Science.gov

Sample records for binding protein derived

  1. Characterization of Transport Proteins for Aromatic Compounds Derived from Lignin: Benzoate Derivative Binding Proteins

    PubMed Central

    Michalska, Karolina; Chang, Changsoo; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.

    2013-01-01

    In vitro growth experiments have demonstrated that aromatic compounds derived from lignin can be metabolized and represent a major carbon resource for many soil bacteria. However, the proteins that mediate the movement of these metabolites across the cell membrane have not been thoroughly characterized. To address this deficiency, we used a library representative of lignin degradation products and a thermal stability screen to determine ligand specificity for a set of solute-binding proteins (SBPs) from ATP-binding cassette (ABC) transporters. The ligand mapping process identified a set of proteins from Alphaproteobacteria that recognize various benzoate derivatives. Seven high-resolution crystal structures of these proteins in complex with four different aromatic compounds were obtained. The protein–ligand complexes provide details of molecular recognition that can be used to infer binding specificity. This structure–function characterization provides new insight for the biological roles of these ABC transporters and their SBPs, which had been previously annotated as branched-chain amino-acid-binding proteins. The knowledge derived from the crystal structures provides a foundation for development of sequencebased methods to predict the ligand specificity of other uncharacterized transporters. These results also demonstrate that Alphaproteobacteria possess a diverse set of transport capabilities for lignin-derived compounds. Characterization of this new class of transporters improves genomic annotation projects and provides insight into the metabolic potential of soil bacteria. PMID:22925578

  2. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    SciTech Connect

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-08-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs.

  3. Myrosinase-binding proteins are derived from a large wound-inducible and repetitive transcript.

    PubMed

    Taipalensuu, J; Falk, A; Ek, B; Rask, L

    1997-02-01

    Several non-myrosinase proteins have been found in association with some of the myrosinases extracted from rape (Brassica napus) seed. Most of these proteins seemed to belong to a large family of proteins ranging in size over approximately 30-110 kDa, namely the myrosinase-binding protein (MBP) family. Potentially all of these MBPs might be derived from a single large precursor, encoded by a 3.3-kb transcript. This transcript coded for a 99-kDa glycine-rich protein with a highly repetitive structure. The mature 50-kDa and 52-kDa MBP amino-terminal was located 255 amino acids from the putative initiation methionine. Also, a more divergently related transcript, the protein product of which was unknown, has been cloned. However, the largest open reading frame suggested a proline-rich protein. While this transcript seemed to be expressed predominantly in seeds, the MBP transcripts were expressed in several tissues and also exhibited a responsiveness to wounding and methyl jasmonate. Both proteins exhibited significant similarities to lectins from Artocarpus integer and from Maclura pomifera.

  4. Protein-specific force field derived from the fragment molecular orbital method can improve protein-ligand binding interactions.

    PubMed

    Chang, Le; Ishikawa, Takeshi; Kuwata, Kazuo; Takada, Shoji

    2013-05-30

    Accurate computational estimate of the protein-ligand binding affinity is of central importance in rational drug design. To improve accuracy of the molecular mechanics (MM) force field (FF) for protein-ligand simulations, we use a protein-specific FF derived by the fragment molecular orbital (FMO) method and by the restrained electrostatic potential (RESP) method. Applying this FMO-RESP method to two proteins, dodecin, and lysozyme, we found that protein-specific partial charges tend to differ more significantly from the standard AMBER charges for isolated charged atoms. We did not see the dependence of partial charges on the secondary structure. Computing the binding affinities of dodecin with five ligands by MM PBSA protocol with the FMO-RESP charge set as well as with the standard AMBER charges, we found that the former gives better correlation with experimental affinities than the latter. While, for lysozyme with five ligands, both charge sets gave similar and relatively accurate estimates of binding affinities.

  5. Ellipsometric studies of synthetic albumin-binding chitosan-derivatives and selected blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Sarkar, Sabyasachi

    This dissertation summarizes work on the synthesis of chitosan-derivatives and the development of ellipsometric methods to characterize materials of biological origin. Albumin-binding chitosan-derivatives were synthesized via addition reactions that involve amine groups naturally present in chitosan. These surfaces were shown to have an affinity towards human serum albumin via ELISA, UV spectroscopy and SDS PAGE. Modified surfaces were characterized with IR ellipsometry at various stages of their synthesis using appropriate optical models. It was found that spin cast chitosan films were anisotropic in nature. All optical models used for characterizing chitosan-derivatives were thus anisotropic. Chemical signal dependence on molecular structure and composition was illustrated via IR spectroscopic ellipsometry (IRSE). An anisotropic optical model of an ensemble of Lorentz oscillators were used to approximate material behavior. The presence of acetic acid in spin-cast non-neutralized chitosan samples was thus shown. IRSE application to biomaterials was also demonstrated by performing a step-wise chemical characterizations during synthesis stages. Protein adsorbed from single protein solutions on these modified surfaces was monitored by visible in-situ variable wavelength ellipsometry. Based on adsorption profiles obtained from single protein adsorption onto silicon surfaces, lumped parameter kinetic models were developed. These models were used to fit experimental data of immunoglobulin-G of different concentrations and approximate conformational changes in fibrinogen adsorption. Biomaterial characterization by ellipsometry was further extended to include characterization of individual protein solutions in the IR range. Proteins in an aqueous environment were characterized by attenuated total internal reflection (ATR) IR ellipsometry using a ZnSe prism. Parameterized dielectric functions were created for individual proteins using Lorentz oscillators. These

  6. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    PubMed

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function. PMID:26064949

  7. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites

    PubMed Central

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where “nonspecific” interactions contribute to biological function. PMID:26064949

  8. Plasma binding proteins for platelet-derived growth factor that inhibit its binding to cell-surface receptors.

    PubMed Central

    Raines, E W; Bowen-Pope, D F; Ross, R

    1984-01-01

    Evidence is presented that the binding of platelet-derived growth factor (PDGF) to plasma constituents inhibits the binding of PDGF to its cell-surface mitogen receptor. Approximately equivalent amounts of PDGF-binding activity were found in plasma from a number of different species known by radioreceptor assay to contain PDGF homologues in their clotted blood. Activation of the coagulation cascade did not significantly alter the PDGF-binding activity of the plasma components. Three molecular weight classes of plasma fractions that inhibit PDGF binding to its cell-surface receptor were defined by gel filtration: approximately equal to 40,000, 150,000, and greater than 500,000. Specific binding of 125I-labeled PDGF to the highest molecular weight plasma fraction could also be demonstrated by gel filtration. The binding of PDGF to these plasma components was reversible under conditions of low pH or with guanidine X HCl, and active PDGF could be recovered from the higher molecular weight fractions. Immunologic and functional evidence is presented that the highest molecular weight plasma fraction may be alpha 2-macroglobulin. A model is proposed in which the activity of PDGF released in vivo may be regulated by association with these plasma binding components and by high-affinity binding to cell-surface PDGF receptors. PMID:6203121

  9. Binding properties of HABA-type azo derivatives to avidin and avidin-related protein 4.

    PubMed

    Repo, Susanna; Paldanius, Tiina A; Hytönen, Vesa P; Nyholm, Thomas K M; Halling, Katrin K; Huuskonen, Juhani; Pentikäinen, Olli T; Rissanen, Kari; Slotte, J Peter; Airenne, Tomi T; Salminen, Tiina A; Kulomaa, Markku S; Johnson, Mark S

    2006-10-01

    The chicken genome encodes several biotin-binding proteins, including avidin and avidin-related protein 4 (AVR4). In addition to D-biotin, avidin binds an azo dye compound, 4-hydroxyazobenzene-2-carboxylic acid (HABA), but the HABA-binding properties of AVR4 are not yet known. Differential scanning calorimetry, UV/visible spectroscopy, and molecular modeling were used to analyze the binding of 15 azo molecules to avidin and AVR4. Significant differences are seen in azo compound preferences for the two proteins, emphasizing the importance of the loop between strands beta3 and beta4 for azo ligand recognition; information on these loops is provided by the high-resolution (1.5 A) X-ray structure for avidin reported here. These results may be valuable in designing improved tools for avidin-based life science and nanobiotechnology applications.

  10. The binding of 2,4,6-trinitrophenyl derivatives to the mouse myeloma immunoglobulin A protein MOPC 315

    PubMed Central

    Dower, Steven K.; Gettins, Peter; Jackson, Roland; Dwek, Raymond A.; Givol, David

    1978-01-01

    The binding of Tnp (2,4,6-trinitrophenyl) derivatives to the Fv fragment (variable region of heavy and light chains) of the mouse myeloma IgA protein MOPC 315 was investigated by 270MHz proton nuclear magnetic resonance. Two of the haptens, Tnp-glycine and Tnp-l-aspartate, are in fast exchange with the Fv fragment, and the changes in chemical shifts for both protein and hapten resonances were determined by titrations. For the tightly binding hapten ε-N-Tnp-α-N-acetyl-l-lysine, which is in slow exchange with the Fv fragment, the changes in chemical shifts for the hapten H3+H5 resonances were determined by cross-saturation. By using these data and the known structure of the combining site of protein MOPC 315 [Dwek, Wain-Hobson, Dower, Gettins, Sutton, Perkins & Givol (1977), Nature (London) 266, 31–37] the mode of binding of Tnp derivatives is deduced by ring-current calculations. The trinitrophenyl ring stacks with tryptophan-93L (light chain) in the `aromatic box' formed by tryptophan-93L, tyrosine-34L and phenyl-alanine-34H (heavy chain). Further evidence for the stacking interaction with a tryptophan residue is provided by the similarity of the optical-difference spectra observed with Tnp-aminomethylphosphonate in the presence of either the Fab fragment (light chain and N-terminal half of heavy chain) of protein MOPC 315 or tryptophan. These data show that the modes of binding of all the Tnp derivatives are very similar, despite a 100-fold range in their affinities. It is also concluded that the modes of binding of Dnp (2,4-dinitrophenyl) and Tnp derivatives to protein MOPC 315 are very similar, and that the structural basis for this is that the aromatic box is large enought to allow the trinitrophenyl ring to stack with tryptophan-93L while still forming hydrogen bonds to asparagine-36L and tyrosine-34L. PMID:629744

  11. Novel Ubiquitin-derived High Affinity Binding Proteins with Tumor Targeting Properties*

    PubMed Central

    Lorey, Susan; Fiedler, Erik; Kunert, Anja; Nerkamp, Jörg; Lange, Christian; Fiedler, Markus; Bosse-Doenecke, Eva; Meysing, Maren; Gloser, Manja; Rundfeldt, Chris; Rauchhaus, Una; Hänssgen, Ilka; Göttler, Thomas; Steuernagel, Arnd; Fiedler, Ulrike; Haupts, Ulrich

    2014-01-01

    Targeting effector molecules to tumor cells is a promising mode of action for cancer therapy and diagnostics. Binding proteins with high affinity and specificity for a tumor target that carry effector molecules such as toxins, cytokines, or radiolabels to their intended site of action are required for these applications. In order to yield high tumor accumulation while maintaining low levels in healthy tissues and blood, the half-life of such conjugates needs to be in an optimal range. Scaffold-based binding molecules are small proteins with high affinity and short systemic circulation. Due to their low molecular complexity, they are well suited for combination with effector molecules as well as half-life extension technologies yielding therapeutics with half-lives adapted to the specific therapy. We have identified ubiquitin as an ideal scaffold protein due to its outstanding biophysical and biochemical properties. Based on a dimeric ubiquitin library, high affinity and specific binding molecules, so-called Affilin® molecules, have been selected against the extradomain B of fibronectin, a target almost exclusively expressed in tumor tissues. Extradomain B-binding molecules feature high thermal and serum stability as well as strong in vitro target binding and in vivo tumor accumulation. Application of several half-life extension technologies results in molecules of largely unaffected affinity but significantly prolonged in vivo half-life and tumor retention. Our results demonstrate the utility of ubiquitin as a scaffold for the generation of high affinity binders in a modular fashion, which can be combined with effector molecules and half-life extension technologies. PMID:24474690

  12. Cyclic Limulus anti-lipopolysaccharide (LPS) factor-derived peptide CLP-19 antagonizes LPS function by blocking binding to LPS binding protein.

    PubMed

    Liu, Yao; Ni, Bing; Ren, Jian-dong; Chen, Jian-hong; Tian, Zhi-qiang; Tang, Min; Li, Di; Xia, Peiyuan

    2011-01-01

    Inflammation and septic shock due to endotoxins from Gram-negative bacteria infection continue to pose significant challenges to human healthcare. It is, therefore, necessary to develop therapeutic strategies targeting endotoxins, such as lipopolysaccharide (LPS), to prevent their potentially systemic effects. Pathogenesis due to Gram-negative bacteria involves LPS binding to the host LPS-binding protein (LBP), causing detrimental downstream signaling cascades. Our previous study showed that CLP-19, a synthetic peptide derived from the Limulus anti-LPS factor (LALF), could effectively neutralize LPS toxicity; however, the detailed mechanisms underlying this anti-LPS effect remained unexplained. Thus, we carried out investigations to determine how the CLP-19 neutralizes LPS toxicity. CLP-19 was found to block LPS binding to LBP in a dose-dependent manner, as evidenced by competitive enzyme-linked immunosorbent assay (ELISA). In peripheral blood mononuclear cells, CLP-19 blocked LPS-induced phosphorylation of mitogen activated protein kinase (MAPK) signaling proteins p38, extracellular signal-regulating kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK)1/2. Furthermore, CLP-19 potency in LPS antagonism in vitro and in vivo was directly associated with its ability to block the LPS-LBP interaction. Taken together, the results suggested that CLP-19's inhibitory effect on LPS-LBP binding and on the subsequent MAPK pathway signaling may be responsible for its anti-LPS mechanism. This peptide appears to represent a potential therapeutic agent for clinical treatment of sepsis. PMID:22040879

  13. Lucanthone and Its Derivative Hycanthone Inhibit Apurinic Endonuclease-1 (APE1) by Direct Protein Binding

    PubMed Central

    Naidu, Mamta D.; Agarwal, Rakhi; Pena, Louis A.; Cunha, Luis; Mezei, Mihaly; Shen, Min; Wilson, David M.; Liu, Yuan; Sanchez, Zina; Chaudhary, Pankaj; Wilson, Samuel H.; Waring, Michael J.

    2011-01-01

    Lucanthone and hycanthone are thioxanthenone DNA intercalators used in the 1980s as antitumor agents. Lucanthone is in Phase I clinical trial, whereas hycanthone was pulled out of Phase II trials. Their potential mechanism of action includes DNA intercalation, inhibition of nucleic acid biosyntheses, and inhibition of enzymes like topoisomerases and the dual function base excision repair enzyme apurinic endonuclease 1 (APE1). Lucanthone inhibits the endonuclease activity of APE1, without affecting its redox activity. Our goal was to decipher the precise mechanism of APE1 inhibition as a prerequisite towards development of improved therapeutics that can counteract higher APE1 activity often seen in tumors. The IC50 values for inhibition of APE1 incision of depurinated plasmid DNA by lucanthone and hycanthone were 5 µM and 80 nM, respectively. The KD values (affinity constants) for APE1, as determined by BIACORE binding studies, were 89 nM for lucanthone/10 nM for hycanthone. APE1 structures reveal a hydrophobic pocket where hydrophobic small molecules like thioxanthenones can bind, and our modeling studies confirmed such docking. Circular dichroism spectra uncovered change in the helical structure of APE1 in the presence of lucanthone/hycanthone, and notably, this effect was decreased (Phe266Ala or Phe266Cys or Trp280Leu) or abolished (Phe266Ala/Trp280Ala) when hydrophobic site mutants were employed. Reduced inhibition by lucanthone of the diminished endonuclease activity of hydrophobic mutant proteins (as compared to wild type APE1) supports that binding of lucanthone to the hydrophobic pocket dictates APE1 inhibition. The DNA binding capacity of APE1 was marginally inhibited by lucanthone, and not at all by hycanthone, supporting our hypothesis that thioxanthenones inhibit APE1, predominantly, by direct interaction. Finally, lucanthone-induced degradation was drastically reduced in the presence of short and long lived free radical scavengers, e.g., TRIS and DMSO

  14. Lucanthone and its derivative hycanthone inhibit apurinic endonuclease-1 (APE1) by direct protein binding

    SciTech Connect

    Naidu, M.; Naidu, M.; Agarwal, R.; Pena, L.A.; Cunha, L.; Mezei, M.; Shen, M.; Wilson, D.M.; Liu, Y.; Sanchez, Z.; Chaudhary, P.; Wilson, S.H.; Waring, M.J.

    2011-09-15

    Lucanthone and hycanthone are thioxanthenone DNA intercalators used in the 1980s as antitumor agents. Lucanthone is in Phase I clinical trial, whereas hycanthone was pulled out of Phase II trials. Their potential mechanism of action includes DNA intercalation, inhibition of nucleic acid biosyntheses, and inhibition of enzymes like topoisomerases and the dual function base excision repair enzyme apurinic endonuclease 1 (APE1). Lucanthone inhibits the endonuclease activity of APE1, without affecting its redox activity. Our goal was to decipher the precise mechanism of APE1 inhibition as a prerequisite towards development of improved therapeutics that can counteract higher APE1 activity often seen in tumors. The IC{sub 50} values for inhibition of APE1 incision of depurinated plasmid DNA by lucanthone and hycanthone were 5 {mu}M and 80 nM, respectively. The K{sub D} values (affinity constants) for APE1, as determined by BIACORE binding studies, were 89 nM for lucanthone/10 nM for hycanthone. APE1 structures reveal a hydrophobic pocket where hydrophobic small molecules like thioxanthenones can bind, and our modeling studies confirmed such docking. Circular dichroism spectra uncovered change in the helical structure of APE1 in the presence of lucanthone/hycanthone, and notably, this effect was decreased (Phe266Ala or Phe266Cys or Trp280Leu) or abolished (Phe266Ala/Trp280Ala) when hydrophobic site mutants were employed. Reduced inhibition by lucanthone of the diminished endonuclease activity of hydrophobic mutant proteins (as compared to wild type APE1) supports that binding of lucanthone to the hydrophobic pocket dictates APE1 inhibition. The DNA binding capacity of APE1 was marginally inhibited by lucanthone, and not at all by hycanthone, supporting our hypothesis that thioxanthenones inhibit APE1, predominantly, by direct interaction. Finally, lucanthone-induced degradation was drastically reduced in the presence of short and long lived free radical scavengers, e

  15. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids

    PubMed Central

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.

    2013-01-01

    Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130

  16. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids.

    PubMed

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R

    2013-10-01

    Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins.

  17. Neutrophil-derived heparin binding protein--a mediator of increased vascular permeability after burns?

    PubMed

    Johansson, Joakim; Lindbom, Lennart; Herwald, Heiko; Sjöberg, Folke

    2009-12-01

    Increased vascular permeability and oedema formation constitute a major clinical challenge following burns. Several clinical studies show that leukocytes are systemically activated following burns. Neutrophils have the capability to increase vascular permeability via mechanisms thought to involve the release of heparin binding protein (HBP). We hypothesised that HBP is elevated in plasma after major burns due to a systemic inflammatory response and investigated plasma-HBP concentrations in 10 severely burned patients daily for 1 week following the burn. Five-fold higher levels in plasma-HBP concentration compared to a control group were detected on the first day after injury, followed by a steep reduction in the time-period that corresponds to the last part of the hyperpermeability phase. These data are in accordance with the hypothesis that HBP may function as a mediator of the early burn-induced increase in vascular permeability, and call for further studies to confirm a possible cause-and-effect relationship between HBP and oedema formation following burns.

  18. Ice-Binding Protein Derived from Glaciozyma Can Improve the Viability of Cryopreserved Mammalian Cells.

    PubMed

    Kim, Hak Jun; Shim, Hye Eun; Lee, Jun Hyuck; Kang, Yong-Cheol; Hur, Young Baek

    2015-12-28

    Ice-binding proteins (IBPs) can inhibit ice recrystallization (IR), a major cause of cell death during cryopreservation. IBPs are hypothesized to improve cell viability after cryopreservation by alleviating the cryoinjury caused by IR. In our previous studies, we showed that supplementation of the freezing medium with the recombinant IBP of the Arctic yeast Glaciozyma sp. (designated as LeIBP) could reduce post-thaw hemolysis of human red blood cells and increase the survival of cryopreserved diatoms. Here, we showed that LeIBP could improve the viability of cryopreserved mammalian cells. Human cervical cancer cells (HeLa), mouse fibroblasts (NIH/3T3), human preosteoblasts (MC3T3-E1), Chinese hamster ovary cells (CHO-K1), and human keratinocytes (HaCaT) were evaluated. These mammalian cells were frozen in dimethyl sulfoxide (DMSO)/fetal bovine serum (FBS) solution with or without 0.1 mg/ml LeIBP at a cooling rate of -1°C/min in a -80°C freezer overnight. The minimum effective concentration (0.1 mg/ml) of LeIBP was determined, based on the viability of HeLa cells after treatment with LeIBP during cryopreservation and the IR inhibition assay results. The post-thaw viability of mammalian cells was examined. In all cases, cell viability was significantly enhanced by more than 10% by LeIBP supplementation in 5% DMSO/5% FBS: viability increased by 20% for HeLa cells, 28% for NIH/3T3 cells, 21% for MC3T3-E1, 10% for CHO-K1, and 20% for HaCaT. Furthermore, addition of LeIBP reduced the concentrations of toxic DMSO and FBS down to 5%. Therefore, we demonstrated that LeIBP can increase the viability of cryopreserved mammalian cells by inhibiting IR.

  19. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  20. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  1. Antimicrobial activity of peptides derived from olive flounder lipopolysaccharide binding protein/bactericidal permeability-increasing protein (LBP/BPI).

    PubMed

    Nam, Bo-Hye; Moon, Ji-Young; Park, Eun-Hee; Kim, Young-Ok; Kim, Dong-Gyun; Kong, Hee Jeong; Kim, Woo-Jin; Jee, Young Ju; An, Cheul Min; Park, Nam Gyu; Seo, Jung-Kil

    2014-10-17

    We describe the antimicrobial function of peptides derived from the C-terminus of the olive flounder LBP BPI precursor protein. The investigated peptides, namely, ofLBP1N, ofLBP2A, ofLBP4N, ofLBP5A, and ofLBP6A, formed α-helical structures, showing significant antimicrobial activity against several Gram-negative bacteria, Gram-positive bacteria, and the yeast Candida albicans, but very limited hemolytic activities. The biological activities of these five analogs were evaluated against biomembranes or artificial membranes for the development of candidate therapeutic agents. Gel retardation studies revealed that peptides bound to DNA and inhibited migration on an agarose gel. In addition, we demonstrated that ofLBP6A inhibited polymerase chain reaction. These results suggested that the ofLBP-derived peptide bactericidal mechanism may be related to the interaction with intracellular components such as DNA or polymerase.

  2. Antimicrobial Activity of Peptides Derived from Olive Flounder Lipopolysaccharide Binding Protein/Bactericidal Permeability-Increasing Protein (LBP/BPI)

    PubMed Central

    Nam, Bo-Hye; Moon, Ji-Young; Park, Eun-Hee; Kim, Young-Ok; Kim, Dong-Gyun; Kong, Hee Jeong; Kim, Woo-Jin; Jee, Young Ju; An, Cheul Min; Park, Nam Gyu; Seo, Jung-Kil

    2014-01-01

    We describe the antimicrobial function of peptides derived from the C-terminus of the olive flounder LBP BPI precursor protein. The investigated peptides, namely, ofLBP1N, ofLBP2A, ofLBP4N, ofLBP5A, and ofLBP6A, formed α-helical structures, showing significant antimicrobial activity against several Gram-negative bacteria, Gram-positive bacteria, and the yeast Candida albicans, but very limited hemolytic activities. The biological activities of these five analogs were evaluated against biomembranes or artificial membranes for the development of candidate therapeutic agents. Gel retardation studies revealed that peptides bound to DNA and inhibited migration on an agarose gel. In addition, we demonstrated that ofLBP6A inhibited polymerase chain reaction. These results suggested that the ofLBP-derived peptide bactericidal mechanism may be related to the interaction with intracellular components such as DNA or polymerase. PMID:25329706

  3. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it.

    PubMed

    Bacon, J R; Rhodes, M J

    2000-03-01

    Proline-rich proteins (PRP) in human parotid saliva have a high affinity for dietary polyphenolic compounds (tannins), forming stable complexes that may modulate the biological and nutritional properties of the tannin. The formation of such complexes may also have an important role in the modulation or promotion of the sensation of oral astringency perceived when tannin-rich foods and beverages are consumed. The major classes of PRP (acidic, basic, and glycosylated) have been isolated from human saliva, and the relative binding affinities of a series of hydrolyzable tannins, which are found in a number of plant-derived foods and beverages, to these PRP classes have been determined using a competition assay. All of the classes of PRP have a high capacity for hydrolyzable tannins. Within the narrow range of binding affinities exhibited, structure/binding relationships with the levels of tannin galloylation, hexahydroxydiphenoyl esterification, and degree of polymerization were identified. No individual class of human salivary PRP appears to have an exclusive affinity for a particular type of hydrolyzable tannin.

  4. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it.

    PubMed

    Bacon, J R; Rhodes, M J

    2000-03-01

    Proline-rich proteins (PRP) in human parotid saliva have a high affinity for dietary polyphenolic compounds (tannins), forming stable complexes that may modulate the biological and nutritional properties of the tannin. The formation of such complexes may also have an important role in the modulation or promotion of the sensation of oral astringency perceived when tannin-rich foods and beverages are consumed. The major classes of PRP (acidic, basic, and glycosylated) have been isolated from human saliva, and the relative binding affinities of a series of hydrolyzable tannins, which are found in a number of plant-derived foods and beverages, to these PRP classes have been determined using a competition assay. All of the classes of PRP have a high capacity for hydrolyzable tannins. Within the narrow range of binding affinities exhibited, structure/binding relationships with the levels of tannin galloylation, hexahydroxydiphenoyl esterification, and degree of polymerization were identified. No individual class of human salivary PRP appears to have an exclusive affinity for a particular type of hydrolyzable tannin. PMID:10725160

  5. Structural autonomy of a β-hairpin peptide derived from the pneumococcal choline-binding protein LytA.

    PubMed

    Maestro, Beatriz; Santiveri, Clara M; Jiménez, M Angeles; Sanz, Jesús M

    2011-01-01

    The cell wall of Streptococcus pneumoniae and several other micro-organisms is decorated with a number of the so-called choline-binding proteins (CBPs) that recognise the choline residues in the bacterial surface by means of highly conserved, concatenated 20-aa sequences termed choline-binding repeats (CBRs), that are composed of a loop and a β-hairpin structure. In this work, we have investigated the ability to fold in aqueous solution of a 14-aa peptide (LytA₁₉₇₋₂₁₀[wt]) and a single derivative of it, LytA₁₉₇₋₂₁₀[ND], corresponding to one of the six β-hairpins of the LytA pneumococcal amidase. Intrinsic fluorescence and circular dichroism spectroscopical measurements showed that both peptides spontaneously acquire a non-random conformation which is also able to bind the natural ligand choline. Furthermore, nuclear magnetic resonance techniques allowed the calculation of the structure of the LytA₁₉₇₋₂₁₀[ND] peptide, which displayed a β-hairpin conformation highly similar to that found within the full-length C-LytA module. These results provide a structural basis for the modular organisation of CBPs and suggest the use of CBRs as new templates for the design of stable β-hairpins. PMID:21051322

  6. The folate binding proteins.

    PubMed

    Corrocher, R; Olivieri, O; Pacor, M L

    1991-01-01

    Folates are essential molecules for cell life and, not surprisingly, their transport in biological fluids and their transfer to cells are finely regulated. Folate binding proteins play a major role in this regulation. This paper will review our knowledge on these proteins and examine the most recent advances in this field. PMID:1820987

  7. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    PubMed

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold.

  8. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  9. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  10. A physical reference state unifies the structure-derived potential of mean force for protein folding and binding.

    PubMed

    Liu, Song; Zhang, Chi; Zhou, Hongyi; Zhou, Yaoqi

    2004-07-01

    Extracting knowledge-based statistical potential from known structures of proteins is proved to be a simple, effective method to obtain an approximate free-energy function. However, the different compositions of amino acid residues at the core, the surface, and the binding interface of proteins prohibited the establishment of a unified statistical potential for folding and binding despite the fact that the physical basis of the interaction (water-mediated interaction between amino acids) is the same. Recently, a physical state of ideal gas, rather than a statistically averaged state, has been used as the reference state for extracting the net interaction energy between amino acid residues of monomeric proteins. Here, we find that this monomer-based potential is more accurate than an existing all-atom knowledge-based potential trained with interfacial structures of dimers in distinguishing native complex structures from docking decoys (100% success rate vs. 52% in 21 dimer/trimer decoy sets). It is also more accurate than a recently developed semiphysical empirical free-energy functional enhanced by an orientation-dependent hydrogen-bonding potential in distinguishing native state from Rosetta docking decoys (94% success rate vs. 74% in 31 antibody-antigen and other complexes based on Z score). In addition, the monomer potential achieved a 93% success rate in distinguishing true dimeric interfaces from artificial crystal interfaces. More importantly, without additional parameters, the potential provides an accurate prediction of binding free energy of protein-peptide and protein-protein complexes (a correlation coefficient of 0.87 and a root-mean-square deviation of 1.76 kcal/mol with 69 experimental data points). This work marks a significant step toward a unified knowledge-based potential that quantitatively captures the common physical principle underlying folding and binding. A Web server for academic users, established for the prediction of binding free energy

  11. tRNA-derived short RNAs bind to Saccharomyces cerevisiae ribosomes in a stress-dependent manner and inhibit protein synthesis in vitro

    PubMed Central

    Bąkowska-Żywicka, Kamilla; Kasprzyk, Marta; Twardowski, Tomasz

    2016-01-01

    Recently, a number of ribosome-associated non-coding RNAs (rancRNAs) have been discovered in all three domains of life. In our previous studies, we have described several types of rancRNAs in Saccharomyces cerevisiae, derived from many cellular RNAs, including mRNAs, rRNAs, tRNAs and snoRNAs. Here, we present the evidence that the tRNA fragments from simple eukaryotic organism S. cerevisiae directly bind to the ribosomes. Interestingly, rancRNA-tRFs in yeast are derived from both, 5′- and 3′-part of the tRNAs and both types of tRFs associate with the ribosomes in vitro. The location of tRFs within the ribosomes is distinct from classical A- and P-tRNA binding sites. Moreover, 3′-tRFs bind to the distinct site than 5′-tRFs. These interactions are stress dependent and as a consequence, provoke regulation of protein biosynthesis. We observe strong correlation between tRF binding to the ribosomes and inhibition of protein biosynthesis in particular environmental conditions. These results implicate the existence of an ancient and conserved mechanism of translation regulation with the involvement of ribosome-associating tRNA-derived fragments. PMID:27609601

  12. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki; Ushijima, Naofumi

    2008-01-15

    Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of breast cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Patient serum Nagalase activity is proportional to tumor burden. The deglycosylated Gc protein cannot be converted to MAF, resulting in no macrophage activation and immunosuppression. Stepwise incubation of purified Gc protein with immobilized beta-galactosidase and sialidase generated probably the most potent macrophage activating factor (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages treated in vitro with GcMAF (100 pg/ml) are highly tumoricidal to mammary adenocarcinomas. Efficacy of GcMAF for treatment of metastatic breast cancer was investigated with 16 nonanemic patients who received weekly administration of GcMAF (100 ng). As GcMAF therapy progresses, the MAF precursor activity of patient Gc protein increased with a concomitant decrease in serum Nagalase. Because of proportionality of serum Nagalase activity to tumor burden, the time course progress of GcMAF therapy was assessed by serum Nagalase activity as a prognostic index. These patients had the initial Nagalase activities ranging from 2.32 to 6.28 nmole/min/mg protein. After about 16-22 administrations (approximately 3.5-5 months) of GcMAF, these patients had insignificantly low serum enzyme levels equivalent to healthy control enzyme levels, ranging from 0.38 to 0.63 nmole/min/mg protein, indicating eradication of the tumors. This therapeutic procedure resulted in no recurrence for more than 4 years. PMID:17935130

  13. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line.

    PubMed

    Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro

    2011-07-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model. PMID:22848250

  14. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line

    PubMed Central

    TOYOHARA, YUKIYO; HASHITANI, SUSUMU; KISHIMOTO, HIROMITSU; NOGUCHI, KAZUMA; YAMAMOTO, NOBUTO; URADE, MASAHIRO

    2011-01-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model. PMID:22848250

  15. Synthesis, Molecular Structure, DNA/Protein Binding, Cytotoxicity, Apoptosis, Reactive Oxygen Species, and Mitochondrial Membrane Potential of Dibenzoxanthenes Derivatives.

    PubMed

    Yang, Hui-Hui; Han, Bing-Jie; Li, Wei; Liu, Yun-Jun; Wang, Xiu-Zhen

    2015-12-01

    Two dibenzoxanthene isomers 3 and 4 were synthesized and characterized. The crystal structures of the two compounds were solved by single-crystal X-ray diffraction. Binding of two compounds with calf thymus DNA (CT DNA) and BSA (bovine serum albumin) has been thoroughly investigated by UV-Vis and fluorescence spectroscopy. The DNA-binding constants were determined to be 2.51 (± 0.09) × 10(3) for compound 3 and 4.55 (± 0.10) × 10(3) for compound 4. Two compounds can cleave pBR322 DNA upon irradiation. Significant nuclear damages of BEL-7402 cells were observed with compound treatment in a comet assay. The cytotoxicity in vitro was investigated by MTT method. These compounds have been found to induce nuclear condensation and fragmentation in BEL-7402 cells. The two compounds can enhance intracellular reactive oxygen species and decrease the mitochondrial membrane potential. The compounds activated caspase-3 and caspase-7, down-regulated the expression levels of anti-apoptotic protein Bcl-2, and up-regulated the expression levels of pro-apoptotic protein Bax. These compounds induce apoptosis of BEL-7402 cells through an ROS-mediated mitochondrial dysfunction pathway.

  16. Discovery, Primary, and Crystal Structures and Capacitation-related Properties of a Prostate-derived Heparin-binding Protein WGA16 from Boar Sperm*

    PubMed Central

    Garénaux, Estelle; Kanagawa, Mayumi; Tsuchiyama, Tomoyuki; Hori, Kazuki; Kanazawa, Takeru; Goshima, Ami; Chiba, Mitsuru; Yasue, Hiroshi; Ikeda, Akemi; Yamaguchi, Yoshiki; Sato, Chihiro; Kitajima, Ken

    2015-01-01

    Mammalian sperm acquire fertility through a functional maturation process called capacitation, where sperm membrane molecules are drastically remodeled. In this study, we found that a wheat germ agglutinin (WGA)-reactive protein on lipid rafts, named WGA16, is removed from the sperm surface on capacitation. WGA16 is a prostate-derived seminal plasma protein that has never been reported and is deposited on the sperm surface in the male reproductive tract. Based on protein and cDNA sequences for purified WGA16, it is a homologue of human zymogen granule protein 16 (ZG16) belonging to the Jacalin-related lectin (JRL) family in crystal and primary structures. A glycan array shows that WGA16 binds heparin through a basic patch containing Lys-53/Lys-73 residues but not the conventional lectin domain of the JRL family. WGA16 is glycosylated, contrary to other ZG16 members, and comparative mass spectrometry clearly shows its unique N-glycosylation profile among seminal plasma proteins. It has exposed GlcNAc and GalNAc residues without additional Gal residues. The GlcNAc/GalNAc residues can work as binding ligands for a sperm surface galactosyltransferase, which actually galactosylates WGA16 in situ in the presence of UDP-Gal. Interestingly, surface removal of WGA16 is experimentally induced by either UDP-Gal or heparin. In the crystal structure, N-glycosylated sites and a potential heparin-binding site face opposite sides. This geography of two functional sites suggest that WGA16 is deposited on the sperm surface through interaction between its N-glycans and the surface galactosyltransferase, whereas its heparin-binding domain may be involved in binding to sulfated glycosaminoglycans in the female tract, enabling removal of WGA16 from the sperm surface. PMID:25568322

  17. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients. PMID:18058096

  18. Synthesis, characterization of α-amino acid Schiff base derived Ru/Pt complexes: Induces cytotoxicity in HepG2 cell via protein binding and ROS generation

    NASA Astrophysics Data System (ADS)

    Alsalme, Ali; Laeeq, Sameen; Dwivedi, Sourabh; Khan, Mohd. Shahnawaz; Al Farhan, Khalid; Musarrat, Javed; Khan, Rais Ahmad

    2016-06-01

    We have synthesized two new complexes of platinum (1) and ruthenium (2) with α-amino acid, L-alanine, and 2,3-dihydroxybenzaldehyde derived Schiff base (L). The ligand and both complexes were characterized by using elemental analysis and several other spectroscopic techniques viz; IR, 1H, 13C NMR, EPR, and ESI-MS. Furthermore, the protein-binding ability of synthesized complexes was monitored by UV-visible, fluorescence and circular dichroism techniques with a model protein, human serum albumin (HSA). Both the PtL2 and RuL2 complexes displayed significant binding towards HSA. Also, in vitro cytotoxicity assay for both complexes was carried out on human hepatocellular carcinoma cancer (HepG2) cell line. The results showed concentration-dependent inhibition of cell viability. Moreover, the generation of reactive oxygen species was also evaluated, and results exhibited substantial role in cytotoxicity.

  19. DR1001 presents ‘altered-self’ peptides derived from joint associated proteins by accepting citrulline in three of its binding pockets

    PubMed Central

    James, Eddie A.; Moustakas, Antonis K.; Bui, John; Papadopoulos, George K.; Bondinas, George; Buckner, Jane H.; Kwok, William W.

    2010-01-01

    Objective HLA-DRB1*1001 (DR1001) is a shared epitope allele associated with rheumatoid arthritis. The objectives of this study were to assess the capacity of DR1001 to accommodate citrulline in its binding pockets and to identify citrullinated T cell epitopes derived from joint associated proteins. Methods The binding of peptide derivatives containing citrulline, arginine, and other amino acid substitutions was measured. A prediction algorithm was then developed to identify arginine containing sequences from joint associated proteins that preferentially bind to DR1001 upon citrullination. Unmodified and citrullinated versions of these sequences were synthesized and utilized to stimulate CD4+ T cells from healthy subjects and rheumatoid arthritis patients. Responses were measured by MHC class II tetramer staining and confirmed by isolating CD4+ T cell clones. Results DR1001 accepted citrulline, but not arginine in three of its anchoring pockets. The prediction algorithm identified sequences that preferentially bound to DR1001 with arginine replaced by citrulline. Three of these sequences elicited CD4+ T cell responses. T cell clones specific for these sequences proliferated only in response to citrullinated peptides. Conclusions Conversion of arginine to citrulline generates ‘altered-self’ peptides that can be bound and presented by DR1001. Responses to these peptides implicate the corresponding proteins (fibrinogen α, fibrinogen β and cartilage intermediate layer protein) as relevant antigens. Preferential responses to citrullinated sequences suggests that altered peptide binding affinity due to this post-translational modification may be an important factor in the initiation or progression of RA. As such, measuring responsiveness to these peptides may be useful for immune monitoring. PMID:20533291

  20. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    PubMed

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor. PMID:9893164

  1. Recombinant Ov-ASP-1, a Th1-biased protein adjuvant derived from the helminth Onchocerca volvulus, can directly bind and activate antigen-presenting cells.

    PubMed

    He, Yuxian; Barker, Sophie J; MacDonald, Angus J; Yu, Yu; Cao, Long; Li, Jingjing; Parhar, Ranjit; Heck, Susanne; Hartmann, Susanne; Golenbock, Douglas T; Jiang, Shibo; Libri, Nathan A; Semper, Amanda E; Rosenberg, William M; Lustigman, Sara

    2009-04-01

    We previously reported that rOv-ASP-1, a recombinant Onchocerca volvulus activation associated protein-1, was a potent adjuvant for recombinant protein or synthetic peptide-based Ags. In this study, we further evaluated the adjuvanticity of rOv-ASP-1 and explored its mechanism of action. Consistently, recombinant full-length spike protein of SARS-CoV or its receptor-binding domain in the presence of rOv-ASP-1 could effectively induce a mixed but Th1-skewed immune response in immunized mice. It appears that rOv-ASP-1 primarily bound to the APCs among human PBMCs and triggered Th1-biased proinflammatory cytokine production probably via the activation of monocyte-derived dendritic cells and the TLR, TLR2, and TLR4, thus suggesting that rOv-ASP-1 is a novel potent innate adjuvant. PMID:19299698

  2. Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22.

    PubMed

    Dumoutier, L; Lejeune, D; Colau, D; Renauld, J C

    2001-06-15

    The class II cytokine receptor family includes the receptors for IFN-alphabeta, IFN-gamma, IL-10, and IL-10-related T cell-derived inducible factor/IL-22. By screening genomic DNA databases, we identified a gene encoding a protein of 231 aa, showing 33 and 34% amino acid identity with the extracellular domains of the IL-22 receptor and of the IL-20R/cytokine receptor family 2-8, respectively, but lacking the transmembrane and cytoplasmic domains. A lower but significant sequence identity was found with other members of this family such as the IL-10R (29%), cytokine receptor family 2-4/IL-10Rbeta (30%), tissue factor (26%), and the four IFN receptor chains (23-25%). This gene is located on chromosome 6q24, at 35 kb from the IFNGR1 gene, and is expressed in various tissues with maximal expression in breast, lungs, and colon. The recombinant protein was found to bind IL-10-related T cell-derived inducible factor/IL-22, and to inhibit the activity of this cytokine on hepatocytes and intestinal epithelial cells. We propose to name this natural cytokine antagonist IL-22BP for IL-22 binding protein.

  3. Reconstruction of a swine SLA-I protein complex and determination of binding nonameric peptides derived from the foot-and-mouth disease virus.

    PubMed

    Gao, Feng-Shan; Fang, Qin-Mei; Li, Yun-Gang; Li, Xin-Sheng; Hao, Hui-Fang; Xia, Chun

    2006-10-15

    No experimental system to date is available to identify viral T-cell epitopes in swine. In order to reconstruct the system for identification of short antigenic peptides, the swine SLA-2 gene was linked to the beta(2)m gene via (G4S)3, a linker encoding a 15-amino acid glycine-rich sequence (G4S)3, using splicing overlap extension-PCR (SOE-PCR). The maltose binding protein (MBP)-SLA-2-(G4S)3-beta(2)m fusion protein was expressed and purified in a pMAL-p2X/Escherichia coli TB1 system. The purified MBP-SLA-2-(G4S)3-beta(2)m protein was cleaved by factor Xa protease, and further purified by DEAE-Sepharose chromatography. The conformation of the SLA-2-(G4S)3-beta(2)m protein was determined by circular dichroism (CD) spectrum. In addition, the refolded SLA-2-(G4S)3-beta(2)m protein was used to bind three nonameric peptides derived from the foot-and-mouth disease virus (FMDV) O subtype VP1. The SLA-2-(G4S)3-beta(2)m-associated peptides were detected by mass spectrometry. The molecular weights and amino acid sequences of the peptides were confirmed by primary and secondary spectra, respectively. The results indicate that the SLA-2-(G4S)3-beta(2)m was 41.6kDa, and its alpha-helix, beta-sheet, turn, and random coil by CD estimation were 78 aa, 149 aa, 67 aa, and 93 aa, respectively. SLA-2-(G4S)3-beta(2)m protein was able to bind the nonameric peptides derived from the FMDV VP1 region: 26-34 (RRQHTDVSF) and 157-165 (RTLPTSFNY). The experimental system demonstrated that the reconstructed SLA-2-(G4S)3-beta(2)m protein complex can be used to identify nonameric peptides, including T-cell epitopes in swine.

  4. Identification of HLA-A24-binding peptides of Mycobacterium tuberculosis derived proteins with beta 2m linked HLA-A24 single chain expressing cells.

    PubMed

    Ding, Jie; Wang, Yan; Cheng, Tingting; Chen, Xiaowei; Gao, Bin

    2010-01-01

    Tuberculosis is caused by an intracellular pathogen Mycobacterium tuberculosis (Mtb) and poses a persistent threat to global health. MHC class I-restricted CD8 cytotoxic T lymphocytes (CTL) are essential for protective immunity to Tuberculosis. Information for CTL epitopes derived from Mtb is desirable for vaccine design and assessment of T cell responses. However, the knowledge about CTL epitopes of Mtb, particularly those non-A2 HLA alleles restricted is rare. In this study, beta-2-microglobulin (beta 2m, beta(2)m) linked HLA-A24 single chain was expressed on RMA-S cell line defective in the endogenous antigen processing and applied for screening of peptides which could stabilize the HLA-A24 complex on the cell surface. From a group of peptides predicted as binders by a computer algorithm, five peptides were shown to bind to HLA-A24 protein on the cell surface. As comparison we have also identified a dozen Mtb proteins derived peptides that bind to HLA-A2 specifically. The cell line and HLA binders present here would be useful for further identification of CD8 restricted Mtb epitopes.

  5. When is protein binding important?

    PubMed

    Heuberger, Jules; Schmidt, Stephan; Derendorf, Hartmut

    2013-09-01

    The present paper is an ode to a classic citation by Benet and Hoener (2002. Clin Pharm Ther 71(3):115-121). The now classic paper had a huge impact on drug development and the way the issue of protein binding is perceived and interpreted. Although the authors very clearly pointed out the limitations and underlying assumptions for their delineations, these are too often overlooked and the classic paper's message is misinterpreted by broadening to cases that were not intended. Some members of the scientific community concluded from the paper that protein binding is not important. This was clearly not intended by the authors, as they finished their paper with a paragraph entitled: "When is protein binding important?" Misinterpretation of the underlying assumptions in the classic work can result in major pitfalls in drug development. Therefore, we revisit the topic of protein binding with the intention of clarifying when clinically relevant changes should be considered during drug development.

  6. ERas protein is overexpressed and binds to the activated platelet-derived growth factor β receptor in bovine urothelial tumour cells associated with papillomavirus infection.

    PubMed

    Russo, Valeria; Roperto, Franco; Esposito, Iolanda; Ceccarelli, Dora Maria; Zizzo, Nicola; Leonardi, Leonardo; Capparelli, Rosanna; Borzacchiello, Giuseppe; Roperto, Sante

    2016-06-01

    Embryonic stem cell-expressed Ras (ERas) encodes a constitutively active form of guanosine triphosphatase (GTPase) that binds to and activates phosphatidylinositol 3 kinase (PI3K), which in turn phosphorylates and activates downstream targets such as Akt. The current study evaluated ERas regulation and expression in papillomavirus-associated urothelial tumours in cattle grazing on lands rich in bracken fern. ERas was found upregulated and overexpressed by PCR, real time PCR and Western blot. Furthermore, protein overexpression was also confirmed by immunohistochemistry. ERas was found to interact physically and colocalise with the activated platelet derived growth factor β receptor (PDGFβR) by coimmunoprecipitation and laser scanning confocal investigations. Phosphorylation of Akt, a downstream effector both of ERas and PDGFβR, appeared to be increased in urothelial tumour cells. Altogether, these data indicate that ERas/PDGFβR complex could play a role in the pathogenesis of bovine papillomavirus-associated bladder neoplasia. PMID:27256024

  7. Synthesis and Evaluation of a Novel Deguelin Derivative, L80, which Disrupts ATP Binding to the C-terminal Domain of Heat Shock Protein 90.

    PubMed

    Lee, Su-Chan; Min, Hye-Young; Choi, Hoon; Kim, Ho Shin; Kim, Kyong-Cheol; Park, So-Jung; Seong, Myeong A; Seo, Ji Hae; Park, Hyun-Ju; Suh, Young-Ger; Kim, Kyu-Won; Hong, Hyun-Seok; Kim, Hee; Lee, Min-Young; Lee, Jeewoo; Lee, Ho-Young

    2015-08-01

    The clinical benefit of current anticancer regimens for lung cancer therapy is still limited due to moderate efficacy, drug resistance, and recurrence. Therefore, the development of effective anticancer drugs for first-line therapy and for optimal second-line treatment is necessary. Because the 90-kDa molecular chaperone heat shock protein (Hsp90) contributes to the maturation of numerous mutated or overexpressed oncogenic proteins, targeting Hsp90 may offer an effective anticancer therapy. Here, we investigated antitumor activities and toxicity of a novel deguelin-derived C-terminal Hsp90 inhibitor, designated L80. L80 displayed significant inhibitory effects on the viability, colony formation, angiogenesis-stimulating activity, migration, and invasion of a panel of non-small cell lung cancer cell lines and their sublines with acquired resistance to paclitaxel with minimal toxicity to normal lung epithelial cells, hippocampal cells, vascular endothelial cells, and ocular cells. Biochemical analyses and molecular docking simulation revealed that L80 disrupted Hsp90 function by binding to the C-terminal ATP-binding pocket of Hsp90, leading to the disruption of the interaction between hypoxia-inducible factor (HIF)-1α and Hsp90, downregulation of HIF-1α and its target genes, including vascular endothelial growth factor (VEGF) and insulin-like growth factor 2 (IGF2), and decreased the expression of various Hsp90 client proteins. Consistent with these in vitro findings, L80 exhibited significant antitumor and antiangiogenic activities in H1299 xenograft tumors. These results suggest that L80 represents a novel C-terminal Hsp90 inhibitor with effective anticancer activities with minimal toxicities.

  8. Glioblastoma-derived Macrophage Colony-stimulating Factor (MCSF) Induces Microglial Release of Insulin-like Growth Factor-binding Protein 1 (IGFBP1) to Promote Angiogenesis.

    PubMed

    Nijaguna, Mamatha Bangalore; Patil, Vikas; Urbach, Serge; Shwetha, Shivayogi D; Sravani, Kotha; Hegde, Alangar S; Chandramouli, Bangalore A; Arivazhagan, Arimappamagan; Marin, Philippe; Santosh, Vani; Somasundaram, Kumaravel

    2015-09-18

    Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NFκB pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NFκB-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression.

  9. Thermodynamic characterization of pyrazole and azaindole derivatives binding to p38 mitogen-activated protein kinase using Biacore T100 technology and van't Hoff analysis.

    PubMed

    Papalia, Giuseppe A; Giannetti, Anthony M; Arora, Nidhi; Myszka, David G

    2008-12-15

    Biacore T100 technology was used in conjunction with a van't Hoff analysis to characterize the thermodynamic binding parameters of 85 small-molecule inhibitors of adenosine triphosphate (ATP) binding to p38 mitogen-activated protein (MAP) kinase. The compounds were selected from a large panel of azaindole and pyrazole derivatives for which IC(50) data exist. We showed a strong relationship between the K(D) and IC(50) of a compound, but only a modest relationship between k(off) and IC(50) was detected and an apparent relationship between a compound's k(on) and its IC(50) could not be discerned. Similarly, a correlation between a compound's IC(50) and its thermodynamic parameters DeltaH degrees and DeltaS degrees could not be established. The lack of a predominant kinetic or thermodynamic signature associated with the inhibitory potential of these compounds demonstrates that there exists, even within a single well-defined system, a library of kinetic routes or, alternatively, a library of initial and final enthalpic and entropic states from which to effect inhibition. As a complement to these studies, selected double mutant thermodynamic cycles were performed to probe the energetic coupling, if any, between common sites of fluorination in both the azaindole and pyrazole classes and two different substituents. Although both cycles indicated negligible coupling free energies, both revealed significant coupling enthalpies, an observation made in other similarly dissected systems. The possible significance and caveats associated with these findings along with the advantages of using Biacore technology to derive thermodynamic parameters in drug discovery efforts are discussed.

