehydrogenase complex, produces maximum activity. It appears that steric hindrance between the relatively bulky pyruvate dehydrogenase and flavoprotein molecules prevents the transacetylase from binding 24 molecules of each ligand. A structural model for the native and reconstituted pyruvate dehydrogenase complexes is proposed in which the 12 pyruvate dehydrogenase dimers are distributed symmetrically on the 12 edges of the transacetylase cube and the six flavoprotein dimers are distributed in the six faces of the cube. Images PMID:1103138

  12. Metal site occupancy and allosteric switching in bacterial metal sensor proteins.

    PubMed

    Guerra, Alfredo J; Giedroc, David P

    2012-03-15

    All prokaryotes encode a panel of metal sensor or metalloregulatory proteins that govern the expression of genes that allows an organism to quickly adapt to toxicity or deprivation of both biologically essential transition metal ions, e.g., Zn, Cu, Fe, and heavy metal pollutants. As such, metal sensor proteins can be considered arbiters of intracellular transition metal bioavailability and thus potentially control the metallation state of the metalloproteins in the cell. Metal sensor proteins are specialized allosteric proteins that regulate transcription as a result direct binding of one or two cognate metal ions, to the exclusion of all others. In most cases, the binding of the cognate metal ion induces a structural change in a protein oligomer that either activates or inhibits operator DNA binding. A quantitative measure of the degree to which a particular metal drives metalloregulation of operator DNA-binding is the allosteric coupling free energy, ΔGc. In this review, we summarize recent work directed toward understanding metal occupancy and metal selectivity of these allosteric switches in selected families of metal sensor proteins and examine the structural origins of ΔGc in the functional context a thermodynamic "set-point" model of intracellular metal homeostasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Reduction and Reoxidation of Humic Acid: Influence on Spectroscopic Properties and Proton Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, F.; Christl, I; Kretzschmar, R

    2010-01-01

    Previous studies on proton and metal binding to humic substances have not considered a potential influence of reduction and oxidation of functional groups. Therefore, we investigated how proton binding of a purified soil humic acid was affected by reduction. Reduction of the humic acid was carried out using an electrochemical cell that allowed us to measure the amounts of electrons and protons involved in reduction reactions. We further applied spectroscopic methods (UV-vis, fluorescence, FT-IR, C-1s NEXAFS) to detect possible chemical changes in the humic acid induced by reduction and reoxidation. The effect of reduction on proton binding was determined withmore » acid-base titrations in the pH range 4-10 under controlled redox conditions. During reduction, 0.54 mol kg{sup -1} protons and 0.55 mol kg{sup -1} electrons were transferred to humic acid. NICA-Donnan modeling revealed an equivalent increase in proton-reactive sites (0.52 mol kg{sup -1}) in the alkaline pH-range. Our results indicate that reduction of humic acid increased the amount of proton-reactive sites by 15% compared to the untreated state. Spectroscopic differences between the untreated and reduced humic acid were minor, apart from a lower UV-vis absorption of the reduced humic acid between 400 and 700 nm.« less

  14. Genetic variation of natural antibodies in milk of Dutch Holstein-Friesian cows.

    PubMed

    Ploegaert, T C W; Wijga, S; Tijhaar, E; van der Poel, J J; Lam, T J G M; Savelkoul, H F J; Parmentier, H K; van Arendonk, J A M

    2010-11-01

    Defense mechanisms of dairy cows against diseases partly rest on their naturally present disease resistance capacity. Natural antibodies (NAb) form a soluble part of the innate immune system, being defined as antibodies circulating in animals without prior intentional antigenic stimulation. Genetic selection on NAb titers in milk, therefore, might improve disease resistance. We estimated genetic parameters of NAb titers binding lipopolysaccharide, lipoteichoic acid (LTA), peptidoglycan, and keyhole limpet hemocyanin, and titers of the NAb isotypes IgG1, IgM, and IgA binding LTA in milk of Dutch Holstein-Friesian heifers. Natural antibody titers were measured in 1 milk sample from each of 1,939 Holstein-Friesian heifers and used for estimating genetic parameters of NAb titers. The data show that phenotypic variation exists among heifers in NAb titers binding lipopolysaccharide, LTA, peptidoglycan, and keyhole limpet hemocyanin, and the NAb isotypes IgG1, IgM, and IgA binding LTA in milk. High genetic correlations among NAb (ranging from 0.45 to 0.99) indicated a common genetic basis for the levels of different NAb in bovine milk. Intra-herd heritability estimates for NAb ranged from 0.10 to 0.53. The results indicated that NAb levels have potential for genetic selection. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.

    PubMed

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2015-10-01

    The biotic ligand model (BLM) approach is used to assess metal toxicity, taking into account the competition of other cations with the free metal ions for binding to the biotic ligand sites of aquatic and soil organisms. The bioavailable fraction of metals, represented by the free metal ion, is a better measure than the total concentration for assessing their potential risk to the environment. Because BLMs are relating toxicity to the fraction of biotic ligands occupied by the metal, they can be useful for investigating factors affecting metal bioaccumulation and toxicity. In the present review, the effects of major cations on the toxicity of metals to soil and aquatic organisms were comprehensively studied by performing a meta-analysis of BLM literature data. Interactions at the binding sites were shown to be species- and metal-specific. The main factors affecting the relationships between toxicity and conditional binding constants for metal binding at the biotic ligand appeared to be Ca(2+) , Mg(2+) , and protons. Other important characteristics of the exposure medium, such as levels of dissolved organic carbon and concentrations of other cations, should also be considered to obtain a proper assessment of metal toxicity to soil and aquatic organisms. © 2015 SETAC.

  16. Efficient interrupting skills of amino acid metallointercalators with DNA at physiological pH: Evaluation of biological assays

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Selvaganapathy, Muthusamy; Radhakrishnan, Srinivasan

    2014-06-01

    The 4-aminoantipyrine derivatives (sbnd NO2, sbnd OCH3) and their mixed-ligand complexes with amino acids have been synthesized and investigated for their binding with CT DNA using UV-visible spectroscopy, cyclic voltammetry, and viscosity measurements under physiological conditions of pH (stomach 4.7; blood 7.4). The results from all techniques i.e. binding constant (Kb), and free energy change (ΔG) were in good agreement and inferred spontaneous compound-DNA complexes formation via intercalation. Among all the compounds 1 and 4 showed comparatively greater binding at pH 7.4 as evident from its greater Kb values. All the complexes exhibit oxidative cleavage of supercoiled (SC) pBR322 plasmid DNA in the presence of H2O2 as an activator. It is remarkable that at 25 μM concentration 1 and 4 completely degrade SC DNA into undetectable minor fragments and thus they act as efficient chemical nucleases. Among the new complexes, complexes 1 and 4 have highest potential against all the microorganisms tested. The results of the above biological experiments also reveal that the choice of different metal ions has little influence on the DNA binding, DNA cleavage and antimicrobial assay.

  17. Homology modeling study toward identifying structural properties in the HA2 B-loop that would influence the HA1 receptor-binding site.

    PubMed

    Cueno, Marni E; Imai, Kenichi; Shimizu, Kazufumi; Ochiai, Kuniyasu

    2013-07-01

    Influenza hemagglutinin (HA) consists of a fibrous globular stem (HA2) inserted into the viral membrane supporting a globular head (HA1). HA1 receptor-binding has been hypothesized to be structurally correlated to the HA2 B-loop, however, this was never fully understood. Here, we elucidated the structural relationship between the HA2 B-loop and the HA1 receptor-binding site (RBS). Throughout this study, we analyzed 2486 H1N1 HA homology models obtained from human, swine and avian strains during 1976-2012. Quality of all homology models were verified before further analyses. We established that amino acid residue 882 is putatively strain-conserved and differs in the human (K882), swine (H882) and avian (N882) strains. Moreover, we observed that the amino acid at residue 882 and, similarly, its orientation has the potential to influence the HA1 RBS diameter measurements which we hypothesize may consequentially affect influenza H1N1 viral infectivity, immune escape, transmissibility, and evolution. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Accumulation of phosphatidylcholine on gut mucosal surface is not dominated by electrostatic interactions.

    PubMed

    Korytowski, Agatha; Abuillan, Wasim; Amadei, Federico; Makky, Ali; Gumiero, Andrea; Sinning, Irmgard; Gauss, Annika; Stremmel, Wolfgang; Tanaka, Motomu

    2017-05-01

    The accumulation of phosphatidylcholine (PC) in the intestinal mucus layer is crucial for the protection of colon epithelia from the bacterial attack. It has been reported that the depletion of PC is a distinct feature of ulcerative colitis. Here we addressed the question how PC interacts with its binding proteins, the mucins, which may establish the hydrophobic barrier against colonic microbiota. In the first step, the interactions of dioleoylphosphatidylcholine (DOPC) with two mucin preparations from porcine stomach, have been studied using dynamic light scattering, zeta potential measurement, and Langmuir isotherms, suggesting that mucin binds to the surface of DOPC vesicles. The enthalpy of mucin-PC interaction could be determined by isothermal titration calorimetry. The high affinity to PC found for both mucin types seems reasonable, as they mainly consist of mucin 2, a major constituent of the flowing mucus. Moreover, by the systematic variation of net charges, we concluded that the zwitterionic DOPC has the strongest binding affinity that cannot be explained within the electrostatic interactions between charged molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Organic Complexation of Dissolved Copper and Iron from Shipboard Incubations in the Central California Current System: Investigating the Impacts of Light Conditions and Phytoplankton Growth on Iron- and Copper-Binding Ligand Characteristics

    NASA Astrophysics Data System (ADS)

    Mellett, T.; Parker, C.; Brown, M.; Coale, T.; Duckham, C.; Chappell, D.; Maldonado, M. T.; Bruland, K. W.; Buck, K. N.

    2016-02-01

    Two shipboard incubation experiments were carried out in July of 2014 to investigate potential sources and sinks of iron- and copper-binding organic ligands in the surface ocean. Seawater for the experiments was collected from the central California Current System (cCCS) and incubated under varying light conditions and in the presence and absence of natural phytoplankton communities. Incubation treatments were sampled over a period of up to 3 days for measurements of total dissolved copper and iron, and for the concentration and conditional stability constants of copper- and iron-binding organic ligands. Dissolved copper and iron were determined by inductively coupled plasma-mass spectrometry (ICP-MS) following preconcentration on a Nobias PA1 resin. Organic ligand characteristics for iron and copper were determined using a method of competitive ligand exchange-absorptive cathodic stripping voltammetry (CLE-ACSV) with the added competing ligand salicylaldoxime. Trends in ligand concentrations and conditional stability constants across the different treatments and over the course of the incubation experiments will be presented.

  20. G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures.

    PubMed

    Lee, Hui Sun; Im, Wonpil

    2017-01-01

    Recent advances in high-throughput structure determination and computational protein structure prediction have significantly enriched the universe of protein structure. However, there is still a large gap between the number of available protein structures and that of proteins with annotated function in high accuracy. Computational structure-based protein function prediction has emerged to reduce this knowledge gap. The identification of a ligand binding site and its structure is critical to the determination of a protein's molecular function. We present a computational methodology for predicting small molecule ligand binding site and ligand structure using G-LoSA, our protein local structure alignment and similarity measurement tool. All the computational procedures described here can be easily implemented using G-LoSA Toolkit, a package of standalone software programs and preprocessed PDB structure libraries. G-LoSA and G-LoSA Toolkit are freely available to academic users at http://compbio.lehigh.edu/GLoSA . We also illustrate a case study to show the potential of our template-based approach harnessing G-LoSA for protein function prediction.

  1. Label-Free Determination of Protein Binding in Aqueous Solution using Overlayer Enhanced Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (OE-ATR-FTIR)

    NASA Astrophysics Data System (ADS)

    Ruthenburg, Travis; Aweda, Tolulope; Park, Simon; Meares, Claude; Land, Donald

    2009-03-01

    Protein binding/affinity studies are often performed using Surface Plasmon Resonance techniques that don't produce much spectral information. Measurement of protein binding affinity using FTIR is traditionally performed using high protein concentration or deuterated solvent. By immobilizing a protein near the surface of a gold-coated germanium internal reflection element interactions can be measured between an immobilized protein and free proteins or small molecules in aqueous solution. By monitoring the on and off rates of these interactions, the dissociation constant for the system can be determined. The dissociation constant for the molecule Yttrium-DOTA binding to the antibody 2D12.5 system was determined to be 100nM. Results will also be presented from our measurements of Bovine Serum Albumin (BSA) binding to anti-BSA.

  2. Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel.

    PubMed

    Muroi, Yukiko; Chanda, Baron

    2009-01-01

    Local anesthetics block sodium channels in a state-dependent fashion, binding with higher affinity to open and/or inactivated states. Gating current measurements show that local anesthetics immobilize a fraction of the gating charge, suggesting that the movement of voltage sensors is modified when a local anesthetic binds to the pore of the sodium channel. Here, using voltage clamp fluorescence measurements, we provide a quantitative description of the effect of local anesthetics on the steady-state behavior of the voltage-sensing segments of a sodium channel. Lidocaine and QX-314 shifted the midpoints of the fluorescence-voltage (F-V) curves of S4 domain III in the hyperpolarizing direction by 57 and 65 mV, respectively. A single mutation in the S6 of domain IV (F1579A), a site critical for local anesthetic block, abolished the effect of QX-314 on the voltage sensor of domain III. Both local anesthetics modestly shifted the F-V relationships of S4 domain IV toward hyperpolarized potentials. In contrast, the F-V curve of the S4 domain I was shifted by 11 mV in the depolarizing direction upon QX-314 binding. These antagonistic effects of the local anesthetic indicate that the drug modifies the coupling between the voltage-sensing domains of the sodium channel. Our findings suggest a novel role of local anesthetics in modulating the gating apparatus of the sodium channel.

  3. Ammonoxidised lignins as slow nitrogen-releasing soil amendments and CO₂-binding matrix.

    PubMed

    Liebner, Falk; Pour, Georg; de la Rosa Arranz, José Maria; Hilscher, André; Rosenau, Thomas; Knicker, Heike

    2011-09-05

    Nitrogen (N) is a major nutrient element controlling the cycling of organic matter in the biosphere. Its availability in soils is closely related to biological productivity. In order to reduce the negative environmental impact, associated with the application of mineral N-fertilizers, the use of ammonoxidised technical lignins is suggested. They can act as potential slow N-release fertilisers which concomitantly may increase C sequestration of soils by its potential to bind CO₂. The idea of our study was to combine an improved chemical characterisation of ammonoxidised ligneous matter as well as their CO₂-binding potential, with laboratory pot experiments, performed to enable an evaluation of their behaviour and stability during the biochemical reworking occurring in active soils.

  4. Limitations and potentials of current motif discovery algorithms

    PubMed Central

    Hu, Jianjun; Li, Bin; Kihara, Daisuke

    2005-01-01

    Computational methods for de novo identification of gene regulation elements, such as transcription factor binding sites, have proved to be useful for deciphering genetic regulatory networks. However, despite the availability of a large number of algorithms, their strengths and weaknesses are not sufficiently understood. Here, we designed a comprehensive set of performance measures and benchmarked five modern sequence-based motif discovery algorithms using large datasets generated from Escherichia coli RegulonDB. Factors that affect the prediction accuracy, scalability and reliability are characterized. It is revealed that the nucleotide and the binding site level accuracy are very low, while the motif level accuracy is relatively high, which indicates that the algorithms can usually capture at least one correct motif in an input sequence. To exploit diverse predictions from multiple runs of one or more algorithms, a consensus ensemble algorithm has been developed, which achieved 6–45% improvement over the base algorithms by increasing both the sensitivity and specificity. Our study illustrates limitations and potentials of existing sequence-based motif discovery algorithms. Taking advantage of the revealed potentials, several promising directions for further improvements are discussed. Since the sequence-based algorithms are the baseline of most of the modern motif discovery algorithms, this paper suggests substantial improvements would be possible for them. PMID:16284194

  5. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size

    PubMed Central

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-01-01

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of −0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process. PMID:27104527

  6. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    PubMed

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-04-20

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.

