Science.gov

Sample records for binding protein derived

  1. Comparative serum protein binding of anthracycline derivatives.

    PubMed

    Chassany, O; Urien, S; Claudepierre, P; Bastian, G; Tillement, J P

    1996-01-01

    The binding of doxorubicin, iododoxorubicin, daunorubicin, epirubicin, pirarubicin, zorubicin, aclarubicin, and mitoxantrone to 600 microM human serum albumin and 50 microM alpha 1-acid glycoprotein was studied by ultrafiltration at 37 degrees C and pH 7.4. Anthracycline concentrations (total and free) were determined by high-performance liquid chromatography (HPLC) with fluorometric detection. Binding to albumin (600 microM) varied from 61% (daunorubicin) to 94% (iododoxorubicin). The binding to alpha 1-acid glycoprotein (50 microM) was more variable, ranging from 31% (epirubicin) to 64% (zorubicin), and was essentially related to the hydrophobicity of the derivatives. Simulations showed that the total serum binding varied over a broad range from 71% (doxorubicin) to 96% (iododoxorubicin). We recently reported that the binding to lipoproteins of a series of eight anthracycline analogues could be ascribed to chemicophysical determinants of lipophilicity [2]. The present study was conducted to evaluate in vitro the contribution of albumin and alpha 1-acid glycoprotein to the total serum binding of these drugs.

  2. Recombinant water-soluble chlorophyll protein from Brassica oleracea var. Botrys binds various chlorophyll derivatives.

    PubMed

    Schmidt, Kristin; Fufezan, Christian; Krieger-Liszkay, Anja; Satoh, Hiroyuki; Paulsen, Harald

    2003-06-24

    A gene coding for water-soluble chlorophyll-binding protein (WSCP) from Brassica oleracea var. Botrys has been used to express the protein, extended by a hexahistidyl tag, in Escherichia coli. The protein has been refolded in vitro to study its pigment binding behavior. Recombinant WSCP was found to bind two chlorophylls (Chls) per tetrameric protein complex but no carotenoids in accordance with previous observations with the native protein [Satoh, H., Nakayama, K., Okada, M. (1998) J. Biol. Chem. 273, 30568-30575]. WSCP binds Chl a, Chl b, bacteriochlorophyll a, and the Zn derivative of Chl a but not pheophytin a, indicating that the central metal ion in Chl is essential for binding. WSCP also binds chlorophyllides a and b and even the more distant Chl precursor Mg-protoporphyrin IX; however, these pigments fail to induce oligomerization of the protein. We conclude that the phytol group in bound Chl plays a role in the formation of tetrameric WSCP complexes. If WSCP in fact binds Chl or its derivative(s) in vivo, the lack of carotenoids in pigmented WSCP raises the question of how photooxidation, mediated by triplet-excited Chl and singlet oxygen, is prohibited. We show by spin-trap electron-paramagnetic resonance that the light-induced singlet-oxygen formation of WSCP-bound Chl is lower by a factor of about 4 than that of unbound Chl. This as-yet-unknown mechanism of WSCP to protect its bound Chl against photooxidation supports the notion that WSCP may function as a transient carrier of Chl or its derivatives.

  3. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    SciTech Connect

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-08-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs.

  4. Ellipsometric studies of synthetic albumin-binding chitosan-derivatives and selected blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Sarkar, Sabyasachi

    This dissertation summarizes work on the synthesis of chitosan-derivatives and the development of ellipsometric methods to characterize materials of biological origin. Albumin-binding chitosan-derivatives were synthesized via addition reactions that involve amine groups naturally present in chitosan. These surfaces were shown to have an affinity towards human serum albumin via ELISA, UV spectroscopy and SDS PAGE. Modified surfaces were characterized with IR ellipsometry at various stages of their synthesis using appropriate optical models. It was found that spin cast chitosan films were anisotropic in nature. All optical models used for characterizing chitosan-derivatives were thus anisotropic. Chemical signal dependence on molecular structure and composition was illustrated via IR spectroscopic ellipsometry (IRSE). An anisotropic optical model of an ensemble of Lorentz oscillators were used to approximate material behavior. The presence of acetic acid in spin-cast non-neutralized chitosan samples was thus shown. IRSE application to biomaterials was also demonstrated by performing a step-wise chemical characterizations during synthesis stages. Protein adsorbed from single protein solutions on these modified surfaces was monitored by visible in-situ variable wavelength ellipsometry. Based on adsorption profiles obtained from single protein adsorption onto silicon surfaces, lumped parameter kinetic models were developed. These models were used to fit experimental data of immunoglobulin-G of different concentrations and approximate conformational changes in fibrinogen adsorption. Biomaterial characterization by ellipsometry was further extended to include characterization of individual protein solutions in the IR range. Proteins in an aqueous environment were characterized by attenuated total internal reflection (ATR) IR ellipsometry using a ZnSe prism. Parameterized dielectric functions were created for individual proteins using Lorentz oscillators. These

  5. Host Defense Proteins Derived from Human Saliva Bind to Staphylococcus aureus

    PubMed Central

    Heo, Seok-Mo; Choi, Kyoung-Soo; Kazim, Latif A.; Reddy, Molakala S.; Haase, Elaine M.; Scannapieco, Frank A.

    2013-01-01

    Proteins in human saliva are thought to modulate bacterial colonization of the oral cavity. Yet, information is sparse on how salivary proteins interact with systemic pathogens that transiently or permanently colonize the oral environment. Staphylococcus aureus is a pathogen that frequently colonizes the oral cavity and can cause respiratory disease in hospitalized patients at risk. Here, we investigated salivary protein binding to this organism upon exposure to saliva as a first step toward understanding the mechanism by which the organism can colonize the oral cavity of vulnerable patients. By using fluorescently labeled saliva and proteomic techniques, we demonstrated selective binding of major salivary components by S. aureus to include DMBT1gp-340, mucin-7, secretory component, immunoglobulin A, immunoglobulin G, S100-A9, and lysozyme C. Biofilm-grown S. aureus strains bound fewer salivary components than in the planctonic state, particularly less salivary immunoglobulins. A corresponding adhesive component on the S. aureus surface responsible for binding salivary immunoglobulins was identified as staphylococcal protein A (SpA). However, SpA did not mediate binding of nonimmunoglobulin components, including mucin-7, indicating the involvement of additional bacterial surface adhesive components. These findings demonstrate that a limited number of salivary proteins, many of which are associated with various aspects of host defense, selectively bind to S. aureus and lead us to propose a possible role of saliva in colonization of the human mouth by this pathogen. PMID:23403559

  6. Host defense proteins derived from human saliva bind to Staphylococcus aureus.

    PubMed

    Heo, Seok-Mo; Choi, Kyoung-Soo; Kazim, Latif A; Reddy, Molakala S; Haase, Elaine M; Scannapieco, Frank A; Ruhl, Stefan

    2013-04-01

    Proteins in human saliva are thought to modulate bacterial colonization of the oral cavity. Yet, information is sparse on how salivary proteins interact with systemic pathogens that transiently or permanently colonize the oral environment. Staphylococcus aureus is a pathogen that frequently colonizes the oral cavity and can cause respiratory disease in hospitalized patients at risk. Here, we investigated salivary protein binding to this organism upon exposure to saliva as a first step toward understanding the mechanism by which the organism can colonize the oral cavity of vulnerable patients. By using fluorescently labeled saliva and proteomic techniques, we demonstrated selective binding of major salivary components by S. aureus to include DMBT1(gp-340), mucin-7, secretory component, immunoglobulin A, immunoglobulin G, S100-A9, and lysozyme C. Biofilm-grown S. aureus strains bound fewer salivary components than in the planctonic state, particularly less salivary immunoglobulins. A corresponding adhesive component on the S. aureus surface responsible for binding salivary immunoglobulins was identified as staphylococcal protein A (SpA). However, SpA did not mediate binding of nonimmunoglobulin components, including mucin-7, indicating the involvement of additional bacterial surface adhesive components. These findings demonstrate that a limited number of salivary proteins, many of which are associated with various aspects of host defense, selectively bind to S. aureus and lead us to propose a possible role of saliva in colonization of the human mouth by this pathogen.

  7. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    PubMed

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  8. Penem derivatives: beta-lactamase stability and affinity for penicillin-binding proteins in Escherichia coli.

    PubMed

    Ohya, S; Utsui, Y; Sugawara, S; Yamazaki, M

    1982-03-01

    Penem derivatives, a new group of beta-lactam antibiotics with potent activities against a wide range of bacteria, including Pseudomonas aeruginosa, were tested for their stability against hydrolysis by beta-lactamases purified from clinical isolates of Morganella morganii. Proteus vulgaris, and Escherichia coli and by a penicillinase from Bacillus cereus. Penems having 6 alpha substituents, such as hydroxyethyl, hydroxymethyl, and ethyl groups, were very stable against hydrolysis by each of the enzymes. Penems having no 6 alpha substituents were easily hydrolyzed by P. vulgaris and E. coli enzymes, whereas they were rather stable against hydrolysis by M. morganii and B. cereus enzymes, a typical cephalosporinase and penicillinase, respectively. Affinity of the penems for E. coli penicillin-binding proteins (PBPs) was also tested. beta-Lactamase-stable penems having a 6 alpha-hydroxyethyl group showed high affinity for PBP-4, -5, and -6 as well as for PBP-1A, -1Bs, and -2. However, the penems having no 6 alpha substituents showed a far lower affinity for PBP-4, -5, and -6 than that shown by the corresponding 6 alpha-hydroxyethyl penems. Among the penems tested, affinity for PBP-4, -5, and -6 was closely related to their beta-lactamase stability, as was the case among cephamycins and cephalosporins. Effects of the penems on the morphology of a strain of E. coli are also described.

  9. Interactions of Anopheles gambiae Odorant-binding Proteins with a Human-derived Repellent

    PubMed Central

    Murphy, Emma J.; Booth, Jamie C.; Davrazou, Foteini; Port, Alex M.; Jones, David N. M.

    2013-01-01

    The Anopheles gambiae mosquito, which is the vector for Plasmodium falciparum malaria, uses a series of olfactory cues emanating from human sweat to select humans as their source for a blood meal. Perception of these odors within the mosquito olfactory system involves the interplay of odorant-binding proteins (OBPs) and odorant receptors and disrupting the normal responses to those odorants that guide mosquito-human interactions represents an attractive approach to prevent the transmission of malaria. Previously, it has been shown that DEET targets multiple components of the olfactory system, including OBPs and odorant receptors. Here, we present the crystal structure of A. gambiae OBP1 (OBP1) in the complex it forms with a natural repellent 6-methyl-5-heptene-2-one (6-MH). We find that 6-MH binds to OBP1 at exactly the same site as DEET. However, key interactions with a highly conserved water molecule that are proposed to be important for DEET binding are not involved in binding of 6-MH. We show that 6-MH and DEET can compete for the binding of attractive odorants and in doing so disrupt the interaction that OBP1 makes with OBP4. We further show that 6-MH and DEET can bind simultaneously to OBPs with other ligands. These results suggest that the successful discovery of novel reagents targeting OBP function requires knowledge about the specific mechanism of binding to the OBP rather than their binding affinity. PMID:23261834

  10. ITC-derived binding affinity may be biased due to titrant (nano)-aggregation. Binding of halogenated benzotriazoles to the catalytic domain of human protein kinase CK2

    PubMed Central

    Winiewska, Maria; Bugajska, Ewa

    2017-01-01

    The binding of four bromobenzotriazoles to the catalytic subunit of human protein kinase CK2 was assessed by two complementary methods: Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC). New algorithm proposed for the global analysis of MST pseudo-titration data enabled reliable determination of binding affinities for two distinct sites, a relatively strong one with the Kd of the order of 100 nM and a substantially weaker one (Kd > 1 μM). The affinities for the strong binding site determined for the same protein-ligand systems using ITC were in most cases approximately 10-fold underestimated. The discrepancy was assigned directly to the kinetics of ligand nano-aggregates decay occurring upon injection of the concentrated ligand solution to the protein sample. The binding affinities determined in the reverse ITC experiment, in which ligands were titrated with a concentrated protein solution, agreed with the MST-derived data. Our analysis suggests that some ITC-derived Kd values, routinely reported together with PDB structures of protein-ligand complexes, may be biased due to the uncontrolled ligand (nano)-aggregation, which may occur even substantially below the solubility limit. PMID:28273138

  11. ITC-derived binding affinity may be biased due to titrant (nano)-aggregation. Binding of halogenated benzotriazoles to the catalytic domain of human protein kinase CK2.

    PubMed

    Winiewska, Maria; Bugajska, Ewa; Poznański, Jarosław

    2017-01-01

    The binding of four bromobenzotriazoles to the catalytic subunit of human protein kinase CK2 was assessed by two complementary methods: Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC). New algorithm proposed for the global analysis of MST pseudo-titration data enabled reliable determination of binding affinities for two distinct sites, a relatively strong one with the Kd of the order of 100 nM and a substantially weaker one (Kd > 1 μM). The affinities for the strong binding site determined for the same protein-ligand systems using ITC were in most cases approximately 10-fold underestimated. The discrepancy was assigned directly to the kinetics of ligand nano-aggregates decay occurring upon injection of the concentrated ligand solution to the protein sample. The binding affinities determined in the reverse ITC experiment, in which ligands were titrated with a concentrated protein solution, agreed with the MST-derived data. Our analysis suggests that some ITC-derived Kd values, routinely reported together with PDB structures of protein-ligand complexes, may be biased due to the uncontrolled ligand (nano)-aggregation, which may occur even substantially below the solubility limit.

  12. Marinopyrrole derivatives with sulfide spacers as selective disruptors of Mcl-1 binding to pro-apoptotic protein Bim.

    PubMed

    Cheng, Chunwei; Liu, Yan; Balasis, Maria E; Garner, Thomas P; Li, Jerry; Simmons, Nicholas L; Berndt, Norbert; Song, Hao; Pan, Lili; Qin, Yong; Nicolaou, K C; Gavathiotis, Evripidis; Sebti, Said M; Li, Rongshi

    2014-07-29

    A series of novel marinopyrroles with sulfide and sulphone spacers were designed and synthesized. Their activity to disrupt the binding of the pro-apoptotic protein, Bim, to the pro-survival proteins, Mcl-1 and Bcl-xL, was evaluated using ELISA assays. Fluorescence-quenching (FQ) assays confirmed the direct binding of marinopyrroles to Mcl-1. Benzyl- and benzyl methoxy-containing sulfide derivatives 4 and 5 were highly potent dual Mcl-1/Bim and Bcl-xL/Bim disruptors (IC50 values of 600 and 700 nM), whereas carboxylate-containing sulfide derivative 9 exhibited 16.4-fold more selectivity for disrupting Mcl-1/Bim over Bcl-xL/Bim binding. In addition, a nonsymmetrical marinopyrrole 12 is as equally potent as the parent marinopyrrole A (1) for disrupting both Mcl-1/Bim and Bcl-xL/Bim binding. Some of the derivatives were also active in intact human breast cancer cells where they reduced the levels of Mcl-1, induced programd cell death (apoptosis) and inhibited cell proliferation.

  13. Binding properties of a peptide derived from beta-lactamase inhibitory protein.

    PubMed

    Rudgers, G W; Huang, W; Palzkill, T

    2001-12-01

    To overcome the antibiotic resistance mechanism mediated by beta-lactamases, small-molecule beta-lactamase inhibitors, such as clavulanic acid, have been used. This approach, however, has applied selective pressure for mutations that result in beta-lactamases no longer sensitive to beta-lactamase inhibitors. On the basis of the structure of beta-lactamase inhibitor protein (BLIP), novel peptide inhibitors of beta-lactamase have been constructed. BLIP is a 165-amino-acid protein that is a potent inhibitor of TEM-1 beta-lactamase (K(i) = 0.3 nM). The cocrystal structure of TEM-1 beta-lactamase and BLIP indicates that residues 46 to 51 of BLIP make critical interactions with the active site of TEM-1 beta-lactamase. A peptide containing this six-residue region of BLIP was found to retain sufficient binding energy to interact with TEM-1 beta-lactamase. Inhibition assays with the BLIP peptide reveal that, in addition to inhibiting TEM-1 beta-lactamase, the peptide also inhibits a class A beta-lactamase and a class C beta-lactamase that are not inhibited by BLIP. The crystal structures of class A and C beta-lactamases and two penicillin-binding proteins (PBPs) reveal that the enzymes have similar three-dimensional structures in the vicinity of the active site. This similarity suggests that the BLIP peptide inhibitor may have a broad range of activity that can be used to develop novel small-molecule inhibitors of various classes of beta-lactamases and PBPs.

  14. Binding Properties of a Peptide Derived from β-Lactamase Inhibitory Protein

    PubMed Central

    Rudgers, Gary W.; Huang, Wanzhi; Palzkill, Timothy

    2001-01-01

    To overcome the antibiotic resistance mechanism mediated by β-lactamases, small-molecule β-lactamase inhibitors, such as clavulanic acid, have been used. This approach, however, has applied selective pressure for mutations that result in β-lactamases no longer sensitive to β-lactamase inhibitors. On the basis of the structure of β-lactamase inhibitor protein (BLIP), novel peptide inhibitors of β-lactamase have been constructed. BLIP is a 165-amino-acid protein that is a potent inhibitor of TEM-1 β-lactamase (Ki = 0.3 nM). The cocrystal structure of TEM-1 β-lactamase and BLIP indicates that residues 46 to 51 of BLIP make critical interactions with the active site of TEM-1 β-lactamase. A peptide containing this six-residue region of BLIP was found to retain sufficient binding energy to interact with TEM-1 β-lactamase. Inhibition assays with the BLIP peptide reveal that, in addition to inhibiting TEM-1 β-lactamase, the peptide also inhibits a class A β-lactamase and a class C β-lactamase that are not inhibited by BLIP. The crystal structures of class A and C β-lactamases and two penicillin-binding proteins (PBPs) reveal that the enzymes have similar three-dimensional structures in the vicinity of the active site. This similarity suggests that the BLIP peptide inhibitor may have a broad range of activity that can be used to develop novel small-molecule inhibitors of various classes of β-lactamases and PBPs. PMID:11709298

  15. Docking of 6-chloropyridazin-3-yl derivatives active on nicotinic acetylcholine receptors into molluscan acetylcholine binding protein (AChBP).

    PubMed

    Artali, Roberto; Bombieri, Gabriella; Meneghetti, Fiorella

    2005-04-01

    The crystal structure of Acetylcholine Binding Protein (AChBP), homolog of the ligand binding domain of nAChR, has been used as model for computational investigations on the ligand-receptor interactions of derivatives of 6-chloropyridazine substituted at C3 with 3,8-diazabicyclo[3.2.1]octane, 2,5-diazabicyclo[2.2.1]heptane and with piperazine and homopiperazine, substituted or not at N4. The ligand-receptor complexes have been analyzed by docking techniques using the binding site of HEPES complexed with AChBP as template. The good relationship between the observed binding affinity and the calculated docking energy confirms that this model provides a good starting point for understanding the binding domain of neuronal nicotinic receptors. An analysis of the possible factors significant for the ligand recognition has evidenced, besides the cation-pi interaction, the distance between the chlorine atom of the pyridazinyl group and the carbonylic oxygen of Leu B112 as an important parameter in the modulation of the binding energy.

  16. Interaction entropy for protein-protein binding

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.

    2017-03-01

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  17. Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria.

    PubMed

    Mangiagalli, Marco; Bar-Dolev, Maya; Tedesco, Pietro; Natalello, Antonino; Kaleda, Aleksei; Brocca, Stefania; de Pascale, Donatella; Pucciarelli, Sandra; Miceli, Cristina; Bravslavsky, Ido; Lotti, Marina

    2017-01-01

    Cold environments are populated by organisms able to contravene deleterious effects of low temperature by diverse adaptive strategies, including the production of ice binding proteins (IBPs) that inhibit the growth of ice crystals inside and outside cells. We describe the properties of such a protein (EfcIBP) identified in the metagenome of an Antarctic biological consortium composed of the ciliate Euplotes focardii and psychrophilic non-cultured bacteria. Recombinant EfcIBP can resist freezing without any conformational damage and is moderately heat stable, with a midpoint temperature of 66.4 °C. Tested for its effects on ice, EfcIBP shows an unusual combination of properties not reported in other bacterial IBPs. First, it is one of the best-performing IBPs described to date in the inhibition of ice recrystallization, with effective concentrations in the nanomolar range. Moreover, EfcIBP has thermal hysteresis activity (0.53 °C at 50 μm) and it can stop a crystal from growing when held at a constant temperature within the thermal hysteresis gap. EfcIBP protects purified proteins and bacterial cells from freezing damage when exposed to challenging temperatures. EfcIBP also possesses a potential N-terminal signal sequence for protein transport and a DUF3494 domain that is common to secreted IBPs. These features lead us to hypothesize that the protein is either anchored at the outer cell surface or concentrated around cells to provide survival advantage to the whole cell consortium. © 2016 Federation of European Biochemical Societies.

  18. Maltose-binding protein fusion allows for high level bacterial expression and purification of bioactive mammalian cytokine derivatives.

    PubMed

    Pennati, Andrea; Deng, Jiusheng; Galipeau, Jacques

    2014-01-01

    Fusokines are chimeric proteins generated by the physical coupling of cytokines in a single polypeptide, resulting in proteins with highly pleiotropic activity and the potential to treat cancer and autoimmune ailments. For instance, the fusokine GIFT15 (GM-CSF and Interleukin 15 Fusion Transgene) has been shown to be a powerful immunosuppressive protein able to convert naïve B cells into IL-10-producing B cells. To date, the mammalian cell systems used for the expression of GIFT15 allow for secretion of the protein in the culturing media, an inefficient system for producing GMP-compliant fusokines. In this study we report the bacterial expression of bioactive recombinant GIFT15 (rGIFT15). Indeed, there is a constant demand to improve the expression systems for therapeutic proteins. Expression of a maltose-binding protein (MBP) fusion protein efficiently allowed the accumulation of soluble protein in the intracellular milieu. Optimizing the bacterial culture significantly increased the yield of recombinant protein. The biological activity of rGIFT15 was comparable to that of fusokine derived from a mammalian source. This approach led to the production of soluble, endotoxin-free functional protein, averaging 5 mg of rGIFT15 per liter of culture. This process is amenable to scale up for the development of Food and Drug Administration (FDA)-compliant immune-modulatory rGIFT15.

  19. Maltose-Binding Protein Fusion Allows for High Level Bacterial Expression and Purification of Bioactive Mammalian Cytokine Derivatives

    PubMed Central

    Pennati, Andrea; Deng, Jiusheng; Galipeau, Jacques

    2014-01-01

    Fusokines are chimeric proteins generated by the physical coupling of cytokines in a single polypeptide, resulting in proteins with highly pleiotropic activity and the potential to treat cancer and autoimmune ailments. For instance, the fusokine GIFT15 (GM-CSF and Interleukin 15 Fusion Transgene) has been shown to be a powerful immunosuppressive protein able to convert naïve B cells into IL-10-producing B cells. To date, the mammalian cell systems used for the expression of GIFT15 allow for secretion of the protein in the culturing media, an inefficient system for producing GMP-compliant fusokines. In this study we report the bacterial expression of bioactive recombinant GIFT15 (rGIFT15). Indeed, there is a constant demand to improve the expression systems for therapeutic proteins. Expression of a maltose-binding protein (MBP) fusion protein efficiently allowed the accumulation of soluble protein in the intracellular milieu. Optimizing the bacterial culture significantly increased the yield of recombinant protein. The biological activity of rGIFT15 was comparable to that of fusokine derived from a mammalian source. This approach led to the production of soluble, endotoxin-free functional protein, averaging 5 mg of rGIFT15 per liter of culture. This process is amenable to scale up for the development of Food and Drug Administration (FDA)-compliant immune-modulatory rGIFT15. PMID:25198691

  20. Lucanthone and its derivative hycanthone inhibit apurinic endonuclease-1 (APE1) by direct protein binding

    SciTech Connect

    Naidu, M.; Naidu, M.; Agarwal, R.; Pena, L.A.; Cunha, L.; Mezei, M.; Shen, M.; Wilson, D.M.; Liu, Y.; Sanchez, Z.; Chaudhary, P.; Wilson, S.H.; Waring, M.J.

    2011-09-15

    Lucanthone and hycanthone are thioxanthenone DNA intercalators used in the 1980s as antitumor agents. Lucanthone is in Phase I clinical trial, whereas hycanthone was pulled out of Phase II trials. Their potential mechanism of action includes DNA intercalation, inhibition of nucleic acid biosyntheses, and inhibition of enzymes like topoisomerases and the dual function base excision repair enzyme apurinic endonuclease 1 (APE1). Lucanthone inhibits the endonuclease activity of APE1, without affecting its redox activity. Our goal was to decipher the precise mechanism of APE1 inhibition as a prerequisite towards development of improved therapeutics that can counteract higher APE1 activity often seen in tumors. The IC{sub 50} values for inhibition of APE1 incision of depurinated plasmid DNA by lucanthone and hycanthone were 5 {mu}M and 80 nM, respectively. The K{sub D} values (affinity constants) for APE1, as determined by BIACORE binding studies, were 89 nM for lucanthone/10 nM for hycanthone. APE1 structures reveal a hydrophobic pocket where hydrophobic small molecules like thioxanthenones can bind, and our modeling studies confirmed such docking. Circular dichroism spectra uncovered change in the helical structure of APE1 in the presence of lucanthone/hycanthone, and notably, this effect was decreased (Phe266Ala or Phe266Cys or Trp280Leu) or abolished (Phe266Ala/Trp280Ala) when hydrophobic site mutants were employed. Reduced inhibition by lucanthone of the diminished endonuclease activity of hydrophobic mutant proteins (as compared to wild type APE1) supports that binding of lucanthone to the hydrophobic pocket dictates APE1 inhibition. The DNA binding capacity of APE1 was marginally inhibited by lucanthone, and not at all by hycanthone, supporting our hypothesis that thioxanthenones inhibit APE1, predominantly, by direct interaction. Finally, lucanthone-induced degradation was drastically reduced in the presence of short and long lived free radical scavengers, e

  1. Discovery, synthesis, biological evaluation and structure-based optimization of novel piperidine derivatives as acetylcholine-binding protein ligands

    PubMed Central

    Shen, Jian; Yang, Xi-cheng; Yu, Ming-cheng; Xiao, Li; Zhang, Xun-jie; Sun, Hui-jiao; Chen, Hao; Pan, Guan-xin; Yan, Yu-rong; Wang, Si-chen; Li, Wei; Zhou, Lu; Xie, Qiong; Yu, Lin-qian; Wang, Yong-hui; Shao, Li-ming

    2017-01-01

    The homomeric α7 nicotinic receptor (α7 nAChR) is widely expressed in the human brain that could be activated to suppress neuroinflammation, oxidative stress and neuropathic pain. Consequently, a number of α7 nAChR agonists have entered clinical trials as anti-Alzheimer's or anti-psychotic therapies. However, high-resolution crystal structure of the full-length α7 receptor is thus far unavailable. Since acetylcholine-binding protein (AChBP) from Lymnaea stagnalis is most closely related to the α-subunit of nAChRs, it has been used as a template for the N-terminal domain of α-subunit of nAChR to study the molecular recognition process of nAChR-ligand interactions, and to identify ligands with potential nAChR-like activities. Here we report the discovery and optimization of novel acetylcholine-binding protein ligands through screening, structure-activity relationships and structure-based design. We manually screened in-house CNS-biased compound library in vitro and identified compound 1, a piperidine derivative, as an initial hit with moderate binding affinity against AChBP (17.2% inhibition at 100 nmol/L). During the 1st round of optimization, with compound 2 (21.5% inhibition at 100 nmol/L) as the starting point, 13 piperidine derivatives with different aryl substitutions were synthesized and assayed in vitro. No apparent correlation was demonstrated between the binding affinities and the steric or electrostatic effects of aryl substitutions for most compounds, but compound 14 showed a higher affinity (Ki=105.6 nmol/L) than nicotine (Ki=777 nmol/L). During the 2nd round of optimization, we performed molecular modeling of the putative complex of compound 14 with AChBP, and compared it with the epibatidine-AChBP complex. The results suggested that a different piperidinyl substitution might confer a better fit for epibatidine as the reference compound. Thus, compound 15 was designed and identified as a highly affinitive acetylcholine-binding protein ligand. In

  2. Sperm-derived WW domain-binding protein, PAWP, elicits calcium oscillations and oocyte activation in humans and mice.

    PubMed

    Aarabi, Mahmoud; Balakier, Hanna; Bashar, Siamak; Moskovtsev, Sergey I; Sutovsky, Peter; Librach, Clifford L; Oko, Richard

    2014-10-01

    Mammalian zygotic development is initiated by sperm-mediated intracellular calcium oscillations, followed by activation of metaphase II-arrested oocytes. Sperm postacrosomal WW binding protein (PAWP) fulfils the criteria set for an oocyte-activating factor by inducing oocyte activation and being stored in the perinuclear theca, the sperm compartment whose content is first released into oocyte cytoplasm during fertilization. However, proof that PAWP initiates mammalian zygotic development relies on demonstration that it acts upstream of oocyte calcium oscillations. Here, we show that PAWP triggers calcium oscillations and pronuclear formation in human and mouse oocytes similar to what is observed during intracytoplasmic sperm injection (ICSI). Most important, sperm-induced calcium oscillations are blocked by coinjection of a competitive inhibitor, derived from the WWI domain-binding motif of PAWP, implying the requirement of sperm PAWP and an oocyte-derived WWI domain protein substrate of PAWP for successful fertilization. Sperm-delivered PAWP is, therefore, a unique protein with a nonredundant role during human and mouse fertilization, required to trigger zygotic development. Presented data confirm our previous findings in nonmammalian models and suggest potential applications of PAWP in the diagnosis and treatment of infertility.- © FASEB.

  3. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids.

    PubMed

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R

    2013-10-01

    Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins.

  4. Antimicrobial Activity of Peptides Derived from Olive Flounder Lipopolysaccharide Binding Protein/Bactericidal Permeability-Increasing Protein (LBP/BPI)

    PubMed Central

    Nam, Bo-Hye; Moon, Ji-Young; Park, Eun-Hee; Kim, Young-Ok; Kim, Dong-Gyun; Kong, Hee Jeong; Kim, Woo-Jin; Jee, Young Ju; An, Cheul Min; Park, Nam Gyu; Seo, Jung-Kil

    2014-01-01

    We describe the antimicrobial function of peptides derived from the C-terminus of the olive flounder LBP BPI precursor protein. The investigated peptides, namely, ofLBP1N, ofLBP2A, ofLBP4N, ofLBP5A, and ofLBP6A, formed α-helical structures, showing significant antimicrobial activity against several Gram-negative bacteria, Gram-positive bacteria, and the yeast Candida albicans, but very limited hemolytic activities. The biological activities of these five analogs were evaluated against biomembranes or artificial membranes for the development of candidate therapeutic agents. Gel retardation studies revealed that peptides bound to DNA and inhibited migration on an agarose gel. In addition, we demonstrated that ofLBP6A inhibited polymerase chain reaction. These results suggested that the ofLBP-derived peptide bactericidal mechanism may be related to the interaction with intracellular components such as DNA or polymerase. PMID:25329706

  5. Structural autonomy of a β-hairpin peptide derived from the pneumococcal choline-binding protein LytA.

    PubMed

    Maestro, Beatriz; Santiveri, Clara M; Jiménez, M Angeles; Sanz, Jesús M

    2011-01-01

    The cell wall of Streptococcus pneumoniae and several other micro-organisms is decorated with a number of the so-called choline-binding proteins (CBPs) that recognise the choline residues in the bacterial surface by means of highly conserved, concatenated 20-aa sequences termed choline-binding repeats (CBRs), that are composed of a loop and a β-hairpin structure. In this work, we have investigated the ability to fold in aqueous solution of a 14-aa peptide (LytA₁₉₇₋₂₁₀[wt]) and a single derivative of it, LytA₁₉₇₋₂₁₀[ND], corresponding to one of the six β-hairpins of the LytA pneumococcal amidase. Intrinsic fluorescence and circular dichroism spectroscopical measurements showed that both peptides spontaneously acquire a non-random conformation which is also able to bind the natural ligand choline. Furthermore, nuclear magnetic resonance techniques allowed the calculation of the structure of the LytA₁₉₇₋₂₁₀[ND] peptide, which displayed a β-hairpin conformation highly similar to that found within the full-length C-LytA module. These results provide a structural basis for the modular organisation of CBPs and suggest the use of CBRs as new templates for the design of stable β-hairpins.

  6. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it.

    PubMed

    Bacon, J R; Rhodes, M J

    2000-03-01

    Proline-rich proteins (PRP) in human parotid saliva have a high affinity for dietary polyphenolic compounds (tannins), forming stable complexes that may modulate the biological and nutritional properties of the tannin. The formation of such complexes may also have an important role in the modulation or promotion of the sensation of oral astringency perceived when tannin-rich foods and beverages are consumed. The major classes of PRP (acidic, basic, and glycosylated) have been isolated from human saliva, and the relative binding affinities of a series of hydrolyzable tannins, which are found in a number of plant-derived foods and beverages, to these PRP classes have been determined using a competition assay. All of the classes of PRP have a high capacity for hydrolyzable tannins. Within the narrow range of binding affinities exhibited, structure/binding relationships with the levels of tannin galloylation, hexahydroxydiphenoyl esterification, and degree of polymerization were identified. No individual class of human salivary PRP appears to have an exclusive affinity for a particular type of hydrolyzable tannin.

  7. Specificity in interaction of benzo[a]pyrene with nuclear macromolecules: implication of derivatives of two dihydrodiols in protein binding.

    PubMed Central

    MacLeod, M C; Kootstra, A; Mansfield, B K; Slaga, T J; Selkirk, J K

    1980-01-01

    Benzo[a]pyrene (B[a]P), 7,8-dihydroxy-7,8-dihydro-B[a]P, and 9,10-dihydro-B[a]P are metabolized by hamster embryo cells to derivatives that bind to nuclear macromolecules. The selectivity for different classes of macromolecules varies depending on the compound analyzed. The ratio of DNA specific activity to protein specific activity (pmol bound/mg of macromolecules) is high (1.51) for 7,8-dihydroxy-7,8-dihydro-B[a]P, extremely low (0.03) for 9,10-dihydroxy-9,10-dihydro-B[a]P, and intermediate (0.26) for B[a]P. Histones H3 and H2A are the major targets of 7,8-dihydroxy-7,8-dihydro-B[a]P; a protein(s) with a mobility similar to that of histone H1 is heavily labeled by 9,10-dihydroxy-9,10-dihydro-B[a]P, with minor labeling of other (nonhistone) bands. The labeling pattern seen with B[a]P is a combination of the patterns seen with the two dihydrodiol metabolites studied. Analysis of the ethyl acetate-soluble metabolites suggests that hamster embryo cells produce 9,10-dihydroxy-7,8-oxy-7,8,9,10-tetrahydro-B[a]P from 9,10-dihydroxy-9,10-dihydro-B[a]P and raise the possibility that this vicinal diol epoxide is an intermediate in the binding of 9,10-dihydroxy-9,10-dihydro-B[a]P to nuclear proteins. The differences seen suggest that factors other than the intrinsic chemical reactivity of the epoxide group are extremely important in the interaction of potential ultimate carcinogens with biological systems. Images PMID:6935653

  8. Tubulin binding, protein-bound conformation in solution, and antimitotic cellular profiling of noscapine and its derivatives.

    PubMed

    Bennani, Youssef L; Gu, Wenxin; Canales, Angeles; Díaz, Fernando J; Eustace, Brenda K; Hoover, Russell R; Jiménez-Barbero, Jesus; Nezami, Azin; Wang, Tiansheng

    2012-03-08

    Noscapine and its 7-hydroxy and 7-amino derivatives were characterized for their binding to tubulin. A solution NMR structure of these compounds bound to tubulin shows that noscapine and its 7-aniline derivative do not compete for the same binding site nor does its small molecule crystal structure match its tubulin-bound conformation. These compounds were also tested for their antiproliferative effects on a panel hepatocellular carcinoma cell lines.

  9. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes

    PubMed Central

    Kraakman, Michael J.; Lee, Man K.S.; Al-Sharea, Annas; Dragoljevic, Dragana; Barrett, Tessa J.; Montenont, Emilie; Basu, Debapriya; Heywood, Sarah; Kammoun, Helene L.; Flynn, Michelle; Whillas, Alexandra; Hanssen, Nordin M.J.; Febbraio, Mark A.; Westein, Erik; Chin-Dusting, Jaye; Cooper, Mark E.; Berger, Jeffrey S.; Goldberg, Ira J.; Nagareddy, Prabhakara R.; Murphy, Andrew J.

    2017-01-01

    Platelets play a critical role in atherogenesis and thrombosis-mediated myocardial ischemia, processes that are accelerated in diabetes. Whether hyperglycemia promotes platelet production and whether enhanced platelet production contributes to enhanced atherothrombosis remains unknown. Here we found that in response to hyperglycemia, neutrophil-derived S100 calcium-binding proteins A8/A9 (S100A8/A9) interact with the receptor for advanced glycation end products (RAGE) on hepatic Kupffer cells, resulting in increased production of IL-6, a pleiotropic cytokine that is implicated in inflammatory thrombocytosis. IL-6 acts on hepatocytes to enhance the production of thrombopoietin, which in turn interacts with its cognate receptor c-MPL on megakaryocytes and bone marrow progenitor cells to promote their expansion and proliferation, resulting in reticulated thrombocytosis. Lowering blood glucose using a sodium-glucose cotransporter 2 inhibitor (dapagliflozin), depleting neutrophils or Kupffer cells, or inhibiting S100A8/A9 binding to RAGE (using paquinimod), all reduced diabetes-induced thrombocytosis. Inhibiting S100A8/A9 also decreased atherogenesis in diabetic mice. Finally, we found that patients with type 2 diabetes have reticulated thrombocytosis that correlates with glycated hemoglobin as well as increased plasma S100A8/A9 levels. These studies provide insights into the mechanisms that regulate platelet production and may aid in the development of strategies to improve on current antiplatelet therapies and to reduce cardiovascular disease risk in diabetes. PMID:28504650

  10. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder.

    PubMed

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-03-25

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  11. Protein ligand-binding site comparison by a reduced vector representation derived from multidimensional scaling of generalized description of binding sites.

    PubMed

    Nakamura, Tsukasa; Tomii, Kentaro

    2016-01-15

    Proteins serve various functions in living cells. When they exert their functions, physical contact with other molecules occurs. A close connection therefore exists between their functions and structures. Therefore, comparison and classification about known and predicted protein structures provides important insight into the structural features of proteins, elucidating their functions and structures. Analyzing the mutual interactions between proteins and small molecules is important to predict the ligands which bind to parts of putative ligand binding sites. Such analysis demands a fast and efficient method for comparing ligand binding sites because of the recent increase of protein structure information. A method has been developed for representing a ligand binding site with one reduced vector for binding site comparison. Using our method, one can calculate the similarity between ligand binding sites merely by calculating the inner product of 11-dimensional vectors. The method explained herein shows higher performance of the similarity between binding sites than metrics used in existing alignment-free methods. It also shows performance that is comparable to accurate methods developed recently, which employ solving the optimization problem: APoc. Moreover, these study results suggest that this new method can provide similarities faster than our previous method. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Effects of vitamin D(3)-binding protein-derived macrophage activating factor (GcMAF) on angiogenesis.

    PubMed

    Kanda, Shigeru; Mochizuki, Yasushi; Miyata, Yasuyoshi; Kanetake, Hiroshi; Yamamoto, Nobuto

    2002-09-04

    The vitamin D(3)-binding protein (Gc protein)-derived macrophage activating factor (GcMAF) activates tumoricidal macrophages against a variety of cancers indiscriminately. We investigated whether GcMAF also acts as an antiangiogenic factor on endothelial cells. The effects of GcMAF on angiogenic growth factor-induced cell proliferation, chemotaxis, and tube formation were examined in vitro by using cultured endothelial cells (murine IBE cells, porcine PAE cells, and human umbilical vein endothelial cells [HUVECs]) and in vivo by using a mouse cornea micropocket assay. Blocking monoclonal antibodies to CD36, a receptor for the antiangiogenic factor thrombospondin-1, which is also a possible receptor for GcMAF, were used to investigate the mechanism of GcMAF action. GcMAF inhibited the endothelial cell proliferation, chemotaxis, and tube formation that were all stimulated by fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor-A, or angiopoietin 2. FGF-2-induced neovascularization in murine cornea was also inhibited by GcMAF. Monoclonal antibodies against murine and human CD36 receptor blocked the antiangiogenic action of GcMAF on the angiogenic factor stimulation of endothelial cell chemotaxis. In addition to its ability to activate tumoricidal macrophages, GcMAF has direct antiangiogenic effects on endothelial cells independent of tissue origin. The antiangiogenic effects of GcMAF may be mediated through the CD36 receptor.

  13. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    PubMed

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold.

  14. Divergent RNA-Binding Proteins, DAZL and VASA, Induce Meiotic Progression in Human Germ Cells Derived In Vitro

    PubMed Central

    Medrano, Jose v.; Ramathal, Cyril; Nguyen, Ha N.; Simon, Carlos; Pera, Renee A. Reijo

    2013-01-01

    Our understanding of human germ cell development is limited in large part due to inaccessibility of early human development to molecular genetic analysis. Pluripotent human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been shown to differentiate to cells of all three embryonic germ layers, as well as germ cells in vitro, and thus may provide a model for the study of the genetics and epigenetics of human germline. Here, we examined whether intrinsic germ cell translational, rather than transcriptional, factors might drive germline formation and/or differentiation from human pluripotent stem cells in vitro. We observed that, with overexpression of VASA (DDX4) and/or DAZL (Deleted in Azoospermia Like), both hESCs and iPSCs differentiated to primordial germ cells, and maturation and progression through meiosis was enhanced. These results demonstrate that evolutionarily unrelated and divergent RNA-binding proteins can promote meiotic progression of human-derived germ cells in vitro. These studies describe an in vitro model for exploring specifics of human meiosis, a process that is remarkably susceptible to errors that lead to different infertility-related diseases. PMID:22162380

  15. Effects of vitamin D-binding protein-derived macrophage-activating factor on human breast cancer cells.

    PubMed

    Pacini, Stefania; Punzi, Tiziana; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco

    2012-01-01

    Searching for additional therapeutic tools to fight breast cancer, we investigated the effects of vitamin D-binding protein-derived macrophage activating factor (DBP-MAF, also known as GcMAF) on a human breast cancer cell line (MCF-7). The effects of DBP-MAF on proliferation, morphology, vimentin expression and angiogenesis were studied by cell proliferation assay, phase-contrast microscopy, immunohistochemistry and western blotting, and chorioallantoic membrane (CAM) assay. DBP-MAF inhibited human breast cancer cell proliferation and cancer cell-stimulated angiogenesis. MCF-7 cells treated with DBP-MAF predominantly grew in monolayer and appeared to be well adherent to each other and to the well surface. Exposure to DBP-MAF significantly reduced vimentin expression, indicating a reversal of the epithelial/mesenchymal transition, a hallmark of human breast cancer progression. These results are consistent with the hypothesis that the known anticancer efficacy of DBP-MAF can be ascribed to different biological properties of the molecule that include inhibition of tumour-induced angiogenesis and direct inhibition of cancer cell proliferation, migration and metastatic potential.

  16. Plasmodium falciparum: binding studies of peptide derived from the sporozoite surface protein 2 to Hep G2 cells.

    PubMed

    López, R; Curtidor, H; Urquiza, M; Garcia, J; Puentes, A; Suarez, J; Ocampo, M; Vera, R; Rodriguez, L E; Castillo, F; Cifuentes, G; Patarroyo, M E

    2001-10-01

    Plasmodium falciparum sporozoite surface protein 2 (Pf SSP2), also called thrombospondin related anonymous protein (TRAP), is involved in the process of sporozoite invasion of hepatocytes. Pf SSP2/TRAP possesses two different adhesion domains sharing sequences and structural homology with von Willebrand factor A-domains and human repeat I thrombospondin (TSP). Pf SSP2/TRAP has also been implicated in sporozoite mobility and in mosquito salivary gland invasion processes. We tested 15-mer long synthetic peptides having five overlapping residues covering the complete protein Pf SSP2 sequence in binding assays to Hep G2 cells. In these 57 peptides, 21 high-activity binding peptides (HABPs) were identified; five were in the adhesion domains already described and 16 were in two regions toward the protein's carboxy and middle terminal part. Six HABPs showed conserved amino acid sequences: 3243 (21FLVNGRDVQNNIVDE35), 3279 (201FLVGCHPSDGKCNLY215), 3287 (241TASCGVWDEWSPCSV255), 3289 (251SPCSVTCGKGTRSRK265), 3327 (441ERKQSDPQSQDNNGNY455) and 3329 (451DNNGNRHVPNSEDREY465). The HABPs show saturable binding and dissociation constants between 140 and 900 nm with 40 000-855 000 binding sites per cell. The 3279 (201FLVGCHPSDGKCNLY215), 3323 (421NDKSDRYIPYSPLSP435) and 3331 (461SEDRETRPHGRNNENY475) HABPs have B epitopes in their sequences; these have previously been recognized by antibodies partially inhibiting hepatocyte invasion and development of the hepatic state. The 3287 (241TASCGVWDEWSPCSV255) and 3289 (251SPCSVTCGKGTRSRK265) HABPs share common sequences with the Pf SSP2/TRAP region II plus, which is present in a great number of adhesion proteins. Based on this information, six new peptides covering the high binding regions identified previously were synthesized and, using a competition assay, the amino acid involved in the binding were determined.

  17. Structure, Sulfatide Binding Properties, and Inhibition of Platelet Aggregation by a Disabled-2 Protein-derived Peptide*

    PubMed Central

    Xiao, Shuyan; Charonko, John J.; Fu, Xiangping; Salmanzadeh, Alireza; Davalos, Rafael V.; Vlachos, Pavlos P.; Finkielstein, Carla V.; Capelluto, Daniel G. S.

    2012-01-01

    Disabled-2 (Dab2) targets membranes and triggers a wide range of biological events, including endocytosis and platelet aggregation. Dab2, through its phosphotyrosine-binding (PTB) domain, inhibits platelet aggregation by competing with fibrinogen for αIIbβ3 integrin receptor binding. We have recently shown that the N-terminal region, including the PTB domain (N-PTB), drives Dab2 to the platelet membrane surface by binding to sulfatides through two sulfatide-binding motifs, modulating the extent of platelet aggregation. The three-dimensional structure of a Dab2-derived peptide encompassing the sulfatide-binding motifs has been determined in dodecylphosphocholine micelles using NMR spectroscopy. Dab2 sulfatide-binding motif contains two helices when embedded in micelles, reversibly binds to sulfatides with moderate affinity, lies parallel to the micelle surface, and when added to a platelet mixture, reduces the number and size of sulfatide-induced aggregates. Overall, our findings identify and structurally characterize a minimal region in Dab2 that modulates platelet homotypic interactions, all of which provide the foundation for rational design of a new generation of anti-aggregatory low-molecular mass molecules for therapeutic purposes. PMID:22977233

  18. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  19. Cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  20. Protection against Schistosoma mansoni infection using a Fasciola hepatica-derived fatty acid binding protein from different delivery systems.

    PubMed

    Vicente, Belén; López-Abán, Julio; Rojas-Caraballo, Jose; del Olmo, Esther; Fernández-Soto, Pedro; Muro, Antonio

    2016-04-18

    Schistosomiasis is a water-borne disease afflicting over 261 million people in many areas of the developing countries with high morbidity and mortality. The control relies mainly on treatment with praziquantel. Fatty acid binding proteins (FABP) have demonstrated high levels of immune-protection against trematode infections. This study reports the immunoprotection induced by cross-reacting Fasciola hepatica FABP, native (nFh12) and recombinantly expressed using two different expression systems Escherichia coli (rFh15) and baculovirus (rFh15b) against Schistosoma mansoni infection. BALB/c mice were vaccinated with native nFh12 or recombinant rFh15 and rFh15 FABP from F. hepatica formulated in adjuvant adaptation (ADAD) system with natural or chemical synthesised immunomodulators (PAL and AA0029) and then challenged with 150 cercariae of S. mansoni. Parasite burden, hepatic lesions and antibody response were studied in vaccination trials. Furthermore differences between rFh15 and rFh15b immunological responses (cytokine production, splenocyte population and antibody levels) were studied. Vaccination with nFh12 induced significant reductions in worm burden (83%), eggs in tissues (82-92%) and hepatic lesions (85%) compared to infected controls using PAL. Vaccination with rFh15 showed lower total worm burden (56-64%), eggs in the liver (21-61%), eggs in the gut (30-77%) and hepatic damage (67-69%) using PAL and AA0029 as immunomodulators. In contrast, mice vaccinated with rFh15b showed only reductions in eggs trapped in the liver and intestine (53 and 60%, respectively), and hepatic lesions (45%). We observed a significant rise in TNFα, IL-6, IL-2, IL-4 and high antibody response (IgG, IgG1, IgG2a, IgM and IgE) in mice immunised with either rFh15 or rFh15b. Moreover, mice immunised with rFh15b showed an increase in IFNγ and a decrease in B220 cells compared to untreated mice, and less production of IgG1 and IgM than in mice immunised by rFh15. Higher level of

  1. The dimerization domain of the HIV-1 capsid protein binds a capsid protein-derived peptide: A biophysical characterization

    PubMed Central

    Garzón, María T.; Lidón-Moya, María C.; Barrera, Francisco N.; Prieto, Alicia; Gómez, Javier; Mateu, Mauricio G.; Neira, José L.

    2004-01-01

    The type 1 HIV presents a conical capsid formed by ~1500 units of the capsid protein, CA. Homodimer-ization of CA via its C-terminal domain, CA-C, constitutes a key step in virion assembly. CA-C dimerization is largely mediated by reciprocal interactions between residues of its second α-helix. Here, we show that an N-terminal-acetylated and C-terminal–amidated peptide, CAC1, comprising the sequence of the CA-C dimerization helix plus three flanking residues at each side, is able to form a complex with the entire CA-C domain. Thermal denaturation measurements followed by circular dichroism (CD), NMR, and size-exclusion chromatography provided evidence of the interaction between CAC1 and CA-C. The apparent dissociation constant of the heterocomplex formed by CA-C and CAC1 was determined by several biophysical techniques, namely, fluorescence (using an anthraniloyl-labeled peptide), affinity chromatography, and isothermal titration calorimetry. The three techniques yielded similar values for the apparent dissociation constant, in the order of 50 μM. This apparent dissociation constant was only five times higher than was the dissociation constant of both CA-C and the intact capsid protein homodimers (10 μM). PMID:15152086

  2. The dimerization domain of the HIV-1 capsid protein binds a capsid protein-derived peptide: a biophysical characterization.

    PubMed

    Garzón, María T; Lidón-Moya, María C; Barrera, Francisco N; Prieto, Alicia; Gómez, Javier; Mateu, Mauricio G; Neira, José L

    2004-06-01

    The type 1 HIV presents a conical capsid formed by approximately 1500 units of the capsid protein, CA. Homodimerization of CA via its C-terminal domain, CA-C, constitutes a key step in virion assembly. CA-C dimerization is largely mediated by reciprocal interactions between residues of its second alpha-helix. Here, we show that an N-terminal-acetylated and C-terminal-amidated peptide, CAC1, comprising the sequence of the CA-C dimerization helix plus three flanking residues at each side, is able to form a complex with the entire CA-C domain. Thermal denaturation measurements followed by circular dichroism (CD), NMR, and size-exclusion chromatography provided evidence of the interaction between CAC1 and CA-C. The apparent dissociation constant of the heterocomplex formed by CA-C and CAC1 was determined by several biophysical techniques, namely, fluorescence (using an anthraniloyl-labeled peptide), affinity chromatography, and isothermal titration calorimetry. The three techniques yielded similar values for the apparent dissociation constant, in the order of 50 microM. This apparent dissociation constant was only five times higher than was the dissociation constant of both CA-C and the intact capsid protein homodimers (10 microM).

  3. Content and activity of cAMP response element-binding protein regulate platelet-derived growth factor receptor-alpha content in vascular smooth muscles.