  10. Preferential binding of the neutrophil cytoplasmic granule-derived bactericidal/permeability increasing protein to target bacteria. Implications and use as a means of purification.

    PubMed

    Mannion, B A; Kalatzis, E S; Weiss, J; Elsbach, P

    1989-04-15

    The specificity of the basic bactericidal/permeability increasing protein (BPI) of polymorphonuclear leukocytes (PMN) for gram-negative bacteria is attributable to its strong attraction for the negatively charged envelope LPS. The antibacterial activity of PMN homogenates or extracts toward Escherichia coli corresponds to their BPI content and is blocked by anti-BPI IgG, suggesting that BPI action is unaffected by the presence of other PMN proteins. To test if BPI is preferentially bound to E. coli when other antibacterial proteins are present, we have measured binding in buffered (pH 7.5) balanced salts solution of [125I] human BPI to E. coli J5 in the presence and absence of other human PMN granule proteins. BPI binding is saturable with an apparent K = 23 nM and 2.2 million binding sites/cell. While binding of [125I] human BPI is competitively inhibited by human or rabbit BPI, it is only weakly inhibited by myeloperoxidase, lysozyme, or cathepsin G. In contrast, myeloperoxidase binding to E. coli is strongly inhibited by BPI. Moreover, incubation of E. coli with crude extracts of PMN or CML spleen results in near quantitative binding of BPI, identified by silver staining and immunoblotting after SDS-PAGE of the washed E. coli pellet, without recognizable binding of other leukocyte proteins (greater than 98% of added total protein is recovered in supernatant). After addition of 200 mM MgCl2, approximately 80% of bound BPI is released as fully active and pure protein (as judged by SDS-PAGE and HPLC). Thus the selective and reversible binding of BPI in crude PMN extracts to target bacteria provides a one-step "affinity" purification procedure.

  11. Mutation-Specific Phenotypes in hiPSC-Derived Cardiomyocytes Carrying Either Myosin-Binding Protein C Or α-Tropomyosin Mutation for Hypertrophic Cardiomyopathy

    PubMed Central

    Prajapati, Chandra; Pölönen, Risto-Pekka; Rajala, Kristiina; Pekkanen-Mattila, Mari; Rasku, Jyrki; Larsson, Kim; Aalto-Setälä, Katriina

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease, which affects the structure of heart muscle tissue. The clinical symptoms include arrhythmias, progressive heart failure, and even sudden cardiac death but the mutation carrier can also be totally asymptomatic. To date, over 1400 mutations have been linked to HCM, mostly in genes encoding for sarcomeric proteins. However, the pathophysiological mechanisms of the disease are still largely unknown. Two founder mutations for HCM in Finland are located in myosin-binding protein C (MYBPC3-Gln1061X) and α-tropomyosin (TPM1-Asp175Asn) genes. We studied the properties of HCM cardiomyocytes (CMs) derived from patient-specific human induced pluripotent stem cells (hiPSCs) carrying either MYBPC3-Gln1061X or TPM1-Asp175Asn mutation. Both types of HCM-CMs displayed pathological phenotype of HCM but, more importantly, we found differences between CMs carrying either MYBPC3-Gln1061X or TPM1-Asp175Asn gene mutation in their cellular size, Ca2+ handling, and electrophysiological properties, as well as their gene expression profiles. These findings suggest that even though the clinical phenotypes of the patients carrying either MYBPC3-Gln1061X or TPM1-Asp175Asn gene mutation are similar, the genetic background as well as the functional properties on the cellular level might be different, indicating that the pathophysiological mechanisms behind the two mutations would be divergent as well. PMID:27057166

  12. Virus-Binding Proteins Recovered from Bacterial Culture Derived from Activated Sludge by Affinity Chromatography Assay Using a Viral Capsid Peptide

    PubMed Central

    Sano, Daisuke; Matsuo, Takahiro; Omura, Tatsuo

    2004-01-01

    The contamination of water environments by pathogenic viruses has raised concerns about outbreaks of viral infectious diseases in our society. Because conventional water and wastewater treatment systems are not effective enough to inactivate or remove pathogenic viruses, a new technology for virus removal needs to be developed. In this study, the virus-binding proteins (VBPs) in a bacterial culture derived from activated sludge were successfully recovered. The recovery of VBPs was achieved by applying extracted crude proteins from a bacterial culture to an affinity column in which a custom-made peptide of capsid protein from the poliovirus type 1 (PV1) Mahoney strain (H2N-DNPASTTNKDKL-COOH) was immobilized as a ligand. VBPs exhibited the ability to adsorb infectious particles of PV1 Sabin 1 as determined by enzyme-linked immunosorbent assay. The evaluation of surface charges of VBPs with ion-exchange chromatography found that a majority of VBP molecules had a net negative charge under the conditions of affinity chromatography. On the other hand, a calculated isoelectric point implied that the viral peptide in the affinity column was also charged negatively. As a result, the adsorption of the VBPs to the viral peptide in the affinity column occurred with a strong attractive force that was able to overcome the electrostatic repulsive force. Two-dimensional electrophoresis revealed that the isolated VBPs include a number of proteins, and their molecular masses were widely distributed but smaller than 100 kDa. Amino acid sequences of N termini of five VBPs were determined. Homology searches for the N termini against all protein sequences in the National Center for Biotechnology Information (NCBI) database showed that the isolated VBPs in this study were newly discovered proteins. These VBPs that originated with bacteria in activated sludge might be stable, because they are existing in the environment of wastewater treatments. Therefore, a virus removal technology

  13. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  14. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  15. Derivation of the Crick-Wyman equation for allosteric proteins defining the difference between the number of binding sites and the Hill coefficient.

    PubMed

    Poitevin, Frédéric; Edelstein, Stuart J

    2013-05-13

    In response to a 100-word footnote in the 1965 article by Monod, Wyman, and Changeux, a detailed manuscript signed by Francis Crick and Jeffries Wyman with 6000 words and 30 equations entitled "A Footnote on Allostery" circulated in 1965 among a limited group of scientists interested in allosteric interactions. This interesting and provocative document is published in this special issue for the first time. An intriguing equation in their text relates the difference between n (the number of ligand binding sites) and n' (the Hill coefficient) to the ratio of the saturation functions Y¯, for oligomers with n-1 and n binding sites. A compact derivation of this equation was not provided by Crick and Wyman, but one is presented here based on a definition of Y¯ involving the binding polynomial and its first derivative.

  16. Evasin-4, a tick-derived chemokine-binding protein with broad selectivity can be modified for use in preclinical disease models.

    PubMed

    Déruaz, Maud; Bonvin, Pauline; Severin, India C; Johnson, Zoë; Krohn, Sonja; Power, Christine A; Proudfoot, Amanda E I

    2013-10-01

    Rhipicephalus sanguineus, the common brown dog tick, produces several chemokine-binding proteins which are secreted into the host in its saliva to modulate the host response during feeding. Two of these demonstrate very restricted selectivity profiles. Here, we describe the characterization of the third, which we named Evasin-4. Evasin-4 was difficult to produce recombinantly using its native signal peptide in HEK cells, but expressed very well using the urokinase-type plasminogen activator signal peptide. Using SPR, Evasin-4 was shown to bind most CC chemokines. Investigation of the neutralization properties by inhibition of chemokine-induced chemotaxis showed that binding and neutralization did not correlate in all cases. Two major anomalies were observed: no binding was observed to CCL2 and CCL13, yet Evasin-4 was able to inhibit chemotaxis induced by these chemokines. Conversely, binding to CCL25 was observed, but Evasin-4 did not inhibit CCL25-induced chemotaxis. Size-exclusion chromatography confirmed that Evasin-4 forms a complex with CCL2 and CCL18. In accordance with the standard properties of unmodified small proteins, Evasin-4 was rapidly cleared following in vivo administration. To enhance the in vivo half-life and optimize its potential as a therapeutic agent, Fc fusions of Evasin-4 were created. Both the N- and C-terminal fusions were shown to retain binding activity, with the C-terminal fusion showing a modest reduction in potency. PMID:23910450

  17. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  18. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  19. Diversity of aminopeptidases, derived from four lepidopteran gene duplications, and polycalins expressed in the midgut of Helicoverpa armigera: Identification of proteins binding the δ-endotoxin, Cry1Ac of Bacillus thuringiensis

    PubMed Central

    Angelucci, Constanza; Barrett-Wilt, Gregory A.; Hunt, Donald F.; Akhurst, Raymond J.; East, Peter D.; Gordon, Karl H.J.; Campbell, Peter M.

    2010-01-01

    Helicoverpa armigera midgut proteins that bind the Bacillus thuringiensis (Bt) δ-endotoxin Cry1Ac were purified by affinity chromatography. SDS-PAGE showed that several proteins were eluted with N-acetylgalactosamine and no further proteins were detected after elution with urea. Tandem mass spectral data for tryptic peptides initially indicated that the proteins resembled aminopeptidases (APNs) from other lepidopterans and cDNA sequences for seven APNs were isolated from H. armigera through a combination of cloning with primers derived from predicted peptide sequences and established EST libraries. Phylogenetic analysis showed lepidopteran APN genes in nine clades of which five were part of a lepidopteran-specific radiation. The Cry1Ac-binding proteins were then identified with four of the seven HaAPN genes. Three of those four APNs are likely orthologs of APNs characterised as Cry1Ac-binding proteins in other lepidopterans. The fourth Cry1Ac-binding APN has orthologs not previously identified as Cry1Ac-binding partners. The HaAPN genes were expressed predominantly in the midgut through larval development. Each showed consistent expression along the length of the midgut but five of the genes were expressed at levels about two orders of magnitude greater than the remaining two. The remaining mass spectral data identified sequences encoding polycalin proteins with multiple lipocalin-like domains. A polycalin has only been previously reported in another lepidopteran, Bombyx mori, but polycalins in both species are now linked with binding of Bt Cry toxins. This is the first report of hybrid, lipocalin-like domains in shorter polycalin sequences that are not present in the longest sequence. We propose that these hybrid domains are generated by alternative splicing of the mRNA. PMID:18549954

  20. Designing ligands to bind proteins.

    PubMed

    Whitesides, George M; Krishnamurthy, Vijay M

    2005-11-01

    The ability to design drugs (so-called 'rational drug design') has been one of the long-term objectives of chemistry for 50 years. It is an exceptionally difficult problem, and many of its parts lie outside the expertise of chemistry. The much more limited problem - how to design tight-binding ligands (rational ligand design) - would seem to be one that chemistry could solve, but has also proved remarkably recalcitrant. The question is 'Why is it so difficult?' and the answer is 'We still don't entirely know'. This perspective discusses some of the technical issues - potential functions, protein plasticity, enthalpy/entropy compensation, and others - that contribute, and suggests areas where fundamental understanding of protein-ligand interactions falls short of what is needed. It surveys recent technological developments (in particular, isothermal titration calorimetry) that will, hopefully, make now the time for serious progress in this area. It concludes with the calorimetric examination of the association of a series of systematically varied ligands with a model protein. The counterintuitive thermodynamic results observed serve to illustrate that, even in relatively simple systems, understanding protein-ligand association is challenging.

  1. Immobilized purified folate-binding protein: binding characteristics and use for quantifying folate in erythrocytes

    SciTech Connect

    Hansen, S.I.; Holm, J.; Nexo, E.

    1987-08-01

    Purified folate-binding protein from cow's milk was immobilized on monodisperse polymer particles (Dynospheres) activated by rho-toluenesulfonyl chloride. Leakage from the spheres was less than 0.1%, and the binding properties were similar to those of the soluble protein with regard to dissociation, pH optimum for binding pteroylglutamic acid, and specificity for binding various folate derivatives. We used the immobilized folate-binding protein as binding protein in an isotope-dilution assay for quantifying folate in erythrocytes. The detection limit was 50 nmol/L and the CV over a six-month period was 2.3% (means = 1.25 mumol/L, n = 15). The reference interval, for folate measured in erythrocytes of 43 blood donors, was 0.4-1.5 mumol/L.

  2. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production.

    PubMed

    Yamamoto, N

    1996-10-01

    Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. PMID:9070663

  3. Search for Amyloid-Binding Proteins by Affinity Chromatography

    PubMed Central

    Calero, Miguel; Rostagno, Agueda; Ghiso, Jorge

    2013-01-01

    ‘Amyloid binging proteins’ is a generic term used to designate proteins that interact with different forms of amyloidogenic peptides or proteins and that, as a result, may modulate their physiological and pathological functions by altering solubility, transport, clearance, degradation, and fibril formation. We describe a simple affinity chromatography protocol to isolate and characterize amyloid-binding proteins based on the use of sequential elution steps that may provide further information on the type of binding interaction. As an example, we depict the application of this protocol to the study of Alzheimer’s amyloid β (Aβ) peptide-binding proteins derived from human plasma. Biochemical analysis of the proteins eluted under different conditions identified serum amyloid P component (SAP) and apolipoprotein J (clusterin) as the main plasma Aβ-binding proteins while various apolipoproteins (apoA-IV, apoE, and apoA-I), as well as albumin (HSA) and fibulin were identified as minor contributors. PMID:22528093

  4. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  5. The detection of DNA-binding proteins by protein blotting.

    PubMed Central

    Bowen, B; Steinberg, J; Laemmli, U K; Weintraub, H

    1980-01-01

    A method, called "protein blotting," for the detection of DNA-binding proteins is described. Proteins are separated on an SDA-polyacrylamide gel. The gel is sandwiched between 2 nitrocellulose filters and the proteins allowed to diffuse out of the gel and onto the filters. The proteins are tightly bound to each filter, producing a replica of the original gel pattern. The replica is used to detect DNA-binding proteins, RNA-binding proteins or histone-binding proteins by incubation of the filter with [32P]DNA, [125I]RNA, or [125I] histone. Evidence is also presented that specific protein-DNA interactions may be detected by this technique; under appropriate conditions, the lac repressor binds only to DNA containing the lac operator. Strategies for the detection of specific protein-DNA interactions are discussed. Images PMID:6243775

  6. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice. PMID:9682967

  7. Cell-Binding Assays for Determining the Affinity of Protein-Protein Interactions: Technologies and Considerations.

    PubMed

    Hunter, S A; Cochran, J R

    2016-01-01

    Determining the equilibrium-binding affinity (Kd) of two interacting proteins is essential not only for the biochemical study of protein signaling and function but also for the engineering of improved protein and enzyme variants. One common technique for measuring protein-binding affinities uses flow cytometry to analyze ligand binding to proteins presented on the surface of a cell. However, cell-binding assays require specific considerations to accurately quantify the binding affinity of a protein-protein interaction. Here we will cover the basic assumptions in designing a cell-based binding assay, including the relevant equations and theory behind determining binding affinities. Further, two major considerations in measuring binding affinities-time to equilibrium and ligand depletion-will be discussed. As these conditions have the potential to greatly alter the Kd, methods through which to avoid or minimize them will be provided. We then outline detailed protocols for performing direct- and competitive-binding assays against proteins displayed on the surface of yeast or mammalian cells that can be used to derive accurate Kd values. Finally, a comparison of cell-based binding assays to other types of binding assays will be presented. PMID:27586327

  8. Calmodulin Binding Proteins and Alzheimer's Disease.

    PubMed

    O'Day, Danton H; Eshak, Kristeen; Myre, Michael A

    2015-01-01

    The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer's disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer's disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer's disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  9. Computational Prediction of RNA-Binding Proteins and Binding Sites.

    PubMed

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%-8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein-RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein-RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  10. Peptiderive server: derive peptide inhibitors from protein-protein interactions.

    PubMed

    Sedan, Yuval; Marcu, Orly; Lyskov, Sergey; Schueler-Furman, Ora

    2016-07-01

    The Rosetta Peptiderive protocol identifies, in a given structure of a protein-protein interaction, the linear polypeptide segment suggested to contribute most to binding energy. Interactions that feature a 'hot segment', a linear peptide with significant binding energy compared to that of the complex, may be amenable for inhibition and the peptide sequence and structure derived from the interaction provide a starting point for rational drug design. Here we present a web server for Peptiderive, which is incorporated within the ROSIE web interface for Rosetta protocols. A new feature of the protocol also evaluates whether derived peptides are good candidates for cyclization. Fast computation times and clear visualization allow users to quickly assess the interaction of interest. The Peptiderive server is available for free use at http://rosie.rosettacommons.org/peptiderive. PMID:27141963

  11. Mercury-binding proteins of Mytilus edulis

    SciTech Connect

    Roesijadi, G.; Morris, J. E.; Calabrese, A.

    1981-11-01

    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 ..mu..g/l mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  12. A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages.

    PubMed

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J V; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-07-01

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This allows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects. PMID:23857228

  13. A Novel Role for a Major Component of the Vitamin D Axis: Vitamin D Binding Protein-Derived Macrophage Activating Factor Induces Human Breast Cancer Cell Apoptosis through Stimulation of Macrophages

    PubMed Central

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J. V.; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-01-01

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This al1ows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects. PMID:23857228

  14. Identification of AOSC-binding proteins in neurons

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Nie, Qin; Xin, Xianliang; Geng, Meiyu

    2008-11-01

    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer’s Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  15. Chemokine binding proteins encoded by pathogens.

    PubMed

    Alcami, Antonio; Saraiva, Margarida

    2009-01-01

    Chemokines are chemoattractant cytokines that play an important role in immunity. The role of chemokines against invading pathogens is emphasized by the expression of chemokine inhibitors by many pathogens. A mechanims employed by poxviruses and herpesviruses is the secretion of chemokine bindingproteins unrelated to host receptors that bind chemokines with high affinity and block their activity. Soluble chemokine binding proteins have also been identified in the human parasite Schistosoma mansoni and in ticks. The binding specificity of these inhibitors of cell migration point at chemokines that contribute to host defense mechanisms against various pathogens. Chemokine binding proteins modulate the immune response and may lead to new therapeutic approaches to treat inflamatory diseases.

  16. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90

  17. Diagnostic potential of Fasciola gigantica-derived 14.5 kDa fatty acid binding protein in the immunodiagnosis of bubaline fascioliasis.

    PubMed

    Allam, G; Bauomy, I R; Hemyeda, Z M; Diab, T M; Sakran, T F

    2013-06-01

    The 14.5 kDa fatty acid binding protein (FABP) was isolated from the crude extract of adult Fasciola gigantica worms. Polyclonal anti-FABP IgG was generated in rabbits immunized with prepared FABP antigen. Sandwich enzyme-linked immunosorbent assay (ELISA) was applied to detect coproantigen in stools and circulating Fasciola antigen (CA) in sera of 126 water buffaloes by using purified and horseradish peroxidase (HRP)-conjugated anti-FABP IgG. Sandwich ELISA sensitivity was 96.97% and 94.95%; while specificity was 94.12% and 82.35% for coproantigen and CA detection, respectively. However, sensitivity and specificity of the Kato-Katz technique was 73.74% and 100%, respectively. The diagnostic efficacy of sandwich ELISA was 96.55% and 93.1% for coproantigen and CA detection, respectively. In contrast, the diagnostic efficacy of the Kato-Katz technique was 77.59%. In conclusion, these results demonstrate that the purified 14.5 kDa FABP provides a more suitable antigen for immunodiagnosis of early and current bubaline fascioliasis by using sandwich ELISA.

  18. Molecular beacons for detecting DNA binding proteins.

    PubMed

    Heyduk, Tomasz; Heyduk, Ewa

    2002-02-01

    We report here a simple, rapid, homogeneous fluorescence assay, the molecular beacon assay, for the detection and quantification of sequence-specific DNA-binding proteins. The central feature of the assay is the protein-dependent association of two DNA fragments each containing about half of a DNA sequence defining a protein-binding site. Protein-dependent association of DNA fragments can be detected by any proximity-based spectroscopic signal, such as fluorescence resonance energy transfer (FRET) between fluorochromes introduced into these DNA molecules. The assay is fully homogeneous and requires no manipulations aside from mixing of the sample and the test solution. It offers flexibility with respect to the mode of signal detection and the fluorescence probe, and is compatible with multicolor simultaneous detection of several proteins. The assay can be used in research and medical diagnosis and for high-throughput screening of drugs targeted to DNA-binding proteins.

  19. Synthesis of imidazole derivatives and the spectral characterization of the binding properties towards human serum albumin

    NASA Astrophysics Data System (ADS)

    Yue, Yuanyuan; Dong, Qiao; Zhang, Yajie; Li, Xiaoge; Yan, Xuyang; Sun, Yahui; Liu, Jianming

    2016-01-01

    Small molecular drugs that can combine with target proteins specifically, and then block relative signal pathway, finally obtain the purpose of treatment. For this reason, the synthesis of novel imidazole derivatives was described and this study explored the details of imidazole derivatives binding to human serum albumin (HSA). The data of steady-state and time-resolved fluorescence showed that the conjugation of imidazole derivatives with HSA yielded quenching by a static mechanism. Meanwhile, the number of binding sites, the binding constants, and the thermodynamic parameters were also measured; the raw data indicated that imidazole derivatives could spontaneously bind with HSA through hydrophobic interactions and hydrogen bonds which agreed well with the results from the molecular modeling study. Competitive binding experiments confirmed the location of binding. Furthermore, alteration of the secondary structure of HSA in the presence of the imidazole derivatives was tested.

  20. Phage display of engineered binding proteins.

    PubMed

    Levisson, Mark; Spruijt, Ruud B; Winkel, Ingrid Nolla; Kengen, Servé W M; van der Oost, John

    2014-01-01

    In current purification processes optimization of the capture step generally has a large impact on cost reduction. At present, valuable biomolecules are often produced in relatively low concentrations and, consequently, the eventual selective separation from complex mixtures can be rather inefficient. A separation technology based on a very selective high-affinity binding may overcome these problems. Proteins in their natural environment manifest functionality by interacting specifically and often with relatively high affinity with other molecules, such as substrates, inhibitors, activators, or other proteins. At present, antibodies are the most commonly used binding proteins in numerous applications. However, antibodies do have limitations, such as high production costs, low stability, and a complex patent landscape. A novel approach is therefore to use non-immunoglobulin engineered binding proteins in affinity purification. In order to obtain engineered binders with a desired specificity, a large mutant library of the new to-be-developed binding protein has to be created and screened for potential binders. A powerful technique to screen and select for proteins with desired properties from a large pool of variants is phage display. Here, we indicate several criteria for potential binding protein scaffolds and explain the principle of M13 phage display. In addition, we describe experimental protocols for the initial steps in setting up a M13 phage display system based on the pComb3X vector, including construction of the phagemid vector, production of phages displaying the protein of interest, and confirmation of display on the M13 phage.

  1. Detergent activation of the binding protein in the folate radioassay

    SciTech Connect

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with ..beta..-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to ..beta..-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants (lipids/detergents).

  2. Lipid binding proteins from parasitic platyhelminthes.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    TWO MAIN FAMILIES OF LIPID BINDING PROTEINS HAVE BEEN IDENTIFIED IN PARASITIC PLATYHELMINTHES: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  3. Copper binding in the prion protein.

    PubMed

    Millhauser, Glenn L

    2004-02-01

    A conformational change of the prion protein is responsible for a class of neurodegenerative diseases called the transmissible spongiform encephalopathies that include mad cow disease and the human afflictions kuru and Creutzfeldt-Jakob disease. Despite the attention given to these diseases, the normal function of the prion protein in healthy tissue is unknown. Research over the past few years, however, demonstrates that the prion protein is a copper binding protein with high selectivity for Cu(2+). The structural features of the Cu(2+) binding sites have now been characterized and are providing important clues about the normal function of the prion protein and perhaps how metals or loss of protein function play a role in disease. The link between prion protein and copper may provide insight into the general, and recently appreciated, role of metals in neurodegenerative disease. PMID:14967054

  4. The binding domain structure of retinoblastoma-binding proteins.

    PubMed Central

    Figge, J.; Breese, K.; Vajda, S.; Zhu, Q. L.; Eisele, L.; Andersen, T. T.; MacColl, R.; Friedrich, T.; Smith, T. F.

    1993-01-01

    The retinoblastoma gene product (Rb), a cellular growth suppressor, complexes with viral and cellular proteins that contain a specific binding domain incorporating three invariant residues: Leu-X-Cys-X-Glu, where X denotes a nonconserved residue. Hydrophobic and electrostatic properties are strongly conserved in this segment even though the nonconserved amino acids vary considerably from one Rb-binding protein to another. In this report, we present a diagnostic computer pattern for a high-affinity Rb-binding domain featuring the three conserved residues as well as the conserved physico-chemical properties. Although the pattern encompasses only 10 residues (with only 4 of these explicitly defined), it exhibits 100% sensitivity and 99.95% specificity in database searches. This implies that a certain pattern of structural and physico-chemical properties encoded by this short sequence is sufficient to govern specific Rb binding. We also present evidence that the secondary structural conformation through this region is important for effective Rb binding. PMID:8382993

  5. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  6. Specific binding of gibberellic acid by cytokinin-specific binding proteins: a new aspect of plant hormone-binding proteins with the PR-10 fold.

    PubMed

    Ruszkowski, Milosz; Sliwiak, Joanna; Ciesielska, Agnieszka; Barciszewski, Jakub; Sikorski, Michal; Jaskolski, Mariusz

    2014-07-01

    Pathogenesis-related proteins of class 10 (PR-10) are a family of plant proteins with the same fold characterized by a large hydrophobic cavity that allows them to bind various ligands, such as phytohormones. A subfamily with only ~20% sequence identity but with a conserved canonical PR-10 fold have previously been recognized as Cytokinin-Specific Binding Proteins (CSBPs), although structurally the binding mode of trans-zeatin (a cytokinin phytohormone) was found to be quite diversified. Here, it is shown that two CSBP orthologues from Medicago truncatula and Vigna radiata bind gibberellic acid (GA3), which is an entirely different phytohormone, in a conserved and highly specific manner. In both cases a single GA3 molecule is found in the internal cavity of the protein. The structural data derived from high-resolution crystal structures are corroborated by isothermal titration calorimetry (ITC), which reveals a much stronger interaction with GA3 than with trans-zeatin and pH dependence of the binding profile. As a conclusion, it is postulated that the CSBP subfamily of plant PR-10 proteins should be more properly linked with general phytohormone-binding properties and termed phytohormone-binding proteins (PhBP).

  7. Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein

    PubMed Central

    1993-01-01

    In the intestinal brush border, the mechanoenzyme myosin-I links the microvillus core actin filaments with the plasma membrane. Previous immunolocalization shows that myosin-I is associated with vesicles in mature enterocytes (Drenckhahn, D., and R. Dermietzel. 1988. J. Cell Biol. 107:1037-1048) suggesting a potential role mediating vesicle motility. We now report that myosin-I is associated with Golgi-derived vesicles isolated from cells that are rapidly assembling brush borders in intestinal crypts. Crypt cells were isolated in hyperosmotic buffer, homogenized, and fractionated using differential- and equilibrium- density centrifugation. Fractions containing 50-100-nm vesicles, a similar size to those observed in situ, were identified by EM and were shown to contain myosin-I as demonstrated by immunoblotting and immunolabel negative staining. Galactosyltransferase, a marker enzyme for trans-Golgi membranes was present in these fractions, as was alkaline phosphatase, which is an apical membrane targeted enzyme. Galactosyltransferase was also present in vesicles immuno-purified with antibodies to myosin-I. Villin, a marker for potential contamination from fragmented microvilli, was absent. Myosin-I was found to reside on the vesicle "outer" or cytoplasmic surface for it was accessible to exogenous proteases and intact vesicles could be immunolabeled with myosin-I antibodies in solution. The bound myosin-I could be extracted from the vesicles using NaCl, KI and Na2CO3, suggesting that it is a vesicle peripheral membrane protein. These vesicles were shown to bundle actin filaments in an ATP-dependent manner. These results are consistent with a role for myosin-I as an apically targeted motor for vesicle translocation in epithelial cells. PMID:8416982

  8. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution.

    PubMed

    Sharpe, Belinda K; Matthews, Jacqueline M; Kwan, Ann H Y; Newton, Anthea; Gell, David A; Crossley, Merlin; Mackay, Joel P

    2002-05-01

    Many different zinc binding modules have been identified. Their abundance and variety suggests that the formation of zinc binding folds might be relatively common. We have determined the structure of CH1(1), a 27-residue peptide derived from the first cysteine/histidine-rich region (CH1) of CREB binding protein (CBP). This peptide forms a highly ordered zinc-dependent fold that is distinct from known folds. The structure differs from a subsequently determined structure of a larger region from the CH3 region of CBP, and the CH1(1) fold probably represents a nonphysiologically active form. Despite this, the fold is thermostable and tolerant to both multiple alanine mutations and changes in the zinc-ligand spacing. Our data support the idea that zinc binding domains may arise frequently. Additionally, such structures may prove useful as scaffolds for protein design, given their stability and robustness.

  9. A Detour for Yeast Oxysterol Binding Proteins*

    PubMed Central

    Beh, Christopher T.; McMaster, Christopher R.; Kozminski, Keith G.; Menon, Anant K.

    2012-01-01

    Oxysterol binding protein-related proteins, including the yeast proteins encoded by the OSH gene family (OSH1–OSH7), are implicated in the non-vesicular transfer of sterols between intracellular membranes and the plasma membrane. In light of recent studies, we revisited the proposal that Osh proteins are sterol transfer proteins and present new models consistent with known Osh protein functions. These models focus on the role of Osh proteins as sterol-dependent regulators of phosphoinositide and sphingolipid pathways. In contrast to their posited role as non-vesicular sterol transfer proteins, we propose that Osh proteins coordinate lipid signaling and membrane reorganization with the assembly of tethering complexes to promote molecular exchanges at membrane contact sites. PMID:22334669

  10. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.

    PubMed

    Clifton, Ben E; Jackson, Colin J

    2016-02-18

    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity.

  11. Plasma protein binding of zomepirac sodium.

    PubMed

    O'Neill, P J

    1981-07-01

    The plasma protein binding of zomepirac, a new nonnarcotic analgesic, was studied using equilibrium dialysis. Experiments were performed using human plasma and plasma from mice, rats, and rhesus monkeys, all species of pharmacological or toxicological interest. At concentrations approximating those achieved in vivo, the binding was fairly constant at 98-99% in all species except the rhesus monkey, where binding was decreased from 98 to approximately 96% at higher concentrations (greater then 50 microgram/ml). Zomepirac (10 microgram/ml) did not appear to displace or to be displaced by warfarin (10 microgram/ml) caused a concentration-dependent decrease in zomepirac (10 microgram/ml) binding. Zomepirac did not affect salicylate binding.

  12. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    ERIC Educational Resources Information Center

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  13. Affinity labeling of GTP-binding proteins in cellular extracts.

    PubMed

    Löw, A; Faulhammer, H G; Sprinzl, M

    1992-05-25

    GTP-binding proteins in cellular extracts from Escherichia coli, Thermus thermophilus, yeast, wheat germ or calf thymus were identified using in situ periodate-oxidized [alpha-32P]GTP as affinity label. Site-specific reaction of individual GTP-binding proteins was achieved by cross-linking the protein-bound 2',3'-dialdehyde derivative of GTP with the single lysine residue of the conserved NKXD sequence through Schiff's base formation and subsequent cyanoborohydride reduction. Labeled GTP-binding proteins from prokaryotic or eukaryotic cell homogenates were separated by polyacrylamide gel electrophoresis and visualized by autoradiography. In addition cross-linking of [alpha-32P]GTP with GTP-binding proteins was demonstrated in model systems using different purified GTPases, human c-H-ras p21, transducin from bovine retina, polypeptide elongation factor Tu (EF-Tu) from T. thermophilus and initiation factor 2 (IF2) from T. thermophilus. The described affinity labeling technique can serve as an analytical method for the identification of GTPases belonging to the classes of ras-proteins, elongation and initiation factors, and heterotrimeric signal transducing G-proteins. PMID:1592117

  14. Mogrol Derived from Siraitia grosvenorii Mogrosides Suppresses 3T3-L1 Adipocyte Differentiation by Reducing cAMP-Response Element-Binding Protein Phosphorylation and Increasing AMP-Activated Protein Kinase Phosphorylation.

    PubMed

    Harada, Naoki; Ishihara, Mikako; Horiuchi, Hiroko; Ito, Yuta; Tabata, Hiromitsu; Suzuki, Yasushi A; Nakano, Yoshihisa; Yamaji, Ryoichi; Inui, Hiroshi

    2016-01-01

    This study investigated the effects of mogrol, an aglycone of mogrosides from Siraitia grosvenorii, on adipogenesis in 3T3-L1 preadipocytes. Mogrol, but not mogrosides, suppressed triglyceride accumulation by affecting early (days 0-2) and late (days 4-8), but not middle (days 2-4), differentiation stages. At the late stage, mogrol increased AMP-activated protein kinase (AMPK) phosphorylation and reduced glycerol-3-phosphate dehydrogenase activity. At the early stage, mogrol promoted AMPK phosphorylation, inhibited the induction of CCAAT/enhancer-binding protein β (C/EBPβ; a master regulator of adipogenesis), and reduced 3T3-L1 cell contents (e.g., clonal expansion). In addition, mogrol, but not the AMPK activator AICAR, suppressed the phosphorylation and activity of the cAMP response element-binding protein (CREB), which regulates C/EBPβ expression. These results indicated that mogrol suppressed adipogenesis by reducing CREB activation in the initial stage of cell differentiation and by activating AMPK signaling in both the early and late stages of this process. PMID:27583359

  15. Mogrol Derived from Siraitia grosvenorii Mogrosides Suppresses 3T3-L1 Adipocyte Differentiation by Reducing cAMP-Response Element-Binding Protein Phosphorylation and Increasing AMP-Activated Protein Kinase Phosphorylation

    PubMed Central

    Harada, Naoki; Ishihara, Mikako; Horiuchi, Hiroko; Ito, Yuta; Tabata, Hiromitsu; Suzuki, Yasushi A.; Nakano, Yoshihisa; Yamaji, Ryoichi; Inui, Hiroshi

    2016-01-01

    This study investigated the effects of mogrol, an aglycone of mogrosides from Siraitia grosvenorii, on adipogenesis in 3T3-L1 preadipocytes. Mogrol, but not mogrosides, suppressed triglyceride accumulation by affecting early (days 0–2) and late (days 4–8), but not middle (days 2–4), differentiation stages. At the late stage, mogrol increased AMP-activated protein kinase (AMPK) phosphorylation and reduced glycerol-3-phosphate dehydrogenase activity. At the early stage, mogrol promoted AMPK phosphorylation, inhibited the induction of CCAAT/enhancer-binding protein β (C/EBPβ; a master regulator of adipogenesis), and reduced 3T3-L1 cell contents (e.g., clonal expansion). In addition, mogrol, but not the AMPK activator AICAR, suppressed the phosphorylation and activity of the cAMP response element-binding protein (CREB), which regulates C/EBPβ expression. These results indicated that mogrol suppressed adipogenesis by reducing CREB activation in the initial stage of cell differentiation and by activating AMPK signaling in both the early and late stages of this process. PMID:27583359

  16. Protein-protein binding site identification by enumerating the configurations

    PubMed Central

    2012-01-01

    Background The ability to predict protein-protein binding sites has a wide range of applications, including signal transduction studies, de novo drug design, structure identification and comparison of functional sites. The interface in a complex involves two structurally matched protein subunits, and the binding sites can be predicted by identifying structural matches at protein surfaces. Results We propose a method which enumerates “all” the configurations (or poses) between two proteins (3D coordinates of the two subunits in a complex) and evaluates each configuration by the interaction between its components using the Atomic Contact Energy function. The enumeration is achieved efficiently by exploring a set of rigid transformations. Our approach incorporates a surface identification technique and a method for avoiding clashes of two subunits when computing rigid transformations. When the optimal transformations according to the Atomic Contact Energy function are identified, the corresponding binding sites are given as predictions. Our results show that this approach consistently performs better than other methods in binding site identification. Conclusions Our method achieved a success rate higher than other methods, with the prediction quality improved in terms of both accuracy and coverage. Moreover, our method is being able to predict the configurations of two binding proteins, where most of other methods predict only the binding sites. The software package is available at http://sites.google.com/site/guofeics/dobi for non-commercial use. PMID:22768846

  17. Ice-Binding Proteins and Their Function.

    PubMed

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-01

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities. PMID:27145844

  18. Novel folate binding protein-1 interactions in embryonic orofacial tissue

    PubMed Central

    Pisano, M. Michele; Bhattacherjee, Vasker; Wong, Leeyean; Finnell, Richard H.; Greene, Robert M.

    2010-01-01

    Aim To identify proteins with which FolBp1 may interact within lipid rafts in tissue derived from embryonic orofacial tissue. Methods A yeast two-hybrid screen of a cDNA library, derived from orofacial tissue from gestational day 11 to 13 mouse embryos, was conducted. Key Findings Using the full-length FolBp1 protein as bait, two proteins that bind FolBp1 were identified, Bat2d, and a fibronectin type III-containing domain protein. Results were confirmed by glutathione S-transferase pull-down assays. Significance As a component of membrane lipid raft protein complexes, these binding proteins may represent “helper” or chaperone proteins that associate with FolBp1 in order to facilitate the transport of folate across the plasma membrane. The protein-protein interactions detected, while limited in number, may be critical in mediating the role of FolBp1 in folate transport, particularly in the developing embryo. PMID:20045418

  19. Calcium-binding proteins: an overview.

    PubMed

    Weinman, S

    1991-03-01

    In order to understand the mechanism of the various responses evoked by calcium in the cell, the identification and characterization of a number of calcium receptors were undertaken within the past two decades. Advances in amino acid sequence and protein three-dimensional structure led to the description of two families of calcium-binding proteins, the EF-hand homolog family and the annexin family. The EF-hand motif consists of two alpha helices, "E" and "F", joined by a Ca(2+)-binding loop. EF-hands have been identified in numerous Ca(2+)-binding proteins by similarity of amino acid sequence and confirmed in some crystal structures. Functional EF-hands seem always to occur in pairs. To date, the EF-hand homolog family contains more than 160 different Ca(2+)-modulated proteins which have a broad range of functions. Among them, are the calmodulin, the troponin C, the myosin regulatory light chain, the parvalbumin, the S-100 proteins and the calbindins 9- and 28 kDa. The most striking feature of the EF-hand family is the ability to modulate the activity of a number of enzymes. Several groups have identified proteins from various tissues that show calcium-dependent binding to membranes. These proteins, termed annexins have a molecular weight of 35- or 67 kDa. The amino acid sequences of the members of the annexin family show that each protein contains conserved internal repeats of about 70 amino acids each. The 35 kDa annexins contain four repeats, which show a high degree of homology with each other and with the repeat sequences of the other proteins. These repeats correspond to structural domains with a similar fold.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1864864

  20. Information flow through calcium binding proteins

    NASA Astrophysics Data System (ADS)

    Bak, Ji Hyun; Bialek, William

    2013-03-01

    Calcium signaling is a ubiquitous mode of biological communication, which regulates a great variety of vital processes in living systems. Such a signal typically begins with an elementary event, in which calcium ions bind to a protein, inducing a change in the protein's structure. Information can only be lost, from what was conveyed through this initial event, as the signal is further transduced through the downstream networks. In the present work we analyze and optimize the information flow in the calcium binding process. We explicitly calculate the mutual information between the calcium concentration and the states of the protein, using a simple model for allosteric regulation in a dimeric protein. The optimal solution depends on the dynamic range of the input as well as on the timescale of signal integration. According to our result, the optimizing strategy involves allowing the calcium-binding protein to be ``activated'' by a partial occupation of its sites, and tuning independently the strengths of cooperative interactions in the binding and unbinding processes.

  1. Cadmium-binding protein (metallothionein) in carp

    SciTech Connect

    Kito, H.; Ose, Y.; Sato, T.

    1986-03-01

    When carp (Cyprinus carpio) were exposed to 5 and 30 ppm Cd in the water, the contents of Cd-binding protein, which has low molecular weight, increased in the hepatopancreas, kidney, gills and gastrointestinal tract with duration of exposure. This Cd-binding protein was purified from hepatopancreas, kidney, gills, and spleen of carp administered 2 mg/kg Cd (as CdCl/sub 2/), intraperitoneally for 6 days. Two Cd-binding proteins were separated by DEAE-Sephadex A-25 column chromatography. These proteins had Cd-mercaptide bond, high cysteine contents (ca. 29-34%), but no aromatic amino acids or histidine. From these characteristics the Cd-binding proteins were identified as metallothionein. By using antiserum obtained from a rabbit to which carp hepatopancreas MT-II had been administered, immunological characteristics between hepatopancreas MT-I, II and kidney MT-II were studied, and a slight difference in antigenic determinant was observed among them. By immunological staining techniques with horseradish peroxidase, the localization of metallothionein was investigated. Carp were bred in 1 ppm Cd, 5 ppm Zn solution, and tap water for 14 days, following transfer to 15 ppm Cd solution, respectively. The survival ratio was the highest in the Zn group followed by Cd-treated and control groups.

  2. Antibodies against the calcium-binding protein

    SciTech Connect

    Chou, Mei; Jensen, K.G.; Sjolund, R.D. ); Krause, K.H.; Campbell, K.P. )

    1989-12-01

    Plant microsomes contain a protein clearly related to a calcium-binding protein, calsequestrin, originally found in the sarcoplasmic reticulum of muscle cells, responsible for the rapid release and uptake of Ca{sup 2+} within the cells. The location and role of calsequestrin in plant cells is unknown. To generate monoclonal antibodies specific to plant calsequestrin, mice were immunized with a microsomal fraction from cultured cells of Streptanthus tortuosus (Brassicaceae). Two clones cross-reacted with one protein band with a molecular weight equal to that of calsequestrin (57 kilodaltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. This band is able to bind {sup 45}Ca{sup 2+} and can be recognized by a polyclonal antibody against the canine cardiac muscle calsequestrin. Rabbit skeletal muscle calsequestrin cross-reacted with the plant monoclonal antibodies. The plant monoclonal antibodies generated here are specific to calsequestrin protein.

  3. Quantifying Aptamer-Protein Binding via Thermofluorimetric Analysis

    PubMed Central

    Hu, Juan; Kim, Joonyul; Easley, Christopher J.

    2015-01-01

    Effective aptamer-based protein assays require coupling to a quantitative reporter of aptamer-protein binding. Typically, this involves a direct optical or electrochemical readout of DNA hybridization or an amplification step coupled to the readout. However, method development is often hampered by the multiplicity of aptamer-target binding mechanisms, which can interfere with the hybridization step. As a simpler and more generalizable readout of aptamer-protein binding, we report that thermofluorimetric analysis (TFA) can be used to quantitatively assay protein levels. Sub-nanomolar detection (0.74 nM) of platelet-derived growth factor (PDGF) with its corresponding aptamer is shown as a test case. In the presence of various DNA intercalating dyes, protein-bound aptamers exhibit a change in fluorescence intensity compared to the intercalated, unbound aptamer. This allows thermal resolution of bound and unbound aptamers using fluorescence melting analysis (−dF/dT curves). Remarkably, the homogeneous optical method allows subtraction of autofluorescence in human serum, giving PDGF detection limits of 1.8 and 10.7 nM in serum diluted 1:7 and 1:3, respectively. We have thus demonstrated that bound and unbound aptamers can be thermally resolved in a homogeneous format using a simple qPCR instrument—even in human serum. The simplicity of this approach provides an important step toward a robust, generalizable readout of aptamer-protein binding. PMID:26366207

  4. AUXIN BINDING PROTEIN1: The Outsider

    PubMed Central

    Sauer, Michael; Kleine-Vehn, Jürgen

    2011-01-01

    AUXIN BINDING PROTEIN1 (ABP1) is one of the first characterized proteins that bind auxin and has been implied as a receptor for a number of auxin responses. Early studies characterized its auxin binding properties and focused on rapid electrophysiological and cell expansion responses, while subsequent work indicated a role in cell cycle and cell division control. Very recently, ABP1 has been ascribed a role in modulating endocytic events at the plasma membrane and RHO OF PLANTS-mediated cytoskeletal rearrangements during asymmetric cell expansion. The exact molecular function of ABP1 is still unresolved, but its main activity apparently lies in influencing events at the plasma membrane. This review aims to connect the novel findings with the more classical literature on ABP1 and to point out the many open questions that still separate us from a comprehensive model of ABP1 action, almost 40 years after the first reports of its existence. PMID:21719690

  5. Protein Binding Studies with Zero Mode Waveguides

    NASA Astrophysics Data System (ADS)

    Samiee, K.; Foquet, M.; Cox, E. C.; Craighead, H. G.

    2004-03-01

    Single protein molecules binding to their DNA operator site are observed using zero mode waveguides, novel quasi one-dimensional optical nanostructures. The subwavelength features of the waveguides allow the formation of a focal volume smaller than those allowed by classical diffraction limited optics. The small observation volume allows the use of fluorescence correlation spectroscopy to measure diffusion constants at fluorophore concentrations as high as10uM. Binding is observed between a DNA oligomer containing OR1, an operator site on the Lambda genome, and CI, the repressor protein that inhibits the bacteriophage's lytic growth cycle. The dimensions of the waveguide should allow a single DNA fragment to be fixed at the bottom where its binding dynamics can be characterized on a single molecule basis.

  6. Evolution of Protein-binding DNA Sequences through Competitive Binding

    NASA Astrophysics Data System (ADS)

    Peng, Weiqun; Gerland, Ulrich; Hwa, Terence; Levine, Herbert

    2002-03-01

    The dynamics of in vitro DNA evolution controlled via competitive binding of DNA sequences to proteins has been explored in a recent serial transfer experiment footnote B. Dubertret, S.Liu, Q. Ouyang, A. Libchaber, Phys. Rev. Lett. 86, 6022 (2001).. Motivated by the experiment, we investigate a continuum model for this evolution process in various parameter regimes. We establish a self-consistent mean-field evolution equation, determine its dynamical properties and finite population size corrections. In addition, we discuss the experimental implications of our results.

  7. Quantifying drug-protein binding in vivo.

    SciTech Connect

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D

    2004-02-17

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS.

  8. The dynamics of ligands binding to proteins

    NASA Astrophysics Data System (ADS)

    Callender, Robert

    2001-03-01

    The static structures of many proteins have been solved, and this has revealed much about how they function. On the other hand, although the importance of atomic motion to how proteins function has been conjectured for several decades, the characterization of protein dynamics on multiple time scales is scant. This is because of severe experimental and theoretical difficulties, particularly characterizing the nanosecond to millisecond time scales. Recently, several new techniques have been introduced that make it possible to initiate chemical reactions on fast time scales. We have applied advanced laser induced temperature jump relaxation spectroscopy with nanosecond resolution to examine the binding kinetics of ligands to several enzymes. The observed kinetics take place over multiple time scales. The results reveal the dynamical nature of the binding process and show that there are substantial populations of many structures that are in a constant dynamic equilibrium in some cases. Some of these structures lie quite far from the static structure defined in crystallographic studies, which suggest that the conventional thermodynamical picture of binding (an equilibrium between ligand free in solution and bound) is far off the mark. Moreover, the results suggest that the dynamics can certainly play a crucial role in kinetic control of protein function as in, for example, affecting the rates of enzymatic catalysis. This work is a collaborative project with Hong Deng and Nick Zhadin, also at Albert Einstein. Work supported by the NSF and NIH.

  9. Cu(II), Ni(II) complexes derived from chiral Schiff-base ligands: Synthesis, characterization, cytotoxicity, protein and DNA-binding properties.

    PubMed

    Li, Zhen; Yan, Hui; Chang, Guoliang; Hong, Min; Dou, Jianmin; Niu, Meiju

    2016-10-01

    A series of novel copper (II) and nickel (II) complexes derived from chiral Schiff-base ligands [(R)/(S)-H2L(1)=(R)/(S)-2-[(1-Hydroxymethyl-propylimino)-methyl]-5-methoxy-phenol and (R)/(S)-H2L(2)=(R)/(S)-2-[(1-Hydroxymethyl-2-phenyl-ethylimino)-methyl]-5-methoxy-phenol], were synthesized and characterized by elemental analyses, (1)H NMR spectra, FT-IR spectrum. The crystal structures of complexes 1-5 were determined through single crystal X-ray diffraction (SXRD). The structures showed the ligands coordinated to the Cu/Ni (II) ion in a neutral manner via ONO donor atoms, and oxygen atoms of solvent molecules occupy the axial positions in Ni (II) complexes 3 and 4. The complexes interactions with BSA and CT-DNA were investigated by various spectroscopic methods (UV-Visible, circular dichroism spectrum, fluorescence spectroscopic and synchronous fluorescence spectra). Interactions of chiral copper (II) complexes are stronger than nickel (II) complexes. Further, the cytotoxicities of the complexes 1-6 towards three kinds of cancerous cell lines, were human lung adenocarcinoma (A549), human cervical carcinoma cell (HeLa) and human breast cancer cell (MCF-7) respectively, were evaluated by MTT assay. All complexes exhibited good cytotoxic activity. Furthermore, Cu (II) complex 5 derived from (R)-Schiff-base ligand was found to be more effective towards HeLa cancerous cell. The results showed that chirality and metal ion have important influence on their anticancer activities and interactions with DNA/BSA.

  10. Cu(II), Ni(II) complexes derived from chiral Schiff-base ligands: Synthesis, characterization, cytotoxicity, protein and DNA-binding properties.

    PubMed

    Li, Zhen; Yan, Hui; Chang, Guoliang; Hong, Min; Dou, Jianmin; Niu, Meiju

    2016-10-01

    A series of novel copper (II) and nickel (II) complexes derived from chiral Schiff-base ligands [(R)/(S)-H2L(1)=(R)/(S)-2-[(1-Hydroxymethyl-propylimino)-methyl]-5-methoxy-phenol and (R)/(S)-H2L(2)=(R)/(S)-2-[(1-Hydroxymethyl-2-phenyl-ethylimino)-methyl]-5-methoxy-phenol], were synthesized and characterized by elemental analyses, (1)H NMR spectra, FT-IR spectrum. The crystal structures of complexes 1-5 were determined through single crystal X-ray diffraction (SXRD). The structures showed the ligands coordinated to the Cu/Ni (II) ion in a neutral manner via ONO donor atoms, and oxygen atoms of solvent molecules occupy the axial positions in Ni (II) complexes 3 and 4. The complexes interactions with BSA and CT-DNA were investigated by various spectroscopic methods (UV-Visible, circular dichroism spectrum, fluorescence spectroscopic and synchronous fluorescence spectra). Interactions of chiral copper (II) complexes are stronger than nickel (II) complexes. Further, the cytotoxicities of the complexes 1-6 towards three kinds of cancerous cell lines, were human lung adenocarcinoma (A549), human cervical carcinoma cell (HeLa) and human breast cancer cell (MCF-7) respectively, were evaluated by MTT assay. All complexes exhibited good cytotoxic activity. Furthermore, Cu (II) complex 5 derived from (R)-Schiff-base ligand was found to be more effective towards HeLa cancerous cell. The results showed that chirality and metal ion have important influence on their anticancer activities and interactions with DNA/BSA. PMID:27619741

  11. Capacitance-modulated transistor detects odorant binding protein chiral interactions.

    PubMed

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters. PMID:25591754

  12. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    NASA Astrophysics Data System (ADS)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  13. Sterol carrier protein-2: binding protein for endocannabinoids.