  7. Nanohole-based SPR Instruments with Improved Spectral Resolution Quantify a Broad Range of Antibody-Ligand Binding Kinetics

    PubMed Central

    Im, Hyungsoon; Sutherland, Jamie N.; Maynard, Jennifer A.; Oh, Sang-Hyun

    2012-01-01

    We demonstrate an affordable low-noise SPR instrument based on extraordinary optical transmission (EOT) in metallic nanohole arrays and quantify a broad range of antibody-ligand binding kinetics with equilibrium dissociation constants ranging from 200 pM to 40 nM. This nanohole-based SPR instrument is straightforward to construct, align, and operate, since it is built around a standard microscope and a portable fiber-optic spectrometer. The measured refractive index resolution of this platform is 3.1 × 10−6 without on-chip cooling, which is among the lowest reported for SPR sensors based on EOT. This is accomplished via rapid full-spectrum acquisition in 10 milliseconds followed by frame averaging of the EOT spectra, which is made possible by the production of template-stripped gold nanohole arrays with homogeneous optical properties over centimeter-sized areas. Sequential SPR measurements are performed using a 12-channel microfluidic flow cell after optimizing surface modification protocols and antibody injection conditions to minimize mass-transport artifacts. The immobilization of a model ligand, the protective antigen of anthrax on the gold surface, is monitored in real-time with a signal-to-noise ratio of ~860. Subsequently, real-time binding kinetic curves were measured quantitatively between the antigen and a panel of small, 25 kDa single-chain antibodies at concentrations down to 1 nM. These results indicate that nanohole-based SPR instruments have potential for quantitative antibody screening and as a general-purpose platform for integrating SPR sensors with other bioanalytical tools. PMID:22235895

  8. Sensing Reversible Protein–Ligand Interactions with Single-Walled Carbon Nanotube Field-Effect Transistors

    PubMed Central

    2015-01-01

    We report on the reversible detection of CaptAvidin, a tyrosine modified avidin, with single-walled carbon nanotube (SWNT) field-effect transistors (FETs) noncovalently functionalized with biotin moieties using 1-pyrenebutyric acid as a linker. Binding affinities at different pH values were quantified, and the sensor’s response at various ionic strengths was analyzed. Furthermore, protein “fingerprints” of NeutrAvidin and streptavidin were obtained by monitoring their adsorption at several pH values. Moreover, gold nanoparticle decorated SWNT FETs were functionalized with biotin using 1-pyrenebutyric acid as a linker for the CNT surface and (±)-α-lipoic acid linkers for the gold surface, and reversible CaptAvidin binding is shown, paving the way for potential dual mode measurements with the addition of surface enhanced Raman spectroscopy (SERS). PMID:25126155

  9. A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties

    PubMed Central

    Murphy, James M.; Zhang, Qingwei; Young, Samuel N.; Reese, Michael L.; Bailey, Fiona P.; Eyers, Patrick A.; Ungureanu, Daniela; Hammaren, Henrik; Silvennoinen, Olli; Varghese, Leila N.; Chen, Kelan; Tripaydonis, Anne; Jura, Natalia; Fukuda, Koichi; Qin, Jun; Nimchuk, Zachary; Mudgett, Mary Beth; Elowe, Sabine; Gee, Christine L.; Liu, Ling; Daly, Roger J.; Manning, Gerard; Babon, Jeffrey J.; Lucet, Isabelle S.

    2017-01-01

    Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains. PMID:24107129

  10. Further Insights into Metal-DOM Interaction: Consideration of Both Fluorescent and Non-Fluorescent Substances

    PubMed Central

    Xu, Huacheng; Zhong, Jicheng; Yu, Guanghui; Wu, Jun; Jiang, Helong; Yang, Liuyan

    2014-01-01

    Information on metal binding with fluorescent substances has been widely studied. By contrast, information on metal binding with non-fluorescent substances remains lacking despite the dominance of these substances in aquatic systems. In this study, the metal binding properties of both fluorescent and non-fluorescent substances were investigated by using metal titration combined with two-dimensional correlation spectroscopy (2D–COS) analysis. The organic matters in the eutrophic algae-rich lake, including natural organic matters (NOM) and algae-induced extracellular polymeric substances (EPS), both contained fluorescent and non-fluorescent substances. The peaks in the one-dimensional spectra strongly overlapped, while 2D–COS can decompose the overlapped peaks and thus enhanced the spectral resolution. Moreover, 2D FTIR COS demonstrated that the binding susceptibility of organic ligands in both NOM and algal EPS matrices followed the order: 3400>1380>1650 cm−1, indicative the significant contribution of non-fluorescent ligands in metal binding. The modified Stern-Volmer equation also revealed a substantial metal binding potential for the non-fluorescent substances (logKM: 3.57∼4.92). As for the effects of organic ligands on metal binding, EPS was characterized with higher binding ability than NOM for both fluorescent and non-fluorescent ligands. Algae-induced EPS and the non-fluorescent substances in eutrophic algae-rich lakes should not be overlooked because of their high metal binding potential. PMID:25380246

  11. Prediction of Binding Energy of Keap1 Interaction Motifs in the Nrf2 Antioxidant Pathway and Design of Potential High-Affinity Peptides.

    PubMed

    Karttunen, Mikko; Choy, Wing-Yiu; Cino, Elio A

    2018-06-07

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor and principal regulator of the antioxidant pathway. The Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) binds to motifs in the N-terminal region of Nrf2, promoting its degradation. There is interest in developing ligands that can compete with Nrf2 for binding to Kelch, thereby activating its transcriptional activities and increasing antioxidant levels. Using experimental Δ G bind values of Kelch-binding motifs determined previously, a revised hydrophobicity-based model was developed for estimating Δ G bind from amino acid sequence and applied to rank potential uncharacterized Kelch-binding motifs identified from interaction databases and BLAST searches. Model predictions and molecular dynamics (MD) simulations suggested that full-length MAD2A binds Kelch more favorably than a high-affinity 20-mer Nrf2 E78P peptide, but that the motif in isolation is not a particularly strong binder. Endeavoring to develop shorter peptides for activating Nrf2, new designs were created based on the E78P peptide, some of which showed considerable propensity to form binding-competent structures in MD, and were predicted to interact with Kelch more favorably than the E78P peptide. The peptides could be promising new ligands for enhancing the oxidative stress response.

  12. Perturbation of the quinone-binding site of complex II alters the electronic properties of the proximal [3Fe-4S] iron-sulfur cluster.

    PubMed

    Ruprecht, Jonathan; Iwata, So; Rothery, Richard A; Weiner, Joel H; Maklashina, Elena; Cecchini, Gary

    2011-04-08

    Succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate oxidoreductase (QFR) from Escherichia coli are members of the complex II family of enzymes. SQR and QFR catalyze similar reactions with quinones; however, SQR preferentially reacts with higher potential ubiquinones, and QFR preferentially reacts with lower potential naphthoquinones. Both enzymes have a single functional quinone-binding site proximal to a [3Fe-4S] iron-sulfur cluster. A difference between SQR and QFR is that the redox potential of the [3Fe-4S] cluster in SQR is 140 mV higher than that found in QFR. This may reflect the character of the different quinones with which the two enzymes preferentially react. To investigate how the environment around the [3Fe-4S] cluster affects its redox properties and catalysis with quinones, a conserved amino acid proximal to the cluster was mutated in both enzymes. It was found that substitution of SdhB His-207 by threonine (as found in QFR) resulted in a 70-mV lowering of the redox potential of the cluster as measured by EPR. The converse substitution in QFR raised the redox potential of the cluster. X-ray structural analysis suggests that placing a charged residue near the [3Fe-4S] cluster is a primary reason for the alteration in redox potential with the hydrogen bonding environment having a lesser effect. Steady state enzyme kinetic characterization of the mutant enzymes shows that the redox properties of the [3Fe-4S] cluster have only a minor effect on catalysis.

  13. [11C]Flumazenil PET in patients with epilepsy with dual pathology.

    PubMed

    Juhász, C; Nagy, F; Muzik, O; Watson, C; Shah, J; Chugani, H T

    1999-05-01

    Coexistence of hippocampal sclerosis and a potentially epileptogenic cortical lesion is referred to as dual pathology and can be responsible for poor surgical outcome in patients with medically intractable partial epilepsy. [11C]Flumazenil (FMZ) positron emission tomography (PET) is a sensitive method for visualizing epileptogenic foci. In this study of 12 patients with dual pathology, we addressed the sensitivity of FMZ PET to detect hippocampal abnormalities and compared magnetic resonance imaging (MRI) with visual as well as quantitative FMZ PET findings. All patients underwent volumetric MRI, prolonged video-EEG monitoring, and glucose metabolism PET before the FMZ PET. MRI-coregistered partial volume-corrected PET images were used to measure FMZ-binding asymmetries by using asymmetry indices (AIs) in the whole hippocampus and in three (anterior, middle, and posterior) hippocampal subregions. Cortical sites of decreased FMZ binding also were evaluated by using AIs for regions with MRI-verified cortical lesions as well as for non-lesional areas with visually detected asymmetry. Abnormally decreased FMZ binding could be detected by quantitative analysis in the atrophic hippocampus of all 12 patients, including three patients with discordant or inconclusive EEG findings. Decreased FMZ binding was restricted to only one subregion of the hippocampus in three patients. Areas of decreased cortical FMZ binding were obvious visually in all patients. Decreased FMZ binding was detected visually in nonlesional cortical areas in four patients. The AIs for these nonlesional regions with visual asymmetry were significantly lower than those for regions showing MRI lesions (paired t test, p = 0.0075). Visual as well as quantitative analyses of FMZ-binding asymmetry are sensitive methods to detect decreased benzodiazepine-receptor binding in the hippocampus and neocortex of patients with dual pathology. MRI-defined hippocampal atrophy is always associated with decreased FMZ binding, although the latter may be localized to only one sub-region within the hippocampus. FMZ PET abnormalities can occur in areas with normal appearance on MRI, but FMZ-binding asymmetry of these regions is lower when compared with that of lesional areas. FMZ PET can be especially helpful when MRI and EEG findings of patients with intractable epilepsy are discordant.

  14. Determination of the side-reaction coefficient of the trihydroxamate siderophore desferrioxamine B in metal-free seawater

    NASA Astrophysics Data System (ADS)

    Schijf, J.; Burns, S. M.

    2016-02-01

    Desferrioxamines are a class of trihydroxamate siderophores, members of which occur in surface seawater at low-picomolar concentrations. The total synthesis of desferrioxamine B (DFOB), achieved in the late 1980s and prompted by its use in the treatment of human iron-overload disorders, has ensured a steady commercial supply enabling extensive laboratory studies of its properties. While highly specific for Fe3+, DFOB binds many di-, tri-, and tetravalent metals with substantial affinity and has consequently been employed as a model for strong organic ligands that ostensibly dominate the speciation of several bio-essential metals in the ocean, yet remain largely unidentified. Such comparisons are only meaningful if we know the side-reaction coefficient of DFOB in seawater, which accounts for its binding with the divalent cations Mg2+ and Ca2+. Although quite weak, this has a potentially important effect on the availability of the free ligand, due to the great abundance of these sea salt constituents. We have performed potentiometric titrations to measure the sequential binding of Mg and Ca to the three hydroxamate groups of DFOB, quantified by stability constants β1, β2, and β3. Values of β1 are reported for the first time, however no evidence was found for binding with the terminal amine of DFOB and the corresponding stability constant β4 was thus omitted from the regression model constructed to fit the titration curves. We also examined Mg and Ca binding to methanesulfonate (MSA), a common DFOB counter-ion, by measuring the stability of their complexes with acetohydroxamate in the presence and absence of MSA. Whereas stabilities of metal-MSA complexes have not been published, their similarity to sulfate complexes suggests that MSA may compete with DFOB for Mg and Ca in the titrations. Our calculated side-reaction coefficient is consistent with a previous estimate, but should properly be expressed in terms of protonated forms of DFOB, resulting in a much lower value.

  15. Insulin-like growth factors (IGF-I, free IGF-I and IGF-II) and insulin-like growth factor binding proteins (IGFBP-2, IGFBP-3, IGFBP-6, and ALS) in blood circulation.

    PubMed

    Yu, H; Mistry, J; Nicar, M J; Khosravi, M J; Diamandis, A; van Doorn, J; Juul, A

    1999-01-01

    Insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) play an important role in cell growth and differentiation. Clinical and epidemiological studies have indicated that measuring IGFs and IGFBPs in blood has potential implications in assessing growth-related abnormalities and risks of certain types of cancer. To facilitate the application, we reported a large collection of reference ranges of IGFs and IGFBPs in normal population and evaluations of these molecules in serum and plasma as well as the impact of freeze-thaw cycles on the measurement. IGF-I, IGFBP-3 andALS showed a similar pattern of change associated with age. Levels of these molecules were low at birth and increased with age through puberty. After puberty the levels declined slowly with age. Overall, IGF-I, IGFBP-3 and ALS were slightly higher in females than in males. Free IGF-I accounted for about 1% of the total IGF-I and its variation with age was similar to total IGF-I. IGF-II levels were also increased with age from birth to puberty, but became stable after puberty. There was little difference in IGF-II levels between genders. IGFBP-2 levels declined with age from birth to puberty. Levels of IGFBP-6 in contrast were increased with age. These IGF binding proteins were higher in males than in females. IGFs, IGFBP-3 and ALS were 5-10% higher in serum than in plasma. IGFBP-2 and IGFBP-6 differed substantially between serum and plasma. Freeze-thaw treatment up to five cycles had little impact on plasma levels of IGFs and IGFBP-3. Our observations suggest that levels of IGFs and their binding proteins are varied with age, gender, and types of specimen and that these variations need to be taken into consideration when IGFs and their binding proteins are utilized in clinic and research.

  16. Cyclo[n]pyrroles: Size and Site Specific Binding to G-Quadruplexes

    PubMed Central

    Baker, Erin Shammel; Lee, Jeong T.

    2014-01-01

    Inhibiting the enzyme telomerase by stabilizing the G-quadruplex has potential in anticancer drug design. Diprotonated cyclo[n]pyrroles represent a set of expanded porphyrin analogues with structures similar to telomestatin, a natural product known to bind to and stabilize G-quadruplexes. As a first step towards testing whether cyclo[n]pyrroles display a similar function, a series of diprotonated cyclo[n]pyrroles (where n = 6, 7 and 8) was each added to the human telomere repeat sequence d(T2AG3)4 and examined with mass spectrometry, ion mobility and molecular dynamics calculations. Nano-ESI-MS indicated that the smaller the cyclo[n]pyrrole, the stronger it binds to the telomeric sequence. It was also found that cyclo[6]pyrrole bound to d(T2AG3)4 better than octaethylporphyrin, a finding rationalized by cyclo[6]pyrrole having a +2 charge, while octaethylporphyrin bears no charge. Ion mobility measurements were used to measure the collision cross section of each d(T2AG3)4/cyclo[n]pyrrole complex. Only one peak was observed in the arrival time distributions for all complexes and the experimental cross sections indicated that only structures with d(T2AG3)4 in an antiparallel G-quadruplex arrangement and each cyclo[n]pyrrole externally stacked below the G-quartets occur under these experimental conditions. When the cyclo[n]pyrroles were intercalated or nonspecifically bound to the quadruplex or if different conformations than antiparallel were considered for d(T2AG3)4, the theoretical cross sections did not match experiment. On this basis, it is inferred that 1) external stacking represents the dominant binding mode for the interaction of cyclo[n]pyrroles with d(T2AG3)4 and 2) the overall size and charge of the cyclo[n]pyrroles play important roles in defining the binding strength. PMID:16492050

  17. Extended Lagrangian formulation of charge-constrained tight-binding molecular dynamics.

    PubMed

    Cawkwell, M J; Coe, J D; Yadav, S K; Liu, X-Y; Niklasson, A M N

    2015-06-09

    The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.

  18. Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases

    PubMed Central

    Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun

    2016-01-01

    Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery. PMID:26959013

  19. Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases.

    PubMed

    Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun

    2016-03-04

    Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery.

  20. Detoxification of cancerogenic compounds by lactic acid bacteria strains.

    PubMed

    Lili, Zhao; Junyan, Wei; Hongfei, Zhao; Baoqing, Zhu; Bolin, Zhang

    2017-10-20

    Carcinogens in food are an important issue that threat people's health right now. Lactic acid bacteria (LAB) strains as well-known probiotics have shown numerous perspectives in being used as a good food additive to confront cancerogenic compounds in recent years. Some LAB strains can remove cancerogenic compounds from medium environment via direct physical binding and avoid re-pollution of poisonous secondary metabolites which are generated from degradation of cancerogenic compounds. This article presents a whole overview of the physical-binding of LAB strains to such common cancerogenic compounds existed in food and feed environments as mycotoxins, polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HAs) and pthalic acid esters (PAEs).In most cases, summaries of these published researches show that the binding of LAB strains to cancerogenic compounds is a physical process. Binding sites generally take place in cell wall, and peptidoglycan from LAB cells is the chief binding site. The adsorption of lactic acid bacteria to cancerogenic compounds is strain-specific. Specially, the strains from the two genera Lactobacillus and Bifidobacterium show a better potential in binding cancerogenic compounds. Moreover, we firstly used molecular dynamic computer model as a highly potential tool to simulate the binding behavior of peptidoglycan from Lactobacillus acidophilus to DBP, one of pthalic acid esters with genetic toxicity. It was seen that the theoretical data were quite consistent with the experimental results in terms of the ability of this bacterium to bind DBP. Also, the toxicity reduction of cancerogenic compounds by LAB strains could be achieved either in gastrointestinal model or animal tests and clinical researches as well. In conclusion, carefully selected LAB strains should be a good solution as one of safety strategies to reduce potential risk of cancerogenic compounds from food-based products.

