Sample records for binding protein interacting

  1. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  2. Interaction entropy for protein-protein binding

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.

    2017-03-01

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  3. PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, So-Hee; Moon, Jeonghee; Lee, Myungkyu

    2013-09-13

    Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified asmore » a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.« less

  4. Structure-Templated Predictions of Novel Protein Interactions from Sequence Information

    PubMed Central

    Betel, Doron; Breitkreuz, Kevin E; Isserlin, Ruth; Dewar-Darch, Danielle; Tyers, Mike; Hogue, Christopher W. V

    2007-01-01

    The multitude of functions performed in the cell are largely controlled by a set of carefully orchestrated protein interactions often facilitated by specific binding of conserved domains in the interacting proteins. Interacting domains commonly exhibit distinct binding specificity to short and conserved recognition peptides called binding profiles. Although many conserved domains are known in nature, only a few have well-characterized binding profiles. Here, we describe a novel predictive method known as domain–motif interactions from structural topology (D-MIST) for elucidating the binding profiles of interacting domains. A set of domains and their corresponding binding profiles were derived from extant protein structures and protein interaction data and then used to predict novel protein interactions in yeast. A number of the predicted interactions were verified experimentally, including new interactions of the mitotic exit network, RNA polymerases, nucleotide metabolism enzymes, and the chaperone complex. These results demonstrate that new protein interactions can be predicted exclusively from sequence information. PMID:17892321

  5. Interaction entropy for protein-protein binding.

    PubMed

    Sun, Zhaoxi; Yan, Yu N; Yang, Maoyou; Zhang, John Z H

    2017-03-28

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interactionentropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interactionentropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  6. The Intrinsically Disordered Regions of the Drosophila melanogaster Hox Protein Ultrabithorax Select Interacting Proteins Based on Partner Topology

    PubMed Central

    Hsiao, Hao-Ching; Gonzalez, Kim L.; Catanese, Daniel J.; Jordy, Kristopher E.; Matthews, Kathleen S.; Bondos, Sarah E.

    2014-01-01

    Interactions between structured proteins require a complementary topology and surface chemistry to form sufficient contacts for stable binding. However, approximately one third of protein interactions are estimated to involve intrinsically disordered regions of proteins. The dynamic nature of disordered regions before and, in some cases, after binding calls into question the role of partner topology in forming protein interactions. To understand how intrinsically disordered proteins identify the correct interacting partner proteins, we evaluated interactions formed by the Drosophila melanogaster Hox transcription factor Ultrabithorax (Ubx), which contains both structured and disordered regions. Ubx binding proteins are enriched in specific folds: 23 of its 39 partners include one of 7 folds, out of the 1195 folds recognized by SCOP. For the proteins harboring the two most populated folds, DNA-RNA binding 3-helical bundles and α-α superhelices, the regions of the partner proteins that exhibit these preferred folds are sufficient for Ubx binding. Three disorder-containing regions in Ubx are required to bind these partners. These regions are either alternatively spliced or multiply phosphorylated, providing a mechanism for cellular processes to regulate Ubx-partner interactions. Indeed, partner topology correlates with the ability of individual partner proteins to bind Ubx spliceoforms. Partners bind different disordered regions within Ubx to varying extents, creating the potential for competition between partners and cooperative binding by partners. The ability of partners to bind regions of Ubx that activate transcription and regulate DNA binding provides a mechanism for partners to modulate transcription regulation by Ubx, and suggests that one role of disorder in Ubx is to coordinate multiple molecular functions in response to tissue-specific cues. PMID:25286318

  7. Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I.

    PubMed

    Suzuki, Toru; Muto, Shinsuke; Miyamoto, Saku; Aizawa, Kenichi; Horikoshi, Masami; Nagai, Ryozo

    2003-08-01

    Transcription involves molecular interactions between general and regulatory transcription factors with further regulation by protein-protein interactions (e.g. transcriptional cofactors). Here we describe functional interaction between DNA-binding transcription factor and histone chaperone. Affinity purification of factors interacting with the DNA-binding domain of the transcription factor Sp1 showed Sp1 to interact with the histone chaperone TAF-I, both alpha and beta isoforms. This interaction was specific as Sp1 did not interact with another histone chaperone CIA nor did other tested DNA-binding regulatory factors (MyoD, NFkappaB, p53) interact with TAF-I. Interaction of Sp1 and TAF-I occurs both in vitro and in vivo. Interaction with TAF-I results in inhibition of DNA-binding, and also likely as a result of such, inhibition of promoter activation by Sp1. Collectively, we describe interaction between DNA-binding transcription factor and histone chaperone which results in negative regulation of the former. This novel regulatory interaction advances our understanding of the mechanisms of eukaryotic transcription through DNA-binding regulatory transcription factors by protein-protein interactions, and also shows the DNA-binding domain to mediate important regulatory interactions.

  8. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    PubMed

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  9. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    PubMed

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  10. Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy.

    PubMed

    Duan, Lili; Liu, Xiao; Zhang, John Z H

    2016-05-04

    Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.

  11. CH/π Interactions in Carbohydrate Recognition.

    PubMed

    Spiwok, Vojtěch

    2017-06-23

    Many carbohydrate-binding proteins contain aromatic amino acid residues in their binding sites. These residues interact with carbohydrates in a stacking geometry via CH/π interactions. These interactions can be found in carbohydrate-binding proteins, including lectins, enzymes and carbohydrate transporters. Besides this, many non-protein aromatic molecules (natural as well as artificial) can bind saccharides using these interactions. Recent computational and experimental studies have shown that carbohydrate-aromatic CH/π interactions are dispersion interactions, tuned by electrostatics and partially stabilized by a hydrophobic effect in solvated systems.

  12. Molecular tweezers modulate 14-3-3 protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  13. Predicting permanent and transient protein-protein interfaces.

    PubMed

    La, David; Kong, Misun; Hoffman, William; Choi, Youn Im; Kihara, Daisuke

    2013-05-01

    Protein-protein interactions (PPIs) are involved in diverse functions in a cell. To optimize functional roles of interactions, proteins interact with a spectrum of binding affinities. Interactions are conventionally classified into permanent and transient, where the former denotes tight binding between proteins that result in strong complexes, whereas the latter compose of relatively weak interactions that can dissociate after binding to regulate functional activity at specific time point. Knowing the type of interactions has significant implications for understanding the nature and function of PPIs. In this study, we constructed amino acid substitution models that capture mutation patterns at permanent and transient type of protein interfaces, which were found to be different with statistical significance. Using the substitution models, we developed a novel computational method that predicts permanent and transient protein binding interfaces (PBIs) in protein surfaces. Without knowledge of the interacting partner, the method uses a single query protein structure and a multiple sequence alignment of the sequence family. Using a large dataset of permanent and transient proteins, we show that our method, BindML+, performs very well in protein interface classification. A very high area under the curve (AUC) value of 0.957 was observed when predicted protein binding sites were classified. Remarkably, near prefect accuracy was achieved with an AUC of 0.991 when actual binding sites were classified. The developed method will be also useful for protein design of permanent and transient PBIs. Copyright © 2013 Wiley Periodicals, Inc.

  14. Prediction and Dissection of Protein-RNA Interactions by Molecular Descriptors.

    PubMed

    Liu, Zhi-Ping; Chen, Luonan

    2016-01-01

    Protein-RNA interactions play crucial roles in numerous biological processes. However, detecting the interactions and binding sites between protein and RNA by traditional experiments is still time consuming and labor costing. Thus, it is of importance to develop bioinformatics methods for predicting protein-RNA interactions and binding sites. Accurate prediction of protein-RNA interactions and recognitions will highly benefit to decipher the interaction mechanisms between protein and RNA, as well as to improve the RNA-related protein engineering and drug design. In this work, we summarize the current bioinformatics strategies of predicting protein-RNA interactions and dissecting protein-RNA interaction mechanisms from local structure binding motifs. In particular, we focus on the feature-based machine learning methods, in which the molecular descriptors of protein and RNA are extracted and integrated as feature vectors of representing the interaction events and recognition residues. In addition, the available methods are classified and compared comprehensively. The molecular descriptors are expected to elucidate the binding mechanisms of protein-RNA interaction and reveal the functional implications from structural complementary perspective.

  15. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains.

    PubMed

    Brayer, Kathryn J; Segal, David J

    2008-01-01

    Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein-protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.

  16. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    PubMed

    Garamszegi, Sara; Franzosa, Eric A; Xia, Yu

    2013-01-01

    A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are otherwise hidden in the traditional binary network, highlighting the power and necessity of high-resolution approaches in host-pathogen systems biology.