    PubMed

    Liedhegner, Elizabeth Sabens; Vogt, Caleb D; Sem, Daniel S; Cunningham, Christopher W; Hillard, Cecilia J

    2014-08-01

    The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs "on-demand," thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ∆G values of -3.6 and -4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (-6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA.

  14. Gene encoding herbicide safener binding protein

    SciTech Connect

    Walton, J.D.; Scott-Craig, J.S.

    1999-10-26

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is presented. The deduced amino acid sequence is provided. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with vectors and seeds from the plants.

  15. Polynucleotides encoding TRF1 binding proteins

    DOEpatents

    Campisi, Judith; Kim, Sahn-Ho

    2002-01-01

    The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.

  16. Design and synthesis of novel hydrophilic spacers for the reduction of nonspecific binding proteins on affinity resins.

    PubMed

    Shiyama, Takaaki; Furuya, Minoru; Yamazaki, Akira; Terada, Tomohiro; Tanaka, Akito

    2004-06-01

    Tubulin and actin often bind nonspecifically to affinity chromatography resins, complicating research toward identifying the cellular targets. Reduction of nonspecific binding proteins is important for success in finding such targets. We herein disclose the design, synthesis, and effectiveness in reduction of nonspecific binding proteins, of novel hydrophilic spacers (2-5), which were introduced between matrices and a ligand. Among them, tartaric acid derivative (5) exhibited the most effective reduction of nonspecific binding proteins, whilst maintaining binding of the target protein. Introduction of 5 on TOYOPEARL reduced tubulin and actin by almost 65% and 90% compared to that without the hydrophilic spacer, respectively, with effective binding to the target protein, FKBP12.

  17. Novel stereospecificity of the L-arabinose-binding protein

    NASA Astrophysics Data System (ADS)

    Quiocho, Florante A.; Vyas, Nand K.

    1984-08-01

    Tertiary structure refinement at 1.7 Å resolution of the liganded form of L-arabinose-binding protein from Escherichia coli has revealed a novel binding site geometry which accommodates both α- and β-anomers of L-arabinose. This detailed structure analysis provides new understanding of protein-sugar interaction, the process by which the binding protein minimizes the difference in the stability of the two bound sugar anomers, and the roles of periplasmic binding proteins in active transport

  18. Systematic discovery of Xist RNA binding proteins.

    PubMed

    Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A; Bharadwaj, Maheetha; Calabrese, J Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y

    2015-04-01

    Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA-protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3' RNA processing machinery. Xist, an essential lncRNA for X chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK, which participates in Xist-mediated gene silencing and histone modifications but not Xist localization, and Drosophila Split ends homolog Spen, which interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing.

  19. Systematic discovery of Xist RNA binding proteins

    PubMed Central

    Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A.; Bharadwaj, Maheetha; Calabrese, J. Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y.

    2015-01-01

    Summary Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA- protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3′ RNA processing machinery. Xist, an essential lncRNA for X-chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK that participates in Xist-mediated gene silencing and histone modifications, but not Xist localization and Drosophila Split ends homolog Spen that interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628

  20. Polyamine binding to proteins in oat and Petunia protoplasts

    NASA Technical Reports Server (NTRS)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  1. Neisseria meningitis GNA1030 is a ubiquinone-8 binding protein.

    PubMed

    Donnarumma, Danilo; Golfieri, Giacomo; Brier, Sébastien; Castagnini, Marta; Veggi, Daniele; Bottomley, Matthew James; Delany, Isabel; Norais, Nathalie

    2015-06-01

    Bexsero, a new vaccine against Neisseria meningitidis serogroup B (MenB), is composed of 3 main recombinant proteins and an outer membrane vesicle component. One of the main bactericidal antigens, neisseria heparin binding antigen (NHBA), is present as a fusion protein with the accessory protein genome-derived neisserial antigen (GNA) 1030 to further increase its immunogenicity. The gene encoding for GNA1030 is present and highly conserved in all Neisseria strains, and although orthologs are present in numerous species, its biologic function is unknown. Native mass spectrometry was used to demonstrate that GNA1030 forms a homodimer associated with 2 molecules of ubiquinone-8 (Ub8), a cofactor mainly involved in the electron transport chain and with antioxidant properties. Disc diffusion assays on the wild-type and knockout mutant of GNA1030, in the presence of various compounds, suggested that GNA1030 is not involved in oxidative stress or electron chain transport per se, although it contributes to constitutive refilling of the inner membrane with Ub8. These studies shed light on an accessory protein present in Bexsero and reveal functional insights into the family of related proteins. On the basis of our findings, we propose to name the protein neisseria ubiquinone binding protein (NUbp).

  2. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    PubMed Central

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand–protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein–ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters. PMID:25591754

  3. Antigen-binding thymus-derived lymphocytes

    PubMed Central

    Hogg, Nancy M.; Greaves, M. F.

    1972-01-01

    Thymus-derived `rosette'-forming lymphocytes which have been separated from other SRBC-sensitive cells by means of cotton wool columns were examined for the presence of immunoglobulin. This was carried out by inhibition of rosette formation by anti-immunoglobulin sera. Inhibition was effected by a number of anti-IgM sera shown to contain antibodies with specificities directed towards the `hinge' region of the μ chain. No other heavy chain specific antisera were inhibitory. The ratio of rosette inhibition by anti-κ and anti-λ light chain sera varied during the course of the response to SRBC, the latter inhibiting by 89 per cent 3 days post-immunization. PMID:4113387

  4. Engineering a uranyl specific binding protein from NikR.

    SciTech Connect

    Wegner, S. V.; Boyaci, H.; Chen, H.; Jensen, M. P.; He, C.

    2009-03-16

    The first uranyl-selective DNA-binding protein is designed using the E. coli nickel(II)-responsive protein NikR as the template. The resulting NikR? protein binds uranyl (see picture) with a dissociation constant Kd=53?nM and selectively binds to DNA in the presence of uranyl.

  5. Copper-binding protein in Mimulus guttatus

    SciTech Connect

    Robinson, N.J.; Thurman, D.A.

    1985-01-01

    A Cu-binding protein has been purified from the roots of Mimulus guttatus using gel permeation chromatography on Sephadex G-75 and anion exchange chromatography on DEAE Biogel A. The protein has similar properties to putative metallothioneins (MTS) purified from other angiosperms. Putative MT was estimated by measuring the relative percentage incorporation of (/sup 35/S) into fractions containing the protein after HPLC on SW 3000-gel. In the roots of both Cu-tolerant and non tolerant plants synthesis of putative MT is induced by increased Cu concentration in the nutrient solution. The relative percentage incorporation of (/sup 35/S) into putative MT is significantly higher in extracts from the roots of Cu-tolerant than non tolerant M. guttatus after growth in 1 ..mu..M Cu suggesting involvement in the mechanism of tolerance. 22 refs., 2 figs., 1 tab.

  6. A Crayfish Insulin-like-binding Protein

    PubMed Central

    Rosen, Ohad; Weil, Simy; Manor, Rivka; Roth, Ziv; Khalaila, Isam; Sagi, Amir

    2013-01-01

    Across the animal kingdom, the involvement of insulin-like peptide (ILP) signaling in sex-related differentiation processes is attracting increasing attention. Recently, a gender-specific ILP was identified as the androgenic sex hormone in Crustacea. However, moieties modulating the actions of this androgenic insulin-like growth factor were yet to be revealed. Through molecular screening of an androgenic gland (AG) cDNA library prepared from the crayfish Cherax quadricarinatus, we have identified a novel insulin-like growth factor-binding protein (IGFBP) termed Cq-IGFBP. Based on bioinformatics analyses, the deduced Cq-IGFBP was shown to share high sequence homology with IGFBP family members from both invertebrates and vertebrates. The protein also includes a sequence determinant proven crucial for ligand binding, which according to three-dimensional modeling is assigned to the exposed outer surface of the protein. Recombinant Cq-IGFBP (rCq-IGFBP) protein was produced and, using a “pulldown” methodology, was shown to specifically interact with the insulin-like AG hormone of the crayfish (Cq-IAG). Particularly, using both mass spectral analysis and an immunological tool, rCq-IGFBP was shown to bind the Cq-IAG prohormone. Furthermore, a peptide corresponding to residues 23–38 of the Cq-IAG A-chain was found sufficient for in vitro recognition by rCq-IGFBP. Cq-IGFBP is the first IGFBP family member shown to specifically interact with a gender-specific ILP. Unlike their ILP ligands, IGFBPs are highly conserved across evolution, from ancient arthropods, like crustaceans, to humans. Such conservation places ILP signaling at the center of sex-related phenomena in early animal development. PMID:23775079

  7. Identification of DNA-binding and protein-binding proteins using enhanced graph wavelet features.

    PubMed

    Zhu, Yuan; Zhou, Weiqiang; Dai, Dao-Qing; Yan, Hong

    2013-01-01

    Interactions between biomolecules play an essential role in various biological processes. For predicting DNA-binding or protein-binding proteins, many machine-learning-based techniques have used various types of features to represent the interface of the complexes, but they only deal with the properties of a single atom in the interface and do not take into account the information of neighborhood atoms directly. This paper proposes a new feature representation method for biomolecular interfaces based on the theory of graph wavelet. The enhanced graph wavelet features (EGWF) provides an effective way to characterize interface feature through adding physicochemical features and exploiting a graph wavelet formulation. Particularly, graph wavelet condenses the information around the center atom, and thus enhances the discrimination of features of biomolecule binding proteins in the feature space. Experiment results show that EGWF performs effectively for predicting DNA-binding and protein-binding proteins in terms of Matthew's correlation coefficient (MCC) score and the area value under the receiver operating characteristic curve (AUC). PMID:24334394

  8. Fluctuations in Mass-Action Equilibrium of Protein Binding Networks

    NASA Astrophysics Data System (ADS)

    Yan, Koon-Kiu; Walker, Dylan; Maslov, Sergei

    2008-12-01

    We consider two types of fluctuations in the mass-action equilibrium in protein binding networks. The first type is driven by slow changes in total concentrations of interacting proteins. The second type (spontaneous) is caused by quickly decaying thermodynamic deviations away from equilibrium. We investigate the effects of network connectivity on fluctuations by comparing them to scenarios in which the interacting pair is isolated from the network and analytically derives bounds on fluctuations. Collective effects are shown to sometimes lead to large amplification of spontaneous fluctuations. The strength of both types of fluctuations is positively correlated with the complex connectivity and negatively correlated with complex concentration. Our general findings are illustrated using a curated network of protein interactions and multiprotein complexes in baker’s yeast, with empirical protein concentrations.

  9. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    PubMed

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered. PMID:26938582

  10. Competitive protein binding assay for piritrexim

    SciTech Connect

    Woolley, J.L. Jr.; Ringstad, J.L.; Sigel, C.W. )

    1989-09-01

    A competitive protein binding assay for piritrexim (PTX, 1) that makes use of a commercially available radioassay kit for methotrexate has been developed. After it is selectively extracted from plasma, PTX competes with ({sup 125}I)methotrexate for binding to dihydrofolate reductase isolated from Lactobacillus casei. Free drug is separated from bound drug by adsorption to dextran-coated charcoal. Piritrexim is measurable over a range of 0.01 to 10.0 micrograms/mL in plasma with a coefficient of variation less than 15%. The limit of sensitivity of the assay is approximately 2 ng/mL. An excellent correlation between this assay and a previously published HPLC method was found.

  11. Mechanical unfolding of ribose binding protein and its comparison with other periplasmic binding proteins.

    PubMed

    Kotamarthi, Hema Chandra; Narayan, Satya; Ainavarapu, Sri Rama Koti

    2014-10-01

    Folding and unfolding studies on large, multidomain proteins are still rare despite their high abundance in genomes of prokaryotes and eukaryotes. Here, we investigate the unfolding properties of a 271 residue, two-domain ribose binding protein (RBP) from the bacterial periplasm using single-molecule force spectroscopy. We observe that RBP predominately unfolds via a two-state pathway with an unfolding force of ∼80 pN and an unfolding contour length of ∼95 nm. Only a small population (∼15%) of RBP follows three-state pathways. The ligand binding neither increases the mechanical stability nor influences the unfolding flux of RBP through different pathways. The kinetic partitioning between two-state and three-state pathways, which has been reported earlier for other periplasmic proteins, is also observed in RBP, albeit to a lesser extent. These results provide important insights into the mechanical stability and unfolding processes of large two-domain proteins and highlight the contrasting features upon ligand binding. Protein structural topology diagrams are used to explain the differences in the mechanical unfolding behavior of RBP with other periplasmic binding proteins.

  12. Human complement protein C99 is a calcium binding protein

    SciTech Connect

    Thielens, N.M.; Lohner, K.; Esser, A.F.

    1988-05-15

    Human complement protein C9 is shown to be a metalloprotein that binds 1 mol of Ca/sup 2 +//mol of C9 with a dissociation constant of 3 ..mu..m as measured by equilibrium dialysis. Incubation with EDTA removes the bound calcium, resulting in a apoprotein with decreased thermal stability. This loss in stability leads to aggregation and, therefore, to loss of hemolytic activity upon heating to a few degrees above the physiological temperature. Heat-induced aggregation of apoC9 can be prevented by salts that stabilize proteins according to the Hofmeister series of lyotropic ions, suggesting that the ion in native C9 may ligand with more than one structural element of domain of the protein. Ligand blotting indicates that the calcium binding site is located in the amino-terminal half of the protein. Removal of calcium by inclusion of EDTA in assay mixtures has no effect on the hemolytic activity of C9, and its capacity to bind to C8 in solution, or to small unilamellar lipid vesicles at temperatures at or below the physiological range. Although the precise structural and functional role of the bound calcium is not know, it is clear that it provides thermal stability to C9 and it may have a function in regulation of membrane insertion.

  13. Landscape of protein-small ligand binding modes.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  14. Landscape of protein-small ligand binding modes.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them.

  15. Regulation of Pluripotency by RNA Binding Proteins

    PubMed Central

    Ye, Julia; Blelloch, Robert

    2015-01-01

    Establishment, maintenance, and exit from pluripotency require precise coordination of a cell’s molecular machinery. Substantial headway has been made in deciphering many aspects of this elaborate system, particularly with respect to epigenetics, transcription, and noncoding RNAs. Less attention has been paid to posttranscriptional regulatory processes such as alternative splicing, RNA processing and modification, nuclear export, regulation of transcript stability, and translation. Here, we introduce the RNA binding proteins that enable the posttranscriptional regulation of gene expression, summarizing current and ongoing research on their roles at different regulatory points and discussing how they help script the fate of pluripotent stem cells. PMID:25192462

  16. Gene encoding herbicide safener binding protein

    DOEpatents

    Walton, Jonathan D.; Scott-Craig, John S.

    1999-01-01

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is set forth in FIG. 5 and SEQ ID No. 1. The deduced amino acid sequence is provided in FIG. 5 and SEQ ID No. 2. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors and seeds from said plants.

  17. Computational Design of DNA-Binding Proteins.

    PubMed

    Thyme, Summer; Song, Yifan

    2016-01-01

    Predicting the outcome of engineered and naturally occurring sequence perturbations to protein-DNA interfaces requires accurate computational modeling technologies. It has been well established that computational design to accommodate small numbers of DNA target site substitutions is possible. This chapter details the basic method of design used in the Rosetta macromolecular modeling program that has been successfully used to modulate the specificity of DNA-binding proteins. More recently, combining computational design and directed evolution has become a common approach for increasing the success rate of protein engineering projects. The power of such high-throughput screening depends on computational methods producing multiple potential solutions. Therefore, this chapter describes several protocols for increasing the diversity of designed output. Lastly, we describe an approach for building comparative models of protein-DNA complexes in order to utilize information from homologous sequences. These models can be used to explore how nature modulates specificity of protein-DNA interfaces and potentially can even be used as starting templates for further engineering. PMID:27094297

  18. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  19. Two hypervariable minisatellite DNA binding proteins.

    PubMed

    Wahls, W P; Swenson, G; Moore, P D

    1991-06-25

    Hypervariable minisatellite DNA sequences are short, tandemly repeated sequences present at numerous loci in eukaryotes. They stimulate intermolecular homologous recombination up to 13-fold in human cells in culture and may be specific sites for the initiation of recombination in the eukaryotic genome (Wahls, W.P., Wallace, L.J., & Moore, P.D. (1990) Cell 60, 95-103). Reported here is the detection and partial purification of two hypervariable minisatellite DNA binding proteins, called Msbp-2 and Msbp-3, present in the nuclear extracts of human HeLa cells. The proteins elute from a gel filtration column with a native mass of 200-250 kDa and have sizes of 77 kDa and 115 kDa respectively. PMID:2062643

  20. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  1. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  2. Structural and binding studies of SAP-1 protein with heparin.

    PubMed

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity.

  3. Alternative polyadenylation and RNA-binding proteins.

    PubMed

    Erson-Bensan, Ayse Elif

    2016-08-01

    Our understanding of the extent of microRNA-based gene regulation has expanded in an impressive pace over the past decade. Now, we are beginning to better appreciate the role of 3'-UTR (untranslated region) cis-elements which harbor not only microRNA but also RNA-binding protein (RBP) binding sites that have significant effect on the stability and translational rate of mRNAs. To add further complexity, alternative polyadenylation (APA) emerges as a widespread mechanism to regulate gene expression by producing shorter or longer mRNA isoforms that differ in the length of their 3'-UTRs or even coding sequences. Resulting shorter mRNA isoforms generally lack cis-elements where trans-acting factors bind, and hence are differentially regulated compared with the longer isoforms. This review focuses on the RBPs involved in APA regulation and their action mechanisms on APA-generated isoforms. A better understanding of the complex interactions between APA and RBPs is promising for mechanistic and clinical implications including biomarker discovery and new therapeutic approaches. PMID:27208003

  4. Quantitative evaluation of E. coli F4 and Salmonella Typhimurium binding capacity of yeast derivatives

    PubMed Central

    2013-01-01

    The target of the present study was to quantify the capacity of different commercially available yeast derivatives to bind E. coli F4 and Salmonella Typhimurium. In addition, a correlation analysis was performed for the obtained binding numbers and the mannan-, glucan- and protein contents of the products, respectively. In a subsequent experiment, different yeast strains were fermented and treated by autolysis or French press to obtain a concentrated yeast cell wall. The capacity of yeast cell wall products to bind E. coli F4 and Salmonella Typhimurium was assessed with a quantitative microbiological microplate-based assay by measuring the optical density (OD) as the growth parameter of adhering bacteria. Total mannan and glucan were determined by HPLC using an isocratic method and a Refractive Index (RI) Detector. Total protein was determined by Total Kjeldahl Nitrogen (TKN). Statistical analyses were performed with IBM SPSS V19 using Spearman correlation and Mann Whitney U Test. Different yeast derivatives show different binding numbers, which indicate differences in product quality. Interestingly, the binding numbers for Salmonella Typhimurium are consistently higher (between one and two orders of magnitude) than for E. coli F4. We could demonstrate some statistical significant correlations between the mannan- and glucan content of different yeast derivatives and pathogen binding numbers; however, for the different yeast strains fermented under standardized laboratory conditions, no statistically significant correlations between the mannan- and glucan content and the binding numbers for E. coli and Salmonella Typhimurium were found. Interestingly, we could demonstrate that the yeast autolysis had a statistically significant difference on E. coli binding in contrast to the French press treatment. Salmonella binding was independent of these two treatments. As such, we could not give a clear statement about the binding factors involved. We propose that many more

  5. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  6. Binding Linkage in a Telomere DNA–Protein Complex at the Ends of Oxytricha nova Chromosomes

    PubMed Central

    Buczek, Pawel; Orr, Rochelle S.; Pyper, Sean R.; Shum, Mili; Ota, Emily Kimmel Irene; Gerum, Shawn E.; Horvath, Martin P.

    2005-01-01

    Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein–protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (KD-DNA=1.4 nM). Another fusion protein, constructed without the C-terminal protein–protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (KD-DNA=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA–protein stability to protein–protein contacts at a remote site may provide a trigger point for DNA–protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase. PMID:15967465

  7. Effect of enzymatic deamidation of soy protein by protein-glutaminase on the flavor-binding properties of the protein under aqueous conditions.

    PubMed

    Suppavorasatit, Inthawoot; Cadwallader, Keith R

    2012-08-15

    The effect of the enzymatic deamidation by protein-glutaminase (PG) on flavor-binding properties of soy protein isolate (SPI) under aqueous conditions was evaluated by a modified equilibrium dialysis (ultrafiltration) technique. Binding parameters, such as number of binding sites (n) and binding constants (K), were derived from Klotz plots. The partial deamidation of SPI by PG (43.7% degree of deamidation) decreased overall flavor-binding affinity (nK) at 25 °C for both vanillin and maltol by approximately 9- and 4-fold, respectively. The thermodynamic parameters of binding indicated that the flavor-protein interactions were spontaneous (negative ΔG°) and that the driving force of the interactions shifted from entropy to enthalpy driven as a result of deamidation. Deamidation of soy protein caused a change in the mechanism of binding from hydrophobic interactions or covalent bonding (Schiff base formation) to weaker van der Waals forces or hydrogen bonding. PMID:22831747

  8. Helical Defects in MicroRNA Influence Protein Binding by TAR RNA Binding Protein

    PubMed Central

    Acevedo, Roderico; Orench-Rivera, Nichole; Quarles, Kaycee A.; Showalter, Scott A.

    2015-01-01

    Background MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Their precursors have a globally A-form helical geometry, which prevents most proteins from identifying their nucleotide sequence. This suggests the hypothesis that local structural features (e.g., bulges, internal loops) play a central role in specific double-stranded RNA (dsRNA) selection from cellular RNA pools by dsRNA binding domain (dsRBD) containing proteins. Furthermore, the processing enzymes in the miRNA maturation pathway require tandem-dsRBD cofactor proteins for optimal function, suggesting that dsRBDs play a key role in the molecular mechanism for precise positioning of the RNA within these multi-protein complexes. Here, we focus on the tandem-dsRBDs of TRBP, which have been shown to bind dsRNA tightly. Methodology/Principal Findings We present a combination of dsRNA binding assays demonstrating that TRBP binds dsRNA in an RNA-length dependent manner. Moreover, circular dichroism data shows that the number of dsRBD moieties bound to RNA at saturation is different for a tandem-dsRBD construct than for constructs with only one dsRBD per polypeptide, revealing another reason for the selective pressure to maintain multiple domains within a polypeptide chain. Finally, we show that helical defects in precursor miRNA alter the apparent dsRNA size, demonstrating that imperfections in RNA structure influence the strength of TRBP binding. Conclusion/Significance We conclude that TRBP is responsible for recognizing structural imperfections in miRNA precursors, in the sense that TRBP is unable to bind imperfections efficiently and thus is positioned around them. We propose that once positioned around structural defects, TRBP assists Dicer and the rest of the RNA-induced silencing complex (RISC) in providing efficient and homogenous conversion of substrate precursor miRNA into mature miRNA downstream. PMID:25608000

  9. Competitive Binding of Natural Amphiphiles with Graphene Derivatives

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Geitner, Nicholas K.; Podila, Ramakrishna; Käkinen, Aleksandr; Chen, Pengyu; Ke, Pu Chun; Ding, Feng

    2013-07-01

    Understanding the transformation of graphene derivatives by natural amphiphiles is essential for elucidating the biological and environmental implications of this emerging class of engineered nanomaterials. Using rapid discrete-molecular-dynamics simulations, we examined the binding of graphene and graphene oxide with peptides, fatty acids, and cellulose, and complemented our simulations by experimental studies of Raman spectroscopy, FTIR, and UV-Vis spectrophotometry. Specifically, we established a connection between the differential binding and the conformational flexibility, molecular geometry, and hydrocarbon content of the amphiphiles. Importantly, our dynamics simulations revealed a Vroman-like competitive binding of the amphiphiles for the graphene oxide substrate. This study provides a mechanistic basis for addressing the transformation, evolution, transport, biocompatibility, and toxicity of graphene derivatives in living systems and the natural environment.

  10. Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA

    PubMed Central

    Murphy, Mark W; Zarkower, David; Bardwell, Vivian J

    2007-01-01

    Background: The DM domain is a zinc finger-like DNA binding motif first identified in the sexual regulatory proteins Doublesex (DSX) and MAB-3, and is widely conserved among metazoans. DM domain proteins regulate sexual differentiation in at least three phyla and also control other aspects of development, including vertebrate segmentation. Most DM domain proteins share little similarity outside the DM domain. DSX and MAB-3 bind partially overlapping DNA sequences, and DSX has been shown to interact with DNA via the minor groove without inducing DNA bending. DSX and MAB-3 exhibit unusually high DNA sequence specificity relative to other minor groove binding proteins. No detailed analysis of DNA binding by the seven vertebrate DM domain proteins, DMRT1-DMRT7 has been reported, and thus it is unknown whether they recognize similar or diverse DNA sequences. Results: We used a random oligonucleotide in vitro selection method to determine DNA binding sites for six of the seven proteins. These proteins selected sites resembling that of DSX despite differences in the sequence of the DM domain recognition helix, but they varied in binding efficiency and in preferences for particular nucleotides, and some behaved anomalously in gel mobility shift assays. DMRT1 protein from mouse testis extracts binds the sequence we determined, and the DMRT proteins can bind their in vitro-defined sites in transfected cells. We also find that some DMRT proteins can bind DNA as heterodimers. Conclusion: Our results suggest that target gene specificity of the DMRT proteins does not derive exclusively from major differences in DNA binding specificity. Instead target specificity may come from more subtle differences in DNA binding preference between different homodimers, together with differences in binding specificity between homodimers versus heterodimers. PMID:17605809

  11. Analysis of zinc binding sites in protein crystal structures.

    PubMed Central

    Alberts, I. L.; Nadassy, K.; Wodak, S. J.

    1998-01-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations. PMID:10082367

  12. Analyses of the Binding between Water Soluble C60 Derivatives and Potential Drug Targets through a Molecular Docking Approach

    PubMed Central

    Liu, Junjun; Zhang, Houjin

    2016-01-01

    Fullerene C60, a unique sphere-shaped molecule consisting of carbon, has been proved to have inhibitory effects on many diseases. However, the applications of C60 in medicine have been severely hindered by its complete insolubility in water and low solubility in almost all organic solvents. In this study, the water-soluble C60 derivatives and the C60 binding protein’s structures were collected from the literature. The selected proteins fall into several groups, including acetylcholinesterase, glutamate racemase, inosine monophosphate dehydrogenase, lumazine synthase, human estrogen receptor alpha, dihydrofolate reductase and N-myristoyltransferase. The C60 derivatives were docked into the binding sites in the proteins. The binding affinities of the C60 derivatives were calculated. The bindings between proteins and their known inhibitors or native ligands were also characterized in the same way. The results show that C60 derivatives form good interactions with the binding sites of different protein targets. In many cases, the binding affinities of C60 derivatives are better than those of known inhibitors and native ligands. This study demonstrates the interaction patterns of C60 derivatives and their binding partners, which will have good impact on the fullerene-based drug discovery. PMID:26829126

  13. Roles for RNA-binding proteins in development and disease.

    PubMed

    Brinegar, Amy E; Cooper, Thomas A

    2016-09-15

    RNA-binding protein activities are highly regulated through protein levels, intracellular localization, and post-translation modifications. During development, mRNA processing of specific gene sets is regulated through manipulation of functional RNA-binding protein activities. The impact of altered RNA-binding protein activities also affects human diseases in which there are either a gain-of-function or loss-of-function causes pathogenesis. We will discuss RNA-binding proteins and their normal developmental RNA metabolism and contrast how their function is disrupted in disease. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.

  14. Factor H-binding protein, a unique meningococcal vaccine antigen.

    PubMed

    Pizza, Mariagrazia; Donnelly, John; Rappuoli, Rino

    2008-12-30

    GNA1870, also named factor H-binding protein (fHbp) or rLP-2086, is a genome-derived antigen and one of the components of a rationally designed vaccine against Neisseria meningitidis serogroup B, which has entered phase III clinical trials. It has been classified into three main non-cross-protective variant groups. GNA1870 has also been termed fHbp because of its ability to bind factor H, a key regulatory component of the alternative complement pathway. fHbp is important for survival in human blood, human sera, and in presence of antimicrobial peptides, independently of its expression level. All these properties make fHbp a unique vaccine antigen.

  15. Cytotoxic activity and DNA-binding properties of isoeuxanthone derivatives.

    PubMed

    Wang, Hui Fang; Yan, Hong; Gao, Xianghua; Niu, Baolong; Guo, Ruijie; Wei, Liqiao; Xu, Bingshe; Tang, Ning

    2014-01-01

    In this study, the interactions of different groups substituted isoeuxanthone derivatives with calf thymus DNA (ct DNA) were investigated by spectrophotometric methods and viscosity measurements. Results indicated that the xanthone derivatives could intercalate into the DNA base pairs by the plane of xanthone ring and the various substituents may influence the binding affinity with DNA according to the calculated quenching constant values. Furthermore, two tumor cell lines including the human cervical cancer cell line (HeLa) and human hepatocellular liver carcinoma cell line (HepG2) were used to evaluate the cytotoxic activities of xanthone derivatives by acid phosphatase assay. Analyses showed that the oxiranylmethoxy substituted xanthone exhibited more effective cytotoxic activity against the cancer cells than the other substituted xanthones. The effects on the inhibition of tumor cells in vitro agreed with the studies of DNA-binding. PMID:24583780

  16. Automatic generation of matrix element derivatives for tight binding models

    NASA Astrophysics Data System (ADS)

    Elena, Alin M.; Meister, Matthias

    2005-10-01

    Tight binding (TB) models are one approach to the quantum mechanical many-particle problem. An important role in TB models is played by hopping and overlap matrix elements between the orbitals on two atoms, which of course depend on the relative positions of the atoms involved. This dependence can be expressed with the help of Slater-Koster parameters, which are usually taken from tables. Recently, a way to generate these tables automatically was published. If TB approaches are applied to simulations of the dynamics of a system, also derivatives of matrix elements can appear. In this work we give general expressions for first and second derivatives of such matrix elements. Implemented in a tight binding computer program, like, for instance, DINAMO, they obviate the need to type all the required derivatives of all occurring matrix elements by hand.

  17. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone

    PubMed Central

    Góral, Agnieszka; Bieganowski, Paweł; Prus, Wiktor; Krzemień-Ojak, Łucja; Kądziołka, Beata; Fabczak, Hanna; Filipek, Anna

    2016-01-01

    The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery. PMID:27249023

  18. Latent TGF-β-binding proteins

    PubMed Central

    Robertson, Ian B.; Horiguchi, Masahito; Zilberberg, Lior; Dabovic, Branka; Hadjiolova, Krassimira; Rifkin, Daniel B.

    2016-01-01

    The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, -2, -3, and -4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here. The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly. PMID:25960419

  19. Characterizing the morphology of protein binding patches.

    PubMed

    Malod-Dognin, Noël; Bansal, Achin; Cazals, Frédéric

    2012-12-01

    Let the patch of a partner in a protein complex be the collection of atoms accounting for the interaction. To improve our understanding of the structure-function relationship, we present a patch model decoupling the topological and geometric properties. While the geometry is classically encoded by the atomic positions, the topology is recorded in a graph encoding the relative position of concentric shells partitioning the interface atoms. The topological-geometric duality provides the basis of a generic dynamic programming-based algorithm comparing patches at the shell level, which may favor topological or geometric features. On the biological side, we address four questions, using 249 cocrystallized heterodimers organized in biological families. First, we dissect the morphology of binding patches and show that Nature enjoyed the topological and geometric degrees of freedom independently while retaining a finite set of qualitatively distinct topological signatures. Second, we argue that our shell-based comparison is effective to perform atomic-level comparisons and show that topological similarity is a less stringent than geometric similarity. We also use the topological versus geometric duality to exhibit topo-rigid patches, whose topology (but not geometry) remains stable upon docking. Third, we use our comparison algorithms to infer specificity-related information amidst a database of complexes. Finally, we exhibit a descriptor outperforming its contenders to predict the binding affinities of the affinity benchmark. The softwares developed with this article are availablefrom http://team.inria.fr/abs/vorpatch_compatch/.

  20. Liver Fatty Acid Binding Protein and Obesity

    PubMed Central

    Atshaves, B.P.; Martin, G.G.; Hostetler, H.A.; McIntosh, A.L.; Kier, A.B.; Schroeder, F.

    2010-01-01

    While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes, and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity, and metabolic syndrome. Consequently, mammals evolved fatty acid binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15 member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP, or FABP1), is expressed in very high levels (2-5% of cytosolic protein) in liver as well as intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair-fed a high fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity. PMID:20537520

  1. Protein function annotation by local binding site surface similarity.

    PubMed

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  2. Binding and endocytosis of 39 kDa protein by MDBK cells.

    PubMed

    Vettenranta, K; Bu, G; Schwartz, A L

    1995-08-01

    A 39 kDa protein copurifies with the low density lipoprotein receptor-related protein (LRP) and regulates ligand interactions with LRP. In our recent studies on the clearance of the 39 kDa protein in vivo, we demonstrated that once the liver LRP receptors were saturated, the kidney became the major organ responsible for the 39 kDa protein clearance (Warshawsky et al., 1993, J. Clin. Invest., 92:937-944). The current study was undertaken in order to investigate the potential binding and cellular processing of the 39 kDa protein by kidney-derived MDBK cells. Herein we demonstrate specific, high-affinity, saturable, and Ca(2+)-dependent binding of the 125I-39 kDa protein to MDBK cells (Kd approximately 10-15 nM, 50-70,000 binding sites per cell). Cellular uptake and degradation of the 125I-39 kDa protein by MDBK cells was also demonstrated with kinetics typical of receptor-mediated endocytosis. Using chemical crosslinking we show that LRP in part mediates the binding of 125I-39 kDa protein to the MDBK cell surface. In addition, the presence of functional LRP on the MDBK cell surface was confirmed by the specific binding of activated alpha 2-macroglobulin, another ligand of LRP. Our data thus demonstrate the ability of kidney-derived MDBK cells to specifically bind, endocytose, and degrade the 39 kDa protein.

  3. Detection of secondary binding sites in proteins using fragment screening

    PubMed Central

    Ludlow, R. Frederick; Verdonk, Marcel L.; Saini, Harpreet K.; Tickle, Ian J.; Jhoti, Harren

    2015-01-01

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets. PMID:26655740

  4. Detection of secondary binding sites in proteins using fragment screening.

    PubMed

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  5. Modular protein switches derived from antibody mimetic proteins.

    PubMed

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms.

  6. Flies expand the repertoire of protein structures that bind ice.

    PubMed

    Basu, Koli; Graham, Laurie A; Campbell, Robert L; Davies, Peter L

    2015-01-20

    An antifreeze protein (AFP) with no known homologs has been identified in Lake Ontario midges (Chironomidae). The midge AFP is expressed as a family of isoforms at low levels in adults, which emerge from fresh water in spring before the threat of freezing temperatures has passed. The 9.1-kDa major isoform derived from a preproprotein precursor is glycosylated and has a 10-residue tandem repeating sequence xxCxGxYCxG, with regularly spaced cysteines, glycines, and tyrosines comprising one-half its 79 residues. Modeling and molecular dynamics predict a tightly wound left-handed solenoid fold in which the cysteines form a disulfide core to brace each of the eight 10-residue coils. The solenoid is reinforced by intrachain hydrogen bonds, side-chain salt bridges, and a row of seven stacked tyrosines on the hydrophobic side that forms the putative ice-binding site. A disulfide core is also a feature of the similar-sized beetle AFP that is a β-helix with seven 12-residue coils and a comparable circular dichroism spectrum. The midge and beetle AFPs are not homologous and their ice-binding sites are radically different, with the latter comprising two parallel arrays of outward-pointing threonines. However, their structural similarities is an amazing example of convergent evolution in different orders of insects to cope with change to a colder climate and provide confirmation about the physical features needed for a protein to bind ice.

  7. Flies expand the repertoire of protein structures that bind ice

    PubMed Central

    Basu, Koli; Graham, Laurie A.; Campbell, Robert L.; Davies, Peter L.

    2015-01-01

    An antifreeze protein (AFP) with no known homologs has been identified in Lake Ontario midges (Chironomidae). The midge AFP is expressed as a family of isoforms at low levels in adults, which emerge from fresh water in spring before the threat of freezing temperatures has passed. The 9.1-kDa major isoform derived from a preproprotein precursor is glycosylated and has a 10-residue tandem repeating sequence xxCxGxYCxG, with regularly spaced cysteines, glycines, and tyrosines comprising one-half its 79 residues. Modeling and molecular dynamics predict a tightly wound left-handed solenoid fold in which the cysteines form a disulfide core to brace each of the eight 10-residue coils. The solenoid is reinforced by intrachain hydrogen bonds, side-chain salt bridges, and a row of seven stacked tyrosines on the hydrophobic side that forms the putative ice-binding site. A disulfide core is also a feature of the similar-sized beetle AFP that is a β-helix with seven 12-residue coils and a comparable circular dichroism spectrum. The midge and beetle AFPs are not homologous and their ice-binding sites are radically different, with the latter comprising two parallel arrays of outward-pointing threonines. However, their structural similarities is an amazing example of convergent evolution in different orders of insects to cope with change to a colder climate and provide confirmation about the physical features needed for a protein to bind ice. PMID:25561557

  8. Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments.

    PubMed

    Tinberg, Christine E; Khare, Sagar D

    2016-01-01

    The ability to de novo design proteins that can bind small molecules has wide implications for synthetic biology and medicine. Combining computational protein design with the high-throughput screening of mutagenic libraries of computationally designed proteins is emerging as a general approach for creating binding proteins with programmable binding modes, affinities, and selectivities. The computational step enables the creation of a binding site in a protein that otherwise does not (measurably) bind the intended ligand, and targeted mutagenic screening allows for validation and refinement of the computational model as well as provides orders-of-magnitude increases in the binding affinity. Deep sequencing of mutagenic libraries can provide insights into the mutagenic binding landscape and enable further affinity improvements. Moreover, in such a combined computational-experimental approach where the binding mode is preprogrammed and iteratively refined, selectivity can be achieved (and modulated) by the placement of specified amino acid side chain groups around the ligand in defined orientations. Here, we describe the experimental aspects of a combined computational-experimental approach for designing-using the software suite Rosetta-proteins that bind a small molecule of choice and engineering, using fluorescence-activated cell sorting and high-throughput yeast surface display, high affinity and ligand selectivity. We illustrated the utility of this approach by performing the design of a selective digoxigenin (DIG)-binding protein that, after affinity maturation, binds DIG with picomolar affinity and high selectivity over structurally related steroids. PMID:27094290

  9. Minimalistic predictor of protein binding energy: contribution of solvation factor to protein binding.

    PubMed

    Choi, Jeong-Mo; Serohijos, Adrian W R; Murphy, Sean; Lucarelli, Dennis; Lofranco, Leo L; Feldman, Andrew; Shakhnovich, Eugene I

    2015-02-17

    It has long been known that solvation plays an important role in protein-protein interactions. Here, we use a minimalistic solvation-based model for predicting protein binding energy to estimate quantitatively the contribution of the solvation factor in protein binding. The factor is described by a simple linear combination of buried surface areas according to amino-acid types. Even without structural optimization, our minimalistic model demonstrates a predictive power comparable to more complex methods, making the proposed approach the basis for high throughput applications. Application of the model to a proteomic database shows that receptor-substrate complexes involved in signaling have lower affinities than enzyme-inhibitor and antibody-antigen complexes, and they differ by chemical compositions on interfaces. Also, we found that protein complexes with components that come from the same genes generally have lower affinities than complexes formed by proteins from different genes, but in this case the difference originates from different interface areas. The model was implemented in the software PYTHON, and the source code can be found on the Shakhnovich group webpage: http://faculty.chemistry.harvard.edu/shakhnovich/software.

  10. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    PubMed

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  11. Glycosylation status of vitamin D binding protein in cancer patients.

    PubMed

    Rehder, Douglas S; Nelson, Randall W; Borges, Chad R

    2009-10-01

    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages. PMID:19642159

  12. Glycosylation status of vitamin D binding protein in cancer patients

    PubMed Central

    Rehder, Douglas S; Nelson, Randall W; Borges, Chad R

    2009-01-01

    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages. PMID:19642159

  13. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets.

  14. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  15. Topological Analyses of Protein-Ligand Binding: a Network Approach.

    PubMed

    Costanzi, Stefano

    2016-01-01

    Proteins can be conveniently represented as networks of interacting residues, thus allowing the study of several network parameters that can shed light onto several of their structural and functional aspects. With respect to the binding of ligands, which are central for the function of many proteins, network analysis may constitute a possible route to assist the identification of binding sites. As the bulk of this review illustrates, this has generally been easier for enzymes than for non-enzyme proteins, perhaps due to the different topological nature of the binding sites of the former over those of the latter. The article also illustrates how network representations of binding sites can be used to search PDB structures in order to identify proteins that bind similar molecules and, lastly, how codifying proteins as networks can assist the analysis of the conformational changes consequent to ligand binding.

  16. Retrotransposon-derived p53 binding sites enhance telomere maintenance and genome protection.

    PubMed

    Lieberman, Paul M

    2016-10-01

    Tumor suppressor protein 53 (p53) plays a central role in the control of genome stability, acting primarily through the transcriptional activation of stress-response genes. However, many p53 binding sites are located at genomic locations with no obvious regulatory-link to known stress-response genes. We recently discovered p53 binding sites within retrotransposon-derived elements in human and mouse subtelomeres. These retrotransposon-derived p53 binding sites protected chromosome ends through transcription activation of telomere repeat RNA, as well as through the direct modification of local chromatin structure in response to DNA damage. Based on these findings, I hypothesize that a class of p53 binding sites, including the retrotransposon-derived p53-sites found in subtlomeres, provide a primary function in genome stability by mounting a direct and local protective chromatin-response to DNA damage. I speculate that retrotransposon-derived p53 binding sites share features with telomere-repeats through an evolutionary drive to monitor and maintain genome integrity.

  17. Retrotransposon-derived p53 binding sites enhance telomere maintenance and genome protection.

    PubMed

    Lieberman, Paul M

    2016-10-01

    Tumor suppressor protein 53 (p53) plays a central role in the control of genome stability, acting primarily through the transcriptional activation of stress-response genes. However, many p53 binding sites are located at genomic locations with no obvious regulatory-link to known stress-response genes. We recently discovered p53 binding sites within retrotransposon-derived elements in human and mouse subtelomeres. These retrotransposon-derived p53 binding sites protected chromosome ends through transcription activation of telomere repeat RNA, as well as through the direct modification of local chromatin structure in response to DNA damage. Based on these findings, I hypothesize that a class of p53 binding sites, including the retrotransposon-derived p53-sites found in subtlomeres, provide a primary function in genome stability by mounting a direct and local protective chromatin-response to DNA damage. I speculate that retrotransposon-derived p53 binding sites share features with telomere-repeats through an evolutionary drive to monitor and maintain genome integrity. PMID:27539745

  18. Fatty acid-binding site environments of serum vitamin D-binding protein and albumin are different

    PubMed Central

    Swamy, Narasimha; Ray, Rahul

    2008-01-01

    Vitamin D-binding protein (DBP) and albumin (ALB) are abundant serum proteins and both possess high-affinity binding for saturated and unsaturated fatty acids. However, certain differences exist. We surmised that in cases where serum albumin level is low, DBP presumably can act as a transporter of fatty acids. To explore this possibility we synthesized several alkylating derivatives of 14C-palmitic acid to probe the fatty acid binding pockets of DBP and ALB. We observed that N-ethyl-5-phenylisooxazolium-3′-sulfonate-ester (WRK ester) of 14C-palmitic acid specifically labeled DBP; but p-nitrophenyl- and N-hydroxysuccinimidyl-esters failed to do so. However, p-nitrophenyl ester of 14C-palmitic acid specifically labeled bovine ALB, indicating that the micro-environment of the fatty acid-binding domains of DBP and ALB may be different; and DBP may not replace ALB as a transporter of fatty acids. PMID:18374965

  19. Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks

    SciTech Connect

    Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F.

    2008-08-19

    Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to the lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.

  20. Photoaffinity labeling of serum vitamin D binding protein by 3-deoxy-3-azido-25-hydroxyvitamin D3

    SciTech Connect

    Link, R.P.; Kutner, A.; Schnoes, H.K.; DeLuca, H.F.

    1987-06-30

    3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3.

  1. Minisatellite binding protein Msbp-1 is a sequence-specific single-stranded DNA-binding protein.

    PubMed Central

    Collick, A; Dunn, M G; Jeffreys, A J

    1991-01-01

    Msbp-1 is a minisatellite-specific DNA-binding protein. Using synthetic binding substrates, we now show that Msbp-1 binds not to double-stranded DNA, but exclusively to single-stranded DNA. Binding is specific to the guanine-rich strand of the minisatellite duplex, interactions with the cytosine-rich strand being undetectable by southwestern analysis. Furthermore, the binding site required for successful DNA-protein interactions appears to be two or more minisatellite repeat units. We have also isolated, by whole-genome PCR and cloning, one Msbp-1 binding site from the human genome. Again, the binding strand of this molecule contains a repetitive G-rich structure equivalent to that of a small minisatellite. These observations are discussed with respect to other single-stranded DNA-binding proteins known to play a role in recombination processes. Images PMID:1754375

  2. Conformity of RNAs that interact with tetranucleotide loop binding proteins.

    PubMed Central

    Zwieb, C

    1992-01-01

    A group of RNA binding proteins, termed tetraloop binding proteins, includes ribosomal protein S15 and protein SRP19 of signal recognition particle. They are primary RNA binding proteins, recognize RNA tetranucleotide loops with a GNAR consensus motif, and require a helical region located adjacent to the tetraloop. Closely related RNA structures that fit these criteria appear in helix 6 of SRP RNA, in helices 22 and 23A of 16 S ribosomal RNA, and, as a pseudoknot, in the regulatory region of the rpsO gene. Images PMID:1329024

  3. Mechanism of ligand-protein interaction in plant seed thiamin-binding proteins. Probing the binding site of protein isolated from buckwheat seeds with a series of thiamin-related compounds.

    PubMed

    Rapała-Kozik, M; Kozik, A

    1992-09-23

    Affinities of 14 thiamin derivatives or antagonists to a thiamin-binding protein isolated from buckwheat seeds were determined. A competitive displacement of radiolabeled thiamin by unlabeled ligand was analysed by a computerized model-fitting procedure. The dissociation constant of the thiamin-protein complex was 0.93 microM. Most modifications in ligand chemical structure weakened the ligand-protein interaction. A model of the thiamin-binding site is suggested. The hydroxyethyl-chain of thiamin while protein-bound appears to be excluded from the binding region. A positively charged quaternary nitrogen atom of the thiazolium ring probably interacts with some negative group(s) of protein. The rest of the thiazolium ring as well as the amino group of the pyrimidine fragment serve as additional anchors. The three structural features of the thiamin molecule accounting for binding contribute equally to overall binding energy by about 11-12 kJ/mol.

  4. Improvement on binding of chondroitin sulfate derivatives to midkine by increasing hydrophobicity.

    PubMed

    de Paz, J L; Nieto, P M

    2016-04-14

    The interactions between chondroitin sulfate (CS) and a wide number of proteins modulate important biological processes. Here, the binding properties to midkine and pleiotrophin of sulfated, fully protected intermediates, typically obtained in the chemical synthesis of CS oligosaccharides, were tested for the first time. Using a fluorescence polarization competition experiment, we discovered that these synthetic precursors strongly bound these two closely related cytokines involved in cancer and inflammation. The relative binding affinities of these intermediates were significantly higher than those displayed by the corresponding fully deprotected oligosaccharides, indicating that the presence of hydrophobic protecting groups strongly enhanced the binding of CS-like derivatives to midkine. These compounds offer novel opportunities for the development of potent inhibitors/activators of CS-protein interactions with potential therapeutic applications. PMID:26991839

  5. A β-hairpin-binding protein for three different disease-related amyloidogenic proteins.

    PubMed

    Shaykhalishahi, Hamed; Mirecka, Ewa A; Gauhar, Aziz; Grüning, Clara S R; Willbold, Dieter; Härd, Torleif; Stoldt, Matthias; Hoyer, Wolfgang

    2015-02-01

    Amyloidogenic proteins share a propensity to convert to the β-structure-rich amyloid state that is associated with the progression of several protein-misfolding disorders. Here we show that a single engineered β-hairpin-binding protein, the β-wrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid-β peptide, α-synuclein, and islet amyloid polypeptide, with sub-micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer-binding agents.

  6. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    SciTech Connect

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  7. Calmodulin Binding Proteins and Alzheimer’s Disease

    PubMed Central

    O’Day, Danton H.; Eshak, Kristeen; Myre, Michael A.

    2015-01-01

    Abstract The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer’s disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer’s disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer’s disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  8. Protein Binding: Do We Ever Learn?▿

    PubMed Central

    Zeitlinger, Markus A.; Derendorf, Hartmut; Mouton, Johan W.; Cars, Otto; Craig, William A.; Andes, David; Theuretzbacher, Ursula

    2011-01-01

    Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested. PMID:21537013

  9. Actin binding proteins, spermatid transport and spermiation.

    PubMed

    Qian, Xiaojing; Mruk, Dolores D; Cheng, Yan-Ho; Tang, Elizabeth I; Han, Daishu; Lee, Will M; Wong, Elissa W P; Cheng, C Yan

    2014-06-01

    The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby arriving the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium beyond stage VIII of the epithelial cycle will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come.

  10. Odorant-Binding Protein: Localization to Nasal Glands and Secretions

    NASA Astrophysics Data System (ADS)

    Pevsner, Jonathan; Sklar, Pamela B.; Snyder, Solomon H.

    1986-07-01

    An odorant-binding protein (OBP) was isolated from bovine olfactory and respiratory mucosa. We have produced polyclonal antisera to this protein and report its immunohistochemical localization to mucus-secreting glands of the olfactory and respiratory mucosa. Although OBP was originally isolated as a pyrazine binding protein, both rat and bovine OBP also bind the odorants [3H]methyldihydrojasmonate and 3,7-dimethyl-octan-1-ol as well as 2-isobutyl-3-[3H]methoxypyrazine. We detect substantial odorant-binding activity attributable to OBP in secreted rat nasal mucus and tears but not in saliva, suggesting a role for OBP in transporting or concentrating odorants.