  1. Docking, molecular dynamics, binding energy-MM-PBSA studies of naphthofuran derivatives to identify potential dual inhibitors against BACE-1 and GSK-3β.

    PubMed

    Kumar, Akhil; Srivastava, Gaurava; Negi, Arvind S; Sharma, Ashok

    2018-01-19

    BACE-1 and GSK-3β both are potential therapeutic drug targets for Alzheimer's disease. Recently, both these targets received attention for designing dual inhibitors. Till now only two scaffolds (triazinone and curcumin) derivatives have been reported as BACE-1 and GSK-3β dual inhibitors. In our previous work, we have reported first in class dual inhibitor for BACE-1 and GSK-3β. In this study, we have explored other naphthofuran derivatives for their potential to inhibit BACE-1 and GSK-3β through docking, molecular dynamics, binding energy (MM-PBSA). These computational methods were performed to estimate the binding affinity of naphthofuran derivatives towards the BACE-1 and GSK-3β. In the docking results, two derivatives (NS7 and NS9) showed better binding affinity as compared to previously reported inhibitors. Hydrogen bond occupancy of NS7 and NS9 generated from MD trajectories showed good interaction with the flap residues Gln73, Thr72 of BACE-1 and Arg141, Thr138 residues of GSK-3β. MM-PBSA and energy decomposition per residue revealed different components of binding energy and relative importance of amino acid involved in binding. The results showed that the binding of inhibitors was majorly governed by the hydrophobic interactions and suggesting that hydrophobic interactions might be the key to design dual inhibitors for BACE1-1 and GSK-3β. Distance between important pair of amino acid residues indicated that BACE-1 and GSK-3β adopt closed conformation and become inactive after ligand binding. The results suggested that naphthofuran derivatives might act as dual inhibitor against BACE-1 and GSK-3β.

  2. The role of dimension in multivalent binding events: structure-activity relationship of dendritic polyglycerol sulfate binding to L-selectin in correlation with size and surface charge density.

    PubMed

    Weinhart, Marie; Gröger, Dominic; Enders, Sven; Riese, Sebastian B; Dernedde, Jens; Kainthan, Rajesh K; Brooks, Donald E; Haag, Rainer

    2011-08-11

    L-, P-, and E-Selectin are cell adhesion molecules that play a crucial role in leukocyte recruitment from the blood stream to the afflicted tissue in an acute and chronic inflammatory setting. Since selectins mediate the initial contact of leukocytes to the vascular endothelium, they have evolved as a valuable therapeutic target in diseases related to inflammation by inhibition of the physiological selectin-ligand interactions. In a previous study, it was demonstrated that dPGS, a fully synthetic heparin analogue, works as an efficient inhibitor towards L- and P-selectin in vitro as well as in vivo. Herein, the focus is directed towards the effect of size and charge density of the polyanion. The efficiency of L-selectin inhibition via an SPR-based in vitro assay and a cell-based flow chamber assay is investigated with dPGS ranging from approximately 4 to 2000 kDa. SPR measurements show that the inhibitory potential of highly sulfated dPGS increases with size and charge density. Thereby, IC(50) values from the micromolar to the low picomolar range are determined. The same tendency could be observed in a cell-based flow chamber assay with three representative dPGS samples. This structure-affinity relationship of dPGS suggests that the strong inhibitory potential of dPGS is not only based on the strong electrostatic interaction with areas of cationic surface potential on L-selectin but is also due to a steric shielding of the carbohydrate binding site by large, flexible dPGS particles. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. EXPRESSION OF NeuGc ON PIG CORNEAS AND ITS POTENTIAL SIGNIFICANCE IN PIG CORNEAL XENOTRANSPLANTATION

    PubMed Central

    Lee, Whayoung; Miyagawa, Yuko; Long, Cassandra; Ekser, Burcin; Walters, Eric; Ramsoondar, Jagdeece; Ayares, David; Tector, A. Joseph; Cooper, David K. C.; Hara, Hidetaka

    2016-01-01

    Purpose Pigs expressing neither galactose-α1,3-galactose (Gal) nor N-glycolylneuraminic acid (NeuGc) take xenotransplantation one step closer to the clinic. Our aims were (i) to document the lack of NeuGc expression on corneas and aortas, and cultured endothelial cells (aortic [AECs]; corneal [CECs]) of GTKO/NeuGcKO pigs, and (ii) to investigate whether the absence of NeuGc reduced human antibody binding to the tissues and cells. Methods Wild-type (WT), GTKO, and GTKO/NeuGcKO pig were used for the study. Human tissues and cultured cells were negative controls. Immunofluorescence staining was performed using anti-Gal and anti-NeuGc antibodies, and to determine human IgM and IgG binding to tissues. Flow cytometric analysis was used to determine Gal and NeuGc expression on cultured CECs and AECs and to measure human IgM/IgG binding to these cells. Results Both Gal and NeuGc were detected on WT pig corneas and aortas. Although GTKO pigs expressed NeuGc, neither human nor GTKO/NeuGcKO pigs expressed Gal or NeuGc. Human IgM/IgG binding to corneas and aortas from GTKO and GTKO/NeuGcKO pigs was reduced compared to binding to WT pigs. Human antibody binding to GTKO/NeuGcKO AECs was significantly less than to GTKO AECs, but there was no significant difference in binding between GTKO and GTKO/NeuGcKO CECs. Conclusions The absence of NeuGc on GTKO aortic tissue and AECs is associated with reduced human antibody binding, and possibly will provide better outcome in clinical xenotransplantation using vascularized organs. For clinical corneal xenotransplantation, the absence of NeuGc expression on GTKO/NeuGcKO pig corneas may not prove an advantage over GTKO corneas. PMID:26418433

  4. Lentiavidins: Novel avidin-like proteins with low isoelectric points from shiitake mushroom (Lentinula edodes).

    PubMed

    Takakura, Yoshimitsu; Sofuku, Kozue; Tsunashima, Masako; Kuwata, Shigeru

    2016-04-01

    A biotin-binding protein with a low isoelectric point (pI), which minimizes electrostatic non-specific binding to substances other than biotin, is potentially valuable. To obtain such a protein, we screened hundreds of mushrooms, and detected strong biotin-binding activity in the fruit bodies of Lentinula edodes, shiitake mushroom. Two cDNAs, each encoding a protein of 152 amino acids, termed lentiavidin 1 and lentiavidin 2 were cloned from L. edodes. The proteins shared sequence identities of 27%-49% with other biotin-binding proteins, and many residues that directly associate with biotin in streptavidin were conserved in lentiavidins. The pI values of lentiavidin 1 and lentiavidin 2 were 3.9 and 4.4, respectively; the former is the lowest pI of the known biotin-binding proteins. Lentiavidin 1 was expressed as a tetrameric protein with a molecular mass of 60 kDa in an insect cell-free expression system and showed biotin-binding activity. Lentiavidin 1, with its pI of 3.9, has a potential for broad applications as a novel biotin-binding protein. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Lanthanide binding and IgG affinity construct: Potential applications in solution NMR, MRI, and luminescence microscopy

    PubMed Central

    Barb, Adam W; Ho, Tienhuei Grace; Flanagan-Steet, Heather; Prestegard, James H

    2012-01-01

    Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb3+ with 130 nM affinity. Ions such as Dy3+, Yb3+, and Ce3+ produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd3+ complex) and luminescence microscopy (Z-L2LBT: Tb3+ complex). PMID:22851279

  6. Prospect of Bioflavonoid Fisetin as a Quadruplex DNA Ligand: A Biophysical Approach

    PubMed Central

    Sengupta, Bidisha; Pahari, Biswapathik; Blackmon, Laura; Sengupta, Pradeep K.

    2013-01-01

    Quadruplex (G4) forming sequences in telomeric DNA and c-myc promoter regions of human DNA are associated with tumorogenesis. Ligands that can facilitate or stabilize the formation and increase the stabilization of G4 can prevent tumor cell proliferation and have been regarded as potential anti-cancer drugs. In the present study, steady state and time-resolved fluorescence measurements provide important structural and dynamical insights into the free and bound states of the therapeutically potent plant flavonoid fisetin (3,3′,4′,7-tetrahydroxyflavone) in a G4 DNA matrix. The excited state intra-molecular proton transfer (ESPT) of fisetin plays an important role in observing and understanding the binding of fisetin with the G4 DNA. Differential absorption spectra, thermal melting, and circular dichroism spectroscopic studies provide evidences for the formation of G4 DNA and size exclusion chromatography (SEC) proves the binding and 1∶1 stoichiometry of fisetin in the DNA matrix. Comparative analysis of binding in the presence of EtBr proves that fisetin favors binding at the face of the G-quartet, mostly along the diagonal loop. Time resolved fluorescence anisotropy decay analysis indicates the increase in the restrictions in motion from the free to bound fisetin. We have also investigated the fingerprints of the binding of fisetin in the antiparallel quadruplex using Raman spectroscopy. Preliminary results indicate fisetin to be a prospective candidate as a G4 ligand. PMID:23785423

  7. Nanobiological studies on drug design using molecular mechanic method.

    PubMed

    Ghaheh, Hooria Seyedhosseini; Mousavi, Maryam; Araghi, Mahmood; Rasoolzadeh, Reza; Hosseini, Zahra

    2015-01-01

    Influenza H1N1 is very important worldwide and point mutations that occur in the virus gene are a threat for the World Health Organization (WHO) and druggists, since they could make this virus resistant to the existing antibiotics. Influenza epidemics cause severe respiratory illness in 30 to 50 million people and kill 250,000 to 500,000 people worldwide every year. Nowadays, drug design is not done through trial and error because of its cost and waste of time; therefore bioinformatics studies is essential for designing drugs. This paper, infolds a study on binding site of Neuraminidase (NA) enzyme, (that is very important in drug design) in 310K temperature and different dielectrics, for the best drug design. Information of NA enzyme was extracted from Protein Data Bank (PDB) and National Center for Biotechnology Information (NCBI) websites. The new sequences of N1 were downloaded from the NCBI influenza virus sequence database. Drug binding sites were assimilated and homologized modeling using Argus lab 4.0, HyperChem 6.0 and Chem. D3 softwares. Their stability was assessed in different dielectrics and temperatures. Measurements of potential energy (Kcal/mol) of binding sites of NA in different dielectrics and 310K temperature revealed that at time step size = 0 pSec drug binding sites have maximum energy level and at time step size = 100 pSec have maximum stability and minimum energy. Drug binding sites are more dependent on dielectric constants rather than on temperature and the optimum dielectric constant is 39/78.

  8. Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium*

    PubMed Central

    Wu, Miao; Beckham, Gregg T.; Larsson, Anna M.; Ishida, Takuya; Kim, Seonah; Payne, Christina M.; Himmel, Michael E.; Crowley, Michael F.; Horn, Svein J.; Westereng, Bjørge; Igarashi, Kiyohiko; Samejima, Masahiro; Ståhlberg, Jerry; Eijsink, Vincent G. H.; Sandgren, Mats

    2013-01-01

    Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain. PMID:23525113

  9. Integral assessment of estrogenic potentials in sediment-associated samples: Part 2: Study of estrogen and anti-estrogen receptor-binding potentials of sediment-associated chemicals under different salinity conditions using the salinity-adapted enzyme-linked receptor assay.

    PubMed

    Kase, Robert; Hansen, Peter D; Fischer, Birgit; Manz, Werner; Heininger, Peter; Reifferscheid, Georg

    2009-01-01

    The enzyme-linked receptor assay (ELRA) detects estrogenic and anti-estrogenic effects at the molecular level of receptor binding and is a useful tool for the integrative assessment of ecotoxicological potentials caused by hormonally active agents (HAA) and endocrine disrupting compounds (EDC). The main advantage of the ELRA is its high sample throughput and its robustness against cytotoxicity and microbial contamination. After a methodological adaptation to salinity of the ELRA, according to the first part of this study, which increased its salinity tolerance and sensitivity for 17-beta-estradiol, the optimised ELRA was used to investigate 13 native sediments characterised by different levels of salinity and chemical contamination. The applicability of the ELRA for routine analysis in environmental assessment was evaluated. Salinity is often a critical factor for bioassays in ecotoxicological sediment assessment. Therefore, salinity of the samples was additionally adjusted to different levels to characterise its influence on elution and binding processes of receptor-binding substances. The ELRA was carried out with the human estrogen receptor alpha (ER) in a 96-well microplate format using the experimental setup known from the competitive immunoassay based on ligand-protein interaction. It is an important improvement that a physiologically relevant receptor was used as a linking protein instead of an antibody. The microplates were coated with a 17-beta-estradiol-BSA conjugate, and dilution series of estradiol and of native sediment samples were added and incubated with the ER. After a washing step, a biotinylated mouse anti-ER antibody was added to each well. Receptor binding to estradiol, agonistic and antagonistic receptor binding, were determined by a streptavidin-POD-biotin complex with subsequent measurement of the peroxidase activity at the wavelength of 450 nm using a commercial ELISA multiplate reader. The sediment elutriates and pore water samples of sediments were tested in a dilution series to evaluate at which dilution step the receptor-binding potential ends. In the elution process (see Section 2.1 to 2.2), a method was developed to adjust the salinity to the levels of the reference testings, which offers an appropriate option to adjust the salinity in both directions. Statistical evaluation was made with a combination of the Mann-Whitney U test and the pT-method. This part of the study characterised the environmental factor 'salinity' for prospective applications of the ELRA. Using reference substances such as 17-beta-estradiol, the ELRA showed sigmoid concentration-effect relations over a broad range from 0.05 mug/l to 100 mug/l under physiological conditions. After methodological optimisation, both sensitivity and tolerance of the assay against salinity could be significantly raised, and the ELRA became applicable under salinity conditions up to concentrations of 20.5 per thousand. The mean relative inter-test error (n = 3) was around 11% with reference substances and below 5% for single sediments elutriates in three replicates each. For sediment testings, the pore water and different salinity-adjusted elutriates of 13 sediments were used. A clear differentiation of the receptor-binding potential could be reached by application of the pT-method. Thereby, pT-values from one to six could be assigned to the sediments, and the deviation caused by the different salinity conditions was one pT-value. The mean standard deviation in the salinity adaptation procedure of the elutriates was below 5%. Although the ELRA has already been used for assessments of wastewater, sludge and soil, its applicability for samples to different salinity levels has not been investigated so far. Even if the ELRA is not as sensitive as the E-screen or the YES-assay, with regard to reference substances like 17-beta-estradiol, it is a very useful tool for pre-screening, because it is able to integrate both estrogenic as well as anti-estrogenic receptor-binding effects. According to the results of sediment testing, and given the integrative power to detect different directions of effects, the ELRA shows sufficient sensitivity and salinity tolerance to discriminate receptor-binding potentials in environmental samples. The optimised ELRA assay is a fast, cost-effective, reliable and highly reproducible tool that can be used for high-throughput screening in a microplate format in detecting both estrogenic and anti-estrogenic effects. Additionally, the ELRA is robust against microbial contaminations, and is not susceptible towards cytotoxic interferences like the common cell-culture methods. The general applicability and sufficient sensitivity of the ELRA was shown in freshwater environments. Marine and brackish samples can be measured up to salinity levels of 20.5 per thousand. In view of the proven sensitivity, functionality and the fastness of the ELRA, it is recommendable to standardise the test method. At the moment, no adequate in vitro test procedure exists which is standardised to DIN or ISO levels. The E-screen and the yeast estrogen/androgen screens (YES/YAS) sometimes underlie strong cytotoxic effects, as reported in the first part of this study. Further development of an ELRA assay using human androgen receptors appears to be very promising to gain information about androgenic and anti-androgenic effects, too. This would offer a possibility to use the ELRA as a fast and reliable pre-screening tool for the detection of endocrine potentials, thus minimising time and cost-expensive animal experiments.