  17. Signatures of Pleiotropy, Economy and Convergent Evolution in a Domain-Resolved Map of Human–Virus Protein–Protein Interaction Networks

    PubMed Central

    Garamszegi, Sara; Franzosa, Eric A.; Xia, Yu

    2013-01-01

    A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are otherwise hidden in the traditional binary network, highlighting the power and necessity of high-resolution approaches in host-pathogen systems biology. PMID:24339775

  18. Studies on interaction of insect repellent compounds with odorant binding receptor proteins by in silico molecular docking approach.

    PubMed

    Gopal, J Vinay; Kannabiran, K

    2013-12-01

    The aim of the study was to identify the interactions between insect repellent compounds and target olfactory proteins. Four compounds, camphor (C10H16O), carvacrol (C10H14O), oleic acid (C18H34O2) and firmotox (C22H28O5) were chosen as ligands. Seven olfactory proteins of insects with PDB IDs: 3K1E, 1QWV, 1TUJ, 1OOF, 2ERB, 3R1O and OBP1 were chosen for docking analysis. Patch dock was used and pymol for visualizing the structures. The interactions of these ligands with few odorant binding proteins showed binding energies. The ligand camphor had showed a binding energy of -136 kcal/mol with OBP1 protein. The ligand carvacrol interacted with 1QWV and 1TUJ proteins with a least binding energy of -117.45 kcal/mol and -21.78 kcal/mol respectively. The ligand oleic acid interacted with 1OOF, 2ERB, 3R1O and OBP1 with least binding energies. Ligand firmotox interacted with OBP1 and showed least binding energies. Three ligands (camphor, oleic acid and firmotox) had one, two, three interactions with a single protein OBP1 of Nilaparvatha lugens (Rice pest). From this in silico study we identified the interaction patterns for insect repellent compounds with the target insect odarant proteins. The results of our study revealed that the chosen ligands showed hydrogen bond interactions with the target olfactory receptor proteins.

  19. Role of Electrostatics in Protein-RNA Binding: The Global vs the Local Energy Landscape.

    PubMed

    Ghaemi, Zhaleh; Guzman, Irisbel; Gnutt, David; Luthey-Schulten, Zaida; Gruebele, Martin

    2017-09-14

    U1A protein-stem loop 2 RNA association is a basic step in the assembly of the spliceosomal U1 small nuclear ribonucleoprotein. Long-range electrostatic interactions due to the positive charge of U1A are thought to provide high binding affinity for the negatively charged RNA. Short range interactions, such as hydrogen bonds and contacts between RNA bases and protein side chains, favor a specific binding site. Here, we propose that electrostatic interactions are as important as local contacts in biasing the protein-RNA energy landscape toward a specific binding site. We show by using molecular dynamics simulations that deletion of two long-range electrostatic interactions (K22Q and K50Q) leads to mutant-specific alternative RNA bound states. One of these states preserves short-range interactions with aromatic residues in the original binding site, while the other one does not. We test the computational prediction with experimental temperature-jump kinetics using a tryptophan probe in the U1A-RNA binding site. The two mutants show the distinct predicted kinetic behaviors. Thus, the stem loop 2 RNA has multiple binding sites on a rough RNA-protein binding landscape. We speculate that the rough protein-RNA binding landscape, when biased to different local minima by electrostatics, could be one way that protein-RNA interactions evolve toward new binding sites and novel function.

  20. Effects of salts on protein-surface interactions: applications for column chromatography.

    PubMed

    Tsumoto, Kouhei; Ejima, Daisuke; Senczuk, Anna M; Kita, Yoshiko; Arakawa, Tsutomu

    2007-07-01

    Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. Copyright 2007 Wiley-Liss, Inc.

  1. Prediction of Carbohydrate Binding Sites on Protein Surfaces with 3-Dimensional Probability Density Distributions of Interacting Atoms

    PubMed Central

    Tsai, Keng-Chang; Jian, Jhih-Wei; Yang, Ei-Wen; Hsu, Po-Chiang; Peng, Hung-Pin; Chen, Ching-Tai; Chen, Jun-Bo; Chang, Jeng-Yih; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Non-covalent protein-carbohydrate interactions mediate molecular targeting in many biological processes. Prediction of non-covalent carbohydrate binding sites on protein surfaces not only provides insights into the functions of the query proteins; information on key carbohydrate-binding residues could suggest site-directed mutagenesis experiments, design therapeutics targeting carbohydrate-binding proteins, and provide guidance in engineering protein-carbohydrate interactions. In this work, we show that non-covalent carbohydrate binding sites on protein surfaces can be predicted with relatively high accuracy when the query protein structures are known. The prediction capabilities were based on a novel encoding scheme of the three-dimensional probability density maps describing the distributions of 36 non-covalent interacting atom types around protein surfaces. One machine learning model was trained for each of the 30 protein atom types. The machine learning algorithms predicted tentative carbohydrate binding sites on query proteins by recognizing the characteristic interacting atom distribution patterns specific for carbohydrate binding sites from known protein structures. The prediction results for all protein atom types were integrated into surface patches as tentative carbohydrate binding sites based on normalized prediction confidence level. The prediction capabilities of the predictors were benchmarked by a 10-fold cross validation on 497 non-redundant proteins with known carbohydrate binding sites. The predictors were further tested on an independent test set with 108 proteins. The residue-based Matthews correlation coefficient (MCC) for the independent test was 0.45, with prediction precision and sensitivity (or recall) of 0.45 and 0.49 respectively. In addition, 111 unbound carbohydrate-binding protein structures for which the structures were determined in the absence of the carbohydrate ligands were predicted with the trained predictors. The overall prediction MCC was 0.49. Independent tests on anti-carbohydrate antibodies showed that the carbohydrate antigen binding sites were predicted with comparable accuracy. These results demonstrate that the predictors are among the best in carbohydrate binding site predictions to date. PMID:22848404

  2. A web server for analysis, comparison and prediction of protein ligand binding sites.

    PubMed

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  3. SCOWLP classification: Structural comparison and analysis of protein binding regions

    PubMed Central

    Teyra, Joan; Paszkowski-Rogacz, Maciej; Anders, Gerd; Pisabarro, M Teresa

    2008-01-01

    Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs) might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions. The hierarchical classification of PBRs is implemented into the SCOWLP database and extends the SCOP classification with three additional family sub-levels: Binding Region, Interface and Contacting Domains. SCOWLP contains 9,334 binding regions distributed within 2,561 families. In 65% of the cases we observe families containing more than one binding region. Besides, 22% of the regions are forming complex with more than one different protein family. Conclusion The current SCOWLP classification and its web application represent a framework for the study of protein interfaces and comparative analysis of protein family binding regions. This comparison can be performed at atomic level and allows the user to study interactome conservation and variability. The new SCOWLP classification may be of great utility for reconstruction of protein complexes, understanding protein networks and ligand design. SCOWLP will be updated with every SCOP release. The web application is available at . PMID:18182098

  4. RNA-binding Protein Immunoprecipitation (RIP) to Examine AUF1 Binding to Senescence-Associated Secretory Phenotype (SASP) Factor mRNA

    PubMed Central

    Alspach, Elise; Stewart, Sheila A.

    2016-01-01

    Immunoprecipitation and subsequent isolation of nucleic acids allows for the investigation of protein:nucleic acid interactions. RNA-binding protein immunoprecipitation (RIP) is used for the analysis of protein interactions with mRNA. Combining RIP with quantitative real-time PCR (qRT-PCR) further enhances the RIP technique by allowing for the quantitative assessment of RNA-binding protein interactions with their target mRNAs, and how these interactions change in different cellular settings. Here, we describe the immunoprecipitation of the RNA-binding protein AUF1 with several different factors associated with the senescence-associated secretory phenotype (SASP) (Alspach and Stewart, 2013), specifically IL6 and IL8. This protocol was originally published in Alspach et al. (2014). PMID:27453911

  5. In vitro evidence for RNA binding properties of the coat protein of prunus necrotic ringspot ilarvirus and their comparison to related and unrelated viruses.

    PubMed

    Pallás, V; Sánchez-Navarro, J A; Díez, J

    1999-01-01

    The RNA binding properties of the prunus necrotic ringspot virus (PNRSV) coat protein (CP) were demonstrated by northwestern and dot-blot analyses. The capability to bind PNRSV RNA 4 was compared with viruses representing three different interactions prevailing in the assembly and architecture of virions. The results showed that cucumber mosaic virus (CMV) and PNRSV CPs, which stabilise their virions mainly through RNA-protein interactions bound PNRSV RNA 4 even at very high salt concentrations. The CP of cherry leaf roll nepovirus, whose virions are predominantly stabilised by protein-protein interactions did not bind even at the lowest salt concentration tested. Finally the CP of carnation mottle carmovirus, that has an intermediate position in which both RNA-protein and protein-protein interactions are equally important showed a salt-dependent RNA binding.