  11. Therapeutic and analytical applications of arsenic binding to proteins.

    PubMed

    Chen, Beibei; Liu, Qingqing; Popowich, Aleksandra; Shen, Shengwen; Yan, Xiaowen; Zhang, Qi; Li, Xing-Fang; Weinfeld, Michael; Cullen, William R; Le, X Chris

    2015-01-01

    Arsenic binding to proteins plays a pivotal role in the health effects of arsenic. Further knowledge of arsenic binding to proteins will advance the development of bioanalytical techniques and therapeutic drugs. This review summarizes recent work on arsenic-based drugs, imaging of cellular events, capture and purification of arsenic-binding proteins, and biosensing of arsenic. Binding of arsenic to the promyelocytic leukemia fusion oncoprotein (PML-RARα) is a plausible mode of action leading to the successful treatment of acute promyelocytic leukemia (APL). Identification of other oncoproteins critical to other cancers and the development of various arsenicals and targeted delivery systems are promising approaches to the treatment of other types of cancers. Techniques for capture, purification, and identification of arsenic-binding proteins make use of specific binding between trivalent arsenicals and the thiols in proteins. Biarsenical probes, such as FlAsH-EDT2 and ReAsH-EDT2, coupled with tetracysteine tags that are genetically incorporated into the target proteins, are used for site-specific fluorescence labelling and imaging of the target proteins in living cells. These allow protein dynamics and protein-protein interactions to be studied. Arsenic affinity chromatography is useful for purification of thiol-containing proteins, and its combination with mass spectrometry provides a targeted proteomic approach for studying the interactions between arsenicals and proteins in cells. Arsenic biosensors evolved from the knowledge of arsenic resistance and arsenic binding to proteins in bacteria, and have now been developed into analytical techniques that are suitable for the detection of arsenic in the field. Examples in the four areas, arsenic-based drugs, imaging of cellular events, purification of specific proteins, and arsenic biosensors, demonstrate important therapeutic and analytical applications of arsenic protein binding. PMID:25356501

  12. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  13. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  14. Affinity Purification of Sequence-Specific DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Kadonaga, James T.; Tjian, Robert

    1986-08-01

    We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed through the DNA-Sepharose resin. The desired sequence-specific DNA binding protein is purified because it preferentially binds to the recognition sites in the affinity resin rather than to the nonspecific competitor DNA in solution. For example, a protein fraction that is enriched for transcription factor Sp1 can be further purified 500- to 1000-fold by two sequential affinity chromatography steps to give Sp1 of an estimated 90% homogeneity with 30% yield. In addition, the use of tandem affinity columns containing different protein binding sites allows the simultaneous purification of multiple DNA binding proteins from the same extract. This method provides a means for the purification of rare sequence-specific DNA binding proteins, such as Sp1 and CAAT-binding transcription factor.

  15. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  16. Clinical relevance of drug binding to plasma proteins

    NASA Astrophysics Data System (ADS)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  17. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry.

    PubMed

    Xiao, Yongsheng; Wang, Yinsheng

    2016-09-01

    Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016.

  18. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-01

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  19. Linking 3D and 2D binding kinetics of membrane proteins by multiscale simulations

    PubMed Central

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2014-01-01

    Membrane proteins are among the most functionally important proteins in cells. Unlike soluble proteins, they only possess two translational degrees of freedom on cell surfaces, and experience significant constraints on their rotations. As a result, it is currently challenging to characterize the in situ binding of membrane proteins. Using the membrane receptors CD2 and CD58 as a testing system, we developed a multiscale simulation framework to study the differences of protein binding kinetics between 3D and 2D environments. The association and dissociation processes were implemented by a coarse-grained Monte-Carlo algorithm, while the dynamic properties of proteins diffusing on lipid bilayer were captured from all-atom molecular dynamic simulations. Our simulations show that molecular diffusion, linker flexibility and membrane fluctuations are important factors in adjusting binding kinetics. Moreover, by calibrating simulation parameters to the measurements of 3D binding, we derived the 2D binding constant which is quantitatively consistent with the experimental data, indicating that the method is able to capture the difference between 3D and 2D binding environments. Finally, we found that the 2D dissociation between CD2 and CD58 is about 100-fold slower than the 3D dissociation. In summary, our simulation framework offered a generic approach to study binding mechanisms of membrane proteins. PMID:25271078

  20. Peptiderive server: derive peptide inhibitors from protein–protein interactions

    PubMed Central

    Sedan, Yuval; Marcu, Orly; Lyskov, Sergey; Schueler-Furman, Ora

    2016-01-01

    The Rosetta Peptiderive protocol identifies, in a given structure of a protein–protein interaction, the linear polypeptide segment suggested to contribute most to binding energy. Interactions that feature a ‘hot segment’, a linear peptide with significant binding energy compared to that of the complex, may be amenable for inhibition and the peptide sequence and structure derived from the interaction provide a starting point for rational drug design. Here we present a web server for Peptiderive, which is incorporated within the ROSIE web interface for Rosetta protocols. A new feature of the protocol also evaluates whether derived peptides are good candidates for cyclization. Fast computation times and clear visualization allow users to quickly assess the interaction of interest. The Peptiderive server is available for free use at http://rosie.rosettacommons.org/peptiderive. PMID:27141963

  1. Phosphorylation of platelet actin-binding protein during platelet activation

    SciTech Connect

    Carroll, R.C.; Gerrard, J.M.

    1982-03-01

    In this study we have followed the 32P-labeling of actin-binding protein as a function of platelet activation. Utilizing polyacrylamide-sodium dodecyl sulfate gel electrophoresis to resolve total platelet protein samples, we found 2 to 3-fold labeling increases in actin-binding protein 30 to 60 sec after thrombin stimulation. Somewhat larger increases were observed for 40,000 and 20,000 apparent molecular weight peptides. The actin-binding protein was identified on the gels by coelectrophoresis with purified actin-binding protein, its presence in cytoskeletal cores prepared by detergent extraction of activated 32P-labeled platelets, and by direct immunoprecipitation with antibodies against guinea pig vas deferens filamin (actin-binding protein). In addition, these cytoskeletal cores indicated that the 32P-labeled actin-binding protein was closely associated with the activated platelet's cytoskeleton. Following the 32P-labeling of actin-binding protein over an 8-min time course revealed that in aggregating platelet samples rapid dephosphorylation to almost initial levels occurred between 3 and 5 min. A similar curve was obtained for the 20,000 apparent molecular weight peptide. However, rapid dephosphorylation was not observed if platelet aggregation was prevented by chelating external calcium or by using thrombasthenic platelets lacking the aggregation response. Thus, cell-cell contact would seem to be crucial in initiating the rapid dephosphorylation response.

  2. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  3. Human kidney amiloride-binding protein: cDNA structure and functional expression

    SciTech Connect

    Barbry, P.; Chassande, O.; Champigny, G.; Lingueglia, E.; Frelin, C.; Lazdunski, M. ); Champe, M.; Munemitsu, S.; Ullrich, A. ); Maes, P.; Tartar, A. Institut Pasteur de Lille )

    1990-10-01

    Phenamil, an analog of amiloride, is a potent blocker of the epithelial Na{sup plus} channel. It has been used to purify the porcine kidney amiloride-binding protein. Synthetic oligonucleotides derived from partial sequences have been used to screen a human kidney cDNA library and to isolate the cDNA encoding the human amiloride-binding protein. The primary structure was deduced from the DNA sequence analysis. The protein is 713 residues long, with a 19-amino acid signal peptide. The mRNA was expressed in 293-S and NIH 3T3 cells, yielding a glycoprotein (i) that binds amiloride and amiloride analogs with affinities similar to the amiloride receptor associated with the apical Na{sup plus} channel in pig kidney membranes and (ii) that is immunoprecipitated with monoclonal antibodies raised against pig kidney amiloride-binding protein.

  4. Simple models for the analysis of binding protein-dependent transport systems.

    PubMed Central

    Shilton, B. H.; Mowbray, S. L.

    1995-01-01

    Mathematical modeling was used to evaluate experimental data for bacterial binding protein-dependent transport systems. Two simple models were considered in which ligand-free periplasmic binding protein interacts with the membrane-bound components of transport. In one, this interaction was viewed as a competition with the ligand-bound binding protein, whereas in the other, it was considered to be a consequence of the complexes formed during the transport process itself. Two sets of kinetic parameters were derived for each model that fit the available experimental results for the maltose system. By contrast, a model that omitted the interaction of ligand-free binding protein did not fit the experimental data. Some applications of the successful models for the interpretation of existing mutant data are illustrated, as well as the possibilities of using mutant data to test the original models and sets of kinetic parameters. Practical suggestions are given for further experimental design. PMID:7670377

  5. Human kidney amiloride-binding protein: cDNA structure and functional expression.

    PubMed Central

    Barbry, P; Champe, M; Chassande, O; Munemitsu, S; Champigny, G; Lingueglia, E; Maes, P; Frelin, C; Tartar, A; Ullrich, A

    1990-01-01

    Phenamil, an analog of amiloride, is a potent blocker of the epithelial Na+ channel. It has been used to purify the porcine kidney amiloride-binding protein. Synthetic oligonucleotides derived from partial sequences have been used to screen a human kidney cDNA library and to isolate the cDNA encoding the human amiloride-binding protein. The primary structure was deduced from the DNA sequence analysis. The protein is 713 residues long, with a 19-amino acid signal peptide. The mRNA was expressed in 293-S and NIH 3T3 cells, yielding a glycoprotein (i) that binds amiloride and amiloride analogs with affinities similar to the amiloride receptor associated with the apical Na+ channel in pig kidney membranes and (ii) that is immunoprecipitated with monoclonal antibodies raised against pig kidney amiloride-binding protein. Images PMID:2217167

  6. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  7. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  8. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    PubMed Central

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states. PMID:25004958

  9. Mannan-binding lectin in cerebrospinal fluid: a leptomeningeal protein

    PubMed Central

    2012-01-01

    Background Mannan-binding lectin (MBL), a protein of the innate immune response is attracting increasing clinical interest, in particularly in relation to its deficiency. Due to its involvement in brain diseases, identifying the source of MBL in CSF is important. Analysis of cerebrospinal fluid (CSF) can provide data that discriminates between blood-, brain-, and leptomeninges-derived proteins. To detect the source of MBL in CSF we need to consider three variables: the molecular size-dependent concentration gradient between CSF and blood, the variation in transfer between blood and CSF, and the CSF MBL concentration correlation with the albumin CSF/serum quotient (QAlb), i.e., with CSF flow rate. Methods MBL was assayed in samples of CSF and serum with an ELISA, coated with anti MBL antibodies. Routine parameters such as albumin-, immunoglobulin- CSF/serum quotients, oligoclonal IgG and cell count were used to characterize the patient groups. Groups comprised firstly, control patients without organic brain disease with normal CSF and normal barrier function and secondly, patients without inflammatory diseases but with increased QAlb, i.e. with a blood CSF barrier dysfunction. Results MBL concentration in CSF was at least five-fold higher than expected for a molecular-size-dependent passage from blood. Secondly, in a QIgM/QAlb quotient diagram (Reibergram) 9/13 cases showed an intrathecal fraction in some cases over 80% of total CSF MBL concentration 3) The smaller inter-individual variation of MBL concentrations in CSF of the control group (CV = 66%) compared to the MBL concentrations in serum (CV = 146%) indicate an independent source of MBL in CSF. 4) The absolute MBL concentration in CSF increases with increasing QAlb. Among brain-derived proteins in CSF only the leptomeningeal proteins showed a (linear) increase with decreasing CSF flow rate, neuronal and glial proteins are invariant to changes of QAlb. Conclusions MBL in CSF is predominantly brain-derived

  10. Knowledge of Native Protein-Protein Interfaces Is Sufficient To Construct Predictive Models for the Selection of Binding Candidates.

    PubMed

    Popov, Petr; Grudinin, Sergei

    2015-10-26

    Selection of putative binding poses is a challenging part of virtual screening for protein-protein interactions. Predictive models to filter out binding candidates with the highest binding affinities comprise scoring functions that assign a score to each binding pose. Existing scoring functions are typically deduced by collecting statistical information about interfaces of native conformations of protein complexes along with interfaces of a large generated set of non-native conformations. However, the obtained scoring functions become biased toward the method used to generate the non-native conformations, i.e., they may not recognize near-native interfaces generated with a different method. The present study demonstrates that knowledge of only native protein-protein interfaces is sufficient to construct well-discriminative predictive models for the selection of binding candidates. Here we introduce a new scoring method that comprises a knowledge-based potential called KSENIA deduced from structural information about the native interfaces of 844 crystallographic protein-protein complexes. We derive KSENIA using convex optimization with a training set composed of native protein complexes and their near-native conformations obtained using deformations along the low-frequency normal modes. As a result, our knowledge-based potential has only marginal bias toward a method used to generate putative binding poses. Furthermore, KSENIA is smooth by construction, which allows it to be used along with rigid-body optimization to refine the binding poses. Using several test benchmarks, we demonstrate that our method discriminates well native and near-native conformations of protein complexes from non-native ones. Our methodology can be easily adapted to the recognition of other types of molecular interactions, such as protein-ligand, protein-RNA, etc. KSENIA will be made publicly available as a part of the SAMSON software platform at https://team.inria.fr/nano-d/software . PMID

  11. Stereoselective binding of chiral drugs to plasma proteins

    PubMed Central

    Shen, Qi; Wang, Lu; Zhou, Hui; Jiang, Hui-di; Yu, Lu-shan; Zeng, Su

    2013-01-01

    Chiral drugs show distinct biochemical and pharmacological behaviors in the human body. The binding of chiral drugs to plasma proteins usually exhibits stereoselectivity, which has a far-reaching influence on their pharmacological activities and pharmacokinetic profiles. In this review, the stereoselective binding of chiral drugs to human serum albumin (HSA), α1-acid glycoprotein (AGP) and lipoprotein, three most important proteins in human plasma, are detailed. Furthermore, the application of AGP variants and recombinant fragments of HSA for studying enantiomer binding properties is also discussed. Apart from the stereoselectivity of enantiomer-protein binding, enantiomer-enantiomer interactions that may induce allosteric effects are also described. Additionally, the techniques and methods used to determine drug-protein binding parameters are briefly reviewed. PMID:23852086

  12. The RNA-binding protein Gemin5 binds directly to the ribosome and regulates global translation

    PubMed Central

    Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Ramajo, Jorge; Martinez-Salas, Encarnación

    2016-01-01

    RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation. PMID:27507887

  13. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  14. Guardian of Genetic Messenger-RNA-Binding Proteins

    PubMed Central

    Anji, Antje; Kumari, Meena

    2016-01-01

    RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins. PMID:26751491

  15. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    PubMed

    2003-01-01

    planned to move to Avecia's larger facility with a capacity of 10 000 litres. Somatomedin-1 binding protein-3 was originally licenced to Welfide for Japan. On October 1 2001, Welfide Corporation merged with Mitsubishi-Tokyo Pharmaceuticals to form Mitsubishi Pharma Corporation. The new company is a subsidiary of Mitsubishi Chemical. In April 2003 Insmed initiated a named patient programme in Europe, that will make available somatomedin-1 binding protein-3 for the treatment of growth hormone insensitivity syndrome (GHIS)--Laron syndrome. The treatment of patients was initiated in Scandinavia, with authorisation pending in several other European countries. Somatomedin-1 binding protein-3 will be made available to those GHIS patients who, in the opinion of their doctor, may benefit from IGF-1 therapy. At precommercial scale quantities, the drug will be available on a limited basis. Safety data generated from the named patient programme will be used to support marketing applications in 2004. A phase II dose-ranging study in children with GHIS was completed at Saint Bartholomew's and the Royal London School of Medicine, London, UK. A single dose of somatomedin-1 binding protein-3 delivered the same amount of IGF-1 as two daily injections of unbound IGF-1. There were no adverse events reported. GHIS is a genetic condition in which patients do not produce adequate quantities of IGF because of a failure to respond to the growth hormone signal. This results in a slower growth rate and short stature. Insmed has acquired an exclusive licence to Pharmacia's regulatory filings concerning yeast-derived IGF-1. These filings were used by Pharmacia to receive marketing approvals in several European countries and also in the investigational New Drug Application with the US FDA. This licence will facilitate the development of SomatoKine for the treatment of children with GHIS. In January 2003, Insmed announced positive results from a double-blind, placebo-controlled, dose-ranging study of

  16. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  17. HTLV-1 Tax Protein Stimulation of DNA Binding of bZIP Proteins by Enhancing Dimerization

    NASA Astrophysics Data System (ADS)

    Wagner, Susanne; Green, Michael R.

    1993-10-01

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  18. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes.

    PubMed Central

    Heimburg, T; Marsh, D

    1995-01-01

    The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally

  19. Anticalins small engineered binding proteins based on the lipocalin scaffold.

    PubMed

    Gebauer, Michaela; Skerra, Arne

    2012-01-01

    Anticalins are a novel class of small, robust proteins with designed ligand-binding properties derived from the natural lipocalin scaffold. Due to their compact molecular architecture, comprising a single polypeptide chain, they provide several benefits as protein therapeutics, such as high target specificity, good tissue penetration, low immunogenicity, tunable plasma half-life, efficient Escherichia coli expression, and suitability for furnishing with additional effector functions via genetic fusion or chemical conjugation. The lipocalins are a widespread family of proteins that naturally serve in many organisms, including humans, for the transport, storage, or sequestration of small biological compounds like vitamins and hormones. Their fold is dominated by an eight-stranded antiparallel β-barrel, which is open to the solvent at one end. There, four loops connect the β-strands in a pairwise manner and, altogether, they form the entry to a ligand-binding site. This loop region can be engineered via site-directed random mutagenesis in combination with genetic library selection techniques to yield "Anticalins" with exquisite specificities-and down to picomolar affinities-for prescribed molecular targets of either hapten or antigen type. Several Anticalins directed against medically relevant disease targets have been successfully engineered and can be applied, for example, for the blocking of soluble signaling factors or cell surface receptors or for tissue-specific drug targeting. While natural lipocalins were already subject to clinical studies in the past, a first Anticalin has completed Phase I trials in 2011, thus paving the way for the broad application of Anticalins as a promising novel class of biopharmaceuticals. PMID:22230569

  20. Growth hormone receptor/binding protein: Physiology and function

    SciTech Connect

    Herington, A.C.; Ymer, S.I.; Stevenson, J.L.; Roupas, P.

    1994-12-31

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular forms(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and a membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR. 43 refs.

  1. Fibronectin-binding protein of Streptococcus equi subsp. zooepidemicus.

    PubMed Central

    Lindmark, H; Jacobsson, K; Frykberg, L; Guss, B

    1996-01-01

    By screening a genomic lambda library of Streptococcus equi subsp. zooepidemicus, we have cloned and sequenced a gene, termed fnz, encoding a fibronectin (Fn)-binding protein called FNZ. On the basis of the deduced amino acid sequence of FNZ, the mature protein has a molecular mass of approximately 61 kDa. Analysis of FNZ reveals a structural organization similar to that of other cell surface proteins from streptococci and staphylococci. The Fn-binding activity is localized to two domains in the C-terminal part of FNZ. One domain is composed of five repeats, which contain a motif similar to what has earlier been found in other Fn-binding proteins in streptococci and staphylococci. The first and second repeats are separated by a short stretch of amino acids, including the motif LAGESGET, which is an important part of the second Fn-binding domain. This motif is also present in an Fn-binding domain (UR) in protein F of Streptococcus pyogenes. A fusion protein covering the Fn-binding domain of FNZ inhibits the binding of the 29-kDa N-terminal fragment of Fn to cells of various streptococcal species as well as to Staphylococcus aureus. PMID:8926060

  2. Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin-glycoprotein binding affinity.

    PubMed

    Santos, Adriano; Carvalho, Fernanda C; Roque-Barreira, Maria-Cristina; Bueno, Paulo R

    2014-12-15

    Characterization of lectin-carbohydrate binding using label-free methods such as impedance-derived electrochemical capacitance spectroscopy (ECS) is desirable to evaluate specific interactions, for example, ArtinM lectin and horseradish peroxidase (HRP) glycoprotein, used here as a model for protein-carbohydrate binding affinity. An electroactive molecular film comprising alkyl ferrocene as a redox probe and ArtinM as a carbohydrate receptive center to target HRP was successfully used to determine the binding affinity between ArtinM and HRP. The redox capacitance, a transducer signal associated with the alkyl ferrocene centers, was obtained by ECS and used in the Langmuir adsorption model to obtain the affinity constant (1.6±0.6)×10(8) L mol(-1). The results shown herein suggest the feasibility of ECS application for lectin glycoarray characterization. PMID:24994505

  3. Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin-glycoprotein binding affinity.

    PubMed

    Santos, Adriano; Carvalho, Fernanda C; Roque-Barreira, Maria-Cristina; Bueno, Paulo R

    2014-12-15

    Characterization of lectin-carbohydrate binding using label-free methods such as impedance-derived electrochemical capacitance spectroscopy (ECS) is desirable to evaluate specific interactions, for example, ArtinM lectin and horseradish peroxidase (HRP) glycoprotein, used here as a model for protein-carbohydrate binding affinity. An electroactive molecular film comprising alkyl ferrocene as a redox probe and ArtinM as a carbohydrate receptive center to target HRP was successfully used to determine the binding affinity between ArtinM and HRP. The redox capacitance, a transducer signal associated with the alkyl ferrocene centers, was obtained by ECS and used in the Langmuir adsorption model to obtain the affinity constant (1.6±0.6)×10(8) L mol(-1). The results shown herein suggest the feasibility of ECS application for lectin glycoarray characterization.

  4. Neurocognitive derivation of protein surface property from protein aggregate parameters

    PubMed Central

    Mishra, Hrishikesh; Lahiri, Tapobrata

    2011-01-01

    Current work targeted to predicate parametric relationship between aggregate and individual property of a protein. In this approach, we considered individual property of a protein as its Surface Roughness Index (SRI) which was shown to have potential to classify SCOP protein families. The bulk property was however considered as Intensity Level based Multi-fractal Dimension (ILMFD) of ordinary microscopic images of heat denatured protein aggregates which was known to have potential to serve as protein marker. The protocol used multiple ILMFD inputs obtained for a protein to produce a set of mapped outputs as possible SRI candidates. The outputs were further clustered and largest cluster centre after normalization was found to be a close approximation of expected SRI that was calculated from known PDB structure. The outcome showed that faster derivation of individual protein’s surface property might be possible using its bulk form, heat denatured aggregates. PMID:21572883

  5. Paramagnetic Ligand Tagging To Identify Protein Binding Sites

    PubMed Central

    2015-01-01

    Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein–ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein–ligand systems with varying binding affinity. PMID:26289584

  6. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    PubMed Central

    Shi, Yanbo; Harvey, Ian; Campopiano, Dominic; Sadler, Peter J.

    2010-01-01

    Ferric ion binding proteins (Fbps) transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III) is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues) together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed. PMID:20445753

  7. Exchange Kinetics of a Hydrophobic Ligand Binding Protein

    NASA Astrophysics Data System (ADS)

    Vaughn, Jeff; Stone, Martin

    2002-03-01

    Conformational fluctuations of proteins are thought to be important for determining the functional roles in biological activity. In some cases, the rates of these conformational changes may be directly correlated to, for example, the rates of catalysis or ligand binding. We are studying the role of conformational fluctuations in the binding of small volatile hydrophobic pheromones by the mouse major urinary proteins (MUPs). Communication among mice occurs, in part, with the MUP-1 protein. This urinary protein binds pheromones as a way to increase the longevity of the pheromone in an extracellular environment. Of interest is that the crystal structure of MUP-1 with a pheromone ligand shows the ligand to be completely occluded from the solvent with no obvious pathway to enter or exit. This suggests that conformational exchange of the protein may be required for ligand binding and release to occur. We hypothesize that the rate of conformational exchange may be a limiting factor determining the rate of ligand association and dissociation. By careful measurement of the on- and off-rates of ligand binding and the rates of conformational changes of the protein, a more defined picture of the interplay between protein structure and function can be obtained. To this end, heteronuclear saturation transfer, ^15N-exchange and ^15N dynamics experiments have been employed to probe the kinetics of ligand binding to MUP-1.

  8. Estradiol binding to nuclear matrix protein of pig adrenal cortex

    SciTech Connect

    Ungar, F.; Johnson, S.R.; Johnston, J.A.

    1987-05-01

    Binding of TH-estradiol can be shown in vitro after incubation with purified washed nuclei of sow adrenal cortex or with the insoluble nuclear matrix protein isolated from nuclei. The procedure modified after Berezney and Coffey treated washed nuclei sequentially with 1% Triton-X100, DNase, RNase and 2M NaCl to give an insoluble nuclear matrix protein preparation in which most of the phospholipid, DNA, RNA and protein was removed. Reagents were added to 10 mM Tris buffer containing 1 mM phenylmethyl sulfonyl fluoride, dithiothreitol and 0.2 mM or 5.0 mM MgCl2. Each treatment and washes were centrifuged at 4C. Suspensions of nuclei and nuclear matrix protein were incubated at 4C for 24 hrs. with 0.25 to 3.0 ng of TH-estradiol in 0.5 ml 10 mM Tris buffer with 5 mM MgCl2. Scatchard analysis of binding in duplicate or triplicate tubes with or without excess unlabeled estradiol gave specific binding for sow adrenal nuclei and for nuclear matrix protein. Total binding sites varied between 780 to 1380 fmoles/mg protein. Estradiol binding was not shown in the fetal adrenal matrix nor in mitochondria. Noncompetitive controls included progesterone and pregnenolone. Nuclear matrix protein binding of estradiol may have significance in functional or morphological changes of the adrenal cortex in fetal, neonatal, or pubertal development.

  9. General RNA binding proteins render translation cap dependent.

    PubMed Central

    Svitkin, Y V; Ovchinnikov, L P; Dreyfuss, G; Sonenberg, N

    1996-01-01

    Translation in rabbit reticulocyte lysate is relatively independent of the presence of the mRNA m7G cap structure and the cap binding protein, eIF-4E. In addition, initiation occurs frequently at spurious internal sites. Here we show that a critical parameter which contributes to cap-dependent translation is the amount of general RNA binding proteins in the extract. Addition of several general RNA binding proteins, such as hnRNP A1, La autoantigen, pyrimidine tract binding protein (hnRNP I/PTB) and the major core protein of cytoplasmic mRNP (p50), rendered translation in a rabbit reticulocyte lysate cap dependent. These proteins drastically inhibited the translation of an uncapped mRNA, but had no effect on translation of a capped mRNA. Based on these and other results, we suggest that one function of general mRNA binding proteins in the cytoplasm is to promote ribosome binding by a 5' end, cap-mediated mechanism, and prevent spurious initiations at aberrant translation start sites. Images PMID:9003790

  10. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms.

    PubMed

    Chou, Shan-Ho; Galperin, Michael Y

    2016-01-01

    Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms.

  11. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms

    PubMed Central

    2015-01-01

    ABSTRACT Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114

  12. Analysis of Arf GTP-binding Protein Function in Cells

    PubMed Central

    Cohen, Lee Ann; Donaldson, Julie G.

    2010-01-01

    This unit describes techniques and approaches that can be used to study the functions of the ADP-ribosylation factor (Arf) GTP-binding proteins in cells. There are 6 mammalian Arfs and many more Arf-like proteins (Arls) and these proteins are conserved in eukaryotes from yeast to man. Like all GTPases, Arfs cycle between GDP-bound, inactive and GTP-bound active conformations, facilitated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) that catalyze GTP binding and hydrolysis respectively. Here we describe approaches that can be taken to examine the localization and function of Arf and Arl proteins in cells (Protocol 1). We also provide a simple protocol for measuring activation (GTP-binding) of specific Arf proteins in cells using a pull-down assay (Protocol 2). We then discuss approaches that can be taken to assess function of GEFs and GAPs in cells (Protocol 3). PMID:20853342

  13. A Disease-Causing Variant in PCNA Disrupts a Promiscuous Protein Binding Site.

    PubMed

    Duffy, Caroline M; Hilbert, Brendan J; Kelch, Brian A

    2016-03-27

    The eukaryotic DNA polymerase sliding clamp, proliferating cell nuclear antigen or PCNA, is a ring-shaped protein complex that surrounds DNA to act as a sliding platform for increasing processivity of cellular replicases and for coordinating various cellular pathways with DNA replication. A single point mutation, Ser228Ile, in the human PCNA gene was recently identified to cause a disease whose symptoms resemble those of DNA damage and repair disorders. The mutation lies near the binding site for most PCNA-interacting proteins. However, the structural consequences of the S228I mutation are unknown. Here, we describe the structure of the disease-causing variant, which reveals a large conformational change that dramatically transforms the binding pocket for PCNA client proteins. We show that the mutation markedly alters the binding energetics for some client proteins, while another, p21(CIP1), is only mildly affected. Structures of the disease variant bound to peptides derived from two PCNA partner proteins reveal that the binding pocket can adjust conformation to accommodate some ligands, indicating that the binding site is dynamic and pliable. Our work has implications for the plasticity of the binding site in PCNA and reveals how a disease mutation selectively alters interactions to a promiscuous binding site that is critical for DNA metabolism.

  14. Immobilization of proteins onto microbeads using a DNA binding tag for enzymatic assays.

    PubMed

    Kojima, Takaaki; Mizoguchi, Takuro; Ota, Eri; Hata, Jumpei; Homma, Keisuke; Zhu, Bo; Hitomi, Kiyotaka; Nakano, Hideo

    2016-02-01

    A novel DNA-binding protein tag, scCro-tag, which is a single-chain derivative of the bacteriophage lambda Cro repressor, has been developed to immobilize proteins of interest (POI) on a solid support through binding OR consensus DNA (ORC) that is tightly bound by the scCro protein. The scCro-tag successfully bound a transglutaminase 2 (TGase 2) substrate and manganese peroxidase (MnP) to microbeads via scaffolding DNA. The resulting protein-coated microbeads can be utilized for functional analysis of the enzymatic activity using flow cytometry. The quantity of bead-bound proteins can be enhanced by increasing the number of ORCs. In addition, proteins with the scCro-tag that were synthesized using a cell-free protein synthesis system were also immobilized onto the beads, thus indicating that this bead-based system would be applicable to high-throughput analysis of various enzymatic activities.

  15. An oxysterol-binding protein family identified in the mouse.

    PubMed

    Anniss, Angela M; Apostolopoulos, Jim; Dworkin, Sebastian; Purton, Louise E; Sparrow, Rosemary L

    2002-08-01

    Oxysterols are oxygenated derivatives of cholesterol. They have been shown to influence a variety of biological functions including sterol metabolism, lipid trafficking, and apoptosis. Recently, 12 human OSBP-related genes have been identified. In this study, we have identified a family of 12 oxysterol-binding protein (OSBP)-related proteins (ORPs) in the mouse. A high level of amino acid identity (88-97%) was determined between mouse and human ORPs, indicating a very high degree of evolutionary conservation. All proteins identified contained the conserved OSBP amino acid sequence signature motif "EQVSHHPP," and most contained a pleckstrin homology (PH) domain. Using RT-PCR, each mouse ORP gene was found to exhibit a unique tissue distribution with many showing high expression in testicular, brain, and heart tissues. Interestingly, the tissue distribution of ORP-4 and ORP-10 were the most selective within the family. Expression of the various ORP genes was also investigated, specifically in highly purified populations of hemopoietic precursor cells defined by the lin(-) c-kit(+) Sca-1(+) (LKS(+)) and lin(-) c-kit(+) Sca-1(-) (LKS(-)) immunophenotype. Most ORP genes were expressed in both LKS(+) and LKS(-) populations, although ORP-4 appeared to be more highly expressed in the primitive, stem-cell enriched LKS(+) population, whereas ORP-10 was more highly expressed by maturing LKS(-) cells. The identification of a family of ORP proteins in the mouse, the frequently preferred animal model for in vivo studies, should further our understanding of the function of these proteins and their interactions with each other.

  16. A new aspect of serum protein binding of tolbutamide.

    PubMed

    Ayanoğlu, G; Uihlein, M; Grigoleit, H G

    1986-02-01

    Tolbutamide is known to bind highly to serum proteins. Quite different values have, however, been reported for binding, ranging from 80 to 99 percent. In this study, in vivo and in vitro binding of increasing concentrations of tolbutamide to human serum proteins were evaluated. In vitro studies were done serum from three healthy males and for in vivo studies serum samples from eight healthy males who had received 1,000 mg tolbutamide were used. Protein binding was determined by equilibrium dialysis, using DIANORM system. Tolbutamide concentrations were determined by HPLC method of Uihlein and Hack. The results suggest that there is an increase in percent tolbutamide bound with increasing concentrations of tolbutamide. Generally, an inverse relationship between the total concentration of a drug in serum and its bound fraction is observed. Our findings seem to be contrary to this, at least within the concentration range studied. There exist at least two binding sites on albumin with different affinities for tolbutamide and most probably, at low concentrations, the drug binds mainly to the high affinity sites, whereas at higher concentrations additional drug will bind to the lower affinity sites leading to the observed increase in fraction bound with concentration. In conclusion it may be said that serum protein binding is a much more complicated phenomenon than generally stated and that the normal observations are only true for some ideal compounds where only one site of adsorption has to be taken into account.

  17. Conformational thermodynamics of metal-ion binding to a protein

    NASA Astrophysics Data System (ADS)

    Das, Amit; Chakrabarti, J.; Ghosh, Mahua

    2013-08-01

    Conformational changes in proteins induced by metal-ions play extremely important role in various cellular processes and technological applications. Dihedral angles are suitable conformational variables to describe microscopic conformations of a biomacromolecule. Here, we use the histograms of the dihedral angles to study the thermodynamics of conformational changes of a protein upon metal-ion binding. Our method applied to Ca2+ ion binding to an important metalloprotein, Calmodulin, reveals different thermodynamic changes in different metal-binding sites. The ligands coordinating to Ca2+ ions also play different roles in stabilizing the metal-ion coordinated protein-structure. Metal-ion binding induce remarkable thermodynamic changes in distant part of the protein via modification of secondary structural elements.

  18. Binding of the polypyrimidine tract-binding protein-associated splicing factor (PSF) to the hepatitis delta virus RNA

    SciTech Connect

    Greco-Stewart, Valerie S.; Thibault, Catherine St-Laurent; Pelchat, Martin . E-mail: mpelchat@uottawa.ca

    2006-12-20

    The hepatitis delta virus (HDV) has a very limited protein coding capacity and must rely on host proteins for its replication. A ribonucleoprotein complex was detected following UV cross-linking between HeLa nuclear proteins and an RNA corresponding to the right terminal stem-loop domain of HDV genomic RNA. Mass spectrometric analysis of the complex revealed the polypyrimidine tract-binding protein-associated splicing factor (PSF) as a novel HDV RNA-interacting protein. Co-immunoprecipitation demonstrated the interaction between HDV RNA and PSF both in vitro in HeLa nuclear extract and in vivo within HeLa cells containing both polarities of the HDV genome. Analysis of the binding of various HDV-derived RNAs to purified, recombinant PSF further confirmed the specificity of the interaction and revealed that PSF directly binds to the terminal stem-loop domains of both polarities of HDV RNA. Our findings provide evidence of the involvement of a host mRNA processing protein in the HDV life cycle.

  19. SIENA: Efficient Compilation of Selective Protein Binding Site Ensembles.

    PubMed

    Bietz, Stefan; Rarey, Matthias

    2016-01-25

    Structural flexibility of proteins has an important influence on molecular recognition and enzymatic function. In modeling, structure ensembles are therefore often applied as a valuable source of alternative protein conformations. However, their usage is often complicated by structural artifacts and inconsistent data annotation. Here, we present SIENA, a new computational approach for the automated assembly and preprocessing of protein binding site ensembles. Starting with an arbitrarily defined binding site in a single protein structure, SIENA searches for alternative conformations of the same or sequentially closely related binding sites. The method is based on an indexed database for identifying perfect k-mer matches and a recently published algorithm for the alignment of protein binding site conformations. Furthermore, SIENA provides a new algorithm for the interaction-based selection of binding site conformations which aims at covering all known ligand-binding geometries. Various experiments highlight that SIENA is able to generate comprehensive and well selected binding site ensembles improving the compatibility to both known and unconsidered ligand molecules. Starting with the whole PDB as data source, the computation time of the whole ensemble generation takes only a few seconds. SIENA is available via a Web service at www.zbh.uni-hamburg.de/siena .

  20. Subcellular distribution of small GTP binding proteins in pancreas: Identification of small GTP binding proteins in the rough endoplasmic reticulum

    SciTech Connect

    Nigam, S.K. )

    1990-02-01

    Subfractionation of a canine pancreatic homogenate was performed by several differential centrifugation steps, which gave rise to fractions with distinct marker profiles. Specific binding of guanosine 5{prime}-({gamma}-({sup 35}S)thio)triphosphate (GTP({gamma}-{sup 35}S)) was assayed in each fraction. Enrichment of GTP({gamma}-{sup 35}S) binding was greatest in the interfacial smooth microsomal fraction, expected to contain Golgi and other smooth vesicles. There was also marked enrichment in the rough microsomal fraction. Electron microscopy and marker protein analysis revealed the rough microsomes (RMs) to be highly purified rough endoplasmic reticulum (RER). The distribution of small (low molecular weight) GTP binding proteins was examined by a ({alpha}-{sup 32}P)GTP blot-overlay assay. Several apparent GTP binding proteins of molecular masses 22-25 kDa were detected in various subcellular fractions. In particular, at least two such proteins were found in the Golgi-enriched and RM fractions, suggesting that these small GTP binding proteins were localized to the Golgi and RER. To more precisely localize these proteins to the RER, native RMs and RMs stripped of ribosomes by puromycin/high salt were subjected to isopycnic centrifugation. The total GTP({gamma}-{sup 35}S) binding, as well as the small GTP binding proteins detected by the ({alpha}-{sup 32}P)GTP blot overlay, distributed into fractions of high sucrose density, as did the RER marker ribophorin I. Consistent with a RER localization, when the RMS were stripped of ribosomes and subjected to isopycnic centrifugation, the total GTP({gamma}-{sup 35}S) binding and the small GTP binding proteins detected in the blot-overlay assay shifted to fractions of lighter sucrose density along with the RER marker.

  1. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles

    PubMed Central

    Brender, Jeffrey R.; Zhang, Yang

    2015-01-01

    The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies. PMID:26506533

  2. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles.

    PubMed

    Brender, Jeffrey R; Zhang, Yang

    2015-10-01

    The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies.

  3. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  4. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  5. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  6. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  7. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  8. Protein Unfolding Coupled to Ligand Binding: Differential Scanning Calorimetry Simulation Approach

    NASA Astrophysics Data System (ADS)

    Soledad Celej, María; Fidelio, Gerardo Daniel; Dassie, Sergio Alberto

    2005-01-01

    The aim of this work is to present the physicochemical basis underlying the changes in protein thermostability upon ligand binding. The article is addressed to advanced undergraduate and postgraduate chemistry students with an interest in protein biophysics. In addition, this article provides a useful tool for both learning and teaching biophysics because it links fundamental concepts: thermodynamics, chemical equilibrium, and protein stability. The influence of protein ligand interactions on thermally-induced protein denaturation was monitored by differential scanning calorimetry (DSC). The changes in DSC output (thermogram) emerge by linking binding equilibrium with reversible protein unfolding thermodynamics. We derive the formalism for the description of protein unfolding in the presence of ligand that can bind to a single site on either native, unfolded, or both protein states. In addition to a rigorous mathematical description of the involved equilibria, the model provides the general formulation for simulating thermograms and calculating the changes in protein species during heating. First, we describe ligand interaction and emphasize the relationship between protein stability parameters and redistribution of species in equilibrium. After that, we describe the origin of bimodal thermograms, and finally, the effect on thermogram shape of protein concentration at constant ligand/protein mole ratio.

  9. Protein-DNA binding in high-resolution

    PubMed Central

    Mahony, Shaun; Pugh, B. Franklin

    2015-01-01

    Recent advances in experimental and computational methodologies are enabling ultra-high resolution genome-wide profiles of protein-DNA binding events. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Similarly, deeply sequenced chromatin accessibility assays (e.g. DNase-seq and ATACseq) enable the detection of protected footprints at protein-DNA binding sites. With these techniques and others, we have the potential to characterize the individual nucleotides that interact with transcription factors, nucleosomes, RNA polymerases, and other regulatory proteins in a particular cellular context. In this review, we explain the experimental assays and computational analysis methods that enable high-resolution profiling of protein-DNA binding events. We discuss the challenges and opportunities associated with such approaches. PMID:26038153

  10. Sequence-motif Detection of NAD(P)-binding Proteins: Discovery of a Unique Antibacterial Drug Target

    NASA Astrophysics Data System (ADS)

    Hua, Yun Hao; Wu, Chih Yuan; Sargsyan, Karen; Lim, Carmay

    2014-09-01

    Many enzymes use nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate (NAD(P)) as essential coenzymes. These enzymes often do not share significant sequence identity and cannot be easily detected by sequence homology. Previously, we determined all distinct locally conserved pyrophosphate-binding structures (3d motifs) from NAD(P)-bound protein structures, from which 1d sequence motifs were derived. Here, we aim to establish the precision of these 3d and 1d motifs to annotate NAD(P)-binding proteins. We show that the pyrophosphate-binding 3d motifs are characteristic of NAD(P)-binding proteins, as they are rarely found in nonNAD(P)-binding proteins. Furthermore, several 1d motifs could distinguish between proteins that bind only NAD and those that bind only NADP. They could also distinguish between NAD(P)-binding proteins from nonNAD(P)-binding ones. Interestingly, one of the pyrophosphate-binding 3d and corresponding 1d motifs was found only in enoyl-acyl carrier protein reductases, which are enzymes essential for bacterial fatty acid biosynthesis. This unique 3d motif serves as an attractive novel drug target, as it is conserved across many bacterial species and is not found in human proteins.

  11. Discodermolide interferes with the binding of tau protein to microtubules.

    PubMed

    Kar, Santwana; Florence, Gordon J; Paterson, Ian; Amos, Linda A

    2003-03-27

    We investigated whether discodermolide, a novel antimitotic agent, affects the binding to microtubules of tau protein repeat motifs. Like taxol, the new drug reduces the proportion of tau that pellets with microtubules. Despite their differing structures, discodermolide, taxol and tau repeats all bind to a site on beta-tubulin that lies within the microtubule lumen and is crucial in controlling microtubule assembly. Low concentrations of tau still bind strongly to the outer surfaces of preformed microtubules when the acidic C-terminal regions of at least six tubulin dimers are available for interaction with each tau molecule; otherwise binding is very weak.

  12. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1')anilinonaphthalene binding to intestinal fatty acid binding protein.

    PubMed Central

    Kirk, W R; Kurian, E; Prendergast, F G

    1996-01-01

    1-Sulfonato-8-(1')anilinonaphthalene (1,8-ANS) was employed as a fluorescent probe of the fatty acid binding site of recombinant rat intestinal fatty acid binding protein (1-FABP). The enhancement of fluorescence upon binding allowed direct determination of binding affinity by fluorescence titration experiments, and measurement of the effects on that affinity of temperature, pH, and ionic strength. Solvent isotope effects were also determined. These data were compared to results from isothermal titration calorimetry. We obtained values for the enthalpy and entropy of this interaction at a variety of temperatures, and hence determined the change in heat capacity of the system consequent upon binding. The ANS-1-FABP is enthalpically driven; above approximately 14 degrees C it is entropically opposed, but below this temperature the entropy makes a positive contribution to the binding. The changes we observe in both enthalpy and entropy of binding with temperature can be derived from the change in heat capacity upon binding by integration, which demonstrates the internal consistency of our results. Bound ANS is displaced by fatty acids and can itself displace fatty acids bound to I-FABP. The binding site for ANS appears to be inside the solvent-containing cavity observed in the x-ray crystal structure, the same cavity occupied by fatty acid. From the fluorescence spectrum and from an inversion of the Debye-Hueckel formula for the activity coefficients as a function of added salt, we inferred that this cavity is fairly polar in character, which is in keeping with inferences drawn from the x-ray structure. The binding affinity of ANS is considered to be a consequence of both electrostatic and conditional hydrophobic effects. We speculate that the observed change in heat capacity is produced mainly by the displacement of strongly hydrogen-bonded waters from the protein cavity. PMID:8770188

  13. Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine

    SciTech Connect

    Kuroki, Y.; Akino, T. )

    1991-02-15

    Phospholipids are the major components of pulmonary surfactant. Dipalmitoylphosphatidylcholine is believed to be especially essential for the surfactant function of reducing the surface tension at the air-liquid interface. Surfactant protein A (SP-A) with a reduced denatured molecular mass of 26-38 kDa, characterized by a collagen-like structure and N-linked glycosylation, interacts strongly with a mixture of surfactant-like phospholipids. In the present study the direct binding of SP-A to phospholipids on a thin layer chromatogram was visualized using 125I-SP-A as a probe, so that the phospholipid specificities of SP-A binding and the structural requirements of SP-A and phospholipids for the binding could be examined. Although 125I-SP-A bound phosphatidylcholine and sphingomyeline, it was especially strong in binding dipalmitoylphosphatidylcholine, but failed to bind phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine. Labeled SP-A also exhibited strong binding to distearoylphosphatidylcholine, but weak binding to dimyristoyl-, 1-palmitoyl-2-linoleoyl-, and dilinoleoylphosphatidylcholine. Unlabeled SP-A readily competed with labeled SP-A for phospholipid binding. SP-A strongly bound dipalmitoylglycerol produced by phospholipase C treatment of dipalmitoylphosphatidylcholine, but not palmitic acid. This protein also failed to bind lysophosphatidylcholine produced by phospholipase A2 treatment of dipalmitoylphosphatidylcholine. 125I-SP-A shows almost no binding to dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylethanolamine. The addition of 10 mM EGTA into the binding buffer reduced much of the 125I-SP-A binding to phospholipids. Excess deglycosylated SP-A competed with labeled SP-A for binding to dipalmitoylphosphatidylcholine, but the excess collagenase-resistant fragment of SP-A failed.

  14. Wild-Type p53 Binds to the TATA-Binding Protein and Represses Transcription

    NASA Astrophysics Data System (ADS)

    Seto, Edward; Usheva, Anny; Zambetti, Gerard P.; Momand, Jamil; Horikoshi, Nobuo; Weinmann, Roberto; Levine, Arnold J.; Shenk, Thomas

    1992-12-01

    p53 activates transcription of genes with a p53 response element, and it can repress genes lacking the element. Here we demonstrate that wild-type but not mutant p53 inhibits transcription in a HeLa nuclear extract from minimal promoters. Wild-type but not mutant p53 binds to human TATA-binding protein (TBP). p53 does not bind to yeast TBP, and it cannot inhibit transcription in a HeLa extract where yeast TBP substitutes for human TBP. These results suggest a model in which p53 binds to TBP and interferes with transcriptional initiation.

  15. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment.

    PubMed

    Mollica, Luca; Bessa, Luiza M; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert

    2016-01-01

    In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the "fly-casting" hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context.

  16. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment

    PubMed Central

    Mollica, Luca; Bessa, Luiza M.; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert

    2016-01-01

    In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the “fly-casting” hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context. PMID:27668217

  17. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment.

    PubMed

    Mollica, Luca; Bessa, Luiza M; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert

    2016-01-01

    In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the "fly-casting" hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context. PMID:27668217

  18. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment

    PubMed Central

    Mollica, Luca; Bessa, Luiza M.; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert

    2016-01-01

    In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the “fly-casting” hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context.

  19. GTP-binding proteins in rat liver nuclear envelopes.

    PubMed Central

    Rubins, J B; Benditt, J O; Dickey, B F; Riedel, N

    1990-01-01

    Nuclear transport as well as reassembly of the nuclear envelope (NE) after completion of mitosis are processes that have been shown to require GTP and ATP. To study the presence and localization of GTP-binding proteins in the NE, we have combined complementary techniques of [alpha-32P]GTP binding to Western-blotted proteins and UV crosslinking of [alpha-32P]GTP with well-established procedures for NE subfractionation. GTP binding to blotted NE proteins revealed five low molecular mass GTP-binding proteins of 26, 25, 24.5, 24, and 23 kDa, and [alpha-32P]GTP photoaffinity labeling revealed major proteins with apparent molecular masses of 140, 53, 47, 33, and 31 kDa. All GTP-binding proteins appear to localize preferentially to the inner nuclear membrane, possibly to the interface between inner nuclear membrane and lamina. Despite the evolutionary conservation between the NE and the rough endoplasmic reticulum, the GTP-binding proteins identified differed between these two compartments. Most notably, the 68- and 30-kDa GTP-binding subunits of the signal recognition particle receptor, which photolabeled with [alpha-32P]GTP in the rough endoplasmic reticulum fraction, were totally excluded from the NE fraction. Conversely, a major 53-kDa photolabeled protein in the NE was absent from rough endoplasmic reticulum. Whereas Western-blotted NE proteins bound GTP specifically, all [alpha-32P]GTP photolabeled proteins could be blocked by competition with ATP, although with a competition profile that differed from that obtained with GTP. In comparative crosslinking studies with [alpha-32P]ATP, we have identified three specific ATP-binding proteins with molecular masses of 160, 78, and 74 kDa. The localization of GTP- and ATP-binding proteins within the NE appears appropriate for their involvement in nuclear transport and in the GTP-dependent fusion of nuclear membrane vesicles required for reassembly of the nucleus after mitosis. Images PMID:2119502

  20. Mass-spectrometric identification of binding proteins of Mr 25,000 protein, a part of vitellogenin B1, detected in particulate fraction of Xenopus laevis oocytes.

    PubMed

    Sugimoto, Isamu; Li, Zhijun; Yoshitome, Satoshi; Ito, Susumu; Hashimoto, Eikichi

    2004-10-01

    A phosphorylated protein with molecular mass of 25,000 (pp25) is a component of Xenopus laevis vitellogenin B1. Our previous report showed the existence of several binding proteins of pp25 in the particulate fraction of Xenopus oocytes. In an attempt to elucidate the function of pp25, two of these binding proteins were purified, analyzed by mass-spectrometry, and identified as ribosomal proteins S13 and S14. Other binding proteins in the particulate fraction mostly corresponded to those derived from purified 40S and 60S ribosomal subunits, as shown by the overlay assay method. However, pp25 did not show any effect on protein synthesis in the rabbit reticulocyte lysate system. A model in which pp25 connects a type of serpin (serine protease inhibitor), the only pp25-binding protein detected in the cytoplasm, to the endoplasmic reticulum through two serine clusters is proposed to explain a possible function of this protein.