    PubMed

    Watson, Peter A; Vinson, Charles; Nesterova, Albina; Reusch, Jane E-B

    2002-08-01

    Experiments in vascular smooth muscle cells (SMCs) indicate that the transcription factor cAMP response element-binding protein (CREB), the cyclic nucleotide response element-binding protein, suppresses expression of the platelet-derived growth factor-alpha receptor gene (PDGFRalpha). Adenovirus-mediated expression of constitutively active CREB mutants decreases PDGFRalpha mRNA, PDGFRalpha protein, and PDGFRalpha promoter-luciferase reporter activity in cultured SMCs. Expression of dominant negative CREB protein, A-CREB, increases PDGFRalpha protein content and the PDGFRalpha-promoter activity in SMCs. Active CREB prevents activation of PDGFRalpha promoter-luciferase reporter activity by CCAAT/enhancer-binding protein-delta (C/EBPdelta), shown to mediate IL-1beta stimulation of PDGFRalpha expression. Exposure of cultured SMCs to high glucose or reactive oxidant stress, which decrease CREB protein content and activity, increases PDGFRalpha protein content and promoter activity. Expression of active CREB blunts reactive oxidant stress-induced PDGFRalpha accumulation in SMCs. Loss of CREB protein in aortic walls of rats with streptozotocin-induced diabetes is accompanied by an increase in PDGFRalpha content. In Ob/Ob mice (which demonstrate reduced aortic wall CREB content vs. Ob/- controls), treatment with the peroxisomal proliferator-activated receptor gamma rosiglitazone increases CREB content and decreases PDGFRalpha content in the aortic wall. Thus, both in vitro and in vivo loss of CREB content and activity and subsequent accumulation of PDGFRalpha may contribute to SMC activation during diabetes.

  4. Interactions between Sindbis virus RNAs and a 68 amino acid derivative of the viral capsid protein further defines the capsid binding site.

    PubMed Central

    Weiss, B; Geigenmüller-Gnirke, U; Schlesinger, S

    1994-01-01

    In previous studies of encapsidation of Sindbis virus RNA, we identified a 570nt fragment (nt 684-1253) from the 12 kb genome that binds to the viral capsid protein with specificity and is required for packaging of Sindbis virus defective interfering RNAs. We now show that the capsid binding activity resides in a highly structured 132nt fragment (nt 945-1076). We had also demonstrated that a 68 amino acid peptide derived from the capsid protein retained most of the binding activity of the original protein and have now developed an RNA mobility shift assay with this peptide fused to glutathione-S-transferase. We have used this assay in conjunction with the original assay in which the intact capsid protein was immobilized on nitrocellulose to analyze more extensive deletions in the 132-mer. All of the deletions led to a reduction in binding, but the binding of a 5' 67-mer was enhanced by the addition of nonspecific flanking sequences. This result suggests that the stability of a particular structure within the 132nt sequence may be important for capsid recognition. Images PMID:8139918

  5. Effects of ortho substituent groups of protocatechualdehyde derivatives on binding to the C1 domain of novel protein kinase C.

    PubMed

    Mamidi, Narsimha; Borah, Rituparna; Sinha, Narayan; Jana, Chandramohan; Manna, Debasis

    2012-09-06

    Diacylglycerol (DAG) regulates a broad range of cellular functions including tumor promotion, apoptosis, differentiation, and growth. Thus, the DAG-responsive C1 domain of protein kinase C (PKC) isoenzymes is considered to be an attractive drug target for the treatment of cancer and other diseases. To develop effective PKC regulators, we conveniently synthesized (hydroxymethyl)phenyl ester analogues targeted to the DAG binding site within the C1 domain. Biophysical studies and molecular docking analysis showed that the hydroxymethyl group, hydrophobic side chains, and acyl group at the ortho position are essential for their interactions with the C1-domain backbone. Modifications of these groups showed diminished binding to the C1 domain. The active (hydroxymethyl)phenyl ester analogues showed more than 5-fold stronger binding affinity for the C1 domain than DAG. Therefore, our findings reveal that (hydroxymethyl)phenyl ester analogues represent an attractive group of C1-domain ligands that can be further structurally modified to improve their binding and activity.

  6. Altering the orientation of a fused protein to the RNA-binding ribosomal protein L7Ae and its derivatives through circular permutation

    SciTech Connect

    Ohuchi, Shoji J.; Sagawa, Fumihiko; Sakamoto, Taiichi; Inoue, Tan

    2015-10-23

    RNA-protein complexes (RNPs) are useful for constructing functional nano-objects because a variety of functional proteins can be displayed on a designed RNA scaffold. Here, we report circular permutations of an RNA-binding protein L7Ae based on the three-dimensional structure information to alter the orientation of the displayed proteins on the RNA scaffold. An electrophoretic mobility shift assay and atomic force microscopy (AFM) analysis revealed that most of the designed circular permutants formed an RNP nano-object. Moreover, the alteration of the enhanced green fluorescent protein (EGFP) orientation was confirmed with AFM by employing EGFP on the L7Ae permutant on the RNA. The results demonstrate that targeted fine-tuning of the stereo-specific fixation of a protein on a protein-binding RNA is feasible by using the circular permutation technique.

  7. In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase co-factor activity

    PubMed Central

    Brown, Craig S.; Lee, Michael S.; Leung, Daisy W.; Wang, Tianjiao; Xu, Wei; Luthra, Priya; Anantpadma, Manu; Shabman, Reed S.; Melito, Lisa M.; MacMillan, Karen S.; Borek, Dominika M.; Otwinowski, Zbyszek; Ramanan, Parameshwaran; Stubbs, Alisha J.; Peterson, Dayna S.; Binning, Jennifer M.; Tonelli, Marco; Olson, Mark A.; Davey, Rob; Ready, Joseph M.; Basler, Christopher F.; Amarasinghe, Gaya K.

    2014-01-01

    The Ebola virus (EBOV) genome only encodes a single viral polypeptide with enzymatic activity, the viral Large (L) RNA-dependent RNA polymerase protein. However, currently there is limited information about L protein, which has hampered development of antivirals. Therefore, antifiloviral therapeutic efforts must include additional targets such as protein-protein interfaces (PPIs). Viral protein 35 (VP35) is multifunctional and plays important roles in viral pathogenesis, including viral mRNA synthesis and replication of the negative-sense RNA viral genome. Previous studies revealed that mutation of key basic residues within the VP35 interferon inhibitory domain (IID) results in significant EBOV attenuation, both in vitro and in vivo. In the current study, we use an experimental pipeline that includes structure-based in silico screening, biochemical and structural characterization, along with medicinal chemistry to identify and characterize small molecules that target a binding pocket within VP35. NMR mapping experiments and high resolution x-ray crystal structures show that select small molecules bind to a region of VP35 IID that is important for replication complex formation through interactions with the viral nucleoprotein (NP). We also tested select compounds for their ability to inhibit VP35 IID-NP interactions in vitro as well as VP35 function in a minigenome assay and EBOV replication. These results confirm the ability of compounds identified in this study to inhibit VP35-NP interactions in vitro and to impair viral replication in cell-based assays. These studies provide an initial framework to guide development of antifiloviral compounds against filoviral VP35 proteins. PMID:24495995

  8. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line

    PubMed Central

    TOYOHARA, YUKIYO; HASHITANI, SUSUMU; KISHIMOTO, HIROMITSU; NOGUCHI, KAZUMA; YAMAMOTO, NOBUTO; URADE, MASAHIRO

    2011-01-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model. PMID:22848250

  9. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line.

    PubMed

    Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro

    2011-07-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model.

  10. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki; Ushijima, Naofumi

    2008-01-15

    Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of breast cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Patient serum Nagalase activity is proportional to tumor burden. The deglycosylated Gc protein cannot be converted to MAF, resulting in no macrophage activation and immunosuppression. Stepwise incubation of purified Gc protein with immobilized beta-galactosidase and sialidase generated probably the most potent macrophage activating factor (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages treated in vitro with GcMAF (100 pg/ml) are highly tumoricidal to mammary adenocarcinomas. Efficacy of GcMAF for treatment of metastatic breast cancer was investigated with 16 nonanemic patients who received weekly administration of GcMAF (100 ng). As GcMAF therapy progresses, the MAF precursor activity of patient Gc protein increased with a concomitant decrease in serum Nagalase. Because of proportionality of serum Nagalase activity to tumor burden, the time course progress of GcMAF therapy was assessed by serum Nagalase activity as a prognostic index. These patients had the initial Nagalase activities ranging from 2.32 to 6.28 nmole/min/mg protein. After about 16-22 administrations (approximately 3.5-5 months) of GcMAF, these patients had insignificantly low serum enzyme levels equivalent to healthy control enzyme levels, ranging from 0.38 to 0.63 nmole/min/mg protein, indicating eradication of the tumors. This therapeutic procedure resulted in no recurrence for more than 4 years.

  11. Elucidation of New Binding Interactions with the Tumor Susceptibility Gene 101 (Tsg101) Protein Using Modified HIV-1 Gag-p6 Derived Peptide Ligands.

    PubMed

    Kim, Sung-Eun; Liu, Fa; Im, Young Jun; Stephen, Andrew G; Fivash, Matthew J; Waheed, Abdul A; Freed, Eric O; Fisher, Robert J; Hurley, James H; Burke, Terrence R

    2011-05-12

    Targeting protein-protein interactions is gaining greater recognition as an attractive approach to therapeutic development. An example of this may be found with the human cellular protein encoded by the tumor susceptibility gene 101 (Tsg101), where interaction with the p6 C-terminal domain of the nascent viral Gag protein is required for HIV-1 particle budding and release. This association of Gag with Tsg101 is highly dependent on a "Pro-Thr-Ala-Pro" ("PTAP") peptide sequence within the p6 protein. Although p6-derived peptides offer potential starting points for developing Tsg101-binding inhibitors, the affinities of canonical peptides are outside the useful range (K(d) values greater than 50 μM). Reported herein are crystal structures of Tsg101 in complex with two structurally-modified PTAP-derived peptides. This data define new regions of ligand interaction not previously identified with canonical peptide sequences. This information could be highly useful in the design of Tsg101-binding antagonists.

  12. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients.

  13. Fenretinide derivatives act as disrupters of interactions of serum retinol binding protein (sRBP) with transthyretin and the sRBP receptor.

    PubMed

    Campos-Sandoval, José Angel; Redondo, Clara; Kinsella, Gemma K; Pal, Akos; Jones, Geraint; Eyre, Gwen S; Hirst, Simon C; Findlay, John B C

    2011-07-14

    Serum retinol binding protein (sRBP) is released from the liver as a complex with transthyretin (TTR), a process under the control of dietary retinol. Elevated levels of sRBP may be involved in inhibiting cellular responses to insulin and in generating first insulin resistance and then type 2 diabetes, offering a new target for therapeutic attack for these conditions. A series of retinoid analogues were synthesized and examined for their binding to sRBP and their ability to disrupt the sRBP-TTR and sRBP-sRBP receptor interactions. A number inhibit the sRBP-TTR and sRBP-sRBP receptor interactions as well as or better than Fenretinide (FEN), presenting a potential novel dual mechanism of action and perhaps offering a new therapeutic intervention against type 2 diabetes and its development. Shortening the chain length of the FEN derivative substantially abolished binding to sRBP, indicating that the strength of the interaction lies in the polyene chain region. Differences in potency against the sRBP-TTR and sRBP-sRBP receptor interactions suggest variant effects of the compounds on the two loops of sRBP guarding the entrance of the binding pocket that are responsible for these two protein-protein interactions.

  14. Effect of the binding interaction of an emissive niacin derivative on the conformation and activity of a model plasma protein: A spectroscopic and simulation-based approach.

    PubMed

    Sett, Riya; Ganguly, Aniruddha; Guchhait, Nikhil

    2016-11-01

    The present work demonstrates a detailed photophysics of bio-active drug-like acid viz., 2-hydroxynicotinic acid (2-HNA) and its interaction with a model plasma protein Bovine Serum Albumin (BSA). The drug which is in essence a vitamin-B3 derivative, is capable of exhibiting ultrafast lactim-lactam cross-over response and thereby the modulation of the lactam emission within the bio-environment of the protein has been depicted spectroscopically to reveal the drug-protein interaction. Apart from evaluating the binding constant, the probable location of the neutral drug molecule within the protein cavity (hydrophobic subdomain IIIA) has been explored by AutoDock-based blind docking simulation technique. In this microheterogeneous medium, slow solvent reorientation time with respect to the emissive lifetime of the drug explicate the Red Edge Effect (REE). To complement the findings about the binding process, chaotrope-induced protein denaturation has also been inspected. The probe also illustrates a perceptible difference in rotational relaxation time in confined medium than in aqueous medium which strengthen our verdict. Unfolding of the protein in the presence of the drug molecule has been probed by the decrease of the α-helical content, obtained via circular dichroism (CD) spectroscopy, which is also supported by the gradual slaughter of the esterase activity of the protein in the presence of the drug molecule.

  15. High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity

    PubMed Central

    Borrmann, Lars; Schwanbeck, Ralf; Heyduk, Tomasz; Seebeck, Birte; Rogalla, Piere; Bullerdiek, Jörn; Wiśniewski, Jacek R.

    2003-01-01

    High mobility group A2 (HMGA2) chromosomal non-histone protein and its derivatives play an important role in development and progression of benign and malignant tumors, obesity and arteriosclerosis, although the underlying mechanisms of these conditions are poorly understood. Therefore, we tried to identify target genes for this transcriptional regulator and to provide insights in the mechanism of interaction to its target. Multiple genes have been identified by microarray experiments as being transcriptionally regulated by HMGA2. Among these we chose the ERCC1 gene, encoding a DNA repair protein, for this study. DNA-binding studies were performed using HMGA2 and C-terminally truncated ΔHMGA2, a derivative that is frequently observed in a variety of tumors. A unique high affinity HMGA2 binding site was mapped to a specific AT-rich region located –323 to –298 upstream of the ERCC1 transcription start site, distinguishing it from other potential AT-rich binding sites. The observed 1:1 stoichiometry for the binding of wild-type HMGA2 to this region was altered to 1:2 upon binding of truncated ΔHMGA2, causing DNA bending. Furthermore, the regulatory effect of HMGA2 was confirmed by luciferase promoter assays showing that ERCC1 promoter activity is down-regulated by all investigated HMGA2 forms, with the most striking effect exerted by ΔHMGA2. Our results provide the first insights into how HMGA2 and its aberrant forms bind and regulate the ERCC1 promoter. PMID:14627817

  16. Synthesis, characterization of α-amino acid Schiff base derived Ru/Pt complexes: Induces cytotoxicity in HepG2 cell via protein binding and ROS generation

    NASA Astrophysics Data System (ADS)

    Alsalme, Ali; Laeeq, Sameen; Dwivedi, Sourabh; Khan, Mohd. Shahnawaz; Al Farhan, Khalid; Musarrat, Javed; Khan, Rais Ahmad

    2016-06-01

    We have synthesized two new complexes of platinum (1) and ruthenium (2) with α-amino acid, L-alanine, and 2,3-dihydroxybenzaldehyde derived Schiff base (L). The ligand and both complexes were characterized by using elemental analysis and several other spectroscopic techniques viz; IR, 1H, 13C NMR, EPR, and ESI-MS. Furthermore, the protein-binding ability of synthesized complexes was monitored by UV-visible, fluorescence and circular dichroism techniques with a model protein, human serum albumin (HSA). Both the PtL2 and RuL2 complexes displayed significant binding towards HSA. Also, in vitro cytotoxicity assay for both complexes was carried out on human hepatocellular carcinoma cancer (HepG2) cell line. The results showed concentration-dependent inhibition of cell viability. Moreover, the generation of reactive oxygen species was also evaluated, and results exhibited substantial role in cytotoxicity.

  17. DR1001 presents ‘altered-self’ peptides derived from joint associated proteins by accepting citrulline in three of its binding pockets

    PubMed Central

    James, Eddie A.; Moustakas, Antonis K.; Bui, John; Papadopoulos, George K.; Bondinas, George; Buckner, Jane H.; Kwok, William W.

    2010-01-01

    Objective HLA-DRB1*1001 (DR1001) is a shared epitope allele associated with rheumatoid arthritis. The objectives of this study were to assess the capacity of DR1001 to accommodate citrulline in its binding pockets and to identify citrullinated T cell epitopes derived from joint associated proteins. Methods The binding of peptide derivatives containing citrulline, arginine, and other amino acid substitutions was measured. A prediction algorithm was then developed to identify arginine containing sequences from joint associated proteins that preferentially bind to DR1001 upon citrullination. Unmodified and citrullinated versions of these sequences were synthesized and utilized to stimulate CD4+ T cells from healthy subjects and rheumatoid arthritis patients. Responses were measured by MHC class II tetramer staining and confirmed by isolating CD4+ T cell clones. Results DR1001 accepted citrulline, but not arginine in three of its anchoring pockets. The prediction algorithm identified sequences that preferentially bound to DR1001 with arginine replaced by citrulline. Three of these sequences elicited CD4+ T cell responses. T cell clones specific for these sequences proliferated only in response to citrullinated peptides. Conclusions Conversion of arginine to citrulline generates ‘altered-self’ peptides that can be bound and presented by DR1001. Responses to these peptides implicate the corresponding proteins (fibrinogen α, fibrinogen β and cartilage intermediate layer protein) as relevant antigens. Preferential responses to citrullinated sequences suggests that altered peptide binding affinity due to this post-translational modification may be an important factor in the initiation or progression of RA. As such, measuring responsiveness to these peptides may be useful for immune monitoring. PMID:20533291

  18. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series.

    PubMed

    Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Lionta, Evanthia; Heil, Jochen; Kast, Stefan M

    2017-07-24

    Water molecules play an essential role for mediating interactions between ligands and protein binding sites. Displacement of specific water molecules can favorably modulate the free energy of binding of protein-ligand complexes. Here, the nature of water interactions in protein binding sites is investigated by 3D RISM (three-dimensional reference interaction site model) integral equation theory to understand and exploit local thermodynamic features of water molecules by ranking their possible displacement in structure-based design. Unlike molecular dynamics-based approaches, 3D RISM theory allows for fast and noise-free calculations using the same detailed level of solute-solvent interaction description. Here we correlate molecular water entities instead of mere site density maxima with local contributions to the solvation free energy using novel algorithms. Distinct water molecules and hydration sites are investigated in multiple protein-ligand X-ray structures, namely streptavidin, factor Xa, and factor VIIa, based on 3D RISM-derived free energy density fields. Our approach allows the semiquantitative assessment of whether a given structural water molecule can potentially be targeted for replacement in structure-based design. Finally, PLS-based regression models from free energy density fields used within a 3D-QSAR approach (CARMa - comparative analysis of 3D RISM Maps) are shown to be able to extract relevant information for the interpretation of structure-activity relationship (SAR) trends, as demonstrated for a series of serine protease inhibitors.

  19. Binding mode of triazole derivatives as aromatase inhibitors based on docking, protein ligand interaction fingerprinting, and molecular dynamics simulation studies

    PubMed Central

    Mojaddami, Ayyub; Sakhteman, Amirhossein; Fereidoonnezhad, Masood; Faghih, Zeinab; Najdian, Atena; Khabnadideh, Soghra; Sadeghpour, Hossein; Rezaei, Zahra

    2017-01-01

    Aromatase inhibitors (AIs) as effective candidates have been used in the treatment of hormone-dependent breast cancer. In this study, we have proposed 300 structures as potential AIs and filtered them by Lipinski's rule of five using DrugLito software. Subsequently, they were subjected to docking simulation studies to select the top 20 compounds based on their Gibbs free energy changes and also to perform more studies on the protein-ligand interaction fingerprint by AuposSOM software. In this stage, anastrozole and letrozole were used as positive control to compare their interaction fingerprint patterns with our proposed structures. Finally, based on the binding energy values, one active structure (ligand 15) was selected for molecular dynamic simulation in order to get information for the binding mode of these ligands within the enzyme cavity. The triazole of ligand 15 pointed to HEM group in aromatase active site and coordinated to Fe of HEM through its N4 atom. In addition, two π-cation interactions was also observed, one interaction between triazole and porphyrin of HEM group, and the other was 4-chloro phenyl moiety of this ligand with Arg115 residue. PMID:28255310

  20. In situ cleavage of baculovirus occlusion-derived virus receptor binding protein P74 in the peroral infectivity complex.

    PubMed

    Peng, Ke; van Lent, Jan W M; Vlak, Just M; Hu, Zhihong; van Oers, Monique M

    2011-10-01

    Proteolytic processing of viral membrane proteins is common among enveloped viruses and facilitates virus entry. The Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) occlusion-derived virus (ODV) protein P74 is part of a complex of essential peroral infectivity factors (PIFs). Here we report that P74 is efficiently cleaved into two fragments of about equal size by an occlusion body (OB) endogenous alkaline protease during ODV release when AcMNPV OBs are derived from larvae. The cleavage is specific for P74, since the other known peroral infectivity factors in the same complex (PIF1, PIF2, and PIF3) were not cleaved under the same conditions. P74 cleavage was not observed in OBs produced in three different insect cell lines, suggesting a larval host origin of the responsible protease. P74 in OBs produced in larvae of two different host species was cleaved into fragments with the same apparent molecular mass, indicating that the virus incorporates a similar alkaline protease from different hosts. Coimmunoprecipitation analysis revealed that the two P74 subunit fragments remain associated with the recently discovered PIF complex. We propose that under in vivo ODV infection conditions, P74 undergoes two sequential cleavage events, the first one being performed by an ODV-associated host alkaline protease and the second carried out by trypsin in the host midgut.

  1. RNAcompete-S: Combined RNA sequence/structure preferences for RNA binding proteins derived from a single-step in vitro selection.

    PubMed

    Cook, Kate B; Vembu, Shankar; Ha, Kevin C H; Zheng, Hong; Laverty, Kaitlin U; Hughes, Timothy R; Ray, Debashish; Morris, Quaid D

    2017-08-15

    RNA-binding proteins recognize RNA sequences and structures, but there is currently no systematic and accurate method to derive large (>12base) motifs de novo that reflect a combination of intrinsic preference to both sequence and structure. To address this absence, we introduce RNAcompete-S, which couples a single-step competitive binding reaction with an excess of random RNA 40-mers to a custom computational pipeline for interrogation of the bound RNA sequences and derivation of SSMs (Sequence and Structure Models). RNAcompete-S confirms that HuR, QKI, and SRSF1 prefer binding sites that are single stranded, and recapitulates known 8-10bp sequence and structure preferences for Vts1p and RBMY. We also derive an 18-base long SSM for Drosophila SLBP, which to our knowledge has not been previously determined by selections from pure random sequence, and accurately discriminates human replication-dependent histone mRNAs. Thus, RNAcompete-S enables accurate identification of large, intrinsic sequence-structure specificities with a uniform assay. Copyright © 2017. Published by Elsevier Inc.

  2. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    PubMed

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor.

  3. Protein nanopore-based, single-molecule exploration of copper binding to an antimicrobial-derived, histidine-containing chimera peptide.

    PubMed

    Mereuta, Loredana; Schiopu, Irina; Asandei, Alina; Park, Yoonkyung; Hahm, Kyung-Soo; Luchian, Tudor

    2012-12-11

    Metal ions binding exert a crucial influence upon the aggregation properties and stability of peptides, and the propensity of folding in various substates. Herein, we demonstrate the use of the α-HL protein as a powerful nanoscopic tool to probe Cu(2+)-triggered physicochemical changes of a 20 aminoacids long, antimicrobial-derived chimera peptide with a His residue as metal-binding site, and simultaneously dissect the kinetics of the free- and Cu(2+)-bound peptide interaction to the α-HL pore. Combining single-molecule electrophysiology on reconstituted lipid membranes and fluorescence spectroscopy, we show that the association rate constant between the α-HL pore and a Cu(2+)-free peptide is higher than that of a Cu(2+)-complexed peptide. We posit that mainly due to conformational changes induced by the bound Cu(2+) on the peptide, the resulting complex encounters a higher energy barrier toward its association with the protein pore, stemming most likely from an extra entropy cost needed to fit the Cu(2+)-complexed peptide within the α-HL lumen region. The lower dissociation rate constant of the Cu(2+)-complexed peptide from α-HL pore, as compared to that of Cu(2+)-free peptide, supports the existence of a deeper free energy well for the protein interaction with a Cu(2+)-complexed peptide, which may be indicative of specific Cu(2+)-mediated contributions to the binding of the Cu(2+)-complexed peptide within the pore lumen.

  4. Recombinant Ov-ASP-1, a Th1-biased protein adjuvant derived from the helminth Onchocerca volvulus, can directly bind and activate antigen-presenting cells.

    PubMed

    He, Yuxian; Barker, Sophie J; MacDonald, Angus J; Yu, Yu; Cao, Long; Li, Jingjing; Parhar, Ranjit; Heck, Susanne; Hartmann, Susanne; Golenbock, Douglas T; Jiang, Shibo; Libri, Nathan A; Semper, Amanda E; Rosenberg, William M; Lustigman, Sara

    2009-04-01

    We previously reported that rOv-ASP-1, a recombinant Onchocerca volvulus activation associated protein-1, was a potent adjuvant for recombinant protein or synthetic peptide-based Ags. In this study, we further evaluated the adjuvanticity of rOv-ASP-1 and explored its mechanism of action. Consistently, recombinant full-length spike protein of SARS-CoV or its receptor-binding domain in the presence of rOv-ASP-1 could effectively induce a mixed but Th1-skewed immune response in immunized mice. It appears that rOv-ASP-1 primarily bound to the APCs among human PBMCs and triggered Th1-biased proinflammatory cytokine production probably via the activation of monocyte-derived dendritic cells and the TLR, TLR2, and TLR4, thus suggesting that rOv-ASP-1 is a novel potent innate adjuvant.

  5. Comparison of plasma pigment epithelium-derived factor (PEDF), retinol binding protein 4 (RBP-4), chitinase-3-like protein 1 (YKL-40) and brain-derived neurotrophic factor (BDNF) for the identification of insulin resistance.

    PubMed

    Toloza, F J K; Pérez-Matos, M C; Ricardo-Silgado, M L; Morales-Álvarez, M C; Mantilla-Rivas, J O; Pinzón-Cortés, J A; Pérez-Mayorga, M; Arévalo-García, M L; Tolosa-González, G; Mendivil, C O

    2017-09-01

    To evaluate and compare the association of four potential insulin resistance (IR) biomarkers (pigment-epithelium-derived factor [PEDF], retinol-binding-protein-4 [RBP-4], chitinase-3-like protein 1 [YKL-40] and brain-derived neurotrophic factor [BDNF]) with objective measures of IR. We studied 81 subjects with different metabolic profiles. All participants underwent a 5-point OGTT with calculation of multiple IR indexes. A subgroup of 21 participants additionally underwent a hyperinsulinemic-euglycemic clamp. IR was defined as belonging to the highest quartile of incremental area under the insulin curve (iAUCins), or to the lowest quartile of the insulin sensitivity index (ISI). PEDF was associated with adiposity variables. PEDF and RBP4 increased linearly across quartiles of iAUCins (for PEDF p-trend=0.029; for RBP-4 p-trend=0.053). YKL-40 and BDNF were not associated with any adiposity or IR variable. PEDF and RBP-4 levels identified individuals with IR by the iAUCins definition: A PEDF cutoff of 11.9ng/mL had 60% sensitivity and 68% specificity, while a RBP-4 cutoff of 71.6ng/mL had 70% sensitivity and 57% specificity. In multiple regression analyses simultaneously including clinical variables and the studied biomarkers, only BMI, PEDF and RBP-4 remained significant predictors of IR. Plasma PEDF and RBP4 identified IR in subjects with no prior diagnosis of diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method.

    PubMed

    Ma, Chang-Ying; Yang, Sheng-Yong; Zhang, Hui; Xiang, Ming-Li; Huang, Qi; Wei, Yu-Quan

    2008-08-05

    In this study, support vector machine (SVM) method combined with genetic algorithm (GA) for feature selection and conjugate gradient (CG) method for parameter optimization (GA-CG-SVM), has been employed to develop prediction models of human plasma protein binding rate (PPBR) and oral bioavailability (BIO). The advantage of the GA-CG-SVM is that it can deal with feature selection and SVM parameter optimization simultaneously. Five-fold cross-validation as well as independent test set method were used to validate the prediction models. For the PPBR, a total of 692 compounds were used to train and test the prediction model. The prediction accuracy by means of 5-fold cross-validation is 86% and that for the independent test set (161 compounds) is 81%. These accuracies are markedly higher over that of the best model currently available in literature. The number of descriptors selected is 29. For the BIO, the training set is composed of 690 compounds and external 76 compounds form an independent validation set. The prediction accuracy for the training set by using 5-fold cross-validation and that for the independent test set are 80% and 86%, respectively, which are better than or comparable to those of other classification models in literature. The number of descriptors selected is 25. For both the PPBR and BIO, the descriptors selected by GA-CG method cover a large range of molecular properties which imply that the PPBR and BIO of a drug might be affected by many complicated factors.

  7. Arabidopsis-derived shrimp viral-binding protein, PmRab7 can protect white spot syndrome virus infection in shrimp.

    PubMed

    Thagun, Chonprakun; Srisala, Jiraporn; Sritunyalucksana, Kallaya; Narangajavana, Jarunya; Sojikul, Punchapat

    2012-09-15

    White spot syndrome virus is currently the leading cause of production losses in the shrimp industry. Penaeus monodon Rab7 protein has been recognized as a viral-binding protein with an efficient protective effect against white spot syndrome infection. Plant-derived recombinant PmRab7 might serve as an alternative source for in-feed vaccination, considering the remarkable abilities of plant expression systems. PmRab7 was introduced into the Arabidopsis thaliana T87 genome. Arabidopsis-derived recombinant PmRab7 showed high binding activity against white spot syndrome virus and a viral envelope, VP28. The growth profile of Arabidopsis suspension culture expressing PmRab7 (ECR21# 35) resembled that of its counterpart. PmRab7 expression in ECR21# 35 reached its maximum level at 5 mg g(-1) dry weight in 12 days, which was higher than those previously reported in Escherichia coli and in Pichia. Co-injection of white spot syndrome virus and Arabidopsis crude extract containing PmRab7 in Litopenaeus vannamei showed an 87% increase in shrimp survival rate at 5 day after injection. In this study, we propose an alternative PmRab7 source with higher production yield, and cheaper culture media costs, that might serve the industry's need for an in-feed supplement against white spot syndrome infection.

  8. Reconstruction of a swine SLA-I protein complex and determination of binding nonameric peptides derived from the foot-and-mouth disease virus.

    PubMed

    Gao, Feng-Shan; Fang, Qin-Mei; Li, Yun-Gang; Li, Xin-Sheng; Hao, Hui-Fang; Xia, Chun

    2006-10-15

    No experimental system to date is available to identify viral T-cell epitopes in swine. In order to reconstruct the system for identification of short antigenic peptides, the swine SLA-2 gene was linked to the beta(2)m gene via (G4S)3, a linker encoding a 15-amino acid glycine-rich sequence (G4S)3, using splicing overlap extension-PCR (SOE-PCR). The maltose binding protein (MBP)-SLA-2-(G4S)3-beta(2)m fusion protein was expressed and purified in a pMAL-p2X/Escherichia coli TB1 system. The purified MBP-SLA-2-(G4S)3-beta(2)m protein was cleaved by factor Xa protease, and further purified by DEAE-Sepharose chromatography. The conformation of the SLA-2-(G4S)3-beta(2)m protein was determined by circular dichroism (CD) spectrum. In addition, the refolded SLA-2-(G4S)3-beta(2)m protein was used to bind three nonameric peptides derived from the foot-and-mouth disease virus (FMDV) O subtype VP1. The SLA-2-(G4S)3-beta(2)m-associated peptides were detected by mass spectrometry. The molecular weights and amino acid sequences of the peptides were confirmed by primary and secondary spectra, respectively. The results indicate that the SLA-2-(G4S)3-beta(2)m was 41.6kDa, and its alpha-helix, beta-sheet, turn, and random coil by CD estimation were 78 aa, 149 aa, 67 aa, and 93 aa, respectively. SLA-2-(G4S)3-beta(2)m protein was able to bind the nonameric peptides derived from the FMDV VP1 region: 26-34 (RRQHTDVSF) and 157-165 (RTLPTSFNY). The experimental system demonstrated that the reconstructed SLA-2-(G4S)3-beta(2)m protein complex can be used to identify nonameric peptides, including T-cell epitopes in swine.

  9. Semax, an analogue of adrenocorticotropin (4-10), binds specifically and increases levels of brain-derived neurotrophic factor protein in rat basal forebrain.

    PubMed

    Dolotov, Oleg V; Karpenko, Ekaterina A; Seredenina, Tamara S; Inozemtseva, Lyudmila S; Levitskaya, Natalia G; Zolotarev, Yuriy A; Kamensky, Andrey A; Grivennikov, Igor A; Engele, Juergen; Myasoedov, Nikolay F

    2006-04-01

    The heptapeptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) is an analogue of the N-terminal fragment (4-10) of adrenocorticotropic hormone which, after intranasal application, has profound effects on learning and memory formation in rodents and humans, and also exerts marked neuroprotective effects. A clue to the molecular mechanism underlying this neurotropic action was recently given by the observation that Semax stimulates the synthesis of brain-derived neurotrophic factor (BDNF), a potent modulator of synaptic plasticity, in astrocytes cultured from rat basal forebrain. In the present study, we investigated whether Semax affects BDNF levels in rat basal forebrain upon intranasal application of the peptide. In addition, we examined whether cell membranes isolated from this brain region contained binding sites for Semax. The binding of tritium-labelled Semax was found to be time dependent, specific and reversible. Specific Semax binding required calcium ions and was characterized by a mean+/-SEM dissociation constant (KD) of 2.4+/-1.0 nm and a BMAX value of 33.5+/-7.9 fmol/mg protein. Sandwich immunoenzymatic analysis revealed that Semax applied intranasally at 50 and 250 microg/kg bodyweight resulted in a rapid increase in BDNF levels after 3 h in the basal forebrain, but not in the cerebellum. These results point to the presence of specific binding sites for Semax in the rat basal forebrain. In addition, these findings indicate that the cognitive effects exerted by Semax might be associated, at least in part, with increased BDNF protein levels in this brain region.

  10. Facilitated diffusion of DNA-binding proteins.

    PubMed

    Klenin, Konstantin V; Merlitz, Holger; Langowski, Jörg; Wu, Chen-Xu

    2006-01-13

    The diffusion-controlled limit of reaction times for site-specific DNA-binding proteins is derived from first principles. We follow the generally accepted concept that a protein propagates via two competitive modes, a three-dimensional diffusion in space and a one-dimensional sliding along the DNA. However, our theoretical treatment of the problem is new. The accuracy of our analytical model is verified by numerical simulations. The results confirm that the unspecific binding of protein to DNA, combined with sliding, is capable to reduce the reaction times significantly.

  11. The dataset for protein-RNA binding affinity.

    PubMed

    Yang, Xiufeng; Li, Haotian; Huang, Yangyu; Liu, Shiyong

    2013-12-01

    We have developed a non-redundant protein-RNA binding benchmark dataset derived from the available protein-RNA structures in the Protein Database Bank. It consists of 73 complexes with measured binding affinity. The experimental conditions (pH and temperature) for binding affinity measurements are also listed in our dataset. This binding affinity dataset can be used to compare and develop protein-RNA scoring functions. The predicted binding free energy of the 73 complexes from three available scoring functions for protein-RNA docking has a low correlation with the binding Gibbs free energy calculated from Kd.

  12. Configurational Entropy in Protein-Peptide Binding. Computational Study of Tsg101 UEV Domain with an HIV-derived PTAP Nonapeptide

    PubMed Central

    Killian, Benjamin J.; Kravitz, Joslyn Yudenfreund; Somani, Sandeep; Dasgupta, Paramita; Pang, Yuan-Ping; Gilson, Michael K.

    2009-01-01

    Configurational entropy is thought to influence biomolecular processes, but there are still many open questions about this quantity, including its magnitude, its relationship to molecular structure, and the importance of correlation. The mutual information expansion (MIE) provides a novel and systematic approach to computing configurational entropy changes due to correlated motions from molecular simulations. Here, we present the first application of the MIE method to protein-ligand binding, using multiple molecular dynamics simulations (MMDSs) to study association of the UEV domain of the protein Tsg101 and an HIV-derived nonapeptide. The current investigation utilizes the second-order MIE approximation, which treats correlations between all pairs of degrees of freedom. The computed change in configurational entropy is large and is found to have a major contribution from changes in pairwise correlation. The results also reveal intricate structure-entropy relationships. Thus, the present analysis suggests that, in order for a model of binding to be accurate, it must include a careful accounting of configurational entropy changes. PMID:19362095

  13. Configurational entropy in protein-peptide binding: computational study of Tsg101 ubiquitin E2 variant domain with an HIV-derived PTAP nonapeptide.

    PubMed

    Killian, Benjamin J; Kravitz, Joslyn Yudenfreund; Somani, Sandeep; Dasgupta, Paramita; Pang, Yuan-Ping; Gilson, Michael K

    2009-06-05

    Configurational entropy is thought to influence biomolecular processes, but there are still many open questions about this quantity, including its magnitude, its relationship to molecular structure, and the importance of correlation. The mutual information expansion (MIE) provides a novel and systematic approach to extracting configurational entropy changes due to correlated motions from molecular simulations. We present the first application of the MIE method to protein-ligand binding using multiple molecular dynamics simulations to study the association of the ubiquitin E2 variant domain of the protein Tsg101 and an HIV-derived nonapeptide. This investigation utilizes the second-order MIE approximation, which accounts for correlations between all pairs of degrees of freedom. The computed change in configurational entropy is large and has a major contribution from changes in pairwise correlation. The results also reveal intricate structure-entropy relationships. Thus, the present analysis suggests that in order for a model of binding to be accurate, it must include a careful accounting of configurational entropy changes.

  14. The prion protein binds thiamine.

    PubMed

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction.

  15. Acute intermittent hypoxia-induced expression of brain-derived neurotrophic factor is disrupted in the brainstem of methyl-CpG-binding protein 2 null mice.

    PubMed

    Vermehren-Schmaedick, A; Jenkins, V K; Knopp, S J; Balkowiec, A; Bissonnette, J M

    2012-03-29

    Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding the transcription factor methyl-CpG-binding protein 2 (MeCP2). One of its targets is the gene encoding brain-derived neurotrophic factor (bdnf). In vitro studies using cultured neurons have produced conflicting results with respect to the role of MeCP2 in BDNF expression. Acute intermittent hypoxia (AIH) induces plasticity in the respiratory system characterized by long-term facilitation of phrenic nerve amplitude. This paradigm induces an increase in BDNF protein. We hypothesized that AIH leads to augmentation of BDNF transcription in respiratory-related areas of the brainstem and that MeCP2 is necessary for this process. Wild-type and mecp2 null (mecp2(-/y)) mice were subjected to three 5-min episodes of exposure to 8% O(2)/4% CO(2)/88% N(2), delivered at 5-min intervals. Normoxia control wild-type and mecp2 null mice were exposed to room air for the total length of time, that is, 30 min. Following a recovery in room air, the pons and medulla were rapidly removed. Expression of BDNF protein and transcripts were determined by ELISA and quantitative PCR, respectively. AIH induced a significant increase in BDNF protein in the pons and medulla, and in mRNA transcript levels in the pons of wild-type animals. In contrast, there were no significant changes in either BDNF protein or transcripts in the pons or medulla of mice lacking MeCP2. The results indicate that MeCP2 is required for regulation of BDNF expression by acute intermittent hypoxia in vivo.

  16. Thermodynamic characterization of pyrazole and azaindole derivatives binding to p38 mitogen-activated protein kinase using Biacore T100 technology and van't Hoff analysis.

    PubMed

    Papalia, Giuseppe A; Giannetti, Anthony M; Arora, Nidhi; Myszka, David G

    2008-12-15

    Biacore T100 technology was used in conjunction with a van't Hoff analysis to characterize the thermodynamic binding parameters of 85 small-molecule inhibitors of adenosine triphosphate (ATP) binding to p38 mitogen-activated protein (MAP) kinase. The compounds were selected from a large panel of azaindole and pyrazole derivatives for which IC(50) data exist. We showed a strong relationship between the K(D) and IC(50) of a compound, but only a modest relationship between k(off) and IC(50) was detected and an apparent relationship between a compound's k(on) and its IC(50) could not be discerned. Similarly, a correlation between a compound's IC(50) and its thermodynamic parameters DeltaH degrees and DeltaS degrees could not be established. The lack of a predominant kinetic or thermodynamic signature associated with the inhibitory potential of these compounds demonstrates that there exists, even within a single well-defined system, a library of kinetic routes or, alternatively, a library of initial and final enthalpic and entropic states from which to effect inhibition. As a complement to these studies, selected double mutant thermodynamic cycles were performed to probe the energetic coupling, if any, between common sites of fluorination in both the azaindole and pyrazole classes and two different substituents. Although both cycles indicated negligible coupling free energies, both revealed significant coupling enthalpies, an observation made in other similarly dissected systems. The possible significance and caveats associated with these findings along with the advantages of using Biacore technology to derive thermodynamic parameters in drug discovery efforts are discussed.

  17. Virus-binding proteins recovered from bacterial culture derived from activated sludge by affinity chromatography assay using a viral capsid peptide.

    PubMed

    Sano, Daisuke; Matsuo, Takahiro; Omura, Tatsuo

    2004-06-01

    The contamination of water environments by pathogenic viruses has raised concerns about outbreaks of viral infectious diseases in our society. Because conventional water and wastewater treatment systems are not effective enough to inactivate or remove pathogenic viruses, a new technology for virus removal needs to be developed. In this study, the virus-binding proteins (VBPs) in a bacterial culture derived from activated sludge were successfully recovered. The recovery of VBPs was achieved by applying extracted crude proteins from a bacterial culture to an affinity column in which a custom-made peptide of capsid protein from the poliovirus type 1 (PV1) Mahoney strain (H(2)N-DNPASTTNKDKL-COOH) was immobilized as a ligand. VBPs exhibited the ability to adsorb infectious particles of PV1 Sabin 1 as determined by enzyme-linked immunosorbent assay. The evaluation of surface charges of VBPs with ion-exchange chromatography found that a majority of VBP molecules had a net negative charge under the conditions of affinity chromatography. On the other hand, a calculated isoelectric point implied that the viral peptide in the affinity column was also charged negatively. As a result, the adsorption of the VBPs to the viral peptide in the affinity column occurred with a strong attractive force that was able to overcome the electrostatic repulsive force. Two-dimensional electrophoresis revealed that the isolated VBPs include a number of proteins, and their molecular masses were widely distributed but smaller than 100 kDa. Amino acid sequences of N termini of five VBPs were determined. Homology searches for the N termini against all protein sequences in the National Center for Biotechnology Information (NCBI) database showed that the isolated VBPs in this study were newly discovered proteins. These VBPs that originated with bacteria in activated sludge might be stable, because they are existing in the environment of wastewater treatments. Therefore, a virus removal technology

  18. Attenuation of hemorrhage-associated lung injury by adjuvant treatment with C23, an oligopeptide derived from cold-inducible RNA-binding protein.

    PubMed

    Zhang, Fangming; Yang, Weng-Lang; Brenner, Max; Wang, Ping

    2017-10-01

    Hemorrhagic shock (HS) is an important cause of mortality. HS is associated with an elevated incidence of acute lung injury and acute respiratory distress syndrome, significantly contributing to HS morbidity and mortality. Cold-inducible RNA-binding protein (CIRP) is released into the circulation during HS and can cause lung injury. C23 is a CIRP-derived oligopeptide that binds with high affinity to the CIRP receptor and inhibits CIRP-induced phagocyte secretion of TNF-α. This study was designed to determine whether C23 is able to attenuate HS-associated lung injury. C57BL/6 mice were subjected to controlled hemorrhage leading to a mean arterial pressure of 25 ± 3 mm Hg for 90 minutes. Mice were then volume-resuscitated for 30 minutes with normal saline solution alone (vehicle) or plus adjuvant treatment with C23 (8 mg/kg BW). At 4.5 hours after resuscitation, the blood and lungs were harvested. Serum levels of organ injury markers lactate dehydrogenase, aspartate aminotransferase were significantly elevated in hemorrhaged mice receiving vehicle and were reduced by 51.3% and 52.2% in mice adjuvantly treated with C23, respectively. Similarly, lung mRNA levels of IL-1β, TNF-α, and IL-6, and lung myeloperoxidase activity were elevated after HS and reduced by 66.1%, 54.4%, 69.7%, and 24.3%, respectively, in mice treated with C23. Adjuvant treatment with C23 also decreased the lung histology score by 33.9%, lung extravasation of albumin carrying Evans blue dye by 36.8%, and the protein level of intercellular adhesion molecule-1, and indicator of vascular endothelial cell activation, by 40.3%. Together, these results indicate that adjuvant treatment with the CIRP-derived oligopeptide C23 is able to improve lung inflammation and vascular endothelial activation secondary to HS, lending support to the development of CIRP-targeting adjuvant treatments to minimize lung injury after HS.

  19. Differential binding avidities of human IgM for staphylococcal protein A derive from specific germ-line VH3 gene usage.

    PubMed

    Hakoda, M; Kamatani, N; Hayashimoto-Kurumada, S; Silverman, G J; Yamanaka, H; Terai, C; Kashiwazaki, S

    1996-10-01

    Human IgM that express the variable region genes of the VH3 family bind staphylococcal protein A (SPA). We previously reported that the SPA-binding IgM can be divided into two groups based on the differential binding avidities for solid-phase SPA. To study the molecular basis for these differences, we cloned B cells from human blood by EBV transformation. The nucleotide sequences of the expressed Ig heavy chain genes were determined on 20 B cell clones that produce SPA-binding IgM. The germ-line VH3 gene usage in IgM with high avidities for SPA were distinct from the germ-line VH3 genes used in IgM with low avidities for SPA. There was no correlation in the usage of D or JH genes or in the usage of light chains in IgM according to the SPA binding avidity. These results suggest that the differential binding avidities for SPA are at least partly due to specific germ-line VH3 gene usage. An investigation of direct binding of SPA to the synthetic peptides corresponding to the portions of the variable regions of SPA-binding and non-SPA-binding IgM showed that the peptides corresponding to the VH3 family specific framework region 3 sequences had significant SPA binding capacities, while the peptides corresponding to the other subdomains and those corresponding to framework region 3 of the reported VH3 sequences from non-SPA-binding IgM showed little or no binding. It is of interest that the Ig-framework region 3 subdomain corresponds to the fourth hypervariable region, which in the TCR-beta chain has been implicated as a critical site for T cell superantigen binding.

  20. Free tyrosine and tyrosine-rich peptide-dependent superoxide generation catalyzed by a copper-binding, threonine-rich neurotoxic peptide derived from prion protein.

    PubMed

    Yokawa, Ken; Kagenishi, Tomoko; Goto, Kaishi; Kawano, Tomonori

    2009-01-01

    Previously, generation of superoxide anion (O(2)(*-)) catalyzed by Cu-binding peptides derived from human prion protein (model sequence for helical Cu-binding motif VNITKQHTVTTTT was most active) in the presence of catecholamines and related aromatic monoamines such as phenylethylamine and tyramine, has been reported [Kawano, T., Int J Biol Sci 2007; 3: 57-63]. The peptide sequence (corresponding to helix 2) tested here is known as threonine-rich neurotoxic peptide. In the present article, the redox behaviors of aromatic monoamines, 20 amino acids and prion-derived tyrosine-rich peptide sequences were compared as putative targets of the oxidative reactions mediated with the threonine-rich prion-peptide. For detection of O(2)(*-), an O(2)(*-)-specific chemiluminescence probe, Cypridina luciferin analog was used. We found that an aromatic amino acid, tyrosine (structurally similar to tyramine) behaves as one of the best substrates for the O(2)(*-) generating reaction (conversion from hydrogen peroxide) catalyzed by Cu-bound prion helical peptide. Data suggested that phenolic moiety is required to be an active substrate while the presence of neither carboxyl group nor amino group was necessarily required. In addition to the action of free tyrosine, effect of two tyrosine-rich peptide sequences YYR and DYEDRYYRENMHR found in human prion corresponding to the tyrosine-rich region was tested as putative substrates for the threonine-rich neurotoxic peptide. YYR motif (found twice in the Y-rich region) showed 2- to 3-fold higher activity compared to free tyrosine. Comparison of Y-rich sequence consisted of 13 amino acids and its Y-to-F substitution mutant sequence revealed that the tyrosine-residues on Y-rich peptide derived from prion may contribute to the higher production of O(2)(*-). These data suggest that the tyrosine residues on prion molecules could be additional targets of the prion-mediated reactions through intra- or inter-molecular interactions. Lastly, possible

  1. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  2. Cellulose binding domain fusion proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. Localization of penicillin-binding proteins to the splitting system of Staphylococcus aureus septa by using a mercury-penicillin V derivative.

    PubMed Central

    Paul, T R; Venter, A; Blaszczak, L C; Parr, T R; Labischinski, H; Beveridge, T J

    1995-01-01

    Precise localization of penicillin-binding protein (PBP)-antibiotic complexes in a methicillin-sensitive Staphylococcus aureus strain (BB255), its isogenic heterogeneous methicillin-resistant transductant (BB270), and a homogeneous methicillin-resistant strain (Col) was investigated by high-resolution electron microscopy. A mercury-penicillin V (Hg-pen V) derivative was used as a heavy metal-labeled, electron-dense probe for accurately localizing PBPs in situ in single bacterial cells during growth. The most striking feature of thin sections was the presence of an abnormally large (17 to 24 nm in width) splitting system within the thick cross walls or septa of Hg-pen V-treated bacteria of all strains. Untreated control cells possessed a thin, condensed splitting system, 7 to 9 nm in width. A thick splitting system was also distinguishable in unstained thin sections, thereby confirming that the electron contrast of this structure was not attributed to binding of bulky heavy metal stains usually used for electron microscopy. Biochemical analyses demonstrated that Hg-pen V bound to isolated plasma membranes as well as sodium dodecyl sulfate-treated cell walls and that two or more PBPs in each strain bound to this antibiotic. In contrast, the splitting system in penicillin V-treated bacteria was rarely visible after 30 min in the presence of antibiotic. These findings suggest that while most PBPs were associated with the plasma membrane, a proportion of PBPs were located within the fabric of the cell wall, in particular, in the splitting system. Inhibition of one or more high-M(r) PBPs by beta-lactam antibiotics modified the splitting system and cross-wall structure, therefore supporting a role for these PBPs in the synthesis and architectural design of these structures in S. aureus. PMID:7541399

  4. The Protective Effect of a Short Peptide Derived from Cold-Inducible Rna-Binding Protein in Renal Ischemia-Reperfusion Injury.

    PubMed

    McGinn, Joseph; Zhang, Fangming; Aziz, Monowar; Yang, Weng-Lang; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2017-09-19

    Extracellular cold-inducible RNA-binding protein (CIRP) functions as damage-associated molecular pattern (DAMP) and has been demonstrated to be responsible in part for the damage occurring after renal ischemia-reperfusion (I/R). A short peptide derived from CIRP, named C23, binds to myeloid differentiation factor 2 (MD2), a Toll-like receptor 4 (TLR4) co-receptor. We hypothesize that C23 reduces renal ischemia-reperfusion (RIR) injury by blocking CIRP. We observed that pre-treatment with C23 significantly decreased the levels of recombinant mouse CIRP-induced TNF-α in a dose-dependent fashion in cultured macrophages. C57BL/6 mice were subjected to bilateral renal pedicle clamps for 35 min to induce ischemia, followed by reperfusion for 24 h and harvest of blood and renal tissue. C23 peptide (8 mg/kg) or vehicle was injected intraperitoneally at the beginning of reperfusion. Plasma TNF-α, IL-1β, and IL-6 levels were decreased in C23-treated RIR mice as compared to vehicle-treated mice by 74%, 85% and 68%, respectively. Expressions of TNF-α and keratinocyte chemoattractant (KC) in the kidneys from C23-treated mice was decreased by 55% and 60%, respectively. Expression of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) in the kidney of C23-treated mice were significantly reduced by 46% and 55%, respectively. Renal tissue histological assessments revealed significant reduction in damage score by 44% in C23-treated mice. Finally, a survival study revealed a significant survival advantage with a 70% survival rate in C23 group versus 37% in vehicle group. Thus, C23 has potential as a novel therapy for the patients suffering from I/R-induced renal injury.

  5. Bacterial oligopeptide-binding proteins.

    PubMed

    Monnet, V

    2003-10-01

    This review focuses on bacterial oligopeptide-binding proteins, which form part of the oligopeptide transport system belonging to the ATP-binding cassette family of transporters. Depending on the bacterial species, these binding proteins (OppA) capture peptides ranging in size from 2 to 18 amino acids from the environment and pass them on to the other components of the oligopeptide transport system for internalisation. Bacteria have developed several strategies to produce these binding proteins, which are periplasmic in Gram- bacteria and membrane-anchored in Gram+, with a higher stoichiometry (probably necessary for efficient transport) than the other components in the transport system. The expression of OppA-encoding genes is clearly modulated by external factors, especially nitrogen compounds, but the mechanisms of regulation are not always clear. The best-understood roles played by OppAs are internalisation of peptides for nutrition and recycling of muropeptides. It has, however, recently become clear that OppAs are also involved in sensing the external medium via specific or non-specific peptides.

  6. High glucose induces platelet-derived growth factor-C via carbohydrate response element-binding protein in glomerular mesangial cells.