  6. Specificity and non-specificity in RNA–protein interactions

    PubMed Central

    Jankowsky, Eckhard; Harris, Michael E.

    2016-01-01

    Gene expression is regulated by complex networks of interactions between RNAs and proteins. Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative measurements of protein binding to large numbers of RNA variants, and the concepts aimed as describing resulting binding spectra: affinity distributions, comprehensive binding models and free energy landscapes. We discuss how these new methodologies and associated concepts enable work towards inclusive, quantitative models for specific and non-specific RNA–protein interactions. PMID:26285679

  7. The hydrophobic repeated domain of the Clostridium cellulovorans cellulose-binding protein (CbpA) has specific interactions with endoglucanases.

    PubMed Central

    Takagi, M; Hashida, S; Goldstein, M A; Doi, R H

    1993-01-01

    We overexpressed one of the hydrophobic repeated domains (HBDs) (110 amino acid residues) of the cellulose-binding protein (CbpA) from Clostridium cellulovorans by making a hybrid protein with the Escherichia coli maltose-binding protein (MalE). The HBD was purified to homogeneity, and interactions between the HBD and endoglucanases were analyzed by a novel interaction Western blotting (immunoblotting) method. The HBD had specific interactions with endoglucanases (EngB and EngD) from C. cellulovorans. These results indicated that the HBD was an endoglucanase binding site of CbpA. Images PMID:8226657

  8. Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton.

    PubMed

    Brdicková, N; Brdicka, T; Andera, L; Spicka, J; Angelisová, P; Milgram, S L; Horejsí, V

    2001-10-26

    Phosphoprotein associated with GEMs (PAG), also known as Csk-binding protein (Cbp), is a broadly expressed palmitoylated transmembrane adapter protein found in membrane rafts, also called GEMs (glycosphingolipid-enriched membrane microdomains). PAG is known to bind and activate the essential regulator of Src-family kinases, cytoplasmic protein tyrosine kinase Csk. In the present study we used the yeast 2-hybrid system to search for additional proteins which might bind to PAG. We have identified the abundant cytoplasmic adapter protein EBP50 (ezrin/radixin/moesin (ERM)-binding phosphoprotein of 50 kDa), also known as NHERF (Na(+)/H(+) exchanger regulatory factor), as a specific PAG-binding partner. The interaction involves the C-terminal sequence (TRL) of PAG and N-terminal PDZ domain(s) of EBP50. As EBP50 is known to interact via its C-terminal domain with the ERM-family proteins, which in turn bind to actin cytoskeleton, the PAG-EBP50 interaction may be important for connecting membrane rafts to the actin cytoskeleton.

  9. Effect of enzymatic deamidation of soy protein by protein-glutaminase on the flavor-binding properties of the protein under aqueous conditions.

    PubMed

    Suppavorasatit, Inthawoot; Cadwallader, Keith R

    2012-08-15

    The effect of the enzymatic deamidation by protein-glutaminase (PG) on flavor-binding properties of soy protein isolate (SPI) under aqueous conditions was evaluated by a modified equilibrium dialysis (ultrafiltration) technique. Binding parameters, such as number of binding sites (n) and binding constants (K), were derived from Klotz plots. The partial deamidation of SPI by PG (43.7% degree of deamidation) decreased overall flavor-binding affinity (nK) at 25 °C for both vanillin and maltol by approximately 9- and 4-fold, respectively. The thermodynamic parameters of binding indicated that the flavor-protein interactions were spontaneous (negative ΔG°) and that the driving force of the interactions shifted from entropy to enthalpy driven as a result of deamidation. Deamidation of soy protein caused a change in the mechanism of binding from hydrophobic interactions or covalent bonding (Schiff base formation) to weaker van der Waals forces or hydrogen bonding.

  10. Analysis of solute-protein interactions and solute-solute competition by zonal elution affinity chromatography.

    PubMed

    Tao, Pingyang; Poddar, Saumen; Sun, Zuchen; Hage, David S; Chen, Jianzhong

    2018-02-02

    Many biological processes involve solute-protein interactions and solute-solute competition for protein binding. One method that has been developed to examine these interactions is zonal elution affinity chromatography. This review discusses the theory and principles of zonal elution affinity chromatography, along with its general applications. Examples of applications that are examined include the use of this method to estimate the relative extent of solute-protein binding, to examine solute-solute competition and displacement from proteins, and to measure the strength of these interactions. It is also shown how zonal elution affinity chromatography can be used in solvent and temperature studies and to characterize the binding sites for solutes on proteins. In addition, several alternative applications of zonal elution affinity chromatography are discussed, which include the analysis of binding by a solute with a soluble binding agent and studies of allosteric effects. Other recent applications that are considered are the combined use of immunoextraction and zonal elution for drug-protein binding studies, and binding studies that are based on immobilized receptors or small targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.

    PubMed

    Patching, Simon G

    2014-01-01

    Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Cellular Localization and Characterization of Cytosolic Binding Partners for Gla Domain-containing Proteins PRRG4 and PRRG2*

    PubMed Central

    Yazicioglu, Mustafa N.; Monaldini, Luca; Chu, Kirk; Khazi, Fayaz R.; Murphy, Samuel L.; Huang, Heshu; Margaritis, Paris; High, Katherine A.

    2013-01-01

    The genes encoding a family of proteins termed proline-rich γ-carboxyglutamic acid (PRRG) proteins were identified and characterized more than a decade ago, but their functions remain unknown. These novel membrane proteins have an extracellular γ-carboxyglutamic acid (Gla) protein domain and cytosolic WW binding motifs. We screened WW domain arrays for cytosolic binding partners for PRRG4 and identified novel protein-protein interactions for the protein. We also uncovered a new WW binding motif in PRRG4 that is essential for these newly found protein-protein interactions. Several of the PRRG-interacting proteins we identified are essential for a variety of physiologic processes. Our findings indicate possible novel and previously unidentified functions for PRRG proteins. PMID:23873930

  13. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.

    PubMed

    Freed, Alexander S; Garde, Shekhar; Cramer, Steven M

    2011-11-17

    Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.

  14. A tool for calculating binding-site residues on proteins from PDB structures.

    PubMed

    Hu, Jing; Yan, Changhui

    2009-08-03

    In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB) that consists of the protein of interest and its interacting partner(s) and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. The developed tool is very useful for the research on protein binding site analysis and prediction.

  15. Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective.

    PubMed

    Hu, Xiaotang; Li, Hongbin

    2014-10-01

    Protein-ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein-ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein-ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein-ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Native Hydrophobic Binding Interactions at the Transition State for Association between the TAZ1 Domain of CBP and the Disordered TAD-STAT2 Are Not a Requirement.

    PubMed

    Lindström, Ida; Dogan, Jakob

    2017-08-15

    A significant fraction of the eukaryotic proteome consists of proteins that are either partially or completely disordered under native-like conditions. Intrinsically disordered proteins (IDPs) are common in protein-protein interactions and are involved in numerous cellular processes. Although many proteins have been identified as disordered, much less is known about the binding mechanisms of the coupled binding and folding reactions involving IDPs. Here we have analyzed the rate-limiting transition state for binding between the TAZ1 domain of CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2) by site-directed mutagenesis and kinetic experiments (Φ-value analysis) and found that the native protein-protein binding interface is not formed at the transition state for binding. Instead, native hydrophobic binding interactions form late, after the rate-limiting barrier has been crossed. The association rate constant in the absence of electrostatic enhancement was determined to be rather high. This is consistent with the Φ-value analysis, which showed that there are few or no obligatory native contacts. Also, linear free energy relationships clearly demonstrate that native interactions are cooperatively formed, a scenario that has usually been observed for proteins that fold according to the so-called nucleation-condensation mechanism. Thus, native hydrophobic binding interactions at the rate-limiting transition state for association between TAD-STAT2 and TAZ1 are not a requirement, which is generally in agreement with previous findings on other IDP systems and might be a common mechanism for IDPs.

  17. Quantifying protein-protein interactions in high throughput using protein domain microarrays.

    PubMed

    Kaushansky, Alexis; Allen, John E; Gordus, Andrew; Stiffler, Michael A; Karp, Ethan S; Chang, Bryan H; MacBeath, Gavin

    2010-04-01

    Protein microarrays provide an efficient way to identify and quantify protein-protein interactions in high throughput. One drawback of this technique is that proteins show a broad range of physicochemical properties and are often difficult to produce recombinantly. To circumvent these problems, we have focused on families of protein interaction domains. Here we provide protocols for constructing microarrays of protein interaction domains in individual wells of 96-well microtiter plates, and for quantifying domain-peptide interactions in high throughput using fluorescently labeled synthetic peptides. As specific examples, we will describe the construction of microarrays of virtually every human Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain, as well as microarrays of mouse PDZ domains, all produced recombinantly in Escherichia coli. For domains that mediate high-affinity interactions, such as SH2 and PTB domains, equilibrium dissociation constants (K(D)s) for their peptide ligands can be measured directly on arrays by obtaining saturation binding curves. For weaker binding domains, such as PDZ domains, arrays are best used to identify candidate interactions, which are then retested and quantified by fluorescence polarization. Overall, protein domain microarrays provide the ability to rapidly identify and quantify protein-ligand interactions with minimal sample consumption. Because entire domain families can be interrogated simultaneously, they provide a powerful way to assess binding selectivity on a proteome-wide scale and provide an unbiased perspective on the connectivity of protein-protein interaction networks.