  1. Structural Perspectives on the Evolutionary Expansion of Unique Protein-Protein Binding Sites.

    PubMed

    Goncearenco, Alexander; Shaytan, Alexey K; Shoemaker, Benjamin A; Panchenko, Anna R

    2015-09-15

    Structures of protein complexes provide atomistic insights into protein interactions. Human proteins represent a quarter of all structures in the Protein Data Bank; however, available protein complexes cover less than 10% of the human proteome. Although it is theoretically possible to infer interactions in human proteins based on structures of homologous protein complexes, it is still unclear to what extent protein interactions and binding sites are conserved, and whether protein complexes from remotely related species can be used to infer interactions and binding sites. We considered biological units of protein complexes and clustered protein-protein binding sites into similarity groups based on their structure and sequence, which allowed us to identify unique binding sites. We showed that the growth rate of the number of unique binding sites in the Protein Data Bank was much slower than the growth rate of the number of structural complexes. Next, we investigated the evolutionary roots of unique binding sites and identified the major phyletic branches with the largest expansion in the number of novel binding sites. We found that many binding sites could be traced to the universal common ancestor of all cellular organisms, whereas relatively few binding sites emerged at the major evolutionary branching points. We analyzed the physicochemical properties of unique binding sites and found that the most ancient sites were the largest in size, involved many salt bridges, and were the most compact and least planar. In contrast, binding sites that appeared more recently in the evolution of eukaryotes were characterized by a larger fraction of polar and aromatic residues, and were less compact and more planar, possibly due to their more transient nature and roles in signaling processes.

  2. Metal-binding proteins as metal pollution indicators

    SciTech Connect

    Hennig, H.F.

    1986-03-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effects on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass.

  3. Review: the liver bile acid-binding proteins.

    PubMed

    Monaco, Hugo L

    2009-12-01

    The liver bile acid-binding proteins, L-BABPs, formerly called the liver "basic" fatty acid-binding proteins, are a subfamily of the fatty acid-binding proteins, FABPs. All the members of this protein group share the same fold: a 10 stranded beta barrel in which two short helices are inserted in between the first and the second strand of antiparallel beta sheet. The barrel encloses the ligand binding cavity of the protein while the two helices are believed to be involved in ligand accessibility to the binding site. The L-BABP subfamily has been found to be present in the liver of several vertebrates: fish, amphibians, reptiles, and birds but not in mammals. The members of the FABP family present in mammals that appear to be more closely related to the L-BABPs are the liver FABPs and the ileal BABPs, both very extensively studied. Several L-BABP X-ray structures are available and chicken L-BABP has also been studied using NMR spectroscopy. The stoichiometry of ligand binding for bile acids, first determined by X-ray crystallography for the chicken liver protein, is of two cholates per protein molecule with the only exception of zebrafish L-BABP which, due to the presence of a disulfide bridge, has a stoichiometry of 1:1. The stoichiometry of ligand binding for fatty acids, determined with several different techniques, is 1:1. An unanswered question of great relevance is the identity of the protein that in mammals performs the function that in other vertebrates is carried out by the L-BABPS.

  4. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding.

    PubMed

    Memczak, Henry; Lauster, Daniel; Kar, Parimal; Di Lella, Santiago; Volkmer, Rudolf; Knecht, Volker; Herrmann, Andreas; Ehrentreich-Förster, Eva; Bier, Frank F; Stöcklein, Walter F M

    2016-01-01

    Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing. PMID:27415624

  5. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding

    PubMed Central

    Kar, Parimal; Di Lella, Santiago; Volkmer, Rudolf; Knecht, Volker; Herrmann, Andreas; Ehrentreich-Förster, Eva; Bier, Frank F.; Stöcklein, Walter F. M.

    2016-01-01

    Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing. PMID:27415624

  6. Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins.

    PubMed

    Kuznetsov, Igor B; Gou, Zhenkun; Li, Run; Hwang, Seungwoo

    2006-07-01

    Proteins that interact with DNA are involved in a number of fundamental biological activities such as DNA replication, transcription, and repair. A reliable identification of DNA-binding sites in DNA-binding proteins is important for functional annotation, site-directed mutagenesis, and modeling protein-DNA interactions. We apply Support Vector Machine (SVM), a supervised pattern recognition method, to predict DNA-binding sites in DNA-binding proteins using the following features: amino acid sequence, profile of evolutionary conservation of sequence positions, and low-resolution structural information. We use a rigorous statistical approach to study the performance of predictors that utilize different combinations of features and how this performance is affected by structural and sequence properties of proteins. Our results indicate that an SVM predictor based on a properly scaled profile of evolutionary conservation in the form of a position specific scoring matrix (PSSM) significantly outperforms a PSSM-based neural network predictor. The highest accuracy is achieved by SVM predictor that combines the profile of evolutionary conservation with low-resolution structural information. Our results also show that knowledge-based predictors of DNA-binding sites perform significantly better on proteins from mainly-alpha structural class and that the performance of these predictors is significantly correlated with certain structural and sequence properties of proteins. These observations suggest that it may be possible to assign a reliability index to the overall accuracy of the prediction of DNA-binding sites in any given protein using its sequence and structural properties. A web-server implementation of the predictors is freely available online at http://lcg.rit.albany.edu/dp-bind/.

  7. Detecting O2 binding sites in protein cavities

    PubMed Central

    Kitahara, Ryo; Yoshimura, Yuichi; Xue, Mengjun; Kameda, Tomoshi; Mulder, Frans A. A.

    2016-01-01

    Internal cavities are important elements in protein structure, dynamics, stability and function. Here we use NMR spectroscopy to investigate the binding of molecular oxygen (O2) to cavities in a well-studied model for ligand binding, the L99A mutant of T4 lysozyme. On increasing the O2 concentration to 8.9 mM, changes in 1H, 15N, and 13C chemical shifts and signal broadening were observed specifically for backbone amide and side chain methyl groups located around the two hydrophobic cavities of the protein. O2-induced longitudinal relaxation enhancements for amide and methyl protons could be adequately accounted for by paramagnetic dipolar relaxation. These data provide the first experimental demonstration that O2 binds specifically to the hydrophobic, and not the hydrophilic cavities, in a protein. Molecular dynamics simulations visualized the rotational and translational motions of O2 in the cavities, as well as the binding and egress of O2, suggesting that the channel consisting of helices D, E, G, H, and J could be the potential gateway for ligand binding to the protein. Due to strong paramagnetic relaxation effects, O2 gas-pressure NMR measurements can detect hydrophobic cavities when populated to as little as 1%, and thereby provide a general and highly sensitive method for detecting oxygen binding in proteins. PMID:26830762

  8. Binding profile of spiramycin to oviducal proteins of laying hens.

    PubMed

    Furusawa, N

    2000-12-01

    In vitro protein binding of spiramycin (SP) in the plasma and oviducts of laying hens was studied. The data for SP were compared with those for oxytetracycline (OTC), sulphadimidine (SDD), sulphamonomethoxine (SMM) and sulphaquinoxaline (SQ). The two oviduct segments, magnum (M) and isthmus plus shell gland (IS), were collected. The soluble (cell sap) fractions from the magnum (M-S9) and the isthmus plus shell gland (IS-S9) were used as samples. Plasma protein binding was highest for SQ (81.4%) (P < 0.01), and lowest for SDD (30.9%) (P < 0.01). No M-S9 protein binding of OTC was found. The IS-S9 protein binding of SP (60.4%) was very much higher than those of OTC (0.8%), SDD (4.1%), SMM (4.0%) and SQ (12.3%) (P < 0.01). Biological half-lives of these drugs in egg albumen were directly correlated to the extent of their binding to IS proteins. Of plasma, M-S9 and IS-S9, variation in SP concentration in the ranges from 1 to 20 micrograms/ml did not alter the binding properties of the drug. PMID:11199206

  9. The binding modes and binding affinities of epipodophyllotoxin derivatives with human topoisomerase IIα.

    PubMed

    Naik, Pradeep Kumar; Dubey, Abhishek; Soni, Komal; Kumar, Rishay; Singh, Harvinder

    2010-12-01

    Epipodophyllotoxin derivatives have important therapeutic value in the treatment of human cancers. These drugs kill cells by inhibiting the ability of topoisomerase II (TP II) to ligate nucleic acids that it cleaves during the double-stranded DNA passage reaction. The 3D structure of human TP IIα was modeled by homology modeling. A virtual library consisting of 143 epipodophyllotoxin derivatives has been developed. Their molecular interactions and binding affinities with modeled human TP IIα have been studied using the docking and Bimolecular Association with Energetics (eMBrAcE) developed by Schrödinger. Structure activity relationship models were developed between the experimental activity expressed in terms of percentage of intracellular covalent TP II-DNA complexes (log PCPDCF) of these compounds and molecular descriptors like docking score and free energy of binding. For both the cases the r2 was in the range of 0.624-0.800 indicating good data fit and r2(cv) was in the range of 0.606-774 indicating that the predictive capabilities of the models were acceptable. Low levels of root mean square error for the majority of inhibitors establish the docking and eMBrAcE based prediction model as an efficient tool for generating more potent and specific inhibitors of human TP IIα by testing rationally designed lead compounds based on epipodophyllotoxin derivatization. PMID:21075653

  10. Roxarsone binding to soil-derived dissolved organic matter: Insights from multi-spectroscopic techniques.

    PubMed

    Fu, Qing-Long; He, Jian-Zhou; Blaney, Lee; Zhou, Dong-Mei

    2016-07-01

    The fate and transport of roxarsone (ROX), a widely used organoarsenic feed additive, in soil is significantly influenced by the ubiquitous presence of soil-derived dissolved organic matter (DOM). In this study, fluorescence quenching titration and two-dimensional correlation spectroscopy (2D-COS) were employed to study ROX binding to DOM. Binding mechanisms were revealed by fluorescence lifetime measurement and Fourier transform infrared spectroscopy (FTIR). Humic- and protein-like fluorophores were identified in the excitation-emission matrix and synchronous fluorescence spectra of DOM. The conditional stability constant (log KC) for ROX binding to DOM was found to be 5.06, indicating that ROX was strongly bound to DOM. The binding order of ROX to DOM fluorophores revealed by 2D-COS followed the sequence of protein-like fluorophore ≈ the longer wavelength excited humic-like (L-humic-like) fluorophore > the shorter wavelength excited humic-like (S-humic-like) fluorophore. 2D-COS resolved issues with peak overlapping and allowed further exploration of the interaction between ROX and DOM. Results of fluorescence lifetime and FTIR spectra demonstrated that ROX interacted with DOM through the hydroxyl, amide II, carboxyl, aliphatic CH, and NO2 groups, yielding stable DOM-ROX complexes. The strong interaction between ROX and DOM implies that DOM plays an important role in the environmental fate of ROX in soil. PMID:27115847

  11. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.

    PubMed

    Kokh, Daria B; Czodrowski, Paul; Rippmann, Friedrich; Wade, Rebecca C

    2016-08-01

    Simulations of the long-time scale motions of a ligand binding pocket in a protein may open up new perspectives for the design of compounds with steric or chemical properties differing from those of known binders. However, slow motions of proteins are difficult to access using standard molecular dynamics (MD) simulations and are thus usually neglected in computational drug design. Here, we introduce two nonequilibrium MD approaches to identify conformational changes of a binding site and detect transient pockets associated with these motions. The methods proposed are based on the rotamerically induced perturbation (RIP) MD approach, which employs perturbation of side-chain torsional motion for initiating large-scale protein movement. The first approach, Langevin-RIP (L-RIP), entails a series of short Langevin MD simulations, each starting with perturbation of one of the side-chains lining the binding site of interest. L-RIP provides extensive sampling of conformational changes of the binding site. In less than 1 ns of MD simulation with L-RIP, we observed distortions of the α-helix in the ATP binding site of HSP90 and flipping of the DFG loop in Src kinase. In the second approach, RIPlig, a perturbation is applied to a pseudoligand placed in different parts of a binding pocket, which enables flexible regions of the binding site to be identified in a small number of 10 ps MD simulations. The methods were evaluated for four test proteins displaying different types and degrees of binding site flexibility. Both methods reveal all transient pocket regions in less than a total of 10 ns of simulations, even though many of these regions remained closed in 100 ns conventional MD. The proposed methods provide computationally efficient tools to explore binding site flexibility and can aid in the functional characterization of protein pockets, and the identification of transient pockets for ligand design. PMID:27399277

  12. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.

    PubMed

    Kokh, Daria B; Czodrowski, Paul; Rippmann, Friedrich; Wade, Rebecca C

    2016-08-01

    Simulations of the long-time scale motions of a ligand binding pocket in a protein may open up new perspectives for the design of compounds with steric or chemical properties differing from those of known binders. However, slow motions of proteins are difficult to access using standard molecular dynamics (MD) simulations and are thus usually neglected in computational drug design. Here, we introduce two nonequilibrium MD approaches to identify conformational changes of a binding site and detect transient pockets associated with these motions. The methods proposed are based on the rotamerically induced perturbation (RIP) MD approach, which employs perturbation of side-chain torsional motion for initiating large-scale protein movement. The first approach, Langevin-RIP (L-RIP), entails a series of short Langevin MD simulations, each starting with perturbation of one of the side-chains lining the binding site of interest. L-RIP provides extensive sampling of conformational changes of the binding site. In less than 1 ns of MD simulation with L-RIP, we observed distortions of the α-helix in the ATP binding site of HSP90 and flipping of the DFG loop in Src kinase. In the second approach, RIPlig, a perturbation is applied to a pseudoligand placed in different parts of a binding pocket, which enables flexible regions of the binding site to be identified in a small number of 10 ps MD simulations. The methods were evaluated for four test proteins displaying different types and degrees of binding site flexibility. Both methods reveal all transient pocket regions in less than a total of 10 ns of simulations, even though many of these regions remained closed in 100 ns conventional MD. The proposed methods provide computationally efficient tools to explore binding site flexibility and can aid in the functional characterization of protein pockets, and the identification of transient pockets for ligand design.

  13. Assessing Energetic Contributions to Binding from a Disordered Region in a Protein-Protein Interaction

    SciTech Connect

    S Cho; C Swaminathan; D Bonsor; M Kerzic; R Guan; J Yang; C Kieke; P Anderson; D Kranz; et al.

    2011-12-31

    Many functional proteins are at least partially disordered prior to binding. Although the structural transitions upon binding of disordered protein regions can influence the affinity and specificity of protein complexes, their precise energetic contributions to binding are unknown. Here, we use a model protein-protein interaction system in which a locally disordered region has been modified by directed evolution to quantitatively assess the thermodynamic and structural contributions to binding of disorder-to-order transitions. Through X-ray structure determination of the protein binding partners before and after complex formation and isothermal titration calorimetry of the interactions, we observe a correlation between protein ordering and binding affinity for complexes along this affinity maturation pathway. Additionally, we show that discrepancies between observed and calculated heat capacities based on buried surface area changes in the protein complexes can be explained largely by heat capacity changes that would result solely from folding the locally disordered region. Previously developed algorithms for predicting binding energies of protein-protein interactions, however, are unable to correctly model the energetic contributions of the structural transitions in our model system. While this highlights the shortcomings of current computational methods in modeling conformational flexibility, it suggests that the experimental methods used here could provide training sets of molecular interactions for improving these algorithms and further rationalizing molecular recognition in protein-protein interactions.

  14. TALE proteins bind to both active and inactive chromatin.

    PubMed

    Scott, James N F; Kupinski, Adam P; Kirkham, Christopher M; Tuma, Roman; Boyes, Joan

    2014-02-15

    TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.

  15. Evaluation of water displacement energetics in protein binding sites with grid cell theory.

    PubMed

    Gerogiokas, G; Southey, M W Y; Mazanetz, M P; Heifetz, A; Hefeitz, A; Bodkin, M; Law, R J; Michel, J

    2015-04-01

    Excess free energies, enthalpies and entropies of water in protein binding sites were computed via classical simulations and Grid Cell Theory (GCT) analyses for three pairs of congeneric ligands in complex with the proteins scytalone dehydratase, p38α MAP kinase and EGFR kinase respectively. Comparative analysis is of interest since the binding modes for each ligand pair differ in the displacement of one binding site water molecule, but significant variations in relative binding affinities are observed. Protocols that vary in their use of restraints on protein and ligand atoms were compared to determine the influence of protein-ligand flexibility on computed water structure and energetics, and to assess protocols for routine analyses of protein-ligand complexes. The GCT-derived binding affinities correctly reproduce experimental trends, but the magnitude of the predicted changes in binding affinities is exaggerated with respect to results from a previous Monte Carlo Free Energy Perturbation study. Breakdown of the GCT water free energies into enthalpic and entropic components indicates that enthalpy changes dominate the observed variations in energetics. In EGFR kinase GCT analyses revealed that replacement of a pyrimidine by a cyanopyridine perturbs water energetics up three hydration shells away from the ligand.

  16. Characterization of EhCaBP, a calcium-binding protein of Entamoeba histolytica and its binding proteins.

    PubMed

    Yadava, N; Chandok, M R; Prasad, J; Bhattacharya, S; Sopory, S K; Bhattacharya, A

    1997-01-01

    A novel calcium-binding protein (EhCaBP) has been recently identified and characterized from the protozoan parasite Entamoeba histolytica. In order to decipher the function of this protein, a few basic properties were investigated and compared with the ubiquitous Ca(2+)-signal transducing protein calmodulin (CaM). Indirect immunofluorescence and immunoprecipitation analyses using specific antibodies against EhCaBP suggest that it is a soluble cytoplasmic protein with no major post-translational modification. EhCaBP did not stimulate cAMP-phosphodiesterase activity, differentiating it from all known CaMs. Affinity chromatography of [35S]methionine-labelled proteins of E. histolytica trophozoites using EhCaBP-sepharose column showed Ca(2+)-dependent binding of a group of proteins. Radiolabelled proteins from the same extract also bound to CaM-sepharose. However, the proteins bound to the two columns were different as revealed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. At least one of the EhCaBP-binding proteins became phosphorylated as revealed by in vivo phosphorylation analysis. The binding-proteins could not be detected in E. invadens (a species that is pathogenic in reptiles) and E. moshkovskii (which is found in the human gut but is not pathogenic), two species in which EhCaBP-like protein has not been found. Two distinct Ca(2+)-dependent protein kinases, which get activated by EhCaBP and CaM respectively, were detected in E. histolytica. These kinases require different levels of Ca2+ for their maximal activities. Affinity chromatography also showed the binding of protein kinase(s) to EhCaBP in a Ca(2+)-dependent manner. Our data suggest that there may be novel Ca(2+)-signal transduction pathway in E. histolytica mediated by EhCaBP.

  17. Theoretical studies of binding of mannose-binding protein to monosaccharides

    NASA Astrophysics Data System (ADS)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  18. Protein stability induced by ligand binding correlates with changes in protein flexibility

    PubMed Central

    Celej, María Soledad; Montich, Guillermo G.; Fidelio, Gerardo D.

    2003-01-01

    The interaction between ligands and proteins usually induces changes in protein thermal stability with modifications in the midpoint denaturation temperature, enthalpy of unfolding, and heat capacity. These modifications are due to the coupling of unfolding with binding equilibrium. Furthermore, they can be attained by changes in protein structure and conformational flexibility induced by ligand interaction. To study these effects we have used bovine serum albumin (BSA) interacting with three different anilinonaphthalene sulfonate derivatives (ANS). These ligands have different effects on protein stability, conformation, and dynamics. Protein stability was studied by differential scanning calorimetry and fluorescence spectroscopy, whereas conformational changes were detected by circular dichroism and infrared spectroscopy including kinetics of hydrogen/deuterium exchange. The order of calorimetric midpoint of denaturation was: 1,8-ANS-BSA > 2,6-ANS-BSA > free BSA >> (nondetected) bis-ANS-BSA. Both 1,8-ANS and 2,6-ANS did not substantially modify the secondary structure of BSA, whereas bis-ANS induced a distorted α-helix conformation with an increase of disordered structure. Protein flexibility followed the order: 1,8-ANS-BSA < 2,6-ANS-BSA < free BSA << bis-ANS-BSA, indicating a clear correlation between stability and conformational flexibility. The structure induced by an excess of bis-ANS to BSA is compatible with a molten globule-like state. Within the context of the binding landscape model, we have distinguished five conformers (identified by subscript): BSA1,8-ANS, BSA2,6-ANS, BSAfree, BSAbis-ANS, and BSAunfolded among the large number of possible states of the conformational dynamic ensemble. The relative population of each distinguishable conformer depends on the type and concentration of ligand and the temperature of the system. PMID:12824495

  19. Oxysterol binding protein-related protein 8 mediates the cytotoxicity of 25-hydroxycholesterol[S

    PubMed Central

    Li, Jiwei; Zheng, Xiuting; Lou, Ning; Zhong, Wenbin; Yan, Daoguang

    2016-01-01

    Oxysterols are 27-carbon oxidized derivatives of cholesterol or by-products of cholesterol biosynthesis that can induce cell apoptosis in addition to a number of other bioactions. However, the mechanisms underlying this cytotoxicity are not completely understood. ORP8 is a member of the oxysterol binding protein-related protein (ORP) family, implicated in cellular lipid homeostasis, migration, and organization of the microtubule cytoskeleton. Here, we report that 25-hydroxycholesterol (OHC) induced apoptosis of the hepatoma cell lines, HepG2 and Huh7, via the endoplasmic reticulum (ER) stress response pathway, and ORP8 overexpression resulted in a similar cell response as 25-OHC, indicating a putative functional relationship between oxysterol cytotoxicity and ORP8. Further experiments demonstrated that ORP8 overexpression significantly enhanced the 25-OHC effect on ER stress and apoptosis in HepG2 cells. A truncated ORP8 construct lacking the ligand-binding domain or a closely related protein, ORP5, was devoid of this activity, evidencing for specificity of the observed effects. Importantly, ORP8 knockdown markedly dampened such responses to 25-OHC. Taken together, the present study suggests that ORP8 may mediate the cytotoxicity of 25-OHC. PMID:27530118

  20. Detection of GTP-binding proteins in barley aleurone protoplasts.

    PubMed

    Wang, M; Sedee, N J; Heidekamp, F; Snaar-Jagalska, B E

    1993-08-30

    We report the existence of several families of GTP-binding proteins in barley aleurone protoplasts. Partial purified plasma membrane proteins were separated by SDS-PAGE, transferred to a nitrocellulose filter and incubated with either antisera raised against a highly conserved animal G protein alpha subunit peptide/or Ras protein, or with [alpha-32P]GTP. Two sets of proteins of M(r) = 32-36 kDa and 22-24 kDa were strongly recognized by the antisera. Binding of [alpha-32P]GTP was detected on Western blots with proteins of M(r) = 22-24 kDa and 16 kDa. Binding was inhibited by 10(-7)-10(-6) M GTP gamma S, GTP or GDP; binding was not affected by 10(-6)-10(-5) M ATP gamma S or ADP. The kinetics, specificity and the effects of phytohormones in a [35S]GTP gamma S binding assay were also studied in isolated plasma membranes of barley aleurone protoplasts.

  1. Human RNASET2 derivatives as potential anti-angiogenic agents: actin binding sequence identification and characterization

    PubMed Central

    Nesiel-Nuttman, Liron; Doron, Shani; Schwartz, Betty; Shoseyov, Oded

    2015-01-01

    Human RNASET2 (hRNASET2) has been demonstrated to exert antiangiogenic and antitumorigenic effects independent of its ribonuclease capacity. We suggested that RNASET2 exerts its antiangiogenic and antitumorigenic activities via binding to actin and consequently inhibits cell motility. We focused herein on the identification of the actin binding site of hRNASET2 using defined sequences encountered within the whole hRNASET2 protein. For that purpose we designed 29 different hRNASET2-derived peptides. The 29 peptides were examined for their ability to bind immobilized actin. Two selected peptides-A103-Q159 consisting of 57 amino acids and peptide K108-K133 consisting of 26 amino acids were demonstrated to have the highest actin binding ability and concomitantly the most potent anti-angiogenic activity. Further analyses on the putative mechanisms associated with angiogenesis inhibition exerted by peptide K108-K133 involved its location during treatment within the HUVE cells. Peptide K108-K133 readily penetrates the cell membrane within 10 min of incubation. In addition, supplementation with angiogenin delays the entrance of peptide K108-K133 to the cell suggesting competition on the same cell internalization route. The peptide was demonstrated to co-localize with angiogenin, suggesting that both molecules bind analogous cellular epitopes, similar to our previously reported data for ACTIBIND and trT2-50. PMID:25815360

  2. Architectural repertoire of ligand-binding pockets on protein surfaces.

    PubMed

    Weisel, Martin; Kriegl, Jan M; Schneider, Gisbert

    2010-03-01

    Knowledge of the three-dimensional structure of ligand binding sites in proteins provides valuable information for computer-assisted drug design. We present a method for the automated extraction and classification of ligand binding site topologies, in which protein surface cavities are represented as branched frameworks. The procedure employs a growing neural gas approach for pocket topology assignment and pocket framework generation. We assessed the structural diversity of 623 known ligand binding site topologies based on framework cluster analysis. At a resolution of 5 A only 23 structurally distinct topology groups were formed; this suggests an overall limited structural diversity of ligand-accommodating protein cavities. Higher resolution allowed for identification of protein-family specific pocket features. Pocket frameworks highlight potentially preferred modes of ligand-receptor interactions and will help facilitate the identification of druggable subpockets suitable for ligand affinity and selectivity optimization. PMID:20069621

  3. Liver takes up retinol-binding protein from plasma

    SciTech Connect

    Gjoen, T.; Bjerkelund, T.; Blomhoff, H.K.; Norum, K.R.; Berg, T.; Blomhoff, R.

    1987-08-15

    Retinol is transported in plasma bound to a specific transport protein, retinol-binding protein. We prepared /sup 125/I-tyramine cellobiose-labeled rat retinol-binding protein and studied its tissue uptake 1, 5, and 24 h after intravenous injection into rats. The liver was the organ containing most radioactivity at all time points studied. After 5 and 24 h, 30 and 22% of the injected dose were recovered in liver, respectively. After separating the liver into parenchymal and nonparenchymal cells in the 5-h group, we found that both cell fractions contained approximately the same amount of radioactivity (per gram of liver). Most of the retinol-binding protein radioactivity in the nonparenchymal cell fraction was in the stellate cells. The implication of these results for a possible transfer mechanism for retinol between parenchymal and stellate cells is discussed.

  4. Studies of Fibronectin-Binding Proteins of Streptococcus equi

    PubMed Central

    Lannergård, Jonas; Flock, Margareta; Johansson, Staffan; Flock, Jan-Ingmar; Guss, Bengt

    2005-01-01

    Streptococcus equi subsp. equi is the causative agent of strangles, a disease of the upper respiratory tract in horses. The initiation of S. equi subsp. equi infection is likely to involve cell surface-anchored molecules mediating bacterial adhesion to the epithelium of the host. The present study describes the cloning and characterization of FNEB, a fibronectin-binding protein with cell wall-anchoring motifs. FNEB can thus be predicted as cell surface located, contrary to the two previously characterized fibronectin-binding proteins in S. equi subsp. equi, FNE and SFS. Assays of antibody titers in horses and in experimentally infected mice indicate that the protein is immunogenic and expressed in vivo during S. equi subsp. equi infection. Using Western ligand blotting, it was shown that FNEB binds to the N-terminal 29-kDa fragment of fibronectin, while SFS and FNE both bind to the adjacent 40-kDa fragment. S. equi subsp. equi is known to bind fibronectin to a much lower degree than the closely related S. equi subsp. zooepidemicus, but the binding is primarily directed to the 29-kDa fragment. Inhibition studies using S. equi subsp. equi cells indicate that FNEB mediates cellular binding to fibronectin in this species. PMID:16239519

  5. CAG trinucleotide RNA repeats interact with RNA-binding proteins.

    PubMed Central

    McLaughlin, B. A.; Spencer, C.; Eberwine, J.

    1996-01-01

    Genes associated with several neurological diseases are characterized by the presence of an abnormally long trinucleotide repeat sequence. By way of example, Huntington's disease (HD), is characterized by selective neuronal degeneration associated with the expansion of a polyglutamine-encoding CAG tract. Normally, this CAG tract is comprised of 11-34 repeats, but in HD it is expanded to > 37 repeats in affected individuals. The mechanism by which CAG repeats cause neuronal degeneration is unknown, but it has been speculated that the expansion primarily causes abnormal protein functioning, which in turn causes HD pathology. Other mechanisms, however, have not been ruled out. Interactions between RNA and RNA-binding proteins have previously been shown to play a role in the expression of several eukaryotic genes. Herein, we report the association of cytoplasmic proteins with normal length and extended CAG repeats, using gel shift and UV crosslinking assays. Cytoplasmic protein extracts from several rat brain regions, including the striatum and cortex, sites of neuronal degeneration in HD, contain a 63-kD RNA-binding protein that specifically interacts with these CAG-repeat sequences. These protein-RNA interactions are dependent on the length of the CAG repeat, with longer repeats binding substantially more protein. Two CAG repeat-binding proteins are present in human cortex and striatum; one comigrates with the rat protein at 63 kD, while the other migrates at 49 kD. These data suggest mechanisms by which RNA-binding proteins may be involved in the pathological course of trinucleotide repeat-associated neurological diseases. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8751857

  6. Computational design of a PAK1 binding protein.

    PubMed

    Jha, Ramesh K; Leaver-Fay, Andrew; Yin, Shuangye; Wu, Yibing; Butterfoss, Glenn L; Szyperski, Thomas; Dokholyan, Nikolay V; Kuhlman, Brian

    2010-07-01

    We describe a computational protocol, called DDMI, for redesigning scaffold proteins to bind to a specified region on a target protein. The DDMI protocol is implemented within the Rosetta molecular modeling program and uses rigid-body docking, sequence design, and gradient-based minimization of backbone and side-chain torsion angles to design low-energy interfaces between the scaffold and target protein. Iterative rounds of sequence design and conformational optimization were needed to produce models that have calculated binding energies that are similar to binding energies calculated for native complexes. We also show that additional conformation sampling with molecular dynamics can be iterated with sequence design to further lower the computed energy of the designed complexes. To experimentally test the DDMI protocol, we redesigned the human hyperplastic discs protein to bind to the kinase domain of p21-activated kinase 1 (PAK1). Six designs were experimentally characterized. Two of the designs aggregated and were not characterized further. Of the remaining four designs, three bound to the PAK1 with affinities tighter than 350 muM. The tightest binding design, named Spider Roll, bound with an affinity of 100 muM. NMR-based structure prediction of Spider Roll based on backbone and (13)C(beta) chemical shifts using the program CS-ROSETTA indicated that the architecture of human hyperplastic discs protein is preserved. Mutagenesis studies confirmed that Spider Roll binds the target patch on PAK1. Additionally, Spider Roll binds to full-length PAK1 in its activated state but does not bind PAK1 when it forms an auto-inhibited conformation that blocks the Spider Roll target site. Subsequent NMR characterization of the binding of Spider Roll to PAK1 revealed a comparably small binding 'on-rate' constant (<10(5) M(-1) s(-1)). The ability to rationally design the site of novel protein-protein interactions is an important step towards creating new proteins that are useful

  7. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    PubMed

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  8. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins

    PubMed Central

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements. PMID:21087992

  9. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    PubMed

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results.

  10. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    PubMed

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635

  11. Binding-protein-dependent lactose transport in Agrobacterium radiobacter.

    PubMed

    Greenwood, J A; Cornish, A; Jones, C W

    1990-04-01

    Agrobacterium radiobacter NCIB 11883 was grown in lactose-limited continuous culture at a dilution rate of 0.045/h. Washed cells transported [14C]lactose and [methyl-14C]beta-D-thiogalactoside, a nonmetabolisable analog of lactose, at similar rates and with similar affinities (Km for transport, less than 1 microM). Transport was inhibited to various extents by the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, by unlabeled beta-galactosides and D-galactose, and by osmotic shock. The accumulation ratio for methyl-beta-D-thiogalactoside was greater than or equal to 4,100. An abundant protein (molecular weight, 41,000) was purified from osmotic-shock fluid and shown by equilibrium dialysis to bind lactose and methyl-beta-D-thiogalactoside, the former with very high affinity (binding constant, 0.14 microM). The N-terminal amino acid sequence of this lactose-binding protein exhibited some homology with several other sugar-binding proteins from bacteria. Antiserum raised against the lactose-binding protein did not cross-react with two glucose-binding proteins from A. radiobacter or with extracts of other bacteria grown under lactose limitation. Lactose transport and beta-galactosidase were induced in batch cultures by lactose, melibiose [O-alpha-D-galactoside-(1----6)alpha-D-glucose], and isopropyl-beta-D-thiogalactoside and were subject to catabolite repression by glucose, galactose, and succinate which was not alleviated by cyclic AMP. We conclude that lactose is transported into A. radiobacter via a binding protein-dependent active transport system (in contrast to the H+ symport and phosphotransferase systems found in other bacteria) and that the expression of this transport system is closely linked to that of beta-galactosidase.

  12. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor.

    PubMed

    Ma, Xin; Guo, Jing; Xiao, Ke; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is an incredibly challenging problem in computational biology. Although great progress has been made using various machine learning approaches with numerous features, the problem is still far from being solved. In this study, we attempt to predict RNA-binding proteins directly from amino acid sequences. A novel approach, PRBP predicts RNA-binding proteins using the information of predicted RNA-binding residues in conjunction with a random forest based method. For a given protein, we first predict its RNA-binding residues and then judge whether the protein binds RNA or not based on information from that prediction. If the protein cannot be identified by the information associated with its predicted RNA-binding residues, then a novel random forest predictor is used to determine if the query protein is a RNA-binding protein. We incorporated features of evolutionary information combined with physicochemical features (EIPP) and amino acid composition feature to establish the random forest predictor. Feature analysis showed that EIPP contributed the most to the prediction of RNA-binding proteins. The results also showed that the information from the RNA-binding residue prediction improved the overall performance of our RNA-binding protein prediction. It is anticipated that the PRBP method will become a useful tool for identifying RNA-binding proteins. A PRBP Web server implementation is freely available at http://www.cbi.seu.edu.cn/PRBP/.

  13. Calmodulin and calmodulin binding proteins in amphibian rod outer segments

    SciTech Connect

    Nagao, S.; Yamazaki, A.; Bitensky, M.W.

    1987-03-24

    The calmodulin (CaM) content of fully intact frog rod outer segments (ROS) has been measured using radioimmunoassay. The molar ratio between rhodopsin and total CaM in ROS is 800:1. In the absence of Ca/sup 2 +/, the ROS membrane fraction contains only 4% of total ROS CaM. In contrast, in the presence of Ca/sup 2 +/, 15% of total ROS CaM is found in the membrane fraction. For half-maximal binding of CaM to CaM-depleted ROS membranes, 3 x 10/sup -7/ M Ca/sup 2 +/ is required. This CaM binding is inhibited by trifluoperazine. CaM binding proteins in the ROS membrane fraction are identified by using two different methods: the overlay method and the use of 3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP), a bifunctional cross-linking reagent. Ca/sup 2 +/-dependent CaM binding proteins with apparent molecular weights of 240,000, 140,000, 53,000, and 47,000 are detected in the ROS membrane fraction by the overlay method. Anomalous, Ca/sup 2 +/-independent CaM binding to rhodopsin is also detected with this method, and this CaM binding is inhibited by the presence of Ca/sup 2 +/. With the bifunctional cross-linking reagent, DTSSP, three discrete proteins with molecular weights of 240,000, 53,000, and 47,000 are detected in the native ROS membrane fraction. CaM binding to rhodopsin is not detected with this method. These data suggest that both the Ca/sup 2 +/-independent binding of CaM to rhodopsin and the Ca/sup 2 +/-dependent binding of CaM to the M/sub r/ 140,000 protein represent binding of CaM to a site(s) which is (are) exposed only after denaturation. Ca/sup 2 +/-dependent CaM binding in the cytoplasmic fraction is also evaluated with the overlay method. These data suggest that CaM and its binding proteins participate in the regulation of Ca/sup 2 +/-sensitive processes primarily on the ROS disk membranes.

  14. A DNA-binding protein factor recognizes two binding domains within the octopine synthase enhancer element.

    PubMed Central

    Tokuhisa, J G; Singh, K; Dennis, E S; Peacock, W J

    1990-01-01

    A protein that binds to the enhancing element of the octopine synthase gene has been identified in nuclear extracts from maize cell suspension cultures. Two protein-DNA complexes are distinguishable by electrophoretic mobility in gel retardation assays. Footprint analyses of these low and high molecular weight complexes show, respectively, half and complete protection of the ocs-element DNA from cleavage by methidiumpropyl-EDTA.FE(II). Two lines of evidence indicate that the element has two recognition sites, each of which can bind identical protein units. Elements that are mutated in one or the other half and form only the low molecular weight complex interfere with the formation of both the low and high molecular weight complexes by the wild-type element. Protein isolated from a complex with only one binding site occupied can bind to the wild-type ocs-element and generate complexes with protein occupying one or both binding sites. Occupation of both sites of the ocs-element is a prerequisite for transcriptional enhancement. PMID:2152113

  15. Lactation-induced cadmium-binding proteins

    SciTech Connect

    Bhattacharyya, M.H.; Solaiman, D.; Garvey, J.S.; Miyazaki, W.Y.

    1987-01-01

    Previously we have demonstrated an increase during midlactation in /sup 109/Cd adsorption and increased retention by the duodenum, kidney, and mammary tissue of mouse dams receiving environmental levels of cadmium//sup 109/Cd via drinking water, with little change in /sup 109/Cd retention in liver and jejunum compared to nonpregnant controls. Results are reported here of a study of cadmium deposition during midlactation as associated with induction of metallothionein (MT). A cadmium/hemoglobin (Cd/Hb) assay and radioimmunoassay for MT which measures heat-stable cadmium binding capacity in tissues was used to determine MT concentrations in fractions of kidney, liver, duodenum, and jejunum from female mice. Both assays demonstrated clear lactation-induced increases in MT concentrations in liver, kidney, and duodenum, with MT concentrations falling rapidly to control levels after weaning. 4 refs., 1 tab.

  16. Evaluation of silica nanoparticle binding to major human blood proteins

    NASA Astrophysics Data System (ADS)

    Hata, Katsutomo; Higashisaka, Kazuma; Nagano, Kazuya; Mukai, Yohei; Kamada, Haruhiko; Tsunoda, Shin-ichi; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2014-12-01

    Nanomaterials are used for various biomedical applications because they are often more effective than conventional materials. Recently, however, it has become clear that the protein corona that forms on the surface of nanomaterials when they make contact with biological fluids, such as blood, influences the pharmacokinetics and biological responses induced by the nanomaterials. Therefore, when evaluating nanomaterial safety and efficacy, it is important to analyze the interaction between nanomaterials and proteins in biological fluids and to evaluate the effects of the protein corona. Here, we evaluated the interaction of silica nanoparticles, a commonly used nanomaterial, with the human blood proteins albumin, transferrin, fibrinogen, and IgG. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the amount of albumin, transferrin, and IgG binding to the silica particles increased as the particle size decreased under conditions where the silica particle mass remained the same. However, under conditions in which the specific surface area remained constant, there were no differences in the binding of human plasma proteins to the silica particles tested, suggesting that the binding of silica particles with human plasma proteins is dependent on the specific surface area of the silica particles. Furthermore, the amount of albumin, transferrin, and IgG binding to silica nanoparticles with a diameter of 70 nm (nSP70) and a functional amino group was lower than that with unmodified nSP70, although there was no difference in the binding between nSP70 with the surface modification of a carboxyl functional group and nSP70. These results suggest that the characteristics of nanomaterials are important for binding with human blood proteins; this information may contribute to the development of safe and effective nanomaterials.

  17. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    SciTech Connect

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-02-10

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the ..cap alpha.. subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single ..beta.. subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the ..cap alpha.. subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub s..cap alpha../ relative to G/sub ichemically bond/ and G/sub ochemically bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with (/sup 125/I)protein. Immunohistochemical studies using an antiserum against the ..beta.. subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the ..cap alpha.. subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium.

  18. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  19. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    PubMed

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein. PMID:24878641

  20. Organic solvents identify specific ligand binding sites on protein surfaces.

    PubMed

    Liepinsh, E; Otting, G

    1997-03-01

    Enzymes frequently recognize substrates and pharmaceutical drugs through specific binding interactions in deep pockets on the protein surface. We show how the specificity-determining substrate binding site of hen egg-white lysozyme (HEWL) can be readily identified in aqueous solution by nuclear magnetic resonance spectroscopy using small organic solvent molecules as detection probes. Exchange of magnetization between the 1H nuclei of the protein and the ligands through dipole-dipole interactions is observed which allows the modeling of their position and orientation at the binding site. Combined with site-specific binding constants measured by titration experiments with different organic solvents, the method can provide important information for rational drug design. In addition, the lifetime of nonspecific interactions of HEWL with organic solvents is shown to be in the sub-nanosecond time range. PMID:9062927

  1. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    PubMed

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.

  2. The human mannose-binding protein functions as an opsonin

    PubMed Central

    1989-01-01

    The human mannose-binding protein (MBP) is a multimeric serum protein that is divided into three domains: a cysteine-rich NH2-terminal domain that stabilizes the alpha-helix of the second collagen-like domain, and a third COOH-terminal carbohydrate binding region. The function of MBP is unknown, although a role in host defense is suggested by its ability to bind yeast mannans. In this report we show that native and recombinant human MBP can serve in an opsonic role in serum and thereby enhance clearance of mannose rich pathogens by phagocytes. MBP binds to wild-type virulent Salmonella montevideo that express a mannose-rich O- polysaccharide. Interaction of MBP with these organisms results in attachment, uptake, and killing of the opsonized bacteria by phagocytes. These results demonstrate that MBP plays a role in first line host defense against certain pathogenic organisms. PMID:2469767

  3. DNA-binding affinity and sequence permutation preference of the telomere protein from Euplotes crassus

    PubMed Central

    Suzuki, Takahito; McKenzie, Margaret; Ott, Elizabeth; Ilkun, Olesya; Horvath, Martin P.

    2008-01-01

    Telomere end binding proteins from diverse organisms use various forms of an ancient protein structure to recognize and bind with single strand DNA found at the ends of telomeres. To further understand the biochemistry and evolution of these proteins we have characterized the DNA-binding properties of the telomere end binding protein from Euplotes crassus (EcTEBP). EcTEBP and its predicted amino-terminal DNA-binding domain, EcTEBP-N, were expressed in E. coli and purified. Each protein formed stoichiometric (1:1) complexes with single strand DNA oligos derived from the precisely defined d(TTTTGGGGTTTTGG) sequence found at DNA termini in Euplotes. Dissociation constants for DNA•EcTEBP and DNA•EcTEBP-N were comparable, with KD-DNA = 38 ± 2 nM for the full-length protein and KD-DNA = 60 ± 4 nM for the N-terminal domain, indicating that the N-terminal domain retains high affinity for DNA even in the absence of potentially stabilizing moieties located in the C-terminal domain. Rate constants for DNA association and DNA dissociation corroborated a slightly improved DNA binding performance for the full-length protein (ka = 45 ± 4 μM-1 s-1, kd = 0.10 ± 0.02 s-1) relative to the N-terminal domain (ka = 18 ± 1 μM-1 s-1, kd = 0.15 ± 0.01 s-1). Equilibrium dissociation constants measured for sequence permutations of the telomere repeat spanned a 55 – 1400 nM range, with EcTEBP and EcTEBP-N binding most tightly to d(TTGGGGTTTTGG) — the sequence corresponding with that of mature DNA termini. Additionally, competition experiments showed that EcTEBP recognizes and binds the telomere-derived 14-nucleotide DNA in preference to shorter 5′ -truncation variants. Compared with multi-subunit complexes assembled with telomere single strand DNA from Oxytricha nova, our results highlight the relative simplicity of the Euplotes crassus system where a telomere end binding protein has biochemical properties indicating one protein subunit caps the single strand DNA. PMID

  4. Induced circular dichroism as a tool to investigate the binding of drugs to carrier proteins: Classic approaches and new trends.

    PubMed

    Tedesco, Daniele; Bertucci, Carlo

    2015-09-10

    Induced circular dichroism (ICD) is a spectroscopic phenomenon that provides versatile and useful methods for characterizing the structural and dynamic properties of the binding of drugs to target proteins. The understanding of biorecognition processes at the molecular level is essential to discover and validate new pharmacological targets, and to design and develop new potent and selective drugs. The present article reviews the main applications of ICD to drug binding studies on serum carrier proteins, going from the classic approaches for the derivation of drug binding parameters and the identification of binding sites, to an overview of the emerging trends for the characterization of binding modes by means of quantum chemical (QC) techniques. The advantages and limits of the ICD methods for the determination of binding parameters are critically reviewed; the capability to investigate the binding interactions of drugs and metabolites to their target proteins is also underlined, as well as the possibility of characterizing the binding sites to obtain a complete picture of the binding mechanism and dynamics. The new applications of ICD methods to identify stereoselective binding modes of drug/protein complexes are then reviewed with relevant examples. The combined application of experimental ICD spectroscopy and QC calculations is shown to identify qualitatively the bound conformations of ligands to target proteins even in the absence of a detailed structure of the binding sites, either obtained from experimental X-ray crystallography and NMR measurements or from computational models of the complex.

  5. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A.

    PubMed Central

    Goldstein, M A; Takagi, M; Hashida, S; Shoseyov, O; Doi, R H; Segel, I H

    1993-01-01

    Cellulose-binding protein A (CbpA), a component of the cellulase complex of Clostridium cellulovorans, contains a unique sequence which has been demonstrated to be a cellulose-binding domain (CBD). The DNA coding for this putative CBD was subcloned into pET-8c, an Escherichia coli expression vector. The protein produced under the direction of the recombinant plasmid, pET-CBD, had a high affinity for crystalline cellulose. Affinity-purified CBD protein was used in equilibrium binding experiments to characterize the interaction of the protein with various polysaccharides. It was found that the binding capacity of highly crystalline cellulose samples (e.g., cotton) was greater than that of samples of low crystallinity (e.g., fibrous cellulose). At saturating CBD concentration, about 6.4 mumol of protein was bound by 1 g of cotton. Under the same conditions, fibrous cellulose bound only 0.2 mumol of CBD per g. The measured dissociation constant was in the 1 microM range for all cellulose samples. The results suggest that the CBD binds specifically to crystalline cellulose. Chitin, which has a crystal structure similar to that of cellulose, also was bound by the CBD. The presence of high levels of cellobiose or carboxymethyl cellulose in the assay mixture had no effect on the binding of CBD protein to crystalline cellulose. This result suggests that the CBD recognition site is larger than a simple cellobiose unit or more complex than a repeating cellobiose moiety. This CBD is of particular interest because it is the first CBD from a completely sequenced nonenzymatic protein shown to be an independently functional domain. Images PMID:8376323

  6. Thermodynamics of tryptophan-mediated activation of the trp RNA-binding attenuation protein.

    PubMed

    McElroy, Craig A; Manfredo, Amanda; Gollnick, Paul; Foster, Mark P

    2006-06-27

    The trp RNA-binding attenuation protein (TRAP) functions in many bacilli to control the expression of the tryptophan biosynthesis genes. Transcription of the trp operon is controlled by TRAP through an attenuation mechanism, in which competition between two alternative secondary-structural elements in the 5' leader sequence of the nascent mRNA is influenced by tryptophan-dependent binding of TRAP to the RNA. Previously, NMR studies of the undecamer (11-mer) suggested that tryptophan-dependent control of RNA binding by TRAP is accomplished through ligand-induced changes in protein dynamics. We now present further insights into this ligand-coupled event from hydrogen/deuterium (H/D) exchange analysis, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC). Scanning calorimetry showed tryptophan dissociation to be independent of global protein unfolding, while analysis of the temperature dependence of the binding enthalpy by ITC revealed a negative heat capacity change larger than expected from surface burial, a hallmark of binding-coupled processes. Analysis of this excess heat capacity change using parameters derived from protein folding studies corresponds to the ordering of 17-24 residues per monomer of TRAP upon tryptophan binding. This result is in agreement with qualitative analysis of residue-specific broadening observed in TROSY NMR spectra of the 91 kDa oligomer. Implications for the mechanism of ligand-mediated TRAP activation through a shift in a preexisting conformational equilibrium and an induced-fit conformational change are discussed. PMID:16784236

  7. Protein D of Haemophilus influenzae is not a universal immunoglobulin D-binding protein.

    PubMed Central

    Sasaki, K; Munson, R S

    1993-01-01

    Haemophilus influenzae type b and nontypeable H. influenzae have been reported to bind human immunoglobulin D (IgD). IgD myeloma sera from five patients were tested for the ability of IgD to bind to H. influenzae. Serotype b strains bound human IgD in four of the five sera tested. IgD in the fifth serum bound strongly to type b strain MinnA but poorly to other type b strains. Additionally, IgD binding was not observed when nontypeable strains were tested. The gene for protein D, the putative IgD-binding protein, was cloned from the IgD-binding H. influenzae type b strain MinnA and expressed in Escherichia coli. IgD binding to E. coli expressing protein D was not demonstrable. Recombinant protein D was purified, and antisera were generated in rabbits. Using these rabbit sera, we detected protein D in nontypeable as well as serotype b strains by Western blotting (immunoblotting). In contrast, IgD myeloma protein 4490, which was previously reported to bind to protein D by Ruan and coworkers (M. Ruan, M. Akkoyunlu, A. Grubb, and A. Forsgren, J. Immunol. 145:3379-3384), bound strongly to both type b and nontypeable H. influenzae as well as to E. coli expressing protein D. Thus, IgD binding is a general property of H. influenzae type b strains but not a general property of nontypeable strains, although both type b and nontypeable strains produce protein D. With the exception of IgD myeloma protein 4490 binding, we have no evidence for a role of protein D in IgD binding to H. influenzae. Images PMID:8514409

  8. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    PubMed Central

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  9. Characterization of adenosine binding proteins in human placental membranes

    SciTech Connect

    Hutchison, K.A.

    1989-01-01

    We have characterized two adenosine binding proteins in human placenta. In membranes, one site is detected with ({sup 3}H) -N-ethylcarboxamidoadenosine (({sup 3}H)NECA). This site is similar to the adenosine A{sub 2} receptor. We call this site the adenosine A{sub 2}-like binding site. In detergent extracts, the second site is detected and has the characteristics of an adenosine A{sub 1} receptor. The soluble adenosine A{sub 2}-like binding site cannot be detected without a rapid assay. Binding to the adenosine A{sub 1} receptor with ({sup 3}H)-2-chloroadenosine and ({sup 3}H)NECA is time dependent, saturable, and reversible. Equilibrium displacement analysis with adenosine agonists reveals an A{sub 1} specificity: 2-chloroadenosine > R-phenylisopropyladenosine > 5{prime}-N-ethylcarboxamidoadenosine. The antagonist potency order is 1,3-diethyl-8-phenylxanthine > isobutylmethylxanthine > theophylline. Competition analysis of membranes with the A,-selective ligands ({sup 3}H)-cyclohexyladenosine ({sup 3}H) cylopentylxanthine revealed adenosine A{sub 1} agonist and antagonist potency orders. We have purified the adenosine A{sub 2}-like binding site. The adenosine A{sub 2}-like binding site is an ubiquitous major cellular protein. It is glycosylated, highly asymmetric, and acidic. The native protein is an homodimer with a subunit molecular mass of 98 kDa. The sedimentation coefficient and partial specific volume of the binding complex are 6.9 s and 0.698 ml/g, respectively. The Stokes' radius is 70 {Angstrom}. The native molecular mass of the detergent-protein complex is 230 kDa. The adenosine A{sub 2}-like binding site has an agonist potency order of 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine >> R-phenylisopropyladenosine and an antagonist potency order of isobutylmethylxanthine > theophylline >> 1,3-diethyl-8-phenylxanthine.