    PubMed

    Kitsunai, Hiroya; Makino, Yuichi; Sakagami, Hidemitsu; Mizumoto, Katsutoshi; Yanagimachi, Tsuyoshi; Atageldiyeva, Kuralay; Takeda, Yasutaka; Fujita, Yukihiro; Abiko, Atsuko; Takiyama, Yumi; Haneda, Masakazu

    2016-03-01

    Persistent high concentration of glucose causes cellular stress and damage in diabetes via derangement of gene expressions. We previously reported high glucose activates hypoxia-inducible factor-1αand downstream gene expression in mesangial cells, leading to an extracellular matrix expansion in the glomeruli. A glucose-responsive transcription factor carbohydrate response element-binding protein (ChREBP) is a key mediator for such perturbation of gene regulation. To provide insight into glucose-mediated gene regulation in mesangial cells, we performed chromatin immunoprecipitation followed byDNAmicroarray analysis and identified platelet-derived growth factor-C (PDGF-C) as a novel target gene of ChREBP In streptozotocin-induced diabetic mice, glomerular cells showed a significant increase inPDGF-C expression; the ratio ofPDGF-C-positive cells to the total number glomerular cells demonstrated more than threefold increase when compared with control animals. In cultured human mesangial cells, high glucose enhanced expression ofPDGF-C protein by 1.9-fold. Knock-down of ChREBPabrogated this induction response. UpregulatedPDGF-C contributed to the production of typeIVand typeVIcollagen, possibly via an autocrine mechanism. Interestingly, urinaryPDGF-C levels in diabetic model mice were significantly elevated in a fashion similar to urinary albumin. Taken together, we hypothesize that a high glucose-mediated induction ofPDGF-C via ChREBPin mesangial cells contributes to the development of glomerular mesangial expansion in diabetes, which may provide a platform for novel predictive and therapeutic strategies for diabetic nephropathy.

  7. Protein binding assay for hyaluronate

    SciTech Connect

    Lacy, B.E.; Underhill, C.B.

    1986-11-01

    A relatively quick and simple assay for hyaluronate was developed using the specific binding protein, hyaluronectin. The hyaluronectin was obtained by homogenizing the brains of Sprague-Dawley rats, and then centrifuging the homogenate. The resulting supernatant was used as a source of crude hyaluronectin. In the binding assay, the hyaluronectin was mixed with (/sup 3/H)hyaluronate, followed by an equal volume of saturated (NH/sub 4/)/sub 2/SO/sub 4/, which precipitated the hyaluronectin and any (/sup 3/H)hyaluronate associated with it, but left free (/sup 3/H)hyaluronate in solution. The mixture was then centrifuged, and the amount of bound (/sup 3/H)hyaluronate in the precipitate was determined. Using this assay, the authors found that hyaluronectin specifically bound hyaluronate, since other glycosaminoglycans failed to compete for the binding protein. In addition, the interaction between hyaluronectin and hyaluronate was of relatively high affinity, and the size of the hyaluronate did not appear to substantially alter the amount of binding. To determine the amount of hyaluronate in an unknown sample, they used a competition assay in which the binding of a set amount of (/sup 3/H)hyaluronate was blocked by the addition of unlabeled hyaluronate. By comparing the degree of competition of the unknown samples with that of known amounts of hyaluronate, it was possible to determine the amount of hyaluronate in the unknowns. They have found that this method is sensitive to 1 ..mu..g or less of hyaluronate, and is unaffected by the presence of proteins.

  8. Ouabain receptor binding of hydroxyprogesterone derivatives.

    PubMed Central

    Chow, E.; Kim, R. S.; Labella, F. S.; Queen, G.

    1979-01-01

    1 A specific and sensitive radioreceptor assay ahs been devised which is based on high affinity, saturable binding of 9 nM [3H]-ouabain to the total particulate fraction isolated from dog heart. Ouabain and other cardiac glycosides, including the aglycones, were about equipotent in their ability to displace [3H]-ouabain from its receptor, the IC50s ranging from 10 to 30 nM. 2 The only other substances found to compete significantly in the assay were derivatives of hydroxyprogesterone having a 17 alpha-acetate substituent: chlormadinone acetate, megestrol acetate, cyproterone acetate and medroxyprogesterone acetate, with IC50s of 2, 7.4, 9 and 21 microM, respectively. Prednisolone-3,20-bisguanyl-hydrazone, reported to have inotropic activity, gave an IC50 of 6.4 microM. Cyproterone-17 alpha-OH was less active (IC50 90 microM) than cyproterone-17 alpha-acetate. 3 A large number of peptide and protein hormones, steroid hormones and their metabolites, amines, and drugs were inactive. PMID:497535

  9. Data of protein-RNA binding sites.

    PubMed

    Lee, Wook; Park, Byungkyu; Choi, Daesik; Han, Kyungsook

    2017-02-01

    Despite the increasing number of protein-RNA complexes in structure databases, few data resources have been made available which can be readily used in developing or testing a method for predicting either protein-binding sites in RNA sequences or RNA-binding sites in protein sequences. The problem of predicting protein-binding sites in RNA has received much less attention than the problem of predicting RNA-binding sites in protein. The data presented in this paper are related to the article entitled "PRIdictor: Protein-RNA Interaction predictor" (Tuvshinjargal et al. 2016) [1]. PRIdictor can predict protein-binding sites in RNA as well as RNA-binding sites in protein at the nucleotide- and residue-levels. This paper presents four datasets that were used to test four prediction models of PRIdictor: (1) model RP for predicting protein-binding sites in RNA from protein and RNA sequences, (2) model RaP for predicting protein-binding sites in RNA from RNA sequence alone, (3) model PR for predicting RNA-binding sites in protein from protein and RNA sequences, and (4) model PaR for predicting RNA-binding sites in protein from protein sequence alone. The datasets supplied in this article can be used as a valuable resource to evaluate and compare different methods for predicting protein-RNA binding sites.

  10. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  11. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  12. Actin binding proteins and spermiogenesis

    PubMed Central

    Mruk, Dolores D

    2011-01-01

    Drebrin E, an actin-binding protein lacking intrinsic activity in the regulation of actin dynamics (e.g., polymerization, capping, nucleation, branching, cross-linking, bundling and severing), is known to recruit actin regulatory proteins to a specific cellular site. Herein, we critically evaluate recent findings in the field which illustrate that drebrin E works together with two other actin-binding proteins, namely Arp3 (actin-related protein 3, a component of the Arp2/3 complex that simultaneously controls actin nucleation for polymerization and branching of actin filaments) and Eps8 (epidermal growth factor receptor pathway substrate 8 that controls capping of the barbed ends of actin filaments, as well as actin filament bundling) to regulate the homeostasis of F-actin filament bundles at the ectoplasmic specialization (ES), a testis-specific atypical adherens junction (AJ) in the seminiferous epithelium. This is mediated by the strict temporal and spatial expression of these three actin-binding proteins at the apical and basal ES at the Sertoli cell-spermatid (step 8–19) and Sertoli-Sertoli cell interface, respectively, during the seminiferous epithelial cycle of spermatogenesis. In this Commentary, we put forth a possible model by which drebrin E may be acting as a platform upon which proteins (e.g., Arp3) that are needed to alter the conformation of actin filament bundles at the ES can be recruited to the site, thus facilitating changes in cell shape and cell position in the epithelium during spermiogenesis and spermiation. In short, drebrin E may be acting as a “logistic” distribution center to manage different regulatory proteins at the apical ES, thereby regulating the dynamics of actin filament bundles and modulating the plasticity of the apical ES. This would allow adhesion to be altered continuously throughout the epithelial cycle to accommodate spermatid movement in the seminiferous epithelium during spermiogenesis and spermiation. We also

  13. Marine derived compounds as binders of the White spot syndrome virus VP28 envelope protein: In silico insights from molecular dynamics and binding free energy calculations.

    PubMed

    Sivakumar, K C; Sajeevan, T P; Bright Singh, I S

    2016-10-01

    White spot syndrome virus (WSSV) remains as one of the most dreadful pathogen of the shrimp aquaculture industry owing to its high virulence. The cumulative mortality reaches up to 100% within in 2-10days in a shrimp farm. Currently, no chemotherapeutics are available to control WSSV. The viral envelope protein, VP28, located on the surface of the virus particle acts as a vital virulence factor in the initial phases of inherent WSSV infection in shrimp. Hence, inhibition of envelope protein VP28 could be a novel way to deal with infection by inhibiting its interaction in the endocytic pathway. In this direction, a timely attempt was made to recognize a potential drug candidate of marine origin against WSSV using VP28 as a target by employing in silico docking and molecular dynamic simulations. A virtual library of 388 marine bioactive compounds was extracted from reports published in Marine Drugs. The top ranking compounds from docking studies were chosen from the flexible docking based on the binding affinities (ΔGb). In addition, the MD simulation and binding free energy analysis were implemented to validate and capture intermolecular interactions. The results suggested that the two compounds obtained a negative binding free energy with -40.453kJ/mol and -31.031kJ/mol for compounds with IDs 30797199 and 144162 respectively. The RMSD curve indicated that 30797199 moves into the hydrophobic core, while the position of 144162 atoms changes abruptly during simulation and is mostly stabilized by water bridges. The shift in RMSD values of VP28 corresponding to ligand RMSD gives an insight into the ligand induced conformational changes in the protein. This study is first of its kind to elucidate the explicit binding of chemical inhibitor to WSSV major structural protein VP28.

  14. Diversity of aminopeptidases, derived from four lepidopteran gene duplications, and polycalins expressed in the midgut of Helicoverpa armigera: Identification of proteins binding the δ-endotoxin, Cry1Ac of Bacillus thuringiensis

    PubMed Central

    Angelucci, Constanza; Barrett-Wilt, Gregory A.; Hunt, Donald F.; Akhurst, Raymond J.; East, Peter D.; Gordon, Karl H.J.; Campbell, Peter M.

    2010-01-01

    Helicoverpa armigera midgut proteins that bind the Bacillus thuringiensis (Bt) δ-endotoxin Cry1Ac were purified by affinity chromatography. SDS-PAGE showed that several proteins were eluted with N-acetylgalactosamine and no further proteins were detected after elution with urea. Tandem mass spectral data for tryptic peptides initially indicated that the proteins resembled aminopeptidases (APNs) from other lepidopterans and cDNA sequences for seven APNs were isolated from H. armigera through a combination of cloning with primers derived from predicted peptide sequences and established EST libraries. Phylogenetic analysis showed lepidopteran APN genes in nine clades of which five were part of a lepidopteran-specific radiation. The Cry1Ac-binding proteins were then identified with four of the seven HaAPN genes. Three of those four APNs are likely orthologs of APNs characterised as Cry1Ac-binding proteins in other lepidopterans. The fourth Cry1Ac-binding APN has orthologs not previously identified as Cry1Ac-binding partners. The HaAPN genes were expressed predominantly in the midgut through larval development. Each showed consistent expression along the length of the midgut but five of the genes were expressed at levels about two orders of magnitude greater than the remaining two. The remaining mass spectral data identified sequences encoding polycalin proteins with multiple lipocalin-like domains. A polycalin has only been previously reported in another lepidopteran, Bombyx mori, but polycalins in both species are now linked with binding of Bt Cry toxins. This is the first report of hybrid, lipocalin-like domains in shorter polycalin sequences that are not present in the longest sequence. We propose that these hybrid domains are generated by alternative splicing of the mRNA. PMID:18549954

  15. Oxygen-binding haem proteins.

    PubMed

    Wilson, Michael T; Reeder, Brandon J

    2008-01-01

    Myoglobin and haemoglobin, the respiratory pigments of mammals and some molluscs, annelids and arthropods, belong to an ancient superfamily of haem-associated globin proteins. Members of this family share common structural and spectral features. They also share some general functional characteristics, such as the ability to bind ligands, e.g. O2, CO and NO, at the iron atom and to undergo redox changes. These properties are used in vivo to perform a wide range of biochemical and physiological roles. While it is acknowledged that the major role of haemoglobin is to bind oxygen reversibly and deliver it to the tissues, this is not its only function, while the often-stated role of myoglobin as an oxygen storage protein is possibly a misconception. Furthermore, haemoglobin and myoglobin express enzymic activities that are important to their function, e.g. NO dioxygenase activity or peroxidatic activity that may be partly responsible for pathophysiology following haemorrhage. Evidence for these functions is described, and the discussion extended to include proteins that have recently been discovered and that are expressed at low levels within the cell. These proteins are hexaco-ordinate, unlike haemoglobin and myoglobin, and are widely distributed throughout the animal kingdom (e.g. neuroglobins and cytoglobins). They may have specialist roles in oxygen delivery to particular sites within the cell but may also perform roles associated with O2 sensing and signalling and in responses to stress, e.g. protection from reactive oxygen and nitrogen species. Haemoglobins are also widespread in plants and bacteria and may serve similar protective functions.

  16. Minocycline upregulates cyclic AMP response element binding protein and brain-derived neurotrophic factor in the hippocampus of cerebral ischemia rats and improves behavioral deficits.

    PubMed

    Zhao, Yu; Xiao, Ming; He, Wenbo; Cai, Zhiyou

    2015-01-01

    The cAMP response element binding protein (CREB) plays an important role in the mechanism of cognitive impairment and is also pivotal in the switch from short-term to long-term memory. Brain-derived neurotrophic factor (BDNF) seems a promising avenue in the treatment of cerebral ischemia injury since this neurotrophin could stimulate structural plasticity and repair cognitive impairment. Several findings have displayed that the dysregulation of the CREB-BDNF cascade has been involved in cognitive impairment. The aim of this study was to investigate the effect of cerebral ischemia on learning and memory as well as on the levels of CREB, phosphorylated CREB (pCREB), and BDNF, and to determine the effect of minocycline on CREB, pCREB, BDNF, and behavioral functional recovery after cerebral ischemia. The animal model was established by permanent bilateral occlusion of both common carotid arteries. Behavior was evaluated 5 days before decapitation with Morris water maze and open-field task. Four days after permanent bilateral occlusion of both common carotid arteries, minocycline was administered by douche via the stomach for 4 weeks. CREB and pCREB were examined by Western blotting, reverse transcription polymerase chain reaction, and immunohistochemistry. BDNF was measured by immunohistochemistry and Western blotting. The model rats after minocycline treatment swam shorter distances than control rats before finding the platform (P=0.0007). The number of times the platform position was crossed for sham-operation rats was more than that of the model groups in the corresponding platform location (P=0.0021). The number of times the platform position was crossed for minocycline treatment animals was significantly increased compared to the model groups in the corresponding platform position (P=0.0016). CREB, pCREB, and BDNF were downregulated after permanent bilateral occlusion of both common carotid arteries in the model group. Minocycline increased the expression of CREB

  17. Antimicrobial and Antitumor Activities of Novel Peptides Derived from the Lipopolysaccharide- and β-1,3-Glucan Binding Protein of the Pacific Abalone Haliotis discus hannai

    PubMed Central

    Nam, Bo-Hye; Moon, Ji Young; Park, Eun Hee; Kong, Hee Jeong; Kim, Young-Ok; Kim, Dong-Gyun; Kim, Woo-Jin; An, Chul Min; Seo, Jung-Kil

    2016-01-01

    Antimicrobial peptides are a pivotal component of the invertebrate innate immune system. In this study, we identified a lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) gene from the pacific abalone Haliotis discus hannai (HDH), which is involved in the pattern recognition mechanism and plays avital role in the defense mechanism of invertebrates immune system. The HDH-LGBP cDNA consisted of a 1263-bp open reading frame (ORF) encoding a polypeptide of 420 amino acids, with a 20-amino-acid signal sequence. The molecular mass of the protein portion was 45.5 kDa, and the predicted isoelectric point of the mature protein was 4.93. Characteristic potential polysaccharide binding motif, glucanase motif, and β-glucan recognition motif were identified in the LGBP of HDH. We used its polysaccharide-binding motif sequence to design two novel antimicrobial peptide analogs (HDH-LGBP-A1 and HDH-LGBP-A2). By substituting a positively charged amino acid and amidation at the C-terminus, the pI and net charge of the HDH-LGBP increased, and the proteins formed an α-helical structure. The HDH-LGBP analogs exhibited antibacterial and antifungal activity, with minimal effective concentrations ranging from 0.008 to 2.2 μg/mL. Additionally, both were toxic against human cervix (HeLa), lung (A549), and colon (HCT 116) carcinoma cell lines but not much on human umbilical vein cell (HUVEC). Fluorescence-activated cell sorter (FACS) analysis showed that HDH-LGBP analogs disturb the cancer cell membrane and cause apoptotic cell death. These results suggest the use of HDH-LGBP analogs as multifunctional drugs. PMID:27983632

  18. Engineering RNA-binding proteins for biology.

    PubMed

    Chen, Yu; Varani, Gabriele

    2013-08-01

    RNA-binding proteins play essential roles in the regulation of gene expression. Many have modular structures and combine relatively few common domains in various arrangements to recognize RNA sequences and/or structures. Recent progress in engineering the specificity of the PUF class RNA-binding proteins has shown that RNA-binding domains may be combined with various effector or functional domains to regulate the metabolism of targeted RNAs. Designer RNA-binding proteins with tailored sequence specificity will provide valuable tools for biochemical research as well as potential therapeutic applications. In this review, we discuss the suitability of various RNA-binding domains for engineering RNA-binding specificity, based on the structural basis for their recognition. We also compare various protein engineering and design methods applied to RNA-binding proteins, and discuss future applications of these proteins.

  19. Immobilized purified folate-binding protein: binding characteristics and use for quantifying folate in erythrocytes

    SciTech Connect

    Hansen, S.I.; Holm, J.; Nexo, E.

    1987-08-01

    Purified folate-binding protein from cow's milk was immobilized on monodisperse polymer particles (Dynospheres) activated by rho-toluenesulfonyl chloride. Leakage from the spheres was less than 0.1%, and the binding properties were similar to those of the soluble protein with regard to dissociation, pH optimum for binding pteroylglutamic acid, and specificity for binding various folate derivatives. We used the immobilized folate-binding protein as binding protein in an isotope-dilution assay for quantifying folate in erythrocytes. The detection limit was 50 nmol/L and the CV over a six-month period was 2.3% (means = 1.25 mumol/L, n = 15). The reference interval, for folate measured in erythrocytes of 43 blood donors, was 0.4-1.5 mumol/L.

  20. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production.

    PubMed

    Yamamoto, N

    1996-10-01

    Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days.

  1. The occlusion-derived virus envelope protein ODV-E56 is required for optimal oral infectivity but is not essential for virus binding and fusion

    USDA-ARS?s Scientific Manuscript database

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) odv-e56 gene encodes an occlusion-derived virus (ODV)-specific envelope protein, ODV-E56. To determine the role of ODV-E56 in oral infectivity, we produced recombinant EGFP-expressing AcMNPV clones (Ac69GFP-e56lacZ and AcIEGFP-e56lac...

  2. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  3. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  4. Characterization of hydroxycinnamic acid derivatives binding to bovine serum albumin.

    PubMed

    Jin, Xiao-Ling; Wei, Xia; Qi, Feng-Ming; Yu, Sha-Sha; Zhou, Bo; Bai, Shi

    2012-05-07

    Hydroxycinnamic acid derivatives (HCAs) are a group of naturally occurring polyphenolic compounds which possess various pharmacological activities. In this work, the interactions of bovine serum albumin (BSA) with six HCA derivatives, including chlorogenic acid (CHA), caffeic acid (CFA), m-coumaric acid (m-CA), p-coumaric acid (p-CA), ferulic acid (FA) and sinapic acid (SA) have been investigated by NMR spectroscopic techniques in combination with fluorescence and molecular modeling methods. Competitive STD NMR experiments using warfarin sodium and L-tryptophan as site-selective probes indicated that HCAs bind to site I in the subdomain IIA of BSA. From the analysis of the STD NMR-derived binding epitopes and molecular docking models, it was deduced that CHA, CFA, m-CA and p-CA show similar binding modes and orientation, in which the phenyl ring is in close contact with protein surface, whereas carboxyl group points out of the protein. However, FA and SA showed slightly different binding modes, due to the steric hindrance of methoxy-substituents on the phenyl ring. Relaxation experiments provided detailed information about the relationship between the affinity and structure of HCAs. The binding affinity was the strongest for CHA and ranked in the order CHA > CFA > m-CA ≥ p-CA > FA > SA, which agreed well with the results from fluorescence experiments. Based on our experimental results, we also conclude that HCAs bind to BSA mainly by hydrophobic interaction and hydrogen bonding. This study therefore provides valuable information for elucidating the mechanisms of BSA-HCAs interaction.

  5. Synthesis, X-ray crystal structure, DNA/protein binding and cytotoxicity studies of five α-aminophosphonate N-derivatives.

    PubMed

    Wang, Qingming; Yang, Lei; Ding, Hui; Chen, Xuanrong; Wang, Hua; Tang, Xinhui

    2016-12-01

    Five new α-aminophosphonates are synthesized and characterized by EA, FT-IR, (1)H NMR, (13)C NMR, (31)P NMR, ESI-MS and X-ray crystallography. The X-ray analyses reveal that the crystal structures of 1-5 are monoclinic or triclinic system with the space group P 21/c, P-1, P-1, P2(1)/c and P-1, respectively. All P atoms of 1-5 have tetrahedral geometries involving two O-ethyl groups, one Cα atom, and a double bond O atom. The binding interaction of five new α-aminophosphonate N-derivatives (1-5) with calf thymus(CT)-DNA have been investigated by UV-visible and fluorescence emission spectrometry. The apparent binding constant (Kapp) values follows the order: 1 (3.38×10(5)M(-1))>2 (3.04×10(5)M(-1))>4 (2.52×10(5)M(-1))>5 (2.32×10(5)M(-1))>3 (2.10×10(5)M(-1)), suggesting moderate intercalative binding mode between the compounds and DNA. In addition, fluorescence spectrometry of bovine serum albumin (BSA) with the compounds 1-5 showed that the quenching mechanism might be a static quenching procedure. For the compounds 1-5, the number of binding sites were about one for BSA and the binding constants follow the order: 1 (2.72×10(4)M(-1))>2 (2.27×10(4)M(-1))>4 (2.08×10(4)M(-1))>5 (1.79×10(4)M(-1))>3 (1.17×10(4)M(-1)). Moreover, the DNA cleavage abilities of 1 exhibit remarkable changes and the in vitro cytotoxicity of 1 on tumor cells lines (MCF-7, HepG2 and HT29) have been examined by MTT and shown antitumor effect on the tested cells.

  6. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice.

  7. Haptenation: Chemical Reactivity and Protein Binding

    PubMed Central

    Chipinda, Itai; Hettick, Justin M.; Siegel, Paul D.

    2011-01-01

    Low molecular weight chemical (LMW) allergens are commonly referred to as haptens. Haptens must complex with proteins to be recognized by the immune system. The majority of occupationally related haptens are reactive, electrophilic chemicals, or are metabolized to reactive metabolites that form covalent bonds with nucleophilic centers on proteins. Nonelectrophilic protein binding may occur through disulfide exchange, coordinate covalent binding onto metal ions on metalloproteins or of metal allergens, themselves, to the major histocompatibility complex. Recent chemical reactivity kinetic studies suggest that the rate of protein binding is a major determinant of allergenic potency; however, electrophilic strength does not seem to predict the ability of a hapten to skew the response between Th1 and Th2. Modern proteomic mass spectrometry methods that allow detailed delineation of potential differences in protein binding sites may be valuable in predicting if a chemical will stimulate an immediate or delayed hypersensitivity. Chemical aspects related to both reactivity and protein-specific binding are discussed. PMID:21785613

  8. A Fasciola hepatica-derived fatty acid binding protein induces protection against schistosomiasis caused by Schistosoma bovis using the adjuvant adaptation (ADAD) vaccination system.

    PubMed

    Vicente, Belén; López-Abán, Julio; Rojas-Caraballo, José; Pérez del Villar, Luis; Hillyer, George V; Martínez-Fernández, Antonio R; Muro, Antonio

    2014-10-01

    Several efforts have been made to identify anti-schistosomiasis vaccine candidates and new vaccination systems. The fatty acid binding protein (FAPB) has been shown to induce a high level of protection in trematode infection. The adjuvant adaptation (ADAD) vaccination system was used in this study, including recombinant FABP, a natural immunomodulator and saponins. Mice immunised with the ADAD system were able to up-regulate proinflammatory cytokines (IL-1 and IL-6) and induce high IgG2a levels. Moreover, there was a significant reduction in worm burden, egg liver and hepatic lesion in vaccinated mice in two independent experiments involving Schistosoma bovis infected mice. The foregoing data shows that ADAD system using FABP provide a good alternative for triggering an effective immune response against animal schistosomiasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Staphylococcus aureus Penicillin-Binding Protein 2 Can Use Depsi-Lipid II Derived from Vancomycin-Resistant Strains for Cell Wall Synthesis.

    PubMed

    Nakamura, Jun; Yamashiro, Hidenori; Miya, Hiroto; Nishiguchi, Kenzo; Maki, Hideki; Arimoto, Hirokazu

    2013-09-02

    Vancomycin-resistant Staphylococcus aureus (S. aureus) (VRSA) uses depsipeptide-containing modified cell-wall precursors for the biosynthesis of peptidoglycan. Transglycosylase is responsible for the polymerization of the peptidoglycan, and the penicillin-binding protein 2 (PBP2) plays a major role in the polymerization among several transglycosylases of wild-type S. aureus. However, it is unclear whether VRSA processes the depsipeptide-containing peptidoglycan precursor by using PBP2. Here, we describe the total synthesis of depsi-lipid I, a cell-wall precursor of VRSA. By using this chemistry, we prepared a depsi-lipid II analogue as substrate for a cell-free transglycosylation system. The reconstituted system revealed that the PBP2 of S. aureus is able to process a depsi-lipid II intermediate as efficiently as its normal substrate. Moreover, the system was successfully used to demonstrate the difference in the mode of action of the two antibiotics moenomycin and vancomycin.

  10. Molecular characterization of a TIA-1-like RNA-binding protein in cells derived from the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae).

    PubMed

    Muto, Sayaka; Tanabe, Toru; Matsumoto, Emi; Mori, Hajime; Kotani, Eiji

    2009-03-23

    A complementary DNA encoding a TIA-1-type RNA-binding protein (SfTRN-1) was isolated from cultured cells of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), to characterize its function. The deduced 388-amino acid sequence of SfTRN-1, which possessed three RNA recognition motifs (RRMs) followed by a C-terminal auxiliary domain, showed significant homology with mammalian TIA-1/TIAR and silkworm BmTRN-1, factors important in the metabolism of transcripts. It was found that inhibition of SfTRN-1 gene expression by a transfected oligonucleotide encoding the antisense sequence led to a marked increase in the production of a reporter protein and the amount of reporter transcript in the cultured cells. In addition, overexpression of the recombinant full-length SfTRN-1 open reading frame in the cultured cells led to a decrease in reporter protein production, but the truncated RRM1-3 domain lacking the C-terminal auxiliary domain lost its activity. Analysis using a GFP-fused recombinant protein revealed that, unlike mammalian TIA-1/TIAR, SfTRN-1, most likely shuttling between the nucleus and cytoplasm, had the characteristic of being largely distributed in the cytoplasm, where it perhaps acts to reduce the amount of transcripts, and that RRM1 and RRM3 were related to its nuclear accumulation, but RRM2 to its nuclear export. Furthermore, the posterior half of the auxiliary domain was also found to be related to its nuclear export. This study indicates that respective RRM subdomains of SfTRN-1 play distinct roles important to its subcellular distribution, and it identified unique systems for the distribution and functional regulation of the TIA-1 family in insect cells, ones which are clearly different from those in mammalian cells.

  11. Monobodies and other synthetic binding proteins for expanding protein science.

    PubMed

    Sha, Fern; Salzman, Gabriel; Gupta, Ankit; Koide, Shohei

    2017-03-01

    Synthetic binding proteins are constructed using nonantibody molecular scaffolds. Over the last two decades, in-depth structural and functional analyses of synthetic binding proteins have improved combinatorial library designs and selection strategies, which have resulted in potent platforms that consistently generate binding proteins to diverse targets with affinity and specificity that rival those of antibodies. Favorable attributes of synthetic binding proteins, such as small size, freedom from disulfide bond formation and ease of making fusion proteins, have enabled their unique applications in protein science, cell biology and beyond. Here, we review recent studies that illustrate how synthetic binding proteins are powerful probes that can directly link structure and function, often leading to new mechanistic insights. We propose that synthetic proteins will become powerful standard tools in diverse areas of protein science, biotechnology and medicine.

  12. A Novel Role for a Major Component of the Vitamin D Axis: Vitamin D Binding Protein-Derived Macrophage Activating Factor Induces Human Breast Cancer Cell Apoptosis through Stimulation of Macrophages

    PubMed Central

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J. V.; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-01-01

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This al1ows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects. PMID:23857228

  13. A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages.

    PubMed

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J V; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-07-08

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This allows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects.

  14. Computational Prediction of RNA-Binding Proteins and Binding Sites

    PubMed Central

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions. PMID:26540053

  15. Mercury-binding proteins of Mytilus edulis

    SciTech Connect

    Roesijadi, G.; Morris, J. E.; Calabrese, A.

    1981-11-01

    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 ..mu..g/l mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  16. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90.

  17. Functions of Intracellular Retinoid Binding-Proteins

    PubMed Central

    2017-01-01

    Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function. PMID:27830500

  18. Protein-protein interactions: scoring schemes and binding affinity.

    PubMed

    Gromiha, M Michael; Yugandhar, K; Jemimah, Sherlyn

    2017-06-01

    Protein-protein interactions mediate several cellular functions, which can be understood from the information obtained using the three-dimensional structures of protein-protein complexes and binding affinity data. This review focuses on computational aspects of predicting the best native-like complex structure and binding affinities. The first part covers the prediction of protein-protein complex structures and the advantages of conformational searching and scoring functions in protein-protein docking. The second part is devoted to various aspects of protein-protein interaction thermodynamics, such as databases for binding affinities and other thermodynamic parameters, computational methods to predict the binding affinity using either the three-dimensional structures of complexes or amino acid sequences, and change in binding affinities of the complexes upon mutations. We provide the latest developments on protein-protein docking and binding affinity studies along with a list of available computational resources for understanding protein-protein interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Structure and Function of Lipopolysaccharide Binding Protein

    NASA Astrophysics Data System (ADS)

    Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.

    1990-09-01

    The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.

  20. SVOP Is a Nucleotide Binding Protein

    PubMed Central

    Yao, Jia; Bajjalieh, Sandra M.

    2009-01-01

    Background Synaptic Vesicle Protein 2 (SV2) and SV2-related protein (SVOP) are transporter-like proteins that localize to neurotransmitter-containing vesicles. Both proteins share structural similarity with the major facilitator (MF) family of small molecule transporters. We recently reported that SV2 binds nucleotides, a feature that has also been reported for another MF family member, the human glucose transporter 1 (Glut1). In the case of Glut1, nucleotide binding affects transport activity. In this study, we determined if SVOP also binds nucleotides and assessed its nucleotide binding properties. Methodology/Principal Findings We performed in vitro photoaffinity labeling experiments with the photoreactive ATP analogue, 8-azido-ATP[γ] biotin and purified recombinant SVOP-FLAG fusion protein. We found that SVOP is a nucleotide-binding protein, although both its substrate specificity and binding site differ from that of SV2. Within the nucleotides tested, ATP, GTP and NAD show same level of inhibition on SVOP-FLAG labeling. Dose dependent studies indicated that SVOP demonstrates the highest affinity for NAD, in contrast to SV2, which binds both NAD and ATP with equal affinity. Mapping of the binding site revealed a single region spanning transmembrane domains 9–12, which contrasts to the two binding sites in the large cytoplasmic domains in SV2A. Conclusions/Significance SVOP is the third MF family member to be found to bind nucleotides. Given that the binding sites are unique in SVOP, SV2 and Glut1, this feature appears to have arisen separately. PMID:19390693

  1. Synthesis of imidazole derivatives and the spectral characterization of the binding properties towards human serum albumin

    NASA Astrophysics Data System (ADS)

    Yue, Yuanyuan; Dong, Qiao; Zhang, Yajie; Li, Xiaoge; Yan, Xuyang; Sun, Yahui; Liu, Jianming

    2016-01-01

    Small molecular drugs that can combine with target proteins specifically, and then block relative signal pathway, finally obtain the purpose of treatment. For this reason, the synthesis of novel imidazole derivatives was described and this study explored the details of imidazole derivatives binding to human serum albumin (HSA). The data of steady-state and time-resolved fluorescence showed that the conjugation of imidazole derivatives with HSA yielded quenching by a static mechanism. Meanwhile, the number of binding sites, the binding constants, and the thermodynamic parameters were also measured; the raw data indicated that imidazole derivatives could spontaneously bind with HSA through hydrophobic interactions and hydrogen bonds which agreed well with the results from the molecular modeling study. Competitive binding experiments confirmed the location of binding. Furthermore, alteration of the secondary structure of HSA in the presence of the imidazole derivatives was tested.

  2. THE BINDING OF MYOGLOBIN BY PLASMA PROTEIN

    PubMed Central

    Lathem, Willoughby

    1960-01-01

    When added to dog plasma in vitro and in vivo, myoglobin was bound to plasma protein in a concentration which, maximally, averaged 21 ± 6 mg. per cent. Electrophoretically, bound myoglobin was separated from free myoglobin and migrated between alpha-2 and beta globulin. The electrophoretic characteristics of protein-bound myoglobin were similar to, although not identical with, those of protein-bound hemoglobin. The maximal binding capacity of plasma for myoglobin was less than for hemoglobin, which averaged 123 mg. per cent. At concentrations below the maximal binding capacity, from 15 to 50 per cent of the myoglobin was in the free, unbound state, differing from hemoglobin which was completely bound at all concentrations below the binding capacity. When myoglobin and hemoglobin were added together to plasma, hemoglobin appeared to interfere with the binding of myoglobin or to replace it at the binding sites. Myoglobin, however, did not appear to interfere with the binding of hemoglobin. These observations suggested that myoglobin and hemoglobin were bound at least in part by the same protein. When myoglobin was given intravenously, free myoglobin was excreted in the urine, whereas protein-bound myoglobin was not excreted. This suggests that protein-binding contributes to or determines the apparent renal threshold to myoglobin. PMID:14414439

  3. Clinical role of protein binding of quinolones.

    PubMed

    Bergogne-Bérézin, Eugénie

    2002-01-01

    Protein binding of antibacterials in plasma and tissues has long been considered a component of their pharmacokinetic parameters, playing a potential role in distribution, excretion and therapeutic effectiveness. Since the beginning of the 'antibacterial era', this factor has been extensively analysed for all antibacterial classes, showing that wide variations of the degree of protein binding occur even in the same antibacterial class, as with beta-lactams. As the understanding of protein binding grew, the complexity of the binding system was increasingly perceived and its dynamic character described. Studies of protein binding of the fluoroquinolones have shown that the great majority of these drugs exhibit low protein binding, ranging from approximately 20 to 40% in plasma, and that they are bound predominantly to albumin. The potential role in pharmacokinetics-pharmacodynamics of binding of fluoroquinolones to plasma, tissue and intracellular proteins has been analysed, but it has not been established that protein binding has any significant direct or indirect impact on therapeutic effectiveness. Regarding the factors influencing the tissue distribution of antibacterials, physicochemical characteristics and the small molecular size of fluoroquinolones permit a rapid penetration into extravascular sites and intracellularly, with a rapid equilibrium being established between intravascular and extravascular compartments. The high concentrations of these drugs achieved in tissues, body fluids and intracellularly, in addition to their wide antibacterial spectrum, mean that fluoroquinolones have therapeutic effectiveness in a large variety of infections. The tolerability of quinolones has generally been reported as good, based upon long experience in using pefloxacin, ciprofloxacin and ofloxacin in clinical practice. Among more recently developed molecules, good tolerability has been reported for levofloxacin, moxifloxacin and gatifloxacin, but certain other new

  4. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-06-23

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins.

  5. Meningococcal outer membrane vesicle vaccines derived from mutant strains engineered to express factor H binding proteins from antigenic variant groups 1 and 2.

    PubMed

    Koeberling, Oliver; Giuntini, Serena; Seubert, Anja; Granoff, Dan M

    2009-02-01

    Meningococcal outer membrane vesicle (OMV) vaccines, which are treated with detergents to decrease endotoxin activity, are safe and effective in humans. However, the vaccines elicit serum bactericidal antibody responses largely directed against PorA, which is antigenically variable. We previously prepared a native (non-detergent-treated) OMV vaccine from a mutant of group B strain H44/76 in which the lpxL1 gene was inactivated, which resulted in penta-acylated lipid A with attenuated endotoxin activity. To enhance protection, we overexpressed factor H binding protein (fHbp) from the antigenic variant 1 group. The vaccine elicited broad serum bactericidal antibody responses in mice against strains with fHbp variant 1 (approximately 70% of group B isolates) but not against strains with variant 2 or 3. In the present study, we constructed a mutant of group B strain NZ98/254 with attenuated endotoxin that expressed both endogenous variant 1 and heterologous fHbp variant 2. A mixture of the two native OMV vaccines from the H44/76 and NZ98/254 mutants stimulated proinflammatory cytokine responses by human peripheral blood mononuclear cells similar to those stimulated by control, detergent-treated OMV vaccines from the wild-type strains. In mice, the mixture of the two native OMV vaccines elicited broad serum bactericidal antibody responses against strains with heterologous PorA and fHbp in the variant 1, 2, or 3 group. By adsorption studies, the principal bactericidal antibody target was determined to be fHbp. Thus, native OMV vaccines from mutants expressing fHbp variants have the potential to be safe for humans and to confer broad protection against meningococcal disease from strains expressing fHbp from each of the antigenic variant groups.

  6. A Correlation between Protein Function and Ligand Binding Profiles

    PubMed Central

    Shortridge, Matthew D.; Bokemper, Michael; Copeland, Jennifer C.; Stark, Jaime L.; Powers, Robert

    2011-01-01

    We report that proteins with the same function bind the same set of small molecules from a standardized chemical library. This observation led to a quantifiable and rapidly adaptable method for protein functional analysis using experimentally-derived ligand binding profiles. Ligand binding is measured using a high-throughput NMR ligand affinity screen with a structurally diverse chemical library. The method was demonstrated using a set of 19 proteins with a range of functions. A statistically significant similarity in ligand binding profiles was only observed between the two functionally identical albumins and between the five functionally similar amylases. This new approach is independent of sequence, structure or evolutionary information, and therefore, extends our ability to analyze and functionally annotate novel genes. PMID:21366353

  7. Surface-Based Protein Binding Pocket Similarity

    PubMed Central

    Spitzer, Russell; Cleves, Ann E.; Jain, Ajay N.

    2011-01-01

    Protein similarity comparisons may be made on a local or global basis and may consider sequence information or differing levels of structural information. We present a local 3D method that compares protein binding site surfaces in full atomic detail. The approach is based on the morphological similarity method which has been widely applied for global comparison of small molecules. We apply the method to all-by-all comparisons two sets of human protein kinases, a very diverse set of ATP-bound proteins from multiple species, and three heterogeneous benchmark protein binding site data sets. Cases of disagreement between sequence-based similarity and binding site similarity yield informative examples. Where sequence similarity is very low, high pocket similarity can reliably identify important binding motifs. Where sequence similarity is very high, significant differences in pocket similarity are related to ligand binding specificity and similarity. Local protein binding pocket similarity provides qualitatively complementary information to other approaches, and it can yield quantitative information in support of functional annotation. PMID:21769944

  8. Lipid binding proteins from parasitic platyhelminthes.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    TWO MAIN FAMILIES OF LIPID BINDING PROTEINS HAVE BEEN IDENTIFIED IN PARASITIC PLATYHELMINTHES: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  9. Lipid binding proteins from parasitic platyhelminthes

    PubMed Central

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    Two main families of lipid binding proteins have been identified in parasitic Platyhelminthes: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment. PMID:22988444

  10. The binding domain structure of retinoblastoma-binding proteins.

    PubMed Central

    Figge, J.; Breese, K.; Vajda, S.; Zhu, Q. L.; Eisele, L.; Andersen, T. T.; MacColl, R.; Friedrich, T.; Smith, T. F.

    1993-01-01

    The retinoblastoma gene product (Rb), a cellular growth suppressor, complexes with viral and cellular proteins that contain a specific binding domain incorporating three invariant residues: Leu-X-Cys-X-Glu, where X denotes a nonconserved residue. Hydrophobic and electrostatic properties are strongly conserved in this segment even though the nonconserved amino acids vary considerably from one Rb-binding protein to another. In this report, we present a diagnostic computer pattern for a high-affinity Rb-binding domain featuring the three conserved residues as well as the conserved physico-chemical properties. Although the pattern encompasses only 10 residues (with only 4 of these explicitly defined), it exhibits 100% sensitivity and 99.95% specificity in database searches. This implies that a certain pattern of structural and physico-chemical properties encoded by this short sequence is sufficient to govern specific Rb binding. We also present evidence that the secondary structural conformation through this region is important for effective Rb binding. PMID:8382993

  11. Detergent activation of the binding protein in the folate radioassay

    SciTech Connect

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with ..beta..-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to ..beta..-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants (lipids/detergents).

  12. Probing binding hot spots at protein-RNA recognition sites.

    PubMed

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity.

  13. FRET in a Synthetic Flavin- and Bilin-binding Protein.

    PubMed

    Simon, Julian; Losi, Aba; Zhao, Kai-Hong; Gärtner, Wolfgang

    2017-07-01

    The last decade has seen development and application of a large number of novel fluorescence-based techniques that have revolutionized fluorescence microscopy in life sciences. Preferred tags for such applications are genetically encoded fluorescent proteins (FP), mostly derivatives of the green fluorescent protein (GFP). Combinations of FPs with wavelength-separated absorption/fluorescence properties serve as excellent tools for molecular interaction studies, for example, protein-protein complexes or enzyme-substrate interactions, based on the FRET phenomenon (Förster resonance energy transfer). However, alternatives are requested for experimental conditions where FP proteins or FP couples are not or less efficiently applicable. We here report as a "proof of principle" a specially designed, non-naturally occurring protein (LG1) carrying a combination of a flavin-binding LOV- and a photochromic bilin-binding GAF domain and demonstrate a FRET process between both chromophores. © 2017 The American Society of Photobiology.

  14. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  15. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G.

    PubMed

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus

    2017-01-01

    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.

  16. Specific binding of gibberellic acid by cytokinin-specific binding proteins: a new aspect of plant hormone-binding proteins with the PR-10 fold.

    PubMed

    Ruszkowski, Milosz; Sliwiak, Joanna; Ciesielska, Agnieszka; Barciszewski, Jakub; Sikorski, Michal; Jaskolski, Mariusz

    2014-07-01

    Pathogenesis-related proteins of class 10 (PR-10) are a family of plant proteins with the same fold characterized by a large hydrophobic cavity that allows them to bind various ligands, such as phytohormones. A subfamily with only ~20% sequence identity but with a conserved canonical PR-10 fold have previously been recognized as Cytokinin-Specific Binding Proteins (CSBPs), although structurally the binding mode of trans-zeatin (a cytokinin phytohormone) was found to be quite diversified. Here, it is shown that two CSBP orthologues from Medicago truncatula and Vigna radiata bind gibberellic acid (GA3), which is an entirely different phytohormone, in a conserved and highly specific manner. In both cases a single GA3 molecule is found in the internal cavity of the protein. The structural data derived from high-resolution crystal structures are corroborated by isothermal titration calorimetry (ITC), which reveals a much stronger interaction with GA3 than with trans-zeatin and pH dependence of the binding profile. As a conclusion, it is postulated that the CSBP subfamily of plant PR-10 proteins should be more properly linked with general phytohormone-binding properties and termed phytohormone-binding proteins (PhBP).

  17. Drug protein binding and the nephrotic syndrome.

    PubMed

    Gugler, R; Azarnoff, D L

    1976-01-01

    A reduction in plasma albumin concentration, as seen in patients with the nephrotic syndrome, is usually associated with a decrease in plasma protein binding of highly bound drugs. Therefore, the fraction of the unbound drug increases, but the absolute free concentration remains essentially unchanged due to a compensatory reduction in the steady state total plasma concentration. With phenytoin, protein binding and plasma albumin concentration are closely related, so that the degree of binding can be estimated without specific binding techniques. To be able to correctly interprete plasma levels the degree of protein binding should be known, since a reduced total concentration may be fully effective, if the free drug fraction is increased in hypoalbuminaemic patients. Although the mean steady state plasma concentration of highly bound drugs is not affected in the nephrotic syndrome, a greater fluctuation of the unbound level is observed between doses, offering a possible explanation for the increased incidence of toxicity in hypoalbuminaemic patients. As a consequence, shorter dosing intervals of these drugs seems to be advisable, rather than a reduction in the total daily dose. Reduced protein binding is accompanied by an increase in the total plasma clearance which is a function of the elimination rate constant and the volume of distribution.

  18. Computational search for aflatoxin binding proteins

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Jinfeng; Zhang, Lujia; He, Xiao; Zhang, John Z. H.

    2017-10-01

    Aflatoxin is one of the mycotoxins that contaminate various food products. Among various aflatoxin types (B1, B2, G1, G2 and M1), aflatoxin B1 is the most important and the most toxic one. In this study, through computational screening, we found that several proteins may bind specifically with different type of aflatoxins. Combination of theoretical methods including target fishing, molecular docking, molecular dynamics (MD) simulation, MM/PBSA calculation were utilized to search for new aflatoxin B1 binding proteins. A recently developed method for calculating entropic contribution to binding free energy called interaction entropy (IE) was employed to compute the binding free energy between the protein and aflatoxin B1. Through comprehensive comparison, three proteins, namely, trihydroxynaphthalene reductase, GSK-3b, and Pim-1 were eventually selected as potent aflatoxin B1 binding proteins. GSK-3b and Pim-1 are drug targets of cancers or neurological diseases. GSK-3b is the strongest binder for aflatoxin B1.

  19. Phosphate binding sites identification in protein structures

    PubMed Central

    Parca, Luca; Gherardini, Pier Federico; Helmer-Citterich, Manuela; Ausiello, Gabriele

    2011-01-01

    Nearly half of known protein structures interact with phosphate-containing ligands, such as nucleotides and other cofactors. Many methods have been developed for the identification of metal ions-binding sites and some for bigger ligands such as carbohydrates, but none is yet available for the prediction of phosphate-binding sites. Here we describe Pfinder, a method that predicts binding sites for phosphate groups, both in the form of ions or as parts of other non-peptide ligands, in proteins of known structure. Pfinder uses the Query3D local structural comparison algorithm to scan a protein structure for the presence of a number of structural motifs identified for their ability to bind the phosphate chemical group. Pfinder has been tested on a data set of 52 proteins for which both the apo and holo forms were available. We obtained at least one correct prediction in 63% of the holo structures and in 62% of the apo. The ability of Pfinder to recognize a phosphate-binding site in unbound protein structures makes it an ideal tool for functional annotation and for complementing docking and drug design methods. The Pfinder program is available at http://pdbfun.uniroma2.it/pfinder. PMID:20974634

  20. Curariform Antagonists Bind in Different Orientations to Acetylcholine-binding Protein*

    PubMed Central

    Gao, Fan; Bren, Nina; Little, Alicia; Wang, Hai-Long; Hansen, Scott B.; Talley, Todd T.; Taylor, Palmer; Sine, Steven M.

    2011-01-01

    Acetylcholine-binding protein (AChBP) recently emerged as a prototype for relating structure to function of the ligand binding domain of nicotinic acetylcholine receptors (AChRs). To understand interactions of competitive antagonists at the atomic structural level, we studied binding of the curare derivatives d-tubocurarine (d-TC) and metocurine to AChBP using computational methods, mutagenesis, and ligand binding measurements. To account for protein flexibility, we used a 2-ns molecular dynamics simulation of AChBP to generate multiple snapshots of the equilibrated dynamic structure to which optimal docking orientations were determined. Our results predict a predominant docking orientation for both d-TC and metocurine, but unexpectedly, the bound orientations differ fundamentally for each ligand. At one subunit interface of AChBP, the side chain of Tyr-89 closely approaches a positively charged nitrogen in d-TC but is farther away from the equivalent nitrogen in metocurine, whereas, at the opposing interface, side chains of Trp-53 and Gln-55 closely approach the metocurine scaffold but not that of d-TC. The different orientations correspond to ~170° rotation and ~30° degree tilt of the curare scaffold within the binding pocket. Mutagenesis of binding site residues in AChBP, combined with measurements of ligand binding, confirms the different docking orientations. Thus structurally similar ligands can adopt distinct orientations at receptor binding sites, posing challenges for interpreting structure-activity relationships for many drugs. PMID:12682067

  1. Predicting Ca(2+)-binding sites in proteins.

    PubMed

    Nayal, M; Di Cera, E

    1994-01-18

    The coordination shell of Ca2+ ions in proteins contains almost exclusively oxygen atoms supported by an outer shell of carbon atoms. The bond-strength contribution of each ligating oxygen in the inner shell can be evaluated by using an empirical expression successfully applied in the analysis of crystals of metal oxides. The sum of such contributions closely approximates the valence of the bound cation. When a protein is embedded in a very fine grid of points and an algorithm is used to calculate the valence of each point representing a potential Ca(2+)-binding site, a typical distribution of valence values peaked around 0.4 is obtained. In 32 documented Ca(2+)-binding proteins, containing a total of 62 Ca(2+)-binding sites, a very small fraction of points in the distribution has a valence close to that of Ca2+. Only 0.06% of the points have a valence > or = 1.4. These points share the remarkable tendency to cluster around documented Ca2+ ions. A high enough value of the valence is both necessary (58 out of 62 Ca(2+)-binding sites have a valence > or = 1.4) and sufficient (87% of the grid points with a valence > or = 1.4 are within 1.0 A from a documented Ca2+ ion) to predict the location of bound Ca2+ ions. The algorithm can also be used for the analysis of other cations and predicts the location of Mg(2+)- and Na(+)-binding sites in a number of proteins. The valence is, therefore, a tool of pinpoint accuracy for locating cation-binding sites, which can also be exploited in engineering high-affinity binding sites and characterizing the linkage between structural components and functional energetics for molecular recognition of metal ions by proteins.

  2. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    ERIC Educational Resources Information Center

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  3. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    ERIC Educational Resources Information Center

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  4. Mogrol Derived from Siraitia grosvenorii Mogrosides Suppresses 3T3-L1 Adipocyte Differentiation by Reducing cAMP-Response Element-Binding Protein Phosphorylation and Increasing AMP-Activated Protein Kinase Phosphorylation

    PubMed Central

    Harada, Naoki; Ishihara, Mikako; Horiuchi, Hiroko; Ito, Yuta; Tabata, Hiromitsu; Suzuki, Yasushi A.; Nakano, Yoshihisa; Yamaji, Ryoichi; Inui, Hiroshi

    2016-01-01

    This study investigated the effects of mogrol, an aglycone of mogrosides from Siraitia grosvenorii, on adipogenesis in 3T3-L1 preadipocytes. Mogrol, but not mogrosides, suppressed triglyceride accumulation by affecting early (days 0–2) and late (days 4–8), but not middle (days 2–4), differentiation stages. At the late stage, mogrol increased AMP-activated protein kinase (AMPK) phosphorylation and reduced glycerol-3-phosphate dehydrogenase activity. At the early stage, mogrol promoted AMPK phosphorylation, inhibited the induction of CCAAT/enhancer-binding protein β (C/EBPβ; a master regulator of adipogenesis), and reduced 3T3-L1 cell contents (e.g., clonal expansion). In addition, mogrol, but not the AMPK activator AICAR, suppressed the phosphorylation and activity of the cAMP response element-binding protein (CREB), which regulates C/EBPβ expression. These results indicated that mogrol suppressed adipogenesis by reducing CREB activation in the initial stage of cell differentiation and by activating AMPK signaling in both the early and late stages of this process. PMID:27583359

  5. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    PubMed Central

    2010-01-01

    cases, the shapes of the binding pockets have relatively low weights in the determination of the affinity profiles of proteins. Since the MAF profile is closely related to the target specificity of ligand binding sites we can conclude that the shape of the binding site is not a pivotal factor in selecting drug targets. Nonetheless, based on strong specific associations between certain MAF profiles and specific geometric descriptors we identified, the shapes of the binding sites do have a crucial role in virtual drug design for certain drug categories, including morphine derivatives, benzodiazepines, barbiturates and antihistamines. PMID:20923553

  6. Ice-Binding Proteins and Their Function.

    PubMed

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-02

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities.