  10. In vivo evaluation of 18F-MNI698: an 18F-labeled radiotracer for imaging of serotonin 4 receptors in brain.

    PubMed

    Tavares, Adriana Alexandre S; Caillé, Fabien; Barret, Olivier; Papin, Caroline; Lee, Hsiaoju; Morley, Thomas J; Fowles, Krista; Holden, Daniel; Seibyl, John P; Alagille, David; Tamagnan, Gilles D

    2014-05-01

    Serotonin 4 receptors (5-hydroxytryptamine receptor 4 [5HT4R]) hold promise as a novel therapeutic approach to multiple brain disorders, including Alzheimer and Huntington disease. In vivo imaging of these receptors with selective 5HT4R radiotracers and PET would be valuable to investigate alterations in 5HT4R in different brain disorders and to assist drug discovery. In this study, (18)F-MNI698 was evaluated as a potential PET radiotracer for imaging of 5HT4R in the brain. Eighteen PET studies were performed in 3 adult rhesus monkeys. The radiotracer was administered as a bolus intravenous injection or bolus plus constant infusion (time that would be required to inject the bolus at the infusion rate = 60 min), and arterial blood was collected for data quantification. Kinetic models were used to estimate distribution volumes and binding potentials, for which the cerebellum was used as a reference region. (18)F-MNI698 test-retest variability and upper mass dose limits were determined. Preblocking studies using several doses of SB204070, a selective 5HT4R antagonist, were performed. (18)F-MNI698 avidly entered the monkey brain (peak percentage injected dose of ∼ 6.6%), and its brain distribution was consistent with known 5HT4R densities. At 120 min after bolus injection and after the start of radiotracer infusion, only less than 5% and approximately 10% parent compound was present in blood, respectively. Measured binding potentials were underestimated by 22%-36% when noninvasive methods were used for data quantification in comparison with invasive methods. A good agreement was found between test-retest measurements. The radiotracer upper mass dose limit (<5% occupancy) was determined to be 13.1 μg per 70 kg of body weight. SB204070 blocked the radiotracer binding in a dose-dependent manner. Data indicate that (18)F-MNI698 is a promising PET radiotracer for imaging of 5HT4R in the brain, and human studies are warranted based on these study results.

  11. Application of poly (ethyleneimine) solution as a binding agent in DGT technique for measurement of heavy metals in water.

    PubMed

    Sui, Dian-Peng; Fan, Hong-Tao; Li, Jing; Li, You; Li, Qiong; Sun, Ting

    2013-09-30

    A 0.050 mol L(-1) solution of poly (ethyleneimine) (PEI), had been used as a novel binding agent of diffusive gradients in thin-films (DGT) technique (PEI-DGT) for measuring the concentrations of labile Cu(2+), Cd(2+) and Pb(2+) in waters. The binding capacities of the PEI-DGT for Cu(2+), Cd(2+) and Pb(2+) were 11.8, 10.2 and 10.6 μmol L(-1), respectively. The performance of PEI-DGT was independence of pH in the range of 4-8 and ionic strength in the range from 1×10(-4) to 0.1 mol L(-1) (as NaNO3). PEI-DGT could measure 104.7±5.2% of the total concentration of Cd(2+) (0.500 mg L(-1)), 95.2±4.3% of the total Cu(2+) (0.500 mg L(-1)) and 99.2±3.4% of the total Pb(2+) (0.500 mg L(-1)) in synthetic solution. Effects of the ligands on the measurement of labile metals were also investigated in synthetic solutions containing the various concentrations of EDTA and humic acid. In EDTA solution, the concentrations of labile metals measured by PEI-DGT showed good agreement with the theoretical concentrations of free metal ions. In humic acid solution, the concentrations of labile metals measured by PEI-DGT decreased with the increase of the concentrations of humic acid. Several DGT devices with various binding agents, including PEI, sodium polyacrylate and poly(4-styrenesulfonate) solution, were used for the measurement of labile fractions of Cu(2+), Cd(2+) and Pb(2+) in the spiked waters and in mine wastewaters. The results showed that the concentrations of labile metal measured by DGT devices with different binding agents could be significantly different, indicating that the labile fractions of metals were dependent on the binding strength of the binding agents with metals. By choosing binding agents, the useful information on the speciation and bioavailability of the analytes can be provided. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Characterization of [11C]Lu AE92686 as a PET radioligand for phosphodiesterase 10A in the nonhuman primate brain.

    PubMed

    Yang, Kai-Chun; Stepanov, Vladimir; Amini, Nahid; Martinsson, Stefan; Takano, Akihiro; Nielsen, Jacob; Bundgaard, Christoffer; Bang-Andersen, Benny; Grimwood, Sarah; Halldin, Christer; Farde, Lars; Finnema, Sjoerd J

    2017-02-01

    [ 11 C]Lu AE92686 is a positron emission tomography (PET) radioligand that has recently been validated for examining phosphodiesterase 10A (PDE10A) in the human striatum. [ 11 C]Lu AE92686 has high affinity for PDE10A (IC 50  = 0.39 nM) and may also be suitable for examination of the substantia nigra, a region with low density of PDE10A. Here, we report characterization of regional [ 11 C]Lu AE92686 binding to PDE10A in the nonhuman primate (NHP) brain. A total of 11 PET measurements, seven baseline and four following pretreatment with unlabeled Lu AE92686 or the structurally unrelated PDE10A inhibitor MP-10, were performed in five NHPs using a high resolution research tomograph (HRRT). [ 11 C]Lu AE92686 binding was quantified using a radiometabolite-corrected arterial input function and compartmental and graphical modeling approaches. Regional time-activity curves were best described with the two-tissue compartment model (2TCM). However, the distribution volume (V T ) values for all regions were obtained by the Logan plot analysis, as reliable cerebellar V T values could not be derived by the 2TCM. For cerebellum, a proposed reference region, V T values increased by ∼30 % with increasing PET measurement duration from 63 to 123 min, while V T values in target regions remained stable. Both pretreatment drugs significantly decreased [ 11 C]Lu AE92686 binding in target regions, while no significant effect on cerebellum was observed. Binding potential (BP ND ) values, derived with the simplified reference tissue model (SRTM), were 13-17 in putamen and 3-5 in substantia nigra and correlated well to values from the Logan plot analysis. The method proposed for quantification of [ 11 C]Lu AE92686 binding in applied studies in NHP is based on 63 min PET data and SRTM with cerebellum as a reference region. The study supports that [ 11 C]Lu AE92686 can be used for PET examinations of PDE10A binding also in substantia nigra.

  13. In vitro and in silico assessment of the structure-dependent binding of bisphenol analogues to glucocorticoid receptor.

    PubMed

    Zhang, Jie; Zhang, Tiehua; Guan, Tianzhu; Yu, Hansong; Li, Tiezhu

    2017-03-01

    Widespread use of bisphenol A (BPA) and other bisphenol analogues has attracted increasing attention for their potential adverse effects. As environmental endocrine-disrupting compounds (EDCs), bisphenols (BPs) may activate a variety of nuclear receptors, including glucocorticoid receptor (GR). In this work, the binding of 11 BPs to GR was investigated by fluorescence polarization (FP) assay in combination with molecular dynamics simulations. The human glucocorticoid receptor was prepared as a soluble recombinant protein. A fluorescein-labeled dexamethasone derivative (Dex-fl) was employed as tracer. Competitive displacement of Dex-fl from GR by BPs showed that the binding affinities of bisphenol analogues were largely dependent on their characteristic functional groups. In order to further understand the relationship between BPs structures and their GR-mediated activities, molecular docking was utilized to explore the binding modes at the atomic level. The results confirmed that structural variations of bisphenol analogues contributed to different interactions of BPs with GR, potentially causing distinct toxic effects. Comparison of the calculated binding energies vs. experimental binding affinities yielded a good correlation (R 2  = 0.8266), which might be helpful for the design of environmentally benign materials with reduced toxicities. In addition, the established FP assay based on GR exhibited the potential to offer an alternative to traditional methods for the detection of bisphenols.

  14. The Binding Database: data management and interface design.

    PubMed

    Chen, Xi; Lin, Yuhmei; Liu, Ming; Gilson, Michael K

    2002-01-01

    The large and growing body of experimental data on biomolecular binding is of enormous value in developing a deeper understanding of molecular biology, in developing new therapeutics, and in various molecular design applications. However, most of these data are found only in the published literature and are therefore difficult to access and use. No existing public database has focused on measured binding affinities and has provided query capabilities that include chemical structure and sequence homology searches. We have created Binding DataBase (BindingDB), a public, web-accessible database of measured binding affinities. BindingDB is based upon a relational data specification for describing binding measurements via Isothermal Titration Calorimetry (ITC) and enzyme inhibition. A corresponding XML Document Type Definition (DTD) is used to create and parse intermediate files during the on-line deposition process and will also be used for data interchange, including collection of data from other sources. The on-line query interface, which is constructed with Java Servlet technology, supports standard SQL queries as well as searches for molecules by chemical structure and sequence homology. The on-line deposition interface uses Java Server Pages and JavaBean objects to generate dynamic HTML and to store intermediate results. The resulting data resource provides a range of functionality with brisk response-times, and lends itself well to continued development and enhancement.

  15. Characterization of the Raf kinase inhibitory protein (RKIP) binding pocket: NMR-based screening identifies small-molecule ligands.

    PubMed

    Shemon, Anne N; Heil, Gary L; Granovsky, Alexey E; Clark, Mathew M; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R; Koide, Shohei

    2010-05-05

    Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  16. Two potential calmodulin-binding sequences in the ryanodine receptor contribute to a mobile, intra-subunit calmodulin-binding domain

    PubMed Central

    Huang, Xiaojun; Liu, Ying; Wang, Ruiwu; Zhong, Xiaowei; Liu, Yingjie; Koop, Andrea; Chen, S. R. Wayne; Wagenknecht, Terence; Liu, Zheng

    2013-01-01

    Summary Calmodulin (CaM), a 16 kDa ubiquitous calcium-sensing protein, is known to bind tightly to the calcium release channel/ryanodine receptor (RyR), and modulate RyR function. CaM binding studies using RyR fragments or synthetic peptides have revealed the presence of multiple, potential CaM-binding regions in the primary sequence of RyR. In the present study, we inserted GFP into two of these proposed CaM-binding sequences and mapped them onto the three-dimensional structure of intact cardiac RyR2 by cryo-electron microscopy. Interestingly, we found that the two potential CaM-binding regions encompassing, Arg3595 and Lys4269, respectively, are in close proximity and are adjacent to the previously mapped CaM-binding sites. To monitor the conformational dynamics of these CaM-binding regions, we generated a fluorescence resonance energy transfer (FRET) pair, a dual CFP- and YFP-labeled RyR2 (RyR2R3595-CFP/K4269-YFP) with CFP inserted after Arg3595 and YFP inserted after Lys4269. We transfected HEK293 cells with the RyR2R3595-CFP/K4269-YFP cDNA, and examined their FRET signal in live cells. We detected significant FRET signals in transfected cells that are sensitive to the channel activator caffeine, suggesting that caffeine is able to induce conformational changes in these CaM-binding regions. Importantly, no significant FRET signals were detected in cells co-transfected with cDNAs encoding the single CFP (RyR2R3595-CFP) and single YFP (RyR2K4269-YFP) insertions, indicating that the FRET signal stemmed from the interaction between R3595–CFP and K4269–YFP that are in the same RyR subunit. These observations suggest that multiple regions in the RyR2 sequence may contribute to an intra-subunit CaM-binding pocket that undergoes conformational changes during channel gating. PMID:23868982

  17. The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo

    PubMed Central

    Riggs, Daniel L.; Roberts, Patricia J.; Chirillo, Samantha C.; Cheung-Flynn, Joyce; Prapapanich, Viravan; Ratajczak, Thomas; Gaber, Richard; Picard, Didier; Smith, David F.

    2003-01-01

    Hsp90 is required for the normal activity of steroid receptors, and in steroid receptor complexes it is typically bound to one of the immunophilin-related co-chaperones: the peptidylprolyl isomerases FKBP51, FKBP52 or CyP40, or the protein phosphatase PP5. The physiological roles of the immunophilins in regulating steroid receptor function have not been well defined, and so we examined in vivo the influences of immunophilins on hormone-dependent gene activation in the Saccharomyces cerevisiae model for glucocorticoid receptor (GR) function. FKBP52 selectively potentiates hormone-dependent reporter gene activation by as much as 20-fold at limiting hormone concentrations, and this potentiation is readily blocked by co-expression of the closely related FKBP51. The mechanism for potentiation is an increase in GR hormone-binding affinity that requires both the Hsp90-binding ability and the prolyl isomerase activity of FKBP52. PMID:12606580

  18. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors.

    PubMed

    Storer, Christopher S; Coldrick, Zachary; Tate, Daniel J; Donoghue, Jack Marsden; Grieve, Bruce

    2018-02-10

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N -allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP.

  19. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors

    PubMed Central

    Storer, Christopher S.; Coldrick, Zachary; Donoghue, Jack Marsden

    2018-01-01

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N-allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP. PMID:29439386

  20. Investigation of magnetic microdiscs for bacterial pathogen detection

    NASA Astrophysics Data System (ADS)

    Castillo-Torres, Keisha Y.; Garraud, Nicolas; Arnold, David P.; McLamore, Eric S.

    2016-05-01

    Despite strict regulations to control the presence of human pathogens in our food supply, recent foodborne outbreaks have heightened public concern about food safety and created urgency to improve methods for pathogen detection. Herein we explore a potentially portable, low-cost system that uses magnetic microdiscs for the detection of bacterial pathogens in liquid samples. The system operates by optically measuring the rotational dynamics of suspended magnetic microdiscs functionalized with pathogen-binding aptamers. The soft ferromagnetic (Ni80Fe20) microdiscs exhibit a closed magnetic spin arrangement (i.e. spin vortex) with zero magnetic stray field, leading to no disc agglomeration when in free suspension. With very high surface area for functionalization and volumes 10,000x larger than commonly used superparamagnetic nanoparticles, these 1.5-μm-diameter microdiscs are well suited for tagging, trapping, actuating, or interrogating bacterial targets. This work reports a wafer-level microfabrication process for fabrication of 600 million magnetic microdiscs per substrate and measurement of their rotational dynamics response. Additionally, the biofunctionalization of the microdiscs with DNA aptamers, subsequent binding to E. coli bacteria, and their magnetic manipulation is reported.

  1. FRET-based glucose monitoring for bioprocessing

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Smalls-Mantey, Lauren; Lin, Debora; Rao, Govind; Tolosa, Leah

    2006-02-01

    The glucose-mediated conformational changes in the glucose binding protein (GBP) have been exploited in the development of fluorescence based glucose sensors. The fluorescence response is generated by a polarity sensitive dye attached to a specific site. Such fluorescent sensors respond to submicromolar glucose at diffusion-controlled rates mimicking the wild type. However, such sensors have been limited to in vitro glucose sensing because of the preliminary dye-labeling step. In the study described here, the dye-labeling step is omitted by genetically encoding the GBP with two green fluorescent mutants namely, the green fluorescent protein (GFP) and the yellow fluorescent protein (YFP) in the N- and C-terminal ends, respectively. These two GFP mutants comprise a fluorescence resonance energy transfer (FRET) donor and acceptor pair. Thus, when glucose binds with GBP, the conformational changes affect the FRET efficiency yielding a dose-dependent response. A potential application for this FRET-based glucose biosensor is online glucose sensing in bioprocessing and cell culture. This was demonstrated by the measurement of glucose consumption in yeast fermentation. Further development of this system should yield in vivo measurement of glucose in bioprocesses.

  2. Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study.

    PubMed

    Shao, Qing; Hall, Carol K

    2016-08-09

    A better understanding of the binding preference of amino acids for gold nanoparticles of different diameters could aid in the design of peptides that bind specifically to nanoparticles of a given diameter. Here we identify the binding preference of 19 natural amino acids for three gold nanoparticles with diameters of 1.0, 2.0, and 4.0 nm, and investigate the mechanisms that govern these preferences. We calculate potentials of mean force between 36 entities (19 amino acids and 17 side chains) and the three gold nanoparticles in explicit water using well-tempered metadynamics simulations. Comparing these potentials of mean force determines the amino acids' nanoparticle binding preferences and if these preferences are controlled by the backbone, the side chain, or both. Twelve amino acids prefer to bind to the 4.0 nm gold nanoparticle, and seven prefer to bind to the 2.0 nm one. We also use atomistic molecular dynamics simulations to investigate how water molecules near the nanoparticle influence the binding of the amino acids. The solvation shells of the larger nanoparticles have higher water densities than those of the smaller nanoparticles while the orientation distributions of the water molecules in the shells of all three nanoparticles are similar. The nanoparticle preferences of the amino acids depend on whether their binding free energy is determined mainly by their ability to replace or to reorient water molecules in the nanoparticle solvation shell. The amino acids whose binding free energy depends mainly on the replacement of water molecules are likely to prefer to bind to the largest nanoparticle and tend to have relatively simple side chain structures. Those whose binding free energy depends mainly on their ability to reorient water molecules prefer a smaller nanoparticle and tend to have more complex side chain structures.