  10. Predicting the Binding Patterns of Hub Proteins: A Study Using Yeast Protein Interaction Networks

    PubMed Central

    Andorf, Carson M.; Honavar, Vasant; Sen, Taner Z.

    2013-01-01

    Background Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH) with one or two binding sites, or multiple-interface hubs (MIH) with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations) or party hubs (i.e., simultaneously interact with multiple partners). Methodology Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB) protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques. Conclusions Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions. Availability We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu. PMID:23431393

  11. Variable region structure and staphylococcal protein A binding specificity of a mouse monoclonal IgM anti-laminin-receptor antibody.

    PubMed Central

    Feijó, G C; Sabbaga, J; Carneiro, C R; Brígido, M M

    1997-01-01

    Staphylococcal protein A is a cell wall-attached polypeptide that acts as a B-lymphocyte superantigen. This activation correlates with specific VH gene segment usage in the B-cell receptor. B-cell receptor assembled from members of the VH3 family in humans, or S107 family in mice, has an intrinsic affinity for protein A. Human VH3-derived antibodies bind to domain D of protein A. We have characterized a mouse IgM monoclonal antibody that binds protein A. The sequencing of the variable region suggests an almost germline-encoded VH derived from S107 family and a V kappa 8-derived VL. The binding specificity of the monoclonal antibody was tested with various recombinant constructions derived from protein A. We show that, unlike human VH3-derived antibody, mouse S107-derived immunoglobulin binds to the B domain of the bacterial superantigen. PMID:9301540

  12. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    PubMed

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  13. Profiling Protein Kinases and Other ATP Binding Proteins in Arabidopsis Using Acyl-ATP Probes*

    PubMed Central

    Villamor, Joji Grace; Kaschani, Farnusch; Colby, Tom; Oeljeklaus, Julian; Zhao, David; Kaiser, Markus; Patricelli, Matthew P.; van der Hoorn, Renier A. L.

    2013-01-01

    Many protein activities are driven by ATP binding and hydrolysis. Here, we explore the ATP binding proteome of the model plant Arabidopsis thaliana using acyl-ATP (AcATP)1 probes. These probes target ATP binding sites and covalently label lysine residues in the ATP binding pocket. Gel-based profiling using biotinylated AcATP showed that labeling is dependent on pH and divalent ions and can be competed by nucleotides. The vast majority of these AcATP-labeled proteins are known ATP binding proteins. Our search for labeled peptides upon in-gel digest led to the discovery that the biotin moiety of the labeled peptides is oxidized. The in-gel analysis displayed kinase domains of two receptor-like kinases (RLKs) at a lower than expected molecular weight, indicating that these RLKs lost the extracellular domain, possibly as a result of receptor shedding. Analysis of modified peptides using a gel-free platform identified 242 different labeling sites for AcATP in the Arabidopsis proteome. Examination of each individual labeling site revealed a preference of labeling in ATP binding pockets for a broad diversity of ATP binding proteins. Of these, 24 labeled peptides were from a diverse range of protein kinases, including RLKs, mitogen-activated protein kinases, and calcium-dependent kinases. A significant portion of the labeling sites could not be assigned to known nucleotide binding sites. However, the fact that labeling could be competed with ATP indicates that these labeling sites might represent previously uncharacterized nucleotide binding sites. A plot of spectral counts against expression levels illustrates the high specificity of AcATP probes for protein kinases and known ATP binding proteins. This work introduces profiling of ATP binding activities of a large diversity of proteins in plant proteomes. The data have been deposited in ProteomeXchange with the identifier PXD000188. PMID:23722185

  14. A general approach to visualize protein binding and DNA conformation without protein labelling.

    PubMed

    Song, Dan; Graham, Thomas G W; Loparo, Joseph J

    2016-03-08

    Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein-DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein-DNA interactions.

  15. Flexible Linker Modulates Glycosaminoglycan Affinity of Decorin Binding Protein A.

    PubMed

    Morgan, Ashli; Sepuru, Krishna Mohan; Feng, Wei; Rajarathnam, Krishna; Wang, Xu

    2015-08-18

    Decorin binding protein A (DBPA) is a glycosaminoglycan (GAG)-binding adhesin found on the surface of the bacterium Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease. DBPA facilitates bacterial adherence to extracellular matrices of human tissues and is crucial during the early stage of the infection process. Interestingly, DBPA from different strains (B31, N40, and PBr) show significant differences in GAG affinities, but the structural basis for the differences is not clear. In this study, we show that GAG affinity of N40 DBPA is modulated in part by flexible segments that control access to the GAG binding site, such that shortening of the linker leads to higher GAG affinity when analyzed using ELISA, gel mobility shift assay, solution NMR, and isothermal titration calorimetry. Our observation that GAG affinity differences among different B. burgdorferi strains can be attributed to a flexible linker domain regulating access to the GAG-binding domain is novel. It also provides a rare example of how neutral amino acids and dynamic segments in GAG binding proteins can have a large influence on GAG affinity and provides insights into why the number of basic amino acids in the GAG-binding site may not be the only factor determining GAG affinity of proteins. PMID:26223367

  16. Escherchia coli ribose binding protein based bioreporters revisited

    PubMed Central

    Reimer, Artur; Yagur-Kroll, Sharon; Belkin, Shimshon; Roy, Shantanu; van der Meer, Jan Roelof

    2014-01-01

    Bioreporter bacteria, i.e., strains engineered to respond to chemical exposure by production of reporter proteins, have attracted wide interest because of their potential to offer cheap and simple alternative analytics for specified compounds or conditions. Bioreporter construction has mostly exploited the natural variation of sensory proteins, but it has been proposed that computational design of new substrate binding properties could lead to completely novel detection specificities at very low affinities. Here we reconstruct a bioreporter system based on the native Escherichia coli ribose binding protein RbsB and one of its computationally designed variants, reported to be capable of binding 2,4,6-trinitrotoluene (TNT). Our results show in vivo reporter induction at 50 nM ribose, and a 125 nM affinity constant for in vitro ribose binding to RbsB. In contrast, the purified published TNT-binding variant did not bind TNT nor did TNT cause induction of the E. coli reporter system. PMID:25005019

  17. Grafting odorant binding proteins on diamond bio-MEMS.

    PubMed

    Manai, R; Scorsone, E; Rousseau, L; Ghassemi, F; Possas Abreu, M; Lissorgues, G; Tremillon, N; Ginisty, H; Arnault, J-C; Tuccori, E; Bernabei, M; Cali, K; Persaud, K C; Bergonzo, P

    2014-10-15

    Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approach based on complexing a histidine-tag located on the protein with nickel allowed control of the proteins' orientation. Evidence confirming protein grafting was obtained using electrochemical impedance spectroscopy, fluorescence imaging and X-ray photoelectron spectroscopy. The chemical sensing performances of these OBP modified transducers were assessed. The second grafting method led to typically 20% more sensitive sensors, as a result of better access of ligands to the proteins active sites and also perhaps a better yield of protein immobilization. This new grafting method appears to be highly promising for further investigation of the ligand binding properties of OBPs in general and for the development of arrays of non-specific biosensors for artificial olfaction applications.

  18. RNA binding proteins in neurodegeneration: Seq and you shall receive

    PubMed Central

    Nussbacher, Julia K.; Batra, Ranjan; Lagier-Tourenne, Clotilde; Yeo, Gene W.

    2015-01-01

    As critical players in gene regulation, RNA binding proteins are taking center stage in our understanding of cellular function and disease. In our era of bench-top sequencers and unprecedented computational power, biological questions can be addressed in a systematic, genome-wide manner. Development of high-throughput sequencing methodologies provides unparalleled potential to discover new mechanisms of disease-associated perturbations of RNA homeostasis. Complementary to candidate single-gene studies, these innovative technologies may elicit the discovery of unexpected mechanisms, and allow us to determine the widespread influence of the multifunctional RNA binding proteins on their targets. As disruption of RNA processing is increasingly implicated in neurological diseases, these approaches will continue to provide insights into the roles of RNA binding proteins in disease pathogenesis. PMID:25765321

  19. Differential plasma protein binding to metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Deng, Zhou J.; Mortimer, Gysell; Schiller, Tara; Musumeci, Anthony; Martin, Darren; Minchin, Rodney F.

    2009-11-01

    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO2, the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO2 and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  20. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.

    PubMed

    Kumar, Manish; Gromiha, M Michael; Raghava, Gajendra P S

    2011-01-01

    RNA-binding proteins (RBPs) play crucial role in transcription and gene-regulation. This paper describes a support vector machine (SVM) based method for discriminating and classifying RNA-binding and non-binding proteins using sequence features. With the threshold of 30% interacting residues, RNA-binding amino acid prediction method PPRINT achieved the Matthews correlation coefficient (MCC) of 0.32. BLAST and PSI-BLAST identified RBPs with the coverage of 32.63 and 33.16%, respectively, at the e-value of 1e-4. The SVM models developed with amino acid, dipeptide and four-part amino acid compositions showed the MCC of 0.60, 0.46, and 0.53, respectively. This is the first study in which evolutionary information in form of position specific scoring matrix (PSSM) profile has been successfully used for predicting RBPs. We achieved the maximum MCC of 0.62 using SVM model based on PSSM called PSSM-400. Finally, we developed different hybrid approaches and achieved maximum MCC of 0.66. We also developed a method for predicting three subclasses of RNA binding proteins (e.g., rRNA, tRNA, mRNA binding proteins). The performance of the method was also evaluated on an independent dataset of 69 RBPs and 100 non-RBPs (NBPs). An additional benchmarking was also performed using gene ontology (GO) based annotation. Based on the hybrid approach a web-server RNApred has been developed for predicting RNA binding proteins from amino acid sequences (http://www.imtech.res.in/raghava/rnapred/).

  1. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins.

    PubMed

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-07-01

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner.

  2. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins

    PubMed Central

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-01-01

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner. PMID:27198220

  3. Can cofactor-binding sites in proteins be flexible? Desulfovibrio desulfuricans flavodoxin binds FMN dimer.

    PubMed

    Muralidhara, B K; Wittung-Stafshede, Pernilla

    2003-11-11

    Flavodoxins catalyze redox reactions using the isoalloxazine moiety of the flavin mononucleotide (FMN) cofactor stacked between two aromatic residues located in two peptide loops. At high FMN concentrations that favor stacked FMN dimers in solution, isothermal titration calorimetric studies show that these dimers bind strongly to apo-flavodoxin from Desulfovibrio desulfuricans (30 degrees C, 20 mM Hepes, pH 7, K(D) = 5.8 microM). Upon increasing the temperature so the FMN dimers dissociate (as shown by (1)H NMR), only one-to-one (FMN-to-protein) binding is observed. Calorimetric titrations result in one-to-one binding also in the presence of phosphate or sulfate (30 degrees C, 13 mM anion, pH 7, K(D) = 0.4 microM). FMN remains dimeric in the presence of phosphate and sulfate, suggesting that specific binding of a divalent anion to the phosphate-binding site triggers ordering of the peptide loops so only one isoalloxazine can fit. Although the physiological relevance of FMN and other nucleotides as dimers has not been explored, our study shows that high-affinity binding to proteins of such dimers can occur in vitro. This emphasizes that the cofactor-binding site in flavodoxin is more flexible than previously expected. PMID:14596623

  4. Coenzyme Q10-Binding/Transfer Protein Saposin B also Binds gamma-Tocopherol.

    PubMed

    Jin, Guangzhi; Horinouchi, Ryo; Sagawa, Tomofumi; Orimo, Nobutsune; Kubo, Hiroshi; Yoshimura, Shinichi; Fujisawa, Akio; Kashiba, Misato; Yamamoto, Yorihiro

    2008-09-01

    gamma-Tocopherol, the major form of dietary vitamin E, is absorbed in the intestine and is secreted in chylomicrons, which are then transferred to liver lysosomes. Most gamma-tocopherol is transferred to liver microsomes and is catabolized by cytochrome p450. Due to the hydrophobicity of gamma-tocopherol, a binding and transfer protein is plausible, but none have yet been isolated and characterized. We recently found that a ubiquitous cytosolic protein, saposin B, binds and transfers coenzyme Q10 (CoQ10), which is an essential factor for ATP production and an important antioxidant. Here, we report that saposin B also binds gamma-tocopherol, but not alpha-tocopherol, as efficiently as CoQ10 at pH 7.4. At acidic pH, saposin B binds gamma-tocopherol preferentially to CoQ10 and alpha-tocopherol. Furthermore, we confirmed that saposin B selectively binds gamma-tocopherol instead of CoQ10 and alpha-tocopherol at every pH between 5.4 and 8.0 when all three lipids are competing for binding. We detected gamma-tocopherol in human saposin B monoclonal antibody-induced immunoprecipitates from human urine, although the amount of gamma-tocopherol was much smaller than that of CoQ10. These results suggest that saposin B binds and transports gamma-tocopherol in human cells.

  5. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins

    PubMed Central

    Song, Jing; Durrin, Linda K.; Wilkinson, Thomas A.; Krontiris, Theodore G.; Chen, Yuan

    2004-01-01

    Posttranslational modification by the ubiquitin homologue, small ubiquitin-like modifier 1 (SUMO-1), has been established as an important regulatory mechanism. However, in most cases it is not clear how sumoylation regulates various cellular functions. Emerging evidence suggests that sumoylation may play a general role in regulating protein-protein interactions, as shown in RanBP2/Nup358 and RanGAP1 interaction. In this study, we have defined an amino acid sequence motif that binds SUMO. This motif, V/I-X-V/I-V/I, was identified by NMR spectroscopic characterization of interactions among SUMO-1 and peptides derived from proteins that are known to bind SUMO or sumoylated proteins. This motif binds all SUMO paralogues (SUMO-1-3). Using site-directed mutagenesis, we also show that this SUMO-binding motif in RanBP2/Nup358 is responsible for the interaction between RanBP2/Nup358 and sumoylated RanGAP1. The SUMO-binding motif exists in nearly all proteins known to be involved in SUMO-dependent processes, suggesting its general role in sumoylation-dependent cellular functions. PMID:15388847

  6. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    SciTech Connect

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  7. Solvation structure of ice-binding antifreeze proteins

    NASA Astrophysics Data System (ADS)

    Hansen-Goos, Hendrik; Wettlaufer, John

    2009-03-01

    Antifreeze proteins (AFPs) can be found in organisms which survive at subzero temperatures. They were first discovered in polar fishes since the 1950's [1] and have been isolated meanwhile also from insects, plants, and bacteria. While AFPs shift the freezing point of water below the bulk melting point and hence can prevent recrystallization; the effect is non-colligative and there is a pronounced hysteresis between freezing and melting. For many AFPs it is generally accepted that they function through an irreversible binding to the ice-water interface which leads to a piecewise convex growth front with a lower nonequilibrium freezing point due to the Kelvin effect. Recent molecular dynamics simulations of the AFP from Choristoneura fumiferana reveal that the solvation structures of water at ice-binding and non-ice-binding faces of the protein are crucial for understanding how the AFP binds to the ice surface and how it is protected from being overgrown [2]. We use density functional theory of classical fluids in order to assess the microscopic solvent structure in the vicinity of protein faces with different surface properties. With our method, binding energies of different protein faces to the water-ice-interface can be computed efficiently in a simplified model. [1] Y. Yeh and R.E. Feeney, Chem. Rev. 96, 601 (1996). [2] D.R. Nutt and J.C. Smith, J. Am. Chem. Soc. 130, 13066 (2008).

  8. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    PubMed Central

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  9. MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.

    PubMed

    Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R

    2016-07-01

    Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. PMID:27150810

  10. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes. PMID:19754879

  11. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  12. Behind the scenes of vitamin D binding protein: more than vitamin D binding.

    PubMed

    Delanghe, Joris R; Speeckaert, Reinhart; Speeckaert, Marijn M

    2015-10-01

    Although being discovered in 1959, the number of published papers in recent years reveals that vitamin D binding protein (DBP), a member of the albuminoid superfamily, is a hot research topic. Besides the three major phenotypes (DBP1F, DBP1S and DBP2), more than 120 unique variants have been described of this polymorphic protein. The presence of DBP has been demonstrated in different body fluids (serum, urine, breast milk, ascitic fluid, cerebrospinal fluid, saliva and seminal fluid) and organs (brain, heart, lungs, kidneys, placenta, spleen, testes and uterus). Although the major function is binding, solubilization and transport of vitamin D and its metabolites, the name of this glycoprotein hides numerous other important biological functions. In this review, we will focus on the analytical aspects of the determination of DBP and discuss in detail the multifunctional capacity [actin scavenging, binding of fatty acids, chemotaxis, binding of endotoxins, influence on T cell response and influence of vitamin D binding protein-macrophage activating factor (DBP-MAF) on bone metabolism and cancer] of this abundant plasma protein. PMID:26522461

  13. The structural basis of germline-encoded VH3 immunoglobulin binding to staphylococcal protein A

    PubMed Central

    1993-01-01

    The ability of human VH3 immunoglobulins (Ig) to bind to staphylococcal protein A (SPA) via their Fab region is analogous to the binding of bacterial superantigens to T cell receptors. The present report establishes the structural basis for the interaction of SPA and VH3 Ig. We have studied a panel of 27 human monoclonal IgM that were derived from fetal B lymphocytes. As such, these IgM were expected to be encoded by unmutated germline genes. Binding to SPA in ELISA occurred with 15 of 15 VH3 IgM, but none of 12 IgM from the VH1, VH4, VH5, or VH6 families. The VH sequences of the 27 IgM were derived from 20 distinct VH elements, including 11 from the VH3 family. Use of D, JH, and CL genes was similar among VH3 and non-VH3 IgM. A comparison of the corresponding VH protein sequences, and those of previously studied IgM, identified a probable site for SPA binding that includes VH3 residues in framework region 3 (FR3), and perhaps FR1 and 3' complementary determining region 2. The results thus demonstrate that among human IgM, specificity for SPA is encoded by at least 11 different VH3 germline genes. Furthermore, like the T cell superantigens, SPA likely binds to residues in the VH framework region, outside the classical antigen-binding site of the hypervariable loops. PMID:8315388

  14. Quantitative analysis of pheromone-binding protein specificity

    PubMed Central

    Katti, S.; Lokhande, N.; González, D.; Cassill, A.; Renthal, R.

    2012-01-01

    Many pheromones have very low water solubility, posing experimental difficulties for quantitative binding measurements. A new method is presented for determining thermodynamically valid dissociation constants for ligands binding to pheromone-binding proteins (OBPs), using β-cyclodextrin as a solubilizer and transfer agent. The method is applied to LUSH, a Drosophila OBP that binds the pheromone 11-cis vaccenyl acetate (cVA). Refolding of LUSH expressed in E. coli was assessed by measuring N-phenyl-1-naphthylamine (NPN) binding and Förster resonance energy transfer between LUSH tryptophan 123 (W123) and NPN. Binding of cVA was measured from quenching of W123 fluorescence as a function of cVA concentration. The equilibrium constant for transfer of cVA between β-cyclodextrin and LUSH was determined from a linked equilibria model. This constant, multiplied by the β-cyclodextrin-cVA dissociation constant, gives the LUSH-cVA dissociation constant: ~100 nM. It was also found that other ligands quench W123 fluorescence. The LUSH-ligand dissociation constants were determined to be ~200 nM for the silk moth pheromone bombykol and ~90 nM for methyl oleate. The results indicate that the ligand-binding cavity of LUSH can accommodate a variety ligands with strong binding interactions. Implications of this for the pheromone receptor model proposed by Laughlin et al. (Cell 133: 1255–65, 2008) are discussed. PMID:23121132

  15. Binding of C-reactive protein to human lymphocytes. I. Requirement for a binding specificity.

    PubMed

    James, K; Hansen, B; Gewurz, H

    1981-12-01

    Our laboratory previously reported that C-reactive protein (CRP) binds selectively to T lymphocytes and inhibits certain of their reactivities in vitro. However, these findings could not be repeated using more highly purified CRP preparations even under a variety of experimental conditions. Purified CRP alone did not bind to peripheral blood lymphocytes (PBL); however, in the presence of a ligand such as pneumococcal C-polysaccharide (CPS), CRP binding was readily detectable both by immunofluorescence and by a radioassay established for this purpose. The optimal concentration of CRP, ratio of CRP:CPS, and time and temperature for reactivity were determined using both assays. A markedly enhanced rate of binding was observed after pre-equilibration of CRP with calcium. A small percentage (mean 3.0%; range 0.5 to 8.0%) of PBL bound complexed CRP, and saturation was reached with 200 microgram CRP/ml. Reactivity of CRP with a multimeric form of phosphocholine (PC) (KLH-PC44) led to binding comparable to that observed with CPS, whereas monomeric PC inhibited the binding. Thus, in the presence of a multimeric binding specificity, CRP binds to a small fraction of peripheral blood lymphocytes, which are characterized in the accompanying paper.

  16. Binding-regulated click ligation for selective detection of proteins.

    PubMed

    Cao, Ya; Han, Peng; Wang, Zhuxin; Chen, Weiwei; Shu, Yongqian; Xiang, Yang

    2016-04-15

    Herein, a binding-regulated click ligation (BRCL) strategy for endowing selective detection of proteins is developed with the incorporation of small-molecule ligand and clickable DNA probes. The fundamental principle underlying the strategy is the regulating capability of specific protein-ligand binding against the ligation between clickable DNA probes, which could efficiently combine the detection of particular protein with enormous DNA-based sensing technologies. In this work, the feasibly of the BRCL strategy is first verified through agarose gel electrophoresis and electrochemical impedance spectroscopy measurements, and then confirmed by transferring it to a nanomaterial-assisted fluorescence assay. Significantly, the BRCL strategy-based assay is able to respond to target protein with desirable selectivity, attributing to the specific recognition between small-molecule ligand and its target. Further experiments validate the general applicability of the sensing method by tailoring the ligand toward different proteins (i.e., avidin and folate receptor), and demonstrate its usability in complex biological samples. To our knowledge, this work pioneers the practice of click chemistry in probing specific small-molecule ligand-protein binding, and therefore may pave a new way for selective detection of proteins.

  17. Drug-drug plasma protein binding interactions of ivacaftor.

    PubMed

    Schneider, Elena K; Huang, Johnny X; Carbone, Vincenzo; Baker, Mark; Azad, Mohammad A K; Cooper, Matthew A; Li, Jian; Velkov, Tony

    2015-06-01

    Ivacaftor is a novel cystic fibrosis (CF) transmembrane conductance regulator (CFTR) potentiator that improves the pulmonary function for patients with CF bearing a G551D CFTR-protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co-administered CF drugs may compete for the same plasma protein binding sites and impact the free drug concentration. This, in turn, could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes. This biochemical study compares the binding affinity of ivacaftor and co-administered CF drugs for human serum albumin (HSA) and α1 -acid glycoprotein (AGP) using surface plasmon resonance and fluorimetric binding assays that measure the displacement of site-selective probes. Because of their ability to strongly compete for the ivacaftor binding sites on HSA and AGP, drug-drug interactions between ivacaftor are to be expected with ducosate, montelukast, ibuprofen, dicloxacillin, omeprazole, and loratadine. The significance of these plasma protein drug-drug interactions is also interpreted in terms of molecular docking simulations. This in vitro study provides valuable insights into the plasma protein drug-drug interactions of ivacaftor with co-administered CF drugs. The data may prove useful in future clinical trials for a staggered treatment that aims to maximize the effective free drug concentration and clinical efficacy of ivacaftor. PMID:25707701

  18. Structural and functional analysis of fatty acid-binding proteins

    PubMed Central

    Storch, Judith; McDermott, Lindsay

    2009-01-01

    The mammalian FA-binding proteins (FABPs) bind long-chain FA with high affinity. The large number of FABP types is suggestive of distinct functions in specific tissues. Multiple experimental approaches have shown that individual FABPs possess both unique and overlapping functions, some of which are based on specific elements in the protein structure. Although FA binding affinities for all FABPs tend to correlate directly with FA hydrophobicity, structure-function studies indicate that subtle three-dimensional changes that occur upon ligand binding may promote specific protein-protein or protein-membrane interactions that ultimately determine the function of each FABP. The conformational changes are focused in the FABP helical/portal domain, a region that was identified by in vitro studies to be vital for the FA transport properties of the FABPs. Thus, the FABPs modulate intracellular lipid homeostasis by regulating FA transport in the nuclear and extra-nuclear compartments of the cell; in so doing, they also impact systemic energy homeostasis. PMID:19017610

  19. The RNA-binding protein repertoire of Arabidopsis thaliana

    PubMed Central

    Marondedze, Claudius; Thomas, Ludivine; Serrano, Natalia L.; Lilley, Kathryn S.; Gehring, Chris

    2016-01-01

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses. PMID:27405932

  20. Carotenoid-binding proteins; accessories to carotenoid function.

    PubMed

    Pilbrow, Jodi; Garama, Daniel; Carne, Alan

    2012-01-01

    Understanding of the widespread biological importance of carotenoids is increasing. Accompanying this is the developing recognition that the interaction of carotenoids with other molecules, such as proteins, is also essential. Here the significance of carotenoid-protein interactions with respect to biological function is reviewed for three well characterised carotenoprotein complexes; crustacyanin, the orange carotenoid protein and glutathione-S-transferase P1. In addition a preliminary report is made on the recent partial purification of an echinenone-binding protein extracted from a New Zealand sea urchin, Evechinus chloroticus. PMID:22428138

  1. Carotenoid-binding proteins; accessories to carotenoid function.

    PubMed

    Pilbrow, Jodi; Garama, Daniel; Carne, Alan

    2012-01-01

    Understanding of the widespread biological importance of carotenoids is increasing. Accompanying this is the developing recognition that the interaction of carotenoids with other molecules, such as proteins, is also essential. Here the significance of carotenoid-protein interactions with respect to biological function is reviewed for three well characterised carotenoprotein complexes; crustacyanin, the orange carotenoid protein and glutathione-S-transferase P1. In addition a preliminary report is made on the recent partial purification of an echinenone-binding protein extracted from a New Zealand sea urchin, Evechinus chloroticus.

  2. Binding of IKe gene 5 protein to polynucleotides. Fluorescence binding experiments of IKe gene 5 protein and mutual cooperativity of IKe and M13 gene 5 proteins.

    PubMed

    de Jong, E A; Harmsen, B J; Konings, R N; Hilbers, C W

    1987-04-01

    Fluorescence studies of the binding of IKe gene 5 protein to various polynucleotides were performed to obtain insight into the question as to what extent the binding characteristics of the gene 5 proteins of the IKe and M13 phages resemble and/or differ from each other. The fluorescence of IKe gene 5 protein is quenched 60% upon binding to most polynucleotides. At moderate salt concentrations, i.e., below 1 M salt, the binding stoichiometry is 4.0 +/- 0.5 nucleotides per IKe gene 5 protein monomer. The affinity of the protein for homopolynucleotides depends strongly on sugar and base type; in order of increasing affinities we find poly(rC) less than poly(dA) less than poly(rA) less than poly(dI) less than poly(rU) less than poly(dU) less than poly(dT). For most polynucleotides studied, the affinity depends linearly on the salt concentration: [d log (Kint omega)]/(d log [M+]) = -3. The binding is highly cooperative. The cooperativity parameter omega, as deduced from protein titration curves, is 300 +/- 150 and appears independent of the type of polynucleotide studied. Estimation of this binding parameter from salt titrations of gene 5 protein-polynucleotide complexes results in systematically higher values. A comparison of the binding data of the IKe and M13 gene 5 proteins shows that the fluorescence quenching, stoichiometry, order of binding affinities, and cooperativity in the binding are similar for both proteins. From this it is concluded that at least the DNA binding grooves of both proteins must show a close resemblance.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins.

    PubMed

    Lustig, Arthur J

    2016-01-01

    Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes.

  4. Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins

    PubMed Central

    Lustig, Arthur J.

    2016-01-01

    Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes. PMID:26904098

  5. Fluorescence turn-on detection of a protein through the displaced single-stranded DNA binding protein binding to a molecular beacon.

    PubMed

    Tang, Dan; Liao, Dongli; Zhu, Qiankun; Wang, Fangyuan; Jiao, Huping; Zhang, Yujing; Yu, Cong

    2011-05-21

    A new approach has been developed for the highly sensitive and selective sensing of a protein. Lysozyme binding to its aptamer prevents SSB protein binding, and the subsequent binding of the free SSB protein to a molecular beacon results in a turn-on fluorescence signal, which can be used for lysozyme quantification.

  6. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box.

    PubMed Central

    Kiledjian, M; Dreyfuss, G

    1992-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) are thought to influence the structure of hnRNA and participate in the processing of hnRNA to mRNA. The hnRNP U protein is an abundant nucleoplasmic phosphoprotein that is the largest of the major hnRNP proteins (120 kDa by SDS-PAGE). HnRNP U binds pre-mRNA in vivo and binds both RNA and ssDNA in vitro. Here we describe the cloning and sequencing of a cDNA encoding the hnRNP U protein, the determination of its amino acid sequence and the delineation of a region in this protein that confers RNA binding. The predicted amino acid sequence of hnRNP U contains 806 amino acids (88,939 Daltons), and shows no extensive homology to any known proteins. The N-terminus is rich in acidic residues and the C-terminus is glycine-rich. In addition, a glutamine-rich stretch, a putative NTP binding site and a putative nuclear localization signal are present. It could not be defined from the sequence what segment of the protein confers its RNA binding activity. We identified an RNA binding activity within the C-terminal glycine-rich 112 amino acids. This region, designated U protein glycine-rich RNA binding region (U-gly), can by itself bind RNA. Furthermore, fusion of U-gly to a heterologous bacterial protein (maltose binding protein) converts this fusion protein into an RNA binding protein. A 26 amino acid peptide within U-gly is necessary for the RNA binding activity of the U protein. Interestingly, this peptide contains a cluster of RGG repeats with characteristic spacing and this motif is found also in several other RNA binding proteins. We have termed this region the RGG box and propose that it is an RNA binding motif and a predictor of RNA binding activity. Images PMID:1628625

  7. The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B.

    PubMed

    Morgenthau, Ari; Partha, Sarathy K; Adamiak, Paul; Schryvers, Anthony B

    2014-10-01

    A variety of Gram-negative pathogens possess host-specific lactoferrin (Lf) receptors that mediate the acquisition of iron from host Lf. The integral membrane protein component of the receptor, lactoferrin binding protein A specifically binds host Lf and is required for acquisition of iron from Lf. In contrast, the role of the bi-lobed surface lipoprotein, lactoferrin binding protein B (LbpB), in Lf binding and iron acquisition is uncertain. A common feature of LbpBs from most species is the presence of clusters of negatively charged amino acids in the protein's C-terminal lobe. Recently it has been shown that the negatively charged regions from the Neisseria meningitidis LbpB are responsible for protecting against an 11 amino acid cationic antimicrobial peptide (CAP), lactoferricin (Lfcin), derived from human Lf. In this study we investigated whether the LbpB confers resistance to other CAPs since N. meningitidis is likely to encounter other CAPs from the host. LbpB provided protection against the cathelicidin derived peptide, cathelicidin related antimicrobial peptide (mCRAMP), but did not confer protection against Tritrp 1 or LL37 under our experimental conditions. When tested against a range of rationally designed synthetic peptides, LbpB was shown to protect against IDR-1002 and IDR-0018 but not against HH-2 or HHC10. PMID:25038734

  8. Marsupial and monotreme serum immunoglobulin binding by proteins A, G and L and anti-kangaroo antibody.

    PubMed

    Vaz, Paola K; Hartley, Carol A; Browning, Glenn F; Devlin, Joanne M

    2015-12-01

    Serological studies are often conducted to examine exposure to infectious agents in wildlife populations. However, specific immunological reagents for wildlife species are seldom available and can limit the study of infectious diseases in these animals. This study examined the ability of four commercially available immunoglobulin-binding reagents to bind serum immunoglobulins from 17 species within the Marsupialia and Monotremata. Serum samples were assessed for binding, using immunoblots and ELISAs (Enzyme-linked immunosorbent assays), to three microbially-derived proteins - staphylococcal protein A, streptococcal protein G and peptostreptococcal protein L. Additionally, an anti-kangaroo antibody was included for comparison. The inter- and intra-familial binding patterns of the reagents to serum immunoglobulins varied and evolutionary distance between animal species was not an accurate predictor of the ability of reagents to bind immunoglobulins. Results from this study can be used to inform the selection of appropriate immunological reagents in future serological studies in these clades.

  9. Marsupial and monotreme serum immunoglobulin binding by proteins A, G and L and anti-kangaroo antibody.

    PubMed

    Vaz, Paola K; Hartley, Carol A; Browning, Glenn F; Devlin, Joanne M

    2015-12-01

    Serological studies are often conducted to examine exposure to infectious agents in wildlife populations. However, specific immunological reagents for wildlife species are seldom available and can limit the study of infectious diseases in these animals. This study examined the ability of four commercially available immunoglobulin-binding reagents to bind serum immunoglobulins from 17 species within the Marsupialia and Monotremata. Serum samples were assessed for binding, using immunoblots and ELISAs (Enzyme-linked immunosorbent assays), to three microbially-derived proteins - staphylococcal protein A, streptococcal protein G and peptostreptococcal protein L. Additionally, an anti-kangaroo antibody was included for comparison. The inter- and intra-familial binding patterns of the reagents to serum immunoglobulins varied and evolutionary distance between animal species was not an accurate predictor of the ability of reagents to bind immunoglobulins. Results from this study can be used to inform the selection of appropriate immunological reagents in future serological studies in these clades. PMID:26523413

  10. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding.

    PubMed

    Paramelle, David; Peng, Tao; Free, Paul; Fernig, David G; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages' pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages' core and low non-specific binding to the cages' outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage's core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of currently

  11. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding

    PubMed Central

    Peng, Tao; Free, Paul; Fernig, David G.; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of

  12. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding.

    PubMed

    Paramelle, David; Peng, Tao; Free, Paul; Fernig, David G; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages' pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages' core and low non-specific binding to the cages' outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage's core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of currently

  13. Use of native gels to measure protein binding to SSB.

    PubMed

    Inoue, Jin; Mikawa, Tsutomu

    2012-01-01

    We describe a procedure to detect protein binding to SSB by polyacrylamide gel electrophoresis under non-denaturing conditions. As an example, we show the interaction of Thermus thermophilus (Tth) SSB with its cognate RecO protein. The interaction is detected as decay of the band corresponding to SSB by addition of RecO. We also demonstrate analysis of the RecO-RecR interaction as another example of this method. PMID:22976186

  14. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    SciTech Connect

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E. )

    1991-06-04

    Tritium-labeled {alpha}- and {beta}-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10{degrees}C, MBP bound {alpha}-maltose with 2.7 {plus minus} 0.5-fold higher affinity than {beta}-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound {alpha}-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound {beta}-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the {beta}-maltodextrin is bound by its reducing end, and, in the other complex, the {beta}-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins.

  15. Rational Design, Synthesis and Evaluation of Coumarin Derivatives as Protein-protein Interaction Inhibitors.

    PubMed

    De Luca, Laura; Agharbaoui, Fatima E; Gitto, Rosaria; Buemi, Maria Rosa; Christ, Frauke; Debyser, Zeger; Ferro, Stefania

    2016-09-01

    Herein we describe the design and synthesis of a new series of coumarin derivatives searching for novel HIV-1 integrase (IN) allosteric inhibitors. All new obtained compounds were tested in order to evaluate their ability to inhibit the interaction between the HIV-1 IN enzyme and the nuclear protein lens epithelium growth factor LEDGF/p75. A combined approach of docking and molecular dynamic simulations has been applied to clarify the activity of the new compounds. Specifically, the binding free energies by using the method of molecular mechanics-generalized Born surface area (MM-GBSA) was calculated, whereas hydrogen bond occupancies were monitored throughout simulations methods.

  16. Rational Design, Synthesis and Evaluation of Coumarin Derivatives as Protein-protein Interaction Inhibitors.

    PubMed

    De Luca, Laura; Agharbaoui, Fatima E; Gitto, Rosaria; Buemi, Maria Rosa; Christ, Frauke; Debyser, Zeger; Ferro, Stefania

    2016-09-01

    Herein we describe the design and synthesis of a new series of coumarin derivatives searching for novel HIV-1 integrase (IN) allosteric inhibitors. All new obtained compounds were tested in order to evaluate their ability to inhibit the interaction between the HIV-1 IN enzyme and the nuclear protein lens epithelium growth factor LEDGF/p75. A combined approach of docking and molecular dynamic simulations has been applied to clarify the activity of the new compounds. Specifically, the binding free energies by using the method of molecular mechanics-generalized Born surface area (MM-GBSA) was calculated, whereas hydrogen bond occupancies were monitored throughout simulations methods. PMID:27546050

  17. RNA–protein binding kinetics in an automated microfluidic reactor

    PubMed Central

    Ridgeway, William K.; Seitaridou, Effrosyni; Phillips, Rob; Williamson, James R.

    2009-01-01

    Microfluidic chips can automate biochemical assays on the nanoliter scale, which is of considerable utility for RNA–protein binding reactions that would otherwise require large quantities of proteins. Unfortunately, complex reactions involving multiple reactants cannot be prepared in current microfluidic mixer designs, nor is investigation of long-time scale reactions possible. Here, a microfluidic ‘Riboreactor’ has been designed and constructed to facilitate the study of kinetics of RNA–protein complex formation over long time scales. With computer automation, the reactor can prepare binding reactions from any combination of eight reagents, and is optimized to monitor long reaction times. By integrating a two-photon microscope into the microfluidic platform, 5-nl reactions can be observed for longer than 1000 s with single-molecule sensitivity and negligible photobleaching. Using the Riboreactor, RNA–protein binding reactions with a fragment of the bacterial 30S ribosome were prepared in a fully automated fashion and binding rates were consistent with rates obtained from conventional assays. The microfluidic chip successfully combines automation, low sample consumption, ultra-sensitive fluorescence detection and a high degree of reproducibility. The chip should be able to probe complex reaction networks describing the assembly of large multicomponent RNPs such as the ribosome. PMID:19759214

  18. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  19. RNA-protein binding kinetics in an automated microfluidic reactor.

    PubMed

    Ridgeway, William K; Seitaridou, Effrosyni; Phillips, Rob; Williamson, James R

    2009-11-01

    Microfluidic chips can automate biochemical assays on the nanoliter scale, which is of considerable utility for RNA-protein binding reactions that would otherwise require large quantities of proteins. Unfortunately, complex reactions involving multiple reactants cannot be prepared in current microfluidic mixer designs, nor is investigation of long-time scale reactions possible. Here, a microfluidic 'Riboreactor' has been designed and constructed to facilitate the study of kinetics of RNA-protein complex formation over long time scales. With computer automation, the reactor can prepare binding reactions from any combination of eight reagents, and is optimized to monitor long reaction times. By integrating a two-photon microscope into the microfluidic platform, 5-nl reactions can be observed for longer than 1000 s with single-molecule sensitivity and negligible photobleaching. Using the Riboreactor, RNA-protein binding reactions with a fragment of the bacterial 30S ribosome were prepared in a fully automated fashion and binding rates were consistent with rates obtained from conventional assays. The microfluidic chip successfully combines automation, low sample consumption, ultra-sensitive fluorescence detection and a high degree of reproducibility. The chip should be able to probe complex reaction networks describing the assembly of large multicomponent RNPs such as the ribosome.

  20. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  1. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A.

    PubMed Central

    Shoseyov, O; Takagi, M; Goldstein, M A; Doi, R H

    1992-01-01

    The cbpA gene for the Clostridium cellulovorans cellulose binding protein (CbpA), which is part of the multisubunit cellulase complex, has been cloned and sequenced. When cbpA was expressed in Escherichia coli, proteins capable of binding to crystalline cellulose and of interacting with anti-CbpA were observed. The cbpA gene consists of 5544 base pairs and encodes a protein containing 1848 amino acids with a molecular mass of 189,036 Da. The open reading frame is preceded by a Gram-positive-type ribosome binding site. A signal peptide sequence of 28 amino acids is present at its N terminus. The encoded protein is highly hydrophobic with extremely high levels of threonine and valine residues. There are two types of putative cellulose binding domains of approximately 100 amino acids that are slightly hydrophilic and eight conserved, highly hydrophobic beta-sheet regions of approximately 140 amino acids. These latter hydrophobic regions may be the CbpA domains that interact with the different enzymatic subunits of the cellulase complex. Images PMID:1565642

  2. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4)

    PubMed Central

    González, Javier M.; Fisher, S. Zoë

    2015-01-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments. PMID:25664790

  3. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).

    PubMed

    González, Javier M; Fisher, S Zoë

    2015-02-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.

  4. The EGF receptor is an actin-binding protein

    PubMed Central

    1992-01-01

    In a number of recent studies it has been shown that in vivo part of the EGF receptor (EGFR) population is associated to the actin filament system. In this paper we demonstrate that the purified EGFR can be cosedimented with purified filamentous actin (F-actin) indicating a direct association between EGFR and actin. A truncated EGFR, previously shown not to be associated to the cytoskeleton, was used as a control and this receptor did not cosediment with actin filaments. Determination of the actin-binding domain of the EGFR was done by measuring competition of either a polyclonal antibody or synthetic peptides on EGFR cosedimentation with F-actin. A synthetic peptide was made homologous to amino acid residues 984-996 (HL-33) of the EGFR which shows high homology with the actin-binding domain of Acanthamoeba profilin. A polyclonal antibody raised against HL-33 was found to prevent cosedimentation of EGFR with F-actin. This peptide HL-33 was shown to bind directly to actin in contrast with a synthetic peptide homologous to residues 1001-1013 (HL-34). During cosedimentation, HL-33 competed for actin binding of the EGFR and HL-34 did not, indicating that the EGFR contains one actin-binding site. These results demonstrate that the EGFR is an actin-binding protein which binds to actin via a domain containing amino acids residues 984-996. PMID:1383230

  5. A general approach to visualize protein binding and DNA conformation without protein labelling

    PubMed Central

    Song, Dan; Graham, Thomas G. W.; Loparo, Joseph J.

    2016-01-01

    Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein–DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein–DNA interactions. PMID:26952553

  6. VP24 Is a Chitin-Binding Protein Involved in White Spot Syndrome Virus Infection

    PubMed Central

    Li, Zaipeng; Han, Yali; Xu, Limei

    2015-01-01

    ABSTRACT Oral ingestion is the major route of infection for the white spot syndrome virus (WSSV). However, the mechanism by which virus particles in the digestive tract invade host cells is unknown. In the present study, we demonstrate that WSSV virions can bind to chitin through one of the major envelope proteins (VP24). Mutagenesis analysis indicated that amino acids (aa) 186 to 200 in the C terminus of VP24 were required for chitin binding. Moreover, the P-VP24186–200 peptide derived from the VP24 chitin binding region significantly inhibited the VP24-chitin interaction and the WSSV-chitin interaction, implying that VP24 participates in WSSV binding to chitin. Oral inoculation experiments showed that P-VP24186–200 treatment reduced the number of virus particles remaining in the digestive tract during the early stage of infection and greatly hindered WSSV proliferation in shrimp. These data indicate that binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection and provide new ideas for preventing WSSV infection in shrimp farms. IMPORTANCE In this study, we show that WSSV can bind to chitin through the envelope protein VP24. The chitin-binding domain of VP24 maps to amino acids 186 to 200 in the C terminus. Binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection. These findings not only extend our knowledge of WSSV infection but also provide new insights into strategies to prevent WSSV infection in shrimp farms. PMID:26512091

  7. Monomeric Yeast Frataxin is an Iron-Binding Protein

    SciTech Connect

    Cook,J.; Bencze, K.; Jankovic, A.; Crater, A.; Busch, C.; Bradley, P.; Stemmler, A.; Spaller, M.; Stemmler, T.

    2006-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.

  8. The Archaeal Lsm Protein Binds to Small RNAs*

    PubMed Central

    Fischer, Susan; Benz, Juliane; Späth, Bettina; Maier, Lisa-Katharina; Straub, Julia; Granzow, Michaela; Raabe, Monika; Urlaub, Henning; Hoffmann, Jan; Brutschy, Bernd; Allers, Thorsten; Soppa, Jörg; Marchfelder, Anita

    2010-01-01

    Proteins of the Lsm family, including eukaryotic Sm proteins and bacterial Hfq, are key players in RNA metabolism. Little is known about the archaeal homologues of these proteins. Therefore, we characterized the Lsm protein from the haloarchaeon Haloferax volcanii using in vitro and in vivo approaches. H. volcanii encodes a single Lsm protein, which belongs to the Lsm1 subfamily. The lsm gene is co-transcribed and overlaps with the gene for the ribosomal protein L37e. Northern blot analysis shows that the lsm gene is differentially transcribed. The Lsm protein forms homoheptameric complexes and has a copy number of 4000 molecules/cell. In vitro analyses using electrophoretic mobility shift assays and ultrasoft mass spectrometry (laser-induced liquid bead ion desorption) showed a complex formation of the recombinant Lsm protein with oligo(U)-RNA, tRNAs, and an small RNA. Co-immunoprecipitation with a FLAG-tagged Lsm protein produced in vivo confirmed that the protein binds to small RNAs. Furthermore, the co-immunoprecipitation revealed several protein interaction partners, suggesting its involvement in different cellular pathways. The deletion of the lsm gene is viable, resulting in a pleiotropic phenotype, indicating that the haloarchaeal Lsm is involved in many cellular processes, which is in congruence with the number of protein interaction partners. PMID:20826804

  9. The neuronal calcium sensor family of Ca2+-binding proteins.

    PubMed Central

    Burgoyne, R D; Weiss, J L

    2001-01-01

    Ca(2+) plays a central role in the function of neurons as the trigger for neurotransmitter release, and many aspects of neuronal activity, from rapid modulation to changes in gene expression, are controlled by Ca(2+). These actions of Ca(2+) must be mediated by Ca(2+)-binding proteins, including calmodulin, which is involved in Ca(2+) regulation, not only in neurons, but in most other cell types. A large number of other EF-hand-containing Ca(2+)-binding proteins are known. One family of these, the neuronal calcium sensor (NCS) proteins, has a restricted expression in retinal photoreceptors or neurons and neuroendocrine cells, suggesting that they have specialized roles in these cell types. Two members of the family (recoverin and guanylate cyclase-activating protein) have established roles in the regulation of phototransduction. Despite close sequence similarities, the NCS proteins have distinct neuronal distributions, suggesting that they have different functions. Recent work has begun to demonstrate the physiological roles of members of this protein family. These include roles in the modulation of neurotransmitter release, control of cyclic nucleotide metabolism, biosynthesis of polyphosphoinositides, regulation of gene expression and in the direct regulation of ion channels. In the present review we describe the known sequences and structures of the NCS proteins, information on their interactions with target proteins and current knowledge about their cellular and physiological functions. PMID:11115393

  10. Methods for studying the biochemical properties of an Inr element binding protein: TFII-I.

    PubMed

    Novina, C D; Cheriyath, V; Denis, M C; Roy, A L

    1997-07-01

    Transcription initiation in eukaryotic mRNA coding genes is brought about by a host of general transcription factors, which assemble into a functional preinitiation complex (PIC) at the core promoter region, and gene-specific factors, which exert their effects on the rate and/or stability of the PIC. The core promoter region consists of a well-characterized TATA box and/or a less well-characterized pyrimidine-rich initiator element (Inr). While the biochemical mechanisms of TATA-mediated transcription initiation are extensively studied and known to be directed by the TATA binding protein, the mechanisms via the Inr element are poorly understood, as several factors have been shown to bind to an Inr. Here, we describe the biochemical properties of an Inr binding protein, TFII-I, employing the naturally occurring TATA-less but Inr-containing promoter derived from the T-cell receptor beta chain gene (V beta).

  11. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α.

    PubMed

    Winiewska, Maria; Kucińska, Katarzyna; Makowska, Małgorzata; Poznański, Jarosław; Shugar, David

    2015-10-01

    The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.

  12. The role of lactoferrin binding protein B in mediating protection against human lactoferricin.

    PubMed

    Morgenthau, Ari; Livingstone, Margaret; Adamiak, Paul; Schryvers, Anthony B

    2012-06-01

    Bacteria that inhabit the mucosal surfaces of the respiratory and genitourinary tracts of mammals encounter an iron-deficient environment because of iron sequestration by the host iron-binding proteins transferrin and lactoferrin. Lactoferrin is also present in high concentrations at sites of inflammation where the cationic, antimicrobial peptide lactoferricin is produced by proteolysis of lactoferrin. Several Gram-negative pathogens express a lactoferrin receptor that enables the bacteria to use lactoferrin as an iron source. The receptor is composed of an integral membrane protein, lactoferrin binding protein A (LbpA), and a membrane-bound lipoprotein, lactoferrin binding protein B (LbpB). LbpA is essential for growth with lactoferrin as the sole iron source, whereas the role of LbpB in iron acquisition is not yet known. In this study, we demonstrate that LbpB from 2 different species is capable of providing protection against the killing activity of a human lactoferrin-derived peptide. We investigated the prevalence of lactoferrin receptors in bacteria and examined their sequence diversity. We propose that the protection against the cationic antimicrobial human lactoferrin-derived peptide is associated with clusters of negatively charged amino acids in the C-terminal lobe of LbpB that is a common feature of this protein. PMID:22332888

  13. Regulation of blood-testis barrier by actin binding proteins and protein kinases

    PubMed Central

    Li, Nan; Tang, Elizabeth I.; Cheng, C. Yan

    2016-01-01

    The blood-testis barrier (BTB) is an important ultrastructure in the testis since the onset of spermatogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule (MT)-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases. PMID:26628556

  14. Nuclear protein accumulation by facilitated transport and intranuclear binding.

    PubMed

    Paine, P L

    1993-10-01

    Nuclear proteins are transported from the cytoplasm into the nucleus via nuclear envelope pore complexes (NPCs). At the molecular level, the mechanisms responsible for this transport remain obscure. However, it is known that, for many proteins, the process requires ATP and proceeds against formidable nucleocytoplasmic concentration gradients. Therefore, the NPC is often thought of as an active transport site. In this article, Philip Paine presents the alternative hypothesis that, on current evidence, protein translocation across the nuclear envelope and accumulation in the nucleus can equally well be explained by facilitated transport through the NPC and subsequent intranuclear binding.