  7. Measurement of the binding parameters of annexin derivatives-erythrocyte membrane interactions

    PubMed Central

    Yen, Tzu-Chen; Wey, Shiaw-Pyng; Liao, Chang-Hui; Yeh, Chi-Hsiao; Shen, Duan-Wen; Achilefu, Samuel; Wun, Tze-Chein

    2010-01-01

    Erythrocyte ghosts prepared from fresh blood expressed phosphatidylserine (PS) on the membrane surfaces in a rather stable fashion. The binding of fluorescein-5-isothiocyanate (FITC)-labeled Annexin V (ANV) derivatives to these membranes were studied by titration with proteins and with calcium. Whereas pre-addition of EDTA to reaction mixtures totally prevented membrane binding, Ca++-dependent binding was only partially reversed by EDTA treatment, consistent with an initial Ca++ dependent binding which became partially Ca++ independent. Data derived from saturation titration with ANV derivatives poorly fit simple protein-membrane equilibrium binding equation and showed negative cooperativity of binding with increasing membrane occupancy. In contrast, calcium titration at low binding site occupancy resulted in excellent fit into protein-Ca++-membrane equilibrium binding equation. Calcium titrations of FITC-labeled ANV and ANV-6L15 (a novel ANV-Kunitz protease inhibitor fusion protein) yielded Hill coefficient of approximately 4 in both cases. The apparent dissociation constant for ANV-6L15 was about 4-fold lower than that of ANV at 1.2–2.5 mM Ca++. We propose that ANV-6L15 may provide improved detection of PS exposed on the membrane surfaces of pathological cells in vitro and in vivo. PMID:20599633

  8. Measurement of the binding parameters of annexin derivative-erythrocyte membrane interactions.

    PubMed

    Yen, Tzu-Chen; Wey, Shiaw-Pyng; Liao, Chang-Hui; Yeh, Chi-Hsiao; Shen, Duan-Wen; Achilefu, Samuel; Wun, Tze-Chein

    2010-11-01

    Erythrocyte ghosts prepared from fresh blood expressed phosphatidylserine (PS) on the membrane surfaces in a rather stable fashion. The binding of fluorescein-5-isothiocyanate (FITC)-labeled annexin V (ANV) derivatives to these membranes was studied by titration with proteins and with calcium. Whereas the preaddition of ethylenediaminetetraacetic acid (EDTA) to reaction mixtures totally prevented membrane binding, Ca(2+)-dependent binding was only partially reversed by EDTA treatment, consistent with an initial Ca(2+)-dependent binding that became partially Ca(2+) independent. Data derived from saturation titration with ANV derivatives poorly fit the simple protein-membrane equilibrium binding equation and showed negative cooperativity of binding with increasing membrane occupancy. In contrast, calcium titration at low binding site occupancy resulted in excellent fit into the protein-Ca(2+)-membrane equilibrium binding equation. Calcium titrations of FITC-labeled ANV and ANV-6L15 (a novel ANV-Kunitz protease inhibitor fusion protein) yielded a Hill coefficient of approximately 4 in both cases. The apparent dissociation constant for ANV-6L15 was approximately 4-fold lower than that of ANV at 1.2-2.5mM Ca(2+). We propose that ANV-6L15 may provide improved detection of PS exposed on the membrane surfaces of pathological cells in vitro and in vivo.

  9. Nucleotide Excision Repair Lesion-Recognition Protein Rad4 Captures a Pre-Flipped Partner Base in a Benzo[a]pyrene-Derived DNA Lesion: How Structure Impacts the Binding Pathway

    PubMed Central

    2017-01-01

    The xeroderma pigmentosum C protein complex (XPC) recognizes a variety of environmentally induced DNA lesions and is the key in initiating their repair by the nucleotide excision repair (NER) pathway. When bound to a lesion, XPC flips two nucleotide pairs that include the lesion out of the DNA duplex, yielding a productively bound complex that can lead to successful lesion excision. Interestingly, the efficiencies of NER vary greatly among different lesions, influencing their toxicity and mutagenicity in cells. Though differences in XPC binding may influence NER efficiency, it is not understood whether XPC utilizes different mechanisms to achieve productive binding with different lesions. Here, we investigated the well-repaired 10R-(+)-cis-anti-benzo[a]pyrene-N2-dG (cis-B[a]P-dG) DNA adduct in a duplex containing normal partner C opposite the lesion. This adduct is derived from the environmental pro-carcinogen benzo[a]pyrene and is likely to be encountered by NER in the cell. We have extensively investigated its binding to the yeast XPC orthologue, Rad4, using umbrella sampling with restrained molecular dynamics simulations and free energy calculations. The NMR solution structure of this lesion in duplex DNA has shown that the dC complementary to the adducted dG is flipped out of the DNA duplex in the absence of XPC. However, it is not known whether the “pre-flipped” base would play a role in its recognition by XPC. Our results show that Rad4 first captures the displaced dC, which is followed by a tightly coupled lesion-extruding pathway for productive binding. This binding path differs significantly from the one deduced for the small cis-syn cyclobutane pyrimidine dimer lesion opposite mismatched thymines [MuH., (2015) Biochemistry, 54(34), 5263−726270861]. The possibility of multiple paths that lead to productive binding to XPC is consistent with the versatile lesion recognition by XPC that is required for successful NER. PMID:28460163

  10. Computational analysis of maltose binding protein translocation

    NASA Astrophysics Data System (ADS)

    Chinappi, Mauro; Cecconi, Fabio; Massimo Casciola, Carlo

    2011-05-01

    We propose a computational model for the study of maltose binding protein translocation across α-hemolysin nanopores. The phenomenological approach simplifies both the pore and the polypeptide chain; however it retains the basic structural protein-like properties of the maltose binding protein by promoting the correct formation of its native key interactions. By considering different observables characterising the channel blockade and molecule transport, we verified that MD simulations reproduce qualitatively the behaviour observed in a recent experiment. Simulations reveal that blockade events consist of a capture stage, to some extent related to the unfolding kinetics, and a single file translocation process in the channel. A threshold mechanics underlies the process activation with a critical force depending on the protein denaturation state. Finally, our results support the simple interpretation of translocation via first-passage statistics of a driven diffusion process of a single reaction coordinate.

  11. Novel DNA-binding properties of the RNA-binding protein TIAR.

    PubMed

    Suswam, Esther A; Li, Yan Yan; Mahtani, Harry; King, Peter H

    2005-01-01

    TIA-1 related protein binds avidly to uridine-rich elements in mRNA and pre-mRNAs of a wide range of genes, including interleukin (IL)-8 and vascular endothelial growth factor (VEGF). The protein has diverse regulatory roles, which in part depend on the locus of binding within the transcript, including translational control, splicing and apoptosis. Here, we observed selective and potent inhibition of TIAR-RNP complex formation with IL-8 and VEGF 3'-untranslated regions (3'-UTRs) using thymidine-rich deoxyoligonucleotide (ODN) sequences derived from the VEFG 3'-UTR. We show by ultraviolet crosslinking and electrophoretic mobility shift assays that TIAR can bind directly to single-stranded, thymidine-rich ODNs but not to double-stranded ODNs containing the same sequence. TIAR had a nearly 6-fold greater affinity for DNA than RNA (K(d)app = 1.6x10(-9) M versus 9.4 x 10(-9) M). Truncation of TIAR indicated that the high affinity DNA-binding site overlaps with the RNA-binding site involving RNA recognition motif 2 (RRM2). However, RRM1 alone could also bind to DNA. Finally, we show that TIAR can be displaced from single-stranded DNA by active transcription through the binding site. These results provide a potential mechanism by which TIAR can shuttle between RNA and DNA ligands.

  12. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins.

    PubMed

    Rowland, Andrew; Hallifax, David; Nussio, Matthew R; Shapter, Joseph G; Mackenzie, Peter I; Brian Houston, J; Knights, Kathleen M; Miners, John O

    2015-01-01

    1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu < 0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP.

  13. Exploring the binding dynamics of BAR proteins.

    PubMed

    Kabaso, Doron; Gongadze, Ekaterina; Jorgačevski, Jernej; Kreft, Marko; Van Rienen, Ursula; Zorec, Robert; Iglič, Aleš

    2011-09-01

    We used a continuum model based on the Helfrich free energy to investigate the binding dynamics of a lipid bilayer to a BAR domain surface of a crescent-like shape of positive (e.g. I-BAR shape) or negative (e.g. F-BAR shape) intrinsic curvature. According to structural data, it has been suggested that negatively charged membrane lipids are bound to positively charged amino acids at the binding interface of BAR proteins, contributing a negative binding energy to the system free energy. In addition, the cone-like shape of negatively charged lipids on the inner side of a cell membrane might contribute a positive intrinsic curvature, facilitating the initial bending towards the crescent-like shape of the BAR domain. In the present study, we hypothesize that in the limit of a rigid BAR domain shape, the negative binding energy and the coupling between the intrinsic curvature of negatively charged lipids and the membrane curvature drive the bending of the membrane. To estimate the binding energy, the electric potential at the charged surface of a BAR domain was calculated using the Langevin-Bikerman equation. Results of numerical simulations reveal that the binding energy is important for the initial instability (i.e. bending of a membrane), while the coupling between the intrinsic shapes of lipids and membrane curvature could be crucial for the curvature-dependent aggregation of negatively charged lipids near the surface of the BAR domain. In the discussion, we suggest novel experiments using patch clamp techniques to analyze the binding dynamics of BAR proteins, as well as the possible role of BAR proteins in the fusion pore stability of exovesicles.

  14. Omega-3 Fatty Acids and a Novel Mammary Derived Growth Inhibitor Fatty Acid Binding Protein MRG in Suppression of Mammary Tumor

    DTIC Science & Technology

    2003-07-01

    suppressing effect of n-3 fatty acid DHA on mammary tumors. MRG induces differentiation of mammary epithelial cells in vitro and its expression is...expression of MRG also increased milk protein beta-casein expression in the gland. Treatment of human breast cancer cells with w-3 PUFA DHA resulted...differentiating effect of pregnancy on breast epithelial cells and may play a major role in w-3 PUFA -mediated tumor suppression.

  15. Calling cards for DNA-binding proteins

    PubMed Central

    Wang, Haoyi; Johnston, Mark; Mitra, Robi David

    2007-01-01

    Identifying genomic targets of transcription factors is fundamental for understanding transcriptional regulatory networks. Current technology enables identification of all targets of a single transcription factor, but there is no realistic way to achieve the converse: identification of all proteins that bind to a promoter of interest. We have developed a method that promises to fill this void. It employs the yeast retrotransposon Ty5, whose integrase interacts with the Sir4 protein. A DNA-binding protein fused to Sir4 directs insertion of Ty5 into the genome near where it binds; the Ty5 becomes a “calling card” the DNA-binding protein leaves behind in the genome. We constructed customized calling cards for seven transcription factors of yeast by including in each Ty5 a unique DNA sequence that serves as a “molecular bar code.” Ty5 transposition was induced in a population of yeast cells, each expressing a different transcription factor–Sir4 fusion and its matched, bar-coded Ty5, and the calling cards deposited into selected regions of the genome were identified, revealing the transcription factors that visited that region of the genome. In each region we analyzed, we found calling cards for only the proteins known to bind there: In the GAL1–10 promoter we found only calling cards for Gal4; in the HIS4 promoter we found only Gcn4 calling cards; in the PHO5 promoter we found only Pho4 and Pho2 calling cards. We discuss how Ty5 calling cards might be implemented for mapping all targets of all transcription factors in a single experiment. PMID:17623806

  16. Quantifying drug-protein binding in vivo.

    SciTech Connect

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D

    2004-02-17

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS.

  17. Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus.

    PubMed

    Hattiangady, Bharathi; Rao, Muddanna S; Shetty, Geetha A; Shetty, Ashok K

    2005-10-01

    The hippocampus is very susceptible to aging. Severely diminished dentate neurogenesis at middle age is one of the most conspicuous early changes in the aging hippocampus, which is likely linked to an early decline in the concentration of neurotrophic factors and signaling proteins that influence neurogenesis. We analyzed three proteins that are well-known to promote dentate neurogenesis and learning and memory function in the dentate gyrus and the hippocampal CA1 and CA3 subfields of young, middle-aged and aged F344 rats. These include the brain-derived neurotrophic factor (BDNF), the transcription factor phosphorylated cyclic AMP response element binding protein (p-CREB) and the neuropeptide neuropeptide Y (NPY). The BDNF was analyzed via ELISA and BDNF immunohistochemistry, the p-CREB through densitometric analysis of p-CREB immunopositive cells, and the NPY via stereological counting of NPY-immunopositive interneurons. We provide new evidence that the BDNF concentration, the p-CREB immunoreactivity and the number of NPY immunopositive interneurons decline considerably by middle age in both dentate gyrus and CA1 and CA3 subfields of the hippocampus. However, both BDNF concentration and NPY immunopositive interneuron numbers exhibit no significant decrease between middle age and old age. In contrast, the p-CREB immunoreactivity diminishes further during this period, which is also associated with reduced BDNF immunoreaction within the soma of dentate granule cells and hippocampal pyramidal neurons. Collectively, these results suggest that severely dampened dentate neurogenesis observed at middle age is linked at least partially to reduced concentrations of BDNF, p-CREB and NPY, as each of these proteins is a positive regulator of dentate neurogenesis. Dramatically diminished CREB phosphorylation (and persistently reduced levels of BDNF and NPY) at old age may underlie the learning and memory impairments observed during senescence.

  18. Phylointeractomics reconstructs functional evolution of protein binding

    PubMed Central

    Kappei, Dennis; Scheibe, Marion; Paszkowski-Rogacz, Maciej; Bluhm, Alina; Gossmann, Toni Ingolf; Dietz, Sabrina; Dejung, Mario; Herlyn, Holger; Buchholz, Frank; Mann, Matthias; Butter, Falk

    2017-01-01

    Molecular phylogenomics investigates evolutionary relationships based on genomic data. However, despite genomic sequence conservation, changes in protein interactions can occur relatively rapidly and may cause strong functional diversification. To investigate such functional evolution, we here combine phylogenomics with interaction proteomics. We develop this concept by investigating the molecular evolution of the shelterin complex, which protects telomeres, across 16 vertebrate species from zebrafish to humans covering 450 million years of evolution. Our phylointeractomics screen discovers previously unknown telomere-associated proteins and reveals how homologous proteins undergo functional evolution. For instance, we show that TERF1 evolved as a telomere-binding protein in the common stem lineage of marsupial and placental mammals. Phylointeractomics is a versatile and scalable approach to investigate evolutionary changes in protein function and thus can provide experimental evidence for phylogenomic relationships. PMID:28176777

  19. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    NASA Astrophysics Data System (ADS)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  20. Gene encoding herbicide safener binding protein

    SciTech Connect

    Walton, J.D.; Scott-Craig, J.S.

    1999-10-26

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is presented. The deduced amino acid sequence is provided. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with vectors and seeds from the plants.

  1. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone.

    PubMed

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G; Ribeiro, José M C; Andersen, John F

    2017-09-15

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes, Culex, and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary "long" D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  2. Polynucleotides encoding TRF1 binding proteins

    DOEpatents

    Campisi, Judith; Kim, Sahn-Ho

    2002-01-01

    The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.

  3. Selective protein covalent binding and target organ toxicity.

    PubMed

    Cohen, S D; Pumford, N R; Khairallah, E A; Boekelheide, K; Pohl, L R; Amouzadeh, H R; Hinson, J A

    1997-03-01

    Protein covalent binding by xenobiotic metabolites has long been associated with target organ toxicity but mechanistic involvement of such binding has not been widely demonstrated. Modern biochemical, molecular, and immunochemical approaches have facilitated identification of specific protein targets of xenobiotic covalent binding. Such studies have revealed that protein covalent binding is not random, but rather selective with respect to the proteins targeted. Selective binding to specific cellular target proteins may better correlate with toxicity than total protein covalent binding. Current research is directed at characterizing and identifying the targeted proteins and clarifying the effect of such binding on their structure, function, and potential roles in target organ toxicity. The approaches employed to detect and identify the tartgeted proteins are described. Metabolites of acetaminophen, halothane, and 2,5-hexanedione form covalently bound adducts to recently identified protein targets. The selective binding may influence homeostatic or other cellular responses which in turn contribute to drug toxicity, hypersensitivity, or autoimmunity.

  4. [Blockade of NMDA receptor enhances corticosterone-induced downregulation of brain-derived neurotrophic factor gene expression in the rat hippocampus through cAMP response element binding protein pathway].

    PubMed

    Feng, Hao; Lu, Li-Min; Huang, Ying; Zhu, Yi-Chun; Yao, Tai

    2005-10-25

    High concentration of corticosterone leads to morphological and functional impairments in hippocampus, ranging from a reversible atrophy of pyramidal CA3 apical dendrites to the impairment of long-term potentiation (LTP) and hippocampus-dependent learning and memory. Glutamate and N-methyl-D-aspartate (NMDA) receptor play an important role in this effect. Because of the importance of brain-derived neurotrophic factor (BDNF) in the functions of the hippocampal neurons, alteration of the expression of BDNF is thought to be involved in the corticosterone effect on the hippocampus. To determine whether change in BDNF in the hippocampus is involved in the corticosterone effect, we injected corticosterone (2 mg/kg, s.c.) to Sprague-Dawley rats and measured the mRNA, proBDNF and mature BDNF protein levels in the hippocampus. We also measured the phosphorylation level of the transcription factor cAMP response element binding protein (CREB). Furthermore, we intraperitoneally injected NMDA receptor antagonist MK801 (0.1 mg/kg) 30 min before corticosterone administration to investigate whether and how MK801 affected the regulation of BDNF gene expression by corticosterone. Our results showed that 3 h after single s.c. injection of corticsterone, the expression of BDNF mRNA, proBDNF and mature BDNF protein decreased significantly (P<0.01). MK801 promoted the downregulation of BDNF gene expression in the rat hippocampus by corticosterone. We also found that either applying corticosterone or co-applying corticosterone with MK801 downregulated the phosphoration level of CREB, the latter (corticosterone plus MK801) being more effective (P<0.05). Taken together, our results indicate that corticosterone downregulates BDNF gene expression in the rat hippocampus through CREB pathway and that blockade of NMDA receptor enhances this effect of corticosterone in reducing BDNF expression.

  5. Sterol Carrier Protein-2: Binding Protein for Endocannabinoids

    PubMed Central

    Liedhegner, Elizabeth Sabens; Vogt, Caleb D.; Sem, Daniel S.; Cunningham, Christopher W.

    2015-01-01

    The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ΔG values of −3.6 and −4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (−6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA. PMID:24510313

  6. Novel retinoid-binding proteins from filarial parasites.

    PubMed Central

    Sani, B P; Vaid, A; Comley, J C; Montgomery, J A

    1985-01-01

    The present study deals with the discovery and partial characterization of specific binding proteins for retinol and retinoic acid from filarial parasites (worms of the superfamily Filarioidea), including those from two species of Onchocerca. These binding proteins, which are distinct in their physicochemical properties and in the mode of ligand interactions from the host-tissue retinoid-binding proteins, may be involved in the mediation of the putative biological roles of retinoids in the control of parasitic growth, differentiation and reproduction. Parasite retinol-binding protein and retinoic acid-binding protein exhibited specificity for binding retinol and retinoic acid respectively. Both the binding proteins showed an s20,w value of 2.0 S. On gel filtration, both proteins were retarded to a position corresponding to the same molecular size (19.0 kDa). On preparative columns, the parasite binding proteins exhibited isoelectric points at pH 5.7 and 5.75. Unlike the retinoid-binding proteins of mammalian and avian origin, the parasite retinoid-binding proteins showed a lack of mercurial sensitivity in ligand binding. The comparative amounts of retinoic acid-binding protein in five parasites, Onchocerca volvulus, Onchocerca gibsoni, Dipetalonema viteae, Brugia pahangi and Dirofilaria immitis, were between 2.7 and 3.1 pmol of retinoic acid bound/mg of extractable protein. However, the levels of parasite retinol-binding protein were between 4.8 and 5.8 pmol/mg, which is considerably higher than the corresponding levels of cellular retinol-binding protein of mammalian and avian origin. Both retinol- and retinoic acid-binding-protein levels in O. volvulus-infected human nodules and O. gibsoni-infected bovine nodules were similar to their levels in mammalian tissues. Also, these nodular binding proteins, like the host-binding proteins, exhibited mercurial sensitivity to ligand interactions. PMID:3004410

  7. Elucidation of the binding mechanism of coumarin derivatives with human serum albumin.

    PubMed

    Garg, Archit; Manidhar, Darla Mark; Gokara, Mahesh; Malleda, Chandramouli; Suresh Reddy, Cirandur; Subramanyam, Rajagopal

    2013-01-01

    Coumarin is a benzopyrone which is widely used as an anti-coagulant, anti-oxidant, anti-cancer and also to cure arthritis, herpes, asthma and inflammation. Here, we studied the binding of synthesized coumarin derivatives with human serum albumin (HSA) at physiological pH 7.2 by using fluorescence spectroscopy, circular dichroism spectroscopy, molecular docking and molecular dynamics simulation studies. By addition of coumarin derivatives to HSA the maximum fluorescence intensity was reduced due to quenching of intrinsic fluorescence upon binding of coumarin derivatives to HSA. The binding constant and free energy were found to be 1.957±0.01×10(5) M(-1), -7.175 Kcal M(-1) for coumarin derivative (CD) enamide; 0.837±0.01×10(5) M(-1), -6.685 Kcal M(-1) for coumarin derivative (CD) enoate, and 0.606±0.01×10(5) M(-1), -6.49 Kcal M(-1) for coumarin derivative methylprop (CDM) enamide. The CD spectroscopy showed that the protein secondary structure was partially unfolded upon binding of coumarin derivatives. Further, the molecular docking studies showed that coumarin derivatives were binding to HSA at sub-domain IB with the hydrophobic interactions and also with hydrogen bond interactions. Additionally, the molecular dynamics simulations studies contributed in understanding the stability of protein-drug complex system in the aqueous solution and the conformational changes in HSA upon binding of coumarin derivatives. This study will provide insights into designing of the new inspired coumarin derivatives as therapeutic agents against many life threatening diseases.

  8. Elucidation of the Binding Mechanism of Coumarin Derivatives with Human Serum Albumin

    PubMed Central

    Gokara, Mahesh; Malleda, Chandramouli; Suresh Reddy, Cirandur; Subramanyam, Rajagopal

    2013-01-01

    Coumarin is a benzopyrone which is widely used as an anti-coagulant, anti-oxidant, anti-cancer and also to cure arthritis, herpes, asthma and inflammation. Here, we studied the binding of synthesized coumarin derivatives with human serum albumin (HSA) at physiological pH 7.2 by using fluorescence spectroscopy, circular dichroism spectroscopy, molecular docking and molecular dynamics simulation studies. By addition of coumarin derivatives to HSA the maximum fluorescence intensity was reduced due to quenching of intrinsic fluorescence upon binding of coumarin derivatives to HSA. The binding constant and free energy were found to be 1.957±0.01×105 M−1, −7.175 Kcal M−1 for coumarin derivative (CD) enamide; 0.837±0.01×105 M−1, −6.685 Kcal M−1 for coumarin derivative (CD) enoate, and 0.606±0.01×105 M−1, −6.49 Kcal M−1 for coumarin derivative methylprop (CDM) enamide. The CD spectroscopy showed that the protein secondary structure was partially unfolded upon binding of coumarin derivatives. Further, the molecular docking studies showed that coumarin derivatives were binding to HSA at sub-domain IB with the hydrophobic interactions and also with hydrogen bond interactions. Additionally, the molecular dynamics simulations studies contributed in understanding the stability of protein-drug complex system in the aqueous solution and the conformational changes in HSA upon binding of coumarin derivatives. This study will provide insights into designing of the new inspired coumarin derivatives as therapeutic agents against many life threatening diseases. PMID:23724004

  9. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G

    PubMed Central

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P.; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus

    2017-01-01

    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis. PMID:28401063

  10. Luminescence, circular dichroism and in silico studies of binding interaction of synthesized naphthylchalcone derivatives with bovine serum albumin.

    PubMed

    Pasricha, Sharda; Sharma, Deepti; Ojha, Himanshu; Gahlot, Pragya; Pathak, Mallika; Basu, Mitra; Chawla, Raman; Singhal, Sugandha; Singh, Anju; Goel, Rajeev; Kukreti, Shrikant; Shukla, Shefali

    2017-05-16

    Chalcones possess various biological properties, for example, antimicrobial, anti-inflammatory, analgesic, antimalarial, anticancer, antiprotozoal and antitubercular activity. In this study, naphthylchalcone derivatives were synthesized and characterized using (1) H NMR (13) C NMR, Fourier transform infrared and mass techniques. Yields for all derivatives were found to be >90%. Protein-drug interactions influence the absorption, distribution, metabolism and excretion (ADME) properties of a drug. Therefore, to establish whether the synthesized naphthylchalcone derivatives can be used as drugs, their binding interaction toward a serum protein (bovine serum albumin) was investigated using fluorescence, circular dichroism and molecular docking techniques under physiological conditions. Fluorescence quenching of the protein in the presence of naphthylchalcone derivatives, and other derived parameters such as association constants, number of binding sites and static quenching involving confirmed non-covalent binding interactions in the protein-ligand complex were observed. Circular dichroism clearly showed changes in the secondary structure of the protein in the presence of naphthylchalcones, indicating binding between the derivatives and the serum protein. Molecular modelling further confirmed the binding mode of naphthylchalcone derivatives in bovine serum albumin. A site-specific molecular docking study of naphthylchalcone derivatives with serum albumin showed that binding took place primarily in the aromatic low helix and then in subdomain II. The dominance of hydrophobic, hydrophilic and hydrogen bonding was clearly visible and was responsible for stabilization of the complex. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Binding of transition metals to S100 proteins

    PubMed Central

    Gilston, Benjamin A.; Skaar, Eric P.; Chazin, Walter J.

    2016-01-01

    The S100 proteins are a unique class of EF-hand Ca2+ binding proteins distributed in a cell-specific, tissue-specific, and cell cycle-specific manner in humans and other vertebrates. These proteins are distinguished by their distinctive homodimeric structure, both intracellular and extracellular functions, and the ability to bind transition metals at the dimer interface. Here we summarize current knowledge of S100 protein binding of Zn2+, Cu2+ and Mn2+ ions, focusing on binding affinities, conformational changes that arise from metal binding, and the roles of transition metal binding in S100 protein function. PMID:27430886

  12. Specific protein-protein binding in many-component mixtures of proteins.

    PubMed

    Sear, Richard P

    2004-06-01

    Proteins must bind to specific other proteins in vivo in order to function. The proteins are required to bind to only one or a few other proteins of the few thousand proteins typically present in vivo. To quantify this requirement we introduce a property of proteins called the capability. The capability is the maximum number of specific-binding interactions possible in a mixture, or in other words the size of largest sustainable interactome. This calculation of the maximum number possible is closely analogous to the work of Shannon and others on the maximum rate of communication through noisy channels. Using a simple model of proteins, we find specific binding to be a demanding function in the sense that it demands that the binding sites of the proteins be encoded by long sequences of elements, and the requirement for specific binding then strongly constrains these sequences.

  13. Binding of tobamovirus replication protein with small RNA duplexes.

    PubMed

    Kurihara, Yukio; Inaba, Naoko; Kutsuna, Natsumaro; Takeda, Atsushi; Tagami, Yuko; Watanabe, Yuichiro

    2007-08-01

    The sequence profiles of small interfering RNAs (siRNAs) in Arabidopsis infected with the crucifer tobamovirus tobacco mosaic virus (TMV)-Cg were determined by using a small RNA cloning technique. The majority of TMV-derived siRNAs were 21 nt in length. The size of the most abundant endogenous small RNAs in TMV-infected plants was 21 nt, whilst in mock-inoculated plants, it was 24 nt. Northern blot analysis revealed that some microRNAs (miRNAs) accumulated more in TMV-infected plants than in mock-inoculated plants. The question of whether the TMV-Cg-encoded 126K replication protein, an RNA-silencing suppressor, caused small RNA enrichment was examined. Transient expression of the replication protein did not change the pattern of miRNA processing. However, miRNA, miRNA* (the opposite strand of the miRNA duplex) and hairpin-derived siRNA all co-immunoprecipitated with the replication protein. Gel mobility-shift assays indicated that the replication protein binds small RNA duplexes. These results suggest that the tobamovirus replication protein functions as a silencing suppressor by binding small RNA duplexes, changing the small RNA profile in infected plants.

  14. Phosphorylation of native porcine olfactory binding proteins.

    PubMed

    Nagnan-Le Meillour, Patricia; Le Danvic, Chrystelle; Brimau, Fanny; Chemineau, Philippe; Michalski, Jean-Claude

    2009-07-01

    The identification of various isoforms of olfactory binding proteins is of major importance to elucidate their involvement in detection of pheromones and other odors. Here, we report the characterization of the phosphorylation of OBP (odorant binding protein) and Von Ebner's gland protein (VEG) from the pig, Sus scrofa. After labeling with specific antibodies raised against the three types of phosphorylation (Ser, Thr, Tyr), the phosphate-modified residues were mapped by using the beta-elimination followed by Michael addition of dithiothreitol (BEMAD) method. Eleven phosphorylation sites were localized in the pOBP sequence and nine sites in the VEG sequence. OBPs are secreted by Bowman's gland cells in the extracellular mucus lining the nasal cavity. After tracking the secretion pathway in the rough endoplasmic reticulum of these cells, we hypothesize that these proteins may be phosphorylated by ectokinases that remain to be characterized. The existence of such a regulatory mechanism theoretically increases the number of OBP variants, and it suggests a more specific role for OBPs in odorant coding than the one of odorant solubilizer and transporter.

  15. Singlet oxygen photosensitisation by the fluorescent protein Pp2FbFP L30M, a novel derivative of Pseudomonas putida flavin-binding Pp2FbFP.

    PubMed

    Torra, Joaquim; Burgos-Caminal, Andrés; Endres, Stephan; Wingen, Marcus; Drepper, Thomas; Gensch, Thomas; Ruiz-González, Rubén; Nonell, Santi

    2015-02-01

    Flavin-binding fluorescent proteins (FbFPs) are a class of fluorescent reporters that have been increasingly used as reporters in the study of cellular structures and dynamics. Flavin's intrinsic high singlet oxygen ((1)O2) quantum yield (ΦΔ = 0.51) provides a basis for the development of new FbFP mutants capable of photosensitising (1)O2 for mechanistic and therapeutic applications, as recently exemplified by the FbFP miniSOG. In the present work we report an investigation on the (1)O2 photoproduction by Pp2FbFP L30M, a novel derivative of Pseudomonas putida Pp2FbFP. Direct detection of (1)O2 through its phosphorescence at 1275 nm yielded the value ΦΔ = 0.09 ± 0.01, which is the highest (1)O2 quantum yield reported to date for any FP and is approximately 3-fold higher than the ΦΔ for miniSOG. Unlike miniSOG, transient absorption measurements revealed the existence of two independent triplet states each with a different ability to sensitise (1)O2.

  16. Affinity labeling of Escherichia coli ribosomes with a covalently binding derivative of the antibiotic pleuromutilin.

    PubMed

    Högenauer, G; Egger, H; Ruf, C; Stumper, B

    1981-02-03

    Reaction of an alkylating pleuromutilin derivative with E. coli ribosomes led to the binding of the compound to both proteins and RNA. If ribosomes of the E. coli strain MRE600 were used, mainly S18 and L2 became labeled. Ribosomes from E. coli D10 bound the reagent to S18 and frequently to L27 instead of L2. Possibly at slight difference in the structure of these ribosomes exposes different, although closely neighboring, L proteins to the reagent. The simultaneous labeling of L and S proteins seems to reflect the presence of two binding sites for the antibiotic and indicates that the binding sites are located at the interphase region between large and small ribosomal subunits. Analysis of the RNA showed that the affinity label is mainly attached to the 23S species. These data are in good agreement with the known effects of pleuromutilin derivatives on ribosomal functions.

  17. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    PubMed Central

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand–protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein–ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters. PMID:25591754

  18. Neisseria meningitis GNA1030 is a ubiquinone-8 binding protein.

    PubMed

    Donnarumma, Danilo; Golfieri, Giacomo; Brier, Sébastien; Castagnini, Marta; Veggi, Daniele; Bottomley, Matthew James; Delany, Isabel; Norais, Nathalie

    2015-06-01

    Bexsero, a new vaccine against Neisseria meningitidis serogroup B (MenB), is composed of 3 main recombinant proteins and an outer membrane vesicle component. One of the main bactericidal antigens, neisseria heparin binding antigen (NHBA), is present as a fusion protein with the accessory protein genome-derived neisserial antigen (GNA) 1030 to further increase its immunogenicity. The gene encoding for GNA1030 is present and highly conserved in all Neisseria strains, and although orthologs are present in numerous species, its biologic function is unknown. Native mass spectrometry was used to demonstrate that GNA1030 forms a homodimer associated with 2 molecules of ubiquinone-8 (Ub8), a cofactor mainly involved in the electron transport chain and with antioxidant properties. Disc diffusion assays on the wild-type and knockout mutant of GNA1030, in the presence of various compounds, suggested that GNA1030 is not involved in oxidative stress or electron chain transport per se, although it contributes to constitutive refilling of the inner membrane with Ub8. These studies shed light on an accessory protein present in Bexsero and reveal functional insights into the family of related proteins. On the basis of our findings, we propose to name the protein neisseria ubiquinone binding protein (NUbp).

  19. Polyamine binding to proteins in oat and Petunia protoplasts

    NASA Technical Reports Server (NTRS)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  20. Polyamine binding to proteins in oat and Petunia protoplasts

    NASA Technical Reports Server (NTRS)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  1. Copper-binding protein in Mimulus guttatus

    SciTech Connect

    Robinson, N.J.; Thurman, D.A.

    1985-01-01

    A Cu-binding protein has been purified from the roots of Mimulus guttatus using gel permeation chromatography on Sephadex G-75 and anion exchange chromatography on DEAE Biogel A. The protein has similar properties to putative metallothioneins (MTS) purified from other angiosperms. Putative MT was estimated by measuring the relative percentage incorporation of (/sup 35/S) into fractions containing the protein after HPLC on SW 3000-gel. In the roots of both Cu-tolerant and non tolerant plants synthesis of putative MT is induced by increased Cu concentration in the nutrient solution. The relative percentage incorporation of (/sup 35/S) into putative MT is significantly higher in extracts from the roots of Cu-tolerant than non tolerant M. guttatus after growth in 1 ..mu..M Cu suggesting involvement in the mechanism of tolerance. 22 refs., 2 figs., 1 tab.

  2. Cation specific binding with protein surface charges

    PubMed Central

    Hess, Berk; van der Vegt, Nico F. A.

    2009-01-01

    Biological organization depends on a sensitive balance of noncovalent interactions, in particular also those involving interactions between ions. Ion-pairing is qualitatively described by the law of “matching water affinities.” This law predicts that cations and anions (with equal valence) form stable contact ion pairs if their sizes match. We show that this simple physical model fails to describe the interaction of cations with (molecular) anions of weak carboxylic acids, which are present on the surfaces of many intra- and extracellular proteins. We performed molecular simulations with quantitatively accurate models and observed that the order K+ < Na+ < Li+ of increasing binding affinity with carboxylate ions is caused by a stronger preference for forming weak solvent-shared ion pairs. The relative insignificance of contact pair interactions with protein surfaces indicates that thermodynamic stability and interactions between proteins in alkali salt solutions is governed by interactions mediated through hydration water molecules. PMID:19666545

  3. A Crayfish Insulin-like-binding Protein

    PubMed Central

    Rosen, Ohad; Weil, Simy; Manor, Rivka; Roth, Ziv; Khalaila, Isam; Sagi, Amir

    2013-01-01

    Across the animal kingdom, the involvement of insulin-like peptide (ILP) signaling in sex-related differentiation processes is attracting increasing attention. Recently, a gender-specific ILP was identified as the androgenic sex hormone in Crustacea. However, moieties modulating the actions of this androgenic insulin-like growth factor were yet to be revealed. Through molecular screening of an androgenic gland (AG) cDNA library prepared from the crayfish Cherax quadricarinatus, we have identified a novel insulin-like growth factor-binding protein (IGFBP) termed Cq-IGFBP. Based on bioinformatics analyses, the deduced Cq-IGFBP was shown to share high sequence homology with IGFBP family members from both invertebrates and vertebrates. The protein also includes a sequence determinant proven crucial for ligand binding, which according to three-dimensional modeling is assigned to the exposed outer surface of the protein. Recombinant Cq-IGFBP (rCq-IGFBP) protein was produced and, using a “pulldown” methodology, was shown to specifically interact with the insulin-like AG hormone of the crayfish (Cq-IAG). Particularly, using both mass spectral analysis and an immunological tool, rCq-IGFBP was shown to bind the Cq-IAG prohormone. Furthermore, a peptide corresponding to residues 23–38 of the Cq-IAG A-chain was found sufficient for in vitro recognition by rCq-IGFBP. Cq-IGFBP is the first IGFBP family member shown to specifically interact with a gender-specific ILP. Unlike their ILP ligands, IGFBPs are highly conserved across evolution, from ancient arthropods, like crustaceans, to humans. Such conservation places ILP signaling at the center of sex-related phenomena in early animal development. PMID:23775079

  4. Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects.

    PubMed

    Meisel, H; FitzGerald, R J

    2003-01-01

    The protein fraction of milk contains many valuable components and biologically active substances. Moreover, milk proteins are precursors of many different biologically active peptides which are inactive within the sequence of the precursor protein but can be released by enzymatic proteolysis. Many milk protein-derived peptides, such as caseinophosphopeptides, reveal multi-functional bioactivities. Caseinophosphopeptides can form soluble organophosphate salts and may function as carriers for different minerals, especially calcium. Furthermore, they have been shown to exert cytomodulatory effects. Cytomodulatory peptides inhibit cancer cell growth or they stimulate the activity of immunocompetent cells and neonatal intestinal cells, respectively. Several bioactive peptides derived from milk proteins are potential modulators of various regulatory processes in the body and thus may exert beneficial physiological effects. Caseinophosphopeptides are already produced on an industrial-scale and as a consequence these peptides have been considered for application as ingredients in both 'functional foods' and pharmaceutical preparations. Although the physiological significance as exogenous regulatory substances is not yet fully understood, both mineral binding and cytomodulatory peptides derived from bovine milk proteins are claimed to be health enhancing components that can be used to reduce the risk of disease or to enhance a certain physiological function.

  5. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family

    PubMed Central

    Vadnagara, Komal; Moe, Orson W.; Babich, Victor

    2012-01-01

    The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca2+-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca2+-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, and nuclear export signals. These structural features are essential for the function of the three members of the CHP subfamily. Indeed, CHP1–CHP3 have multiple and diverse essential functions, ranging from the regulation of the plasma membrane Na+/H+ exchanger protein function, to carrier vesicle trafficking and gene transcription. The diverse functions attributed to the CHP subfamily rendered an understanding of its action highly complex and often controversial. This review provides a comprehensive and organized examination of the properties and physiological roles of the CHP subfamily with a view to revealing a link between CHP diverse functions. PMID:22189947

  6. Measurement of Phenotype and Absolute Number of Circulating Heparin-Binding Hemagglutinin, ESAT-6 and CFP-10, and Purified Protein Derivative Antigen-Specific CD4 T Cells Can Discriminate Active from Latent Tuberculosis Infection

    PubMed Central

    Barkham, Timothy M. S.; Tang, Wenying; Kemeny, David M.; Chee, Cynthia Bin-Eng; Wang, Yee T.

    2014-01-01

    The tuberculin skin test (TST) and interferon gamma (IFN-γ) release assays (IGRAs) are used as adjunctive tests for the evaluation of suspected cases of active tuberculosis (TB). However, a positive test does not differentiate latent from active TB. We investigated whether flow cytometric measurement of novel combinations of intracellular cytokines and surface makers on CD4 T cells could differentiate between active and latent TB after stimulation with Mycobacterium tuberculosis-specific proteins. Blood samples from 60 patients referred to the Singapore Tuberculosis Control Unit for evaluation for active TB or as TB contacts were stimulated with purified protein derivative (PPD), ESAT-6 and CFP-10, or heparin-binding hemagglutinin (HBHA). The CD4 T cell cytokine response (IFN-γ, interleukin-2 [IL-2], interleukin-17A [IL-17A], interleukin-22 [IL-22], granulocyte-macrophage colony-stimulating factor [GM-CSF], and tumor necrosis factor alpha [TNF-α]) and surface marker expression (CD27, CXCR3, and CD154) were then measured. We found that the proportion of PPD-specific CD4 T cells, defined as CD154+ TNF-α+ cells that were negative for CD27 and positive for GM-CSF, gave the strongest discrimination between subjects with latent and those with active TB (area under the receiver operator characteristic [ROC] curve of 0.9277; P < 0.0001). Also, the proportions and absolute numbers of HBHA-specific CD4 T cells were significantly higher in those with latent TB infection, particularly CD154+ TNF-α+ IFN-γ+ IL-2+ and CD154+ TNF-α+ CXCR3+. Finally, we found that the ratio of ESAT-6- and CFP-10-responding to HBHA-responding CD4 T cells was significantly different between the two study populations. In conclusion, we found novel markers of M. tuberculosis-specific CD4 cells which differentiate between active and latent TB. PMID:25520147

  7. Competitive protein binding assay for piritrexim

    SciTech Connect

    Woolley, J.L. Jr.; Ringstad, J.L.; Sigel, C.W. )

    1989-09-01

    A competitive protein binding assay for piritrexim (PTX, 1) that makes use of a commercially available radioassay kit for methotrexate has been developed. After it is selectively extracted from plasma, PTX competes with ({sup 125}I)methotrexate for binding to dihydrofolate reductase isolated from Lactobacillus casei. Free drug is separated from bound drug by adsorption to dextran-coated charcoal. Piritrexim is measurable over a range of 0.01 to 10.0 micrograms/mL in plasma with a coefficient of variation less than 15%. The limit of sensitivity of the assay is approximately 2 ng/mL. An excellent correlation between this assay and a previously published HPLC method was found.

  8. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    PubMed

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered.

  9. Fluctuations in Mass-Action Equilibrium of Protein Binding Networks

    NASA Astrophysics Data System (ADS)

    Yan, Koon-Kiu; Walker, Dylan; Maslov, Sergei

    2008-12-01

    We consider two types of fluctuations in the mass-action equilibrium in protein binding networks. The first type is driven by slow changes in total concentrations of interacting proteins. The second type (spontaneous) is caused by quickly decaying thermodynamic deviations away from equilibrium. We investigate the effects of network connectivity on fluctuations by comparing them to scenarios in which the interacting pair is isolated from the network and analytically derives bounds on fluctuations. Collective effects are shown to sometimes lead to large amplification of spontaneous fluctuations. The strength of both types of fluctuations is positively correlated with the complex connectivity and negatively correlated with complex concentration. Our general findings are illustrated using a curated network of protein interactions and multiprotein complexes in baker’s yeast, with empirical protein concentrations.

  10. Gene encoding herbicide safener binding protein

    DOEpatents

    Walton, Jonathan D.; Scott-Craig, John S.

    1999-01-01

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is set forth in FIG. 5 and SEQ ID No. 1. The deduced amino acid sequence is provided in FIG. 5 and SEQ ID No. 2. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors and seeds from said plants.

  11. Computational Design of DNA-Binding Proteins.

    PubMed

    Thyme, Summer; Song, Yifan

    2016-01-01

    Predicting the outcome of engineered and naturally occurring sequence perturbations to protein-DNA interfaces requires accurate computational modeling technologies. It has been well established that computational design to accommodate small numbers of DNA target site substitutions is possible. This chapter details the basic method of design used in the Rosetta macromolecular modeling program that has been successfully used to modulate the specificity of DNA-binding proteins. More recently, combining computational design and directed evolution has become a common approach for increasing the success rate of protein engineering projects. The power of such high-throughput screening depends on computational methods producing multiple potential solutions. Therefore, this chapter describes several protocols for increasing the diversity of designed output. Lastly, we describe an approach for building comparative models of protein-DNA complexes in order to utilize information from homologous sequences. These models can be used to explore how nature modulates specificity of protein-DNA interfaces and potentially can even be used as starting templates for further engineering.

  12. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  13. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  14. Quantitative evaluation of E. coli F4 and Salmonella Typhimurium binding capacity of yeast derivatives.

    PubMed

    Ganner, Anja; Stoiber, Christian; Uhlik, Jakob Tizian; Dohnal, Ilse; Schatzmayr, Gerd

    2013-10-22

    The target of the present study was to quantify the capacity of different commercially available yeast derivatives to bind E. coli F4 and Salmonella Typhimurium. In addition, a correlation analysis was performed for the obtained binding numbers and the mannan-, glucan- and protein contents of the products, respectively. In a subsequent experiment, different yeast strains were fermented and treated by autolysis or French press to obtain a concentrated yeast cell wall. The capacity of yeast cell wall products to bind E. coli F4 and Salmonella Typhimurium was assessed with a quantitative microbiological microplate-based assay by measuring the optical density (OD) as the growth parameter of adhering bacteria. Total mannan and glucan were determined by HPLC using an isocratic method and a Refractive Index (RI) Detector. Total protein was determined by Total Kjeldahl Nitrogen (TKN). Statistical analyses were performed with IBM SPSS V19 using Spearman correlation and Mann Whitney U Test.Different yeast derivatives show different binding numbers, which indicate differences in product quality.Interestingly, the binding numbers for Salmonella Typhimurium are consistently higher (between one and two orders of magnitude) than for E. coli F4.We could demonstrate some statistical significant correlations between the mannan- and glucan content of different yeast derivatives and pathogen binding numbers; however, for the different yeast strains fermented under standardized laboratory conditions, no statistically significant correlations between the mannan- and glucan content and the binding numbers for E. coli and Salmonella Typhimurium were found.Interestingly, we could demonstrate that the yeast autolysis had a statistically significant difference on E. coli binding in contrast to the French press treatment. Salmonella binding was independent of these two treatments.As such, we could not give a clear statement about the binding factors involved. We propose that many more factors

  15. Neurodegeneration and RNA-binding proteins.

    PubMed

    De Conti, Laura; Baralle, Marco; Buratti, Emanuele

    2017-03-01

    In the eukaryotic nucleus, RNA-binding proteins (RBPs) play a very important role in the life cycle of both coding and noncoding RNAs. As soon as they are transcribed, in fact, all RNA molecules within a cell are bound by distinct sets of RBPs that have the task of regulating its correct processing, transport, stability, and function/translation up to its final degradation. These tasks are particularly important in cells that have a complex RNA metabolism, such as neurons. Not surprisingly, therefore, recent findings have shown that the misregulation of genes involved in RNA metabolism or the autophagy/proteasome pathway plays an important role in the onset and progression of several neurodegenerative diseases. In this article, we aim to review the recent advances that link neurodegenerative processes and RBP proteins. WIREs RNA 2017, 8:e1394. doi: 10.1002/wrna.1394 For further resources related to this article, please visit the WIREs website.

  16. Structural and binding studies of SAP-1 protein with heparin.

    PubMed

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity.

  17. Competitive Binding of Natural Amphiphiles with Graphene Derivatives

    PubMed Central

    Radic, Slaven; Geitner, Nicholas K.; Podila, Ramakrishna; Käkinen, Aleksandr; Chen, Pengyu; Ke, Pu Chun; Ding, Feng

    2013-01-01

    Understanding the transformation of graphene derivatives by natural amphiphiles is essential for elucidating the biological and environmental implications of this emerging class of engineered nanomaterials. Using rapid discrete-molecular-dynamics simulations, we examined the binding of graphene and graphene oxide with peptides, fatty acids, and cellulose, and complemented our simulations by experimental studies of Raman spectroscopy, FTIR, and UV-Vis spectrophotometry. Specifically, we established a connection between the differential binding and the conformational flexibility, molecular geometry, and hydrocarbon content of the amphiphiles. Importantly, our dynamics simulations revealed a Vroman-like competitive binding of the amphiphiles for the graphene oxide substrate. This study provides a mechanistic basis for addressing the transformation, evolution, transport, biocompatibility, and toxicity of graphene derivatives in living systems and the natural environment. PMID:23881402

  18. Effects of estrogen treatment on expression of brain-derived neurotrophic factor and cAMP response element-binding protein expression and phosphorylation in rat amygdaloid and hippocampal structures.

    PubMed

    Zhou, Jin; Zhang, Huaibo; Cohen, Rochelle S; Pandey, Subhash C

    2005-01-01

    Clinical studies indicate an effect of estrogen (E2) on affect and cognition, which may be mediated by the cAMP response element-binding protein (CREB) pathway and CREB-related gene target brain-derived neurotrophic factor (BDNF). We investigated the effect of E2 on CREB expression and phosphorylation and BDNF expression in the amygdala and hippocampus, areas involved in emotional processing. Ovariectomized rats were given 10 microg 17beta-estradiol or vehicle for 14 days and expression of components of the CREB signaling pathway, i.e., CREB, phosphorylated CREB (pCREB), and BDNF in amygdala and hippocampus were investigated using immunogold labeling. Levels of BDNF mRNA were determined by in situ reverse-transcriptase polymerase chain reaction. We also examined the effect of E2 on calcium/calmodulin kinase (CaMK IV) immunolabeling in the hippocampus. E2 increased immunolabeling and mRNA levels of BDNF in the medial and basomedial amygdala and CA1 and CA3 regions of the hippocampus, but not in any other amygdaloid or hippocampal regions examined. E2 increased immunolabeling of CREB and pCREB in the medial and basomedial, but not central or basolateral amygdala. E2 also increased CaMK IV and pCREB immunolabeling in the CA1 and CA3 regions, but not CA2 region or dentate gyrus, of the hippocampus. There was no change in immunolabeling of CREB in any hippocampal region. These data identify a signaling pathway through which E2 increases BDNF expression that may underlie some actions of E2 on affective behavior and indicate neuroanatomical heterogeneity in the E2 effect within the amygdala and hippocampus.

  19. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein.

    PubMed

    Salanti, Ali; Clausen, Thomas M; Agerbæk, Mette Ø; Al Nakouzi, Nader; Dahlbäck, Madeleine; Oo, Htoo Z; Lee, Sherry; Gustavsson, Tobias; Rich, Jamie R; Hedberg, Bradley J; Mao, Yang; Barington, Line; Pereira, Marina A; LoBello, Janine; Endo, Makoto; Fazli, Ladan; Soden, Jo; Wang, Chris K; Sander, Adam F; Dagil, Robert; Thrane, Susan; Holst, Peter J; Meng, Le; Favero, Francesco; Weiss, Glen J; Nielsen, Morten A; Freeth, Jim; Nielsen, Torsten O; Zaia, Joseph; Tran, Nhan L; Trent, Jeff; Babcook, John S; Theander, Thor G; Sorensen, Poul H; Daugaard, Mads

    2015-10-12

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.

  20. Analyses of the Binding between Water Soluble C60 Derivatives and Potential Drug Targets through a Molecular Docking Approach

    PubMed Central

    Liu, Junjun; Zhang, Houjin

    2016-01-01

    Fullerene C60, a unique sphere-shaped molecule consisting of carbon, has been proved to have inhibitory effects on many diseases. However, the applications of C60 in medicine have been severely hindered by its complete insolubility in water and low solubility in almost all organic solvents. In this study, the water-soluble C60 derivatives and the C60 binding protein’s structures were collected from the literature. The selected proteins fall into several groups, including acetylcholinesterase, glutamate racemase, inosine monophosphate dehydrogenase, lumazine synthase, human estrogen receptor alpha, dihydrofolate reductase and N-myristoyltransferase. The C60 derivatives were docked into the binding sites in the proteins. The binding affinities of the C60 derivatives were calculated. The bindings between proteins and their known inhibitors or native ligands were also characterized in the same way. The results show that C60 derivatives form good interactions with the binding sites of different protein targets. In many cases, the binding affinities of C60 derivatives are better than those of known inhibitors and native ligands. This study demonstrates the interaction patterns of C60 derivatives and their binding partners, which will have good impact on the fullerene-based drug discovery. PMID:26829126

  1. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  2. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  3. Analysis of zinc binding sites in protein crystal structures.

    PubMed Central

    Alberts, I. L.; Nadassy, K.; Wodak, S. J.

    1998-01-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations. PMID:10082367

  4. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  5. Factor H-binding protein, a unique meningococcal vaccine antigen.

    PubMed

    Pizza, Mariagrazia; Donnelly, John; Rappuoli, Rino

    2008-12-30

    GNA1870, also named factor H-binding protein (fHbp) or rLP-2086, is a genome-derived antigen and one of the components of a rationally designed vaccine against Neisseria meningitidis serogroup B, which has entered phase III clinical trials. It has been classified into three main non-cross-protective variant groups. GNA1870 has also been termed fHbp because of its ability to bind factor H, a key regulatory component of the alternative complement pathway. fHbp is important for survival in human blood, human sera, and in presence of antimicrobial peptides, independently of its expression level. All these properties make fHbp a unique vaccine antigen.