  3. The Heme-Based Oxygen Sensor Rhizobium etli FixL: Influence of Auxiliary Ligands on Heme Redox Potential and Implications on the Enzyme Activity.

    PubMed

    Honorio-Felício, Nathalie; Carepo, Marta S P; de F Paulo, Tércio; de França Lopes, Luiz Gonzaga; Sousa, Eduardo H S; Diógenes, Izaura C N; Bernhardt, Paul V

    2016-11-01

    Conformational changes associated to sensing mechanisms of heme-based protein sensors are a key molecular event that seems to modulate not only the protein activity but also the potential of the Fe III/II redox couple of the heme domain. In this work, midpoint potentials (E m ) assigned to the Fe III/II redox couple of the heme domain of FixL from Rhizobium etli (ReFixL) in the unliganded and liganded states were determined by spectroelectrochemistry in the presence of inorganic mediators. In comparison to the unliganded ReFixL protein (+19mV), the binding to ligands that switch off the kinase activity induces a negative shift, i. e. E m =-51, -57 and -156mV for O 2 , imidazole and CN - , respectively. Upon binding to CO, which does not affect the kinase active, E m was observed at +21mV. The potential values observed for Fe III/II of the heme domain of ReFixL upon binding to CO and O 2 do not follow the expected trend based on thermodynamics, assuming that positive potential shift would be expected for ligands that bind to and therefore stabilize the Fe II state. Our results suggest that the conformational changes that switch off kinase activity upon O 2 binding have knock-on effects to the local environment of the heme, such as solvent rearrangement, destabilize the Fe II state and counterbalances the Fe II -stabilizing influence of the O 2 ligand. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A contralateral repeated bout effect attenuates induction of NF-κB DNA binding following eccentric exercise.

    PubMed

    Xin, Ling; Hyldahl, Robert D; Chipkin, Stuart R; Clarkson, Priscilla M

    2014-06-01

    We investigated the existence of contralateral repeated bout effect and tested if the attenuation of nuclear factor-kappa B (NF-κB; an important regulator of muscle inflammation) induction following eccentric exercise is a potential mechanism. Thirty-one healthy men performed two bouts of knee extension eccentric exercise, initially with one leg and then with the opposite leg 4 wk later. Vastus lateralis muscle biopsies of both exercised and control legs were taken 3 h postexercise. Knee extension isometric and isokinetic strength (60°/sec and 180°/sec) were measured at baseline, pre-exercise, immediately postexercise, and 1/day for 5 days postexercise. Serum creatine kinase (CK) activity and muscle soreness were assessed at baseline and 1/day for 5 days postexercise. NF-κB (p65) DNA-binding activity was measured in the muscle biopsies. Isometric strength loss was lower in bout 2 than in bout 1 at 24, 72, and 96 h postexercise (P < 0.05). Isokinetic strength (60°/s and 180°/s) was reduced less in bout 2 than in bout 1 at 72 h postexercise (P < 0.01). There were no significant differences between bouts for postexercise CK activity or muscle soreness. p65 DNA-binding activity was increased following eccentric exercise (compared with the control leg) in bout 1 (122.9% ± 2.6%; P < 0.001) and bout 2 (109.1% ± 3.0%; P < 0.05). Compared with bout 1, the increase in NF-κB DNA-binding activity postexercise was attenuated after bout 2 (P = 0.0008). Repeated eccentric exercise results in a contralateral repeated bout effect, which could be due to the attenuated increase in NF-κB activity postexercise. Copyright © 2014 the American Physiological Society.

  5. Detection of lipid-induced structural changes of the Marburg virus matrix protein VP40 using hydrogen/deuterium exchange-mass spectrometry

    PubMed Central

    Wijesinghe, Kaveesha J.; Urata, Sarah; Bhattarai, Nisha; Kooijman, Edgar E.; Gerstman, Bernard S.; Chapagain, Prem P.; Li, Sheng; Stahelin, Robert V.

    2017-01-01

    Marburg virus (MARV) is a lipid-enveloped virus from the Filoviridae family containing a negative sense RNA genome. One of the seven MARV genes encodes the matrix protein VP40, which forms a matrix layer beneath the plasma membrane inner leaflet to facilitate budding from the host cell. MARV VP40 (mVP40) has been shown to be a dimeric peripheral protein with a broad and flat basic surface that can associate with anionic phospholipids such as phosphatidylserine. Although a number of mVP40 cationic residues have been shown to facilitate binding to membranes containing anionic lipids, much less is known on how mVP40 assembles to form the matrix layer following membrane binding. Here we have used hydrogen/deuterium exchange (HDX) mass spectrometry to determine the solvent accessibility of mVP40 residues in the absence and presence of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate. HDX analysis demonstrates that two basic loops in the mVP40 C-terminal domain make important contributions to anionic membrane binding and also reveals a potential oligomerization interface in the C-terminal domain as well as a conserved oligomerization interface in the mVP40 N-terminal domain. Lipid binding assays confirm the role of the two basic patches elucidated with HD/X measurements, whereas molecular dynamics simulations and membrane insertion measurements complement these studies to demonstrate that mVP40 does not appreciably insert into the hydrocarbon region of anionic membranes in contrast to the matrix protein from Ebola virus. Taken together, we propose a model by which association of the mVP40 dimer with the anionic plasma membrane facilitates assembly of mVP40 oligomers. PMID:28167534

  6. Detection of lipid-induced structural changes of the Marburg virus matrix protein VP40 using hydrogen/deuterium exchange-mass spectrometry.

    PubMed

    Wijesinghe, Kaveesha J; Urata, Sarah; Bhattarai, Nisha; Kooijman, Edgar E; Gerstman, Bernard S; Chapagain, Prem P; Li, Sheng; Stahelin, Robert V

    2017-04-14

    Marburg virus (MARV) is a lipid-enveloped virus from the Filoviridae family containing a negative sense RNA genome. One of the seven MARV genes encodes the matrix protein VP40, which forms a matrix layer beneath the plasma membrane inner leaflet to facilitate budding from the host cell. MARV VP40 (mVP40) has been shown to be a dimeric peripheral protein with a broad and flat basic surface that can associate with anionic phospholipids such as phosphatidylserine. Although a number of mVP40 cationic residues have been shown to facilitate binding to membranes containing anionic lipids, much less is known on how mVP40 assembles to form the matrix layer following membrane binding. Here we have used hydrogen/deuterium exchange (HDX) mass spectrometry to determine the solvent accessibility of mVP40 residues in the absence and presence of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate. HDX analysis demonstrates that two basic loops in the mVP40 C-terminal domain make important contributions to anionic membrane binding and also reveals a potential oligomerization interface in the C-terminal domain as well as a conserved oligomerization interface in the mVP40 N-terminal domain. Lipid binding assays confirm the role of the two basic patches elucidated with HD/X measurements, whereas molecular dynamics simulations and membrane insertion measurements complement these studies to demonstrate that mVP40 does not appreciably insert into the hydrocarbon region of anionic membranes in contrast to the matrix protein from Ebola virus. Taken together, we propose a model by which association of the mVP40 dimer with the anionic plasma membrane facilitates assembly of mVP40 oligomers. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Scrutinizing MHC-I binding peptides and their limits of variation.

    PubMed

    Koch, Christian P; Perna, Anna M; Pillong, Max; Todoroff, Nickolay K; Wrede, Paul; Folkers, Gerd; Hiss, Jan A; Schneider, Gisbert

    2013-01-01

    Designed peptides that bind to major histocompatibility protein I (MHC-I) allomorphs bear the promise of representing epitopes that stimulate a desired immune response. A rigorous bioinformatical exploration of sequence patterns hidden in peptides that bind to the mouse MHC-I allomorph H-2K(b) is presented. We exemplify and validate these motif findings by systematically dissecting the epitope SIINFEKL and analyzing the resulting fragments for their binding potential to H-2K(b) in a thermal denaturation assay. The results demonstrate that only fragments exclusively retaining the carboxy- or amino-terminus of the reference peptide exhibit significant binding potential, with the N-terminal pentapeptide SIINF as shortest ligand. This study demonstrates that sophisticated machine-learning algorithms excel at extracting fine-grained patterns from peptide sequence data and predicting MHC-I binding peptides, thereby considerably extending existing linear prediction models and providing a fresh view on the computer-based molecular design of future synthetic vaccines. The server for prediction is available at http://modlab-cadd.ethz.ch (SLiDER tool, MHC-I version 2012).

  8. Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit.

    PubMed

    Lemke, Kono H

    2017-06-21

    This study presents results for the binding energy and geometry of the H 2 S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of D e , E ZPE , D o , and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of D e are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance r SS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H 2 S dimer geometry and binding energy. As regards the structure of (H 2 S) 2 , MPn, CCSD, and CCSD(T) level values of r SS , obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy D e are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies D e with E ZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields D o = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.

  9. Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit

    NASA Astrophysics Data System (ADS)

    Lemke, Kono H.

    2017-06-01

    This study presents results for the binding energy and geometry of the H2S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of De, EZPE, Do, and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of De are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance rSS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H2S dimer geometry and binding energy. As regards the structure of (H2S)2, MPn, CCSD, and CCSD(T) level values of rSS, obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy De are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies De with EZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields Do = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.

  10. Specificity of the weak binding between the phage SPO1 transcription-inhibitory protein, TF1, and SPO1 DNA.

    PubMed

    Johnson, G G; Geiduschek, E P

    1977-04-05

    The interaction of the phage SPO1 protein transcription factor 1 (TF1), with DNA has been analyzed by membrane filter binding and by sedimentation methods. Substantially specific binding of TF1 to helical SPO1 DNA can be demonstrated by nitrocellulose filter-binding assays at relatively low ionic strength (0.08). However, TF1-DNA complexes dissociate and reequilibrate relatively rapidly and this makes filter-binding assays unsuitable for quantitative measurements of binding equilibra. Accordingly, the sedimentation properties of TF1-DNA complexes have been explored and a short-column centrifugation assay has been elaborated for quantitative measurements. Preferential binding of TF1 to the hydroxymethyluracil-containing SPO1 DNA has also been demonstrated by short-column centrifugation. TF1 binds relatively weakly and somewhat cooperatively to SPO1 DNA at many sites; TF1-DNA complexes dissociate and reequilibrate rapidly. At 20 degrees C in 0.01 M phosphate, pH 7.5, 0.15 KC1, one molecule of TF1 can bind to approximately every 60 nucleotide pairs of SPO1 DNA.

  11. Molecular Dynamics Simulations and Kinetic Measurements to Estimate and Predict Protein-Ligand Residence Times.

    PubMed

    Mollica, Luca; Theret, Isabelle; Antoine, Mathias; Perron-Sierra, Françoise; Charton, Yves; Fourquez, Jean-Marie; Wierzbicki, Michel; Boutin, Jean A; Ferry, Gilles; Decherchi, Sergio; Bottegoni, Giovanni; Ducrot, Pierre; Cavalli, Andrea

    2016-08-11

    Ligand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate. We recently reported a new scaled-MD-based protocol, which showed potential for residence time prediction in drug discovery. Here, we further challenged our procedure's predictive ability by applying our methodology to a series of glucokinase activators that could be useful for treating type 2 diabetes mellitus. We combined scaled MD with experimental kinetics measurements and X-ray crystallography, promptly checking the protocol's reliability by directly comparing computational predictions and experimental measures. The good agreement highlights the potential of our scaled-MD-based approach as an innovative method for computationally estimating and predicting drug residence times.

  12. Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.

    PubMed

    Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J

    2014-08-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Exciton Binding Energy of Monolayer WS2

    PubMed Central

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-01-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 ± 0.01 eV around K valley in the Brillouin zone. PMID:25783023

  14. The effects of pargyline and 2-phenylethylamine on D1-like dopamine receptor binding.

    PubMed

    Berry, Mark D

    2011-07-01

    2-Phenylethylamine (PE) potentiates neuronal responses to dopamine by an unknown post-synaptic mechanism. Here, whether PE modifies D1-like receptor binding was examined. An unexpected effect of the monoamine oxidase inhibitor pargyline was observed, which did not involve competition for ligand binding. PE did not affect ligand binding in the presence or absence of pargyline. It is concluded that the effect of pargyline does not involve elevation of endogenous PE, and PE effects on dopaminergic neurotransmission are not due to altered D1-like receptor binding.

  15. Engineered proteins as specific binding reagents.

    PubMed

    Binz, H Kaspar; Plückthun, Andreas

    2005-08-01

    Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.

  16. Quantitative measurements of magnetic polaron binding on acceptors in CdMnTe alloys

    NASA Astrophysics Data System (ADS)

    Nhung, Tran Hong; Planel, R.

    1983-03-01

    The acceptor binding energy is measured as a function of Temperature and composition in Cd1-x Mnx Te alloys, by time resolved spectroscopy. The Bound magnetic polaron effect is measured and compared with a theory accouting for magnetic saturation and fluctuations.

  17. Functional defect of variants in the adenosine triphosphate-binding sites of ABCB4 and their rescue by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770).

    PubMed

    Delaunay, Jean-Louis; Bruneau, Alix; Hoffmann, Brice; Durand-Schneider, Anne-Marie; Barbu, Véronique; Jacquemin, Emmanuel; Maurice, Michèle; Housset, Chantal; Callebaut, Isabelle; Aït-Slimane, Tounsia

    2017-02-01

    ABCB4 (MDR3) is an adenosine triphosphate (ATP)-binding cassette (ABC) transporter expressed at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene are responsible for several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ABCB4 missense variations that reside in the highly conserved motifs of ABC transporters, involved in ATP binding. Five disease-causing variations in these motifs have been identified in ABCB4 (G535D, G536R, S1076C, S1176L, and G1178S), three of which are homologous to the gating mutations of cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7; i.e., G551D, S1251N, and G1349D), that were previously shown to be function defective and corrected by ivacaftor (VX-770; Kalydeco), a clinically approved CFTR potentiator. Three-dimensional structural modeling predicted that all five ABCB4 variants would disrupt critical interactions in the binding of ATP and thereby impair ATP-induced nucleotide-binding domain dimerization and ABCB4 function. This prediction was confirmed by expression in cell models, which showed that the ABCB4 mutants were normally processed and targeted to the plasma membrane, whereas their PC secretion activity was dramatically decreased. As also hypothesized on the basis of molecular modeling, PC secretion activity of the mutants was rescued by the CFTR potentiator, ivacaftor (VX-770). Disease-causing variations in the ATP-binding sites of ABCB4 cause defects in PC secretion, which can be rescued by ivacaftor. These results provide the first experimental evidence that ivacaftor is a potential therapy for selected patients who harbor mutations in the ATP-binding sites of ABCB4. (Hepatology 2017;65:560-570). © 2016 by the American Association for the Study of Liver Diseases.

  18. Attribution of the discrepancy between ELISA and LC-MS/MS assay results of a PEGylated scaffold protein in post-dose monkey plasma samples due to the presence of anti-drug antibodies.