  18. Kinetic Measurements Reveal Enhanced Protein-Protein Interactions at Intercellular Junctions

    PubMed Central

    Shashikanth, Nitesh; Kisting, Meridith A.; Leckband, Deborah E.

    2016-01-01

    The binding properties of adhesion proteins are typically quantified from measurements with soluble fragments, under conditions that differ radically from the confined microenvironment of membrane bound proteins in adhesion zones. Using classical cadherin as a model adhesion protein, we tested the postulate that confinement within quasi two-dimensional intercellular gaps exposes weak protein interactions that are not detected in solution binding assays. Micropipette-based measurements of cadherin-mediated, cell-cell binding kinetics identified a unique kinetic signature that reflects both adhesive (trans) bonds between cadherins on opposing cells and lateral (cis) interactions between cadherins on the same cell. In solution, proposed lateral interactions were not detected, even at high cadherin concentrations. Mutations postulated to disrupt lateral cadherin association altered the kinetic signatures, but did not affect the adhesive (trans) binding affinity. Perturbed kinetics further coincided with altered cadherin distributions at junctions, wound healing dynamics, and paracellular permeability. Intercellular binding kinetics thus revealed cadherin interactions that occur within confined, intermembrane gaps but not in solution. Findings further demonstrate the impact of these revealed interactions on the organization and function of intercellular junctions. PMID:27009566

  19. Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus

    PubMed Central

    Kalashnikova, Anna A.; Winkler, Duane D.; McBryant, Steven J.; Henderson, Ryan K.; Herman, Jacob A.; DeLuca, Jennifer G.; Luger, Karolin; Prenni, Jessica E.; Hansen, Jeffrey C.

    2013-01-01

    The H1 linker histones are abundant chromatin-associated DNA-binding proteins. Recent evidence suggests that linker histones also may function through protein–protein interactions. To gain a better understanding of the scope of linker histone involvement in protein–protein interactions, we used a proteomics approach to identify H1-binding proteins in human nuclear extracts. Full-length H1.0 and H1.0 lacking its C-terminal domain (CTD) were used for protein pull-downs. A total of 107 candidate H1.0 binding proteins were identified by LC-MS/MS. About one-third of the H1.0-dependent interactions were mediated by the CTD, and two-thirds by the N-terminal domain-globular domain fragment. Many of the proteins pulled down by H1.0 were core splicing factors. Another group of H1-binding proteins functions in rRNA biogenesis. H1.0 also pulled down numerous ribosomal proteins and proteins involved in cellular transport. Strikingly, nearly all of the H1.0-binding proteins are found in the nucleolus. Quantitative biophysical studies with recombinant proteins confirmed that H1.0 directly binds to FACT and the splicing factors SF2/ASF and U2AF65. Our results demonstrate that H1.0 interacts with an extensive network of proteins that function in RNA metabolism in the nucleolus, and suggest that a new paradigm for linker histone action is in order. PMID:23435226

  20. Insights into positive and negative requirements for protein-protein interactions by crystallographic analysis of the beta-lactamase inhibitory proteins BLIP, BLIP-I, and BLP.

    PubMed

    Gretes, Michael; Lim, Daniel C; de Castro, Liza; Jensen, Susan E; Kang, Sung Gyun; Lee, Kye Joon; Strynadka, Natalie C J

    2009-06-05

    Beta-lactamase inhibitory protein (BLIP) binds a variety of beta-lactamase enzymes with wide-ranging specificity. Its binding mechanism and interface interactions are a well-established model system for the characterization of protein-protein interactions. Published studies have examined the binding of BLIP to diverse target beta-lactamases (e.g., TEM-1, SME-1, and SHV-1). However, apart from point mutations of amino acid residues, variability on the inhibitor side of this enzyme-inhibitor interface has remained unexplored. Thus, we present crystal structures of two likely BLIP relatives: (1) BLIP-I (solved alone and in complex with TEM-1), which has beta-lactamase inhibitory activity very similar to that of BLIP; and (2) beta-lactamase-inhibitory-protein-like protein (BLP) (in two apo forms, including an ultra-high-resolution structure), which is unable to inhibit any tested beta-lactamase. Despite categorical differences in species of origin and function, BLIP-I and BLP share nearly identical backbone conformations, even at loop regions differing in BLIP. We describe interacting residues and provide a comparative structural analysis of the interactions formed at the interface of BLIP-I.TEM-1 versus those formed at the interface of BLIP.TEM-1. Along with initial attempts to functionally characterize BLP, we examine its amino acid residues that structurally correspond to BLIP/BLIP-I binding hotspots to explain its inability to bind and inhibit TEM-1. We conclude that the BLIP family fold is a robust and flexible scaffold that permits the formation of high-affinity protein-protein interactions while remaining highly selective. Comparison of the two naturally occurring, distinct binding interfaces built upon this scaffold (BLIP and BLIP-I) shows that there is substantial variation possible in the subnanomolar binding interaction with TEM-1. The corresponding (non-TEM-1-binding) BLP surface shows that numerous favorable backbone-backbone/backbone-side-chain interactions with a protein partner can be negated by the presence of a few, strongly unfavorable interactions, especially electrostatic repulsions.

  1. Membrane-Mediated Cooperativity of Proteins

    NASA Astrophysics Data System (ADS)

    Weikl, Thomas R.

    2018-04-01

    Besides direct protein-protein interactions, indirect interactions mediated by membranes play an important role for the assembly and cooperative function of proteins in membrane shaping and adhesion. The intricate shapes of biological membranes are generated by proteins that locally induce membrane curvature. Indirect curvature-mediated interactions between these proteins arise because the proteins jointly affect the bending energy of the membranes. These curvature-mediated interactions are attractive for crescent-shaped proteins and are a driving force in the assembly of the proteins during membrane tubulation. Membrane adhesion results from the binding of receptor and ligand proteins that are anchored in the apposing membranes. The binding of these proteins strongly depends on nanoscale shape fluctuations of the membranes, leading to a fluctuation-mediated binding cooperativity. A length mismatch between receptor-ligand complexes in membrane adhesion zones causes repulsive curvature-mediated interactions that are a driving force for the length-based segregation of proteins during membrane adhesion.

  2. On the role of electrostatics in protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Witham, Shawn; Alexov, Emil

    2011-06-01

    The role of electrostatics in protein-protein interactions and binding is reviewed in this paper. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and the basic electrostatic effects occurring upon the formation of the complex are discussed. The effect of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated which indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartments. The similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity.

  3. On the role of electrostatics on protein-protein interactions

    PubMed Central

    Zhang, Zhe; Witham, Shawn; Alexov, Emil

    2011-01-01

    The role of electrostatics on protein-protein interactions and binding is reviewed in this article. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and basic electrostatic effects occurring upon the formation of the complex are discussed. The role of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated and indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartment. At the end, the similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity. PMID:21572182

  4. Prediction of Ras-effector interactions using position energy matrices.

    PubMed

    Kiel, Christina; Serrano, Luis

    2007-09-01

    One of the more challenging problems in biology is to determine the cellular protein interaction network. Progress has been made to predict protein-protein interactions based on structural information, assuming that structural similar proteins interact in a similar way. In a previous publication, we have determined a genome-wide Ras-effector interaction network based on homology models, with a high accuracy of predicting binding and non-binding domains. However, for a prediction on a genome-wide scale, homology modelling is a time-consuming process. Therefore, we here successfully developed a faster method using position energy matrices, where based on different Ras-effector X-ray template structures, all amino acids in the effector binding domain are sequentially mutated to all other amino acid residues and the effect on binding energy is calculated. Those pre-calculated matrices can then be used to score for binding any Ras or effector sequences. Based on position energy matrices, the sequences of putative Ras-binding domains can be scanned quickly to calculate an energy sum value. By calibrating energy sum values using quantitative experimental binding data, thresholds can be defined and thus non-binding domains can be excluded quickly. Sequences which have energy sum values above this threshold are considered to be potential binding domains, and could be further analysed using homology modelling. This prediction method could be applied to other protein families sharing conserved interaction types, in order to determine in a fast way large scale cellular protein interaction networks. Thus, it could have an important impact on future in silico structural genomics approaches, in particular with regard to increasing structural proteomics efforts, aiming to determine all possible domain folds and interaction types. All matrices are deposited in the ADAN database (http://adan-embl.ibmc.umh.es/). Supplementary data are available at Bioinformatics online.