  6. Neuronal calcium-binding proteins and schizophrenia.

    PubMed

    Eyles, D W; McGrath, J J; Reynolds, G P

    2002-09-01

    Calcium-binding proteins (CBPs) such as calbindin, parvalbumin and calretinin are used as immunohistochemical markers for discrete neuronal subpopulations. They are particularly useful in identifying the various subpopulations of GABAergic interneurons that control output from prefrontal and cingulate cortices as well as from the hippocampus. The strategic role these interneurons play in regulating output from these three crucial brain regions has made them a focus for neuropathological investigation in schizophrenia. The number of pathological reports detailing subtle changes in these CBP-containing interneurons in patients with schizophrenia is rapidly growing. These proteins however are more than convenient neuronal markers. They confer survival advantages to neurons and can increase the neuron's ability to sustain firing. These properties may be important in the subtle pathophysiology of nondegenerative phenomena such as schizophrenia. The aim of this review is to introduce the reader to the functional properties of CBPs and to examine the emerging literature reporting alterations in these proteins in schizophrenia as well as draw some conclusions about the significance of these findings.

  7. Glycan Masking of Plasmodium vivax Duffy Binding Protein for Probing Protein Binding Function and Vaccine Development

    PubMed Central

    Janes, Joel; Gurumoorthy, Sairam; Gibson, Claire; Melcher, Martin; Chitnis, Chetan E.; Wang, Ruobing; Schief, William R.; Smith, Joseph D.

    2013-01-01

    Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP) and the Duffy Antigen Receptor for Chemokines (DARC) and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s) lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development. PMID:23853575

  8. Prediction of zinc finger DNA binding protein.

    PubMed

    Nakata, K

    1995-04-01

    Using the neural network algorithm with back-propagation training procedure, we analysed the zinc finger DNA binding protein sequences. We incorporated the characteristic patterns around the zinc finger motifs TFIIIA type (Cys-X2-5-Cys-X12-13-His-X2-5-His) and the steroid hormone receptor type (Cys-X2-5-Cys-X12-15-Cys-X2-5-Cys-X15-16-Cys-X4-5-Cys-X8-10- Cys-X2-3-Cys) in the neural network algorithm. The patterns used in the neural network were the amino acid pattern, the electric charge and polarity pattern, the side-chain chemical property and subproperty patterns, the hydrophobicity and hydrophilicity patterns and the secondary structure propensity pattern. Two consecutive patterns were also considered. Each pattern was incorporated in the single layer perceptron algorithm and the combinations of patterns were considered in the two-layer perceptron algorithm. As for the TFIIIA type zinc finger DNA binding motifs, the prediction results of the two-layer perceptron algorithm reached up to 96.9% discrimination, and the prediction results of the discriminant analysis using the combination of several characters reached up to 97.0%. As for the steroid hormone receptor type zinc finger, the prediction results of neural network algorithm and the discriminant analyses reached up to 96.0%.

  9. Characterizing the morphology of protein binding patches.

    PubMed

    Malod-Dognin, Noël; Bansal, Achin; Cazals, Frédéric

    2012-12-01

    Let the patch of a partner in a protein complex be the collection of atoms accounting for the interaction. To improve our understanding of the structure-function relationship, we present a patch model decoupling the topological and geometric properties. While the geometry is classically encoded by the atomic positions, the topology is recorded in a graph encoding the relative position of concentric shells partitioning the interface atoms. The topological-geometric duality provides the basis of a generic dynamic programming-based algorithm comparing patches at the shell level, which may favor topological or geometric features. On the biological side, we address four questions, using 249 cocrystallized heterodimers organized in biological families. First, we dissect the morphology of binding patches and show that Nature enjoyed the topological and geometric degrees of freedom independently while retaining a finite set of qualitatively distinct topological signatures. Second, we argue that our shell-based comparison is effective to perform atomic-level comparisons and show that topological similarity is a less stringent than geometric similarity. We also use the topological versus geometric duality to exhibit topo-rigid patches, whose topology (but not geometry) remains stable upon docking. Third, we use our comparison algorithms to infer specificity-related information amidst a database of complexes. Finally, we exhibit a descriptor outperforming its contenders to predict the binding affinities of the affinity benchmark. The softwares developed with this article are availablefrom http://team.inria.fr/abs/vorpatch_compatch/.

  10. Penicillin-binding proteins in Actinobacteria.

    PubMed

    Ogawara, Hiroshi

    2015-04-01

    Because some Actinobacteria, especially Streptomyces species, are β-lactam-producing bacteria, they have to have some self-resistant mechanism. The β-lactam biosynthetic gene clusters include genes for β-lactamases and penicillin-binding proteins (PBPs), suggesting that these are involved in self-resistance. However, direct evidence for the involvement of β-lactamases does not exist at the present time. Instead, phylogenetic analysis revealed that PBPs in Streptomyces are distinct in that Streptomyces species have much more PBPs than other Actinobacteria, and that two to three pairs of similar PBPs are present in most Streptomyces species examined. Some of these PBPs bind benzylpenicillin with very low affinity and are highly similar in their amino-acid sequences. Furthermore, other low-affinity PBPs such as SCLAV_4179 in Streptomyces clavuligerus, a β-lactam-producing Actinobacterium, may strengthen further the self-resistance against β-lactams. This review discusses the role of PBPs in resistance to benzylpenicillin in Streptomyces belonging to Actinobacteria.

  11. Latent TGF-β-binding proteins

    PubMed Central

    Robertson, Ian B.; Horiguchi, Masahito; Zilberberg, Lior; Dabovic, Branka; Hadjiolova, Krassimira; Rifkin, Daniel B.

    2016-01-01

    The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, -2, -3, and -4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here. The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly. PMID:25960419

  12. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone

    PubMed Central

    Góral, Agnieszka; Bieganowski, Paweł; Prus, Wiktor; Krzemień-Ojak, Łucja; Kądziołka, Beata; Fabczak, Hanna; Filipek, Anna

    2016-01-01

    The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery. PMID:27249023

  13. RsiteDB: a database of protein binding pockets that interact with RNA nucleotide bases.

    PubMed

    Shulman-Peleg, Alexandra; Nussinov, Ruth; Wolfson, Haim J

    2009-01-01

    We present a new database and an on-line search engine, which store and query the protein binding pockets that interact with single-stranded RNA nucleotide bases. The database consists of a classification of binding sites derived from protein-RNA complexes. Each binding site is assigned to a cluster of similar binding sites in other protein-RNA complexes. Cluster members share similar spatial arrangements of physico-chemical properties, thus can reveal novel similarity between proteins and RNAs with different sequences and folds. The clusters provide 3D consensus binding patterns important for protein-nucleotide recognition. The database search engine allows two types of useful queries: first, given a PDB code of a protein-RNA complex, RsiteDB can detail and classify the properties of the protein binding pockets accommodating extruded RNA nucleotides not involved in local RNA base pairing. Second, given an unbound protein structure, RsiteDB can perform an on-line structural search against the constructed database of 3D consensus binding patterns. Regions similar to known patterns are predicted to serve as binding sites. Alignment of the query to these patterns with their corresponding RNA nucleotides allows making unique predictions of the protein-RNA interactions at the atomic level of detail. This database is accessible at http://bioinfo3d.cs.tau.ac.il/RsiteDB.

  14. Liver Fatty Acid Binding Protein and Obesity

    PubMed Central

    Atshaves, B.P.; Martin, G.G.; Hostetler, H.A.; McIntosh, A.L.; Kier, A.B.; Schroeder, F.

    2010-01-01

    While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes, and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity, and metabolic syndrome. Consequently, mammals evolved fatty acid binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15 member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP, or FABP1), is expressed in very high levels (2-5% of cytosolic protein) in liver as well as intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair-fed a high fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity. PMID:20537520

  15. Protein function annotation by local binding site surface similarity.

    PubMed

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  16. Flies expand the repertoire of protein structures that bind ice.

    PubMed

    Basu, Koli; Graham, Laurie A; Campbell, Robert L; Davies, Peter L

    2015-01-20

    An antifreeze protein (AFP) with no known homologs has been identified in Lake Ontario midges (Chironomidae). The midge AFP is expressed as a family of isoforms at low levels in adults, which emerge from fresh water in spring before the threat of freezing temperatures has passed. The 9.1-kDa major isoform derived from a preproprotein precursor is glycosylated and has a 10-residue tandem repeating sequence xxCxGxYCxG, with regularly spaced cysteines, glycines, and tyrosines comprising one-half its 79 residues. Modeling and molecular dynamics predict a tightly wound left-handed solenoid fold in which the cysteines form a disulfide core to brace each of the eight 10-residue coils. The solenoid is reinforced by intrachain hydrogen bonds, side-chain salt bridges, and a row of seven stacked tyrosines on the hydrophobic side that forms the putative ice-binding site. A disulfide core is also a feature of the similar-sized beetle AFP that is a β-helix with seven 12-residue coils and a comparable circular dichroism spectrum. The midge and beetle AFPs are not homologous and their ice-binding sites are radically different, with the latter comprising two parallel arrays of outward-pointing threonines. However, their structural similarities is an amazing example of convergent evolution in different orders of insects to cope with change to a colder climate and provide confirmation about the physical features needed for a protein to bind ice.

  17. Flies expand the repertoire of protein structures that bind ice

    PubMed Central

    Basu, Koli; Graham, Laurie A.; Campbell, Robert L.; Davies, Peter L.

    2015-01-01

    An antifreeze protein (AFP) with no known homologs has been identified in Lake Ontario midges (Chironomidae). The midge AFP is expressed as a family of isoforms at low levels in adults, which emerge from fresh water in spring before the threat of freezing temperatures has passed. The 9.1-kDa major isoform derived from a preproprotein precursor is glycosylated and has a 10-residue tandem repeating sequence xxCxGxYCxG, with regularly spaced cysteines, glycines, and tyrosines comprising one-half its 79 residues. Modeling and molecular dynamics predict a tightly wound left-handed solenoid fold in which the cysteines form a disulfide core to brace each of the eight 10-residue coils. The solenoid is reinforced by intrachain hydrogen bonds, side-chain salt bridges, and a row of seven stacked tyrosines on the hydrophobic side that forms the putative ice-binding site. A disulfide core is also a feature of the similar-sized beetle AFP that is a β-helix with seven 12-residue coils and a comparable circular dichroism spectrum. The midge and beetle AFPs are not homologous and their ice-binding sites are radically different, with the latter comprising two parallel arrays of outward-pointing threonines. However, their structural similarities is an amazing example of convergent evolution in different orders of insects to cope with change to a colder climate and provide confirmation about the physical features needed for a protein to bind ice. PMID:25561557

  18. A supramolecular bioactive surface for specific binding of protein.

    PubMed

    Hu, Changming; Qu, Yangcui; Zhan, Wenjun; Wei, Ting; Cao, Limin; Yu, Qian; Chen, Hong

    2017-04-01

    Bioactive surfaces with immobilized bioactive molecules aimed specifically at promoting or supporting particular interactions are of great interest for application of biosensors and biological detection. In this work, we fabricated a supramolecular bioactive surface with specific protein binding capability using two noncovalent interactions as the driving forces. The substrates were first layer-by-layer (LbL) deposited with a multilayered polyelectrolyte film containing "guest" adamantane groups via electrostatic interactions, followed by incorporation of "host" β-cyclodextrin derivatives bearing seven biotin units (CD-B) into the films via host-guest interactions. The results of fluorescence microscopy and quartz crystal microbalance measurement demonstrated that these surfaces exhibited high binding capacity and high selectivity for avidin due to the high density of biotin residues. Moreover, since host-guest interactions are inherently reversible, the avidin-CD-B complex is easily released by treatment with the sodium dodecyl sulfate, and the "regenerated" surfaces, after re-introducing fresh CD-B, can be used repeatedly for avidin binding. Given the generality and versatility of this approach, it may pave a way for development of re-usable biosensors for the detection and measurement of specific proteins.

  19. Detection of secondary binding sites in proteins using fragment screening

    PubMed Central

    Ludlow, R. Frederick; Verdonk, Marcel L.; Saini, Harpreet K.; Tickle, Ian J.; Jhoti, Harren

    2015-01-01

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets. PMID:26655740

  20. Placental Vitamin D-Binding Protein Expression in Human Idiopathic Fetal Growth Restriction

    PubMed Central

    Wookey, Alice F.; Chollangi, Tejasvy; Yong, Hannah E. J.

    2017-01-01

    Vitamin D-binding protein is a multifunctional serum protein with multiple actions related to normal health. Vitamin D-binding protein transports vitamin D and influences the metabolism of this key hormone but it also has additional immunomodulatory and actin-clearing properties. We investigated whether vitamin D-binding protein expression is altered in fetal growth restriction-associated placental dysfunction. Protein was extracted from 35 placentae derived from 17 healthy control subjects and 18 gestation-matched subjects with fetal growth restriction (FGR). FGR subjects were further subdivided as idiopathic (n = 9) and nonidiopathic (n = 9). Vitamin D-binding protein and 25(OH) vitamin D were measured by ELISA and normalized to protein concentration. The results showed significantly reduced levels of placental vitamin D-binding protein (control versus FGR, p < 0.05, Student's t-test) that were strongly associated with idiopathic fetal growth restriction (p < 0.01, Kruskal-Wallis), whereas levels of vitamin D-binding protein were not associated with placental 25(OH) vitamin D stores (p = 0.295, Pearson's correlation). As such, vitamin D-binding protein may be a factor in unexplained placental dysfunction associated with idiopathic fetal growth restriction and may potentially serve as a biomarker of this disease. PMID:28293436

  1. Identification of proteins binding coding and non-coding human RNAs using protein microarrays

    PubMed Central

    2012-01-01

    Background The regulation and function of mammalian RNAs has been increasingly appreciated to operate via RNA-protein interactions. With the recent discovery of thousands of novel human RNA molecules by high-throughput RNA sequencing, efficient methods to uncover RNA-protein interactions are urgently required. Existing methods to study proteins associated with a given RNA are laborious and require substantial amounts of cell-derived starting material. To overcome these limitations, we have developed a rapid and large-scale approach to characterize binding of in vitro transcribed labeled RNA to ~9,400 human recombinant proteins spotted on protein microarrays. Results We have optimized methodology to probe human protein microarrays with full-length RNA molecules and have identified 137 RNA-protein interactions specific for 10 coding and non-coding RNAs. Those proteins showed strong enrichment for common human RNA binding domains such as RRM, RBD, as well as K homology and CCCH type zinc finger motifs. Previously unknown RNA-protein interactions were discovered using this technique, and these interactions were biochemically verified between TP53 mRNA and Staufen1 protein as well as between HRAS mRNA and CNBP protein. Functional characterization of the interaction between Staufen 1 protein and TP53 mRNA revealed a novel role for Staufen 1 in preserving TP53 RNA stability. Conclusions Our approach demonstrates a scalable methodology, allowing rapid and efficient identification of novel human RNA-protein interactions using RNA hybridization to human protein microarrays. Biochemical validation of newly identified interactions between TP53-Stau1 and HRAS-CNBP using reciprocal pull-down experiments, both in vitro and in vivo, demonstrates the utility of this approach to study uncharacterized RNA-protein interactions. PMID:23157412

  2. Lipopolysaccharide binding protein in preterm infants

    PubMed Central

    Behrendt, D; Dembinski, J; Heep, A; Bartmann, P

    2004-01-01

    Objective: To assess serum concentrations of lipopolysaccharide binding protein (LBP) in preterm infants with neonatal bacterial infection (NBI). Methods: Blood samples were analysed of 57 preterm (28+1 to 36+6, median 33+2 weeks gestation) and 17 term infants admitted to the neonatal intensive care unit within the first 72 hours of life with suspicion of NBI. Samples were obtained at first suspicion of sepsis and after 12 and 24 hours. Diagnosis of NBI was confirmed by raised concentrations of C reactive protein and/or interleukin 6. The influence of gestational age and labour was analysed. Results: Maximum LBP concentrations in infants with NBI were greatly increased compared with infants without NBI (13.0–46.0 µg/ml (median 20.0 µg/ml) v 0.6–17.4 µg/ml (median 4.2 µg/ml)). LBP concentrations in infected infants were not yet significantly raised when NBI was first suspected. The LBP concentrations of preterm infants were comparable to those of term infants. Regression analysis revealed no significant effect of labour or gestational age on LBP. Conclusions: Raised LBP concentrations indicate NBI in preterm and term infants. Preterm infants of > 28 weeks gestation seem to be capable of producing LBP as efficiently as term infants. Neonatal LBP concentrations are not influenced by labour. LBP may be a useful diagnostic marker of NBI in preterm infants. PMID:15499153

  3. An ent-kaurene that inhibits mitotic chromosome movement and binds the kinetochore protein ran-binding protein 2.

    PubMed

    Rundle, Natalie T; Nelson, Jim; Flory, Mark R; Joseph, Jomon; Th'ng, John; Aebersold, Ruedi; Dasso, Mary; Andersen, Raymond J; Roberge, Michel

    2006-08-22

    Using a chemical genetics screen, we have identified ent-15-oxokaurenoic acid (EKA) as a chemical that causes prolonged mitotic arrest at a stage resembling prometaphase. EKA inhibits the association of the mitotic motor protein centromeric protein E with kinetochores and inhibits chromosome movement. Unlike most antimitotic agents, EKA does not inhibit the polymerization or depolymerization of tubulin. To identify EKA-interacting proteins, we used a cell-permeable biotinylated form that retains biological activity to isolate binding proteins from living cells. Mass spectrometric analysis identified six EKA-binding proteins, including Ran-binding protein 2, a kinetochore protein whose depletion by small interfering RNA causes a similar mitotic arrest phenotype.

  4. Glycosylation status of vitamin D binding protein in cancer patients

    PubMed Central

    Rehder, Douglas S; Nelson, Randall W; Borges, Chad R

    2009-01-01

    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages. PMID:19642159

  5. Glycosylation status of vitamin D binding protein in cancer patients.

    PubMed

    Rehder, Douglas S; Nelson, Randall W; Borges, Chad R

    2009-10-01

    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages.

  6. Modular protein switches derived from antibody mimetic proteins

    PubMed Central

    Nicholes, N.; Date, A.; Beaujean, P.; Hauk, P.; Kanwar, M.; Ostermeier, M.

    2016-01-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms. PMID:26637825

  7. Modular protein switches derived from antibody mimetic proteins.

    PubMed

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    PubMed

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  9. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl–like molecules binding

    PubMed Central

    2013-01-01

    Background Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. Method We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Results Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. Conclusions The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins. PMID:23768251

  10. Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction.

    PubMed

    Liu, Degang; Xu, David; Liu, Min; Knabe, William Eric; Yuan, Cai; Zhou, Donghui; Huang, Mingdong; Meroueh, Samy O

    2017-03-28

    Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.

  11. Pilot study on binding of bovine salivary proteins to grit silicates and plant phytoliths.

    PubMed

    Mau, Marcus; M Kaiser, Thomas; Südekum, Karl-Heinz

    2013-06-01

    Mostly fed with grass in fresh or conserved form, cattle and other livestock have to cope with silicate defence bodies from plants (phytoliths) and environmental silicates (grit), which abrade tooth enamel and could additionally interact with various salivary proteins. To detect potential candidates for silicate-binding proteins, bovine whole saliva was incubated with grass-derived phytoliths and silicates. Interactions of salivary proteins with pulverized bovine dental enamel and dentine were additionally analysed. After intense washing, the powder fractions were loaded onto 1D-polyacrylamide gels, most prominent adhesive protein bands were cut out and proteins were identified by mass spectrometry within three independent replicates. All materials were mainly bound by bovine odorant-binding protein, bovine salivary protein 30×10(3) and carbonic anhydrase VI. The phytolith/silicate fraction showed additional stronger interaction with haemoglobin β and lactoperoxidase. Conceivably, the binding of these proteins to the surfaces may contribute to biological processes occurring on them.

  12. Identification of a fibronectin-binding protein from Staphylococcus epidermidis.

    PubMed

    Williams, Rachel J; Henderson, Brian; Sharp, Lindsay J; Nair, Sean P

    2002-12-01

    Staphylococcus epidermidis has been reported to bind to a number of host cell extracellular matrix proteins, including fibronectin. Here we report the identification of a fibronectin-binding protein from S. epidermidis. A phage display library of S. epidermidis genomic DNA was constructed and panned against immobilized fibronectin. A number of phagemid clones containing overlapping inserts were identified, and one of these clones, pSE109FN, contained a 1.4-kb insert. Phage pSE109FN was found to bind to fibronectin but not to collagen, fibrinogen, laminin, or vitronectin. However, pSE109FN also bound to heparin, hyaluronate, and plasminogen, although to a lesser extent than it bound to fibronectin. Analysis of The Institute for Genomic Research S. epidermidis genome sequence database revealed a 1.85-kb region within a putative 30.5-kb open reading frame, to which the overlapping DNA inserts contained within the fibronectin-binding phagemids mapped. We have designated the gene encoding the fibronectin-binding domain embp. A recombinant protein, Embp32, which encompassed the fibronectin-binding domain of Embp, blocked the binding of S. epidermidis, but not the binding of Staphylococcus aureus, to fibronectin. In contrast, a recombinant protein, FnBPB[D1-D4], spanning the fibronectin-binding domain of the S. aureus fibronectin-binding protein FnBPB, blocked binding of S. aureus to fibronectin but had a negligible effect on the binding of S. epidermidis.

  13. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  14. Fatty acid-binding site environments of serum vitamin D-binding protein and albumin are different

    PubMed Central

    Swamy, Narasimha; Ray, Rahul

    2008-01-01

    Vitamin D-binding protein (DBP) and albumin (ALB) are abundant serum proteins and both possess high-affinity binding for saturated and unsaturated fatty acids. However, certain differences exist. We surmised that in cases where serum albumin level is low, DBP presumably can act as a transporter of fatty acids. To explore this possibility we synthesized several alkylating derivatives of 14C-palmitic acid to probe the fatty acid binding pockets of DBP and ALB. We observed that N-ethyl-5-phenylisooxazolium-3′-sulfonate-ester (WRK ester) of 14C-palmitic acid specifically labeled DBP; but p-nitrophenyl- and N-hydroxysuccinimidyl-esters failed to do so. However, p-nitrophenyl ester of 14C-palmitic acid specifically labeled bovine ALB, indicating that the micro-environment of the fatty acid-binding domains of DBP and ALB may be different; and DBP may not replace ALB as a transporter of fatty acids. PMID:18374965

  15. Partial characterization of GTP-binding proteins in Neurospora

    SciTech Connect

    Hasunuma, K.; Miyamoto-Shinohara, Y.; Furukawa, K.

    1987-08-14

    Six fractions of GTP-binding proteins separated by gel filtration of a mycelial extract containing membrane components of Neurospora crassa were partially characterized. (/sup 35/S)GTP gamma S bound to GTP-binding protein was assayed by repeated treatments with a Norit solution and centrifugation. The binding of (/sup 35/S)GTP gamma S to GTP-binding proteins was competitively prevented in the presence of 0.1 to 1 mM GTP but not in the presence of ATP. These GTP-binding proteins fractionated by the gel column had Km values of 20, 7, 4, 4, 80 and 2 nM. All six fractions of these GTP-binding proteins showed the capacity to be ADP-ribosylated by pertussis toxin.

  16. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © 2014 Wiley Periodicals, Inc.

  17. A click chemistry approach to pleuromutilin conjugates with nucleosides or acyclic nucleoside derivatives and their binding to the bacterial ribosome.

    PubMed

    Lolk, Line; Pøhlsgaard, Jacob; Jepsen, Anne Sofie; Hansen, Lykke H; Nielsen, Henrik; Steffansen, Signe I; Sparving, Laura; Nielsen, Annette B; Vester, Birte; Nielsen, Poul

    2008-08-28

    Pleuromutilin and its derivatives are antibacterial drugs that inhibit protein synthesis in bacteria by binding to ribosomes. To promote rational design of pleuromutilin based drugs, 19 pleuromutilin conjugates with different nucleoside fragments as side chain extensions were synthesized by a click chemistry protocol. Binding was assessed by chemical footprinting of nucleotide U2506 in 23S rRNA, and all conjugates bind to varying degree reflecting their binding affinity to the peptidyl transferase center. The side chain extensions also show various protections at position U2585. Docking studies of the conjugates with the highest affinities support the conclusion that despite the various conjugations, the pleuomutilin skeleton binds in the same binding pocket. The conjugated triazole moiety is well accommodated, and the nucleobases are placed in different pockets in the 50S ribosomal subunit. The derivative showing the highest affinity and a significantly better binding than pleuromutilin itself contains an adenine-9-ylpropylene triazole conjugate to pleuromutilin C-22.

  18. Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks

    SciTech Connect

    Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F.

    2008-08-19

    Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to the lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.

  19. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    PubMed Central

    2011-01-01

    Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions. PMID:21569443

  20. Difference in redox behaviors between copper-binding octarepeat and nonoctarepeat sites in prion protein.

    PubMed

    Yamamoto, Norifumi; Kuwata, Kazuo

    2009-11-01

    We studied the redox behavior of copper-binding sites in prion protein (PrP) to clarify copper's role in the pathological mechanism underlying prion diseases. We investigated the coordination structures, binding affinities, and redox potentials of copper-binding peptide fragments derived from the N-terminal domain of PrP by density functional theory calculations. We used four models for copper-binding moieties in PrP(60-96): two were derived from the PHGGGWGQ octapeptide repeat region of PrP(60-91), and the others were tripeptide Gly-Thr-His fragments derived from the copper-binding nonoctarepeat site around His96. We found that such PrP-derived copper-binding complexes exhibit conformationally dependent redox behavior; for example, the copper-binding complex derived from the octarepeat region tends to possess high reduction potential for the Cu(II)/Cu(I) couple, exceeding 0 V versus the standard hydrogen electrode, whereas the copper-binding nonoctarepeat model around His96 tends to possess high oxidation potential for the Cu(II)/Cu(III) couple and stabilize the higher-valent Cu(III) state. It is possible that such distinct redox activities of a copper-binding PrP are involved in the mechanism underlying prion diseases.

  1. Crimean-Congo hemorrhagic fever virus nucleocapsid protein has dual RNA binding modes.

    PubMed

    Jeeva, Subbiah; Pador, Sean; Voss, Brittany; Ganaie, Safder Saieed; Mir, Mohammad Ayoub

    2017-01-01

    Crimean Congo hemorrhagic fever, a zoonotic viral disease, has high mortality rate in humans. There is currently no vaccine for Crimean Congo hemorrhagic fever virus (CCHFV) and chemical interventions are limited. The three negative sense genomic RNA segments of CCHFV are specifically encapsidated by the nucleocapsid protein into three ribonucleocapsids, which serve as templates for the viral RNA dependent RNA polymerase. Here we demonstrate that CCHFV nucleocapsid protein has two distinct binding modes for double and single strand RNA. In the double strand RNA binding mode, the nucleocapsid protein preferentially binds to the vRNA panhandle formed by the base pairing of complementary nucleotides at the 5' and 3' termini of viral genome. The CCHFV nucleocapsid protein does not have RNA helix unwinding activity and hence does not melt the duplex vRNA panhandle after binding. In the single strand RNA binding mode, the nucleocapsid protein does not discriminate between viral and non-viral RNA molecules. Binding of both vRNA panhandle and single strand RNA induce a conformational change in the nucleocapsid protein. Nucleocapsid protein remains in a unique conformational state due to simultaneously binding of structurally distinct vRNA panhandle and single strand RNA substrates. Although the role of dual RNA binding modes in the virus replication cycle is unknown, their involvement in the packaging of viral genome and regulation of CCHFV replication in conjunction with RdRp and host derived RNA regulators is highly likely.

  2. Biotin-binding proteins and biotin transport to oocytes.

    PubMed

    White, H B

    1985-01-01

    The eggs of chickens and other birds contain two proteins that bind biotin. Both are homotetrameric proteins of similar size. In contrast to the well-characterized egg white avidin, egg yolk biotin-binding protein has a very acidic isoelectric point, binds biotin with lower affinity, and is usually saturated with biotin. Like other egg yolk proteins, biotin-binding protein appears to be synthesized in the liver, transported by the blood stream to the ovary and deposited in the developing oocyte. Since the yolk of a chicken egg contains over 90% of the biotin in an egg and all of the biotin is bound to biotin-binding protein, the function of biotin-binding protein is undoubtedly to transport biotin to the egg for future use by the developing embryo. Avidin is produced by the oviduct and in the egg it is presumed to deter microbial growth around the oocyte by sequestering biotin. Among the eggs examined, those from turkeys have the lowest amount of biotin-binding protein and the highest amount of avidin. Furthermore, the majority of the biotin in turkey eggs can be bound to avidin in the egg white, suggesting a nutritional role for avidin in turkeys. An assay has been developed to conveniently measure apo- and holobiotin-binding proteins.

  3. Photoaffinity labeling of serum vitamin D binding protein by 3-deoxy-3-azido-25-hydroxyvitamin D3

    SciTech Connect

    Link, R.P.; Kutner, A.; Schnoes, H.K.; DeLuca, H.F.

    1987-06-30

    3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3.

  4. An in vitro selected binding protein (affibody) shows conformation-dependent recognition of the respiratory syncytial virus (RSV) G protein.

    PubMed

    Hansson, M; Ringdahl, J; Robert, A; Power, U; Goetsch, L; Nguyen, T N; Uhlén, M; Ståhl, S; Nygren, P A

    1999-03-01

    Using phage-display technology, a novel binding protein (Z-affibody) showing selective binding to the RSV (Long strain) G protein was selected from a combinatorial library of a small alpha-helical protein domain (Z), derived from staphylococcal protein A (SPA). Biopanning of the Z-library against a recombinant fusion protein comprising amino acids 130-230 of the G protein from RSV-subgroup A, resulted in the selection of a Z-affibody (Z(RSV1)) which showed G protein specific binding. Using biosensor technology, the affinity (K(D)) between Z(RSV1) and the recombinant protein was determined to be in the micromolar range (10(-6) M). Interestingly, the Z(RSV1) affibody was demonstrated to also recognize the partially (54%) homologous G protein of RSV subgroup B with similar affinity. Using different recombinant RSV G protein derived fragments, the binding was found to be dependent on the presence of the cysteinyl residues proposed to be involved in the formation of an intramolecular disulfide-constrained loop structure, indicating a conformation-dependent binding. Results from epitope mapping studies, employing a panel of monoclonal antibodies directed to different RSV G protein subfragments, suggest that the Z(RSV1) affibody binding site is located within the region of amino acids 164-186 of the G protein. This region contains a 13 amino acid residue sequence which is totally conserved between subgroups A and B of RSV and extends into the cystein loop region (amino acids 173-186). The potential use of the RSV G protein-specific Z(RSV1) affibody in diagnostic and therapeutic applications is discussed.

  5. Actin binding proteins, spermatid transport and spermiation*

    PubMed Central

    Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-Ho; Tang, Elizabeth I.; Han, Daishu; Lee, Will M.; Wong, Elissa W. P.; Cheng, C. Yan

    2014-01-01

    The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby entering the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come. PMID:24735648

  6. Plasma protein binding: from discovery to development.

    PubMed

    Bohnert, Tonika; Gan, Liang-Shang

    2013-09-01

    The importance of plasma protein binding (PPB) in modulating the effective drug concentration at pharmacological target sites has been the topic of significant discussion and debate amongst drug development groups over the past few decades. Free drug theory, which states that in absence of energy-dependent processes, after steady state equilibrium has been attained, free drug concentration in plasma is equal to free drug concentration at the pharmacologic target receptor(s) in tissues, has been used to explain pharmacokinetics/pharmacodynamics relationships in a large number of cases. Any sudden increase in free concentration of a drug could potentially cause toxicity and may need dose adjustment. Free drug concentration is also helpful to estimate the effective concentration of drugs that potentially can precipitate metabolism (or transporter)-related drug-drug interactions. Disease models are extensively validated in animals to progress a compound into development. Unbound drug concentration, and therefore PPB information across species is very informative in establishing safety margins and guiding selection of First in Human (FIH) dose and human efficacious dose. The scope of this review is to give an overview of reported role of PPB in several therapeutic areas, highlight cases where PPB changes are clinically relevant, and provide drug metabolism and pharmacokinetics recommendations in discovery and development settings.

  7. Informing the Human Plasma Protein Binding of ...

    EPA Pesticide Factsheets

    The free fraction of a xenobiotic in plasma (Fub) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data is scarce for environmentally relevant chemicals. The presented work explores the merit of utilizing available pharmaceutical data to predict Fub for environmentally relevant chemicals via machine learning techniques. Quantitative structure-activity relationship (QSAR) models were constructed with k nearest neighbors (kNN), support vector machines (SVM), and random forest (RF) machine learning algorithms from a training set of 1045 pharmaceuticals. The models were then evaluated with independent test sets of pharmaceuticals (200 compounds) and environmentally relevant ToxCast chemicals (406 total, in two groups of 238 and 168 compounds). The selection of a minimal feature set of 10-15 2D molecular descriptors allowed for both informative feature interpretation and practical applicability domain assessment via a bounded box of descriptor ranges and principal component analysis. The diverse pharmaceutical and environmental chemical sets exhibit similarities in terms of chemical space (99-82% overlap), as well as comparable bias and variance in constructed learning curves. All the models exhibit significant predictability with mean absolute errors (MAE) in the range of 0.10-0.18 Fub. The models performed best for highly bound chemicals (MAE 0.07-0.12), neutrals (MAE 0

  8. Determination of binding affinities of retinoids to retinoic acid-binding protein and serum albumin

    PubMed Central

    Sani, Brahma P.; Titus, Belinda C.; Banerjee, Chandra K.

    1978-01-01

    Binding affinities of retinoic acid and its synthetic analogues to intracellular retinoic acid-binding protein, which is a possible candidate for mediating their biological function, and to serum albumin, the plasma transport protein, were evaluated. A quantitative method involving elimination of interfering serum albumin by immunoprecipitation was developed to measure the binding efficiency of these retinoids, some of which are active in modifying epithelial differentiation and preventing tumorigenesis. Two cyclopentenyl analogues of retinoic acid and 13-cis-retinoic acid showed, like retinoic acid, a binding efficiency of 100% for the cellular binding protein. With the phenyl, dichlorophenyl and trimethylmethoxyphenyl analogues of retinoic acid, the binding efficiency increased as the substituents on the aromatic ring increased; thus the trimethylmethoxyphenyl analogue binds almost as efficiently as retinoic acid itself. However, the trimethylmethoxyphenyl analogue with a sulphur atom on the side chain has a much decreased binding affinity. The correlation noticed between the binding efficiency of these retinoids and their biological activity in differentiation and/or in the control of tumorigenesis particularly enhances the confidence in the present method of determining the relative binding efficiencies. None of the vitamins, hormones and cofactors tested, showed appreciable affinity for the retinoic acid-binding site. Studies on binding of retinoic acid and its analogues to serum albumin indicate that no correlation exists between binding affinity for albumin and their biological potency. PMID:666734

  9. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    PubMed

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins.

  10. Bioactive peptides derived from egg proteins: A review.

    PubMed

    Liu, Ya-Fei; Oey, Indrawati; Bremer, Phil; Carne, Alan; Silcock, Pat

    2017-06-13

    Egg proteins have various functional and biological activities which make them potential precursor proteins for bioactive peptide production. Simulated in vitro gastrointestinal digestion and enzymatic hydrolysis using non-gastrointestinal proteases have been used as tools to produce these peptides. Bioactive peptides derived from egg proteins are reported to display various biological activities, including angiotensin I-converting enzyme (ACE) inhibitory (antihypertensive), antioxidant, antimicrobial, anti-inflammatory, antidiabetic and iron-/calcium-binding activities. More importantly, simulated in vitro gastrointestinal digestion has indicated that consumption of egg proteins has physiological benefits due to the release of such multifunctional peptides. This review encompasses studies reported to date on the bioactive peptide production from egg proteins.

  11. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    SciTech Connect

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  12. Learning to Translate Sequence and Structure to Function: Identifying DNA Binding and Membrane Binding Proteins

    PubMed Central

    Langlois, Robert E; Carson, Matthew B; Bhardwaj, Nitin; Lu, Hui

    2009-01-01

    A protein's function depends in a large part on interactions with other molecules. With an increasing number of protein structures becoming available every year, a corresponding structural annotation approach identifying such interactions grows more expedient. At the same time, machine learning has gained popularity in bioinformatics because it provides robust annotation of genes and proteins without depending solely on sequence similarity. Here we developed a machine learning protocol to identify DNA-binding proteins and membrane-binding proteins. In general, there is no theory or even rule of thumb to pick the best machine learning algorithm. Thus, a systematic comparison of several classification algorithms known to perform well was investigated. Indeed, the boosted tree classifier was found to give the best performance, achieving 93% and 88% accuracy to discriminate non-homologous DNA-binding proteins and membrane-binding proteins respectively from non-binding proteins, significantly outperforming all previously published works. We also explored the importance of a protein's attributes in function prediction and the relationships between relevant attributes. A graphical model based on boosted trees was applied to study the important features in discriminating DNA-binding proteins. In summary, the current protocol identified physical features important in DNA- and membrane-binding, rather than annotating function through sequence similarity. PMID:17436108

  13. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  14. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  15. Odorant-Binding Protein: Localization to Nasal Glands and Secretions

    NASA Astrophysics Data System (ADS)

    Pevsner, Jonathan; Sklar, Pamela B.; Snyder, Solomon H.

    1986-07-01

    An odorant-binding protein (OBP) was isolated from bovine olfactory and respiratory mucosa. We have produced polyclonal antisera to this protein and report its immunohistochemical localization to mucus-secreting glands of the olfactory and respiratory mucosa. Although OBP was originally isolated as a pyrazine binding protein, both rat and bovine OBP also bind the odorants [3H]methyldihydrojasmonate and 3,7-dimethyl-octan-1-ol as well as 2-isobutyl-3-[3H]methoxypyrazine. We detect substantial odorant-binding activity attributable to OBP in secreted rat nasal mucus and tears but not in saliva, suggesting a role for OBP in transporting or concentrating odorants.

  16. Acyl-CoA binding proteins: multiplicity and function.

    PubMed

    Gossett, R E; Frolov, A A; Roths, J B; Behnke, W D; Kier, A B; Schroeder, F

    1996-09-01

    The physiological role of long-chain fatty acyl-CoA is thought to be primarily in intermediary metabolism of fatty acids. However, recent data show that nM to microM levels of these lipophilic molecules are potent regulators of cell functions in vitro. Although long-chain fatty acyl-CoA are present at several hundred microM concentration in the cell, very little long-chain fatty acyl-CoA actually exists as free or unbound molecules, but rather is bound with high affinity to membrane lipids and/or proteins. Recently, there is growing awareness that cytosol contains nonenzymatic proteins also capable of binding long-chain fatty acyl-CoA with high affinity. Although the identity of the cytosolic long-chain fatty acyl-CoA binding protein(s) has been the subject of some controversy, there is growing evidence that several diverse nonenzymatic cytosolic proteins will bind long-chain fatty acyl-CoA. Not only does acyl-CoA binding protein specifically bind medium and long-chain fatty acyl-CoA (LCFA-CoA), but ubiquitous proteins with multiple ligand specificities such as the fatty acid binding proteins and sterol carrier protein-2 also bind LCFA-CoA with high affinity. The potential of these acyl-CoA binding proteins to influence the level of free LCFA-CoA and thereby the amount of LCFA-CoA bound to regulatory sites in proteins and enzymes is only now being examined in detail. The purpose of this article is to explore the identity, nature, function, and pathobiology of these fascinating newly discovered long-chain fatty acyl-CoA binding proteins. The relative contributions of these three different protein families to LCFA-CoA utilization and/or regulation of cellular activities are the focus of new directions in this field.

  17. Xenopus interspersed RNA families, Ocr and XR, bind DNA-binding proteins.

    PubMed

    Guttridge, K L; Smith, L D

    1995-05-01

    Interspersed RNA makes up two-thirds of cytoplasmic polyadenylated RNA in Xenopus and sea urchin eggs. Although it has no known function, previous work has suggested that at least one family of interspersed RNA, XR, binds Xenopus oocyte proteins, and can influence the rate of translation. We have used two Xenopus repeat families, Ocr and XR, to explore their protein binding abilities. Ocr RNA binds the same pattern of highly abundant oocyte proteins that XR RNA binds, which are believed to be messenger ribonucleoprotein (mRNP) particle proteins. In addition, we show that Ocr RNA binds the Oct-60 protein, a member of the POU-domain family of transcription factors found in Xenopus oocytes. Using a 32 base pair sequence from the XR repeat in a DNA affinity column two proteins were isolated, 66 kDa and 92 kDa, that together form a complex with XR DNA. One of these proteins (92 kDa) also binds XR RNA. We suggest that the role of at least a subset of interspersed RNAs in development may be to bind, and sequester in the cytoplasm, DNA-binding proteins until the end of oogenesis.

  18. SCOWLP classification: Structural comparison and analysis of protein binding regions

    PubMed Central

    Teyra, Joan; Paszkowski-Rogacz, Maciej; Anders, Gerd; Pisabarro, M Teresa

    2008-01-01

    Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs) might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions. The hierarchical

  19. NikA binds heme: a new role for an Escherichia coli periplasmic nickel-binding protein.

    PubMed

    Shepherd, Mark; Heath, Mathew D; Poole, Robert K

    2007-05-01

    NikA is a periplasmic binding protein involved in nickel uptake in Escherichia coli. NikA was identified as a heme-binding protein in the periplasm of anaerobically grown cells overexpressing CydDC, an ABC transporter that exports reductant to the periplasm. CydDC-overexpressing cells accumulate a heme biosynthesis-derived pigment, P-574. For further biochemical and spectroscopic analysis, unliganded NikA was overexpressed and purified. NikA was found to comigrate with both hemin and protoporphyrin IX during gel filtration. Furthermore, tryptophan fluorescence quenching titrations demonstrated that both hemin and protoporphyrin IX bind to NikA with similar affinity. The binding affinity of NikA for these pigments (Kd approximately 0.5 microM) was unaltered in the presence and absence of saturating concentrations of nickel, suggesting that these tetrapyrroles bind to NikA in a manner independent of nickel. To test the hypothesis that NikA is required for periplasmic heme protein assembly, the effects of a nikA mutation (nikA::Tn5, Km(R) insertion) on accumulation of P-574 by CydDC-overexpressing cells was assessed. This mutation significantly lowered P-574 levels, implying that NikA may be involved in P-574 production. Thus, in the reducing environment of the periplasm, NikA may serve as a heme chaperone as well as a periplasmic nickel-binding protein. The docking of heme onto NikA was modeled using the published crystal structure; many of the predicted complexes exhibit a heme-binding cleft remote from the nickel-binding site, which is consistent with the independent binding of nickel and heme. This work has implications for the incorporation of heme into b- and c-type cytochromes.

  20. Immobilized sialyloligo-macroligand and its protein binding specificity.

    PubMed

    Narla, Satya Nandana; Sun, Xue-Long

    2012-05-14

    We report a chemoenzymatic synthesis of chain-end functionalized sialyllactose-containing glycopolymers with different linkages and their oriented immobilization for glycoarray and SPR-based glyco-biosensor applications. Specifically, O-cyanate chain-end functionalized sialyllactose-containing glycopolymers were synthesized by enzymatic α2,3- and α2,6-sialylation of a lactose-containing glycopolymer that was synthesized by cyanoxyl-mediated free radical polymerization. (1)H NMR showed almost quantitative α2,3- and α2,6-sialylation. The O-cyanate chain-end functionalized sialyllactose-containing glycopolymers were printed onto amine-functionalized glass slides via isourea bond formation for glycoarray formation. Specific protein binding activity of the arrays was confirmed with α2,3- and α2,6-sialyl specific binding lectins together with inhibition assays. Further, immobilizing O-cyanate chain-end functionalized sialyllactose-containing glycopolymers onto amine-modified SPR chip via isourea bond formation afforded SPR-based glyco-biosensor, which showed specific binding activity for lectins and influenza viral hemagglutinins (HA). These sialyloligo-macroligand derived glycoarray and SPR-based glyco-biosensor are closely to mimic 3D nature presentation of sialyloligosaccharides and will provide important high-throughput tools for virus diagnosis and potential antiviral drug candidates screening applications.

  1. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  2. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  3. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  4. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions.

    PubMed

    Manzi, Lucio; Barrow, Andrew S; Scott, Daniel; Layfield, Robert; Wright, Timothy G; Moses, John E; Oldham, Neil J

    2016-11-16

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  5. An albumin-derived peptide scaffold capable of binding and catalysis.

    PubMed

    Luisi, Immacolata; Pavan, Silvia; Fontanive, Giampaolo; Tossi, Alessandro; Benedetti, Fabio; Savoini, Adriano; Maurizio, Elisa; Sgarra, Riccardo; Sblattero, Daniele; Berti, Federico

    2013-01-01

    We have identified a 101-amino-acid polypeptide derived from the sequence of the IIA binding site of human albumin. The polypeptide contains residues that make contact with IIA ligands in the parent protein, and eight cysteine residues to form disulfide bridges, that stabilize the polypeptide structure. Seventy-four amino acids are located in six α-helical regions, while the remaining thirty-seven amino acids form six connecting coil/loop regions. A soluble GST fusion protein was expressed in E. coli in yields as high as 4 mg/l. This protein retains the IIA fragment's capacity to bind typical ligands such as warfarin and efavirenz and other albumin's functional properties such as aldolase activity and the ability to direct the stereochemical outcome of a diketone reduction. This newly cloned polypeptide thus represents a valuable starting point for the construction of libraries of binders and catalysts with improved proficiency.

  6. Clinical relevance of drug binding to plasma proteins

    NASA Astrophysics Data System (ADS)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  7. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein.

    PubMed Central

    Yang, B; Yang, B L; Savani, R C; Turley, E A

    1994-01-01

    We have previously identified two hyaluronan (HA) binding domains in the HA receptor, RHAMM, that occur near the carboxyl-terminus of this protein. We show here that these two HA binding domains are the only HA binding regions in RHAMM, and that they contribute approximately equally to the HA binding ability of this receptor. Mutation of domain II using recombinant polypeptides of RHAMM demonstrates that K423 and R431, spaced seven amino acids apart, are critical for HA binding activity. Domain I contains two sets of two basic amino acids, each spaced seven residues apart, and mutation of these basic amino acids reduced their binding to HA--Sepharose. These results predict that two basic amino acids flanking a seven amino acid stretch [hereafter called B(X7)B] are minimally required for HA binding activity. To assess whether this motif predicts HA binding in the intact RHAMM protein, we mutated all basic amino acids in domains I and II that form part of these motifs using site-directed mutagenesis and prepared fusion protein from the mutated cDNA. The altered RHAMM protein did not bind HA, confirming that the basic amino acids and their spacing are critical for binding. A specific requirement for arginine or lysine residues was identified since mutation of K430, R431 and K432 to histidine residues abolished binding. Clustering of basic amino acids either within or at either end of the motif enhanced HA binding activity while the occurrence of acidic residues between the basic amino acids reduced binding. The B(X7)B motif, in which B is either R or K and X7 contains no acidic residues and at least one basic amino acid, was found in all HA binding proteins molecularly characterized to date. Recombinant techniques were used to generate chimeric proteins containing either the B(X7)B motifs present in CD44 or link protein, with the amino-terminus of RHAMM (amino acids 1-238) that does not bind HA. All chimeric proteins containing the motif bound HA in transblot analyses

  8. Peptiderive server: derive peptide inhibitors from protein–protein interactions

    PubMed Central

    Sedan, Yuval; Marcu, Orly; Lyskov, Sergey; Schueler-Furman, Ora

    2016-01-01

    The Rosetta Peptiderive protocol identifies, in a given structure of a protein–protein interaction, the linear polypeptide segment suggested to contribute most to binding energy. Interactions that feature a ‘hot segment’, a linear peptide with significant binding energy compared to that of the complex, may be amenable for inhibition and the peptide sequence and structure derived from the interaction provide a starting point for rational drug design. Here we present a web server for Peptiderive, which is incorporated within the ROSIE web interface for Rosetta protocols. A new feature of the protocol also evaluates whether derived peptides are good candidates for cyclization. Fast computation times and clear visualization allow users to quickly assess the interaction of interest. The Peptiderive server is available for free use at http://rosie.rosettacommons.org/peptiderive. PMID:27141963

  9. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.

    PubMed

    Freed, Alexander S; Garde, Shekhar; Cramer, Steven M

    2011-11-17

    Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.

  10. Structural and Binding Properties of Two Paralogous Fatty Acid Binding Proteins of Taenia solium Metacestode

    PubMed Central

    Yang, Hyun-Jong; Shin, Joo-Ho; Diaz-Camacho, Sylvia Paz; Nawa, Yukifumi; Kang, Insug; Kong, Yoon

    2012-01-01

    Background Fatty acid (FA) binding proteins (FABPs) of helminths are implicated in acquisition and utilization of host-derived hydrophobic substances, as well as in signaling and cellular interactions. We previously demonstrated that secretory hydrophobic ligand binding proteins (HLBPs) of Taenia solium metacestode (TsM), a causative agent of neurocysticercosis (NC), shuttle FAs in the surrounding host tissues and inwardly transport the FAs across the parasite syncytial membrane. However, the protein molecules responsible for the intracellular trafficking and assimilation of FAs have remained elusive. Methodology/Principal Findings We isolated two novel TsMFABP genes (TsMFABP1 and TsMFABP2), which encoded 133- and 136-amino acid polypeptides with predicted molecular masses of 14.3 and 14.8 kDa, respectively. They shared 45% sequence identity with each other and 15–95% with other related-members. Homology modeling demonstrated a characteristic β-barrel composed of 10 anti-parallel β-strands and two α-helices. TsMFABP2 harbored two additional loops between β-strands two and three, and β-strands six and seven, respectively. TsMFABP1 was secreted into cyst fluid and surrounding environments, whereas TsMFABP2 was intracellularly confined. Partially purified native proteins migrated to 15 kDa with different isoelectric points of 9.2 (TsMFABP1) and 8.4 (TsMFABP2). Both native and recombinant proteins bound to 11-([5-dimethylaminonaphthalene-1-sulfonyl]amino)undecannoic acid, dansyl-DL-α-amino-caprylic acid, cis-parinaric acid and retinol, which were competitively inhibited by oleic acid. TsMFABP1 exhibited high affinity toward FA analogs. TsMFABPs showed weak binding activity to retinol, but TsMFABP2 showed relatively high affinity. Isolation of two distinct genes from an individual genome strongly suggested their paralogous nature. Abundant expression of TsMFABP1 and TsMFABP2 in the canal region of worm matched well with the histological distributions of lipids

  11. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and

  12. The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

    PubMed Central

    Wang, Yongqiang; Kuiper, Johannes W. P.; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  13. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-09

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  14. Identification of an imidazoline binding protein: Creatine kinase and an imidazoline-2 binding site

    PubMed Central

    Kimura, Atsuko; Tyacke, Robin J.; Robinson, James J.; Husbands, Stephen M.; Minchin, Michael C.W.; Nutt, David J.; Hudson, Alan L.