    PubMed

    Wang, Shujie J; Wu, Steven T; Gokemeijer, Jochem; Fura, Aberra; Krishna, Murli; Morin, Paul; Chen, Guodong; Price, Karen; Wang-Iverson, David; Olah, Timothy; Weiner, Russell; Tymiak, Adrienne; Jemal, Mohammed

    2012-01-01

    High-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA) methods were developed for the quantification of a PEGylated scaffold protein drug in monkey plasma samples. The LC-MS/MS method was based on the extraction of the therapeutic protein with a water-miscible organic solvent and the subsequent trypsin digestion of the extract followed by the detection of a surrogate peptide. The assay was linear over a range of 10-3,000 ng/mL. The ELISA method utilized a therapeutic target-binding format in which the recombinant target antigen was used to capture the drug in the sample, followed by detection with an anti-PEG monoclonal antibody. The assay range was 30-2,000 ng/mL. A correlation study between the two methods was performed by measuring the drug concentrations in plasma samples from a single-dose pharmacokinetic (PK) study in cynomolgus monkeys following a 5-mg/kg subcutaneous administration (n = 4). In the early time points of the PK profile, the drug concentrations obtained by the LC-MS/MS method agreed very well with those obtained by the ELISA method. However, at later time points, the drug concentrations measured by the LC-MS/MS method were consistently higher than those measured by the ELISA method. The PK parameters calculated based on the concentration data showed that the two methods gave equivalent peak exposure (C(max)) at 24-48 h. However, the LC-MS/MS results exhibited about 1.53-fold higher total exposure (AUC(tot)) than the ELISA results. The discrepancy between the LC-MS/MS and ELISA results was investigated by conducting immunogenicity testing, anti-drug antibody (ADA) epitope mapping, and Western blot analysis of the drug concentrations coupled with Protein G separation. The results demonstrated the presence of ADA specific to the engineered antigen-binding region of the scaffold protein drug that interfered with the ability of the drug to bind to the target antigen used in the ELISA method. In the presence of the ADAs, the ELISA method measured only the active circulating drug (target-binding), while the LC-MS/MS method measured the total circulating drug. The work presented here indicates that the bioanalysis of protein drugs may be complicated owing to the presence of drug-binding endogenous components or ADAs in the post-dose (incurred) samples. The clear understanding of the behavior of different bioanalytical techniques vis-à-vis the potentially interfering components found in incurred samples is critical in selecting bioanalytical strategies for measuring protein drugs.

  19. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, M.J.; Collins, A.C.

    1982-11-01

    The binding of (/sup 3/H)nicotine to mouse brain has been measured and subsequently compared with the binding of (/sup 125/I)alpha-bungarotoxin (alpha-BTX) and L-(/sup 3/H)quinuclidinyl benzilate (QNB). The binding of nicotine was saturable, reversible, and stereospecific. The average KD and Bmax were 59 nM and 88 fmoles/mg of protein, respectively. Although the rates of association and dissociation of nicotine were temperature-dependent, the incubation temperature had no effect on either KD or Bmax. When measured at 20 degrees or 37 degrees, nicotine appeared to bind to a single class of binding sites, but a second, very low-affinity, binding site was observed atmore » 4 degrees. Nicotine binding was unaffected by the addition of NaCl, KCl, CaCl/sub 2/, or MgSO/sub 4/ to the incubation medium. Nicotinic cholinergic agonists were potent inhibitors of nicotine binding; however, nicotinic antagonists were poor inhibitors. The regional distribution of binding was not uniform: midbrain and striatum contained the highest number of receptors, whereas cerebellum had the fewest. Differences in site densities, regional distribution, inhibitor potencies, and thermal denaturation indicated that nicotine binding was not the same as either QNB or alpha-BTX binding, and therefore that receptors for nicotine may represent a unique population of cholinergic receptors.« less

  20. Mechanism of oxygen reduction reaction on Pt(111) in alkaline solution: Importance of chemisorbed water on surface

    DOE PAGES

    Liu, Shizhong; White, Michael G.; Liu, Ping

    2016-06-30

    Here, we report a detailed mechanistic study of the oxygen reduction reaction (ORR) on Pt(111) in alkaline solution, combining density functional theory and kinetic Monte Carlo simulations. A complex reaction network including four possible pathways via either 2e – or 4e – transfer is established and is able to reproduce the experimental measured polarization curve at both low- and high-potential regions. Our results show that it is essential to account for solvation by water and the dynamic coverage of *OH to describe the reaction kinetics well. In addition, a chemisorbed water (*H 2O)-mediated mechanism including 4e – transfers is identified,more » where the reduction steps via *H 2O on the surface are potential-independent and only the final removal of *OH from the surface in the form of OH –(aq) contributes to the current. For the ORR in alkaline solutions, such a mechanism is more competitive than the associative and dissociative mechanisms typically used to describe the ORR in acid solution. Finally, *OH and **O 2 intermediates are found to be critically important for tuning the ORR activity of Pt in alkaline solution. To enhance the activity, the binding of Pt should be tuned in such a way that *OH binding is weak enough to release more surface sites under working conditions, while **O 2 binding is strong enough to enable the ORR via the 4e – transfer mechanism.« less

  1. Flow cytometer measurement of binding assays

    DOEpatents

    Saunders, George C.

    1987-01-01

    A method of measuring the result of a binding assay that does not require separation of fluorescent smaller particles is disclosed. In a competitive binding assay the smaller fluorescent particles coated with antigen compete with antigen in the sample being analyzed for available binding sites on larger particles. In a sandwich assay, the smaller, fluorescent spheres coated with antibody attach themselves to molecules containing antigen that are attached to larger spheres coated with the same antibody. The separation of unattached, fluorescent smaller particles is made unnecessary by only counting the fluorescent events triggered by the laser of a flow cytometer when the event is caused by a particle with a light scatter measurement within a certain range corresponding to the presence of larger particles.

  2. Effect of binding in cyclic phosphorylation-dephosphorylation process and in energy transformation.

    PubMed

    Sarkar, A; Beard, D A; Franza, B R

    2006-07-01

    The effects of binding on the phosphorylation-dephosphorylation cycle (PDPC) - one of the key components of the signal transduction processes - is analyzed based on a mathematical model. The model shows that binding of proteins, forming a complex, diminishes the ultrasensitivity of the PDPC to the differences in activity between kinase and phosphatase in the cycle. It is also found that signal amplification depends upon the strength of the binding affinity of the protein (phosphorylated or dephosphorylated) to other proteins . It is also observed that the amplification of signal is not only dependent on phosphorylation potential but also on binding properties and resulting adjustments in binding energies.

  3. Design of Broad-Spectrum Inhibitors of Influenza A Virus M2 Proton Channels: A Molecular Modeling Approach.

    PubMed

    Klimochkin, Yuri N; Shiryaev, Vadim A; Petrov, Pavel V; Radchenko, Eugene V; Palyulin, Vladimir A; Zefirov, Nikolay S

    2016-01-01

    The influenza A virus M2 proton channel plays a critical role in its life cycle. However, known M2 inhibitors have lost their clinical efficacy due to the spread of resistant mutant channels. Thus, the search for broad-spectrum M2 channel inhibitors is of great importance. The goal of the present work was to develop a general approach supporting the design of ligands interacting with multiple labile targets and to propose on its basis the potential broad-spectrum inhibitors of the M2 proton channel. The dynamic dimer-of-dimers structures of the three primary M2 target variants, wild-type, S31N and V27A, were modeled by molecular dynamics and thoroughly analyzed in order to define the inhibitor binding sites. The potential inhibitor structures were identified by molecular docking and their binding was verified by molecular dynamics simulation. The binding sites of the M2 proton channel inhibitors were analyzed, a number of potential broad-spectrum inhibitors were identified and the binding modes and probable mechanisms of action of one promising compound were clarified. Using the molecular dynamics and molecular docking techniques, we have refined the dynamic dimer-ofdimers structures of the WT, S31N and V27A variants of the M2 proton channel of the influenza A virus, analyzed the inhibitor binding sites, identified a number of potential broad-spectrum inhibitor structures targeting them, and clarified the binding modes and probable mechanisms of action of one promising compound. The proposed approach is also suitable for the design of ligands interacting with other multiple labile targets.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Y.; Kawai, R.; McManaway, M.

    (3H)Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB);more » estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using (18F)CF and positron emission tomography.« less

  5. Automated benchmarking of peptide-MHC class I binding predictions.

    PubMed

    Trolle, Thomas; Metushi, Imir G; Greenbaum, Jason A; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2015-07-01

    Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. mniel@cbs.dtu.dk or bpeters@liai.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Fibrinogen binding sites P336 and Y338 of clumping factor A are crucial for Staphylococcus aureus virulence.

    PubMed

    Josefsson, Elisabet; Higgins, Judy; Foster, Timothy J; Tarkowski, Andrej

    2008-05-21

    We have earlier shown that clumping factor A (ClfA), a fibrinogen binding surface protein of Staphylococcus aureus, is an important virulence factor in septic arthritis. When two amino acids in the ClfA molecule, P(336) and Y(338), were changed to serine and alanine, respectively, the fibrinogen binding property was lost. ClfAP(336)Y(338) mutants have been constructed in two virulent S. aureus strains Newman and LS-1. The aim of this study was to analyze if these two amino acids which are vital for the fibrinogen binding of ClfA are of importance for the ability of S. aureus to generate disease. Septic arthritis or sepsis were induced in mice by intravenous inoculation of bacteria. The clfAP(336)Y(338) mutant induced significantly less arthritis than the wild type strain, both with respect to severity and frequency. The mutant infected mice developed also a much milder systemic inflammation, measured as lower mortality, weight loss, bacterial growth in kidneys and lower IL-6 levels. The data were verified with a second mutant where clfAP(336) and Y(338) were changed to alanine and serine respectively. When sepsis was induced by a larger bacterial inoculum, the clfAP(336)Y(338) mutants induced significantly less septic death. Importantly, immunization with the recombinant A domain of ClfAP(336)SY(338)A mutant but not with recombinant ClfA, protected against septic death. Our data strongly suggest that the fibrinogen binding activity of ClfA is crucial for the ability of S. aureus to provoke disease manifestations, and that the vaccine potential of recombinant ClfA is improved by removing its ability to bind fibrinogen.

  7. Ground state destabilization from a positioned general base in the ketosteroid isomerase active site.

    PubMed

    Ruben, Eliza A; Schwans, Jason P; Sonnett, Matthew; Natarajan, Aditya; Gonzalez, Ana; Tsai, Yingssu; Herschlag, Daniel

    2013-02-12

    We compared the binding affinities of ground state analogues for bacterial ketosteroid isomerase (KSI) with a wild-type anionic Asp general base and with uncharged Asn and Ala in the general base position to provide a measure of potential ground state destabilization that could arise from the close juxtaposition of the anionic Asp and hydrophobic steroid in the reaction's Michaelis complex. The analogue binding affinity increased ~1 order of magnitude for the Asp38Asn mutation and ~2 orders of magnitude for the Asp38Ala mutation, relative to the affinity with Asp38, for KSI from two sources. The increased level of binding suggests that the abutment of a charged general base and a hydrophobic steroid is modestly destabilizing, relative to a standard state in water, and that this destabilization is relieved in the transition state and intermediate in which the charge on the general base has been neutralized because of proton abstraction. Stronger binding also arose from mutation of Pro39, the residue adjacent to the Asp general base, consistent with an ability of the Asp general base to now reorient to avoid the destabilizing interaction. Consistent with this model, the Pro mutants reduced or eliminated the increased level of binding upon replacement of Asp38 with Asn or Ala. These results, supported by additional structural observations, suggest that ground state destabilization from the negatively charged Asp38 general base provides a modest contribution to KSI catalysis. They also provide a clear illustration of the well-recognized concept that enzymes evolve for catalytic function and not, in general, to maximize ground state binding. This ground state destabilization mechanism may be common to the many enzymes with anionic side chains that deprotonate carbon acids.

  8. Stereoselective binding of agonists to the β2-adrenergic receptor: insights into molecular details and thermodynamics from molecular dynamics simulations.

    PubMed

    Plazinska, Anita; Plazinski, Wojciech

    2017-05-02

    The β 2 -adrenergic receptor (β 2 -AR) is one of the most studied G-protein-coupled receptors. When interacting with ligand molecules, it exhibits a binding characteristic that is strongly dependent on ligand stereoconfiguration. In particular, many experimental and theoretical studies confirmed that stereoisomers of an important β 2 -AR agonist, fenoterol, are associated with diverse mechanisms of binding and activation of β 2 -AR. The objective of the present study was to explore the stereoselective binding of fenoterol to β 2 -AR through the application of an advanced computational methodology based on enhanced-sampling molecular dynamics simulations and potentials of interactions tailored to investigate the stereorecognition effects. The results remain in very good, quantitative agreement with the experimental data (measured in the context of ligand-receptor affinities and their dependence on the temperature), which provides an additional validation for the applied computational protocols. Additionally, our results contribute to the understanding of stereoselective agonist binding by β 2 -AR. Although the significant role of the N293 6.55 residue is confirmed, we additionally show that stereorecognition does not depend solely on the N293-ligand interactions; the stereoselective effects rely on the co-operation of several residues located on both the 6th and 7th transmembrane domains and on extracellular loops. The magnitude and character of the contributions of these residues may be very diverse and result in either enhancing or reducing the stereoselective effects. The same is true when considering the enthalpic and entropic contributions to the binding free energies, which also are dependent on the ligand stereoconfiguration.

  9. Low-temperature binding of NO adsorbed on MIL-100(Al)-A case study for the application of high resolution pulsed EPR methods and DFT calculations.

    PubMed

    Mendt, Matthias; Barth, Benjamin; Hartmann, Martin; Pöppl, Andreas

    2017-12-14

    The low-temperature binding of nitric oxide (NO) in the metal-organic framework MIL-100(Al) has been investigated by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Three NO adsorption species have been identified. Among them, one species has been verified experimentally to bind directly to an 27 Al atom and all its relevant 14 N and 27 Al hyperfine interaction parameters have been determined spectroscopically. Those parameters fit well to the calculated ones of a theoretical cluster model, which was derived by density functional theory (DFT) in the present work and describes the low temperature binding of NO to the regular coordinatively unsaturated Al 3+ site of the MIL-100(Al) structure. As a result, the Lewis acidity of that site has been characterized using the NO molecule as an electron paramagnetic resonance active probe. The DFT derived wave function analysis revealed a bent end-on coordination of the NO molecule adsorbed at that site which is almost purely ionic and has a weak binding energy. The calculated flat potential energy surface of this species indicates the ability of the NO molecule to freely rotate at intermediate temperatures while it is still binding to the Al 3+ site. For the other two NO adsorption species, no structural models could be derived, but one of them is indicated to be adsorbed at the organic part of the metal-organic framework. Hyperfine interactions with protons, weakly coupled to the observed NO adsorption species, have also been measured by pulsed electron paramagnetic resonance and found to be consistent with their attribution to protons of the MIL-100(Al) benzenetricarboxylate ligand molecules.

  10. Automated benchmarking of peptide-MHC class I binding predictions

    PubMed Central

    Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2015-01-01

    Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. Contact: mniel@cbs.dtu.dk or bpeters@liai.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25717196

  11. Behavioral studies with anxiolytic drugs. IV. Serotonergic involvement in the effects of buspirone on punished behavior of pigeons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witkin, J.M.; Mansbach, R.S.; Barrett, J.E.

    1987-12-01

    Interactions of the nonbenzodiazepine anxiolytic, buspirone, with serotonin (5-HT) were studied using behavioral and neurochemical procedures. Punished responding was studied in pigeons as this behavior is a generally acknowledged preclinical predictor of anxiolytic activity and because buspirone increases punished responding of pigeons with greater potency and efficacy than in other species. Keypeck responses were maintained under either fixed-interval or fixed-ratio schedules of food presentation; every 30th response produced a brief electric shock and suppressed responding (punishment). Buspirone (0.1-5.6 mg/kg i.m.) produced dose-related increases in punished responding which reached a maximum at 1 mg/kg. A serotonin agonist, MK-212 (0.01 mg/kg), antagonizedmore » whereas the 5-HT antagonist, cyproheptadine (0.01 mg/kg), potentiated the effects of buspirone without having behavioral effects of their own. The characteristics of (/sup 3/H)-5-HT binding in pigeon brain membranes were similar to results reported in mammalian brain. Neither buspirone, MJ-13805 (gepirone, a related analog), nor MJ-13653 (a buspirone metabolite), significantly affected (/sup 3/H)-5-HT binding and none of the compounds appreciably inhibited uptake of (/sup 3/H)-5-HT into pigeon cerebral synaptosomes. Hill coefficients significantly less than unity for all drugs except 5-HT suggested multiple serotonergic binding sites for buspirone and analogs. Buspirone and MJ-13805 (1 nM) inhibited (/sup 3/H)ketanserin binding (a measure of 5-HT2 binding sites) in pigeon cerebrum with Ki values above 10(-6) M. The number of (/sup 3/H)ketanserin binding sites was estimated to be 109 fmol/mg of protein in pigeon cerebrum compared to 400 fmol/mg of protein in rat cerebrum.« less

  12. Improved flow cytometer measurement of binding assays

    NASA Astrophysics Data System (ADS)

    Saunders, G. C.

    1984-05-01

    A method of measuring binding assays is carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also known quantity of smaller particles with a coating of binder reactant. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating.