  5. SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor.

    PubMed

    Bucholc, Maria; Ciesielski, Arkadiusz; Goch, Grażyna; Anielska-Mazur, Anna; Kulik, Anna; Krzywińska, Ewa; Dobrowolska, Grażyna

    2011-02-04

    SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.

  6. Feature selection and classification of protein-protein complexes based on their binding affinities using machine learning approaches.

    PubMed

    Yugandhar, K; Gromiha, M Michael

    2014-09-01

    Protein-protein interactions are intrinsic to virtually every cellular process. Predicting the binding affinity of protein-protein complexes is one of the challenging problems in computational and molecular biology. In this work, we related sequence features of protein-protein complexes with their binding affinities using machine learning approaches. We set up a database of 185 protein-protein complexes for which the interacting pairs are heterodimers and their experimental binding affinities are available. On the other hand, we have developed a set of 610 features from the sequences of protein complexes and utilized Ranker search method, which is the combination of Attribute evaluator and Ranker method for selecting specific features. We have analyzed several machine learning algorithms to discriminate protein-protein complexes into high and low affinity groups based on their Kd values. Our results showed a 10-fold cross-validation accuracy of 76.1% with the combination of nine features using support vector machines. Further, we observed accuracy of 83.3% on an independent test set of 30 complexes. We suggest that our method would serve as an effective tool for identifying the interacting partners in protein-protein interaction networks and human-pathogen interactions based on the strength of interactions. © 2014 Wiley Periodicals, Inc.

  7. MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.

    PubMed

    Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R

    2016-07-08

    Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Microfluidic free-flow electrophoresis for the discovery and characterisation of calmodulin binding partners

    NASA Astrophysics Data System (ADS)

    Herling, Therese; Linse, Sara; Knowles, Tuomas

    2015-03-01

    Non-covalent and transient protein-ligand interactions are integral to cellular function and malfunction. Key steps in signalling and regulatory pathways rely on reversible non-covalent protein-protein binding or ion chelation. Here we present a microfluidic free-flow electrophoresis method for detecting and characterising protein-ligand interactions in solution. We apply this method to probe the binding equilibria of calmodulin, a central protein to calcium signalling pathways. In this study we characterise the specific binding of calmodulin to phosphorylase kinase, a known target, and creatine kinase, which we identify as a putative binding partner through a protein array screen and surface plasmon resonance experiments. We verify the interaction between calmodulin and creatine kinase in solution using free-flow electrophoresis and investigate the effect of calcium and sodium chloride on the calmodulin-ligand binding affinity in free solution without the presence of a potentially interfering surface. Our results demonstrate the general applicability of quantitative microfluidic electrophoresis to characterise binding equilibria between biomolecules in solution.

  9. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  10. Dissecting protein:protein interactions between transcription factors with an RNA aptamer.

    PubMed Central

    Tian, Y; Adya, N; Wagner, S; Giam, C Z; Green, M R; Ellington, A D

    1995-01-01

    Nucleic acid aptamers isolated from random sequence pools have generally proven useful at inhibiting the interactions of nucleic acid binding proteins with their cognate nucleic acids. In order to develop reagents that could also be used to study protein:protein interactions, we have used in vitro selection to search for RNA aptamers that could interact with the transactivating protein Tax from human T-cell leukemia virus. Tax does not normally bind to nucleic acids, but instead stimulates transcription by interacting with a variety of cellular transcription factors, including the cyclic AMP-response element binding protein (CREB), NF-kappa B, and the serum response factor (SRF). Starting from a pool of greater than 10(13) different RNAs with a core of 120 random sequence positions, RNAs were selected for their ability to be co-retained on nitrocellulose filters with Tax. After five cycles of selection and amplification, a single nucleic acid species remained. This aptamer was found to bind Tax with high affinity and specificity, and could disrupt complex formation between Tax and NF-kappa B, but not with SRF. The differential effects of our aptamer probe on protein:protein interactions suggest a model for how the transcription factor binding sites on the surface of the Tax protein are organized. This model is consistent with data from a variety of other studies. PMID:7489503

  11. Pathogenic Leptospira Species Acquire Factor H and Vitronectin via the Surface Protein LcpA

    PubMed Central

    da Silva, Ludmila Bezerra; Miragaia, Lidia dos Santos; Breda, Leandro Carvalho Dantas; Abe, Cecilia Mari; Schmidt, Mariana Costa Braga; Moro, Ana Maria; Monaris, Denize; Conde, Jonas Nascimento; Józsi, Mihály; Isaac, Lourdes; Abreu, Patrícia Antônia Estima

    2014-01-01

    Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn2+-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion. PMID:25534939

  12. Pathogenic Leptospira species acquire factor H and vitronectin via the surface protein LcpA.

    PubMed

    da Silva, Ludmila Bezerra; Miragaia, Lidia Dos Santos; Breda, Leandro Carvalho Dantas; Abe, Cecilia Mari; Schmidt, Mariana Costa Braga; Moro, Ana Maria; Monaris, Denize; Conde, Jonas Nascimento; Józsi, Mihály; Isaac, Lourdes; Abreu, Patrícia Antônia Estima; Barbosa, Angela Silva

    2015-03-01

    Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn(2+)-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Isothermal titration calorimetric studies on the interaction of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes.

    PubMed

    Anbazhagan, V; Sankhala, Rajeshwer S; Singh, Bhanu Pratap; Swamy, Musti J

    2011-01-01

    The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process.

  14. Isothermal Titration Calorimetric Studies on the Interaction of the Major Bovine Seminal Plasma Protein, PDC-109 with Phospholipid Membranes

    PubMed Central

    Anbazhagan, V.; Sankhala, Rajeshwer S.; Singh, Bhanu Pratap; Swamy, Musti J.

    2011-01-01

    The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process. PMID:22022488

  15. Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism

    PubMed Central

    Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue

    2015-01-01

    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding. PMID:25856773

  16. Analysis of the interaction between membrane proteins and soluble binding partners by surface plasmon resonance.

    PubMed

    Wu, Zht Cheng; de Keyzer, Jeanine; Kusters, Ilja; Driessen, Arnold J M

    2013-01-01

    The interaction between membrane proteins and their (protein) ligands is conventionally investigated by nonequilibrium methods such as co-sedimentation or pull-down assays. Surface Plasmon Resonance can be used to monitor such binding events in real-time using isolated membranes immobilized to a surface providing insights in the kinetics of binding under equilibrium conditions. This application provides a fast, automated way to detect interacting species and to determine the kinetics and affinity (Kd) of the interaction.

  17. Druggable orthosteric and allosteric hot spots to target protein-protein interactions.

    PubMed

    Ma, Buyong; Nussinov, Ruth

    2014-01-01

    Drug designing targeting protein-protein interactions is challenging. Because structural elucidation and computational analysis have revealed the importance of hot spot residues in stabilizing these interactions, there have been on-going efforts to develop drugs which bind the hot spots and out-compete the native protein partners. The question arises as to what are the key 'druggable' properties of hot spots in protein-protein interactions and whether these mimic the general hot spot definition. Identification of orthosteric (at the protein- protein interaction site) and allosteric (elsewhere) druggable hot spots is expected to help in discovering compounds that can more effectively modulate protein-protein interactions. For example, are there any other significant features beyond their location in pockets in the interface? The interactions of protein-protein hot spots are coupled with conformational dynamics of protein complexes. Currently increasing efforts focus on the allosteric drug discovery. Allosteric drugs bind away from the native binding site and can modulate the native interactions. We propose that identification of allosteric hot spots could similarly help in more effective allosteric drug discovery. While detection of allosteric hot spots is challenging, targeting drugs to these residues has the potential of greatly increasing the hot spot and protein druggability.

  18. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.

    PubMed

    Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-04-07

    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Characterizing carbohydrate-protein interactions by NMR

    PubMed Central

    Bewley, Carole A.; Shahzad-ul-Hussan, Syed

    2013-01-01

    Interactions between proteins and soluble carbohydrates and/or surface displayed glycans are central to countless recognition, attachment and signaling events in biology. The physical chemical features associated with these binding events vary considerably, depending on the biological system of interest. For example, carbohydrate-protein interactions can be stoichiometric or multivalent, the protein receptors can be monomeric or oligomeric, and the specificity of recognition can be highly stringent or rather promiscuous. Equilibrium dissociation constants for carbohydrate binding are known to vary from micromolar to millimolar, with weak interactions being far more prevalent; and individual carbohydrate binding sites can be truly symmetrical or merely homologous, and hence, the affinities of individual sites within a single protein can vary, as can the order of binding. Several factors, including the weak affinities with which glycans bind their protein receptors, the dynamic nature of the glycans themselves, and the non-equivalent interactions among oligomeric carbohydrate receptors, have made NMR an especially powerful tool for studying and defining carbohydrate-protein interactions. Here we describe those NMR approaches that have proven to be the most robust in characterizing these systems, and explain what type of information can (or cannot) be obtained from each. Our goal is to provide to the reader the information necessary for selecting the correct experiment or sets of experiments to characterize their carbohydrate-protein interaction of interest. PMID:23784792

  20. The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.

    PubMed

    Catalá, A

    1984-10-01

    Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.