    2009-01-01

    Drugs that bind to imidazoline binding proteins have major physiological actions. To date, three subtypes of such proteins, I1, I2 and I3, have been proposed, although characterisations of these binding proteins are lacking. I2 binding sites are found throughout the brain, particularly dense in the arcuate nucleus of the hypothalamus. Selective I2 ligands demonstrate antidepressant-like activity and the identity of the proteins that respond to such ligands remained unknown until now. Here we report the isolation of a ∼ 45 kDa imidazoline binding protein from rabbit and rat brain using a high affinity ligand for the I2 subtype, 2-BFI, to generate an affinity column. Following protein sequencing of the isolated ∼ 45 kDa imidazoline binding protein, we identified it to be brain creatine kinase (B-CK). B-CK shows high binding capacity to selective I2 ligands; [3H]-2-BFI (5 nM) specifically bound to B-CK (2330 ± 815 fmol mg protein− 1). We predicted an I2 binding pocket near the active site of B-CK using molecular modelling. Furthermore, B-CK activity was inhibited by a selective I2 irreversible ligand, where 20 μM BU99006 reduced the enzyme activity by 16%, confirming the interaction between B-CK and the I2 ligand. In summary, we have identified B-CK to be the ∼ 45 kDa imidazoline binding protein and we have demonstrated the existence of an I2 binding site within this enzyme. The importance of B-CK in regulating neuronal activity and neurotransmitter release may well explain the various actions of I2 ligands in brain and the alterations in densities of I2 binding sites in psychiatric disorders. PMID:19410564

  15. Fibrinogen and Fibronectin Binding Activity and Immunogenic Nature of Choline Binding Protein M

    PubMed Central

    AFSHAR, Davoud; POURMAND, Mohammad Reza; JEDDI-TEHRANI, Mahmood; SABOOR YARAGHI, Ali Akbar; AZARSA, Mohammad; SHOKRI, Fazel

    2016-01-01

    Background: Choline-binding proteins (CBPs) are a group of surface-exposed proteins, which play crucial and physiological roles in Streptococcus pneumoniae. The novel member of CBPs, choline-binding protein M (CbpM) may have binding activity to plasma proteins. This study aimed to clone and express CbpM and demonstrate its interaction with plasma proteins and patients’ sera. Methods: The total length of cbpM gene was cloned in pET21a vector and expressed in BL21 expression host. Verification of recombinant protein was evaluated by Western blot using anti-His tag monoclonal antibody. Binding ability of the recombinant protein to plasma proteins and the interaction with patients’ sera were assessed by Western blot and ELISA methods. Results: The cbpM gene was successfully cloned into pET21a and expressed in BL21 host. Binding activity to fibronectin and fibrinogen and antibody reaction of CbpM to patients’ sera was demonstrated by Western blot and ELISA methods, respectively. Conclusion: CbpM is one of the pneumococcal surface-exposed proteins, which mediates pneumococcal binding to fibronectin and fibrinogen proteins. PMID:28053927

  16. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    PubMed

    2003-01-01

    planned to move to Avecia's larger facility with a capacity of 10 000 litres. Somatomedin-1 binding protein-3 was originally licenced to Welfide for Japan. On October 1 2001, Welfide Corporation merged with Mitsubishi-Tokyo Pharmaceuticals to form Mitsubishi Pharma Corporation. The new company is a subsidiary of Mitsubishi Chemical. In April 2003 Insmed initiated a named patient programme in Europe, that will make available somatomedin-1 binding protein-3 for the treatment of growth hormone insensitivity syndrome (GHIS)--Laron syndrome. The treatment of patients was initiated in Scandinavia, with authorisation pending in several other European countries. Somatomedin-1 binding protein-3 will be made available to those GHIS patients who, in the opinion of their doctor, may benefit from IGF-1 therapy. At precommercial scale quantities, the drug will be available on a limited basis. Safety data generated from the named patient programme will be used to support marketing applications in 2004. A phase II dose-ranging study in children with GHIS was completed at Saint Bartholomew's and the Royal London School of Medicine, London, UK. A single dose of somatomedin-1 binding protein-3 delivered the same amount of IGF-1 as two daily injections of unbound IGF-1. There were no adverse events reported. GHIS is a genetic condition in which patients do not produce adequate quantities of IGF because of a failure to respond to the growth hormone signal. This results in a slower growth rate and short stature. Insmed has acquired an exclusive licence to Pharmacia's regulatory filings concerning yeast-derived IGF-1. These filings were used by Pharmacia to receive marketing approvals in several European countries and also in the investigational New Drug Application with the US FDA. This licence will facilitate the development of SomatoKine for the treatment of children with GHIS. In January 2003, Insmed announced positive results from a double-blind, placebo-controlled, dose-ranging study of

  17. Binding of globular proteins to DNA from surface tension measurement.

    PubMed

    Mitra, A; Chattoraj, D K; Chakraborty, P

    2001-10-01

    Extent of binding (gammap) of globular proteins to calf-thymus DNA have been measured in mole per mole of nucleotide as function of equilibrium protein concentration. We have exploited measurement of the surface tension of the protein solution in the presence and absence of DNA to calculate the binding ration (gammap). Interaction of bovine serum albumin with DNA has been studied at different pH. Interaction of bovine serum albumin with DNA has been studied at different pH, ionic strength and in presence of Ca2+. Interaction of BSA with denatured DNA has also been investigated. Binding isotherms for other globular proteins like beta-lactoglobulin, alpha-lactalbumin and lysozyme have been compared under identical physicochemical condition. It has been noted with considerable interest that globular form of protein is important to some extent in protein-DNA interaction. An attempt has been made to explain the significance of difference in binding ratios of these two biopolymers in aqueous medium for different systems in the light of electrostatic and hydrophobic effects. Values of maximum binding ration (gammap(m)) at saturated level for different systems have been also presented. The Gibb's free energy decrease (-deltaG0) of the binding of proteins to DNA has been compared more precisely for the saturation of binding sites in the DNA with the change of activity of protein in solution from zero to unity in the rational mole fraction scale.

  18. Thermodynamic parameters of the binding of retinol to binding proteins and to membranes

    SciTech Connect

    Noy, N.; Xu, Z.J. )

    1990-04-24

    Retinol (vitamin A alcohol) is a hydrophobic compound and distributes in vivo mainly between binding proteins and cellular membranes. To better clarify the nature of the interactions of retinol with these phases which have a high affinity for it, the thermodynamic parameters of these interactions were studied. The temperature-dependence profiles of the binding of retinol to bovine retinol binding protein, bovine serum albumin, unilamellar vesicles of dioleoylphosphatidylcholine, and plasma membranes from rat liver were determined. It was found that binding of retinol to retinol binding protein is characterized by a large increase in entropy and no change in enthalpy. Binding to albumin is driven by enthalpy and is accompanied by a decrease in entropy. Partitioning of retinal into unilamellar vesicles and into plasma membranes is stabilized both by enthalpic and by entropic components. The implications of these finding are discussed.

  19. UV damage-specific DNA-binding protein in xeroderma pigmentosum complementation group E

    SciTech Connect

    Kataoka, H.; Fujiwara, Y. )

    1991-03-29

    The gel mobility shift assay method revealed a specifically ultraviolet (UV) damage recognizing, DNA-binding protein in nuclear extracts of normal human cells. The resulted DNA/protein complexes caused the two retarded mobility shifts. Four xeroderma pigmentosum complementation group E (XPE) fibroblast strains derived from unrelated Japanese families were not deficient in such a DNA damage recognition/binding protein because of the normal complex formation and gel mobility shifts, although we confirmed the reported lack of the protein in the European XPE (XP2RO and XP3RO) cells. Thus, the absence of this binding protein is not always commonly observed in all the XPE strains, and the partially repair-deficient and intermediately UV-hypersensitive phenotype of XPE cells are much similar whether or not they lack the protein.

  20. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  1. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  2. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  3. Binding of perfluorooctanoic acid to rat and human plasma proteins.

    PubMed

    Han, Xing; Snow, Timothy A; Kemper, Raymond A; Jepson, Gary W

    2003-06-01

    Perfluorooctanoic acid (PFOA) is a commercially important organic fluorochemical and is considered to have a long half-life in human blood. In this paper, PFOA binding to rat and human plasma proteins was investigated. On the basis of results from size-exclusion chromatography and ligand blotting, most PFOA was in protein-bound form in male and female rat plasma, and the primary PFOA binding protein in plasma was serum albumin. PFOA binding to rat serum albumin (RSA) in the gas phase was observed by electrospray ionization MS. (19)F NMR experiments revealed that binding to RSA caused peak broadening and chemical shift changes of PFOA resonances, and on the basis of this observation, the dissociation constant was determined to be approximately 0.3 mM. The dissociation constants for PFOA binding to RSA and human serum albumin (HSA) and the numbers of PFOA binding sites on RSA and HSA were also determined by a separation method using microdesalting columns. No significant difference was found between PFOA binding to RSA and PFOA binding to HSA. The dissociation constants for binding of PFOA to RSA or HSA and the numbers of PFOA binding sites were in the range of 0.3-0.4 mM and 6-9, respectively. On the basis of these binding parameters and the estimated plasma concentration of serum albumin, greater than 90% of PFOA would be bound to serum albumin in both rat and human blood.

  4. Four-body atomic potential for modeling protein-ligand binding affinity: application to enzyme-inhibitor binding energy prediction

    PubMed Central

    2013-01-01

    Background Models that are capable of reliably predicting binding affinities for protein-ligand complexes play an important role the field of structure-guided drug design. Methods Here, we begin by applying the computational geometry technique of Delaunay tessellation to each set of atomic coordinates for over 1400 diverse macromolecular structures, for the purpose of deriving a four-body statistical potential that serves as a topological scoring function. Next, we identify a second, independent set of three hundred protein-ligand complexes, having both high-resolution structures and known dissociation constants. Two-thirds of these complexes are randomly selected to train a predictive model of binding affinity as follows: two tessellations are generated in each case, one for the entire complex and another strictly for the isolated protein without its bound ligand, and a topological score is computed for each tessellation with the four-body potential. Predicted protein-ligand binding affinity is then based on an empirically derived linear function of the difference between both topological scores, one that appropriately scales the value of this difference. Results A comparison between experimental and calculated binding affinity values over the two hundred complexes reveals a Pearson's correlation coefficient of r = 0.79 with a standard error of SE = 1.98 kcal/mol. To validate the method, we similarly generated two tessellations for each of the remaining protein-ligand complexes, computed their topological scores and the difference between the two scores for each complex, and applied the previously derived linear transformation of this topological score difference to predict binding affinities. For these one hundred complexes, we again observe a correlation of r = 0.79 (SE = 1.93 kcal/mol) between known and calculated binding affinities. Applying our model to an independent test set of high-resolution structures for three hundred diverse enzyme-inhibitor complexes

  5. Human kidney amiloride-binding protein: cDNA structure and functional expression

    SciTech Connect

    Barbry, P.; Chassande, O.; Champigny, G.; Lingueglia, E.; Frelin, C.; Lazdunski, M. ); Champe, M.; Munemitsu, S.; Ullrich, A. ); Maes, P.; Tartar, A. Institut Pasteur de Lille )

    1990-10-01

    Phenamil, an analog of amiloride, is a potent blocker of the epithelial Na{sup plus} channel. It has been used to purify the porcine kidney amiloride-binding protein. Synthetic oligonucleotides derived from partial sequences have been used to screen a human kidney cDNA library and to isolate the cDNA encoding the human amiloride-binding protein. The primary structure was deduced from the DNA sequence analysis. The protein is 713 residues long, with a 19-amino acid signal peptide. The mRNA was expressed in 293-S and NIH 3T3 cells, yielding a glycoprotein (i) that binds amiloride and amiloride analogs with affinities similar to the amiloride receptor associated with the apical Na{sup plus} channel in pig kidney membranes and (ii) that is immunoprecipitated with monoclonal antibodies raised against pig kidney amiloride-binding protein.

  6. Lipopolysaccharide binding protein binds to triacylated and diacylated lipopeptides and mediates innate immune responses.

    PubMed

    Schröder, Nicolas W J; Heine, Holger; Alexander, Christian; Manukyan, Maria; Eckert, Jana; Hamann, Lutz; Göbel, Ulf B; Schumann, Ralf R

    2004-08-15

    LPS binding protein (LBP) is an acute-phase protein synthesized predominantly in the liver of the mammalian host. It was first described to bind LPS of Gram-negative bacteria and transfer it via a CD14-enhanced mechanism to a receptor complex including TLR-4 and MD-2, initiating a signal transduction cascade leading to the release of proinflammatory cytokines. In recent studies, we found that LBP also mediates cytokine induction caused by compounds derived from Gram-positive bacteria, including lipoteichoic acid and peptidoglycan fragments. Lipoproteins and lipopeptides have repeatedly been shown to act as potent cytokine inducers, interacting with TLR-2, in synergy with TLR-1 or -6. In this study, we show that these compounds also interact with LBP and CD14. We used triacylated lipopeptides, corresponding to lipoproteins of Borrelia burgdorferi, mycobacteria, and Escherichia coli, as well as diacylated lipopeptides, corresponding to, e.g., 2-kDa macrophage activating lipopeptide of Mycoplasma spp. Activation of Chinese hamster ovary cells transfected with TLR-2 by both lipopeptides was enhanced by cotransfection of CD14. Responsiveness of human mononuclear cells to these compounds was greatly enhanced in the presence of human LBP. Binding of lipopeptides to LBP as well as competitive inhibition of this interaction by LPS was demonstrated in a microplate assay. Furthermore, we were able to show that LBP transfers lipopeptides to CD14 on human monocytes using FACS analysis. These results support that LBP is a pattern recognition receptor transferring a variety of bacterial ligands including the two major types of lipopeptides to CD14 present in different receptor complexes.

  7. The RNA-binding protein Gemin5 binds directly to the ribosome and regulates global translation

    PubMed Central

    Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Ramajo, Jorge; Martinez-Salas, Encarnación

    2016-01-01

    RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation. PMID:27507887

  8. Stereoselective binding of chiral drugs to plasma proteins.

    PubMed

    Shen, Qi; Wang, Lu; Zhou, Hui; Jiang, Hui-di; Yu, Lu-shan; Zeng, Su

    2013-08-01

    Chiral drugs show distinct biochemical and pharmacological behaviors in the human body. The binding of chiral drugs to plasma proteins usually exhibits stereoselectivity, which has a far-reaching influence on their pharmacological activities and pharmacokinetic profiles. In this review, the stereoselective binding of chiral drugs to human serum albumin (HSA), α1-acid glycoprotein (AGP) and lipoprotein, three most important proteins in human plasma, are detailed. Furthermore, the application of AGP variants and recombinant fragments of HSA for studying enantiomer binding properties is also discussed. Apart from the stereoselectivity of enantiomer-protein binding, enantiomer-enantiomer interactions that may induce allosteric effects are also described. Additionally, the techniques and methods used to determine drug-protein binding parameters are briefly reviewed.

  9. Stereoselective binding of chiral drugs to plasma proteins

    PubMed Central

    Shen, Qi; Wang, Lu; Zhou, Hui; Jiang, Hui-di; Yu, Lu-shan; Zeng, Su

    2013-01-01

    Chiral drugs show distinct biochemical and pharmacological behaviors in the human body. The binding of chiral drugs to plasma proteins usually exhibits stereoselectivity, which has a far-reaching influence on their pharmacological activities and pharmacokinetic profiles. In this review, the stereoselective binding of chiral drugs to human serum albumin (HSA), α1-acid glycoprotein (AGP) and lipoprotein, three most important proteins in human plasma, are detailed. Furthermore, the application of AGP variants and recombinant fragments of HSA for studying enantiomer binding properties is also discussed. Apart from the stereoselectivity of enantiomer-protein binding, enantiomer-enantiomer interactions that may induce allosteric effects are also described. Additionally, the techniques and methods used to determine drug-protein binding parameters are briefly reviewed. PMID:23852086

  10. Purification of recombinant nacre-associated mineralization protein AP7 fused with maltose-binding protein.

    PubMed

    Huang, Yu-Chieh; Chang, Hsun-Hui; Mou, Yun; Chi, Peter; Chan, Jerry Chun Chung; Luo, Shih-Chi

    2014-08-01

    Formation of biominerals often involves specific proteins that modulate the process of matrix assembly, nucleation, and crystal growth. AP7 is an aragonite-associated protein of 7 kDa and is intrinsically disordered. The structural disorder of AP7 makes it very difficult to express in Escherchiacoli. In this work, we report the first successful expression and purification of recombinant AP7 using the maltose-binding protein (MBP) fusion approach. We obtain a high-yield production of recombinant MBP-AP7 protein inE. coli (∼60 mg/L). We also establish an efficient protocol to remove the MBP fusion protein by Factor Xa, followed by purification using size-exclusion chromatography. Characterization of the recombinant AP7 protein has been carried out using MALDI-TOF, peptide mass fingerprinting, and circular dichroism (CD). The mass data confirm that the purified recombinant protein is AP7. The CD data suggest that the recombinant AP7 protein exists as partially disordered structure at neutral pH. The calcium carbonate precipitation assay shows that both MBP-AP7 and AP7 exhibit morphological modification on calcite crystallites. The co-precipitation of MBP-tagged AP7 derivatives and calcium carbonate generate different types of AP7 composite calcite and vaterite crystals. This system should be helpful to establish a model for understanding the structure/function relationship between the protein and inorganic mineral interaction.

  11. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    PubMed

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca(2+) -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  12. 2-substituted derivatives of adenosine and inosine cyclic 3',5'-phosphate. Synthesis, enzymic activity, and analysis of the structural requirements of the binding locale of the 2-substituent on bovine brain protein kinase.

    PubMed

    Meyer, R B; Uno, H; Robins, R K; Simon, L N; Miller, J P

    1975-07-29

    A number of 2-substituted cyclic nucleotide derivatives were synthesized and investigated as activators of cAMP-dependent protein kinase and as substrates for and inhibitors of cAMP phosphodiesterase. Ring closure of 5-amino-1-beta-D-ribofuranosylimidazol-4-carboxamide cyclic 3',5'-phosphate (1) with various aldehydes according to a new procedure (Meyer, R. B., Jr., Shuman, D.A., and Robins, R. K. (1974), J. Am. Chem. Soc. 96, 4962) gave new derivatives of adenosine cyclic 3',5'-phosphate with the following 2-substituents: n-propyl, n-hexl, n-octyl, n-decyl, styryl, o-methoxyphenyl, and 2-thienyl. Alkylation of 2-mercaptoadenosine cyclic 3',5'-phosphate (20, Meyer et al., 1974) gave new cAMP derivatives with the following 2-substituent: ethylthio, n-propylthio, isopropylthio, allylthio, n-decylthio, and benzylthio. Deamination of 2-methyl-,2-n-butyl-, and 2-ethylthioadenosine cyclic 3',5'-phosphate. Using multiple regression analysis, a striking relationship was found between the relative potency of the compounds as activators of bovine brain cAMP-dependent protein kinase and parameters describing the hydrophobic, steric, and electronic character of the substituents on these compounds. All compounds were substrates for a cyclic nucleotide phosphodiesterase preparation from rabbit kidney. Additionally, the compounds were as a group, good inhibitors of the hydrolysis of cAMP by phosphodiesterase preparations from rabbit lung, beef heart, and dog heart.

  13. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  14. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  15. Comparative binding mechanism of lupeol compounds with plasma proteins and its pharmacological importance.

    PubMed

    Kallubai, Monika; Rachamallu, Aparna; Yeggoni, Daniel Pushparaju; Subramanyam, Rajagopal

    2015-04-01

    Lupeol, a triterpene, possesses beneficial effects like anti-inflammatory and anti-cancer properties. Binding of lupeol and its derivative (phytochemicals) to plasma proteins such as human serum albumin (HSA) and α-1-acid glycoprotein (AGP) is a major determinant in the disposition of drugs. Cytotoxic studies with mouse macrophages (RAW 246.7) and HeLa cell lines revealed anti-inflammatory and anti-cancer properties for both lupeol and lupeol derivative. Both molecules reduced the expression of pro-inflammatory cytokines in LPS induced macrophages. Further, apoptosis was observed in HeLa cell lines when they were incubated with these molecules for 24 h. The fluorescence quenching of HSA was observed upon titration with different concentrations of lupeol and lupeol derivative; their binding constants were found to be 3 ± 0.01 × 10(4) M(-1) and 6.2 ± 0.02 × 10(4) M(-1), with binding free energies of -6.59 kcal M(-1) and -7.2 kcal M(-1). With AGP, however, the lupeol and lupeol derivative showed binding constants of 0.9 ± 0.02 × 10(3) M(-1) and 2.7 ± 0.01 × 10(3) M(-1), with free energies of -4.6 kcal M(-1) and -5.1 kcal M(-1) respectively. Molecular displacement studies based on competition with site I-binding phenylbutazone (which binds site I of HSA) and ibuprofen (which binds site II) suggest that lupeol binds site II and the lupeol derivative site I. Molecular docking studies also confirmed that lupeol binds to the IIIA and the lupeol derivative to the IIA domain of HSA. Secondary structure changes were observed upon formation of HSA-lupeol/lupeol derivative complexes by circular dichroism spectroscopy. Molecular dynamics simulations support greater stability of HSA-lupeol and HSA-lupeol derivative complexes compared to that of HSA alone.

  16. Knowledge of Native Protein-Protein Interfaces Is Sufficient To Construct Predictive Models for the Selection of Binding Candidates.

    PubMed

    Popov, Petr; Grudinin, Sergei

    2015-10-26

    Selection of putative binding poses is a challenging part of virtual screening for protein-protein interactions. Predictive models to filter out binding candidates with the highest binding affinities comprise scoring functions that assign a score to each binding pose. Existing scoring functions are typically deduced by collecting statistical information about interfaces of native conformations of protein complexes along with interfaces of a large generated set of non-native conformations. However, the obtained scoring functions become biased toward the method used to generate the non-native conformations, i.e., they may not recognize near-native interfaces generated with a different method. The present study demonstrates that knowledge of only native protein-protein interfaces is sufficient to construct well-discriminative predictive models for the selection of binding candidates. Here we introduce a new scoring method that comprises a knowledge-based potential called KSENIA deduced from structural information about the native interfaces of 844 crystallographic protein-protein complexes. We derive KSENIA using convex optimization with a training set composed of native protein complexes and their near-native conformations obtained using deformations along the low-frequency normal modes. As a result, our knowledge-based potential has only marginal bias toward a method used to generate putative binding poses. Furthermore, KSENIA is smooth by construction, which allows it to be used along with rigid-body optimization to refine the binding poses. Using several test benchmarks, we demonstrate that our method discriminates well native and near-native conformations of protein complexes from non-native ones. Our methodology can be easily adapted to the recognition of other types of molecular interactions, such as protein-ligand, protein-RNA, etc. KSENIA will be made publicly available as a part of the SAMSON software platform at https://team.inria.fr/nano-d/software .

  17. The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins.

    PubMed Central

    Klappa, P; Ruddock, L W; Darby, N J; Freedman, R B

    1998-01-01

    Protein disulfide isomerase (PDI) is a very efficient catalyst of folding of many disulfide-bonded proteins. A great deal is known about the catalytic functions of PDI, while little is known about its substrate binding. We recently demonstrated by cross-linking that PDI binds peptides and misfolded proteins, with high affinity but broad specificity. To characterize the substrate-binding site of PDI, we investigated the interactions of various recombinant fragments of human PDI, expressed in Escherichia coli, with different radiolabelled model peptides. We observed that the b' domain of human PDI is essential and sufficient for the binding of small peptides. In the case of larger peptides, specifically a 28 amino acid fragment derived from bovine pancreatic trypsin inhibitor, or misfolded proteins, the b' domain is essential but not sufficient for efficient binding, indicating that contributions from additional domains are required. Hence we propose that the different domains of PDI all contribute to the binding site, with the b' domain forming the essential core. PMID:9463371

  18. Identification of IgE-binding proteins in soy lecithin.

    PubMed

    Gu, X; Beardslee, T; Zeece, M; Sarath, G; Markwell, J

    2001-11-01

    Soy lecithin is widely used as an emulsifier in processed foods, pharmaceuticals and cosmetics. Soy lecithin is composed principally of phospholipids; however, it has also been shown to contain IgE-binding proteins, albeit at a low level. A few clinical cases involving allergic reactions to soy lecithin have been reported. The purpose of this investigation is to better characterize the IgE-binding proteins typically found in lecithin. Soy lecithin proteins were isolated following solvent extraction of lipid components and then separated on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separated lecithin proteins were immunoblotted with sera from soy-sensitive individuals to determine the pattern of IgE-binding proteins. The identity of IgE-reactive bands was determined from their N-terminal sequence. The level of protein in six lecithin samples obtained from commercial suppliers ranged from 100 to 1,400 ppm. Lecithin samples showed similar protein patterns when examined by SDS-PAGE. Immunoblotting with sera from soy-sensitive individuals showed IgE binding to bands corresponding to 7, 12, 20, 39 and 57 kD. N-terminal analysis of these IgE-binding bands resulted in sequences for 3 components. The 12-kD band was identified as a methionine-rich protein (MRP) and a member of the 2S albumin class of soy proteins. The 20-kD band was found to be soybean Kunitz trypsin inhibitor. The 39-kD band was matched to a soy protein with unknown function. Soy lecithin contains a number of IgE-binding proteins; thus, it might represent a source of hidden allergens. These allergens are a more significant concern for soy-allergic individuals consuming lecithin products as a health supplement. In addition, the MRP and the 39-kD protein identified in this study represent newly identified IgE-binding proteins. Copyright 2001 S. Karger AG, Basel

  19. Purification of lipopolysaccharide-binding protein from bovine serum.

    PubMed

    Bochsler, P N; Yang, Z; Murphy, C L; Carroll, R C

    1996-06-01

    Lipopolysaccharide-binding protein (LBP) plays a central role in presentation of bacterial-derived lipopolysaccharide (LPS; endotoxin) to leukocytes such as macrophages and neutrophils. Interaction of LBP with LPS is significant because LBP-LPS complexes promote activation of leukocytes and the immune system, which results in enhanced secretion of a spectrum of proinflammatory cytokines. An improved, simplified method was used to purify bovine LBP from serum. Methodology consisted of ion-exchange chromatography using Bio-Rex 70 resin, followed by gel-filtration chromatography (Sephacryl S-200 resin) of a selected ion-exchange fraction (0.22-0.50 M NaCl). Densitometric scans on silver-stained polyacrylamide gels of chromatographically-derived proteins indicated up to 88.7% purity of the resultant 64kD protein (bovine LBP) in the cleanest fractions. The isoelectric point of bovine LBP was determined to be 6.8. Identity of the protein was substantiated by western-blot analysis, and by N-terminus amino acid sequence analysis with favorable comparison to published sequence data from rabbit, human, and murine LBP Identity was corroborated by use of purified bovine LBP in bioassays which demonstrated enhanced tissue factor expression of LPS (1 ng ml(-1)-stimulated bovine alveolar macrophages. Tissue factor expression was inhibitable in these assays using anti-CD14 monoclonal antibodies, which is also consistent with LBP-mediated activation of cells. When bovine LBP was heated at 56 degrees C for 30 min, the biological activity was reduced by 50% in the macrophage-based bioassays. Biological activity of bovine LBP was completely destroyed by heating at 62 degrees C for 30 min, which compared favorably with data resulting from use of fetal bovine serum.

  20. [Bioactive peptides derived from milk proteins].

    PubMed

    Torres-Llanez, María de Jesús; Vallejo-Cordoba, Belinda; González-Córdova, Aaron Fernando

    2005-06-01

    Milk proteins are known for having a wide range of nutritional, functional and biological properties that make them important ingredients in functional or health promoting foods. These properties are partly attributed to bioactive peptides coded in the different milk proteins. Bioactive peptides are inactive within the protein sequence but may be released by the action of native proteolitic enzymes from milk, enzymes from lactic acid bacteria or from exogenous sources or may be produced during gastrointestinal digestion or processing of foods. Peptides derived from caseins and whey proteins were shown to present several bioactive properties such as opioid, antihypertensive, antimicrobial, immunodulatory, mineral carrier and antithrombotic. This overview presents a perspective of the importance of dairy proteins in the production of bioactive peptides and their biological activities, as well as the main analytical tecniques that have been used for the isolation and identification of these peptides.

  1. DNA Shape versus Sequence Variations in the Protein Binding Process.

    PubMed

    Chen, Chuanying; Pettitt, B Montgomery

    2016-02-02

    The binding process of a protein with a DNA involves three stages: approach, encounter, and association. It has been known that the complexation of protein and DNA involves mutual conformational changes, especially for a specific sequence association. However, it is still unclear how the conformation and the information in the DNA sequences affects the binding process. What is the extent to which the DNA structure adopted in the complex is induced by protein binding, or is instead intrinsic to the DNA sequence? In this study, we used the multiscale simulation method to explore the binding process of a protein with DNA in terms of DNA sequence, conformation, and interactions. We found that in the approach stage the protein can bind both the major and minor groove of the DNA, but uses different features to locate the binding site. The intrinsic conformational properties of the DNA play a significant role in this binding stage. By comparing the specific DNA with the nonspecific in unbound, intermediate, and associated states, we found that for a specific DNA sequence, ∼40% of the bending in the association forms is intrinsic and that ∼60% is induced by the protein. The protein does not induce appreciable bending of nonspecific DNA. In addition, we proposed that the DNA shape variations induced by protein binding are required in the early stage of the binding process, so that the protein is able to approach, encounter, and form an intermediate at the correct site on DNA. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Amino Acid Derivatives as New Zinc Binding Groups for the Design of Selective Matrix Metalloproteinase Inhibitors

    PubMed Central

    Giustiniano, Mariateresa; Agamennone, Mariangela; Rossello, Armando; Gomez-Monterrey, Isabel; Novellino, Ettore; Campiglia, Pietro; Vernieri, Ermelinda; Bertamino, Alessia; Carotenuto, Alfonso

    2013-01-01

    A number of matrix metalloproteinases (MMPs) are important medicinal targets for conditions ranging from rheumatoid arthritis to cardiomyopathy, periodontal disease, liver cirrhosis, multiple sclerosis, and cancer invasion and metastasis, where they showed to have a dual role, inhibiting or promoting important processes involved in the pathology. MMPs contain a zinc (II) ion in the protein active site. Small-molecule inhibitors of these metalloproteins are designed to bind directly to the active site metal ions. In an effort to devise new approaches to selective inhibitors, in this paper, we describe the synthesis and preliminary biological evaluation of amino acid derivatives as new zinc binding groups (ZBGs). The incorporation of selected metal-binding functions in more complex biphenyl sulfonamide moieties allowed the identification of one compound able to interact selectively with different MMP enzymatic isoforms. PMID:23555050

  3. Guardian of Genetic Messenger-RNA-Binding Proteins.

    PubMed

    Anji, Antje; Kumari, Meena

    2016-01-06

    RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins.

  4. Structure and Function of Nematode RNA-Binding Proteins

    PubMed Central

    Kaymak, Ebru; Wee, L.M.; Ryder, Sean P.

    2010-01-01

    RNA-binding proteins are critical effectors of gene expression. They guide mRNA localization, translation, and stability, and potentially play a role in regulating mRNA synthesis. The structural basis for RNA recognition by RNA-binding proteins is the key to understanding how they target specific transcripts for regulation. Compared to other metazoans, nematode genomes contain a significant expansion in several RNA-binding protein families, including Pumilio-FBF (PUF), TTP-like zinc finger (TZF), and argonaute-like (AGO) proteins. Genetic data suggest that individual members of each family have distinct functions, presumably due to sequence variations that alter RNA binding specificity or protein interaction partners. In this review, we highlight example structures and identify the variable regions that likely contribute to functional divergence in nematodes. PMID:20418095

  5. Guardian of Genetic Messenger-RNA-Binding Proteins

    PubMed Central

    Anji, Antje; Kumari, Meena

    2016-01-01

    RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins. PMID:26751491

  6. Stage specific kinetoplast DNA-binding proteins in Trypanosoma cruzi.

    PubMed

    Zavala-Castro, J E; Acosta-Viana, K; Guzmán-Marín, E; Rosado-Barrera, M E; Rosales-Encina, J L

    2000-09-18

    Knowledge regarding kinetoplast DNA organization in all members of the Trypanosomatid family is incomplete. Recently, the presence of kinetoplast-associated proteins in condensing kDNA networks in Crithidia fasciculata has been described and a role for these proteins in the maintenance of these complex structures was suggested. To investigate the presence of protein components in Trypanosoma cruzi kinetoplast, we previously described seven epimastigote kinetoplast-associated proteins. We report here the existence of kinetoplast binding proteins in amastigote and trypomastigote stages of T. cruzi, which could bind both mini and maxicircles components with a stage specific elements for every infective form of the parasite. We propose three major classes of kinetoplast-associated proteins related to the basic processes of this intricate disc structure and suggest a possible function of these binding proteins in the T. cruzi mitochondrial DNA organization.

  7. Predicting nucleic acid binding interfaces from structural models of proteins

    PubMed Central

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2011-01-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared to patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. PMID:22086767

  8. Predicting nucleic acid binding interfaces from structural models of proteins.

    PubMed

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  9. Growth hormone receptor/binding protein: Physiology and function

    SciTech Connect

    Herington, A.C.; Ymer, S.I.; Stevenson, J.L.; Roupas, P.

    1994-12-31

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular forms(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and a membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR. 43 refs.

  10. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    PubMed

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in

  11. 9S binding protein for androgens and progesterone.

    PubMed

    Wilson, E M; Lea, O A; French, F S

    1977-05-01

    A steroid binding protein fraction with a sedimentation coefficient of approximately 9 S (molecular weight approximately equal to 200,000) has been identified in 105,000 X g supernatants of several androgen-responsive organs. Highest concentrations were found in epididymis and testis, but small amounts were detected in prostate, seminal vesicle, kidney, submandibular gland, and lung. The 9S protein binds [3H]dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) and [3H]progesterone (4-pregnene-3,20-dione) with equilibrium binding constants of approximately 10(5) M-1 and 10(6) M-1, respectively. The concentration of 9S binding sites in epididymis is approximately 10(-11) mol/mg of supernatant protein, which is at least 10(5) times greater than the concentration of androgen receptor. 9S binding protein appears to be a nonsecretory, intracellular protein and has properties different from the andorgen receptor. It is unretarded on DEAE-Sephadex chromatography at pH 8.0, and its sedimentation rate on sucrose gradients is not altered at high ionic strength (0.4 M KCl). Like the androgen receptor, its binding activity, which is maximal between pH 7 and 9.5, is heat labile, decreased by sulfhydryl reagents, and enhanced by 2-mercaptoethanol. It is suggested that because of its high concentration and low affinity, 9S binding protein may function in the intracellular accumulation of compartmentalization of androgens or progesterone.

  12. HTLV-1 Tax Protein Stimulation of DNA Binding of bZIP Proteins by Enhancing Dimerization

    NASA Astrophysics Data System (ADS)

    Wagner, Susanne; Green, Michael R.

    1993-10-01

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  13. Structural insights for engineering binding proteins based on non-antibody scaffolds.

    PubMed

    Gilbreth, Ryan N; Koide, Shohei

    2012-08-01

    Engineered binding proteins derived from non-antibody scaffolds constitute an increasingly prominent class of reagents in both research and therapeutic applications. The growing number of crystal structures of these 'alternative' scaffold-based binding proteins in complex with their targets illustrate the mechanisms of molecular recognition that are common among these systems and those unique to each. This information is useful for critically assessing and improving/expanding engineering strategies. Furthermore, the structural features of these synthetic proteins produced under tightly controlled, directed evolution deepen our understanding of the underlying principles governing molecular recognition.

  14. Paramagnetic Ligand Tagging To Identify Protein Binding Sites

    PubMed Central

    2015-01-01

    Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein–ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein–ligand systems with varying binding affinity. PMID:26289584

  15. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes.

    PubMed Central

    Heimburg, T; Marsh, D

    1995-01-01

    The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally

  16. Common recognition principles across diverse sequence and structural families of sialic acid binding proteins.

    PubMed

    Bhagavat, Raghu; Chandra, Nagasuma

    2014-01-01

    Sialic acids form a large family of 9-carbon monosaccharides and are integral components of glycoconjugates. They are known to bind to a wide range of receptors belonging to diverse sequence families and fold classes and are key mediators in a plethora of cellular processes. Thus, it is of great interest to understand the features that give rise to such a recognition capability. Structural analyses using a non-redundant data set of known sialic acid binding proteins was carried out, which included exhaustive binding site comparisons and site alignments using in-house algorithms, followed by clustering and tree computation, which has led to derivation of sialic acid recognition principles. Although the proteins in the data set belong to several sequence and structure families, their binding sites could be grouped into only six types. Structural comparison of the binding sites indicates that all sites contain one or more different combinations of key structural features over a common scaffold. The six binding site types thus serve as structural motifs for recognizing sialic acid. Scanning the motifs against a non-redundant set of binding sites from PDB indicated the motifs to be specific for sialic acid recognition. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. As an example analysis, a genome-wide scan for the motifs in structures of Mycobacterium tuberculosis proteome identified 17 hits that contain combinations of the features, suggesting a possible function of sialic acid binding by these proteins.

  17. Terahertz dielectric assay of solution phase protein binding

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yin; Knab, J. R.; Ye, Shuji; He, Yunfen; Markelz, A. G.

    2007-06-01

    The authors demonstrate a method for rapid determination of protein-ligand binding on solution phase samples using terahertz dielectric spectroscopy. Measurements were performed using terahertz time domain spectroscopy on aqueous solutions below the liquid-solid transition for water. Small ligand binding sensitivity was demonstrated using triacetylglucosamine and hen egg white lysozyme with a decrease in dielectric response with binding. The magnitude of the change increases with frequency.

  18. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms

    PubMed Central

    2015-01-01

    ABSTRACT Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114

  19. Pleiotropic virulence factor - Streptococcus pyogenes fibronectin-binding proteins.

    PubMed

    Yamaguchi, Masaya; Terao, Yutaka; Kawabata, Shigetada

    2013-04-01

    Streptococcus pyogenes causes a broad spectrum of infectious diseases, including pharyngitis, skin infections and invasive necrotizing fasciitis. The initial phase of infection involves colonization, followed by intimate contact with the host cells, thus promoting bacterial uptake by them. S. pyogenes recognizes fibronectin (Fn) through its own Fn-binding proteins to obtain access to epithelial and endothelial cells in host tissue. Fn-binding proteins bind to Fn to form a bridge to α5 β1 -integrins, which leads to rearrangement of cytoskeletal actin in host cells and uptake of invading S. pyogenes. Recently, several structural analyses of the invasion mechanism showed molecular interactions by which Fn converts from a compact plasma protein to a fibrillar component of the extracellular matrix. After colonization, S. pyogenes must evade the host innate immune system to spread into blood vessels and deeper organs. Some Fn-binding proteins contribute to evasion of host innate immunity, such as the complement system and phagocytosis. In addition, Fn-binding proteins have received focus as non-M protein vaccine candidates, because of their localization and conservation among different M serotypes.Here, we review the roles of Fn-binding proteins in the pathogenesis and speculate regarding possible vaccine antigen candidates. © 2012 Blackwell Publishing Ltd.

  20. Exchange Kinetics of a Hydrophobic Ligand Binding Protein

    NASA Astrophysics Data System (ADS)

    Vaughn, Jeff; Stone, Martin

    2002-03-01

    Conformational fluctuations of proteins are thought to be important for determining the functional roles in biological activity. In some cases, the rates of these conformational changes may be directly correlated to, for example, the rates of catalysis or ligand binding. We are studying the role of conformational fluctuations in the binding of small volatile hydrophobic pheromones by the mouse major urinary proteins (MUPs). Communication among mice occurs, in part, with the MUP-1 protein. This urinary protein binds pheromones as a way to increase the longevity of the pheromone in an extracellular environment. Of interest is that the crystal structure of MUP-1 with a pheromone ligand shows the ligand to be completely occluded from the solvent with no obvious pathway to enter or exit. This suggests that conformational exchange of the protein may be required for ligand binding and release to occur. We hypothesize that the rate of conformational exchange may be a limiting factor determining the rate of ligand association and dissociation. By careful measurement of the on- and off-rates of ligand binding and the rates of conformational changes of the protein, a more defined picture of the interplay between protein structure and function can be obtained. To this end, heteronuclear saturation transfer, ^15N-exchange and ^15N dynamics experiments have been employed to probe the kinetics of ligand binding to MUP-1.

  1. De-novo protein function prediction using DNA binding and RNA binding proteins as a test case.

    PubMed

    Peled, Sapir; Leiderman, Olga; Charar, Rotem; Efroni, Gilat; Shav-Tal, Yaron; Ofran, Yanay

    2016-11-21

    Of the currently identified protein sequences, 99.6% have never been observed in the laboratory as proteins and their molecular function has not been established experimentally. Predicting the function of such proteins relies mostly on annotated homologs. However, this has resulted in some erroneous annotations, and many proteins have no annotated homologs. Here we propose a de-novo function prediction approach based on identifying biophysical features that underlie function. Using our approach, we discover DNA and RNA binding proteins that cannot be identified based on homology and validate these predictions experimentally. For example, FGF14, which belongs to a family of secreted growth factors was predicted to bind DNA. We verify this experimentally and also show that FGF14 is localized to the nucleus. Mutating the predicted binding site on FGF14 abrogated DNA binding. These results demonstrate the feasibility of automated de-novo function prediction based on identifying function-related biophysical features.

  2. De-novo protein function prediction using DNA binding and RNA binding proteins as a test case

    PubMed Central

    Peled, Sapir; Leiderman, Olga; Charar, Rotem; Efroni, Gilat; Shav-Tal, Yaron; Ofran, Yanay

    2016-01-01

    Of the currently identified protein sequences, 99.6% have never been observed in the laboratory as proteins and their molecular function has not been established experimentally. Predicting the function of such proteins relies mostly on annotated homologs. However, this has resulted in some erroneous annotations, and many proteins have no annotated homologs. Here we propose a de-novo function prediction approach based on identifying biophysical features that underlie function. Using our approach, we discover DNA and RNA binding proteins that cannot be identified based on homology and validate these predictions experimentally. For example, FGF14, which belongs to a family of secreted growth factors was predicted to bind DNA. We verify this experimentally and also show that FGF14 is localized to the nucleus. Mutating the predicted binding site on FGF14 abrogated DNA binding. These results demonstrate the feasibility of automated de-novo function prediction based on identifying function-related biophysical features. PMID:27869118

  3. Prediction of DNA-binding proteins from relational features

    PubMed Central

    2012-01-01

    Background The process of protein-DNA binding has an essential role in the biological processing of genetic information. We use relational machine learning to predict DNA-binding propensity of proteins from their structures. Automatically discovered structural features are able to capture some characteristic spatial configurations of amino acids in proteins. Results Prediction based only on structural relational features already achieves competitive results to existing methods based on physicochemical properties on several protein datasets. Predictive performance is further improved when structural features are combined with physicochemical features. Moreover, the structural features provide some insights not revealed by physicochemical features. Our method is able to detect common spatial substructures. We demonstrate this in experiments with zinc finger proteins. Conclusions We introduced a novel approach for DNA-binding propensity prediction using relational machine learning which could potentially be used also for protein function prediction in general. PMID:23146001

  4. Ca2+ signaling and intracellular Ca2+ binding proteins.

    PubMed

    Niki, I; Yokokura, H; Sudo, T; Kato, M; Hidaka, H

    1996-10-01

    Changes in cytosolic Ca2+ concentrations evoke a wide range of cellular responses and intracellular Ca(2+)-binding proteins are the key molecules to transduce Ca2+ signaling via enzymatic reactions or modulation of protein/protein interations (Fig.1). The EF hand proteins, like calmodulin and S100 proteins, are considered to exert Ca(2+)-dependent actions in the nucleus or the cytoplasm. The Ca2+/phospholipid binding proteins are classified into two groups, the annexins and the C2 region proteins. These proteins, distributed mainly in the cytoplasm, translocate to the plasma membrane in response to an increase in cytosolic Ca2+ and function in the vicinity of the membrane. Ca2+ storage proteins in the endoplasmic or sarcoplasmic reticulum provide the high Ca2+ capacity of the Ca2+ store sites, which regulate intracellular Ca2+ distribution. The variety and complexity of Ca2+ signaling result from the cooperative actions of specific Ca(2+)-binding proteins. This review describes biochemical properties of intracellular Ca(2+)-binding proteins and their proposed roles in mediating Ca2+ signaling.

  5. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins

    PubMed Central

    Thomas, Marshall P.; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-01-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. Here we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein (RBP) targets, while adding RNA to recombinant RBP substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Pre-incubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G (CATG). During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps (NETs), which bind NE and CATG. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and NETs in a DNA-dependent manner. Thus, high affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation. PMID:24771851

  6. A Disease-Causing Variant in PCNA Disrupts a Promiscuous Protein Binding Site.

    PubMed

    Duffy, Caroline M; Hilbert, Brendan J; Kelch, Brian A

    2016-03-27

    The eukaryotic DNA polymerase sliding clamp, proliferating cell nuclear antigen or PCNA, is a ring-shaped protein complex that surrounds DNA to act as a sliding platform for increasing processivity of cellular replicases and for coordinating various cellular pathways with DNA replication. A single point mutation, Ser228Ile, in the human PCNA gene was recently identified to cause a disease whose symptoms resemble those of DNA damage and repair disorders. The mutation lies near the binding site for most PCNA-interacting proteins. However, the structural consequences of the S228I mutation are unknown. Here, we describe the structure of the disease-causing variant, which reveals a large conformational change that dramatically transforms the binding pocket for PCNA client proteins. We show that the mutation markedly alters the binding energetics for some client proteins, while another, p21(CIP1), is only mildly affected. Structures of the disease variant bound to peptides derived from two PCNA partner proteins reveal that the binding pocket can adjust conformation to accommodate some ligands, indicating that the binding site is dynamic and pliable. Our work has implications for the plasticity of the binding site in PCNA and reveals how a disease mutation selectively alters interactions to a promiscuous binding site that is critical for DNA metabolism.

  7. A new aspect of serum protein binding of tolbutamide.

    PubMed

    Ayanoğlu, G; Uihlein, M; Grigoleit, H G

    1986-02-01

    Tolbutamide is known to bind highly to serum proteins. Quite different values have, however, been reported for binding, ranging from 80 to 99 percent. In this study, in vivo and in vitro binding of increasing concentrations of tolbutamide to human serum proteins were evaluated. In vitro studies were done serum from three healthy males and for in vivo studies serum samples from eight healthy males who had received 1,000 mg tolbutamide were used. Protein binding was determined by equilibrium dialysis, using DIANORM system. Tolbutamide concentrations were determined by HPLC method of Uihlein and Hack. The results suggest that there is an increase in percent tolbutamide bound with increasing concentrations of tolbutamide. Generally, an inverse relationship between the total concentration of a drug in serum and its bound fraction is observed. Our findings seem to be contrary to this, at least within the concentration range studied. There exist at least two binding sites on albumin with different affinities for tolbutamide and most probably, at low concentrations, the drug binds mainly to the high affinity sites, whereas at higher concentrations additional drug will bind to the lower affinity sites leading to the observed increase in fraction bound with concentration. In conclusion it may be said that serum protein binding is a much more complicated phenomenon than generally stated and that the normal observations are only true for some ideal compounds where only one site of adsorption has to be taken into account.

  8. Protein binding to expanded telomere repeats in Tetrahymena thermophila.

    PubMed

    McGuire, Jennifer M; Gana, Joyce Ache; Petcherskaia, Marina; Kirk, Karen E

    2003-01-01

    The ends of eukaryotic chromosomes are protected by DNA-protein structures called telomeres. Telomeric DNA is highly conserved, usually consisting of long tracts of a repeating G-rich sequence. Tetrahymena thermophila telomeric DNA consists of alternating blocks of GGGG and TT sequences (i.e. a G4T2 repeat sequence). We examined the relative importance of the guanine and thymine elements of the repeat sequence in promoting in vitro binding by T. thermophila proteins. We identified single- and, for the first time, double-stranded telomere binding activities from a crude T. thermophila protein extract and tested the binding of these activities to altered telomere repeat sequences. All deletions or substitutions made to the guanine element virtually abolished binding, indicating that four G's are essential for recognition by the binding activity. However, G's alone are not sufficient for efficient binding, as elimination of the thymine element dramatically reduced binding. By contrast, substantial expansion of the thymine element was well tolerated, even though one such change, G4T4, is lethal in vivo. We tested up to a four-fold expansion of the thymine element and found that highly efficient binding was still achieved. These results suggest a minimal recognition sequence for T. thermophila proteins, with the T element providing an important spacer between essential G elements.

  9. Nucleic acid-binding specificity of human FUS protein

    PubMed Central

    Wang, Xueyin; Schwartz, Jacob C.; Cech, Thomas R.

    2015-01-01

    FUS, a nuclear RNA-binding protein, plays multiple roles in RNA processing. Five specific FUS-binding RNA sequence/structure motifs have been proposed, but their affinities for FUS have not been directly compared. Here we find that human FUS binds all these sequences with Kdapp values spanning a 10-fold range. Furthermore, some RNAs that do not contain any of these motifs bind FUS with similar affinity. FUS binds RNA in a length-dependent manner, consistent with a substantial non-specific component to binding. Finally, investigation of FUS binding to different nucleic acids shows that it binds single-stranded DNA with three-fold lower affinity than ssRNA of the same length and sequence, while binding to double-stranded nucleic acids is weaker. We conclude that FUS has quite general nucleic acid-binding activity, with the various proposed RNA motifs being neither necessary for FUS binding nor sufficient to explain its diverse binding partners. PMID:26150427

  10. Binding of the polypyrimidine tract-binding protein-associated splicing factor (PSF) to the hepatitis delta virus RNA

    SciTech Connect

    Greco-Stewart, Valerie S.; Thibault, Catherine St-Laurent; Pelchat, Martin . E-mail: mpelchat@uottawa.ca

    2006-12-20

    The hepatitis delta virus (HDV) has a very limited protein coding capacity and must rely on host proteins for its replication. A ribonucleoprotein complex was detected following UV cross-linking between HeLa nuclear proteins and an RNA corresponding to the right terminal stem-loop domain of HDV genomic RNA. Mass spectrometric analysis of the complex revealed the polypyrimidine tract-binding protein-associated splicing factor (PSF) as a novel HDV RNA-interacting protein. Co-immunoprecipitation demonstrated the interaction between HDV RNA and PSF both in vitro in HeLa nuclear extract and in vivo within HeLa cells containing both polarities of the HDV genome. Analysis of the binding of various HDV-derived RNAs to purified, recombinant PSF further confirmed the specificity of the interaction and revealed that PSF directly binds to the terminal stem-loop domains of both polarities of HDV RNA. Our findings provide evidence of the involvement of a host mRNA processing protein in the HDV life cycle.

  11. Erythrocyte Protein 4.1 Binds and Regulates Myosin

    NASA Astrophysics Data System (ADS)

    Pasternack, Gary R.; Racusen, Richard H.

    1989-12-01

    Myosin was recently identified in erythrocytes and was shown to partition both with membrane and cytosolic fractions, suggesting that it may be loosely bound to membranes [Fowler, V. M., Davis, J. Q. & Bennett, V. (1985) J. Cell Biol. 100, 47-55, and Wong, A. J., Kiehart, D. P. & Pollard, T. D. (1985) J. Biol. Chem. 260, 46-49]; however, the molecular basis for this binding was unclear. The present studies employed immobilized monomeric myosin to examine the interaction of myosin with erythrocyte protein 4.1. In human erythrocytes, protein 4.1 binds to integral membrane proteins and mediates spectrin-actin assembly. Protein 4.1 binds to rabbit skeletal muscle myosin with a Kd = 140 nM and a stoichiometry consistent with 1:1 binding. Heavy meromyosin competes for protein 4.1 binding with Ki = 36-54 nM; however, the S1 fragment (the myosin head) competes less efficiently. Affinity chromatography of partial chymotryptic digests of protein 4.1 on immobilized myosin identified a 10-kDa domain of protein 4.1 as the myosin-binding site. In functional studies, protein 4.1 partially inhibited the actin-activated Mg2+-ATPase activity of rabbit skeletal muscle myosin with Ki = 51 nM. Liver cytosolic and erythrocyte myosins preactivated with myosin light-chain kinase were similarly inhibited by protein 4.1. These studies show that protein 4.1 binds, modulates, and thus may regulate myosin. This interaction might serve to generate the contractile forces involved in Mg2+-ATP-dependent shape changes in erythrocytes and may additionally serve as a model for myosin organization and regulation in non-muscle cells.

  12. Carbohydrate-binding protein identification by coupling structural similarity searching with binding affinity prediction.

    PubMed

    Zhao, Huiying; Yang, Yuedong; von Itzstein, Mark; Zhou, Yaoqi

    2014-11-15

    Carbohydrate-binding proteins (CBPs) are potential biomarkers and drug targets. However, the interactions between carbohydrates and proteins are challenging to study experimentally and computationally because of their low binding affinity, high flexibility, and the lack of a linear sequence in carbohydrates as exists in RNA, DNA, and proteins. Here, we describe a structure-based function-prediction technique called SPOT-Struc that identifies carbohydrate-recognizing proteins and their binding amino acid residues by structural alignment program SPalign and binding affinity scoring according to a knowledge-based statistical potential based on the distance-scaled finite-ideal gas reference state (DFIRE). The leave-one-out cross-validation of the method on 113 carbohydrate-binding domains and 3442 noncarbohydrate binding proteins yields a Matthews correlation coefficient of 0.56 for SPalign alone and 0.63 for SPOT-Struc (SPalign + binding affinity scoring) for CBP prediction. SPOT-Struc is a technique with high positive predictive value (79% correct predictions in all positive CBP predictions) with a reasonable sensitivity (52% positive predictions in all CBPs). The sensitivity of the method was changed slightly when applied to 31 APO (unbound) structures found in the protein databank (14/31 for APO versus 15/31 for HOLO). The result of SPOT-Struc will not change significantly if highly homologous templates were used. SPOT-Struc predicted 19 out of 2076 structural genome targets as CBPs. In particular, one uncharacterized protein in Bacillus subtilis (1oq1A) was matched to galectin-9 from Mus musculus. Thus, SPOT-Struc is useful for uncovering novel carbohydrate-binding proteins. SPOT-Struc is available at http://sparks-lab.org.

  13. In Vitro Biochemical Characterization of Cytokinesis Actin-Binding Proteins.

    PubMed

    Zimmermann, Dennis; Morganthaler, Alisha N; Kovar, David R; Suarez, Cristian

    2016-01-01

    Characterizing the biochemical and biophysical properties of purified proteins is critical to understand the underlying molecular mechanisms that facilitate complicated cellular processes such as cytokinesis. Here we outline in vitro assays to investigate the effects of cytokinesis actin-binding proteins on actin filament dynamics and organization. We describe (1) multicolor single-molecule TIRF microscopy actin assembly assays, (2) "bulk" pyrene actin assembly/disassembly assays, and (3) "bulk" sedimentation actin filament binding and bundling assays.