  13. Specific deficit of colour-colour short-term memory binding in sporadic and familial Alzheimer's disease.

    PubMed

    Parra, Mario A; Sala, Sergio Della; Abrahams, Sharon; Logie, Robert H; Méndez, Luis Guillermo; Lopera, Francisco

    2011-06-01

    Short-term memory binding of visual features which are processed across different dimensions (shape-colour) is impaired in sporadic Alzheimer's disease, familial Alzheimer's disease, and in asymptomatic carriers of familial Alzheimer's disease. This study investigated whether Alzheimer's disease also impacts on within-dimension binding processes. The study specifically explored whether visual short-term memory binding of features of the same type (colour-colour) is sensitive to Alzheimer's disease. We used a neuropsychological battery and a short-term memory binding task to assess patients with sporadic Alzheimer's disease (Experiment 1), familial Alzheimer's disease (Experiment 2) due to the mutation E280A of the Presenilin-1 gene and asymptomatic carriers of the mutation. The binding task assessed change detection within arrays of unicoloured objects (Colour Only) or bicoloured objects the colours of which had to be remembered separately (Unbound Colours) or together (Bound Colours). Performance on the Bound Colours condition (1) explained the largest proportion of variance between patients (sporadic and familial Alzheimer's disease), (2) combined more sensitivity and specificity for the disease than other more traditional neuropsychological tasks, (3) identified asymptomatic carriers of the mutation even when traditional neuropsychological measures and other measures of short-term memory did not and, (4) contrary to shape-colour binding, correlated with measures of hippocampal functions. Colour-colour binding and shape-colour binding both appear to be sensitive to AD even though they seem to rely on different brain mechanisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Time course of the estradiol-dependent induction of oxytocin receptor binding in the ventromedial hypothalamic nucleus of the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.E.; Ball, G.F.; Coirini, H.

    1989-09-01

    Oxytocin (OT) transmission is involved in the steroid-dependent display of sexual receptivity in rats. One of the biochemical processes stimulated by the ovarian steroid 17 beta-estradiol (E2) that is relevant to reproduction is the induction of OT receptor binding in the ventromedial hypothalamic nucleus (VMN). The purpose of these experiments was to determine if E2-induced changes in OT receptor binding in the VMN occur within a time frame relevant to cyclic changes in ovarian steroid secretion. OT receptor binding was measured in the VMN of ovariectomized rats implanted for 0-96 h with E2-containing Silastic capsules. The rate of decay ofmore » OT receptor binding was measured in another group of animals 6-48 h after capsule removal. Receptors were labeled with the specific OT receptor antagonist ({sup 125}I)d(CH2)5(Tyr(Me)2,Thr4,Tyr-NH2(9))OVT, and binding was measured with quantitative autoradiographic methods. In addition, plasma E2 levels and uterine weights were assessed in animals from each treatment condition. Significant increases in E2-dependent OT receptor binding and uterine weight occurred within 24 h of steroid treatment. After E2 withdrawal, OT receptor binding and uterine weight decreased significantly within 24 h. These results are consistent with the hypothesis that steroid modulation of OT receptor binding is necessary for the induction of sexual receptivity.« less

  15. Binding of cholesterol and bile acid to hemicelluloses from rice bran.

    PubMed

    Hu, Guohua; Yu, Wenjian

    2013-06-01

    The objective of this study was to investigate the possibility of using hemicellulose from rice bran to scavenge cholesterol and bile acid in vitro study. This paper demonstrates that rice bran hemicellulose A (RBHA), rice bran hemicellulose B (RBHB) and rice bran hemicellulose C (RBHC) have the potential for binding cholesterol and bile acid. The quantity of cholesterol and bile acid bound varies from one rice bran fibre to another. As it can be inferred from the results of the study, RBHB was characterized by the highest capacity for cholesterol binding, followed by RBHC and RBHA. Binding of cholesterol and bile acid to rice bran insoluble dietary fibre (RBDF) and cellulose from rice bran was found to be poor. Lignin from rice bran was the least active fraction for binding cholesterol and bile acid. This confirms that the RBHB preparation from defatted rice bran has great potential in food applications, especially in the development of functional foods.

  16. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © 2014 Wiley Periodicals, Inc.

  17. Hyper-Binding across Time: Age Differences in the Effect of Temporal Proximity on Paired-Associate Learning

    ERIC Educational Resources Information Center

    Campbell, Karen L.; Trelle, Alexandra; Hasher, Lynn

    2014-01-01

    Older adults show hyper- (or excessive) binding effects for simultaneously and sequentially presented distraction. Here, we addressed the potential role of hyper-binding in paired-associate learning. Older and younger adults learned a list of word pairs and then received an associative recognition task in which rearranged pairs were formed from…

  18. A dye-binding assay for measurement of the binding of Cu(II) to proteins.

    PubMed

    Wilkinson-White, Lorna E; Easterbrook-Smith, Simon B

    2008-10-01

    We analysed the theory of the coupled equilibria between a metal ion, a metal ion-binding dye and a metal ion-binding protein in order to develop a procedure for estimating the apparent affinity constant of a metal ion:protein complex. This can be done by analysing from measurements of the change in the concentration of the metal ion:dye complex with variation in the concentration of either the metal ion or the protein. Using experimentally determined values for the affinity constant of Cu(II) for the dye, 2-(5-bromo-2-pyridylaxo)-5-(N-propyl-N-sulfopropylamino) aniline (5-Br-PSAA), this procedure was used to estimate the apparent affinity constants for formation of Cu(II):transthyretin, yielding values which were in agreement with literature values. An apparent affinity constant for Cu(II) binding to alpha-synuclein of approximately 1 x 10(9)M(-1) was obtained from measurements of tyrosine fluorescence quenching by Cu(II). This value was in good agreement with that obtained using 5-Br-PSAA. Our analysis and data therefore show that measurement of changes in the equilibria between Cu(II) and 5-Br-PSAA by Cu(II)-binding proteins provides a general procedure for estimating the affinities of proteins for Cu(II).

  19. Brevenal is a natural inhibitor of brevetoxin action in sodium channel receptor binding assays.

    PubMed

    Bourdelais, Andrea J; Campbell, Susan; Jacocks, Henry; Naar, Jerome; Wright, Jeffery L C; Carsi, Jigani; Baden, Daniel G

    2004-08-01

    1. Florida red tides produce profound neurotoxicity that is evidenced by massive fish kills, neurotoxic shellfish poisoning, and respiratory distress. Red tides vary in potency, potency that is not totally governed by toxin concentration. The purpose of the study was to understand the variable potency of red tides by evaluating the potential for other natural pharmacological agents which could modulate or otherwise reduce the potency of these lethal environmental events. 2. A synaptosome binding preparation with 3-fold higher specific brevetoxin binding was developed to detect small changes in toxin binding in the presence of potential antagonists. Rodent brain labeled in vitro with tritiated brevetoxin shows high specific binding in the cerebellum as evidenced by autoradiography. Synaptosome binding assays employing cerebellum-derived synaptosomes illustrate 3-fold increased specific binding. 3. A new polyether natural product from Florida's red tide dinoflagellate Karenia brevis, has been isolated and characterized. Brevenal, as the nontoxic natural product is known, competes with tritiated brevetoxin for site 5 associated with the voltage-sensitive sodium channel (VSSC). Brevenal displacement of specific brevetoxin binding is purely competitive in nature. 4. Brevenal, obtained from either laboratory cultures or field collections during a red tide, protects fish from the neurotoxic effects of brevetoxin exposure. 5. Brevenal may serve as a model compound for the development of therapeutics to prevent or reverse intoxication in red tide exposures.

  20. Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations.

    PubMed

    Wade, R C; Gabdoulline, R R; Lüdemann, S K; Lounnas, V

    1998-05-26

    To bind at an enzyme's active site, a ligand must diffuse or be transported to the enzyme's surface, and, if the binding site is buried, the ligand must diffuse through the protein to reach it. Although the driving force for ligand binding is often ascribed to the hydrophobic effect, electrostatic interactions also influence the binding process of both charged and nonpolar ligands. First, electrostatic steering of charged substrates into enzyme active sites is discussed. This is of particular relevance for diffusion-influenced enzymes. By comparing the results of Brownian dynamics simulations and electrostatic potential similarity analysis for triose-phosphate isomerases, superoxide dismutases, and beta-lactamases from different species, we identify the conserved features responsible for the electrostatic substrate-steering fields. The conserved potentials are localized at the active sites and are the primary determinants of the bimolecular association rates. Then we focus on a more subtle effect, which we will refer to as "ionic tethering." We explore, by means of molecular and Brownian dynamics simulations and electrostatic continuum calculations, how salt links can act as tethers between structural elements of an enzyme that undergo conformational change upon substrate binding, and thereby regulate or modulate substrate binding. This is illustrated for the lipase and cytochrome P450 enzymes. Ionic tethering can provide a control mechanism for substrate binding that is sensitive to the electrostatic properties of the enzyme's surroundings even when the substrate is nonpolar.

  1. Avoiding false positives and optimizing identification of true ...

    EPA Pesticide Factsheets

    The potential for chemicals to affect endocrine signaling is commonly evaluated via in vitro receptor binding and gene activation, but these assays, especially antagonism assays, have potential artifacts that must be addressed for accurate interpretation. Results are presented from screening 94 chemicals from 54 chemical groups for estrogen receptor (ER) activation in a competitive rainbow trout ER (rtER) binding assay and a trout liver slice vitellogenin mRNA expression assay. Results from true competitive agonists and antagonists, and inactive chemicals with little or no indication of ER binding or gene activation were easily interpreted. However, results for numerous industrial chemicals were more challenging to interpret, including chemicals with: (1) apparent competitive binding curves but no gene activation, (2) apparent binding and gene inhibition with evidence of either cytotoxicity or changes in assay media pH, (3) apparent binding but non-competitive gene inhibition of unknown cause, or (4) no rtER binding and gene inhibition not due to competitive ER interaction but due to toxicity, pH change, or some unknown cause. The use of endpoints such as toxicity, pH, precipitate formation, and determination of inhibitor dissociation constants (Ki) for interpreting the results of antagonism and binding assays for diverse chemicals is presented. Of the 94 chemicals tested for antagonism only two, tamoxifen and ICI-182,780, were found to be true competitive

  2. Characterization of the Raf Kinase Inhibitory Protein (RKIP) Binding Pocket: NMR-Based Screening Identifies Small-Molecule Ligands

    PubMed Central

    Granovsky, Alexey E.; Clark, Mathew M.; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R.; Koide, Shohei

    2010-01-01

    Background Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. Methods/Findings In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. Conclusions/Significance This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential. PMID:20463977

  3. Decreased cerebral cortical serotonin transporter binding in ecstasy users: a positron emission tomography/[(11)C]DASB and structural brain imaging study.

    PubMed

    Kish, Stephen J; Lerch, Jason; Furukawa, Yoshiaki; Tong, Junchao; McCluskey, Tina; Wilkins, Diana; Houle, Sylvain; Meyer, Jeffrey; Mundo, Emanuela; Wilson, Alan A; Rusjan, Pablo M; Saint-Cyr, Jean A; Guttman, Mark; Collins, D Louis; Shapiro, Colin; Warsh, Jerry J; Boileau, Isabelle

    2010-06-01

    Animal data indicate that the recreational drug ecstasy (3,4-methylenedioxymethamphetamine) can damage brain serotonin neurons. However, human neuroimaging measurements of serotonin transporter binding, a serotonin neuron marker, remain contradictory, especially regarding brain areas affected; and the possibility that structural brain differences might account for serotonin transporter binding changes has not been explored. We measured brain serotonin transporter binding using [(11)C] N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine in 50 control subjects and in 49 chronic (mean 4 years) ecstasy users (typically one to two tablets bi-monthly) withdrawn from the drug (mean 45 days). A magnetic resonance image for positron emission tomography image co-registration and structural analyses was acquired. Hair toxicology confirmed group allocation but also indicated use of other psychoactive drugs in most users. Serotonin transporter binding in ecstasy users was significantly decreased throughout all cerebral cortices (range -19 to -46%) and hippocampus (-21%) and related to the extent of drug use (years, maximum dose), but was normal in basal ganglia and midbrain. Substantial overlap was observed between control and user values except for insular cortex, in which 51% of ecstasy user values fell below the lower limit of the control range. Voxel-based analyses confirmed a caudorostral gradient of cortical serotonin transporter binding loss with occipital cortex most severely affected. Magnetic resonance image measurement revealed no overall regional volume differences between groups; however, a slight left-hemispheric biased cortical thinning was detected in methamphetamine-using ecstasy users. The serotonin transporter binding loss was not related to structural changes or partial volume effect, use of other stimulant drugs, blood testosterone or oestradiol levels, major serotonin transporter gene promoter polymorphisms, gender, psychiatric status, or self-reported hyperthermia or tolerance. The ecstasy group, although 'grossly behaviourally normal', reported subnormal mood and demonstrated generally modest deficits on some tests of attention, executive function and memory, with the latter associated with serotonin transporter decrease. Our findings suggest that the 'typical'/low dose (one to two tablets/session) chronic ecstasy-polydrug user might display a highly selective mild to marked loss of serotonin transporter in cerebral cortex/hippocampus in the range of that observed in Parkinson's disease, which is not gender-specific or completely accounted for by structural brain changes, recent use of other drugs (as assessed by hair analyses) or other potential confounds that we could address. The striking sparing of serotonin transporter-rich striatum (although possibly affected in 'heavier' users) suggests that serotonergic neurons innervating cerebral cortex are more susceptible, for unknown reasons, to ecstasy than those innervating subcortical regions and that behavioural problems in some ecstasy users during abstinence might be related to serotonin transporter changes limited to cortical regions.

  4. Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor.

    PubMed

    Matulis, Daumantas; Kranz, James K; Salemme, F Raymond; Todd, Matthew J

    2005-04-05

    ThermoFluor (a miniaturized high-throughput protein stability assay) was used to analyze the linkage between protein thermal stability and ligand binding. Equilibrium binding ligands increase protein thermal stability by an amount proportional to the concentration and affinity of the ligand. Binding constants (K(b)) were measured by examining the systematic effect of ligand concentration on protein stability. The precise ligand effects depend on the thermodynamics of protein stability: in particular, the unfolding enthalpy. An extension of current theoretical treatments was developed for tight binding inhibitors, where ligand effect on T(m) can also reveal binding stoichiometry. A thermodynamic analysis of carbonic anhydrase by differential scanning calorimetry (DSC) enabled a dissection of the Gibbs free energy of stability into enthalpic and entropic components. Under certain conditions, thermal stability increased by over 30 degrees C; the heat capacity of protein unfolding was estimated from the dependence of calorimetric enthalpy on T(m). The binding affinity of six sulfonamide inhibitors to two isozymes (human type 1 and bovine type 2) was analyzed by both ThermoFluor and isothermal titration calorimetry (ITC), resulting in a good correlation in the rank ordering of ligand affinity. This combined investigation by ThermoFluor, ITC, and DSC provides a detailed picture of the linkage between ligand binding and protein stability. The systematic effect of ligands on stability is shown to be a general tool to measure affinity.

  5. Mapping small molecule binding data to structural domains

    PubMed Central

    2012-01-01

    Background Large-scale bioactivity/SAR Open Data has recently become available, and this has allowed new analyses and approaches to be developed to help address the productivity and translational gaps of current drug discovery. One of the current limitations of these data is the relative sparsity of reported interactions per protein target, and complexities in establishing clear relationships between bioactivity and targets using bioinformatics tools. We detail in this paper the indexing of targets by the structural domains that bind (or are likely to bind) the ligand within a full-length protein. Specifically, we present a simple heuristic to map small molecule binding to Pfam domains. This profiling can be applied to all proteins within a genome to give some indications of the potential pharmacological modulation and regulation of all proteins. Results In this implementation of our heuristic, ligand binding to protein targets from the ChEMBL database was mapped to structural domains as defined by profiles contained within the Pfam-A database. Our mapping suggests that the majority of assay targets within the current version of the ChEMBL database bind ligands through a small number of highly prevalent domains, and conversely the majority of Pfam domains sampled by our data play no currently established role in ligand binding. Validation studies, carried out firstly against Uniprot entries with expert binding-site annotation and secondly against entries in the wwPDB repository of crystallographic protein structures, demonstrate that our simple heuristic maps ligand binding to the correct domain in about 90 percent of all assessed cases. Using the mappings obtained with our heuristic, we have assembled ligand sets associated with each Pfam domain. Conclusions Small molecule binding has been mapped to Pfam-A domains of protein targets in the ChEMBL bioactivity database. The result of this mapping is an enriched annotation of small molecule bioactivity data and a grouping of activity classes following the Pfam-A specifications of protein domains. This is valuable for data-focused approaches in drug discovery, for example when extrapolating potential targets of a small molecule with known activity against one or few targets, or in the assessment of a potential target for drug discovery or screening studies. PMID:23282026

  6. Nanoplasmonic sensors for biointerfacial science.

    PubMed

    Jackman, Joshua A; Rahim Ferhan, Abdul; Cho, Nam-Joon

    2017-06-19

    In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.