  15. Ligand-binding study of Anopheles gambiae chemosensory proteins.

    PubMed

    Iovinella, Immacolata; Bozza, Francesco; Caputo, Beniamino; Della Torre, Alessandra; Pelosi, Paolo

    2013-06-01

    Chemosensory proteins (CSPs) are a class of small proteins expressed only in arthropods and endowed with heterogeneous functions. Some of them are involved in chemical communications, others in development or other physiological roles. The numbers of CSPs in different species of insects range from 4 in Drosophila to at least 70 in locusts, whereas in other arthropods such as crustaceans and millipedes, only 2-3 very similar sequences have been reported in each species. We have expressed, in a bacterial system, 5 of the 8 CSPs predicted by the genome of the malaria mosquito Anopheles gambiae, 4 identified at the protein level (SAP1, SAP2, SAP3, and CSP3) and a fifth annotated as part of this work, obtaining the proteins with high yields and in their soluble forms. Purified CSPs have been used to study their ligand-binding properties, both using competitive binding assays and quenching of intrinsic tryptophan fluorescence, in order to get insights into their physiological functions. The agreement between the 2 sets of data supports the assumptions that the ligands, including the fluorescent reporter, bind within the core of the proteins. Their different affinities toward a set of pure chemicals suggest specific roles in chemical communication.

  16. Goodpasture Antigen-binding Protein (GPBP) Directs Myofibril Formation

    PubMed Central

    Revert-Ros, Francisco; López-Pascual, Ernesto; Granero-Moltó, Froilán; Macías, Jesús; Breyer, Richard; Zent, Roy; Hudson, Billy G.; Saadeddin, Anas; Revert, Fernando; Blasco, Raül; Navarro, Carmen; Burks, Deborah; Saus, Juan

    2011-01-01

    Goodpasture antigen-binding protein-1 (GPBP-1) is an exportable non-conventional Ser/Thr kinase that regulates glomerular basement membrane collagen organization. Here we provide evidence that GPBP-1 accumulates in the cytoplasm of differentiating mouse myoblasts prior to myosin synthesis. Myoblasts deficient in GPBP-1 display defective myofibril formation, whereas myofibrils assemble with enhanced efficiency in those overexpressing GPBP-1. We also show that GPBP-1 targets the previously unidentified GIP130 (GPBP-interacting protein of 130 kDa), which binds to myosin and promotes its myofibrillar assembly. This report reveals that GPBP-1 directs myofibril formation, an observation that expands its reported role in supramolecular organization of structural proteins to the intracellular compartment. PMID:21832087

  17. Cytosolic insulin-binding proteins of mouse liver cells.

    PubMed

    Lokhov, Petr G; Moshkovskii, Sergei A; Ipatova, Olga M; Prozorovskii, Vladimir N

    2004-02-01

    It has been recently shown that insulin retains its biological activity after receptor-directed internalization and it may affect the cell metabolism by interaction with cytosolic insulin-binding proteins (CIBPs). Using affinity chromatography combined with SDS-PAGE and MALDI-TOF mass-spectrometry we have identified 7 proteins from mouse liver cells that specifically bind to the insulin, including adenylate kinase 2 (25.6 kD), kinesin superfamily protein 20B (26.0 kD), hepatic arginase 1 (34.8 kD), fructose-bisphosphate aldolase B (39.5 kD), 4-hydroxyphenylpyruvate dioxygenase (45.1 kD), betaine-homocysteine methyl-transferase (45.0 kD) and KRIT1 (83.4 kD).

  18. RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome.

    PubMed

    Silverman, Ian M; Li, Fan; Alexander, Anissa; Goff, Loyal; Trapnell, Cole; Rinn, John L; Gregory, Brian D

    2014-01-07

    Although numerous approaches have been developed to map RNA-binding sites of individual RNA-binding proteins (RBPs), few methods exist that allow assessment of global RBP-RNA interactions. Here, we describe PIP-seq, a universal, high-throughput, ribonuclease-mediated protein footprint sequencing approach that reveals RNA-protein interaction sites throughout a transcriptome of interest. We apply PIP-seq to the HeLa transcriptome and compare binding sites found using different cross-linkers and ribonucleases. From this analysis, we identify numerous putative RBP-binding motifs, reveal novel insights into co-binding by RBPs, and uncover a significant enrichment for disease-associated polymorphisms within RBP interaction sites.

  19. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    PubMed

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins. PMID:27451201

  20. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    PubMed

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins.

  1. Protein interactors of acyl-CoA-binding protein ACBP2 mediate cadmium tolerance in Arabidopsis.

    PubMed

    Gao, Wei; Li, Hong-Ye; Xiao, Shi; Chye, Mee-Len

    2010-08-01

    In our recent paper in the Plant Journal, we reported that Arabidopsis thaliana lysophospholipase 2 (lysoPL2) binds acyl-CoA-binding protein 2 (ACBP2) to mediate cadmium [Cd(II)] tolerance in transgenic Arabidopsis. ACBP2 contains ankyrin repeats that have been previously shown to mediate protein-protein interactions with an ethylene-responsive element binding protein (AtEBP) and a farnesylated protein 6 (AtFP6). Transgenic Arabidopsis ACBP2-overexpressors, lysoPL2-overexpressors and AtFP6-overexpressors all display enhanced Cd(II) tolerance, in comparison to wild type, suggesting that ACBP2 and its protein partners work together to mediate Cd(II) tolerance. Given that recombinant ACBP2 and AtFP6 can independently bind Cd(II) in vitro, they may be able to participate in Cd(II) translocation. The binding of recombinant ACBP2 to [(14)C]linoleoyl-CoA and [(14)C]linolenoyl-CoA implies its role in phospholipid repair. In conclusion, ACBP2 can mediate tolerance to Cd(II)-induced oxidative stress by interacting with two protein partners, AtFP6 and lysoPL2. Observations that ACBP2 also binds lysophosphatidylcholine (lysoPC) in vitro and that recombinant lysoPL2 degrades lysoPC, further confirm an interactive role for ACBP2 and lysoPL2 in overcoming Cd(II)-induced stress.

  2. A novel calcium-binding protein is associated with tau proteins in tauopathy

    PubMed Central

    Vega, Irving E.; Traverso, Edwin E.; Ferrer-Acosta, Yancy; Matos, Eduardo; Colon, Migdalisel; Gonzalez, John; Dickson, Dennis; Hutton, Michael; Lewis, Jada; Yen, Shu H.

    2013-01-01

    Tauopathies are a group of neurological disorders characterized by the presence of intraneuronal hyperphosphorylated and filamentous tau. Mutations in the tau gene have been found in kindred with tauopathy. The expression of the human tau mutant in transgenic mice induced neurodegeneration, indicating that tau plays a central pathological role. However, the molecular mechanism leading to tau-mediated neurodegeneration is poorly understood. To gain insights into the role that tau plays in neurodegeneration, human tau proteins were immunoprecipitated from brain lysates of the tauopathy mouse model JNPL3, which develops neurodegeneration in age-dependent manner. In the present work, a novel EF-hand domain-containing protein was found associated with tau proteins in brain lysate of 12-month-old JNPL3 mice. The association between tau proteins and the novel identified protein appears to be induced by the neurodegeneration process as these two proteins were not found associated in young JNPL3 mice. Consistently, the novel protein co-purified with the pathological sarkosyl insoluble tau in terminally ill JNPL3 mice. Calcium-binding assays demonstrated that this protein binds calcium effectively. Finally, the association between tau and the novel calcium-binding protein is conserved in human and enriched in Alzheimer's disease brain. Taken together, the identification of a novel calcium-binding protein associated with tau protein in terminally ill tauopathy mouse model and its confirmation in human brain lysate suggests that this association may play an important physiological and/or pathological role. PMID:18346207

  3. Finding the target sites of RNA-binding proteins

    PubMed Central

    Li, Xiao; Kazan, Hilal; Lipshitz, Howard D; Morris, Quaid D

    2014-01-01

    RNA–protein interactions differ from DNA–protein interactions because of the central role of RNA secondary structure. Some RNA-binding domains (RBDs) recognize their target sites mainly by their shape and geometry and others are sequence-specific but are sensitive to secondary structure context. A number of small- and large-scale experimental approaches have been developed to measure RNAs associated in vitro and in vivo with RNA-binding proteins (RBPs). Generalizing outside of the experimental conditions tested by these assays requires computational motif finding. Often RBP motif finding is done by adapting DNA motif finding methods; but modeling secondary structure context leads to better recovery of RBP-binding preferences. Genome-wide assessment of mRNA secondary structure has recently become possible, but these data must be combined with computational predictions of secondary structure before they add value in predicting in vivo binding. There are two main approaches to incorporating structural information into motif models: supplementing primary sequence motif models with preferred secondary structure contexts (e.g., MEMERIS and RNAcontext) and directly modeling secondary structure recognized by the RBP using stochastic context-free grammars (e.g., CMfinder and RNApromo). The former better reconstruct known binding preferences for sequence-specific RBPs but are not suitable for modeling RBPs that recognize shape and geometry of RNAs. Future work in RBP motif finding should incorporate interactions between multiple RBDs and multiple RBPs in binding to RNA. WIREs RNA 2014, 5:111–130. doi: 10.1002/wrna.1201 PMID:24217996

  4. Calcium binding proteins and calcium signaling in prokaryotes.

    PubMed

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna

    2015-03-01

    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  5. High-affinity binding by the periplasmic iron-binding protein from Haemophilus influenzae is required for acquiring iron from transferrin

    PubMed Central

    Khan, Ali G.; Shouldice, Stephen R.; Kirby, Shane D.; Yu, Rong-hua; Tari, Leslie W.; Schryvers, Anthony B.

    2007-01-01

    The periplasmic iron-binding protein, FbpA (ferric-ion-binding protein A), performs an essential role in iron acquisition from transferrin in Haemophilus influenzae. A series of site-directed mutants in the metal-binding amino acids of FbpA were prepared to determine their relative contribution to iron binding and transport. Structural studies demonstrated that the mutant proteins crystallized in an open conformation with the iron atom associated with the C-terminal domain. The iron-binding properties of the mutant proteins were assessed by several assays, including a novel competitive iron-binding assay. The relative ability of the proteins to compete for iron was pH dependent, with a rank order at pH 6.5 of wild-type, Q58L, H9Q>H9A, E57A>Y195A, Y196A. The genes encoding the mutant FbpA were introduced into H. influenzae and the resulting strains varied in the level of ferric citrate required to support growth on iron-limited medium, suggesting a rank order for metal-binding affinities under physiological conditions comparable with the competitive binding assay at pH 6.5 (wild-type=Q58L>H9Q>H9A, E57A>Y195A, Y196A). Growth dependence on human transferrin was only obtained with cells expressing wild-type, Q58L or H9Q FbpAs, proteins with stability constants derived from the competition assay >2.0×1018 M−1. These results suggest that a relatively high affinity of iron binding by FbpA is required for removal of iron from transferrin and its transport across the outer membrane. PMID:17313366

  6. Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of alpha-glucosidase inhibitors.

    PubMed

    Bharatham, Kavitha; Bharatham, Nagakumar; Park, Ki Hun; Lee, Keun Woo

    2008-06-01

    Sulfonamide chalcone derivatives are a new class of non-saccharide compounds that effectively inhibit glucosidases which are the major targets in the treatment of Type 2 diabetes and HIV infection. Our aim is to explore their binding mode of interaction at the active site by comparing with the sugar derivatives and to develop a pharmacophore model which would represent the critical features responsible for alpha-glucosidase inhibitory activity. The homology modeled structure of Saccharomyces cerevisiae alpha-glucosidase was built and used for molecular docking of non-sugar/sugar derivatives. The validated docking results projected the crucial role of NH group in the binding of sugar/non-sugar derivatives to the active site. Ligplot analyses revealed that Tyr71, and Phe177 form hydrophobic interactions with sugar/non-sugar derivatives by holding the terminal glycosidic ring mimics. Molecular dynamic (MD) simulation studies were performed for protein alone and with chalcone derivative to prove its binding mechanism as shown by docking/Ligplot results. It would also help to substantiate the homology modeled structure stability. With the knowledge of the crucial interactions between ligand and protein from docking and MD simulation studies, features for pharmacophore model development were chosen. The CATALYST/HipHop was used to generate a five featured pharmacophore model with a training set of five non-sugar derivatives. As validation, all the crucial features of the model were perfectly mapped onto the 3D structures of the sugar derivatives as well as the newly tested non-sugar derivatives. Thus, it can be useful in virtual screening for finding new non-sugar derivatives as alpha-glucosidase inhibitors. PMID:18096420

  7. Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of alpha-glucosidase inhibitors.

    PubMed

    Bharatham, Kavitha; Bharatham, Nagakumar; Park, Ki Hun; Lee, Keun Woo

    2008-06-01

    Sulfonamide chalcone derivatives are a new class of non-saccharide compounds that effectively inhibit glucosidases which are the major targets in the treatment of Type 2 diabetes and HIV infection. Our aim is to explore their binding mode of interaction at the active site by comparing with the sugar derivatives and to develop a pharmacophore model which would represent the critical features responsible for alpha-glucosidase inhibitory activity. The homology modeled structure of Saccharomyces cerevisiae alpha-glucosidase was built and used for molecular docking of non-sugar/sugar derivatives. The validated docking results projected the crucial role of NH group in the binding of sugar/non-sugar derivatives to the active site. Ligplot analyses revealed that Tyr71, and Phe177 form hydrophobic interactions with sugar/non-sugar derivatives by holding the terminal glycosidic ring mimics. Molecular dynamic (MD) simulation studies were performed for protein alone and with chalcone derivative to prove its binding mechanism as shown by docking/Ligplot results. It would also help to substantiate the homology modeled structure stability. With the knowledge of the crucial interactions between ligand and protein from docking and MD simulation studies, features for pharmacophore model development were chosen. The CATALYST/HipHop was used to generate a five featured pharmacophore model with a training set of five non-sugar derivatives. As validation, all the crucial features of the model were perfectly mapped onto the 3D structures of the sugar derivatives as well as the newly tested non-sugar derivatives. Thus, it can be useful in virtual screening for finding new non-sugar derivatives as alpha-glucosidase inhibitors.

  8. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding.

    PubMed

    Tottey, Steve; Waldron, Kevin J; Firbank, Susan J; Reale, Brian; Bessant, Conrad; Sato, Katsuko; Cheek, Timothy R; Gray, Joe; Banfield, Mark J; Dennison, Christopher; Robinson, Nigel J

    2008-10-23

    Metals are needed by at least one-quarter of all proteins. Although metallochaperones insert the correct metal into some proteins, they have not been found for the vast majority, and the view is that most metalloproteins acquire their metals directly from cellular pools. However, some metals form more stable complexes with proteins than do others. For instance, as described in the Irving-Williams series, Cu(2+) and Zn(2+) typically form more stable complexes than Mn(2+). Thus it is unclear what cellular mechanisms manage metal acquisition by most nascent proteins. To investigate this question, we identified the most abundant Cu(2+)-protein, CucA (Cu(2+)-cupin A), and the most abundant Mn(2+)-protein, MncA (Mn(2+)-cupin A), in the periplasm of the cyanobacterium Synechocystis PCC 6803. Each of these newly identified proteins binds its respective metal via identical ligands within a cupin fold. Consistent with the Irving-Williams series, MncA only binds Mn(2+) after folding in solutions containing at least a 10(4) times molar excess of Mn(2+) over Cu(2+) or Zn(2+). However once MncA has bound Mn(2+), the metal does not exchange with Cu(2+). MncA and CucA have signal peptides for different export pathways into the periplasm, Tat and Sec respectively. Export by the Tat pathway allows MncA to fold in the cytoplasm, which contains only tightly bound copper or Zn(2+) (refs 10-12) but micromolar Mn(2+) (ref. 13). In contrast, CucA folds in the periplasm to acquire Cu(2+). These results reveal a mechanism whereby the compartment in which a protein folds overrides its binding preference to control its metal content. They explain why the cytoplasm must contain only tightly bound and buffered copper and Zn(2+). PMID:18948958

  9. Calmodulin binds to maize lipid transfer protein and modulates its lipids binding ability.

    PubMed

    Li, Cuifeng; Xie, Wanqin; Bai, Wenyan; Li, Zhenpeng; Zhao, Yulong; Liu, Hua

    2008-11-01

    Although plant non-specific lipid transfer proteins (ns-LTPs) are characterized by their ability to bind and transfer a broad range of hydrophobic ligands in vitro, their biological functions in vivo remain unclear. Recently, it has been proposed that ns-LTPs may play a key role in plant defense mechanisms, particularly during the induction of systemic acquired resistance, however, very little is known about the regulation in this process. We report that the binding of maize non-specific lipid transfer protein (Zm-LTP) to calmodulin (CaM) is in a calcium-independent manner. To better understand the interaction mechanism between Zm-LTP and CaM, the CaM-binding site of Zm-LTP was mapped to the region of amino acids 46-60. Point mutations indicate that four amino acid residues, R46, R47, K54 and R58, in this region are crucial for binding. Furthermore, we tested the effects of CaM on the lipid-binding activity of Zm-LTP in the presence of Ca(2+), EGTA, N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide and trifluoperazine respectively. We also investigated the structural features of CaM-binding motifs in LTPs from different species and strong differences were observed. Taken together, our results suggest that the interaction with CaM could be a common feature of plant LTPs. The identification and characterization of CaM-binding domain of LTPs should provide new insights into the mechanism by which the physiological functions of LTPs are regulated.

  10. Copper binding to the prion protein: Structural implications of four identical cooperative binding sites

    PubMed Central

    Viles, John H.; Cohen, Fred E.; Prusiner, Stanley B.; Goodin, David B.; Wright, Peter E.; Dyson, H. Jane

    1999-01-01

    Evidence is growing to support a functional role for the prion protein (PrP) in copper metabolism. Copper ions appear to bind to the protein in a highly conserved octapeptide repeat region (sequence PHGGGWGQ) near the N terminus. To delineate the site and mode of binding of Cu(II) to the PrP, the copper-binding properties of peptides of varying lengths corresponding to 2-, 3-, and 4-octarepeat sequences have been probed by using various spectroscopic techniques. A two-octarepeat peptide binds a single Cu(II) ion with Kd ≈ 6 μM whereas a four-octarepeat peptide cooperatively binds four Cu(II) ions. Circular dichroism spectra indicate a distinctive structuring of the octarepeat region on Cu(II) binding. Visible absorption, visible circular dichroism, and electron spin resonance spectra suggest that the coordination sphere of the copper is identical for 2, 3, or 4 octarepeats, consisting of a square-planar geometry with three nitrogen ligands and one oxygen ligand. Consistent with the pH dependence of Cu(II) binding, proton NMR spectroscopy indicates that the histidine residues in each octarepeat are coordinated to the Cu(II) ion. Our working model for the structure of the complex shows the histidine residues in successive octarepeats bridged between two copper ions, with both the Nɛ2 and Nδ1 imidazole nitrogen of each histidine residue coordinated and the remaining coordination sites occupied by a backbone amide nitrogen and a water molecule. This arrangement accounts for the cooperative nature of complex formation and for the apparent evolutionary requirement for four octarepeats in the PrP. PMID:10051591

  11. Transport effects on the kinetics of protein-surface binding.

    PubMed Central

    Balgi, G; Leckband, D E; Nitsche, J M

    1995-01-01

    A detailed model is presented for protein binding to active surfaces, with application to the binding of avidin molecules to a biotin-functionalized fiber optic sensor in experiments reported by S. Zhao and W. M. Reichert (American Chemical Society Symposium Series 493, 1992). Kinetic data for binding in solution are used to assign an intrinsic catalytic rate coefficient k to the biotin-avidin pair, deconvoluted from transport and electrostatic factors via application of coagulation theory. This intrinsic chemical constant is built into a reaction-diffusion analysis of surface binding where activity is restricted to localized sites (representing immobilized biotin molecules). The analysis leads to an effective catalytic rate coefficient keff characterizing the active surface. Thereafter, solution of the transport problem describing absorption of avidin molecules by the macroscopic sensor surface leads to predictions of the avidin flux, which are found to be in good agreement with the experimental data. The analysis suggests the following conclusions. 1) Translational diffusion limitations are negligible for avidin-biotin binding in solution owing to the small (kinetically limiting) value k = 0.00045 m/s. 2) The sparse distribution of biotin molecules and the presence of a repulsive hydration force produce an effective surface-average catalytic rate coefficient keff of order 10(-7) m/s, much smaller than k. 3) Avidin binding to the fiber optic sensor occurs in an intermediate regime where the rate is influenced by both kinetics and diffusion. Images FIGURE 1 FIGURE 3 PMID:7647232

  12. Using protein binding site prediction to improve protein docking.

    PubMed

    Huang, Bingding; Schroeder, Michael

    2008-10-01

    Predicting protein interaction interfaces and protein complexes are two important related problems. For interface prediction, there are a number of tools, such as PPI-Pred, PPISP, PINUP, Promate, and SPPIDER, which predict enzyme-inhibitor interfaces with success rates of 23% to 55% and other interfaces with 10% to 28% on a benchmark dataset of 62 complexes. Here, we develop, metaPPI, a meta server for interface prediction. It significantly improves prediction success rates to 70% for enzyme-inhibitor and 44% for other interfaces. As shown with Promate, predicted interfaces can be used to improve protein docking. Here, we follow this idea using the meta server instead of individual predictions. We confirm that filtering with predicted interfaces significantly improves candidate generation in rigid-body docking based on shape complementarity. Finally, we show that the initial ranking of candidate solutions in rigid-body docking can be further improved for the class of enzyme-inhibitor complexes by a geometrical scoring which rewards deep pockets. A web server of metaPPI is available at scoppi.tu-dresden.de/metappi. The source code of our docking algorithm BDOCK is also available at www.biotec.tu-dresden.de /approximately bhuang/bdock.

  13. A Prediction Method of Binding Free Energy of Protein and Ligand

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Wang, Xicheng

    2010-05-01

    Predicting the binding free energy is an important problem in bimolecular simulation. Such prediction would be great benefit in understanding protein functions, and may be useful for computational prediction of ligand binding strengths, e.g., in discovering pharmaceutical drugs. Free energy perturbation (FEP)/thermodynamics integration (TI) is a classical method to explicitly predict free energy. However, this method need plenty of time to collect datum, and that attempts to deal with some simple systems and small changes of molecular structures. Another one for estimating ligand binding affinities is linear interaction energy (LIE) method. This method employs averages of interaction potential energy terms from molecular dynamics simulations or other thermal conformational sampling techniques. Incorporation of systematic deviations from electrostatic linear response, derived from free energy perturbation studies, into the absolute binding free energy expression significantly enhances the accuracy of the approach. However, it also is time-consuming work. In this paper, a new prediction method based on steered molecular dynamics (SMD) with direction optimization is developed to compute binding free energy. Jarzynski's equality is used to derive the PMF or free-energy. The results for two numerical examples are presented, showing that the method has good accuracy and efficiency. The novel method can also simulate whole binding proceeding and give some important structural information about development of new drugs.

  14. The unusual estrogen-binding protein (UEBP) of male rat liver: structural determinants of ligands.

    PubMed

    Miroshnichenko, M L; Smirnova, O V; Smirnov, A N; Rozen, V B

    1983-04-01

    The unusual estrogen-binding protein (UEBP) found in a male rat liver is a sex dependent protein which differs from other known receptor and transport proteins by the high lability of its complexes with estradiol (E2) and also the unique specificity of affinity for hormones. In this work values of relative binding affinity (RBA) of the UEBP for 57 steroids and their analogs were determined. The affinity of steroids was characterised by the amount of the unlabeled compound needed for 50% inhibition of [3H]-E2 binding with the UEBP. A number of derivatives of estrane and androstane possess an ability to interact with this protein, in contrast to the derivatives of pregnane, stilbene and triphenylethane. Characterized by RBA values, natural steroids are found to have the following order: estriol larger than or equal to E2 greater than 16 alpha-hydroxyestrone = 2 alpha-hydroxytestosterone greater than 16-epiestriol greater than or equal to estetrol greater than or equal to 17-epiestriol greater than or equal to 2-methoxyestradiol greater than or equal to 5 alpha-androstane-3 alpha,17 beta-diol greater than or equal to estrone greater than testosterone greater than or equal to 2 beta-hydroxytestosterone greater than 5 alpha-dihydrotestosterone. Affinity of estrogens and androgens for the UEBP diminishes abruptly after removal of 3- and 17-hydroxy groups, masking of these by ether bonds or changing of 17 beta-hydroxyl to 17 alpha. All the investigated 17 oxo-C19-steroids, 5 beta-derivatives of testosterone, its 6 beta- and 16 alpha-hydroxy metabolites as well as 5 alpha-androstane-3 beta,17 beta-diol and 19-nortestosterone exhibit no essential affinity for the protein. On the basis of the results obtained it is suggested that the binding sites for estrogens and androgens in the UEBP molecule overlap but do not completely coincide. PMID:6834826

  15. Distinctive Binding of Avibactam to Penicillin-Binding Proteins of Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Asli, Abdelhamid; Brouillette, Eric; Krause, Kevin M.; Nichols, Wright W.

    2015-01-01

    Avibactam is a novel non-β-lactam β-lactamase inhibitor that covalently acylates a variety of β-lactamases, causing inhibition. Although avibactam presents limited antibacterial activity, its acylation ability toward bacterial penicillin-binding proteins (PBPs) was investigated. Staphylococcus aureus was of particular interest due to the reported β-lactamase activity of PBP4. The binding of avibactam to PBPs was measured by adding increasing concentrations to membrane preparations of a variety of Gram-positive and Gram-negative bacteria prior to addition of the fluorescent reagent Bocillin FL. Relative binding (measured here as the 50% inhibitory concentration [IC50]) to PBPs was estimated by quantification of fluorescence after gel electrophoresis. Avibactam was found to selectively bind to some PBPs. In Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, and S. aureus, avibactam primarily bound to PBP2, with IC50s of 0.92, 1.1, 3.0, and 51 μg/ml, respectively, whereas binding to PBP3 was observed in Streptococcus pneumoniae (IC50, 8.1 μg/ml). Interestingly, avibactam was able to significantly enhance labeling of S. aureus PBP4 by Bocillin FL. In PBP competition assays with S. aureus, where avibactam was used at a fixed concentration in combination with varied amounts of ceftazidime, the apparent IC50 of ceftazidime was found to be very similar to that determined for ceftazidime when used alone. In conclusion, avibactam is able to covalently bind to some bacterial PBPs. Identification of those PBP targets may allow the development of new diazabicyclooctane derivatives with improved affinity for PBPs or new combination therapies that act on multiple PBP targets. PMID:26574008

  16. Identification of the vinculin-binding site in the cytoskeletal protein alpha-actinin.

    PubMed

    McGregor, A; Blanchard, A D; Rowe, A J; Critchley, D R

    1994-07-01

    Using low-speed sedimentation equilibrium we have established that vinculin binds to alpha-actinin with a Kd of 1.3 x 10(-5) M. Electron microscopy of negatively stained preparations of vinculin revealed spherical particles (diameter 11.2 nm; S.D. 1.7 nm, n = 21), whereas alpha-actinin appeared as a rod-shaped particle (length 33 nm; S.D. 3.3 nm, n = 23). Mixtures of the two proteins contained both 'lollipop'- and 'dumbell'-shaped particles which we interpret as either one or two spherical vinculin molecules associated with the ends of the alpha-actinin rod. We have further defined the vinculin-binding site in alpha-actinin using 125I-vinculin and a gel-blot assay in which proteolytic fragments of alpha-actinin and fragments of alpha-actinin expressed in Escherichia coli were resolved by SDS/PAGE and blotted to nitrocellulose. 125I-vinculin bound to polypeptides derived from the spectrin-like repeat region of alpha-actinin, but did not bind to the actin-binding domain. Binding was inhibited by a 100-fold molar excess of unlabelled vinculin. Using a series of glutathione S-transferase fusion proteins we have mapped the vinculin-binding site to a region toward the C-terminal end of the molecule (alpha-actinin residues 713-749). 125I-vinculin also bound to fusion proteins containing this sequence which had been immobilized on glutathione-agarose beads. The vinculin-binding site is localized in a highly conserved region of the molecule close to the first of two EF-hand calcium-binding motifs. PMID:8037676

  17. Nonspecific transcription factor binding can reduce noise in the expression of downstream proteins

    NASA Astrophysics Data System (ADS)

    Soltani, M.; Bokes, P.; Fox, Z.; Singh, A.

    2015-10-01

    Transcription factors (TFs) interact with a multitude of binding sites on DNA and partner proteins inside cells. We investigate how nonspecific binding/unbinding to such decoy binding sites affects the magnitude and time-scale of random fluctuations in TF copy numbers arising from stochastic gene expression. A stochastic model of TF gene expression, together with decoy site interactions is formulated. Distributions for the total (bound and unbound) and free (unbound) TF levels are derived by analytically solving the chemical master equation under physiologically relevant assumptions. Our results show that increasing the number of decoy binding sides considerably reduces stochasticity in free TF copy numbers. The TF autocorrelation function reveals that decoy sites can either enhance or shorten the time-scale of TF fluctuations depending on model parameters. To understand how noise in TF abundances propagates downstream, a TF target gene is included in the model. Intriguingly, we find that noise in the expression of the target gene decreases with increasing decoy sites for linear TF-target protein dose-responses, even in regimes where decoy sites enhance TF autocorrelation times. Moreover, counterintuitive noise transmissions arise for nonlinear dose-responses. In summary, our study highlights the critical role of molecular sequestration by decoy binding sites in regulating the stochastic dynamics of TFs and target proteins at the single-cell level.

  18. Binding of labeled thyroxin analog to serum proteins evaluated after radioimmunoassay of free thyroxin

    SciTech Connect

    Arevalo, G.

    1989-03-01

    In ambulatory patients, assay of free thyroxin (FT4) in serum correlates well with thyroid status and with results obtained by equilibrium dialysis. The validity of FT4 results has been questioned mainly in euthyroid patients with altered concentrations of thyroid hormone-binding proteins, as in nonthyroidal illness, hereditary analbuminemia, familial dysalbuminemic hyperthyroxinemia (FDH), and the presence of iodothyronine-binding antibodies. I present here a study of the binding of (/sup 125/I)T4-derivative to serum proteins in the supernate, which is ordinarily discarded after determination of FT4 by one-step radioimmunoassay with dextran-coated charcoal used to separate the free and bound fractions. The results are expressed as a ratio, with results for a normal serum pool as reference. The average ratio was high in hyperthyroid subjects, 1.26 (SD 0.12, n = 25), and in hypoalbuminemia, 1.20 (SD 0.10, n = 15), and low in FDH, 0.62 (SD 0.11, n = 9), and hypothyroid subjects, 0.90 (SD 0.06, n = 20). In normal individuals it was 0.98 (SD 0.05, n = 30). Determination of the analog-binding rate complements the FT4 result and allows for the recognition of cases with abnormal binding by serum proteins, without recourse to other tests recommended for thyroid-function studies.

  19. Schistosoma mansoni secretes a chemokine binding protein with antiinflammatory activity.

    PubMed

    Smith, Philip; Fallon, Rosie E; Mangan, Niamh E; Walsh, Caitriona M; Saraiva, Margarida; Sayers, Jon R; McKenzie, Andrew N J; Alcami, Antonio; Fallon, Padraic G

    2005-11-21

    The coevolution of humans and infectious agents has exerted selective pressure on the immune system to control potentially lethal infections. Correspondingly, pathogens have evolved with various strategies to modulate and circumvent the host's innate and adaptive immune response. Schistosoma species are helminth parasites with genes that have been selected to modulate the host to tolerate chronic worm infections, often for decades, without overt morbidity. The modulation of immunity by schistosomes has been shown to prevent a range of immune-mediated diseases, including allergies and autoimmunity. Individual immune-modulating schistosome molecules have, therefore, therapeutic potential as selective manipulators of the immune system to prevent unrelated diseases. Here we show that S. mansoni eggs secrete a protein into host tissues that binds certain chemokines and inhibits their interaction with host chemokine receptors and their biological activity. The purified recombinant S. mansoni chemokine binding protein (smCKBP) suppressed inflammation in several disease models. smCKBP is unrelated to host proteins and is the first described chemokine binding protein encoded by a pathogenic human parasite and may have potential as an antiinflammatory agent.

  20. Use of bacteriophage cell wall-binding proteins for rapid diagnostics of Listeria.

    PubMed

    Schmelcher, Mathias; Loessner, Martin J

    2014-01-01

    Diagnostic protocols for food-borne bacterial pathogens such as Listeria need to be sensitive, specific, rapid, and inexpensive. Conventional culture methods are hampered by lengthy enrichment and incubation steps. Bacteriophage-derived high-affinity binding molecules (cell wall-binding domains, CBDs) specific for Listeria cells have recently been introduced as tools for detection and differentiation of this pathogen in foods. When coupled with magnetic separation, these proteins offer advantages in sensitivity and speed compared to the standard diagnostic methods. Furthermore, fusion of CBDs to differently colored fluorescent reporter proteins enables differentiation of Listeria strains in mixed cultures. This chapter provides protocols for detection of Listeria in food by CBD-based magnetic separation and subsequent multiplexed identification of strains of different serotypes with reporter-CBD fusion proteins.

  1. Platelet-derived growth factor binds specifically to receptors on vascular smooth muscle cells and the binding becomes nondissociable.

    PubMed Central

    Williams, L T; Tremble, P; Antoniades, H N

    1982-01-01

    Radioiodinated platelet-derived growth factor (125I-PDGF) was used in studies of PDGF binding sites on vascular smooth muscle cells. There was an excellent correlation between the ability of 125I-PDGF to stimulate cell proliferation and to bind specifically to cultured vascular smooth muscle cells. The half-maximal concentration for both processes was 0.1 nM. There were 50,000 binding sites per cell. Reduced PDGF, prepared by treatment of PDGF with 20 mM dithiothreitol, had neither the ability to bind to smooth muscle cells nor to stimulate cellular proliferation. Epidermal growth factor, nerve growth factor, fibroblast growth factor, and histone B did not compete for the binding sites at a concentration of 10 nM. 125I-PDGF binding was slowly reversible at 4 degrees C and was rapidly and totally reversible after a 1-min incubation at 37 degrees C. After continued incubation at 37 degrees C, the binding became irreversible. The half-time for formation of the nondissociable state of 125I-PDGF binding was approximately equal to 5 min at 37 degrees C. The nondissociable state of binding was not formed at 4 degrees C even after 1 hr of incubation. These data suggest that the sites we labeled are the PDGF receptors that mediate PDGF's mitogenic action and that a nondissociable state of PDGF binding is formed at 37 degrees C. It is likely that nondissociable PDGF represents internalized ligand or binding to sites that are converted to a high-affinity state after the ligand binds. PMID:6310551

  2. Exploiting Protein Conformational Change to Optimize Adenosine-Derived Inhibitors of HSP70.

    PubMed

    Cheeseman, Matthew D; Westwood, Isaac M; Barbeau, Olivier; Rowlands, Martin; Dobson, Sarah; Jones, Alan M; Jeganathan, Fiona; Burke, Rosemary; Kadi, Nadia; Workman, Paul; Collins, Ian; van Montfort, Rob L M; Jones, Keith

    2016-05-26

    HSP70 is a molecular chaperone and a key component of the heat-shock response. Because of its proposed importance in oncology, this protein has become a popular target for drug discovery, efforts which have as yet brought little success. This study demonstrates that adenosine-derived HSP70 inhibitors potentially bind to the protein with a novel mechanism of action, the stabilization by desolvation of an intramolecular salt-bridge which induces a conformational change in the protein, leading to high affinity ligands. We also demonstrate that through the application of this mechanism, adenosine-derived HSP70 inhibitors can be optimized in a rational manner. PMID:27119979

  3. The linoleic acid derivative DCP-LA selectively activates PKC-epsilon, possibly binding to the phosphatidylserine binding site.

    PubMed

    Kanno, Takeshi; Yamamoto, Hideyuki; Yaguchi, Takahiro; Hi, Rika; Mukasa, Takeshi; Fujikawa, Hirokazu; Nagata, Tetsu; Yamamoto, Satoshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2006-06-01

    This study examined the effect of 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA), a newly synthesized linoleic acid derivative with cyclopropane rings instead of cis-double bonds, on protein kinase C (PKC) activity. In the in situ PKC assay with reverse-phase high-performance liquid chromatography, DCP-LA significantly activated PKC in PC-12 cells in a concentration-dependent (10 nM-100 microM) manner, with the maximal effect at 100 nM, and the DCP-LA effect was blocked by GF109203X, a PKC inhibitor, or a selective inhibitor peptide of the novel PKC isozyme PKC-epsilon. Furthermore, DCP-LA activated PKC in HEK-293 cells that was inhibited by the small, interfering RNA against PKC-epsilon. In the cell-free PKC assay, of the nine isozymes examined here, DCP-LA most strongly activated PKC-epsilon, with >7-fold potency over other PKC isozymes, in the absence of dioleoyl-phosphatidylserine and 1,2-dioleoyl-sn-glycerol; instead, the DCP-LA action was inhibited by dioleoyl-phosphatidylserine. DCP-LA also activated PKC-gamma, a conventional PKC, but to a much lesser extent compared with that for PKC-epsilon, by a mechanism distinct from PKC-epsilon activation. Thus, DCP-LA serves as a selective activator of PKC-epsilon, possibly by binding to the phosphatidylserine binding site on PKC-epsilon. These results may provide fresh insight into lipid signaling in PKC activation.

  4. Why are hyperactive ice-binding-proteins so active?

    NASA Astrophysics Data System (ADS)

    Braslavsky, Ido; Celik, Yeliz; Pertaya, Natalya; Eun Choi, Young; Bar, Maya; Davies, Peter L.

    2008-03-01

    Ice binding proteins (IBPs), also called `antifreeze proteins' or `ice structuring proteins', are a class of proteins that protect organisms from freezing injury. These proteins have many applications in medicine and agriculture, and as a platform for future biotechnology applications. One of the interesting questions in this field focuses on the hyperactivity of some IBPs. Ice binding proteins can be classified in two groups: moderate ones that can depress the freezing point up to ˜1.0 ^oC and hyperactive ones that can depress the freezing point several-fold further even at lower concentrations. It has been suggested that the hyperactivity of IBPs stem from the fact that they block growth out of specific ice surfaces, more specifically the basal planes of ice. Here we show experimental results based on fluorescence microscopy, highlighting the differences between moderate IBPs and hyperactive IBPs. These include direct evidence for basal plane affinity of hyperactive IBPs, the effects of IBPs on growth-melt behavior of ice and the dynamics of their interaction with ice.

  5. Delineation of the Pasteurellaceae-specific GbpA-family of glutathione-binding proteins

    PubMed Central

    2011-01-01

    Background The Gram-negative bacterium Haemophilus influenzae is a glutathione auxotroph and acquires the redox-active tripeptide by import. The dedicated glutathione transporter belongs to the ATP-binding cassette (ABC)-transporter superfamily and displays more than 60% overall sequence identity with the well-studied dipeptide (Dpp) permease of Escherichia coli. The solute binding protein (SBP) that mediates glutathione transport in H. influenzae is a lipoprotein termed GbpA and is 54% identical to E. coli DppA, a well-studied member of family 5 SBP's. The discovery linking GbpA to glutathione import came rather unexpectedly as this import-priming SBP was previously annotated as a heme-binding protein (HbpA), and was thought to mediate heme acquisition. Nonetheless, although many SBP's have been implicated in more than one function, a prominent physiological role for GbpA and its partner permease in heme acquisition appears to be very unlikely. Here, we sought to characterize five representative GbpA homologs in an effort to delineate the novel GbpA-family of glutathione-specific family 5 SBPs and to further clarify their functional role in terms of ligand preferences. Results Lipoprotein and non-lipoprotein GbpA homologs were expressed in soluble form and substrate specificity was evaluated via a number of ligand binding assays. A physiologically insignificant affinity for hemin was observed for all five GbpA homologous test proteins. Three out of five test proteins were found to bind glutathione and some of its physiologically relevant derivatives with low- or submicromolar affinity. None of the tested SBP family 5 allocrites interacted with the remaining two GbpA test proteins. Structure-based sequence alignments and phylogenetic analysis show that the two binding-inert GbpA homologs clearly form a separate phylogenetic cluster. To elucidate a structure-function rationale for this phylogenetic differentiation, we determined the crystal structure of one of the

  6. Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets.

    PubMed

    Chen, Wan-Na; Nitsche, Christoph; Pilla, Kala Bharath; Graham, Bim; Huber, Thomas; Klein, Christian D; Otting, Gottfried

    2016-04-01

    Structure-guided drug design relies on detailed structural knowledge of protein-ligand complexes, but crystallization of cocomplexes is not always possible. Here we present a sensitive nuclear magnetic resonance (NMR) approach to determine the binding mode of tightly binding lead compounds in complex with difficult target proteins. In contrast to established NMR methods, it does not depend on rapid exchange between bound and free ligand or on stable isotope labeling, relying instead on a tert-butyl group as a chemical label. tert-Butyl groups are found in numerous protein ligands and deliver an exceptionally narrow and tall (1)H NMR signal. We show that a tert-butyl group also produces outstandingly intense intra- and intermolecular NOESY cross-peaks. These enable measurements of pseudocontact shifts generated by lanthanide tags attached to the protein, which in turn allows positioning of the ligand on the protein. Once the ligand has been located, assignments of intermolecular NOEs become possible even without prior resonance assignments of protein side chains. The approach is demonstrated with the dengue virus NS2B-NS3 protease in complex with a high-affinity ligand containing a tert-butyl group. PMID:26974502

  7. Crystal Structure of Human Retinoblastoma Binding Protein 9

    SciTech Connect

    Vorobiev, S.; Su, M; Seetharaman, J; Huang, Y; Chen, C; Maglaqui, M; Janjua, H; Montelione, G; Tong, L; et. al.

    2009-01-01

    As a step towards better integrating protein three-dimensional (3D) structural information in cancer systems biology, the Northeast Structural Genomics Consortium (NESG) (www.nesg.org) has constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well-known cancer-associated proteins play central roles as hubs or bottlenecks in the HCPIN (http://nmr.cabm.rutgers.edu/hcpin). NESG has selected more than 1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long-range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes, in the context of their interaction networks. Human retinoblastoma binding protein 9 (RBBP9) is one of the HCPIN proteins targeted by NESG. RBBP9 was initially identified as the product of a new gene, Bog (for B5T over-expressed gene), in several transformed rat liver epithelial cell lines resistant to the growth-inhibitory effect of TGF-1 as well as in primary human liver tumors. RBBP9 contains the retinoblastoma (Rb) binding motif LxCxE in its sequence, and was shown to interact with Rb by yeast two-hybrid and coimmunoprecipitation experiments. Mutation of the Leu residue in this motif to Gln blocked the binding to Rb. RBBP9 can displace E2F1 from E2F1-Rb complexes, and over expression of RBBP9 overcomes TGF-1 induced growth arrest and results in transformation of rat liver epithelial cells leading to hepatoblastoma-like tumors in nude mice. RBBP9 may also play a role in cellular responses to chronic low dose radiation. A close homolog of RBBP9, sharing 93% amino acid sequence identity and also known as RBBP10, interacts with a protein with sua5-yciO-yrdC domains.

  8. Purification of penicillin-binding protein 2 of Escherichia coli.

    PubMed Central

    Curtis, S J; Strominger, J L

    1981-01-01

    Penicillin-binding protein 2 (PBP-2) of Escherichia coli K-12 was purified by covalent affinity chromatography using 6-aminopenicillanic acid covalently coupled to carboxymethyl-Sepharose (6-APA-CM-Sepharose). Purification of PBP-2 was accomplished by prebinding the methoxy cephalosporin, cefoxitin, to the Triton X-100-solubilized PBPs of E. coli and then incubating the PBPs with 6-APA-CM-Sepharose. Cefoxitin readily binds to all the E. coli PBPs except PBP-2 and, thus, in the presence of cefoxitin, only PBP-2 could bind to the 6-APA-CM-Sepharose. The purification of a mixture of all of the PBPs of E. coli by affinity chromatography is also described. Images PMID:7007320

  9. Glutamate regulates kainate-binding protein expression in cultured chick Bergmann glia through an activator protein-1 binding site.

    PubMed

    Aguirre, A; López, T; López-Bayghen, E; Ortega, A

    2000-12-15

    The expression of the chick kainate-binding protein, a member of the ionotropic glutamate receptor family, is restricted to the cerebellum, specifically to Bergmann glia. Glutamate induces a membrane to nuclei signaling involved in gene expression regulation. Exposure of cultured chick Bergmann glia cells to glutamate leads to an increase in kainate binding protein and mRNA levels, suggesting a transcriptional level of regulation. The 5' proximal region of the chick kainate binding gene was cloned and transfected 4into Bergmann glia cells. Three main regulatory regions could be defined, a minimal promoter region, a negative regulatory region, and interestingly, a glutamate-responsive element. Deletion of this element abolishes the agonist effect. Moreover, electrophoretic mobility shift assays, cotransfection experiments, and site-directed mutagenesis clearly suggest that the glutamate effect is mediated through an AP-1 site by a Fos/Jun heterodimer. The present results favor the notion of a functional role of kainate-binding protein in glutamatergic cerebellar neurotransmission.

  10. Ice-binding mechanism of winter flounder antifreeze proteins.

    PubMed Central

    Cheng, A; Merz, K M

    1997-01-01

    We have studied the winter flounder antifreeze protein (AFP) and two of its mutants using molecular dynamics simulation techniques. The simulations were performed under four conditions: in the gas phase, solvated by water, adsorbed on the ice (2021) crystal plane in the gas phase and in aqueous solution. This study provided details of the ice-binding pattern of the winter flounder AFP. Simulation results indicated that the Asp, Asn, and Thr residues in the AFP are important in ice binding and that Asn and Thr as a group bind cooperatively to the ice surface. These ice-binding residues can be collected into four distinct ice-binding regions: Asp-1/Thr-2/Asp-5, Thr-13/Asn-16, Thr-24/Asn-27, and Thr-35/Arg-37. These four regions are 11 residues apart and the repeat distance between them matches the ice lattice constant along the (1102) direction. This match is crucial to ensure that all four groups can interact with the ice surface simultaneously, thereby, enhancing ice binding. These Asx (x = p or n)/Thr regions each form 5-6 hydrogen bonds with the ice surface: Asn forms about three hydrogen bonds with ice molecules located in the step region while Thr forms one to two hydrogen bonds with the ice molecules in the ridge of the (2021) crystal plane. Both the distance between Thr and Asn and the ordering of the two residues are crucial for effective ice binding. The proper sequence is necessary to generate a binding surface that is compatible with the ice surface topology, thus providing a perfect "host/guest" interaction that simultaneously satisfies both hydrogen bonding and van der Waals interactions. The results also show the relation among binding energy, the number of hydrogen bonds, and the activity. The activity is correlated to the binding energy, and in the case of the mutants we have studied the number of hydrogen bonds. The greater the number of the hydrogen bonds the greater the antifreeze activity. The roles van der Waals interactions and the hydrophobic

  11. BeAtMuSiC: Prediction of changes in protein-protein binding affinity on mutations.

    PubMed

    Dehouck, Yves; Kwasigroch, Jean Marc; Rooman, Marianne; Gilis, Dimitri

    2013-07-01

    The ability of proteins to establish highly selective interactions with a variety of (macro)molecular partners is a crucial prerequisite to the realization of their biological functions. The availability of computational tools to evaluate the impact of mutations on protein-protein binding can therefore be valuable in a wide range of industrial and biomedical applications, and help rationalize the consequences of non-synonymous single-nucleotide polymorphisms. BeAtMuSiC (http://babylone.ulb.ac.be/beatmusic) is a coarse-grained predictor of the changes in binding free energy induced by point mutations. It relies on a set of statistical potentials derived from known protein structures, and combines the effect of the mutation on the strength of the interactions at the interface, and on the overall stability of the complex. The BeAtMuSiC server requires as input the structure of the protein-protein complex, and gives the possibility to assess rapidly all possible mutations in a protein chain or at the interface, with predictive performances that are in line with the best current methodologies.

  12. An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis.

    PubMed Central

    Herschlag, D; Khosla, M; Tsuchihashi, Z; Karpel, R L

    1994-01-01

    We have previously shown that a protein derived from the p7 nucleocapsid (NC) protein of HIV type-1 increases kcat/Km and kcat for cleavage of a cognate substrate by a hammerhead ribozyme. Here we show directly that the increase in kcat/Km arises from catalysis of the annealing of the RNA substrate to the ribozyme and the increase in kcat arises from catalysis of dissociation of the RNA products from the ribozyme. A peptide polymer derived from the consensus sequence of the C-terminal domain of the hnRNP A1 protein (A1 CTD) provides similar enhancements. Although these effects apparently arise from non-specific interactions, not all non-specific binding interactions led to these enhancements. NC and A1 CTD exert their effects by accelerating attainment of the thermodynamically most stable species throughout the ribozyme catalytic cycle. In addition, NC protein is shown to resolve a misfolded ribozyme-RNA complex that is otherwise long lived. These in vitro results suggest that non-specific RNA binding proteins such as NC and hnRNP proteins may have a biological role as RNA chaperones that prevent misfolding of RNAs and resolve RNAs that have misfolded, thereby ensuring that RNA is accessible for its biological functions. Images PMID:8026476

  13. The calmodulin-binding domain of the mouse 90-kDa heat shock protein.

    PubMed

    Minami, Y; Kawasaki, H; Suzuki, K; Yahara, I

    1993-05-01

    The mouse 90-kDa heat shock protein (HSP90) and Ca(2+)-calmodulin were cross-linked at an equimolar ratio using a carbodiimide zero-length cross-linker. To identify the calmodulin-binding domain(s) of HSP90, CNBr-cleaved peptide fragments of HSP90 were mixed with Ca(2+)-calmodulin and cross-linked. Amino acid sequence determination revealed that an HSP90 alpha-derived peptide starting at the 486th amino acid residue was contained in the cross-linked products, which contains a calmodulin-binding motif (from Lys500 to Ile520). A similar motif is present also in HSP90 beta (from Lys491 to Val511). The synthetic peptides corresponding to these putative calmodulin-binding sequences were found to be cross-linked with Ca(2+)-calmodulin and to prevent the cross-linking of HSP90 and Ca(2+)-calmodulin. Both HSP90 alpha and HSP90 beta bind Ca2+. The HSP90 peptides bind HSP90 and thereby inhibit the binding of Ca2+. In addition, the HSP90 peptides augment the self-oligomerization of HSP90 induced at elevated temperatures. These results suggest that the calmodulin-binding domain of HSP90 might interact with another part of the same molecule and that Ca(2+)-calmodulin might modulate the structure and function of HSP90 through abolishing the intramolecular interaction. PMID:8486648

  14. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  15. Heparin-binding mechanism of the IGF2/IGF-binding protein 2 complex.