  14. Subcellular distribution of small GTP binding proteins in pancreas: Identification of small GTP binding proteins in the rough endoplasmic reticulum

    SciTech Connect

    Nigam, S.K. )

    1990-02-01

    Subfractionation of a canine pancreatic homogenate was performed by several differential centrifugation steps, which gave rise to fractions with distinct marker profiles. Specific binding of guanosine 5{prime}-({gamma}-({sup 35}S)thio)triphosphate (GTP({gamma}-{sup 35}S)) was assayed in each fraction. Enrichment of GTP({gamma}-{sup 35}S) binding was greatest in the interfacial smooth microsomal fraction, expected to contain Golgi and other smooth vesicles. There was also marked enrichment in the rough microsomal fraction. Electron microscopy and marker protein analysis revealed the rough microsomes (RMs) to be highly purified rough endoplasmic reticulum (RER). The distribution of small (low molecular weight) GTP binding proteins was examined by a ({alpha}-{sup 32}P)GTP blot-overlay assay. Several apparent GTP binding proteins of molecular masses 22-25 kDa were detected in various subcellular fractions. In particular, at least two such proteins were found in the Golgi-enriched and RM fractions, suggesting that these small GTP binding proteins were localized to the Golgi and RER. To more precisely localize these proteins to the RER, native RMs and RMs stripped of ribosomes by puromycin/high salt were subjected to isopycnic centrifugation. The total GTP({gamma}-{sup 35}S) binding, as well as the small GTP binding proteins detected by the ({alpha}-{sup 32}P)GTP blot overlay, distributed into fractions of high sucrose density, as did the RER marker ribophorin I. Consistent with a RER localization, when the RMS were stripped of ribosomes and subjected to isopycnic centrifugation, the total GTP({gamma}-{sup 35}S) binding and the small GTP binding proteins detected in the blot-overlay assay shifted to fractions of lighter sucrose density along with the RER marker.

  15. Binding of exogenous brain protein kinase C to liver nuclei

    SciTech Connect

    Misra, U.K.; Wolf, M.; Besterman, J.; Cuatrecasas, P.; Sahyoun, N.

    1986-05-01

    Protein kinase C is found both in the cytosol and bound to membranes. Binding of the enzyme to plasma membranes is controlled by calcium whereas enzyme activators regulate both its membrane binding and enzyme catalysis. Activation of protein kinase C has been implicated in several regulatory processes including gene expression. Accordingly, the possibility of direct interaction of protein kinase C with the nucleus was examined utilizing /sup 3/H-PDBu binding to detect the enzyme. Purified protein kinase C from rat brain could bind to purified rat liver nuclei at 4/sup 0/C or at 21/sup 0/C, and the reaction was completed by 20 min. The binding was linearly dependent on protein kinase C concentration and required free Ca/sup 2 +/ with a K/sub m/sub app// of 0.5 ..mu..M. Chelation of Ca/sup 2 +/ with EGTA resulted in a rapid dissociation of protein kinase C from the nuclei. Differential extraction experiments suggested that about 50% of the enzyme was bound to chromatin and 25% was associated with the nuclear matrix. Moreover, protein kinase C bound to nuclei was able to phosphorylate several endogenous nuclear substrates, including chromatin proteins, in a Ca/sup 2 +/ phosphatidyl serine dependent reaction.

  16. Theoretical studies of protein-protein and protein-DNA binding rates

    NASA Astrophysics Data System (ADS)

    Alsallaq, Ramzi A.

    Proteins are folded chains of amino acids. Some of the amino acids (e.g. Lys, Arg, His, Asp, and Glu) carry charges under physiological conditions. Proteins almost always function through binding to other proteins or ligands, for example barnase is a ribonuclease protein, found in the bacterium Bacillus amyloliquefaceus. Barnase degrades RNA by hydrolysis. For the bacterium to inhibit the potentially lethal action of Barnase within its own cell it co-produces another protein called barstar which binds quickly, and tightly, to barnase. The biological function of this binding is to block the active site of barnase. The speeds (rates) at which proteins associate are vital to many biological processes. They span a wide range (from less than 103 to 108 M-1s-1 ). Rates greater than ˜ 106 M -1s-1 are typically found to be manifestations of enhancements by long-range electrostatic interactions between the associating proteins. A different paradigm appears in the case of protein binding to DNA. The rate in this case is enhanced through attractive surface potential that effectively reduces the dimensionality of the available search space for the diffusing protein. This thesis presents computational and theoretical models on the rate of association of ligands/proteins to other proteins or DNA. For protein-protein association we present a general strategy for computing protein-protein rates of association. The main achievements of this strategy is the ability to obtain a stringent reaction criteria based on the landscape of short-range interactions between the associating proteins, and the ability to compute the effect of the electrostatic interactions on the rates of association accurately using the best known solvers for Poisson-Boltzmann equation presently available. For protein-DNA association we present a mathematical model for proteins targeting specific sites on a circular DNA topology. The main achievements are the realization that a linear DNA with reflecting ends

  17. The binding modes and binding affinities of epipodophyllotoxin derivatives with human topoisomerase IIα.

    PubMed

    Naik, Pradeep Kumar; Dubey, Abhishek; Soni, Komal; Kumar, Rishay; Singh, Harvinder

    2010-12-01

    Epipodophyllotoxin derivatives have important therapeutic value in the treatment of human cancers. These drugs kill cells by inhibiting the ability of topoisomerase II (TP II) to ligate nucleic acids that it cleaves during the double-stranded DNA passage reaction. The 3D structure of human TP IIα was modeled by homology modeling. A virtual library consisting of 143 epipodophyllotoxin derivatives has been developed. Their molecular interactions and binding affinities with modeled human TP IIα have been studied using the docking and Bimolecular Association with Energetics (eMBrAcE) developed by Schrödinger. Structure activity relationship models were developed between the experimental activity expressed in terms of percentage of intracellular covalent TP II-DNA complexes (log PCPDCF) of these compounds and molecular descriptors like docking score and free energy of binding. For both the cases the r2 was in the range of 0.624-0.800 indicating good data fit and r2(cv) was in the range of 0.606-774 indicating that the predictive capabilities of the models were acceptable. Low levels of root mean square error for the majority of inhibitors establish the docking and eMBrAcE based prediction model as an efficient tool for generating more potent and specific inhibitors of human TP IIα by testing rationally designed lead compounds based on epipodophyllotoxin derivatization. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Being a binding site: characterizing residue composition of binding sites on proteins.

    PubMed

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince

    2007-12-30

    The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of more than 19,500 binding sites may help in identifying new binding protein-ligand pairs.

  19. Characterization of binding of N'-nitrosonornicotine to protein

    SciTech Connect

    Hughes, M.F.

    1986-01-01

    The NADPH-dependent activation of the carcinogenic nitrosamine, N'-nitrosonornicotine (NNN) to a reactive intermediate which binds covalently to protein was assessed using male Sprague-Dawley rat liver and lung microsomes. The NADPH-dependent covalent binding of (/sup 14/C)NNN to liver and lung microsomes was linear with time up to 90 and 45 min, respectively and was also linear with protein concentrations up to 3.0 and 2.0 mg/ml, respectively. The apparent K/sub m/ and V/sub max/ of the NADPH-dependent binding to liver microsomes were determined from the initial velocities. Addition of the thiols glutathione, cystein, N-acetylcysteine or 2-mercapthoethanol significantly decreased the non-NADPH-dependent binding to liver microsomal protein, but did not affect the NADPH-dependent binding. Glutathione was required in order to observe any NADPH-dependent binding to lung microsomal protein. In lung microsomes, SKF-525A significantly decreased the NADPH-dependent binding by 79%. Replacement of an air atmosphere with N/sub 2/ or CO:O/sub 2/ (8:2) significantly decreased the NADPH-dependent binding of (/sup 14/C)NNN to liver microsomal protein by 40% or 27% respectively. Extensive covalent binding of (/sup 14/C)NNN to liver and muscle microsomal protein occurred in the absence of an NADPH-generating system, in the presence of 50% methanol and also to bovine serum albumin, indicating a nonenzymatic reaction. These data indicate that cytochrome P-450 is at least in part responsible for the metabolic activation of the carcinogen NNN, but also suggest additional mechanisms of activation.

  20. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding.

    PubMed

    Memczak, Henry; Lauster, Daniel; Kar, Parimal; Di Lella, Santiago; Volkmer, Rudolf; Knecht, Volker; Herrmann, Andreas; Ehrentreich-Förster, Eva; Bier, Frank F; Stöcklein, Walter F M

    2016-01-01

    Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing.

  1. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding

    PubMed Central

    Kar, Parimal; Di Lella, Santiago; Volkmer, Rudolf; Knecht, Volker; Herrmann, Andreas; Ehrentreich-Förster, Eva; Bier, Frank F.; Stöcklein, Walter F. M.

    2016-01-01

    Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing. PMID:27415624

  2. Protein binding properties of surface-modified porous polyethylene membranes.

    PubMed

    Greene, George; Radhakrishna, Harish; Tannenbaum, Rina

    2005-10-01

    In this study, we quantified the adsorption of immunoglobulin G (IgG) protein onto several polyelectrolyte-modified sintered porous polyethylene (PPE) membranes. The polymer surfaces had both cationic and anionic charges obtained via the adsorption of polyethylenimine (PEI) and polyacrylic acid (PAA), respectively, onto plasma-activated PPE. The amount of IgG adsorption was determined by measuring the gamma radiation emitted by [125I]-IgG radio labeled protein. By studying the impact of pH and ionic strength on IgG adsorption, we attempted to characterize the role and nature of the electrostatic interactions involved in the adsorption process to better understand how these interactions were influenced by the charge and structure of immobilized polyelectrolyte complexes at modified membrane surfaces. We were able to show that surface modification of PPE membranes with adsorbed PEI monolayers and PEI-PAA bilayers can greatly improve the IgG binding ability of the membrane under optimized conditions. We also showed that the observed improvement in the IgG binding is derived from electrostatic interactions between IgG and the polyelectrolyte surface. In addition, we found that the greatest IgG adsorption occurred when the IgG and the surface possessed predominantly opposite charges, rather than when the surface possessed the greatest electrostatic charge. Finally, we have found that the molecular weight of the terminating polyelectrolyte has a noticeable effect upon the electrostatic interactions between IgG and the PEI-PAA bilayer-modified PPE surfaces.

  3. Convertase Inhibitory Properties of Staphylococcal Extracellular Complement-binding Protein*

    PubMed Central

    Jongerius, Ilse; Garcia, Brandon L.; Geisbrecht, Brian V.; van Strijp, Jos A. G.; Rooijakkers, Suzan H. M.

    2010-01-01

    The human pathogen Staphylococcus aureus secretes several complement evasion molecules to combat the human immune response. Extracellular complement-binding protein (Ecb) binds to the C3d domain of C3 and thereby blocks C3 convertases of the alternative pathway and C5 convertases via all complement pathways. Inhibition of C5 convertases results in complete inhibition of C5a generation and subsequent neutrophil migration. Here, we show that binding of Ecb to the C3d domain of C3b is crucial for inhibition of C5 convertases. Ecb does not interfere with substrate binding to convertases but prevents formation of an active convertase enzyme. PMID:20304920

  4. Discodermolide interferes with the binding of tau protein to microtubules.

    PubMed

    Kar, Santwana; Florence, Gordon J; Paterson, Ian; Amos, Linda A

    2003-03-27

    We investigated whether discodermolide, a novel antimitotic agent, affects the binding to microtubules of tau protein repeat motifs. Like taxol, the new drug reduces the proportion of tau that pellets with microtubules. Despite their differing structures, discodermolide, taxol and tau repeats all bind to a site on beta-tubulin that lies within the microtubule lumen and is crucial in controlling microtubule assembly. Low concentrations of tau still bind strongly to the outer surfaces of preformed microtubules when the acidic C-terminal regions of at least six tubulin dimers are available for interaction with each tau molecule; otherwise binding is very weak.

  5. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles

    PubMed Central

    Brender, Jeffrey R.; Zhang, Yang

    2015-01-01

    The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies. PMID:26506533

  6. Protein-DNA binding in high-resolution.

    PubMed

    Mahony, Shaun; Pugh, B Franklin

    2015-01-01

    Recent advances in experimental and computational methodologies are enabling ultra-high resolution genome-wide profiles of protein-DNA binding events. For example, the ChIP-exo protocol precisely characterizes protein-DNA cross-linking patterns by combining chromatin immunoprecipitation (ChIP) with 5' → 3' exonuclease digestion. Similarly, deeply sequenced chromatin accessibility assays (e.g. DNase-seq and ATAC-seq) enable the detection of protected footprints at protein-DNA binding sites. With these techniques and others, we have the potential to characterize the individual nucleotides that interact with transcription factors, nucleosomes, RNA polymerases and other regulatory proteins in a particular cellular context. In this review, we explain the experimental assays and computational analysis methods that enable high-resolution profiling of protein-DNA binding events. We discuss the challenges and opportunities associated with such approaches.

  7. Protein-DNA binding in high-resolution

    PubMed Central

    Mahony, Shaun; Pugh, B. Franklin

    2015-01-01

    Recent advances in experimental and computational methodologies are enabling ultra-high resolution genome-wide profiles of protein-DNA binding events. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Similarly, deeply sequenced chromatin accessibility assays (e.g. DNase-seq and ATACseq) enable the detection of protected footprints at protein-DNA binding sites. With these techniques and others, we have the potential to characterize the individual nucleotides that interact with transcription factors, nucleosomes, RNA polymerases, and other regulatory proteins in a particular cellular context. In this review, we explain the experimental assays and computational analysis methods that enable high-resolution profiling of protein-DNA binding events. We discuss the challenges and opportunities associated with such approaches. PMID:26038153

  8. The presence of zinc-binding proteins in brain.

    PubMed

    Itoh, M; Ebadi, M; Swanson, S

    1983-09-01

    Zinc is one of the most abundant divalent metal ions in the brain, its concentration being greater than those of copper and manganese. Since free zinc ion is a potent inhibitor of sulfhydryl enzymes, we postulated that zinc in the brain most probably exists bound to macromolecules. As zinc-binding proteins in brain have not been characterized, we attempted to discover the occurrence and properties of these proteins. By using Sephadex G-75 column chromatography calibrated with proteins of known molecular weights, and by other techniques, we detected separate zinc-binding proteins, with apparent estimated molecular weights ranging from 15,000 to 210,000. Unlike the hepatic or renal zinc thioneins, the zinc-binding proteins in brain are not inducible following administration of zinc. Our interpretation of the results is that the major portion of the existing zinc in the brain is bound, and does not exist in free form.

  9. HIGH AFFINITY, DSRNA BINDING BY DISCONNECTED INTERACTING PROTEIN 1†

    PubMed Central

    Catanese, Daniel J.; Matthews, Kathleen S.

    2010-01-01

    Disconnected Interacting Protein 1 (DIP1) appears from sequence analysis and preliminary binding studies to be a member of the dsRNA-binding protein family. Of interest, DIP1 was shown previously to interact with and influence multiple proteins involved in transcription regulation in Drosophila melanogaster. We show here that the longest isoform of this protein, DIP1-c, exhibits a 500-fold preference for dsRNA over dsDNA of similar nucleotide sequence. Further, DIP1-c demonstrated very high affinity for a subset of dsRNA ligands, with binding in the picomolar range for VA1 RNA and miR-iab-4 precursor stem-loop, a potential physiological RNA target involved in regulating expression of its protein partner, Ultrabithorax. PMID:20643095

  10. A sliding selectivity scale for lipid binding to membrane proteins

    PubMed Central

    Landreh, Michael; Marty, Michael T.; Gault, Joseph; Robinson, Carol V.

    2017-01-01

    Biological membranes form barriers that are essential for cellular integrity and compartmentalisation. Proteins that reside in the membrane have co-evolved with their hydrophobic lipid environment which serves as a solvent for proteins with very diverse requirements. As a result, membrane protein-lipid interactions range from completely non-selective to highly discriminating. Mass spectrometry (MS), in combination with X-ray crystallography and molecular dynamics simulations, enables us to monitor how lipids interact with intact membrane protein complexes and assess their effects on structure and dynamics. Recent studies illustrate the ability to differentiate specific lipid binding, preferential interactions with lipid subsets, and nonselective annular contacts. In this review, we consider the biological implications of different lipid-binding scenarios and propose that binding occurs on a sliding selectivity scale, in line with the view of biological membranes as facilitators of dynamic protein and lipid organization. PMID:27155089

  11. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  12. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  13. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  14. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  15. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  16. Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine

    SciTech Connect

    Kuroki, Y.; Akino, T. )

    1991-02-15

    Phospholipids are the major components of pulmonary surfactant. Dipalmitoylphosphatidylcholine is believed to be especially essential for the surfactant function of reducing the surface tension at the air-liquid interface. Surfactant protein A (SP-A) with a reduced denatured molecular mass of 26-38 kDa, characterized by a collagen-like structure and N-linked glycosylation, interacts strongly with a mixture of surfactant-like phospholipids. In the present study the direct binding of SP-A to phospholipids on a thin layer chromatogram was visualized using 125I-SP-A as a probe, so that the phospholipid specificities of SP-A binding and the structural requirements of SP-A and phospholipids for the binding could be examined. Although 125I-SP-A bound phosphatidylcholine and sphingomyeline, it was especially strong in binding dipalmitoylphosphatidylcholine, but failed to bind phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine. Labeled SP-A also exhibited strong binding to distearoylphosphatidylcholine, but weak binding to dimyristoyl-, 1-palmitoyl-2-linoleoyl-, and dilinoleoylphosphatidylcholine. Unlabeled SP-A readily competed with labeled SP-A for phospholipid binding. SP-A strongly bound dipalmitoylglycerol produced by phospholipase C treatment of dipalmitoylphosphatidylcholine, but not palmitic acid. This protein also failed to bind lysophosphatidylcholine produced by phospholipase A2 treatment of dipalmitoylphosphatidylcholine. 125I-SP-A shows almost no binding to dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylethanolamine. The addition of 10 mM EGTA into the binding buffer reduced much of the 125I-SP-A binding to phospholipids. Excess deglycosylated SP-A competed with labeled SP-A for binding to dipalmitoylphosphatidylcholine, but the excess collagenase-resistant fragment of SP-A failed.

  17. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1')anilinonaphthalene binding to intestinal fatty acid binding protein.

    PubMed Central

    Kirk, W R; Kurian, E; Prendergast, F G

    1996-01-01

    1-Sulfonato-8-(1')anilinonaphthalene (1,8-ANS) was employed as a fluorescent probe of the fatty acid binding site of recombinant rat intestinal fatty acid binding protein (1-FABP). The enhancement of fluorescence upon binding allowed direct determination of binding affinity by fluorescence titration experiments, and measurement of the effects on that affinity of temperature, pH, and ionic strength. Solvent isotope effects were also determined. These data were compared to results from isothermal titration calorimetry. We obtained values for the enthalpy and entropy of this interaction at a variety of temperatures, and hence determined the change in heat capacity of the system consequent upon binding. The ANS-1-FABP is enthalpically driven; above approximately 14 degrees C it is entropically opposed, but below this temperature the entropy makes a positive contribution to the binding. The changes we observe in both enthalpy and entropy of binding with temperature can be derived from the change in heat capacity upon binding by integration, which demonstrates the internal consistency of our results. Bound ANS is displaced by fatty acids and can itself displace fatty acids bound to I-FABP. The binding site for ANS appears to be inside the solvent-containing cavity observed in the x-ray crystal structure, the same cavity occupied by fatty acid. From the fluorescence spectrum and from an inversion of the Debye-Hueckel formula for the activity coefficients as a function of added salt, we inferred that this cavity is fairly polar in character, which is in keeping with inferences drawn from the x-ray structure. The binding affinity of ANS is considered to be a consequence of both electrostatic and conditional hydrophobic effects. We speculate that the observed change in heat capacity is produced mainly by the displacement of strongly hydrogen-bonded waters from the protein cavity. PMID:8770188

  18. Roxarsone binding to soil-derived dissolved organic matter: Insights from multi-spectroscopic techniques.

    PubMed

    Fu, Qing-Long; He, Jian-Zhou; Blaney, Lee; Zhou, Dong-Mei

    2016-07-01

    The fate and transport of roxarsone (ROX), a widely used organoarsenic feed additive, in soil is significantly influenced by the ubiquitous presence of soil-derived dissolved organic matter (DOM). In this study, fluorescence quenching titration and two-dimensional correlation spectroscopy (2D-COS) were employed to study ROX binding to DOM. Binding mechanisms were revealed by fluorescence lifetime measurement and Fourier transform infrared spectroscopy (FTIR). Humic- and protein-like fluorophores were identified in the excitation-emission matrix and synchronous fluorescence spectra of DOM. The conditional stability constant (log KC) for ROX binding to DOM was found to be 5.06, indicating that ROX was strongly bound to DOM. The binding order of ROX to DOM fluorophores revealed by 2D-COS followed the sequence of protein-like fluorophore ≈ the longer wavelength excited humic-like (L-humic-like) fluorophore > the shorter wavelength excited humic-like (S-humic-like) fluorophore. 2D-COS resolved issues with peak overlapping and allowed further exploration of the interaction between ROX and DOM. Results of fluorescence lifetime and FTIR spectra demonstrated that ROX interacted with DOM through the hydroxyl, amide II, carboxyl, aliphatic CH, and NO2 groups, yielding stable DOM-ROX complexes. The strong interaction between ROX and DOM implies that DOM plays an important role in the environmental fate of ROX in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Interaction of ruthenium red with Ca2(+)-binding proteins

    SciTech Connect

    Charuk, J.H.; Pirraglia, C.A.; Reithmeier, R.A. )

    1990-07-01

    The interaction of ruthenium red, ((NH3)5Ru-O-Ru(NH3)4-O-Ru(NH3)5)Cl6.4H2O, with various Ca2(+)-binding proteins was studied. Ruthenium red inhibited Ca2+ binding to the sarcoplasmic reticulum protein, calsequestrin, immobilized on Sepharose 4B. Furthermore, ruthenium red bound to calsequestrin with high affinity (Kd = 0.7 microM; Bmax = 218 nmol/mg protein). The dye stained calsequestrin in sodium dodecyl sulfate-polyacrylamide gels or on nitrocellulose paper and was displaced by Ca2+ (Ki = 1.4 mM). The specificity of ruthenium red staining of several Ca2(+)-binding proteins was investigated by comparison with two other detection methods, 45Ca2+ autoradiography and the Stains-all reaction. Ruthenium red bound to the same proteins detected by the 45Ca2+ overlay technique. Ruthenium red stained both the erythrocyte Band 3 anion transporter and the Ca2(+)-ATPase of skeletal muscle sarcoplasmic reticulum. Ruthenium red also stained the EF hand conformation Ca2(+)-binding proteins, calmodulin, troponin C, and S-100. This inorganic dye provides a simple, rapid method for detecting various types of Ca2(+)-binding proteins following electrophoresis.

  20. Modulation of Auxin-Binding Proteins in Cell Suspensions 1

    PubMed Central

    LoSchiavo, Fiorella; Filippini, Francesco; Cozzani, Fabrizio; Vallone, Daniela; Terzi, Mario

    1991-01-01

    This paper shows that the level of 2,4-dichlorophenoxyacetic acid (2,4-D) in the medium determines the level of auxin-binding proteins in the membranes of carrot, Daucus carota, cells grown in suspension. This induction takes slightly more than 2 hours to complete and can be elicited by natural as well as synthetic auxins. The auxin binding sites thus generated, which are pronase-sensitive, bind 2,4-D, indoleacetic acid, and naphthalene-acetic acid (NAA) equally well. However both α- and β-NAA bind, whereas only α-NAA is effective in the inductive process. Cells committed to embryogeny (proembryogenic masses) do not respond to auxin, i.e. their level of auxin-binding proteins remains very low, and they do not seem to synthesize the hormone, as indicated by inhibitor studies. Sensitivity to, and production of, auxin, begins when the embryo becomes polarized, i.e. at postglobular stage. PMID:16668416

  1. Lipid A binding proteins in macrophages detected by ligand blotting

    SciTech Connect

    Hampton, R.Y.; Golenbock, D.T.; Raetz, C.R.H.

    1987-05-01

    Endotoxin (LPS) stimulates a variety of eukaryotic cells. These actions are involved in the pathogenesis of Gram-negative septicemia. The site of action of the LPS toxic moiety, lipid A (LA), is unclear. Their laboratory has previously identified a bioactive LA precursor lipid IV/sub A/, which can be enzymatically labeled with /sup 32/P/sub i/ (10/sup 9/ dpm/nmole) and purified (99%). They now show that this ligand binds to specific proteins immobilized on nitrocellulose (NC) from LPS-sensitive RAW 264.7 cultured macrophages. NC blots were incubated with (/sup 32/P)-IV/sub A/ in a buffer containing BSA, NaCl, polyethylene glycol, and azide. Binding was assessed using autoradiography or scintillation counting. Dot blot binding of the radioligand was inhibited by excess cold IV/sub A/, LA, or ReLPS but not by phosphatidylcholine, cardiolipin, phosphatidylinositol, or phosphatidic acid. Binding was trypsin-sensitive and dependent on protein concentration. Particulate macrophage proteins were subjected to SDS-PAGE and then electroblotted onto NC. Several discrete binding proteins were observed. Identical treatment of fetal bovine serum or molecular weight standards revealed no detectable binding. By avoiding high nonspecific binding of intact membranes, this ligand blotting assay may be useful in elucidating the molecular actions of LPS.

  2. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment

    PubMed Central

    Mollica, Luca; Bessa, Luiza M.; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert

    2016-01-01

    In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the “fly-casting” hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context. PMID:27668217

  3. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment.

    PubMed

    Mollica, Luca; Bessa, Luiza M; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert

    2016-01-01

    In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the "fly-casting" hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context.

  4. Sequence-motif Detection of NAD(P)-binding Proteins: Discovery of a Unique Antibacterial Drug Target

    NASA Astrophysics Data System (ADS)

    Hua, Yun Hao; Wu, Chih Yuan; Sargsyan, Karen; Lim, Carmay

    2014-09-01

    Many enzymes use nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate (NAD(P)) as essential coenzymes. These enzymes often do not share significant sequence identity and cannot be easily detected by sequence homology. Previously, we determined all distinct locally conserved pyrophosphate-binding structures (3d motifs) from NAD(P)-bound protein structures, from which 1d sequence motifs were derived. Here, we aim to establish the precision of these 3d and 1d motifs to annotate NAD(P)-binding proteins. We show that the pyrophosphate-binding 3d motifs are characteristic of NAD(P)-binding proteins, as they are rarely found in nonNAD(P)-binding proteins. Furthermore, several 1d motifs could distinguish between proteins that bind only NAD and those that bind only NADP. They could also distinguish between NAD(P)-binding proteins from nonNAD(P)-binding ones. Interestingly, one of the pyrophosphate-binding 3d and corresponding 1d motifs was found only in enoyl-acyl carrier protein reductases, which are enzymes essential for bacterial fatty acid biosynthesis. This unique 3d motif serves as an attractive novel drug target, as it is conserved across many bacterial species and is not found in human proteins.

  5. Autoantigenic targets of B-cell receptors derived from chronic lymphocytic leukemias bind to and induce proliferation of leukemic cells.

    PubMed

    Zwick, Carsten; Fadle, Natalie; Regitz, Evi; Kemele, Maria; Stilgenbauer, Stephan; Bühler, Andreas; Pfreundschuh, Michael; Preuss, Klaus-Dieter

    2013-06-06

    Antigenic targets of the B-cell receptor (BCR) derived from malignant cells in chronic lymphocytic leukemia (CLL) might play a role in the pathogenesis of this neoplasm. We screened human tissue-derived protein macroarrays with antigen-binding fragments derived from 47 consecutive cases of CLL. An autoantigenic target was identified for 12/47 (25.5%) of the cases, with 3 autoantigens being the target of the BCRs from 2 patients each. Recombinantly expressed autoantigens bound specifically to the CLL cells from which the BCR used for the identification of the respective autoantigen was derived. Moreover, binding of the autoantigen to the respective leukemic cells induced a specific activation and proliferation of these cells. In conclusion, autoantigens are frequent targets of CLL-BCRs. Their specific binding to and induction of proliferation in the respective leukemic cells provide the most convincing evidence to date for the long-time hypothesized role of autoantigens in the pathogenesis of CLL.

  6. Basic Amino Acid Residues of Human Eosinophil Derived Neurotoxin Essential for Glycosaminoglycan Binding

    PubMed Central

    Hung, Ta-Jen; Chang, Wei-Tang; Tomiya, Noboru; Lee, Yuan-Chuan; Chang, Hao-Teng; Chen, Chien-Jung; Kuo, Ping-Hsueh; Fan, Tan-chi; Chang, Margaret Dah-Tsyr

    2013-01-01

    Human eosinophil derived neurotoxin (EDN), a granule protein secreted by activated eosinophils, is a biomarker for asthma in children. EDN belongs to the human RNase A superfamily possessing both ribonucleolytic and antiviral activities. EDN interacts with heparin oligosaccharides and heparin sulfate proteoglycans on bronchial epithelial Beas-2B cells. In this study, we demonstrate that the binding of EDN to cells requires cell surface glycosaminoglycans (GAGs), and the binding strength between EDN and GAGs depends on the sulfation levels of GAGs. Furthermore, in silico computer modeling and in vitro binding assays suggest critical roles for the following basic amino acids located within heparin binding regions (HBRs) of EDN 34QRRCKN39 (HBR1), 65NKTRKN70 (HBR2), and 113NRDQRRD119 (HBR3) and in particular Arg35, Arg36, and Arg38 within HBR1, and Arg114 and Arg117 within HBR3. Our data suggest that sulfated GAGs play a major role in EDN binding, which in turn may be related to the cellular effects of EDN. PMID:24065103

  7. Basic amino acid residues of human eosinophil derived neurotoxin essential for glycosaminoglycan binding.

    PubMed

    Hung, Ta-Jen; Chang, Wei-Tang; Tomiya, Noboru; Lee, Yuan-Chuan; Chang, Hao-Teng; Chen, Chien-Jung; Kuo, Ping-Hsueh; Fan, Tan-chi; Chang, Margaret Dah-Tsyr

    2013-09-16

    Human eosinophil derived neurotoxin (EDN), a granule protein secreted by activated eosinophils, is a biomarker for asthma in children. EDN belongs to the human RNase A superfamily possessing both ribonucleolytic and antiviral activities. EDN interacts with heparin oligosaccharides and heparin sulfate proteoglycans on bronchial epithelial Beas-2B cells. In this study, we demonstrate that the binding of EDN to cells requires cell surface glycosaminoglycans (GAGs), and the binding strength between EDN and GAGs depends on the sulfation levels of GAGs. Furthermore, in silico computer modeling and in vitro binding assays suggest critical roles for the following basic amino acids located within heparin binding regions (HBRs) of EDN 34QRRCKN39 (HBR1), 65NKTRKN70 (HBR2), and 113NRDQRRD119 (HBR3) and in particular Arg35, Arg36, and Arg38 within HBR1, and Arg114 and Arg117 within HBR3. Our data suggest that sulfated GAGs play a major role in EDN binding, which in turn may be related to the cellular effects of EDN.

  8. Metal-binding proteins as metal pollution indicators

    SciTech Connect

    Hennig, H.F.

    1986-03-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effects on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass.

  9. Metal-binding proteins as metal pollution indicators.

    PubMed Central

    Hennig, H F

    1986-01-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effects on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass. PMID:3709437

  10. Protein binding elements in the human beta-polymerase promoter.

    PubMed Central

    Englander, E W; Wilson, S H

    1990-01-01

    The core promoter for human DNA polymerase beta contains discrete binding sites for mammalian nuclear proteins, as revealed by DNasel footprinting and gel mobility shift assays. Two sites correspond to sequences identical with the Sp1 factor binding element, and a third site includes an eight residue palindromic sequence, TGACGTCA, known as the CRE element of several cAMP responsive promoters; the 5 to 10 residues flanking this palindrome on each side have no apparent sequence homology with known elements in other promoters. Nuclear extract from a variety of tissues and cells were examined; these included rat liver and testes and cultured cells of human and hamster origin. The DNasel footprint is strong over and around the palindromic element for each of the extracts and is equivalent in size (approximately 22 residues); footprinting over the Sp1 binding sites is seen also. Two potential tissue-specific binding sites, present in liver but not in testes, were found corresponding to residues -13 to -10 and +33 to +48, respectively. Protein binding to the palindromic element was confirmed by an electrophoretic mobility shift assay with the core promoter as probe. Binding specificity of the 22 residue palindromic element, as revealed by oligonucleotide competition, is different from that of AP-1 binding element. Controlled proteolysis with trypsin was used to study structural properties of proteins forming the mobility shift bands. Following digestion with trypsin, most of the palindrome binding activity of each extract corresponded to a sharp, faster migrating band, potentially representing a DNA binding domain of the palindrome binding protein. Images PMID:2315044

  11. Odorant-binding protein: localization to nasal glands and secretions.

    PubMed Central

    Pevsner, J; Sklar, P B; Snyder, S H

    1986-01-01

    An odorant-binding protein (OBP) was isolated from bovine olfactory and respiratory mucosa. We have produced polyclonal antisera to this protein and report its immunohistochemical localization to mucus-secreting glands of the olfactory and respiratory mucosa. Although OBP was originally isolated as a pyrazine binding protein, both rat and bovine OBP also bind the odorants [3H]methyldihydrojasmonate and 3,7-dimethyl-octan-1-ol as well as 2-isobutyl-3-[3H]methoxypyrazine. We detect substantial odorant-binding activity attributable to OBP in secreted rat nasal mucus and tears but not in saliva, suggesting a role for OBP in transporting or concentrating odorants. Images PMID:3523479

  12. Detecting O2 binding sites in protein cavities

    PubMed Central

    Kitahara, Ryo; Yoshimura, Yuichi; Xue, Mengjun; Kameda, Tomoshi; Mulder, Frans A. A.

    2016-01-01

    Internal cavities are important elements in protein structure, dynamics, stability and function. Here we use NMR spectroscopy to investigate the binding of molecular oxygen (O2) to cavities in a well-studied model for ligand binding, the L99A mutant of T4 lysozyme. On increasing the O2 concentration to 8.9 mM, changes in 1H, 15N, and 13C chemical shifts and signal broadening were observed specifically for backbone amide and side chain methyl groups located around the two hydrophobic cavities of the protein. O2-induced longitudinal relaxation enhancements for amide and methyl protons could be adequately accounted for by paramagnetic dipolar relaxation. These data provide the first experimental demonstration that O2 binds specifically to the hydrophobic, and not the hydrophilic cavities, in a protein. Molecular dynamics simulations visualized the rotational and translational motions of O2 in the cavities, as well as the binding and egress of O2, suggesting that the channel consisting of helices D, E, G, H, and J could be the potential gateway for ligand binding to the protein. Due to strong paramagnetic relaxation effects, O2 gas-pressure NMR measurements can detect hydrophobic cavities when populated to as little as 1%, and thereby provide a general and highly sensitive method for detecting oxygen binding in proteins. PMID:26830762

  13. Binding and measuring natural rubber latex proteins on glove powder.

    PubMed

    Tomazic-Jezic, Vesna J; Lucas, Anne D; Sanchez, Beatriz A

    2004-01-01

    Cornstarch used as a donning powder on natural rubber latex (NRL) gloves adsorbs NRL proteins. During glove use, powder-carried proteins can be aerosolized and can cause allergic reactions in NRL sensitized individuals. The amount of NRL proteins bound to glove powder and its relative relationship to the total amount of proteins on the glove has not been studied, due to the difficulty in measuring proteins on powder. Using the ELISA inhibition assay for NRL proteins [Standard test method for the immunological measurement of antigenic protein in natural rubber and its products. In: The Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, 2000; ASTM D 64-0] we have investigated possible protocol modifications in order to include measurement of proteins bound to glove powder, as well as the water-extractable glove proteins. Possible interference of the starch itself was evaluated by adding clean cornstarch to the assay. No significant interference was observed with powder concentrations below 5 mg/mL. We analyzed 19 extracts of powdered surgical and examination gloves before and after removal of the particulate component. Comparison of NRL glove extracts with, and without, the cornstarch powder fraction indicated significant variations in the ratios of powder-bound protein and corresponding water-extractable protein. The ratios did not appear to correlate with either the total protein on the glove, the glove weight, or the total amount of powder on the glove. However, when virgin glove powders were exposed to NRL proteins, binding was proportional to the protein concentration in the suspension. Temperature in the range from 4 degrees C to 37 degrees C, did not affect binding intensity, while a higher pH resulted in a higher level of protein associated with, or bound to, the starch. The major differences in the propensity for NRL protein binding were observed among different glove powders. The data indicate that the amount of protein that binds to glove powder

  14. Theoretical studies of binding of mannose-binding protein to monosaccharides

    NASA Astrophysics Data System (ADS)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  15. Assembly of a π-π stack of ligands in the binding site of an acetylcholine-binding protein.

    PubMed

    Stornaiuolo, Mariano; De Kloe, Gerdien E; Rucktooa, Prakash; Fish, Alexander; van Elk, René; Edink, Ewald S; Bertrand, Daniel; Smit, August B; de Esch, Iwan J P; Sixma, Titia K

    2013-01-01

    Acetylcholine-binding protein is a water-soluble homologue of the extracellular ligand-binding domain of cys-loop receptors. It is used as a structurally accessible prototype for studying ligand binding to these pharmaceutically important pentameric ion channels, in particular to nicotinic acetylcholine receptors, due to conserved binding site residues present at the interface between two subunits. Here we report that an aromatic conjugated small molecule binds acetylcholine-binding protein in an ordered π-π stack of three identical molecules per binding site, two parallel and one antiparallel. Acetylcholine-binding protein stabilizes the assembly of the stack by aromatic contacts. Thanks to the plasticity of its ligand-binding site, acetylcholine-binding protein can accommodate the formation of aromatic stacks of different size by simple loop repositioning and minimal adjustment of the interactions. This type of supramolecular binding provides a novel paradigm in drug design.

  16. Mining the characteristic interaction patterns on protein-protein binding interfaces.

    PubMed

    Li, Yan; Liu, Zhihai; Han, Li; Li, Chengke; Wang, Renxiao

    2013-09-23

    Protein-protein interactions are observed in various biological processes. They are important for understanding the underlying molecular mechanisms and can be potential targets for developing small-molecule regulators of such processes. Previous studies suggest that certain residues on protein-protein binding interfaces are "hot spots". As an extension to this concept, we have developed a residue-based method to identify the characteristic interaction patterns (CIPs) on protein-protein binding interfaces, in which each pattern is a cluster of four contacting residues. Systematic analysis was conducted on a nonredundant set of 1,222 protein-protein binding interfaces selected out of the entire Protein Data Bank. Favored interaction patterns across different protein-protein binding interfaces were retrieved by considering both geometrical and chemical conservations. As demonstrated on two test tests, our method was able to predict hot spot residues on protein-protein binding interfaces with good recall scores and acceptable precision scores. By analyzing the function annotations and the evolutionary tree of the protein-protein complexes in our data set, we also observed that protein-protein interfaces sharing common characteristic interaction patterns are normally associated with identical or similar biological functions.

  17. Evaluation of water displacement energetics in protein binding sites with grid cell theory.

    PubMed

    Gerogiokas, G; Southey, M W Y; Mazanetz, M P; Heifetz, A; Hefeitz, A; Bodkin, M; Law, R J; Michel, J

    2015-04-07

    Excess free energies, enthalpies and entropies of water in protein binding sites were computed via classical simulations and Grid Cell Theory (GCT) analyses for three pairs of congeneric ligands in complex with the proteins scytalone dehydratase, p38α MAP kinase and EGFR kinase respectively. Comparative analysis is of interest since the binding modes for each ligand pair differ in the displacement of one binding site water molecule, but significant variations in relative binding affinities are observed. Protocols that vary in their use of restraints on protein and ligand atoms were compared to determine the influence of protein-ligand flexibility on computed water structure and energetics, and to assess protocols for routine analyses of protein-ligand complexes. The GCT-derived binding affinities correctly reproduce experimental trends, but the magnitude of the predicted changes in binding affinities is exaggerated with respect to results from a previous Monte Carlo Free Energy Perturbation study. Breakdown of the GCT water free energies into enthalpic and entropic components indicates that enthalpy changes dominate the observed variations in energetics. In EGFR kinase GCT analyses revealed that replacement of a pyrimidine by a cyanopyridine perturbs water energetics up three hydration shells away from the ligand.

  18. Immunochemical analysis of acetaminophen covalent binding to proteins. Partial characterization of the major acetaminophen-binding liver proteins.

    PubMed

    Bartolone, J B; Birge, R B; Sparks, K; Cohen, S D; Khairallah, E A

    1988-12-15

    A sensitive immunoassay for detecting acetaminophen (APAP) bound to proteins was developed using an affinity purified antibody directed against the N-acetylated end of the APAP molecule. Western blots of electrophoretically resolved liver proteins taken from mice given an hepatotoxic dose of APAP demonstrated that nearly 85% of the total detectable protein-bound APAP was covalently associated with proteins of 44 and 58 kD. Pretreatment of liver extracts with the sulfhydryl-specific reagent, N-ethylmaleimide (NEM), prior to derivatization with the reactive metabolite of APAP, N-acetyl-p-benzoquinone imine (NAPQI), greatly reduced immunochemically detectable APAP-protein adducts and indicated that the antibody detects protein-thiol conjugates of APAP. To investigate the basis of the binding selectivity in vivo, a variety of systems which yielded APAP-protein adducts were analyzed. Systems which activate APAP enzymatically, as in hepatocyte suspensions or in post-mitochondrial (S9) fractions fortified with an NADPH-regenerating system, resulted in a protein binding profile similar to that produced in vivo. Conversely, when extracts or cells were treated with chemically synthesized NAPQI, an alternative protein binding profile was obtained. Two-dimensional electrophoretic analysis of the reduced protein thiol (PSH) content of liver proteins using [3H]NEM labeling revealed that the 58 kD APAP-binding proteins were rich in PSH, whereas the major 44 kD binding protein had virtually no detectable PSH. Many PSH-rich proteins that were not arylated in vivo did bind NAPQI in vitro. However, the 44 kD proteins were not arylated when chemically synthesized NAPQI was added to homogenates or cell suspensions. The present data further suggest that, in addition to the amount and reactivity of free protein sulfhydryls, the cellular localization with respect to the cytochrome P-450 activation site may influence the susceptibility of proteins to NAPQI binding. These findings signal

  19. Structural mechanism of the simultaneous binding of two drugs to a multidrug-binding protein

    PubMed Central

    Schumacher, Maria A; Miller, Marshall C; Brennan, Richard G

    2004-01-01

    The structural basis of simultaneous binding of two or more different drugs by any multidrug-binding protein is unknown and also how this can lead to a noncompetitive, uncompetitive or cooperative binding mechanism. Here, we describe the crystal structure of the Staphylococcus aureus multidrug-binding transcription repressor, QacR, bound simultaneously to ethidium (Et) and proflavin (Pf). The structure underscores the plasticity of the multidrug-binding pocket and reveals an alternative, Pf-induced binding mode for Et. To monitor the simultaneous binding of Pf and Et to QacR, as well as to determine the effects on the binding affinity of one drug when the other drug is prebound, a novel application of near-ultraviolet circular dichroism (UVCD) was developed. The UVCD equilibrium-binding studies revealed identical affinities of Pf for QacR in the presence or absence of Et, but significantly diminished affinity of Et for QacR when Pf is prebound, findings that are readily explicable by their structures. The principles for simultaneous binding of two different drugs discerned here are likely employed by the multidrug efflux transporters. PMID:15257299

  20. Ligand binding to a high-energy partially unfolded protein.

    PubMed

    Kasper, Joseph R; Park, Chiwook

    2015-01-01

    The conformational energy landscape of a protein determines populations of all possible conformations of the protein and also determines the kinetics of the conversion between the conformations. Interaction with ligands influences the conformational energy landscapes of proteins and shifts populations of proteins in different conformational states. To investigate the effect of ligand binding on partial unfolding of a protein, we use Escherichia coli dihydrofolate reductase (DHFR) and its functional ligand NADP(+) as a model system. We previously identified a partially unfolded form of DHFR that is populated under native conditions. In this report, we determined the free energy for partial unfolding of DHFR at varying concentrations of NADP(+) and found that NADP(+) binds to the partially unfolded form as well as the native form. DHFR unfolds partially without releasing the ligand, though the binding affinity for NADP(+) is diminished upon partial unfolding. Based on known crystallographic structures of NADP(+) -bound DHFR and the model of the partially unfolded protein we previously determined, we propose that the adenosine-binding domain of DHFR remains folded in the partially unfolded form and interacts with the adenosine moiety of NADP(+) . Our result demonstrates that ligand binding may affect the conformational free energy of not only native forms but also high-energy non-native forms.

  1. Inhibition of tristetraprolin deadenylation by poly(A) binding protein

    PubMed Central

    Rowlett, Robert M.; Chrestensen, Carol A.; Schroeder, Melanie J.; Harp, Mary G.; Pelo, Jared W.; Shabanowitz, Jeffery; DeRose, Robert; Hunt, Donald F.; Sturgill, Thomas W.; Worthington, Mark T.

    2008-01-01

    Tristetraprolin (TTP) is the prototype for a family of RNA binding proteins that bind the tumor necrosis factor (TNF) messenger RNA AU-rich element (ARE), causing deadenylation of the TNF poly(A) tail, RNA decay, and silencing of TNF protein production. Using mass spectrometry sequencing we identified poly(A) binding proteins-1 and -4 (PABP1 and PABP4) in high abundance and good protein coverage from TTP immunoprecipitates. PABP1 significantly enhanced TNF ARE binding by RNA EMSA and prevented TTP-initiated deadenylation in an in vitro macrophage assay of TNF poly(A) stability. Neomycin inhibited TTP-promoted deadenylation at concentrations shown to inhibit the deadenylases poly(A) ribonuclease and CCR4. Stably transfected RAW264.7 macrophages overexpressing PABP1 do not oversecrete TNF; instead they upregulate TTP protein without increasing TNF protein production. The PABP1 inhibition of deadenylation initiated by TTP does not require the poly(A) binding regions in RRM1 and RRM2, suggesting a more complicated interaction than simple masking of the poly(A) tail from a 3′-exonuclease. Like TTP, PABP1 is a substrate for p38 MAP kinase. Finally, PABP1 stabilizes cotransfected TTP in 293T cells and prevents the decrease in TTP levels seen with p38 MAP kinase inhibition. These findings suggest several levels of functional antagonism between TTP and PABP1 that have implications for regulation of unstable mRNAs like TNF. PMID:18467502

  2. A Binding Model and Similarity for Flexible Modular Proteins

    NASA Astrophysics Data System (ADS)

    Máté, Gabriell; Feinauer, Christoph J.; Hofmann, Andreas; Goldt, Sebastian; Liu, Lei; Heermann, Dieter W.

    2013-03-01

    Modular proteins are one of the most commonly found disordered protein motifs. An example is CTCF, a protein that has been named the master waver of the genome i.e., the organizer of the 3D structure of the chromosomes. Using NMR and numerical simulations, much progress has been made in understanding their various functions and ways of binding. Modular proteins are often composed of protein modules interconnected by flexible linkers. They can be imagined as ``beads on a string.'' We argue that when the number of beads is small, these structures behave like a self avoiding random walk. Nevertheless, when binding to a target, linkers can fold in more ordered and stable states. At the same time, folding can influence functional roles. We show that the flexibility of the linkers can boost binding affinity. As a result of flexibility, the conformations of these proteins before and after binding are different. So this implies that generic binding site prediction methods may fail. To deal with this we introduce a new methodology to characterize and compare these flexible structures. Employing topological concepts we propose a method which intrinsically fuses topology and geometry. GM gratefully acknowledges support from the HGS-MathComp and the RTG 1653.

  3. Assessing Energetic Contributions to Binding from a Disordered Region in a Protein-Protein Interaction

    SciTech Connect

    S Cho; C Swaminathan; D Bonsor; M Kerzic; R Guan; J Yang; C Kieke; P Anderson; D Kranz; et al.

    2011-12-31

    Many functional proteins are at least partially disordered prior to binding. Although the structural transitions upon binding of disordered protein regions can influence the affinity and specificity of protein complexes, their precise energetic contributions to binding are unknown. Here, we use a model protein-protein interaction system in which a locally disordered region has been modified by directed evolution to quantitatively assess the thermodynamic and structural contributions to binding of disorder-to-order transitions. Through X-ray structure determination of the protein binding partners before and after complex formation and isothermal titration calorimetry of the interactions, we observe a correlation between protein ordering and binding affinity for complexes along this affinity maturation pathway. Additionally, we show that discrepancies between observed and calculated heat capacities based on buried surface area changes in the protein complexes can be explained largely by heat capacity changes that would result solely from folding the locally disordered region. Previously developed algorithms for predicting binding energies of protein-protein interactions, however, are unable to correctly model the energetic contributions of the structural transitions in our model system. While this highlights the shortcomings of current computational methods in modeling conformational flexibility, it suggests that the experimental methods used here could provide training sets of molecular interactions for improving these algorithms and further rationalizing molecular recognition in protein-protein interactions.