  7. Insights into the structural/conformational requirements of cytotoxic oxadiazoles as potential chemotherapeutic target binding agents

    NASA Astrophysics Data System (ADS)

    Alikhani, Radin; Razzaghi-Asl, Nima; Ramazani, Ali; Hosseinzadeh, Zahra

    2018-07-01

    A few novel previously synthesized 2,5-disubstituted 1,3,4-oxadiazoles with cytotoxic activity (1-17) were subjected to combined docking/quantum mechanical studies against chemotherapeutic targets. Selected macromolecular targets were those that were previously known to be inhibited by 1,3,4-oxadiazoles. Within this work, favorable binding modes/affinities of the oxadiazoles toward validated cancer targets were elucidated. Some oxadiazole structures exhibited ΔGbs comparable to or stronger than crystallographic ligands that were previously demonstrated to inhibit such targets. On the basis of obtained results, a general structure activity/binding relationship (SAR/SBR) was developed and a few 2,5-disubstituted 1,3,4-oxadiazole structures were proposed and virtually validated as potential cytotoxic candidates. To get more insight into structure binding relationship of candidate molecules within best correlated targets, docked conformation of the best in silico in vitro correlated oxadiazole structure was analyzed in terms of intermolecular binding energy components by functional B3LYP in association with split valence basis set using polarization functions (Def2-SVP). We believe that such modeling studies may be complementary to our previous results on the synthesis and cytotoxicity assessment of novel 1,3,4-oxadiazole derivatives through extending the scope of privileged structures toward designing new potential anti-tumor compounds.

  8. Endogenous Opioid Mechanisms Are Implicated in Obesity and Weight Loss in Humans.

    PubMed

    Burghardt, Paul R; Rothberg, Amy E; Dykhuis, Kate E; Burant, Charles F; Zubieta, Jon-Kar

    2015-08-01

    Successful long-term weight loss is challenging. Brain endogenous opioid systems regulate associated processes; however, their role in the maintenance of weight loss has not been adequately explored in humans. In a preliminary study, the objective was to assess central μ-opioid receptor (MOR) system involvement in eating behaviors and their relationship to long-term maintenance of weight loss. This was a case-control study with follow-up of the treatment group at 1 year after intervention. The study was conducted at a tertiary care university medical center. Lean healthy (n = 7) and chronically obese (n = 7) men matched for age and ethnicity participated in the study. MOR availability measures were acquired with positron emission tomography and [(11)C]carfentanil. Lean healthy men were scanned twice under both fasted and fed conditions. Obese men were placed on a very low-calorie diet to achieve 15% weight loss from baseline weight and underwent two positron emission tomography scans before and two after weight loss, incorporating both fasted and fed states. Brain MOR availability and activation were measured by reductions in MOR availability (nondisplaceable binding potential) from the fed compared with the fasted-state scans. Baseline MOR nondisplaceable binding potential was reduced in obese compared with the lean and partially recovered obese after weight loss in regions that regulate homeostatic, hedonic, and emotional responses to feeding. Reductions in negative affect and feeding-induced MOR system activation in the right temporal pole were highly correlated in leans but not in obese men. A trend for an association between MOR activation in the right temporal pole before weight loss and weight regain 1 year was found. Although these preliminary studies have a small sample size, these results suggest that obesity and diet-induced weight loss impact central MOR binding and endogenous opioid system function. MOR system activation in response to an acute meal may be related to the risk of weight regain.

  9. Assessing the potential of atomistic molecular dynamics simulations to probe reversible protein-protein recognition and binding

    PubMed Central

    Abriata, Luciano A.; Dal Peraro, Matteo

    2015-01-01

    Protein-protein recognition and binding are governed by diffusion, noncovalent forces and conformational flexibility, entangled in a way that only molecular dynamics simulations can dissect at high resolution. Here we exploited ubiquitin’s noncovalent dimerization equilibrium to assess the potential of atomistic simulations to reproduce reversible protein-protein binding, by running submicrosecond simulations of systems with multiple copies of the protein at millimolar concentrations. The simulations essentially fail because they lead to aggregates, yet they reproduce some specificity in the binding interfaces as observed in known covalent and noncovalent ubiquitin dimers. Following similar observations in literature we hint at electrostatics and water descriptions as the main liable force field elements, and propose that their optimization should consider observables relevant to multi-protein systems and unfolded proteins. Within limitations, analysis of binding events suggests salient features of protein-protein recognition and binding, to be retested with improved force fields. Among them, that specific configurations of relative direction and orientation seem to trigger fast binding of two molecules, even over 50 Å distances; that conformational selection can take place within surface-to-surface distances of 10 to 40 Å i.e. well before actual intermolecular contact; and that establishment of contacts between molecules further locks their conformations and relative orientations. PMID:26023027

  10. Photoabsorption of acridine yellow and proflavin bound to human serum albumin studied by means of quantum mechanics/molecular dynamics.

    PubMed

    Aidas, Kęstutis; Olsen, Jógvan Magnus H; Kongsted, Jacob; Ågren, Hans

    2013-02-21

    Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores-acridine yellow and proflavin-located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site. The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted to reproduce the electrostatic potential and isotropic atomic polarizabilities computed individually for every residue of the protein was used in the linear response calculations. Comparing the calculated aqueous solution-to-protein shifts of maximum absorption energies to available experimental data, we concluded that the cationic proflavin chromophore is likely not to bind albumin at its drug binding site 1 nor at its heme binding site. Although agreement with experimental data could only be obtained in qualitative terms, our results clearly indicate that the difference in optical response of the two probes is due to deprotonation, and not, as earlier suggested, to different binding sites. The ramifications of this finding for design of molecular probes targeting albumin or other proteins is briefly discussed.

  11. High-throughput screening in two dimensions: binding intensity and off-rate on a peptide microarray.

    PubMed

    Greving, Matthew P; Belcher, Paul E; Cox, Conor D; Daniel, Douglas; Diehnelt, Chris W; Woodbury, Neal W

    2010-07-01

    We report a high-throughput two-dimensional microarray-based screen, incorporating both target binding intensity and off-rate, which can be used to analyze thousands of compounds in a single binding assay. Relative binding intensities and time-resolved dissociation are measured for labeled tumor necrosis factor alpha (TNF-alpha) bound to a peptide microarray. The time-resolved dissociation is fitted to a one-component exponential decay model, from which relative dissociation rates are determined for all peptides with binding intensities above background. We show that most peptides with the slowest off-rates on the microarray also have the slowest off-rates when measured by surface plasmon resonance (SPR). 2010 Elsevier Inc. All rights reserved.

  12. Connecting RNA Processing to Abiotic Environmental Response in Arabidopsis: the role of a polyadenylation factor

    NASA Astrophysics Data System (ADS)

    Li, Q. Q.; Xu, R.; Hunt, A. G.; Falcone, D. L.

    Plants are constantly challenged by numerous environmental stresses both biotic and abiotic It is clear that plants have evolved to counter these stresses using all but limited means We recently discovered the potential role of a messenger RNA processing factor namely the Arabidopsis cleavage and polyadenylation specificity factor 30 kDa subunit AtCPSF30 when a mutant deficient in this factor displayed altered responses to an array of abiotic stresses This AtCPSF30 mutant named oxt6 exhibited an elevated tolerance to oxidative stress Microarray experiments of oxt6 and its complemented lines revealed an altered gene expression profile among which were antioxidative defense genes Interestingly the same gene encoding AtCPSF30 can also be transcribed into a large transcript that codes for a potential splicing factor Both protein products have a domain for RNA binding and a calmodulin binding domain activities of which have been confirmed by biochemical assays Surprisingly binding of AtCPSF30 to calmodulin inhibits the RNA-binding activity of the protein Mutational analysis shows that a small part of the protein is responsible for calmodulin binding and point mutations in this region abolished both RNA binding activity and the inhibition of this activity by calmodulin Analyses of the potential splicing factor are on going and the results will be presented The interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through

  13. Thermodynamics of Alkanethiol Self-Assembled Monolayer Assembly on Pd Surfaces.

    PubMed

    Kumar, Gaurav; Van Cleve, Timothy; Park, Jiyun; van Duin, Adri; Medlin, J Will; Janik, Michael J

    2018-06-05

    We investigate the structure and binding energy of alkanethiolate self-assembled monolayers (SAMs) on Pd (111), Pd (100), and Pd (110) facets at different coverages. Dispersion-corrected density functional theory calculations are used to correlate the binding energy of alkanethiolates with alkyl chain length and coverage. The equilibrium coverage of thiolate layers strongly prefers 1/3 monolayer (ML) on the Pd (111) surface. The coverage of thiolates varies with chemical potential on Pd (100) and Pd (110), increasing from 1/3 to 1/2 ML on (100) and from 1/4 to 1/2 ML on (110) as the thiol chemical potential is increased. Higher coverages are driven by attractive dispersion interactions between the extended alkyl chains, such that transitions to higher coverages occur at lower thiol chemical potentials for longer chain thiolates. Stronger adsorption to the Pd (100) surface causes the equilibrium Wulff construction of Pd particles to take on a cubic shape upon saturation with thiols. The binding of H, O, and CO adsorbates is weakened as the thiolate coverage is increased, with saturation coverages causing unfavorable binding of O and CO on Pd (100) and weakened binding on other facets. Temperature-dependent CO diffuse reflectance infrared Fourier transform spectroscopy experiments are used to corroborate the weakened binding of CO in the presence of thiolate SAMs of varying surface density. Preliminary results of multiscale modeling efforts on the Pd-thiol system using a reactive force field, ReaxFF, are also discussed.

  14. The Influence of Spatial Variation in Chromatin Density Determined by X-Ray Tomograms on the Time to Find DNA Binding Sites

    PubMed Central

    Larabell, Carolyn A.; Le Gros, Mark A.; McQueen, David M.; Peskin, Charles S.

    2014-01-01

    In this work, we examine how volume exclusion caused by regions of high chromatin density might influence the time required for proteins to find specific DNA binding sites. The spatial variation of chromatin density within mouse olfactory sensory neurons is determined from soft X-ray tomography reconstructions of five nuclei. We show that there is a division of the nuclear space into regions of low-density euchromatin and high-density heterochromatin. Volume exclusion experienced by a diffusing protein caused by this varying density of chromatin is modeled by a repulsive potential. The value of the potential at a given point in space is chosen to be proportional to the density of chromatin at that location. The constant of proportionality, called the volume exclusivity, provides a model parameter that determines the strength of volume exclusion. Numerical simulations demonstrate that the mean time for a protein to locate a binding site localized in euchromatin is minimized for a finite, nonzero volume exclusivity. For binding sites in heterochromatin, the mean time is minimized when the volume exclusivity is zero (the protein experiences no volume exclusion). An analytical theory is developed to explain these results. The theory suggests that for binding sites in euchromatin there is an optimal level of volume exclusivity that balances a reduction in the volume searched in finding the binding site, with the height of effective potential barriers the protein must cross during the search process. PMID:23955281

  15. The Permeability of the Sodium Channel to Metal Cations in Myelinated Nerve

    PubMed Central

    Hille, Bertil

    1972-01-01

    The relative permeability of sodium channels to eight metal cations is studied in myelinated nerve fibers. Ionic currents under voltage-clamp conditions are measured in Na-free solutions containing the test ion. Measured reversal potentials and the Goldman equation are used to calculate the permeability sequence: Na+ ≈ Li+ > Tl+ > K+. The ratio P K/P Na is 1/12. The permeabilities to Rb+, Cs+, Ca++, and Mg++ are too small to measure. The permeability ratios agree with observations on the squid giant axon and show that the reversal potential E Na differs significantly from the Nernst potential for Na+ in normal axons. Opening and closing rates for sodium channels are relatively insensitive to the ionic composition of the bathing medium, implying that gating is a structural property of the channel rather than a result of the movement or accumulation of particular ions around the channel. A previously proposed pore model of the channel accommodates the permeant metal cations in a partly hydrated form. The observed sequence of permeabilities follows the order expected for binding to a high field strength anion in Eisenman's theory of ion exchange equilibria. PMID:5025743

  16. Multiplexed analysis of protein-ligand interactions by fluorescence anisotropy in a microfluidic platform.

    PubMed

    Cheow, Lih Feng; Viswanathan, Ramya; Chin, Chee-Sing; Jennifer, Nancy; Jones, Robert C; Guccione, Ernesto; Quake, Stephen R; Burkholder, William F

    2014-10-07

    Homogeneous assay platforms for measuring protein-ligand interactions are highly valued due to their potential for high-throughput screening. However, the implementation of these multiplexed assays in conventional microplate formats is considerably expensive due to the large amounts of reagents required and the need for automation. We implemented a homogeneous fluorescence anisotropy-based binding assay in an automated microfluidic chip to simultaneously interrogate >2300 pairwise interactions. We demonstrated the utility of this platform in determining the binding affinities between chromatin-regulatory proteins and different post-translationally modified histone peptides. The microfluidic chip assay produces comparable results to conventional microtiter plate assays, yet requires 2 orders of magnitude less sample and an order of magnitude fewer pipetting steps. This approach enables one to use small samples for medium-scale screening and could ease the bottleneck of large-scale protein purification.

  17. Renilla luciferase-labeled Annexin V: a new probe for detection of apoptotic cells.

    PubMed

    Nazari, Mahboobeh; Emamzadeh, Rahman; Hosseinkhani, Saman; Cevenini, Luca; Michelini, Elisa; Roda, Aldo

    2012-11-07

    The Ca(2+)-dependent binding of Annexin V to phosphatidylserine on cell surfaces is a reliable marker for apoptosis that is widely used in flow cytometry based apoptosis assays. In this paper, we report a new class of Annexin V-based probes for apoptosis. Luciferase from Renilla reniformis (RLuc) was linked to Annexin V and expressed successfully in a soluble form in Escherichia coli BL21 (DE3). The new probe, Rluc/Annexin V, was purified and functionally assayed for detection of apoptosis in actinomycin D-induced apoptotic Jurkat cells. Moreover, the spontaneous apoptosis in neutrophils was shown using the new probe. The results indicate that Rluc/Annexin V can bind to the apoptotic cells, and the signal of Renilla luciferase can be detected by luminometric measurements. The availability of Rluc/Annexin V may be of potential commercial interest for improving current apoptosis assays.

  18. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    PubMed

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molecular Containers Bind Drugs of Abuse in Vitro and Reverse the Hyperlocomotive Effect of Methamphetamine in Rats.

    PubMed

    Ganapati, Shweta; Grabitz, Stephanie D; Murkli, Steven; Scheffenbichler, Flora; Rudolph, Maíra I; Zavalij, Peter Y; Eikermann, Matthias; Isaacs, Lyle

    2017-08-17

    We measured the affinity of five molecular container compounds (calabadions 1 and 2, CB[7], sulfocalix[4]arene, and HP-β-CD) toward seven drugs of abuse in homogenous aqueous solution at physiological pH by various methods ( 1 H NMR, UV/Vis, isothermal titration calorimetry [ITC]) and found binding constants (K a values) spanning from <10 2 to >10 8  m -1 . We also report X-ray crystal structures of CB[7]⋅methamphetamine and 1⋅methamphetamine. We found that 2, but not CB[7], was able to ameliorate the hyperlocomotive activity of rats treated with methamphetamine. The bioavailability of the calabadions and their convergent building block synthesis suggest potential for further structural optimization as reversal agents for intoxication with nonopioid drugs of abuse for which no treatments are currently available. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Selective synthesis of a series of isostructural MIICuI heterobimetallic complexes spontaneously assembled by an unsymmetrical naphthyridine-based ligand.

    PubMed

    Nicolay, Amélie; Tilley, T Don

    2018-05-31

    Metal-metal cooperation is integral to the function of many enzymes and materials, and model complexes hold enormous potential for providing insights into the capabilities of analogous multimetallic cores. However, the selective synthesis of heterobimetallic complexes still presents a significant challenge, especially for systems that hold the metals in close proximity and feature open or reactive coordination sites for both metals. To address this issue, a rigid, naphthyridine-based dinucleating ligand featuring distinct binding environments was synthesized. This ligand enables the selective synthesis of a series of MIICuI bimetallic complexes (M = Mn, Fe, Co, Ni, Cu, Zn), in which each metal center exclusively occupies its preferred binding pocket, from simple chloride salts. The precision of this selectivity is evident from cyclic voltammetry, ESI-MS and anomalous X-ray diffraction measurements. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top