    PubMed

    Lund, Jacob; Søndergaard, Mads T; Conover, Cheryl A; Overgaard, Michael T

    2014-06-01

    IGF1 and IGF2 are potent stimulators of diverse cellular activities such as differentiation and mitosis. Six IGF-binding proteins (IGFBP1-IGFBP6) are primary regulators of IGF half-life and receptor availability. Generally, the binding of IGFBPs inhibits IGF receptor activation. However, it has been shown that IGFBP2 in complex with IGF2 (IGF2/IGFBP2) stimulates osteoblast function in vitro and increases skeletal mass in vivo. IGF2 binding to IGFBP2 greatly increases the affinity for 2- or 3-carbon O-sulfated glycosaminoglycans (GAGs), e.g. heparin and heparan sulfate, which is hypothesized to preferentially and specifically target the IGF2/IGFBP2 complex to the bone matrix. In order to obtain a more detailed understanding of the interactions between the IGF2/IGFBP2 complex and GAGs, we investigated heparin-binding properties of IGFBP2 and the IGF2/IGFBP2 complex in a quantitative manner. For this study, we mutated key positively charged residues within the two heparin-binding domains (HBDs) in IGFBP2 and in one potential HBD in IGF2. Using heparin affinity chromatography, we demonstrate that the two IGFBP2 HBDs contribute differentially to GAG binding in free IGFBP2 and the IGF2/IGFBP2 protein complex. Moreover, we identify a significant contribution from the HBD in IGF2 to the increased IGF2/IGFBP2 heparin affinity. Using molecular modeling, we present a novel model for the IGF2/IGFBP2 interaction with heparin where all three proposed HBDs constitute a positively charged and surface-exposed area that would serve to promote the increased heparin affinity of the complex compared with free intact IGFBP2.

  16. Nucleic acid binding affinity of fd gene 5 protein in the cooperative binding mode.

    PubMed

    Bobst, A M; Ireland, J C; Bobst, E V

    1984-02-25

    A sensitive ESR method which allows a direct quantitative determination of nucleic acid binding affinities of proteins under physiologically relevant conditions has been applied to the gene 5 protein of bacteriophage fd. This was achieved with two spin-labeled nucleic acids, (ldT, dT)n and (lA,A)n, which served as macro-molecular spin probes in ESR competition experiments. With the two different macromolecular spin probes, it was possible to determine the relative apparent affinity constants, Kapp, over a large affinity domain. In 20 mM Tris X HCl (pH 8.1), 1 mM sodium EDTA, 0.1 mM dithiothreitol, 10% (w/v) glycerol, 0.05% Triton, and 125 mM NaCl, the following affinity relationship was observed: K(dT)napp = 10(3) KfdDNAapp = 2 X 10(4) K(A)napp = 6.6 X 10(4) KrRNAapp = 1.5 X 10(5) KR17RNAapp. Increasing the [NaCl] from 125 to 200 mM caused considerably less tight binding of gene 5 protein to (lA,A)n, and a typical cooperative binding isotherm was observed, whereas at the lower [NaCl] used for the competition experiments, the binding was essentially stoichiometric. A computer fit of the experimental titration data at 200 mM NaCl gave an intrinsic binding constant, Kint, of 1300 M-1 and a cooperativity factor, omega, of 60 (Kint omega = Kapp) for (lA,A)n.

  17. Role of fatty acid binding protein on hepatic palmitate uptake.

    PubMed

    Burczynski, F J; Zhang, M N; Pavletic, P; Wang, G Q

    1997-12-01

    Expression of hepatic fatty acid binding protein (FABP) mRNA is regulated by growth hormone. In the absence of growth hormone, there is a 60% reduction in FABP mRNA levels (S.A. Berry, J.-B Yoon, U. List, and S. Seelig. J. Am. Coll. Nutr. 12:638-642. 1995). Previous work in our laboratory focused on the role of extracellular binding proteins in the hepatic uptake of long chain fatty acids. In the present study we were interested to determine the role of FABP in the transmembrane flux of long chain fatty acids. Using hepatocyte monolayers from control (n = 9) and hypophysectomized (n = 6) rats, we investigated the uptake of [3H]palmitate in the presence and absence of albumin. In the absence of albumin, total hepatocyte [3H]palmitate clearance rates from control (17.2 +/- 1.5 microL.mg-1 protein.s-1; mean +/- SEM; n = 9) and hypophysectomized (15.5 +/- 2.1 microL.mg-1 protein.s-1; n = 6) animals were similar (p > 0.05). In the presence of 2 microM albumin the total [3H]palmitate clearance rate from control hepatocytes (1.63 +/- 0.11 microL.mg-1 protein.s-1; n = 9) was significantly larger (40%) than from hepatocytes obtained from hypophysectomized (0.97 +/- 0.15 microL.mg-1 protein.s-1; n = 6; p < 0.01) animals. SDS-PAGE electrophoresis revealed that plasma membrane FABP levels from control and hypophysectomized animals were similar. However, there was a 49% decrease in the cytosolic FABP levels of hepatocytes isolated from hypophysectomized as compared with control animals. The decreased cytosolic FABB levels paralleled the decrease in palmitate uptake. We conclude that in the absence of extracellular binding proteins the rate-limiting step in the overall uptake of long chain fatty acids is diffusion to the cell surface. However, in the presence of albumin, the rate of palmitate uptake is determined primarily by cytosolic FABP levels.

  18. Pyruvate kinase M2 is a phosphotyrosine-binding protein

    SciTech Connect

    Christofk, H.R.; Vander Heiden, M.G.; Wu, N.; Asara, J.M.; Cantley, L.C.

    2008-06-03

    Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.

  19. Immunochemical similarity of GTP-binding proteins from different systems

    SciTech Connect

    Kalinina, S.N.

    1986-06-20

    It was found that antibodies against the GTP-binding proteins of bovine retinal photoreceptor membranes blocked the inhibitory effect of estradiol on phosphodiesterase from rat and human uterine cytosol and prevented the cumulative effect of catecholamines and guanylyl-5'-imidodiphosphate on rat skeletal muscle adenylate cyclase. It was established by means of double radial immunodiffusion that these antibodies form a precipitating complex with purified bovine brain tubulin as well as with retinal preparations obtained from eyes of the bull, pig, rat, frog, some species of fish, and one reptile species. Bands of precipitation were not observed with these antibodies when retinal preparations from invertebrates (squid and octopus) were used as the antigens. The antibodies obtained interacted with the ..cap alpha..- and ..beta..-subunits of GTP-binding proteins from bovine retinal photoreceptor membranes.

  20. Maltose-Binding Protein (MBP), a Secretion-Enhancing Tag for Mammalian Protein Expression Systems.

    PubMed

    Reuten, Raphael; Nikodemus, Denise; Oliveira, Maria B; Patel, Trushar R; Brachvogel, Bent; Breloy, Isabelle; Stetefeld, Jörg; Koch, Manuel

    2016-01-01

    Recombinant proteins are commonly expressed in eukaryotic expression systems to ensure the formation of disulfide bridges and proper glycosylation. Although many proteins can be expressed easily, some proteins, sub-domains, and mutant protein versions can cause problems. Here, we investigated expression levels of recombinant extracellular, intracellular as well as transmembrane proteins tethered to different polypeptides in mammalian cell lines. Strikingly, fusion of proteins to the prokaryotic maltose-binding protein (MBP) generally enhanced protein production. MBP fusion proteins consistently exhibited the most robust increase in protein production in comparison to commonly used tags, e.g., the Fc, Glutathione S-transferase (GST), SlyD, and serum albumin (ser alb) tag. Moreover, proteins tethered to MBP revealed reduced numbers of dying cells upon transient transfection. In contrast to the Fc tag, MBP is a stable monomer and does not promote protein aggregation. Therefore, the MBP tag does not induce artificial dimerization of tethered proteins and provides a beneficial fusion tag for binding as well as cell adhesion studies. Using MBP we were able to secret a disease causing laminin β2 mutant protein (congenital nephrotic syndrome), which is normally retained in the endoplasmic reticulum. In summary, this study establishes MBP as a versatile expression tag for protein production in eukaryotic expression systems. PMID:27029048

  1. Human neutrophil calmodulin-binding proteins: identification of the calmodulin-dependent protein phosphatase

    SciTech Connect

    Blackburn, W.D.; Tallant, E.A.; Wallace, R.W.

    1986-05-01

    The molecular events in linking neutrophil activation and ligand binding to specific membrane receptors are mediated in part by an increase in intracellular Ca/sup 2 +/. One mechanism by which Ca/sup 2 +/ may trigger neutrophil activation is through Ca/sup 2 +//calmodulin (CaM)-regulated proteins and enzymes. To determine which Ca/sup 2 +//CaM-regulated enzymes may be present in the neutrophil, they have used Western blotting techniques and /sup 125/I-CaM to identify neutrophil CaM-binding proteins. Eleven proteins with molecular weights ranging from 230K to 13.5K bound /sup 125/I-CaM in a Ca/sup 2 +/-dependent manner. One predominant region of /sup 125/I-Cam binding was to a 59K protein; a protein with an identical mobility was labeled by an antisera against brain CaM-dependent phosphatase. Ca/sup 2 +/-dependent phosphatase activity, which was inhibited by the CaM antagonist trifluoperazine, was detected in a neutrophil extract; a radioimmunoassay for the phosphatase indicated that it was present in the extract at approximately 0.2 ..mu..g/mg protein. Most of the CaM-binding proteins, including the 59K protein, were rapidly degraded upon lysis of the neutrophil. There was a close correlation between the degradation of the 59K protein and the loss of Ca/sup 2 +/-dependent phosphatase activity in the neutrophil extract. Thus, human neutrophils contain numerous CaM-binding proteins which are presumably Ca/sup 2 +//calmodulin-regulated enzymes and proteins; the 59K protein is a CaM-dependent phosphatase.

  2. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis.

    PubMed

    Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo

    2015-04-11

    Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein-albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug.

  3. Fast Photochemical Oxidation of Proteins (FPOP) Maps the Epitope of EGFR Binding to Adnectin

    NASA Astrophysics Data System (ADS)

    Yan, Yuetian; Chen, Guodong; Wei, Hui; Huang, Richard Y.-C.; Mo, Jingjie; Rempel, Don L.; Tymiak, Adrienne A.; Gross, Michael L.

    2014-12-01

    Epitope mapping is an important tool for the development of monoclonal antibodies, mAbs, as therapeutic drugs. Recently, a class of therapeutic mAb alternatives, adnectins, has been developed as targeted biologics. They are derived from the 10th type III domain of human fibronectin (10Fn3). A common approach to map the epitope binding of these therapeutic proteins to their binding partners is X-ray crystallography. Although the crystal structure is known for Adnectin 1 binding to human epidermal growth factor receptor (EGFR), we seek to determine complementary binding in solution and to test the efficacy of footprinting for this purpose. As a relatively new tool in structural biology and complementary to X-ray crystallography, protein footprinting coupled with mass spectrometry is promising for protein-protein interaction studies. We report here the use of fast photochemical oxidation of proteins (FPOP) coupled with MS to map the epitope of EGFR-Adnectin 1 at both the peptide and amino-acid residue levels. The data correlate well with the previously determined epitopes from the crystal structure and are consistent with HDX MS data, which are presented in an accompanying paper. The FPOP-determined binding interface involves various amino-acid and peptide regions near the N terminus of EGFR. The outcome adds credibility to oxidative labeling by FPOP for epitope mapping and motivates more applications in the therapeutic protein area as a stand-alone method or in conjunction with X-ray crystallography, NMR, site-directed mutagenesis, and other orthogonal methods.

  4. Structural Basis for Activation of Fatty Acid-binding Protein 4

    SciTech Connect

    Gillilan,R.; Ayers, S.; Noy, N.

    2007-01-01

    Fatty acid-binding protein 4 (FABP4) delivers ligands from the cytosol to the nuclear receptor PPAR{gamma} in the nucleus, thereby enhancing the transcriptional activity of the receptor. Notably, FABP4 binds multiple ligands with a similar affinity but its nuclear translocation is activated only by specific compounds. To gain insight into the structural features that underlie the ligand-specificity in activation of the nuclear import of FABP4, we solved the crystal structures of the protein complexed with two compounds that induce its nuclear translocation, and compared these to the apo-protein and to FABP4 structures bound to non-activating ligands. Examination of these structures indicates that activation coincides with closure of a portal loop phenylalanine side-chain, contraction of the binding pocket, a subtle shift in a helical domain containing the nuclear localization signal of the protein, and a resultant change in oligomeric state that exposes the nuclear localization signal to the solution. Comparisons of backbone displacements induced by activating ligands with a measure of mobility derived from translation, libration, screw (TLS) refinement, and with a composite of slowest normal modes of the apo state suggest that the helical motion associated with the activation of the protein is part of the repertoire of the equilibrium motions of the apo-protein, i.e. that ligand binding does not induce the activated configuration but serves to stabilize it. Nuclear import of FABP4 can thus be understood in terms of the pre-existing equilibrium hypothesis of ligand binding.

  5. Mammalian synthetic circuits with RNA binding proteins delivered by RNA

    PubMed Central

    Wroblewska, Liliana; Kitada, Tasuku; Endo, Kei; Siciliano, Velia; Stillo, Breanna; Saito, Hirohide; Weiss, Ron

    2015-01-01

    Synthetic regulatory circuits encoded on RNA rather than DNA could provide a means to control cell behavior while avoiding potentially harmful genomic integration in therapeutic applications. We create post-transcriptional circuits using RNA-binding proteins, which can be wired in a plug-and-play fashion to create networks of higher complexity. We show that the circuits function in mammalian cells when encoded on modified mRNA or self-replicating RNA. PMID:26237515

  6. Liposolubility and protein binding of oxycodone in vitro.

    PubMed

    Pöyhiä, R; Seppälä, T

    1994-01-01

    The liposolubility and protein-binding of oxycodone were studied in vitro and compared with other opioids. Liposolubility was assessed by three different methods: 1) the shake-flask method with n-octanol at pH 4-9, 2) measuring the retention time in reversed-phase high-performance liquid chromatography (RP-HPLC) with a LiChrosorb RP-18 and 3) studying the solubility in human epidural and subcutaneous fat. Human fat was obtained from patients undergoing surgery for herniated intervertebral disc. After incubation, pieces of fatty tissue immersed in a buffer solution containing oxycodone, morphine, pethidine or fentanyl for 10-40 min.; tissue pieces were homogenated, opioids extracted and opioid concentrations measured by gas- and high-performance liquid chromatography. The binding of oxycodone, morphine and fentanyl in plasma proteins was studied by ultrafiltration (Amicon-kit). The mean apparent partition coefficients Papp of oxycodone, morphine, pethidine and fentanyl in n-octanol at pH 7 were 0.7, 0.5, 10.5 and 399, respectively. The retention times in RP-HPLC for oxycodone, morphine, pethidine, fentanyl and buprenorphine were 0.6 min., 0.2 min., 2.4 min., 2.3 min. and 10.5 min., respectively. Only buprenorphine and fentanyl appeared to be highly lipophilic in the human fat tissue experiments; no difference was found between epidural or subcutaneous fat in this respect. The in vitro protein binding of oxycodone was 38%, of morphine 31% and of fentanyl 87% in average. It is concluded that, in terms of physiochemical properties, liposolubility and protein-binding, oxycodone resembles morphine more than it does fentanyl.

  7. Anchored clathrate waters bind antifreeze proteins to ice

    PubMed Central

    Garnham, Christopher P.; Campbell, Robert L.; Davies, Peter L.

    2011-01-01

    The mechanism by which antifreeze proteins (AFPs) irreversibly bind to ice has not yet been resolved. The ice-binding site of an AFP is relatively hydrophobic, but also contains many potential hydrogen bond donors/acceptors. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years. Here we have elucidated the ice-binding mechanism through solving the first crystal structure of an Antarctic bacterial AFP. This 34-kDa domain, the largest AFP structure determined to date, folds as a Ca2+-bound parallel beta-helix with an extensive array of ice-like surface waters that are anchored via hydrogen bonds directly to the polypeptide backbone and adjacent side chains. These bound waters make an excellent three-dimensional match to both the primary prism and basal planes of ice and in effect provide an extensive X-ray crystallographic picture of the AFP∶ice interaction. This unobstructed view, free from crystal-packing artefacts, shows the contributions of both the hydrophobic effect and hydrogen bonding during AFP adsorption to ice. We term this mode of binding the “anchored clathrate” mechanism of AFP action. PMID:21482800

  8. Anchored Clathrate Waters Bind Antifreeze Proteins to Ice

    SciTech Connect

    C Garnham; R Campbell; P Davies

    2011-12-31

    The mechanism by which antifreeze proteins (AFPs) irreversibly bind to ice has not yet been resolved. The ice-binding site of an AFP is relatively hydrophobic, but also contains many potential hydrogen bond donors/acceptors. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years. Here we have elucidated the ice-binding mechanism through solving the first crystal structure of an Antarctic bacterial AFP. This 34-kDa domain, the largest AFP structure determined to date, folds as a Ca{sup 2+}-bound parallel beta-helix with an extensive array of ice-like surface waters that are anchored via hydrogen bonds directly to the polypeptide backbone and adjacent side chains. These bound waters make an excellent three-dimensional match to both the primary prism and basal planes of ice and in effect provide an extensive X-ray crystallographic picture of the AFP{vert_ellipsis}ice interaction. This unobstructed view, free from crystal-packing artefacts, shows the contributions of both the hydrophobic effect and hydrogen bonding during AFP adsorption to ice. We term this mode of binding the 'anchored clathrate' mechanism of AFP action.

  9. Fatty acid binding protein in the intestine of the chicken.

    PubMed

    Katongole, J B; March, B E

    1979-03-01

    The mucosa of the mesenteric intestine of the chicken has been found to contain a fatty acid binding protein (FABP) with a molecular weight of less than 12,400. The protein is present in the newly hatched chick before ingestion of feed and in the adult bird. When a low-fat diet is fed, the concentration of the FABP is highest in the proximal portion of the intestine and decreases posteriorly. When a high-fat diet is fed, an increase occurs in the amount of FABP in the lower section of the intestine.

  10. Characterization of auxin-binding proteins from zucchini plasma membrane

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  11. Mycobacteriophage cell binding proteins for the capture of mycobacteria

    PubMed Central

    Arutyunov, Denis; Singh, Upasana; El-Hawiet, Amr; Seckler, Henrique dos Santos; Nikjah, Sanaz; Joe, Maju; Bai, Yu; Lowary, Todd L; Klassen, John S; Evoy, Stephane; Szymanski, Christine M

    2014-01-01

    Slow growing Mycobacterium avium subsp. paratuberculosis (MAP) causes a deadly condition in cattle known as Johne's disease where asymptomatic carriers are the major source of disease transmission. MAP was also shown to be associated with chronic Crohn's disease in humans. Mycobacterium smegmatis is a model mycobacterium that can cause opportunistic infections in a number of human tissues and, rarely, a respiratory disease. Currently, there are no rapid, culture-independent, reliable and inexpensive tests for the diagnostics of MAP or M. smegmatis infections. Bacteriophages are viruses producing a number of proteins that effectively and specifically recognize the cell envelopes of their bacterial hosts. We demonstrate that the mycobacterial phage L5 minor tail protein Gp6 and lysin Gp10 are useful tools for the rapid capture of mycobacteria. Immobilized Gp10 was able to bind both MAP and M. smegmatis cells whereas Gp6 was M. smegmatis specific. Neither of the 2 proteins was able to capture E. coli, salmonella, campylobacter or Mycobacterium marinum cells. Gp6 was detected previously as a component of the phage particle and shows no homology to proteins with known function. Therefore, electrospray ionization mass spectrometry was used to determine whether recombinant Gp6 could bind to a number of chemically synthesized fragments of mycobacterial surface glycans. These findings demonstrate that mycobacteriophage proteins could be used as a pathogen capturing platform that can potentially improve the effectiveness of existing diagnostic methods. PMID:26713219

  12. Design of HIV-1 Protease Inhibitors with Amino-bis-tetrahydrofuran Derivatives as P2-Ligands to Enhance Backbone-Binding Interactions. Synthesis, Biological Evaluation, and Protein-Ligand X-ray Studies

    SciTech Connect

    Ghosh, Arun K.; Martyr, Cuthbert D.; Osswald, Heather L.; Sheri, Venkat Reddy; Kassekert, Luke A.; Chen, Shujing; Agniswamy, Johnson; Wang, Yuan-Fang; Hayashi, Hironori; Aoki, Manabu; Weber, Irene T.; Mitsuya, Hiroaki

    2015-10-30

    Structure-based design, synthesis, and biological evaluation of a series of very potent HIV-1 protease inhibitors are described. In an effort to improve backbone ligand–binding site interactions, we have incorporated basic-amines at the C4 position of the bis-tetrahydrofuran (bis-THF) ring. We speculated that these substituents would make hydrogen bonding interactions in the flap region of HIV-1 protease. Synthesis of these inhibitors was performed diastereoselectively. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 25f, 25i, and 25j were evaluated against a number of highly-PI-resistant HIV-1 strains, and they exhibited improved antiviral activity over darunavir. Two high resolution X-ray structures of 25f- and 25g-bound HIV-1 protease revealed unique hydrogen bonding interactions with the backbone carbonyl group of Gly48 as well as with the backbone NH of Gly48 in the flap region of the enzyme active site. These ligand–binding site interactions are possibly responsible for their potent activity.

  13. Odorant binding characteristics of three recombinant odorant binding proteins in Microplitis mediator (Hymenoptera: Braconidae).

    PubMed

    Li, Keming; Wang, Shanning; Zhang, Kang; Ren, Liyan; Ali, Abid; Zhang, Yongjun; Zhou, Jingjiang; Guo, Yuyuan

    2014-06-01

    Odorant binding proteins (OBPs) are believed to be important for transporting semiochemicals through the aqueous sensillar lymph to the olfactory receptor cells within the insect antennal sensilla. In this study, three new putative OBP genes, MmedOBP8-10, were identified from a Microplitis mediator (Hymenoptera: Braconidae) antennal cDNA library. Quantitative real-time PCR (qRT-PCR) analysis revealed that all three of the OBP genes were expressed mainly in the antennae of adult wasps. The three OBPs were recombinantly expressed in Escherichia coli and purified by Ni ion affinity chromatography. Fluorescence competitive binding assays were performed using N-phenyl-naphthylamine as a fluorescent probe and 45 small organic compounds as competitors. These assays demonstrated that the three M. mediator OBPs can bind a broad range of odorant molecules with different binding affinities. They can bind the following ligands: nonane, farnesol, nerolidol, nonanal, β-ionone, acetic ether, and farnesene. In a Y-tube assay with these ligands as odor stimuli and paraffin oil as a control, all ligands, except nerolidol and acetic ether, were able to elicit behavioral responses in adult M. mediator. The wasps were significantly attracted to β-ionone, nonanal, and farnesene and repelled by nonane and farnesol. The results of this work provide insight into the chemosensory functions of the OBPs in M. mediator.

  14. Selective binding to transthyretin and tetramer stabilization in serum from patients with familial amyloidotic polyneuropathy by an iodinated diflunisal derivative

    PubMed Central

    2004-01-01

    In familial amyloidotic polyneuropathy, TTR (transthyretin) variants are deposited as amyloid fibrils. It is thought that this process involves TTR tetramer dissociation, which leads to partially unfolded monomers that aggregate and polymerize into amyloid fibrils. This process can be counteracted by stabilization of the tetramer. Several small compounds, such as diclofenac, diflunisal and flufenamic acid, have been reported to bind to TTR in vitro, in the T4 (thyroxine) binding channel that runs through the TTR tetramer, and consequently are considered to stabilize TTR. However, if these agents bind plasma proteins other than TTR, decreased drug availability will occur, compromising their use as therapeutic agents for TTR amyloidosis. In the present work, we compared the action of these compounds and of new derivatives designed to increase both selectivity of binding to TTR and inhibitory potency in relation to TTR amyloid fibril formation. We found two diflunisal derivatives that, in contrast with diclofenac, flufenamic acid and diflunisal, displaced T4 from TTR in plasma preferentially over binding to albumin and thyroxine binding globulin. The same diflunisal derivatives also had a stabilizing effect on TTR tetramers in plasma, as studied by isoelectric focusing of whole plasma under semi-denaturing conditions. In addition, by transmission electron microscopy, we demonstrated that, in contrast with other proposed TTR stabilizers (namely diclofenac, flufenamic acid and diflunisal), one of the diflunisal derivatives tested efficiently inhibited TTR aggregation. Taken together, our ex vivo and in vitro studies present evidence for the selectivity and efficiency of novel diflunisal derivates as TTR stabilizers and as inhibitors of fibril formation. PMID:15080795

  15. Determinants of affinity and specificity in RNA-binding proteins.

    PubMed

    Helder, Stephanie; Blythe, Amanda J; Bond, Charles S; Mackay, Joel P

    2016-06-01

    Emerging data suggest that the mechanisms by which RNA-binding proteins (RBPs) interact with RNA and the rules governing specificity might be substantially more complex than those underlying their DNA-binding counterparts. Even our knowledge of what constitutes the RNA-bound proteome is contentious; recent studies suggest that 10-30% of RBPs contain no known RNA-binding domain. Adding to this situation is a growing disconnect between the avalanche of identified interactions between proteins and long noncoding RNAs and the absence of biophysical data on these interactions. RNA-protein interactions are also at the centre of what might emerge as one of the biggest shifts in thinking about cell and molecular biology this century, following from recent reports of ribonucleoprotein complexes that drive reversible membrane-free phase separation events within the cell. Unexpectedly, low-complexity motifs are important in the formation of these structures. Here we briefly survey recent advances in our understanding of the specificity of RBPs. PMID:27315040

  16. Are odorant-binding proteins involved in odorant discrimination?

    PubMed

    Steinbrecht, R A

    1996-12-01

    Pheromone-sensitive sensilla trichodea of nine moth species belonging to six families and three superfamilies of Lepidoptera were immunolabelled with an antiserum against the pheromone-binding protein of Antheraea polyphemus. Strong immunolabelling of the sensillum lymph was observed in all long sensilla trichodea of A. polyphemus, A. pernyi (Saturniidae), Bombyx mori (Bombycidae) and Manduca sexta (Sphingidae). Very weak labelling was found with all sensilla trichodea of Dendrolimus kikuchii (Lasiocampidae) and Lymantria dispar (Lymantriidae). In three noctuid species, some long sensilla trichodea were labelled strongly, some only weakly and some were not labelled at all. The fraction of long sensilla trichodea that were strongly labelled was large in Helicoverpa armigera, but small in Spodoptera littoralis and Autographa gamma. The observed cross-reactivity was not correlated with taxonomic relatedness of the species but rather with chemical relatedness of the pheromones used by these species, as a high labelling density was consistently observed in sensilla tuned to pheromones with an alcyl chain of 16 carbon atoms. The highly divergent specificity of pheromone-receptor cells in Noctuidae appears to be mirrored by a similar diversity of the pheromone-binding proteins in the sensilla trichodea. These data support the notion that pheromone-binding proteins participate in odorant discrimination.

  17. Proteins as binding targets of isothiocyanates in cancer prevention

    PubMed Central

    Mi, Lixin; Di Pasqua, Anthony J.

    2011-01-01

    Isothiocyanates are versatile cancer-preventive compounds. Evidence from animal studies indicates that the anticarcinogenic activities of ITCs involve all the major stages of tumor growth: initiation, promotion and progression. Epidemiological studies have also shown that dietary intake of ITCs is associated with reduced risk of certain human cancers. A number of mechanisms have been proposed for the chemopreventive activities of ITCs. To identify the molecular targets of ITCs is a first step to understand the molecular mechanisms of ITCs. Studies in recent years have shown that the covalent binding to certain protein targets by ITCs seems to play an important role in ITC-induced apoptosis and cell growth inhibition and other cellular effects. The knowledge gained from these studies may be used to guide future design and screen of better and more efficacious compounds. In this review, we intend to cover all potential protein targets of ITCs so far studied and summarize what are known about their binding sites and the potential biological consequences. In the end, we also offer discussions to shed light onto the relationship between protein binding and reactive oxygen species generation by ITCs. PMID:21665889

  18. Are odorant-binding proteins involved in odorant discrimination?

    PubMed

    Steinbrecht, R A

    1996-12-01

    Pheromone-sensitive sensilla trichodea of nine moth species belonging to six families and three superfamilies of Lepidoptera were immunolabelled with an antiserum against the pheromone-binding protein of Antheraea polyphemus. Strong immunolabelling of the sensillum lymph was observed in all long sensilla trichodea of A. polyphemus, A. pernyi (Saturniidae), Bombyx mori (Bombycidae) and Manduca sexta (Sphingidae). Very weak labelling was found with all sensilla trichodea of Dendrolimus kikuchii (Lasiocampidae) and Lymantria dispar (Lymantriidae). In three noctuid species, some long sensilla trichodea were labelled strongly, some only weakly and some were not labelled at all. The fraction of long sensilla trichodea that were strongly labelled was large in Helicoverpa armigera, but small in Spodoptera littoralis and Autographa gamma. The observed cross-reactivity was not correlated with taxonomic relatedness of the species but rather with chemical relatedness of the pheromones used by these species, as a high labelling density was consistently observed in sensilla tuned to pheromones with an alcyl chain of 16 carbon atoms. The highly divergent specificity of pheromone-receptor cells in Noctuidae appears to be mirrored by a similar diversity of the pheromone-binding proteins in the sensilla trichodea. These data support the notion that pheromone-binding proteins participate in odorant discrimination. PMID:8985600

  19. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold.

    PubMed

    Checco, James W; Kreitler, Dale F; Thomas, Nicole C; Belair, David G; Rettko, Nicholas J; Murphy, William L; Forest, Katrina T; Gellman, Samuel H

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF165-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain-mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  20. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation

    PubMed Central

    2013-01-01

    Background DNA methylation (5mC) plays important roles in epigenetic regulation of genome function. Recently, TET hydroxylases have been found to oxidise 5mC to hydroxymethylcytosine (5hmC), formylcytosine (5fC) and carboxylcytosine (5caC) in DNA. These derivatives have a role in demethylation of DNA but in addition may have epigenetic signaling functions in their own right. A recent study identified proteins which showed preferential binding to 5-methylcytosine (5mC) and its oxidised forms, where readers for 5mC and 5hmC showed little overlap, and proteins bound to further oxidation forms were enriched for repair proteins and transcription regulators. We extend this study by using promoter sequences as baits and compare protein binding patterns to unmodified or modified cytosine using DNA from mouse embryonic stem cell extracts. Results We compared protein enrichments from two DNA probes with different CpG composition and show that, whereas some of the enriched proteins show specificity to cytosine modifications, others are selective for both modification and target sequences. Only a few proteins were identified with a preference for 5hmC (such as RPL26, PRP8 and the DNA mismatch repair protein MHS6), but proteins with a strong preference for 5fC were more numerous, including transcriptional regulators (FOXK1, FOXK2, FOXP1, FOXP4 and FOXI3), DNA repair factors (TDG and MPG) and chromatin regulators (EHMT1, L3MBTL2 and all components of the NuRD complex). Conclusions 0ur screen has identified novel proteins that bind to 5fC in genomic sequences with different CpG composition and suggests they regulate transcription and chromatin, hence opening up functional investigations of 5fC readers. PMID:24156278

  1. PSCDB: a database for protein structural change upon ligand binding.

    PubMed

    Amemiya, Takayuki; Koike, Ryotaro; Kidera, Akinori; Ota, Motonori

    2012-01-01

    Proteins are flexible molecules that undergo structural changes to function. The Protein Data Bank contains multiple entries for identical proteins determined under different conditions, e.g. with and without a ligand molecule, which provides important information for understanding the structural changes related to protein functions. We gathered 839 protein structural pairs of ligand-free and ligand-bound states from monomeric or homo-dimeric proteins, and constructed the Protein Structural Change DataBase (PSCDB). In the database, we focused on whether the motions were coupled with ligand binding. As a result, the protein structural changes were classified into seven classes, i.e. coupled domain motion (59 structural changes), independent domain motion (70), coupled local motion (125), independent local motion (135), burying ligand motion (104), no significant motion (311) and other type motion (35). PSCDB provides lists of each class. On each entry page, users can view detailed information about the motion, accompanied by a morphing animation of the structural changes. PSCDB is available at http://idp1.force.cs.is.nagoya-u.ac.jp/pscdb/. PMID:22080505

  2. Identification of Immunogenic and Serum Binding Proteins of Staphylococcus epidermidis

    PubMed Central

    Sellman, Bret R.; Howell, Alan P.; Kelly-Boyd, Cari; Baker, Steve M.

    2005-01-01

    Staphylococcus epidermidis is a commensal of human skin and a leading cause of nosocomial bloodstream infections. Limited information is available about S. epidermidis proteins that are expressed upon transition to the bloodstream or those involved in host-pathogen interactions. A cell surface fraction from S. epidermidis 0-47 grown in rabbit serum to mimic environmental signals encountered during a bloodstream infection was separated by two-dimensional (2D) gel electrophoresis. Following 2D separation, the proteins were transferred to nitrocellulose and detected with either pooled sera generated in rabbits immunized with live S. epidermidis 0-47 or with biotin-labeled serum proteins eluted from the surface of bacteria grown in rabbit serum. Twenty-nine immunoreactive or serum binding proteins of S. epidermidis were identified by mass spectrometry. Twenty-seven of the corresponding genes were expressed in Escherichia coli, and the purified recombinant proteins were used to immunize mice. In a preliminary screen, 12 of the 27 recombinant proteins induced a response that reduced the number of bacteria recovered from the spleen or bloodstream of infected mice. In subsequent vaccination studies, 5 of the 12 proteins resulted in a statistically significant reduction in the number of bacteria. The identification of five candidate vaccine antigens from the initial screen of only 29 proteins demonstrates the utility of this approach. PMID:16177335

  3. Spatial analysis and quantification of the thermodynamic driving forces in protein-ligand binding: binding site variability.

    PubMed

    Raman, E Prabhu; MacKerell, Alexander D

    2015-02-25

    The thermodynamic driving forces behind small molecule-protein binding are still not well-understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provide an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both nonpolar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the "hydrophobic effect". Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. It is notable to have the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  4. Hierarchical mechanisms build the DNA-binding specificity of FUSE binding protein.

    PubMed

    Benjamin, Lawrence R; Chung, Hye-Jung; Sanford, Suzanne; Kouzine, Fedor; Liu, Juhong; Levens, David

    2008-11-25

    The far upstream element (FUSE) binding protein (FBP), a single-stranded nucleic acid binding protein, is recruited to the c-myc promoter after melting of FUSE by transcriptionally generated dynamic supercoils. Via interactions with TFIIH and FBP-interacting repressor (FIR), FBP modulates c-myc transcription. Here, we investigate the contributions of FBP's 4 K Homology (KH) domains to sequence selectivity. EMSA and missing contact point analysis revealed that FBP contacts 4 separate patches spanning a large segment of FUSE. A SELEX procedure using paired KH-domains defined the preferred subsequences for each KH domain. Unexpectedly, there was also a strong selection for the noncontacted residues between these subsequences, showing that the contact points must be optimally presented in a backbone that minimizes secondary structure. Strategic mutation of contact points defined in this study disabled FUSE activity in vivo. Because the biological specificity of FBP is tuned at several layers: (i) accessibility of the site; (ii) supercoil-driven melting; (iii) presentation of unhindered bases for recognition; and (iv) modular interaction of KH-domains with cognate bases, the FBP-FIR system and sequence-specific, single-strand DNA binding proteins in general are likely to prove versatile tools for adjusting gene expression.

  5. Immunological characterization of honey proteins and identification of MRJP 1 as an IgE-binding protein.

    PubMed

    Hayashi, Takeshi; Takamatsu, Nobue; Nakashima, Takashi; Arita, Takashi

    2011-01-01

    We encountered a fourth case of honey allergy in Japan. We characterized and identified the IgE-binding proteins in honey using the serum of a honey-allergenic patient. Immunoblot analysis revealed that IgE in the patient serum specifically bound to four proteins in each honey sample. At least three of these IgE-binding proteins were N-linked glycoproteins. To identify the 60-kDa IgE-binding protein in dandelion honey, the N-terminal sequences of the fragmented protein were analyzed, revealing the protein to be major royal jelly protein 1 (MRJP 1). Three IgE-binding proteins removed of N-linked oligosaccharide showed a large reduction in IgE-binding activity as compared with the intact protein. This suggests that the carbohydrates in the IgE-binding proteins are a major epitope for patient IgE.

  6. THE ROLE OF PROTEIN BINDING OF TRIVALENT ARSENICALS IN ARSENIC CARCINOGENESIS AND TOXICITY

    EPA Science Inventory

    Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor...

  7. Binding interaction of a gamma-aminobutyric acid derivative with serum albumin: an insight by fluorescence and molecular modeling analysis.

    PubMed

    Pal, Uttam; Pramanik, Sumit Kumar; Bhattacharya, Baisali; Banerji, Biswadip; C Maiti, Nakul

    2016-01-01

    gamma-Aminobutyric acid (GABA) is a naturally occurring inhibitory neurotransmitter and some of its derivatives showed potential to act as neuroprotective agents. With the aim of developing potential leads for anti-Alzheimer's drugs, in this study we synthesized a novel GABA derivative, methyl 4-(4-((2-(tert-butoxy)-2-oxoethyl)(4-methoxyphenyl)amino)benzamido)butanoate by a unique method of Buchwald-Hartwig cross coupling synthesis; with some modification the yield was significant (97 %) and spectroscopic analysis confirmed that the compound was highly pure (98.8 % by HPLC). The druglikeness properties such as logP, logS, and polar surface area were 3.87, -4.86 and 94.17 Å(2) respectively and it satisfied the Lipinski's rule of five. We examined the binding behavior of the molecule to human serum albumin (HSA) and bovine serum albumin (BSA) which are known as universal drug carrier proteins. The molecule binds to the proteins with low micromolar efficiency and the calculated binding constants were 3.85 and 2.75 micromolar for BSA and HSA, respectively. Temperature dependent study using van't Hoff equation established that the binding was thermodynamically favorable and the changes in the Gibb's free energy, ΔG for the binding process was negative. However, the binding of the molecule to HSA was enthalpy driven and the change of enthalpy (ΔH) was -10.63 kJ/mol, whereas, the binding to BSA was entropy driven and the change in entropy ΔS was 222 J/mol. The molecular docking analysis showed that the binding sites of the molecule lie in the groove between domain I and domain III of BSA, whereas it is within the domain I in case of HSA, which also supported the different thermodynamic nature of binding with HSA and BSA. Molecular dynamics analysis suggested that the binding was stable with time and provided further details of the binding interaction. Molecular dynamics study also highlighted the effect of this ligand binding on the serum albumin structure. PMID

  8. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  9. Copper–zinc cross-modulation in prion protein binding

    PubMed Central

    Stellato, Francesco; Minicozzi, Velia; Millhauser, Glenn L.; Pascucci, Marco; Proux, Olivier; Rossi, Giancarlo C.; Spevacek, Ann

    2016-01-01

    In this paper we report a systematic XAS study of a set of samples in which Cu(II) was progressively added to complexes in which Zn(II) was bound to the tetra-octarepeat portion of the prion protein. This work extends previous EPR and XAS analysis in which, in contrast, the effect of adding Zn(II) to Cu(II)–tetra-octarepeat complexes was investigated. Detailed structural analysis of the XAS spectra taken at both the Cu and Zn K-edge when the two metals are present at different relative concentrations revealed that Zn(II) and Cu(II) ions compete for binding to the tetra-octarepeat peptide by cross-regulating their relative binding modes. We show that the specific metal–peptide coordination mode depends not only, as expected, on the relative metal concentrations, but also on whether Zn(II) or Cu(II) was first bound to the peptide. In particular, it seems that the Zn(II) binding mode in the absence of Cu(II) is able to promote the formation of small peptide clusters in which triplets of tetra-octarepeats are bridged by pairs of Zn ions. When Cu(II) is added, it starts competing with Zn(II) for binding, disrupting the existing peptide cluster arrangement, despite the fact that Cu(II) is unable to completely displace Zn(II). These results may have a bearing on our understanding of peptide-aggregation processes and, with the delicate cross-regulation balancing we have revealed, seem to suggest the existence of an interesting, finely tuned interplay among metal ions affecting protein binding, capable of providing a mechanism for regulation of metal concentration in cells. PMID:25395329

  10. Expression profile and ligand-binding characterization of odorant-binding protein 2 in Batocera horsfieldi (Hope)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Odorant-binding proteins (OBPs) are important components in insect olfactory systems that transport semiochemicals through the aqueous sensillum lymph to surface of olfactory receptor neurons. In this study, we cloned the cDNA of odorant-binding protein 2 (BhorOBP2) in Batocera horsfieldi (Hope) and...

  11. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitin-binding proteins (CBPs) existed in various species and involved in different biology processes. In the present study, we cloned a full length cDNA of chitin-binding protein-like (PpCBP-like) from Pteromalus puparum, a pupal endoparasitoid of Pieris rapae. PpCBP-like encoded a 96 putative amin...

  12. Arylfluorosulfates Inactivate Intracellular Lipid Binding Protein(s) through Chemoselective SuFEx Reaction with a Binding Site Tyr Residue.

    PubMed

    Chen, Wentao; Dong, Jiajia; Plate, Lars; Mortenson, David E; Brighty, Gabriel J; Li, Suhua; Liu, Yu; Galmozzi, Andrea; Lee, Peter S; Hulce, Jonathan J; Cravatt, Benjamin F; Saez, Enrique; Powers, Evan T; Wilson, Ian A; Sharpless, K Barry; Kelly, Jeffery W

    2016-06-15

    Arylfluorosulfates have appeared only rarely in the literature and have not been explored as probes for covalent conjugation to proteins, possibly because they were assumed to possess high reactivity, as with other sulfur(VI) halides. However, we find that arylfluorosulfates become reactive only under certain circumstances, e.g., when fluoride displacement by a nucleophile is facilitated. Herein, we explore the reactivity of structurally simple arylfluorosulfates toward the proteome of human cells. We demonstrate that the protein reactivity of arylfluorosulfates is lower than that of the corresponding aryl sulfonyl fluorides, which are better characterized with regard to proteome reactivity. We discovered that simple hydrophobic arylfluorosulfates selectively react with a few members of the intracellular lipid binding protein (iLBP) family. A central function of iLBPs is to deliver small-molecule ligands to nuclear hormone receptors. Arylfluorosulfate probe 1 reacts with a conserved tyrosine residue in the ligand-binding site of a subset of iLBPs. Arylfluorosulfate probes 3 and 4, featuring a biphenyl core, very selectively and efficiently modify cellular retinoic acid binding protein 2 (CRABP2), both in vitro and in living cells. The X-ray crystal structure of the CRABP2-4 conjugate, when considered together with binding site mutagenesis experiments, provides insight into how CRABP2 might activate arylfluorosulfates toward site-specific reaction. Treatment of breast cancer cells with probe 4 attenuates nuclear hormone receptor activity mediated by retinoic acid, an endogenous client lipid of CRABP2. Our findings demonstrate that arylfluorosulfates can selectively target single iLBPs, making them useful for understanding iLBP function. PMID:27191344

  13. Structures of Adnectin/Protein Complexes Reveal an Expanded Binding Footprint

    SciTech Connect

    Ramamurthy, Vidhyashankar; Krystek, Jr., Stanley R.; Bush, Alexander; Wei, Anzhi; Emanuel, Stuart L.; Gupta, Ruchira Das; Janjua, Ahsen; Cheng, Lin; Murdock, Melissa; Abramczyk, Bozena; Cohen, Daniel; Lin, Zheng; Morin, Paul; Davis, Jonathan H.; Dabritz, Michael; McLaughlin, Douglas C.; Russo, Katie A.; Chao, Ginger; Wright, Martin C.; Jenny, Victoria A.; Engle, Linda J.; Furfine, Eric; Sheriff, Steven

    2014-10-02

    Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin ({sup 10}Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three {sup 10}Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibody combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the {beta} strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these {beta} strand interactions, indicating that these nonloop residues can expand the available binding footprint.

  14. Efficient determination of protein-protein standard binding free energies from first principles.

    PubMed

    Gumbart, James C; Roux, Benoît; Chipot, Christophe

    2013-08-13

    Characterizing protein-protein association quantitatively has been a longstanding challenge for computer simulations. Here, a theoretical framework is put forth that addresses this challenge on the basis of detailed all-atom molecular dynamics simulations with explicit solvent. The proposed methodology relies upon independent potential of mean force (PMF) free-energy calculations carried out sequentially, wherein the biological objects are restrained in the conformation, position and orientation of the bound state, using adequately chosen biasing potentials. These restraints systematically narrow down the configurational entropy available to the system and effectively guarantee that the relevant network of interactions is properly sampled as the two proteins reversibly associate. Decomposition of the binding process into consecutive, well-delineated stages, for both the protein complex and the individual, unbound partners, offers a rigorous definition of the standard state, from which the absolute binding free energy can be determined. The method is applied to the difficult case of the extracellular ribonuclease barnase binding to its intracellular inhibitor barstar. The calculated binding free energy is -21.0 ± 1.4 kcal/mol, which compares well with the experimental value of -19.0 ± 0.2 kcal/mol. The relatively small statistical error reflects the precision and convergence afforded by the PMF-based simulation methodology. In addition to providing an accurate reproduction of the standard binding free energy, the proposed strategy offers a detailed picture of the protein-protein interface, illuminating the thermodynamic forces that underlie reversible association. The application of the present formal framework to barnase:barstar binding provides a foundation for tackling nearly any protein-protein complex.

  15. Preferential binding of an unfolded protein to DsbA.

    PubMed Central

    Frech, C; Wunderlich, M; Glockshuber, R; Schmid, F X

    1996-01-01

    The oxidoreductase DsbA from the periplasm of escherichia coli introduces disulfide bonds into proteins at an extremely high rate. During oxidation, a mixed disulfide is formed between DsbA and the folding protein chain, and this covalent intermediate reacts very rapidly either to form the oxidized protein or to revert back to oxidized DsbA. To investigate its properties, a stable form of the intermediate was produced by reacting the C33A variant of DsbA with a variant of RNase T1. We find that in this stable mixed disulfide the conformational stability of the substrate protein is decreased by 5 kJ/mol, whereas the conformational stability of DsbA is increased by 5 kJ/mol. This reciprocal effect suggests strongly that DsbA interacts with the unfolded substrate protein not only by the covalent disulfide bond, but also by preferential non-covalent interactions. The existence of a polypeptide binding site explains why DsbA oxidizes protein substrates much more rapidly than small thiol compounds. Such a very fast reaction is probably important for protein folding in the periplasm, because the accessibility of the thiol groups for DsbA can decrease rapidly when newly exported polypeptide chains begin to fold. PMID:8617214

  16. Identification of prolactin and growth hormone binding proteins in rabbit milk.

    PubMed Central

    Postel-Vinay, M C; Belair, L; Kayser, C; Kelly, P A; Djiane, J

    1991-01-01

    Two distinct soluble proteins that specifically bind 125I-labeled human growth hormone (GH) are identified in the supernatant of ultracentrifuged rabbit milk, using HPLC gel filtration. The higher molecular weight proteins is GH specific, whereas the other one is specific for prolactin (PRL). The PRL-binding protein has a very high affinity for the hormone, almost 10 times higher than the affinity of the mammary gland membrane receptor. The PRL-binding protein is immunoprecipitated by a monoclonal antibody against the PRL receptor; another monoclonal antibody, which inhibits the PRL binding to mammary gland membranes, is a poor competitor for the PRL binding to the milk protein. These findings suggest that the milk PRL-binding protein corresponds to the binding domain of the receptor, but also that the conformation of the receptor and of the binding protein might differ. The milk and the plasma GH-binding proteins have a similar binding affinity. In cross-linking experiments using 125I-labeled human GH, the Mr of the GH-binding protein and of the PRL-binding protein were estimated to be 51,000 and 33,000, respectively. The binding proteins identified in the present work are probably responsible for the transport of their specific ligands in the milk. It is also conceivable that they have a role in the effects of GH and PRL in the mammary gland and/or the intestine of the young. Images PMID:1862093

  17. Prediction of Protein-DNA binding by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Deng, Yuefan; Eisenberg, Moises; Korobka, Alex

    1997-08-01

    We present an analysis and prediction of protein-DNA binding specificity based on the hydrogen bonding between DNA, protein, and auxillary clusters of water molecules. Zif268, glucocorticoid receptor, λ-repressor mutant, HIN-recombinase, and tramtrack protein-DNA complexes are studied. Hydrogen bonds are approximated by the Lennard-Jones potential with a cutoff distance between the hydrogen and the acceptor atoms set to 3.2 Åand an angular component based on a dipole-dipole interaction. We use a three-stage docking algorithm: geometric hashing that matches pairs of hydrogen bonding sites; (2) least-squares minimization of pairwise distances to filter out insignificant matches; and (3) Monte Carlo stochastic search to minimize the energy of the system. More information can be obtained from our first paper on this subject [Y.Deng et all, J.Computational Chemistry (1995)]. Results show that the biologically correct base pair is selected preferentially when there are two or more strong hydrogen bonds (with LJ potential lower than -0.20) that bind it to the protein. Predicted sequences are less stable in the case of weaker bonding sites. In general the inclusion of water bridges does increase the number of base pairs for which correct specificity is predicted.

  18. Identification of lectin binding proteins in human tears.

    PubMed

    Kuizenga, A; van Haeringen, N J; Kijlstra, A

    1991-12-01

    The identity of glycoproteins in stimulated normal human tears was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of tears onto minigels, blotting, and subsequent incubation with different biotinylated lectins (concanavalin A [Con A], peanut agglutinin [PNA], glycine max agglutinin [SBA], Phaseolus vulgaris agglutinin, wheat germ agglutinin [WGA, native form], Artocarpus integrifolia agglutinin [Jacalin], and Pisum sativum agglutinin). Control proteins included purified secretory immunoglobulin A (sIgA) from human colostrum, human milk lactoferrin, and chicken-egg lysozyme. All samples were prepared in a denaturing (SDS) buffer under nonreducing and reducing conditions. The sIgA in tears and IgA (alpha) heavy chain fragments (reduced sample) were identified with most of the lectins tested. A particular high molecular weight (greater than 200 kD) protein fraction in tears that just entered the separation gel on SDS-PAGE was detected with WGA and Jacalin. This fraction stain poorly with silver. Tear lactoferrin was identified with all lectins used, although binding was low with SBA. Purified milk lactoferrin showed a poor reaction with Jacalin, but a protein in tears of similar mobility bound this lectin (nonreduced samples). Under both nonreducing and reducing conditions, tear-specific prealbumin in tears did not bind any of the lectins tested. Tear lysozyme only reacted with lectin after reduction. The techniques described may provide additional valuable information in addition to commonly used methods for tear protein analysis and further knowledge concerning the role of glycoproteins on the ocular surface.

  19. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    PubMed Central

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane

  20. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    NASA Astrophysics Data System (ADS)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-11-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp ( Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  1. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    NASA Astrophysics Data System (ADS)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-03-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp (Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  2. Genetically Encoded Fragment-Based Discovery of Glycopeptide Ligands for Carbohydrate-Binding Proteins

    SciTech Connect

    Ng, Simon; Lin, Edith; Kitov, Pavel I.; Tjhung, Katrina F.; Gerlits, Oksana O.; Deng, Lu; Kasper, Brian; Sood, Amika; Paschal, Beth M.; Zhang, Ping; Ling, Chang-Chun; Klassen, John S.; Noren, Christopher J.; Maha