  4. Important amino acid residues involved in folding and binding of protein-protein complexes.

    PubMed

    Kulandaisamy, A; Lathi, V; ViswaPoorani, K; Yugandhar, K; Gromiha, M Michael

    2017-01-01

    Protein-protein interactions perform diverse functions in living organism. The integrative analysis of binding and stabilizing residues will provide insights on the functions of protein-protein complexes. In this work, we constructed a non-redundant dataset of 261 protein-protein complexes and identified binding site residues, stabilizing residues and common to both binding and stabilizing, termed as "key residues". We found that 6.1% of residues are involved in binding and 6.8% of residues are important for folding and stability. Among them, only 2% are involved in both folding and binding, which shows the importance and specific roles played by these residues. The key residues have been analyzed based on protein function, binding affinity, rigid and flexible complexes, amino acid preference and structure based parameters. We found that high affinity complexes have more key residues than low affinity complexes. In addition, key residues are enriched with the combination of specific hydrophobic and charged/polar residues. Atomic contacts between interacting proteins have distinct preferences of polar-polar, nonpolar-nonpolar and polar-nonpolar contacts in different functional classes of protein-protein complexes. Further, the influence of sequence and structural parameters such as surrounding hydrophobicity, solvent accessibility, secondary structure, long-range order and conservation score has been discussed. The analysis can be used to comprehend the interplay between stability and binding in protein-protein complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Oxysterol binding protein-related protein 8 mediates the cytotoxicity of 25-hydroxycholesterol[S

    PubMed Central

    Li, Jiwei; Zheng, Xiuting; Lou, Ning; Zhong, Wenbin; Yan, Daoguang

    2016-01-01

    Oxysterols are 27-carbon oxidized derivatives of cholesterol or by-products of cholesterol biosynthesis that can induce cell apoptosis in addition to a number of other bioactions. However, the mechanisms underlying this cytotoxicity are not completely understood. ORP8 is a member of the oxysterol binding protein-related protein (ORP) family, implicated in cellular lipid homeostasis, migration, and organization of the microtubule cytoskeleton. Here, we report that 25-hydroxycholesterol (OHC) induced apoptosis of the hepatoma cell lines, HepG2 and Huh7, via the endoplasmic reticulum (ER) stress response pathway, and ORP8 overexpression resulted in a similar cell response as 25-OHC, indicating a putative functional relationship between oxysterol cytotoxicity and ORP8. Further experiments demonstrated that ORP8 overexpression significantly enhanced the 25-OHC effect on ER stress and apoptosis in HepG2 cells. A truncated ORP8 construct lacking the ligand-binding domain or a closely related protein, ORP5, was devoid of this activity, evidencing for specificity of the observed effects. Importantly, ORP8 knockdown markedly dampened such responses to 25-OHC. Taken together, the present study suggests that ORP8 may mediate the cytotoxicity of 25-OHC. PMID:27530118

  6. A novel lipid-binding protein from the cestode Moniezia expansa.

    PubMed Central

    Janssen, D; Barrett, J

    1995-01-01

    A lipid-binding protein (LBP) has been purified from the cytosol of the cestode Moniezia expansa. The native LBP was found to be an oligomer of approx. 250 kDa, consisting of 11 kDa monomers. The LBP bound saturated and unsaturated fatty acids, but not their CoA derivatives, with KD values in the range 0.68-7.8 microM. Cholesterol, dihydroergosterol, bilirubin and retinoids were also bound, but alpha-tocopherol, bile acids, alk-2-enals and alka-2,4-dienals were not. Evidence suggests that there are two binding sites per subunit, each with different specificities. The fluorescent fatty acid 11-[(5-dimethylaminonaphthalene-1-sulphonyl)amino]undecanoic acid (DAUDA) and retinol both showed an additional high-affinity binding site with a density of approximately 0.1 per subunit, suggesting specific binding to the oligomer. The amino acid composition of Moniezia LBP was distinct from that of previously characterized fatty acid-binding proteins (FABPs). The protein was not N-terminally blocked and yielded a unique amino acid sequence, unrelated to that of any known FABP; there was also evidence of microheterogeneity. Polyclonal antibodies raised to the Moniezia protein did not cross-react with mammalian, nematode or digenean FABP. The Gibbs free energy for protein folding (13.02 kJ/mol; 3.1 kcal/mol), determined by urea denaturation, was identical for both the native and ligand-bound Moniezia LBP. CD spectra showed that the Moniezia protein contained 36% alpha-helix and that the secondary structure underwent only minor changes on ligand binding. Moniezia LBP binds a range of anthelmintics, with KD values again in the range 0.66-7.3 microM. It is possible that, in helminths, binding proteins may play a role in determining the specificity and site of action of anthelmintics. Images Figure 2 Figure 10 PMID:7575480

  7. Dose-dependency of theophylline clearance and protein binding.

    PubMed Central

    Fleetham, J A; Bird, C E; Nakatsu, K; Wigle, R D; Munt, P W

    1981-01-01

    Dose-dependency in theophylline pharmacokinetics and protein binding characteristics was examined in 10 healthy male volunteers. Theophylline disposition was determined after an intravenous infusion of both 1 mg/kg and 6 mg/kg aminophylline in a randomised crossover study. There was considerable intrasubject variability in theophylline clearance but no significant dose-dependency. Theophylline protein binding was assessed by equilibrium dialysis at varying theophylline concentrations. The percentage of free non-protein bound theophylline was significantly increased at high theophylline concentrations. This increase in free theophylline would lead to a non-linear increase in the risk of toxicity with increasing drug concentration. Images PMID:7314008

  8. Photophysics of ANS. I. Protein-ANS complexes: Intestinal fatty acid binding protein and single-trp mutants.

    PubMed

    Klimtchuk, Elena; Venyaminov, Sergei; Kurian, Elizabeth; Wessels, William; Kirk, William; Prendergast, Franklyn G

    2007-01-01

    We continue investigations into the physical chemistry of intestinal fatty acid binding protein, I-FABP, and its interaction with ANS and other ligands [cf references [Kirk, W., E. Kurian, and F. Prendergast. 1996. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-anilinonaphthalene binding to intestinal fatty acid binding protein. Biophys. J. 70: 69-83., Kurian, E., W. Kirk, and F. Prendergast. 1996. Affinity of fatty acid for rRat intestinal fatty acid binding protein: Further examination. Biochemistry. 35:3865-74]. The photophysics of the wt protein is compared with that in two mutants which lack respectively one or the other of two trp moieties, one of which, trp 82, is located near the binding region for the polar head group of ligands. These studies afford a look into how the fluorescence of the wt protein is established, that is, as an almost direct sum of the fluorescence of the two individual trp residues, and how this fluorescence is quenched upon binding to ANS. Though we have access to all the relevant spectroscopic and geometric information necessary to specify in detail the Foerster-Dexter energy transfer model, the quenching process is not explicable in terms of very-weak coupling, as is usually assumed in fluorescence studies in protein systems, but in terms of a stronger effect which goes beyond the simple very-weak dipole:dipole formalism. The quenching of trp emission by bound ANS is not as great as that anticipated by ordinary resonance energy transfer, neither is the quenching observed in the reduced lifetimes of the trp emission upon ANS binding as great as that observed in steady-state intensity. However the observed steady-state quenching is explicable in terms derived from the lifetime measurements, together with observed spectral band shifts, by the exciton coupling model we invoke here.

  9. Dependence of Binding Free Energies between RNA Nucleobases and Protein Side Chains on Local Dielectric Properties.

    PubMed

    de Ruiter, Anita; Polyansky, Anton A; Zagrovic, Bojan

    2017-09-12

    In order to fully understand the microscopic origins of binding specificity between nucleic acids and proteins, it is imperative to study the dependence of the binding preferences between nucleobases and protein side chains on the properties of the environment. Here, we employ molecular dynamics simulations and umbrella sampling to derive the potentials of mean force and the associated absolute binding free energies between the four standard RNA nucleobases and the side chains of aspartic acid and tryptophan in water/methanol mixtures exhibiting a wide range of dielectric constants. In addition to their opposing character when it comes to hydrophobicity, aspartate and tryptophan side chains were chosen because they exhibit the greatest change in binding free energies with nucleobases between pure water and methanol environments. We exploit a strong linear dependence of the derived ΔG values on the mole fraction of methanol to estimate the binding free energies of all possible combinations of different standard RNA nucleobases and side chains at multiple values of dielectric constants. Finally, we critically assess the recently proposed complementarity hypothesis concerning direct, coaligned binding between mRNAs and their cognate proteins in light of the present results.

  10. Actin and Actin-Binding Proteins.

    PubMed

    Pollard, Thomas D

    2016-08-01

    Organisms from all domains of life depend on filaments of the protein actin to provide structure and to support internal movements. Many eukaryotic cells use forces produced by actin polymerization for their motility, and myosin motor proteins use ATP hydrolysis to produce force on actin filaments. Actin polymerizes spontaneously, followed by hydrolysis of a bound adenosine triphosphate (ATP). Dissociation of the γ-phosphate prepares the polymer for disassembly. This review provides an overview of the properties of actin and shows how dozens of proteins control both the assembly and disassembly of actin filaments. These players catalyze nucleotide exchange on actin monomers, initiate polymerization, promote phosphate dissociation, cap the ends of polymers, cross-link filaments to each other and other cellular components, and sever filaments. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. DNA-binding proteins in plant mitochondria: implications for transcription.

    PubMed

    Gualberto, José M; Kühn, Kristina

    2014-11-01

    The structural complexity of plant mitochondrial genomes correlates with the variety of single-strand DNA-binding proteins found in plant mitochondria. Most of these are plant-specific and have roles in homologous recombination and genome maintenance. Mitochondrial nucleoids thus differ fundamentally between plants and yeast or animals, where the principal nucleoid protein is a DNA-packaging protein that binds double-stranded DNA. Major transcriptional cofactors identified in mitochondria of non-plant species are also seemingly absent from plants. This article reviews current knowledge on plant mitochondrial DNA-binding proteins and discusses that those may affect the accessibility and conformation of transcription start sites, thus functioning as transcriptional modulators without being dedicated transcription factors. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  12. Liver takes up retinol-binding protein from plasma

    SciTech Connect

    Gjoen, T.; Bjerkelund, T.; Blomhoff, H.K.; Norum, K.R.; Berg, T.; Blomhoff, R.

    1987-08-15

    Retinol is transported in plasma bound to a specific transport protein, retinol-binding protein. We prepared /sup 125/I-tyramine cellobiose-labeled rat retinol-binding protein and studied its tissue uptake 1, 5, and 24 h after intravenous injection into rats. The liver was the organ containing most radioactivity at all time points studied. After 5 and 24 h, 30 and 22% of the injected dose were recovered in liver, respectively. After separating the liver into parenchymal and nonparenchymal cells in the 5-h group, we found that both cell fractions contained approximately the same amount of radioactivity (per gram of liver). Most of the retinol-binding protein radioactivity in the nonparenchymal cell fraction was in the stellate cells. The implication of these results for a possible transfer mechanism for retinol between parenchymal and stellate cells is discussed.

  13. [Characterization of propofol binding to plasma proteins and possible interactions].

    PubMed

    Garrido, M J; Jiménez, R M; Rodríguez-Sasiaín, J M; Aguirre, C; Aguilera, L; Calvo, R

    1994-01-01

    a) To study the binding of propofol to proteins in plasma samples from healthy volunteers and in solutions of albumin and alpha 1-acid glycoprotein (AGA); b) to describe the nature of the bond and possible interactions with other substances that are potential displacers: salicylate, phenylbutazone, sulfisoxazole, tolbutamide, sodium valproate, sodium oleate and penbutolol; c) to assess the effect of propofol on the binding of specific markers and possible binding sites in the following proteins: 14C-warfarin, 3H-diazepam, 3H-midazolam, 3H-imidazole, 3H-penbutolol and 3H-morphine. The free fraction was obtained in all samples by ultrafiltration and measurement of the free concentration of propofol by liquid chromatography and of the markers by scintillation spectrometry. The free fraction of propofol in plasma was 0.98 +/- 0.12% and binding was not saturable. Albumin seems to play an important role (95% bound), whereas the participation of AGA was low (54% bound). Propofol did not affect the binding of any of the markers studied. Nor did the presence of other drugs at therapeutic plasma concentrations affect the binding of propofol. The binding of propofol to plasma proteins seems unlikely to cause drug interactions in clinical practice.

  14. Facilitated diffusion of DNA-binding proteins: efficient simulation with the method of excess collisions.

    PubMed

    Merlitz, Holger; Klenin, Konstantin V; Wu, Chen-Xu; Langowski, Jörg

    2006-04-07

    In this paper, a new method to efficiently simulate diffusion controlled second order chemical reactions is derived and applied to site-specific DNA-binding proteins. The protein enters a spherical cell and propagates via two competing modes, a free diffusion and a DNA-sliding mode, to search for its specific binding site in the center of the cell. There is no need for a straightforward simulation of this process. Instead, an alternative and exact approach is shown to be essentially faster than explicit random walk simulations. The speed-up of this novel simulation technique is rapidly growing with system size.

  15. A modified paper-binding procedure for the assay of nucleus-associated protein phosphokinases.

    PubMed

    Goueli, S A; Slungaard, R; Wilson, M J; Ahmed, K

    1980-05-01

    Previously existing paper-binding assay procedures gave results with large variations when employed for the measurement of nucleus-associated protein phosphokinase activities. However, a modified method, utilizing the binding of 32P-labeled phosphoprotein substrates to paper and employing washing procedures in 20% trichloroacetic acid at 60 degrees to 70 degrees C, gave highly reproducible results. This modified procedure was satisfactory with either chromatin or a nonhistone protein fraction derived therefrom as a source of enzyme, and dephosphophosvitin, lysine-rich histones, or casein as phosphoprotein substrates.

  16. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key

    PubMed Central

    Schroeder, Michael

    2013-01-01

    Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) – a drug’s ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a

  17. Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins

    PubMed Central

    Xu, Zhixiong; Meng, Xianzhang; Cai, Ying; Liang, Hong; Nagarajan, Lalitha; Brandt, Stephen J.

    2007-01-01

    The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and β-globin expression in erythroid progenitors. Finally, SSBP2 was demonstrated to inhibit Ldb1 and Lmo2 interaction with the E3 ubiquitin ligase RLIM, prevent RLIM-mediated Ldb1 ubiquitination, and protect Ldb1 and Lmo2 from proteasomal degradation. These results define a novel biochemical function for SSBPs in regulating the abundance of LIM domain and LIM domain-binding proteins. PMID:17437998

  18. Determinants of the plasma protein binding of theophylline in health.

    PubMed Central

    Buss, D; Leopold, D; Smith, A P; Routledge, P A

    1983-01-01

    1 The plasma protein binding of theophylline was determined after addition of [14C]-theophylline (15 micrograms/ml) to plasma from 24 healthy drug-free volunteers and equilibrium dialysis for 2 h at 37 degrees C. 2 The percentage of drug unbound was 60.0% +/- 2.2% (s.d.) with very little variation between individuals. The binding ratio of theophylline was not significantly related to the plasma albumin or alpha 1-acid glycoprotein (AAG) concentrations but was significantly, although weakly, negatively related to the logarithm of the non-esterified fatty acid concentration (NEFA) (r = 0.443, P less than 0.05). 3 Intravenous administration of heparin (1000 units) caused a significant rise in plasma NEFA concentration and in the percentage of drug unbound in plasma after equilibrium dialysis. 4 In human serum albumin solutions, the binding ratio of theophylline was significantly related to the albumin concentration and at the albumin concentration seen in the 24 normal subjects, the percentage of drug unbound was almost identical. Addition of AAG in physiological concentrations did not enhance theophylline binding but oleic acid, and to a lesser extent palmitic acid, reduced binding significantly. 5 The percentage of theophylline unbound in plasma varied markedly with pH so that at pH7 the percentage unbound was 52% greater than at pH 8. There was no evidence of concentration dependence of binding up to 140 micrograms/ml theophylline. 6 Theophylline appears to bind almost exclusively to albumin and its plasma protein binding varies little in healthy subjects, showing no concentration-dependence over the therapeutic range of concentrations. The binding is affected by pH and by NEFA concentration, however, and these factors may be of greater importance in disease states. Caution should be employed in the use of heparin in studies of plasma protein binding of theophylline. PMID:6849774

  19. Leucine/isoleucine/valine-binding protein contracts upon binding of ligand.

    PubMed

    Olah, G A; Trakhanov, S; Trewhella, J; Quiocho, F A

    1993-08-05

    Small-angle x-ray scattering and computer modeling have been used to study the effects of ligand binding to the leucine/isoleucine/valine-binding protein, an initial component of the high-affinity active transport system for branched-chain aliphatic amino acids in Escherichia coli. Measurements were made with no ligand present and with either L-leucine or L-valine present. Upon binding of either leucine or valine, there is a decrease in the radius of gyration, from 23.2 +/- 0.2 to 22.2 +/- 0.2 A, and in the maximum particle dimension, from 82 +/- 3 to 73 +/- 3 A. The x-ray structure of the unbound form has been determined and gives a radius of gyration and a maximum dimension consistent with the values found for the solution structure in this study (Sack, J. S., Saper, M. A., and Quiocho, F. A. (1989) J. Mol. Biol. 206, 171-191). The reduction in the radius of gyration and maximum dimension upon ligand binding can be accounted for by a substrate-induced cleft closure in a combined "hinge-twist" motion. Modeling of the substrate-bound state was done by comparison of this protein with another periplasmic binding protein (L-arabinose-binding protein), which possesses a similar two-lobe structure and for which the x-ray structure is known in its ligand-bound form.

  20. Mass spectrometry and NMR analysis of ligand binding by human liver fatty acid binding protein.

    PubMed

    Santambrogio, C; Favretto, F; D'Onofrio, M; Assfalg, M; Grandori, R; Molinari, H

    2013-08-01

    Human liver fatty acid binding protein (hL-FABP) is the most abundant cytosolic protein in the liver. This protein plays important roles associated to partitioning of fatty acids (FAs) to specific metabolic pathways, nuclear signaling and protection against oxidative damage. The protein displays promiscuous binding properties and can bind two internal ligands, unlike FABPs from other tissues. Different topologies for the ligand located in the more accessible site have been reported, with either a 'head-in' or 'head-out' orientation of the carboxylate end. Electrospray-ionization mass spectrometry and nuclear magnetic resonance titrations are employed here in order to investigate in further detail the binding properties of this system, the equilibria established in solution and the pH dependence of the complexes. The results are consistent with two binding sites with different affinity and a unique head-out topology for the second molecule of either ligand. Competition experiments indicate a higher affinity for oleic acid relative to palmitic acid at each binding site. Copyright © 2013 John Wiley & Sons, Ltd.

  1. The biotin repressor: thermodynamic coupling of corepressor binding, protein assembly, and sequence-specific DNA binding.

    PubMed

    Streaker, Emily D; Gupta, Aditi; Beckett, Dorothy

    2002-12-03

    The Escherichia coli biotin repressor, an allosteric transcriptional regulator, is activated for binding to the biotin operator by the small molecule biotinyl-5'-AMP. Results of combined thermodynamic, kinetic, and structural studies of the protein have revealed that corepressor binding results in disorder to order transitions in the protein monomer that facilitate tighter dimerization. The enhanced stability of the dimer leads to stabilization of the resulting biotin repressor-biotin operator complex. It is not clear, however, that the allosteric response in the system is transmitted solely through the protein-protein interface. In this work, the allosteric mechanism has been quantitatively probed by measuring the biotin operator binding and dimerization properties of three biotin repressor species: the apo or unliganded form, the biotin-bound form, and the holo or bio-5'-AMP-bound form. Comparisons of the pairwise differences in the bioO binding and dimerization energetics for the apo and holo species reveal that the enhanced DNA binding energetics resulting from adenylate binding track closely with the enhanced assembly energetics. However, when the results for repressor pairs that include the biotin-bound species are compared, no such equivalence is observed.

  2. The binding of sodium dodecyl sulphate to various proteins

    PubMed Central

    Pitt-Rivers, Rosalind; Impiombato, F. S. Ambesi

    1968-01-01

    1. The binding of sodium dodecyl sulphate to proteins by equilibrium dialysis was investigated. 2. Most of the proteins studied bound 90–100% of their weight of sodium dodecyl sulphate. 3. The glycoproteins studied bound 70–100% of their weight of sodium dodecyl sulphate, calculated in terms of the polypeptide moiety of the molecule. 4. Proteins not containing S·S groups bound about 140% of their weight of sodium dodecyl sulphate. 5. Reduction of four proteins containing S·S groups caused a rise in sodium dodecyl sulphate binding to 140% of the weight of protein. 6. The apparent micellar molecular weights of the protein–sodium dodecyl sulphate complexes were measured by the dye-solubilization method; they were all found to have approximately the same micellar molecular weight (34000–41000) irrespective of the molecular weight of the protein to which they were attached. PMID:4177067

  3. The Rapamycin-Binding Domain of the Protein Kinase mTOR is a Destabilizing Domain*

    PubMed Central

    Edwards, Sarah R.; Wandless, Thomas J.

    2013-01-01

    Rapamycin is an immunosuppressive drug that binds simultaneously to the 12-kDa FK506- and rapamycin-binding protein (FKBP12, or FKBP) and the FKBP-rapamycin binding domain (FRB) of the mammalian target of rapamycin (mTOR) kinase. The resulting ternary complex has been used to conditionally perturb protein function, and one such method involves perturbation of a protein of interest through its mislocalization. We synthesized two rapamycin derivatives that possess large substituents at the C16 position within the FRB-binding interface, and these derivatives were screened against a library of FRB mutants using a three-hybrid assay in Saccharomyces cerevisiae. Several FRB mutants responded to one of the rapamycin derivatives, and twenty of these mutants were further characterized in mammalian cells. The mutants most responsive to the ligand were fused to yellow fluorescent protein, and fluorescence levels in the presence and absence of the ligand were measured to determine stability of the fusion proteins. Wild-type and mutant FRB domains were expressed at low levels in the absence of the rapamycin derivative, and expression levels rose up to ten-fold upon treatment with ligand. The synthetic rapamycin derivatives were further analyzed using quantitative mass spectrometry, and one of the compounds was found to contain contaminating rapamycin. Furthermore, uncontaminated analogs retain the ability to inhibit mTOR, albeit with diminished potency relative to rapamycin. The ligand-dependent stability displayed by wildtype FRB and FRB mutants as well as the inhibitory potential and purity of the rapamycin derivatives should be considered as potentially confounding experimental variables when using these systems. PMID:17350953

  4. Lactation-induced cadmium-binding proteins

    SciTech Connect

    Bhattacharyya, M.H.; Solaiman, D.; Garvey, J.S.; Miyazaki, W.Y.

    1987-01-01

    Previously we have demonstrated an increase during midlactation in /sup 109/Cd adsorption and increased retention by the duodenum, kidney, and mammary tissue of mouse dams receiving environmental levels of cadmium//sup 109/Cd via drinking water, with little change in /sup 109/Cd retention in liver and jejunum compared to nonpregnant controls. Results are reported here of a study of cadmium deposition during midlactation as associated with induction of metallothionein (MT). A cadmium/hemoglobin (Cd/Hb) assay and radioimmunoassay for MT which measures heat-stable cadmium binding capacity in tissues was used to determine MT concentrations in fractions of kidney, liver, duodenum, and jejunum from female mice. Both assays demonstrated clear lactation-induced increases in MT concentrations in liver, kidney, and duodenum, with MT concentrations falling rapidly to control levels after weaning. 4 refs., 1 tab.

  5. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    PubMed Central

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; Mcdougal, Owen M.

    2017-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635

  6. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    PubMed

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results.

  7. Natural history of S-adenosylmethionine-binding proteins

    PubMed Central

    Kozbial, Piotr Z; Mushegian, Arcady R

    2005-01-01

    Background S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S-adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S-adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S-adenosylmethionine-binding proteins. Results Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. There were also cases of recruitment of other relatively common folds for S-adenosylmethionine binding. Several classes of proteins have unique unrelated folds, specialized for just one type of chemistry and unified by the theme of internal domain duplications. In several cases, functional divergence is evident, when evolutionarily related enzymes have changed the mode of binding and the type of chemical transformation of S-adenosylmethionine. There are also instances of functional convergence, when biochemically similar processes are performed by drastically different classes of S-adenosylmethionine-binding proteins. Comparison of remote sequence similarities and analysis of phyletic patterns suggests that the last universal common ancestor of cellular life had between 10 and 20 S-adenosylmethionine-binding proteins from at least 5 fold classes, providing for S-adenosylmethionine formation, polyamine biosynthesis, and methylation of several substrates, including nucleic acids and peptide chain release factor. Conclusion We have observed several novel relationships between families that were not known to be related before, and defined 15

  8. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.

    PubMed

    Chen, Eileen; Joseph, Simpson

    2015-07-01

    Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS).

  9. Camptothecin-binding site in human serum albumin and protein transformations induced by drug binding.

    PubMed

    Fleury, F; Ianoul, A; Berjot, M; Feofanov, A; Alix, A J; Nabiev, I

    1997-07-14

    Circular dichroism (CD) and Raman spectroscopy were employed in order to locate a camptothecin (CPT)-binding site within human serum albumin (HSA) and to identify protein structural transformations induced by CPT binding. A competitive binding of CPT and 3'-azido-3'-deoxythymidine (a ligand occupying IIIA structural sub-domain of the protein) to HSA does not show any competition and demonstrates that the ligands are located in the different binding sites, whereas a HSA-bound CPT may be replaced by warfarin, occupying IIA structural sub-domain of the protein. Raman and CD spectra of HSA and HSA/CPT complexes show that the CPT-binding does not induce changes of the global protein secondary structure. On the other hand, Raman spectra reveal pronounced CPT-induced local structural modifications of the HSA molecule, involving changes in configuration of the two disulfide bonds and transfer of a single Trp-residue to hydrophilic environment. These data suggest that CPT is bound in the region of interdomain connections within the IIA structural domain of HSA and it induces relative movement of the protein structural domains.

  10. Plasmodium falciparum AMA-1 erythrocyte binding peptides implicate AMA-1 as erythrocyte binding protein.

    PubMed

    Urquiza, M; Suarez, J E; Cardenas, C; Lopez, R; Puentes, A; Chavez, F; Calvo, J C; Patarroyo, M E

    2000-10-15

    The role of AMA-1 during merozoite invasion has not yet been determined. However, reported experimental evidence suggests that this protein can be used, in particular as erythrocyte-binding protein, since, Fab fragments against this protein are able to block merozoite invasion. Using a previously described methodology, eight peptides with high binding activity to human erythrocyte, scattered along the different domains and having around 130 nM affinity constants, were identified in the Plasmodium falciparum AMA-1 protein. Their binding activity was sialic acid independent. Some of these peptides showed homology with the erythrocyte binding domains of one of the apical organelle protein family, MAEBL, identified in rodent malarial parasites. One of these peptides shares amino acid sequence with a previously reported B-cell epitope which induces antibodies to block parasite growth. The critical residues were identified for erythrocyte binding conserved peptides 4313 (DAEVAGTQYRLPSGKCPVFG), 4321 (VVDNWEKVCPRKNLQNAKFG), 4325 (MIKSAFLPTGAFKADRYKSH) and 4337 (WGEEKRASHTTPVLMEKPYY). All conserved peptides were able to block merozoite invasion of new RBC and development, suggesting that these peptides are involved in P. falciparum invasion.

  11. RNA-Binding Proteins in Female Reproductive Pathologies.

    PubMed

    Khalaj, Kasra; Miller, Jessica E; Fenn, Christian R; Ahn, SooHyun; Luna, Rayana L; Symons, Lindsey; Monsanto, Stephany P; Koti, Madhuri; Tayade, Chandrakant

    2017-06-01

    RNA-binding proteins are key regulatory molecules involved primarily in post-transcriptional gene regulation of RNAs. Post-transcriptional gene regulation is critical for adequate cellular growth and survival. Recent reports have shown key interactions between these RNA-binding proteins and other regulatory elements, such as miRNAs and long noncoding RNAs, either enhancing or diminishing their response to RNA stabilization. Many RNA-binding proteins have been reported to play a functional role in mediation of cytokines involved in inflammation and immune dysfunction, and some have been classified as global post-transcriptional regulators of inflammation. The ubiquitous expression of RNA-binding proteins in a wide variety of cell types and their unique mechanisms of degradative action provide evidence that they are involved in reproductive tract pathologies. Aberrant inflammation and immune dysfunction are major contributors to the pathogenesis and disease pathophysiology of many reproductive pathologies, including ovarian and endometrial cancers in the female reproductive tract. Herein, we discuss various RNA-binding proteins and their unique contributions to female reproductive pathologies with a focus on those mediated by aberrant inflammation and immune dysfunction. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    PubMed Central

    Liu, Jiajian; Stormo, Gary D

    2005-01-01

    Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data. PMID:16014175

  13. Functional peptides derived from rice bran proteins.

    PubMed

    Liu, Y Q; Strappe, P; Shang, W T; Zhou, Z K

    2017-09-08

    Rice bran has been predominantly used in the feed industry, and only recently it has attracted greater attention in terms of human nutrition with increasing knowledge of its bioactivity. A growing interest is the analysis of physiologically active peptides derived from rice bran proteins. In this paper, the bioactivities of rice bran proteins hydrolysates and peptides are reviewed based on recent studies. These enzymatic hydrolysates and peptides exert various biological activities including antioxidant, antidiabetic, anticancer and inhibitory activity for angiotensin converting enzyme (ACE), which may ultimately prevent certain chronic diseases. Nevertheless, these functionalities can be highly associated with their corresponding structural characteristics, in particular specific sequences and molecular weight distribution. This article may facilitate the expansion of the prospective applications of the bioactive peptides in a number of fields and provide some clues of the relationship between peptides structure and functionality for future research.

  14. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    PubMed

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein. © 2014 The Authors.

  15. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  16. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A.

    PubMed Central

    Goldstein, M A; Takagi, M; Hashida, S; Shoseyov, O; Doi, R H; Segel, I H

    1993-01-01

    Cellulose-binding protein A (CbpA), a component of the cellulase complex of Clostridium cellulovorans, contains a unique sequence which has been demonstrated to be a cellulose-binding domain (CBD). The DNA coding for this putative CBD was subcloned into pET-8c, an Escherichia coli expression vector. The protein produced under the direction of the recombinant plasmid, pET-CBD, had a high affinity for crystalline cellulose. Affinity-purified CBD protein was used in equilibrium binding experiments to characterize the interaction of the protein with various polysaccharides. It was found that the binding capacity of highly crystalline cellulose samples (e.g., cotton) was greater than that of samples of low crystallinity (e.g., fibrous cellulose). At saturating CBD concentration, about 6.4 mumol of protein was bound by 1 g of cotton. Under the same conditions, fibrous cellulose bound only 0.2 mumol of CBD per g. The measured dissociation constant was in the 1 microM range for all cellulose samples. The results suggest that the CBD binds specifically to crystalline cellulose. Chitin, which has a crystal structure similar to that of cellulose, also was bound by the CBD. The presence of high levels of cellobiose or carboxymethyl cellulose in the assay mixture had no effect on the binding of CBD protein to crystalline cellulose. This result suggests that the CBD recognition site is larger than a simple cellobiose unit or more complex than a repeating cellobiose moiety. This CBD is of particular interest because it is the first CBD from a completely sequenced nonenzymatic protein shown to be an independently functional domain. Images PMID:8376323

  17. Binding of colchicine and thiocolchicoside to human serum proteins and blood cells.

    PubMed

    Sabouraud, A; Chappey, O; Dupin, T; Scherrmann, J M

    1994-08-01

    The binding of 3H-colchicine and its derivative 3H-thiocolchicoside to human serum, purified human proteins and blood cells was studied by equilibrium dialysis and centrifugation. Binding of colchicine and thiocolchicoside to human serum was 38.9 C +/- 4.7 and 12.8 C +/- 5.3%, respectively, essentially to albumin. Protein binding was not dependent on the concentration of either drug between 10(-10) and 10(-5)M. The binding of colchicine and thiocolchicoside to isolated erythrocytes (55 C +/- 5.6 and 16.5 C +/- 2.1%, respectively) decreased markedly in the presence of human serum proteins, i.e. in whole blood (38.7 C +/- 3.1 and 3.4 C +/- 0.8%). Binding of colchicine and thiocolchicoside to other blood cells was very low C < 3%). These binding properties in the blood compartment do not predispose colchicine and thiocolchicoside to be pharmacokinetically sensitive to binding displacement by drug interactions.

  18. Evaluation of silica nanoparticle binding to major human blood proteins

    NASA Astrophysics Data System (ADS)

    Hata, Katsutomo; Higashisaka, Kazuma; Nagano, Kazuya; Mukai, Yohei; Kamada, Haruhiko; Tsunoda, Shin-ichi; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2014-12-01

    Nanomaterials are used for various biomedical applications because they are often more effective than conventional materials. Recently, however, it has become clear that the protein corona that forms on the surface of nanomaterials when they make contact with biological fluids, such as blood, influences the pharmacokinetics and biological responses induced by the nanomaterials. Therefore, when evaluating nanomaterial safety and efficacy, it is important to analyze the interaction between nanomaterials and proteins in biological fluids and to evaluate the effects of the protein corona. Here, we evaluated the interaction of silica nanoparticles, a commonly used nanomaterial, with the human blood proteins albumin, transferrin, fibrinogen, and IgG. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the amount of albumin, transferrin, and IgG binding to the silica particles increased as the particle size decreased under conditions where the silica particle mass remained the same. However, under conditions in which the specific surface area remained constant, there were no differences in the binding of human plasma proteins to the silica particles tested, suggesting that the binding of silica particles with human plasma proteins is dependent on the specific surface area of the silica particles. Furthermore, the amount of albumin, transferrin, and IgG binding to silica nanoparticles with a diameter of 70 nm (nSP70) and a functional amino group was lower than that with unmodified nSP70, although there was no difference in the binding between nSP70 with the surface modification of a carboxyl functional group and nSP70. These results suggest that the characteristics of nanomaterials are important for binding with human blood proteins; this information may contribute to the development of safe and effective nanomaterials.

  19. Mercury-binding proteins from the marine mussel, Mytilus edulis.

    PubMed Central

    Roesijadi, G

    1986-01-01

    The marine mussel, Mytilus edulis, possesses low molecular weight, metal-binding proteins which can be induced by and, in turn, bind mercury when individuals are exposed to low, but elevated concentrations of mercury as HgCl2. Induction of the proteins by exposure of mussels to copper, cadmium, or mercury is associated with enhanced tolerance to mercury toxicity. Mercury-binding proteins isolated from gills of mussels occur as two molecular weight variants of about 20-25 and 10-12 kdaltons, respectively, on Sephadex G-75. These have been designated as HgBP20 and HgBP10 following the nomenclature used for cadmium-binding proteins. HgBP20 represents the primary mercury-binding species. These exist as dimers which can be dissociated into subunits by treatment with 1% 2-mercaptoethanol. Further purification of HgBP20 by DEAE-cellulose ion-exchange chromatography resulted in the resolution of three major mercury-binding protein peaks; analysis of two of these showed that both had similar amino acid compositions with 26% half-cystine, 16% glycine, and very low levels of the aromatic amino acids phenylalanine and tyrosine (0.3-0.5%), histidine (0.4%), methionine (about 0.5%), and leucine (about 1%). These are similar to the compositions of proteins reported as mussel thioneins by others. Separation of HgBP20 by anion-exchange high-performance liquid chromatography resulted in the resolution of six peaks, indicating a more complex situation than was evident from DEAE-cellulose separations. Although not completely purified, these also contain cysteine- and glycine-rich proteins. PMID:3709464

  20. Probing the fibrate binding specificity of rat liver fatty acid binding protein.

    PubMed

    Chuang, Sara; Velkov, Tony; Horne, James; Wielens, Jerome; Chalmers, David K; Porter, Christopher J H; Scanlon, Martin J

    2009-09-10

    Liver-fatty acid binding protein (L-FABP) is found in high levels in enterocytes and is involved in cytosolic solubilization of fatty acids. In addition, L-FABP has been shown to bind endogenous and exogenous lipophilic compounds, suggesting that it may also play a role in modulating their absorption and disposition within enterocytes. Previously, we have described binding of L-FABP to a range of drugs, including a series of fibrates. In the present study, we have generated structural models of L-FABP-fibrate complexes and undertaken thermodynamic analysis of the binding of fibrates containing either a carboxylic acid or ester functionality. Analysis of the current data reveals that both the location and the energetics of binding are different for fibrates that contain a carboxylate compared to those that do not. As such, the data presented in this study suggest potential mechanisms that underpin molecular recognition and dictate specificity in the interaction between fibrates and L-FABP.

  1. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    PubMed

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  2. Immunoglobulin-sulfated polysaccharide interactions. Binding of agaropectin and heparin by human IgG proteins

    PubMed Central

    1981-01-01

    The interaction of immunoglobulins with certain acidic polysaccharides was demonstrated by the binding of the sulfated glycans agaropectin and heparin by certain human IgG proteins. Heparin-binding IgG proteins can distinguish between the molecular forms of heparin derived from porcine intestine, bovine lung, and rat skin. The major specificity of these proteins is for native and certain high molecular weight subunit components of rat skin heparin. The interactions with multi-chain and single chain rat skin heparin are stable under physiological conditions and involve the Fab and, more specifically, the Fv region of the IgG molecule. These reactions occur as a result of an electrostatic interaction between cationic sites on certain IgG proteins and anionic sulfate resides of agaropectin or heparin. The characteristics of heparin-IgG interaction resemble those of heparin with other plasma proteins, the interactions of which have biological significance. PMID:7252414

  3. Carotenoid Antenna Binding and Function in Retinal Proteins

    DTIC Science & Technology

    2012-08-13

    REPORT Carotenoid antenna binding and function in retinal proteins 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Xanthorhodopsin, a proton pump from the...eubacterium Salinibacter ruber, is a unique dual chromophore system that contains, in addition to retinal, the carotenoid salinixanthin as a light... carotenoid ring near the retinal ring. Substitution of the small glycine with bulky tryptophan in this site eliminates binding. The second factor is the 4

  4. Characterization of adenosine binding proteins in human placental membranes

    SciTech Connect

    Hutchison, K.A.

    1989-01-01

    We have characterized two adenosine binding proteins in human placenta. In membranes, one site is detected with ({sup 3}H) -N-ethylcarboxamidoadenosine (({sup 3}H)NECA). This site is similar to the adenosine A{sub 2} receptor. We call this site the adenosine A{sub 2}-like binding site. In detergent extracts, the second site is detected and has the characteristics of an adenosine A{sub 1} receptor. The soluble adenosine A{sub 2}-like binding site cannot be detected without a rapid assay. Binding to the adenosine A{sub 1} receptor with ({sup 3}H)-2-chloroadenosine and ({sup 3}H)NECA is time dependent, saturable, and reversible. Equilibrium displacement analysis with adenosine agonists reveals an A{sub 1} specificity: 2-chloroadenosine > R-phenylisopropyladenosine > 5{prime}-N-ethylcarboxamidoadenosine. The antagonist potency order is 1,3-diethyl-8-phenylxanthine > isobutylmethylxanthine > theophylline. Competition analysis of membranes with the A,-selective ligands ({sup 3}H)-cyclohexyladenosine ({sup 3}H) cylopentylxanthine revealed adenosine A{sub 1} agonist and antagonist potency orders. We have purified the adenosine A{sub 2}-like binding site. The adenosine A{sub 2}-like binding site is an ubiquitous major cellular protein. It is glycosylated, highly asymmetric, and acidic. The native protein is an homodimer with a subunit molecular mass of 98 kDa. The sedimentation coefficient and partial specific volume of the binding complex are 6.9 s and 0.698 ml/g, respectively. The Stokes' radius is 70 {Angstrom}. The native molecular mass of the detergent-protein complex is 230 kDa. The adenosine A{sub 2}-like binding site has an agonist potency order of 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine >> R-phenylisopropyladenosine and an antagonist potency order of isobutylmethylxanthine > theophylline >> 1,3-diethyl-8-phenylxanthine.

  5. Selective plasma protein binding of antimalarial drugs to alpha1-acid glycoprotein.

    PubMed

    Zsila, Ferenc; Visy, Júlia; Mády, György; Fitos, Ilona

    2008-04-01

    Human plasma protein binding of six antimalarial agents of quinoline and acridine types was investigated by using spectroscopic techniques, affinity chromatography, ultrafiltration and HPLC methods. Induced circular dichroism (ICD) spectra showed binding of amodiaquine (AMQ), primaquine (PRQ), tafenoquine (TFQ), and quinacrine (QR) to alpha(1)-acid glycoprotein (AAG), the serum level of which greatly increases in Plasmodium infections. Association constant (K(a)) values of about 10(5)-10(6) M(-1) could be determined. Analysis of the ICD and UV spectra of the drug-AAG complexes suggested the inclusion of the ligands into the central hydrophobic cavity of the protein. Using the purified forms of the two main genetic variants of AAG, ICD data indicated the selective binding of AMQ and PRQ to the 'F1/S', while QR to the 'A' variant. Results of fluorescence experiments supported the AAG binding of these drugs and provided further insights into the binding details of TFQ and QR. Fluorescence and CD displacement experiments showed the high-affinity AAG binding of mefloquine (K(a) approximately 10(6) M(-1)). For this drug, inverse binding stereoselectivities were found with the 'F1/S' and 'A' genetic variants of AAG. HSA association constants estimated from affinity chromatography results lag behind (10(3)-10(5) M(-1)) the similar values derived for AAG. In case of chloroquine, no significant binding interaction was found either with AAG or HSA. Pharmacological aspects of the results are discussed.

  6. Thermodynamics of tryptophan-mediated activation of the trp RNA-binding attenuation protein.

    PubMed

    McElroy, Craig A; Manfredo, Amanda; Gollnick, Paul; Foster, Mark P

    2006-06-27

    The trp RNA-binding attenuation protein (TRAP) functions in many bacilli to control the expression of the tryptophan biosynthesis genes. Transcription of the trp operon is controlled by TRAP through an attenuation mechanism, in which competition between two alternative secondary-structural elements in the 5' leader sequence of the nascent mRNA is influenced by tryptophan-dependent binding of TRAP to the RNA. Previously, NMR studies of the undecamer (11-mer) suggested that tryptophan-dependent control of RNA binding by TRAP is accomplished through ligand-induced changes in protein dynamics. We now present further insights into this ligand-coupled event from hydrogen/deuterium (H/D) exchange analysis, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC). Scanning calorimetry showed tryptophan dissociation to be independent of global protein unfolding, while analysis of the temperature dependence of the binding enthalpy by ITC revealed a negative heat capacity change larger than expected from surface burial, a hallmark of binding-coupled processes. Analysis of this excess heat capacity change using parameters derived from protein folding studies corresponds to the ordering of 17-24 residues per monomer of TRAP upon tryptophan binding. This result is in agreement with qualitative analysis of residue-specific broadening observed in TROSY NMR spectra of the 91 kDa oligomer. Implications for the mechanism of ligand-mediated TRAP activation through a shift in a preexisting conformational equilibrium and an induced-fit conformational change are discussed.

  7. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    PubMed Central

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  8. Induced circular dichroism as a tool to investigate the binding of drugs to carrier proteins: Classic approaches and new trends.

    PubMed

    Tedesco, Daniele; Bertucci, Carlo

    2015-09-10

    Induced circular dichroism (ICD) is a spectroscopic phenomenon that provides versatile and useful methods for characterizing the structural and dynamic properties of the binding of drugs to target proteins. The understanding of biorecognition processes at the molecular level is essential to discover and validate new pharmacological targets, and to design and develop new potent and selective drugs. The present article reviews the main applications of ICD to drug binding studies on serum carrier proteins, going from the classic approaches for the derivation of drug binding parameters and the identification of binding sites, to an overview of the emerging trends for the characterization of binding modes by means of quantum chemical (QC) techniques. The advantages and limits of the ICD methods for the determination of binding parameters are critically reviewed; the capability to investigate the binding interactions of drugs and metabolites to their target proteins is also underlined, as well as the possibility of characterizing the binding sites to obtain a complete picture of the binding mechanism and dynamics. The new applications of ICD methods to identify stereoselective binding modes of drug/protein complexes are then reviewed with relevant examples. The combined application of experimental ICD spectroscopy and QC calculations is shown to identify qualitatively the bound conformations of ligands to target proteins even in the absence of a detailed structure of the binding sites, either obtained from experimental X-ray crystallography and NMR measurements or from computational models of the complex. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Identification of poly(rC) binding protein 2 (PCBP2) as a target protein of immunosuppressive agent 15-deoxyspergualin

    SciTech Connect

    Murahashi, Masataka; Simizu, Siro; Morioka, Masahiko; Umezawa, Kazuo

    2016-08-05

    15-Deoxyspergualin (DSG) is an immunosuppressive agent being clinically used. Unlike tacrolimus and cyclosporine A, it does not inhibit the calcineurin pathway, and its mechanism of action and target molecule have not been elucidated. Therefore, we previously prepared biotinylated derivative of DSG (BDSG) to fish up the target protein. In the present research, we identified poly(rC) binding protein 2 (PCBP2) as a DSG-binding protein using this probe. DSG was confirmed to bind to PCBP2 by pull-down assay. Intracellular localization of PCBP2 was changed from the nucleus to the cytoplasm by DSG treatment. DSG inhibited the cell growth, and over-expression of PCBP2 reduced the anti-proliferative activity of DSG. PCBP2 is known to regulate various proteins including STAT1/2. Thus, we found PCBP2 as the first target protein of DSG that can explain the immunosuppressive activity. -- Highlights: •Fifteen-deoxyspergualin (DSG) is an immunosuppressive agent clinically used. •We have identified PCBP2, an RNA-binding protein, as a molecular target of DSG. •Alteration of PCBP2 activity may explain the immunosuppressive activity of DSG.

  10. The Charcot Marie Tooth disease protein LITAF is a zinc-binding monotopic membrane protein

    PubMed Central

    Qin, Wenxia; Wunderley, Lydia; Barrett, Anne L.; High, Stephen; Woodman, Philip G.

    2016-01-01

    LITAF (LPS-induced TNF-activating factor) is an endosome-associated integral membrane protein important for multivesicular body sorting. Several mutations in LITAF cause autosomal-dominant Charcot Marie Tooth disease type 1C. These mutations map to a highly conserved C-terminal region, termed the LITAF domain, which includes a 22 residue hydrophobic sequence and flanking cysteine-rich regions that contain peptide motifs found in zinc fingers. Although the LITAF domain is thought to be responsible for membrane integration, the membrane topology of LITAF has not been established. Here, we have investigated whether LITAF is a tail-anchored (TA) membrane-spanning protein or monotopic membrane protein. When translated in vitro, LITAF integrates poorly into ER-derived microsomes compared with Sec61β, a bona fide TA protein. Furthermore, introduction of N-linked glycosylation reporters shows that neither the N-terminal nor C-terminal domains of LITAF translocate into the ER lumen. Expression in cells of an LITAF construct containing C-terminal glycosylation sites confirms that LITAF is not a TA protein in cells. Finally, an immunofluorescence-based latency assay showed that both the N- and C-termini of LITAF are exposed to the cytoplasm. Recombinant LITAF contains 1 mol/mol zinc, while mutation of predicted zinc-binding residues disrupts LITAF membrane association. Hence, we conclude that LITAF is a monotopic membrane protein whose membrane integration is stabilised by a zinc finger. The related human protein, CDIP1 (cell death involved p53 target 1), displays identical membrane topology, suggesting that this mode of membrane integration is conserved in LITAF family proteins. PMID:27582497

  11. ASCONA: Rapid Detection and Alignment of Protein Binding Site Conformations.

    PubMed

    Bietz, Stefan; Rarey, Matthias

    2015-08-24

    The usage of conformational ensembles constitutes a widespread technique for the consideration of protein flexibility in computational biology. When experimental structures are applied for this purpose, alignment techniques are usually required in dealing with structural deviations and annotation inconsistencies. Moreover, many application scenarios focus on protein ligand binding sites. Here, we introduce our new alignment algorithm ASCONA that has been specially geared to the problem of aligning multiple conformations of sequentially similar binding sites. Intense efforts have been directed to an accurate detection of highly flexible backbone deviations, multiple binding site matches within a single structure, and a reliable, but at the same time highly efficient, search algorithm. In contrast, most available alignment methods rather target other issues, e.g., the global alignment of distantly related proteins that share structurally conserved regions. For conformational ensembles, this might not only result in an overhead of computation time but could also affect the achieved accuracy, especially for more complicated cases as highly flexible proteins. ASCONA was evaluated on a test set containing 1107 structures of 65 diverse proteins. In all cases, ASCONA was able to correctly align the binding site at an average alignment computation time of 4 ms per target. Furthermore, no false positive matches were observed when searching the same query sites in the structures of other proteins. ASCONA proved to cope with highly deviating backbone structures and to tolerate structural gaps and moderate mutation rates. ASCONA is available free of charge for academic use at http://www.zbh.uni-hamburg.de/ascona .

  12. Protein D of Haemophilus influenzae is not a universal immunoglobulin D-binding protein.

    PubMed Central

    Sasaki, K; Munson, R S

    1993-01-01

    Haemophilus influenzae type b and nontypeable H. influenzae have been reported to bind human immunoglobulin D (IgD). IgD myeloma sera from five patients were tested for the ability of IgD to bind to H. influenzae. Serotype b strains bound human IgD in four of the five sera tested. IgD in the fifth serum bound strongly to type b strain MinnA but poorly to other type b strains. Additionally, IgD binding was not observed when nontypeable strains were tested. The gene for protein D, the putative IgD-binding protein, was cloned from the IgD-binding H. influenzae type b strain MinnA and expressed in Escherichia coli. IgD binding to E. coli expressing protein D was not demonstrable. Recombinant protein D was purified, and antisera were generated in rabbits. Using these rabbit sera, we detected protein D in nontypeable as well as serotype b strains by Western blotting (immunoblotting). In contrast, IgD myeloma protein 4490, which was previously reported to bind to protein D by Ruan and coworkers (M. Ruan, M. Akkoyunlu, A. Grubb, and A. Forsgren, J. Immunol. 145:3379-3384), bound strongly to both type b and nontypeable H. influenzae as well as to E. coli expressing protein D. Thus, IgD binding is a general property of H. influenzae type b strains but not a general property of nontypeable strains, although both type b and nontypeable strains produce protein D. With the exception of IgD myeloma protein 4490 binding, we have no evidence for a role of protein D in IgD binding to H. influenzae. Images PMID:8514409

  13. Chromate Binding and Removal by the Molybdate-Binding Protein ModA.

    PubMed

    Karpus, Jason; Bosscher, Michael; Ajiboye, Ifedayo; Zhang, Liang; He, Chuan

    2017-02-02

    Effective and cheap methods and techniques for the safe removal of hexavalent chromate from the environment are in increasingly high demand. High concentrations of hexavalent chromate have been shown to have numerous harmful effects on human biology. We show that the E. coli molybdate-binding protein ModA is a genetically encoded tool capable of removing chromate from aqueous solutions. Although previously reported to not bind chromate, we show that ModA binds chromate tightly and is capable of removing chromate to levels well below current US federal standards.

  14. Universal protein binding microarrays for the comprehensive characterization of the DNA binding specificities of transcription factors

    PubMed Central

    Berger, Michael F.; Bulyk, Martha L.

    2010-01-01

    Protein binding microarray (PBM) technology provides a rapid, high-throughput means of characterizing the in vitro DNA binding specificities of transcription factors (TFs). Using high-density, custom-designed microarrays containing all 10-mer sequence variants, one can obtain comprehensive binding site measurements for any TF, regardless of its structural class or species of origin. Here, we present a protocol for the examination and analysis of TF binding specificities at high resolution using such ‘all 10-mer’ universal PBMs. This procedure involves double-stranding a commercially synthesized DNA oligonucleotide array, binding a TF directly to the double-stranded DNA microarray, and labeling the protein-bound microarray with a fluorophore-conjugated antibody. We describe how to computationally extract the relative binding preferences of the examined TF for all possible contiguous and gapped 8-mers over the full range of affinities, from highest affinity sites to nonspecific sites. Multiple proteins can be tested in parallel in separate chambers on a single microarray, enabling the processing of a dozen or more TFs in a single day. PMID:19265799

  15. Escherchia coli ribose binding protein based bioreporters revisited

    PubMed Central

    Reimer, Artur; Yagur-Kroll, Sharon; Belkin, Shimshon; Roy, Shantanu; van der Meer, Jan Roelof

    2014-01-01

    Bioreporter bacteria, i.e., strains engineered to respond to chemical exposure by production of reporter proteins, have attracted wide interest because of their potential to offer cheap and simple alternative analytics for specified compounds or conditions. Bioreporter construction has mostly exploited the natural variation of sensory proteins, but it has been proposed that computational design of new substrate binding properties could lead to completely novel detection specificities at very low affinities. Here we reconstruct a bioreporter system based on the native Escherichia coli ribose binding protein RbsB and one of its computationally designed variants, reported to be capable of binding 2,4,6-trinitrotoluene (TNT). Our results show in vivo reporter induction at 50 nM ribose, and a 125 nM affinity constant for in vitro ribose binding to RbsB. In contrast, the purified published TNT-binding variant did not bind TNT nor did TNT cause induction of the E. coli reporter system. PMID:25005019

  16. Mind the methyl: methyllysine binding proteins in epigenetic regulation.

    PubMed

    Wagner, Tobias; Robaa, Dina; Sippl, Wolfgang; Jung, Manfred

    2014-03-01

    Epigenetics is defined as the phenomenon of heritable phenotypic traits that are not governed by alteration of the genetic code. Major epigenetic control mechanisms include DNA methylation and post-translational modifications of histones, such as reversible histone acetylation and methylation of lysine residues. Methyllysine binding proteins recognize various levels of lysine methylation and mediate the signaling events that are induced by histone methylation. Therefore, they are also referred to as readers of the epigenetic code. In this article we review the current literature on the structure and biology of methyllysine binding proteins, especially with regard to their potential as drug targets. We also present the available inhibitors that block the interaction of methylated histones with their binding proteins. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Allosteric switch regulates protein–protein binding through collective motion

    PubMed Central

    Smith, Colin A.; Pratihar, Supriya; Giller, Karin; Paulat, Maria; Becker, Stefan; Griesinger, Christian; Lee, Donghan; de Groot, Bert L.

    2016-01-01

    Many biological processes depend on allosteric communication between different parts of a protein, but the role of internal protein motion in propagating signals through the structure remains largely unknown. Through an experimental and computational analysis of the ground state dynamics in ubiquitin, we identify a collective global motion that is specifically linked to a conformational switch distant from the binding interface. This allosteric coupling is also present in crystal structures and is found to facilitate multispecificity, particularly binding to the ubiquitin-specific protease (USP) family of deubiquitinases. The collective motion that enables this allosteric communication does not affect binding through localized changes but, instead, depends on expansion and contraction of the entire protein domain. The characterization of these collective motions represents a promising avenue for finding and manipulating allosteric networks. PMID:26961002

  18. Grafting odorant binding proteins on diamond bio-MEMS.

    PubMed

    Manai, R; Scorsone, E; Rousseau, L; Ghassemi, F; Possas Abreu, M; Lissorgues, G; Tremillon, N; Ginisty, H; Arnault, J-C; Tuccori, E; Bernabei, M; Cali, K; Persaud, K C; Bergonzo, P

    2014-10-15

    Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approach based on complexing a histidine-tag located on the protein with nickel allowed control of the proteins' orientation. Evidence confirming protein grafting was obtained using electrochemical impedance spectroscopy, fluorescence imaging and X-ray photoelectron spectroscopy. The chemical sensing performances of these OBP modified transducers were assessed. The second grafting method led to typically 20% more sensitive sensors, as a result of better access of ligands to the proteins active sites and also perhaps a better yield of protein immobilization. This new grafting method appears to be highly promising for further investigation of the ligand binding properties of OBPs in general and for the development of arrays of non-specific biosensors for artificial olfaction applications.

  19. Zinc-protein from rat prostate fluid binds epididymal spermatozoa.

    PubMed

    Sansone, G; Abrescia, P

    1991-09-01

    The detection and the isolation of a zinc-protein from the secretion of the rat dorsolateral prostate is described. The purification procedure, based on gel filtration and cationic exchange chromatography, allowed to separate a minor protein (Mr approximatel