  1. Dynamics, Conformational Entropy, and Frustration in Protein-Protein Interactions Involving an Intrinsically Disordered Protein Domain.

    PubMed

    Lindström, Ida; Dogan, Jakob

    2018-05-18

    Intrinsically disordered proteins (IDPs) are abundant in the eukaryotic proteome. However, little is known about the role of subnanosecond dynamics and the conformational entropy that it represents in protein-protein interactions involving IDPs. Using nuclear magnetic resonance side chain and backbone relaxation, stopped-flow kinetics, isothermal titration calorimetry, and computational studies, we have characterized the interaction between the globular TAZ1 domain of the CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2). We show that the TAZ1/TAD-STAT2 complex retains considerable subnanosecond motions, with TAD-STAT2 undergoing only a partial disorder-to-order transition. We report here the first experimental determination of the conformational entropy change for both binding partners in an IDP binding interaction and find that the total change even exceeds in magnitude the binding enthalpy and is comparable to the contribution from the hydrophobic effect, demonstrating its importance in the binding energetics. Furthermore, we show that the conformational entropy change for TAZ1 is also instrumental in maintaining a biologically meaningful binding affinity. Strikingly, a spatial clustering of very high amplitude motions and a cluster of more rigid sites in the complex exist, which through computational studies we found to overlap with regions that experience energetic frustration and are less frustrated, respectively. Thus, the residual dynamics in the bound state could be necessary for faster dissociation, which is important for proteins that interact with multiple binding partners.

  2. How Structure Defines Affinity in Protein-Protein Interactions

    PubMed Central

    Erijman, Ariel; Rosenthal, Eran; Shifman, Julia M.

    2014-01-01

    Protein-protein interactions (PPI) in nature are conveyed by a multitude of binding modes involving various surfaces, secondary structure elements and intermolecular interactions. This diversity results in PPI binding affinities that span more than nine orders of magnitude. Several early studies attempted to correlate PPI binding affinities to various structure-derived features with limited success. The growing number of high-resolution structures, the appearance of more precise methods for measuring binding affinities and the development of new computational algorithms enable more thorough investigations in this direction. Here, we use a large dataset of PPI structures with the documented binding affinities to calculate a number of structure-based features that could potentially define binding energetics. We explore how well each calculated biophysical feature alone correlates with binding affinity and determine the features that could be used to distinguish between high-, medium- and low- affinity PPIs. Furthermore, we test how various combinations of features could be applied to predict binding affinity and observe a slow improvement in correlation as more features are incorporated into the equation. In addition, we observe a considerable improvement in predictions if we exclude from our analysis low-resolution and NMR structures, revealing the importance of capturing exact intermolecular interactions in our calculations. Our analysis should facilitate prediction of new interactions on the genome scale, better characterization of signaling networks and design of novel binding partners for various target proteins. PMID:25329579

  3. Great interactions: How binding incorrect partners can teach us about protein recognition and function.

    PubMed

    Vamparys, Lydie; Laurent, Benoist; Carbone, Alessandra; Sacquin-Mora, Sophie

    2016-10-01

    Protein-protein interactions play a key part in most biological processes and understanding their mechanism is a fundamental problem leading to numerous practical applications. The prediction of protein binding sites in particular is of paramount importance since proteins now represent a major class of therapeutic targets. Amongst others methods, docking simulations between two proteins known to interact can be a useful tool for the prediction of likely binding patches on a protein surface. From the analysis of the protein interfaces generated by a massive cross-docking experiment using the 168 proteins of the Docking Benchmark 2.0, where all possible protein pairs, and not only experimental ones, have been docked together, we show that it is also possible to predict a protein's binding residues without having any prior knowledge regarding its potential interaction partners. Evaluating the performance of cross-docking predictions using the area under the specificity-sensitivity ROC curve (AUC) leads to an AUC value of 0.77 for the complete benchmark (compared to the 0.5 AUC value obtained for random predictions). Furthermore, a new clustering analysis performed on the binding patches that are scattered on the protein surface show that their distribution and growth will depend on the protein's functional group. Finally, in several cases, the binding-site predictions resulting from the cross-docking simulations will lead to the identification of an alternate interface, which corresponds to the interaction with a biomolecular partner that is not included in the original benchmark. Proteins 2016; 84:1408-1421. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  4. Proteome-wide Identification of Novel Ceramide-binding Proteins by Yeast Surface cDNA Display and Deep Sequencing.

    PubMed

    Bidlingmaier, Scott; Ha, Kevin; Lee, Nam-Kyung; Su, Yang; Liu, Bin

    2016-04-01

    Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    PubMed

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  6. An accurate binding interaction model in de novo computational protein design of interactions: if you build it, they will bind.

    PubMed

    London, Nir; Ambroggio, Xavier

    2014-02-01

    Computational protein design efforts aim to create novel proteins and functions in an automated manner and, in the process, these efforts shed light on the factors shaping natural proteins. The focus of these efforts has progressed from the interior of proteins to their surface and the design of functions, such as binding or catalysis. Here we examine progress in the development of robust methods for the computational design of non-natural interactions between proteins and molecular targets such as other proteins or small molecules. This problem is referred to as the de novo computational design of interactions. Recent successful efforts in de novo enzyme design and the de novo design of protein-protein interactions open a path towards solving this problem. We examine the common themes in these efforts, and review recent studies aimed at understanding the nature of successes and failures in the de novo computational design of interactions. While several approaches culminated in success, the use of a well-defined structural model for a specific binding interaction in particular has emerged as a key strategy for a successful design, and is therefore reviewed with special consideration. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins.

    PubMed

    Norman, Michael; Rivers, Caroline; Lee, Youn-Bok; Idris, Jalilah; Uney, James

    2016-12-01

    RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein-protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins. © 2016 The Author(s).

  8. Interplay between binding affinity and kinetics in protein-protein interactions.

    PubMed

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Parallel Force Assay for Protein-Protein Interactions

    PubMed Central

    Aschenbrenner, Daniela; Pippig, Diana A.; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E.

    2014-01-01

    Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay. PMID:25546146

  10. Parallel force assay for protein-protein interactions.

    PubMed

    Aschenbrenner, Daniela; Pippig, Diana A; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E

    2014-01-01

    Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.

  11. Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F.

    2008-08-19

    Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to themore » lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.« less

  12. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP)

    PubMed Central

    Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3′-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3′-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP. PMID:27836661

  13. Studying the Salt Dependence of the Binding of σ70 and σ32 to Core RNA Polymerase Using Luminescence Resonance Energy Transfer

    PubMed Central

    Glaser, Bryan T.; Bergendahl, Veit; Anthony, Larry C.; Olson, Brian; Burgess, Richard R.

    2009-01-01

    The study of protein-protein interactions is becoming increasingly important for understanding the regulation of many cellular processes. The ability to quantify the strength with which two binding partners interact is desirable but the accurate determination of equilibrium binding constants is a difficult process. The use of Luminescence Resonance Energy Transfer (LRET) provides a homogeneous binding assay that can be used for the detection of protein-protein interactions. Previously, we developed an LRET assay to screen for small molecule inhibitors of the interaction of σ70 with theβ' coiled-coil fragment (amino acids 100–309). Here we describe an LRET binding assay used to monitor the interaction of E. coli σ70 and σ32 with core RNA polymerase along with the controls to verify the system. This approach generates fluorescently labeled proteins through the random labeling of lysine residues which enables the use of the LRET assay for proteins for which the creation of single cysteine mutants is not feasible. With the LRET binding assay, we are able to show that the interaction of σ70 with core RNAP is much more sensitive to NaCl than to potassium glutamate (KGlu), whereas the σ32 interaction with core RNAP is insensitive to both salts even at concentrations >500 mM. We also find that the interaction of σ32 with core RNAP is stronger than σ70 with core RNAP, under all conditions tested. This work establishes a consistent set of conditions for the comparison of the binding affinities of the E.coli sigma factors with core RNA polymerase. The examination of the importance of salt conditions in the binding of these proteins could have implications in both in vitro assay conditions and in vivo function. PMID:19649256

  14. The Interaction Properties of the Human Rab GTPase Family – A Comparative Analysis Reveals Determinants of Molecular Binding Selectivity

    PubMed Central

    Stein, Matthias; Pilli, Manohar; Bernauer, Sabine; Habermann, Bianca H.; Zerial, Marino; Wade, Rebecca C.

    2012-01-01

    Background Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. Methodology/Principal Findings Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. Conclusions/Significance We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity. PMID:22523562

  15. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment

    PubMed Central

    Mollica, Luca; Bessa, Luiza M.; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert

    2016-01-01

    In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the “fly-casting” hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context. PMID:27668217

  16. Elucidating the druggable interface of protein-protein interactions using fragment docking and coevolutionary analysis.

    PubMed

    Bai, Fang; Morcos, Faruck; Cheng, Ryan R; Jiang, Hualiang; Onuchic, José N

    2016-12-13

    Protein-protein interactions play a central role in cellular function. Improving the understanding of complex formation has many practical applications, including the rational design of new therapeutic agents and the mechanisms governing signal transduction networks. The generally large, flat, and relatively featureless binding sites of protein complexes pose many challenges for drug design. Fragment docking and direct coupling analysis are used in an integrated computational method to estimate druggable protein-protein interfaces. (i) This method explores the binding of fragment-sized molecular probes on the protein surface using a molecular docking-based screen. (ii) The energetically favorable binding sites of the probes, called hot spots, are spatially clustered to map out candidate binding sites on the protein surface. (iii) A coevolution-based interface interaction score is used to discriminate between different candidate binding sites, yielding potential interfacial targets for therapeutic drug design. This approach is validated for important, well-studied disease-related proteins with known pharmaceutical targets, and also identifies targets that have yet to be studied. Moreover, therapeutic agents are proposed by chemically connecting the fragments that are strongly bound to the hot spots.

  17. EMSA Analysis of DNA Binding By Rgg Proteins

    PubMed Central

    LaSarre, Breah; Federle, Michael J.

    2016-01-01

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases). PMID:27430004

  18. EMSA Analysis of DNA Binding By Rgg Proteins.

    PubMed

    LaSarre, Breah; Federle, Michael J

    2013-08-20

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function ( e.g. interruption of DNA-binding in some cases).

  19. Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface.

    PubMed

    Kastritis, Panagiotis L; Rodrigues, João P G L M; Folkers, Gert E; Boelens, Rolf; Bonvin, Alexandre M J J

    2014-07-15

    Protein-protein complexes orchestrate most cellular processes such as transcription, signal transduction and apoptosis. The factors governing their affinity remain elusive however, especially when it comes to describing dissociation rates (koff). Here we demonstrate that, next to direct contributions from the interface, the non-interacting surface (NIS) also plays an important role in binding affinity, especially polar and charged residues. Their percentage on the NIS is conserved over orthologous complexes indicating an evolutionary selection pressure. Their effect on binding affinity can be explained by long-range electrostatic contributions and surface-solvent interactions that are known to determine the local frustration of the protein complex surface. Including these in a simple model significantly improves the affinity prediction of protein complexes from structural models. The impact of mutations outside the interacting surface on binding affinity is supported by experimental alanine scanning mutagenesis data. These results enable the development of more sophisticated and integrated biophysical models of binding affinity and open new directions in experimental control and modulation of biomolecular interactions. Copyright © 2014. Published by Elsevier Ltd.

  20. BIND: the Biomolecular Interaction Network Database

    PubMed Central

    Bader, Gary D.; Betel, Doron; Hogue, Christopher W. V.

    2003-01-01

    The Biomolecular Interaction Network Database (BIND: http://bind.ca) archives biomolecular interaction, complex and pathway information. A web-based system is available to query, view and submit records. BIND continues to grow with the addition of individual submissions as well as interaction data from the PDB and a number of large-scale interaction and complex mapping experiments using yeast two hybrid, mass spectrometry, genetic interactions and phage display. We have developed a new graphical analysis tool that provides users with a view of the domain composition of proteins in interaction and complex records to help relate functional domains to protein interactions. An interaction network clustering tool has also been developed to help focus on regions of interest. Continued input from users has helped further mature the BIND data specification, which now includes the ability to store detailed information about genetic interactions. The BIND data specification is available as ASN.1 and XML DTD. PMID:12519993

  1. Coilin phosphorylation mediates interaction with SMN and SmB'.

    PubMed

    Toyota, Cory G; Davis, Misty D; Cosman, Angela M; Hebert, Michael D

    2010-04-01

    Cajal bodies (CBs) are subnuclear domains that participate in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and play a part in the assembly of the spliceosomal complex. The CB marker protein, coilin, interacts with survival of motor neuron (SMN) and Sm proteins. Several coilin phosphoresidues have been identified by mass spectrometric analysis. Phosphorylation of coilin affects its self-interaction and localization in the nucleus. We hypothesize that coilin phosphorylation also impacts its binding to SMN and Sm proteins. In vitro binding studies with a C-terminal fragment of coilin and corresponding phosphomimics show that SMN binds preferentially to dephosphorylated analogs and that SmB' binds preferentially to phosphomimetic constructs. Bacterially expressed full-length coilin binds more SMN and SmB' than does the C-terminal fragment. Co-immunoprecipitation and phosphatase experiments show that SMN also binds dephosphorylated coilin in vivo. These data show that phosphorylation of coilin influences interaction with its target proteins and, thus, may be significant in managing the flow of snRNPs through the CB.

  2. Coilin phosphorylation mediates interaction with SMN and SmB′

    PubMed Central

    Toyota, Cory G.; Davis, Misty D.; Cosman, Angela M.; Hebert, Michael D.

    2010-01-01

    Cajal bodies (CBs) are subnuclear domains that participate in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and play a part in the assembly of the spliceosomal complex. The CB marker protein, coilin, interacts with survival of motor neuron (SMN) and Sm proteins. Several coilin phosphoresidues have been identified by mass spectrometric analysis. Phosphorylation of coilin affects its self-interaction and localization in the nucleus. We hypothesize that coilin phosphorylation also impacts its binding to SMN and Sm proteins. In vitro binding studies with a C-terminal fragment of coilin and corresponding phosphomimics show that SMN binds preferentially to dephosphorylated analogs and that SmB′ binds preferentially to phosphomimetic constructs. Bacterially expressed full-length coilin binds more SMN and SmB′ than does the C-terminal fragment. Co-immunoprecipitation and phosphatase experiments show that SMN also binds dephosphorylated coilin in vivo. These data show that phosphorylation of coilin influences interaction with its target proteins and, thus, may be significant in managing the flow of snRNPs through the CB. PMID:19997741

  3. Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins.

    PubMed

    Vishnivetskiy, Sergey A; Gimenez, Luis E; Francis, Derek J; Hanson, Susan M; Hubbell, Wayne L; Klug, Candice S; Gurevich, Vsevolod V

    2011-07-08

    Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.

  4. Few Residues within an Extensive Binding Interface Drive Receptor Interaction and Determine the Specificity of Arrestin Proteins*

    PubMed Central

    Vishnivetskiy, Sergey A.; Gimenez, Luis E.; Francis, Derek J.; Hanson, Susan M.; Hubbell, Wayne L.; Klug, Candice S.; Gurevich, Vsevolod V.

    2011-01-01

    Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements. PMID:21471193

  5. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins

    NASA Astrophysics Data System (ADS)

    Poornima, C. S.; Dean, P. M.

    1995-12-01

    Water molecules are known to play an important rôle in mediating protein-ligand interactions. If water molecules are conserved at the ligand-binding sites of homologous proteins, such a finding may suggest the structural importance of water molecules in ligand binding. Structurally conserved water molecules change the conventional definition of `binding sites' by changing the shape and complementarity of these sites. Such conserved water molecules can be important for site-directed ligand/drug design. Therefore, five different sets of homologous protein/protein-ligand complexes have been examined to identify the conserved water molecules at the ligand-binding sites. Our analysis reveals that there are as many as 16 conserved water molecules at the FAD binding site of glutathione reductase between the crystal structures obtained from human and E. coli. In the remaining four sets of high-resolution crystal structures, 2-4 water molecules have been found to be conserved at the ligand-binding sites. The majority of these conserved water molecules are either bound in deep grooves at the protein-ligand interface or completely buried in cavities between the protein and the ligand. All these water molecules, conserved between the protein/protein-ligand complexes from different species, have identical or similar apolar and polar interactions in a given set. The site residues interacting with the conserved water molecules at the ligand-binding sites have been found to be highly conserved among proteins from different species; they are more conserved compared to the other site residues interacting with the ligand. These water molecules, in general, make multiple polar contacts with protein-site residues.

  6. Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling.

    PubMed

    Tome, Jacob M; Ozer, Abdullah; Pagano, John M; Gheba, Dan; Schroth, Gary P; Lis, John T

    2014-06-01

    RNA-protein interactions play critical roles in gene regulation, but methods to quantitatively analyze these interactions at a large scale are lacking. We have developed a high-throughput sequencing-RNA affinity profiling (HiTS-RAP) assay by adapting a high-throughput DNA sequencer to quantify the binding of fluorescently labeled protein to millions of RNAs anchored to sequenced cDNA templates. Using HiTS-RAP, we measured the affinity of mutagenized libraries of GFP-binding and NELF-E-binding aptamers to their respective targets and identified critical regions of interaction. Mutations additively affected the affinity of the NELF-E-binding aptamer, whose interaction depended mainly on a single-stranded RNA motif, but not that of the GFP aptamer, whose interaction depended primarily on secondary structure.

  7. Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling.

    PubMed

    Chen, Weijun; Lam, Suvana S; Srinath, Hema; Schiffer, Celia A; Royer, William E; Lin, Kai

    2007-04-13

    The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational studies. Here, we show that Ski-(16-192) interacted directly with a homotrimer of receptor-regulated Smad protein (R-Smad), e.g. Smad2 or Smad3, to form a hexamer; Ski-(16-192) interacted with an R-Smad.Smad4 heterotrimer to form a pentamer. CBP-(1941-1992) was also found to interact directly with an R-Smad homotrimer to form a hexamer and with an R-Smad.Smad4 heterotrimer to form a pentamer. Moreover, these domains of Ski and CBP competed with each other for binding to Smad3. Our mutational studies revealed that domains of Ski and CBP interacted with Smad3 at a portion of the binding surface of the Smad anchor for receptor activation. Our results suggest that Ski negatively regulates TGF-beta signaling by replacing CBP in R-Smad complexes. Our working model suggests that Smad protein activity is delicately balanced by Ski and CBP in the TGF-beta pathway.

  8. NMR identification of the binding surfaces involved in the Salmonella and Shigella Type III secretion tip-translocon protein-protein interactions.

    PubMed

    McShan, Andrew C; Kaur, Kawaljit; Chatterjee, Srirupa; Knight, Kevin M; De Guzman, Roberto N

    2016-08-01

    The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/β domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. Proteins 2016; 84:1097-1107. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Binding Rate Constants Reveal Distinct Features of Disordered Protein Domains.

    PubMed

    Dogan, Jakob; Jonasson, Josefin; Andersson, Eva; Jemth, Per

    2015-08-04

    Intrinsically disordered proteins (IDPs) are abundant in the proteome and involved in key cellular functions. However, experimental data about the binding kinetics of IDPs as a function of different environmental conditions are scarce. We have performed an extensive characterization of the ionic strength dependence of the interaction between the molten globular nuclear co-activator binding domain (NCBD) of CREB binding protein and five different protein ligands, including the intrinsically disordered activation domain of p160 transcriptional co-activators (SRC1, TIF2, ACTR), the p53 transactivation domain, and the folded pointed domain (PNT) of transcription factor ETS-2. Direct comparisons of the binding rate constants under identical conditions show that the association rate constant, kon, for interactions between NCBD and disordered protein domains is high at low salt concentrations (90-350 × 10(6) M(-1) s(-1) at 4 °C) but is reduced significantly (10-30-fold) with an increasing ionic strength and reaches a plateau around physiological ionic strength. In contrast, the kon for the interaction between NCBD and the folded PNT domain is only 7 × 10(6) M(-1) s(-1) (4 °C and low salt) and displays weak ionic strength dependence, which could reflect a distinctly different association that relies less on electrostatic interactions. Furthermore, the basal rate constant (in the absence of electrostatic interactions) is high for the NCBD interactions, exceeding those typically observed for folded proteins. One likely interpretation is that disordered proteins have a large number of possible collisions leading to a productive on-pathway encounter complex, while folded proteins are more restricted in terms of orientation. Our results highlight the importance of electrostatic interactions in binding involving IDPs and emphasize the significance of including ionic strength as a factor in studies that compare the binding properties of IDPs to those of ordered proteins.

  10. A solid-phase assay for studying direct binding of progranulin to TNFR and progranulin antagonism of TNF/TNFR interactions.

    PubMed

    Tian, Qingyun; Zhao, Shuai; Liu, Chuanju

    2014-01-01

    The discovery that TNF receptors (TNFR) serve as the binding receptors for progranulin (PGRN) reveals the significant role of PGRN in inflammatory and autoimmune diseases, including inflammatory arthritis. Herein we describe a simple, antibody-free analytical assay, i.e., a biotin-based solid-phase binding assay, to examine the direct interaction of PGRN/TNFR and the PGRN inhibition of TNF/TNFR interactions. Briefly, a 96-well high-binding microplate is first coated with the first protein (protein A), and after blocking, the coated microplate is incubated with the biotin-labeled second protein (protein B) in the absence or presence of the third protein (protein C). Finally the streptavidin conjugated with a detecting enzyme is added, followed by a signal measurement. Also discussed in this chapter are the advantages of the strategy, key elements to obtain reliable results, and discrepancies among various PGRN proteins in view of the binding activity with TNFR.

  11. Free energy calculations of glycosaminoglycan-protein interactions.

    PubMed

    Gandhi, Neha S; Mancera, Ricardo L

    2009-10-01

    Glycosaminoglycans (GAGs) are complex highly charged linear polysaccharides that have a variety of roles in biological processes. We report the first use of molecular dynamics (MD) free energy calculations using the MM/PBSA method to investigate the binding of GAGs to protein molecules, namely the platelet endothelial cell adhesion molecule 1 (PECAM-1) and annexin A2. Calculations of the free energy of the binding of heparin fragments of different sizes reveal the existence of a region of low GAG-binding affinity in domains 5-6 of PECAM-1 and a region of high affinity in domains 2-3, consistent with experimental data and ligand-protein docking studies. A conformational hinge movement between domains 2 and 3 was observed, which allows the binding of heparin fragments of increasing size (pentasaccharides to octasaccharides) with an increasingly higher binding affinity. Similar simulations of the binding of a heparin fragment to annexin A2 reveal the optimization of electrostatic and hydrogen bonding interactions with the protein and protein-bound calcium ions. In general, these free energy calculations reveal that the binding of heparin to protein surfaces is dominated by strong electrostatic interactions for longer fragments, with equally important contributions from van der Waals interactions and vibrational entropy changes, against a large unfavorable desolvation penalty due to the high charge density of these molecules.

  12. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  13. Biological role and structural mechanism of twinfilin–capping protein interaction

    PubMed Central

    Falck, Sandra; Paavilainen, Ville O; Wear, Martin A; Grossmann, J Günter; Cooper, John A; Lappalainen, Pekka

    2004-01-01

    Twinfilin and capping protein (CP) are highly conserved actin-binding proteins that regulate cytoskeletal dynamics in organisms from yeast to mammals. Twinfilin binds actin monomer, while CP binds the barbed end of the actin filament. Remarkably, twinfilin and CP also bind directly to each other, but the mechanism and role of this interaction in actin dynamics are not defined. Here, we found that the binding of twinfilin to CP does not affect the binding of either protein to actin. Furthermore, site-directed mutagenesis studies revealed that the CP-binding site resides in the conserved C-terminal tail region of twinfilin. The solution structure of the twinfilin–CP complex supports these conclusions. In vivo, twinfilin's binding to both CP and actin monomer was found to be necessary for twinfilin's role in actin assembly dynamics, based on genetic studies with mutants that have defined biochemical functions. Our results support a novel model for how sequential interactions between actin monomers, twinfilin, CP, and actin filaments promote cytoskeletal dynamics. PMID:15282541

  14. pUL34 binding near the human cytomegalovirus origin of lytic replication enhances DNA replication and viral growth.

    PubMed

    Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J

    2018-05-01

    The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Extreme disorder in an ultrahigh-affinity protein complex

    NASA Astrophysics Data System (ADS)

    Borgia, Alessandro; Borgia, Madeleine B.; Bugge, Katrine; Kissling, Vera M.; Heidarsson, Pétur O.; Fernandes, Catarina B.; Sottini, Andrea; Soranno, Andrea; Buholzer, Karin J.; Nettels, Daniel; Kragelund, Birthe B.; Best, Robert B.; Schuler, Benjamin

    2018-03-01

    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.

  16. Novel interactions of CAPS (Ca2+-dependent activator protein for secretion) with the three neuronal SNARE proteins required for vesicle fusion.

    PubMed

    Daily, Neil J; Boswell, Kristin L; James, Declan J; Martin, Thomas F J

    2010-11-12

    CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca(2+)-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis.

  17. Novel Interactions of CAPS (Ca2+-dependent Activator Protein for Secretion) with the Three Neuronal SNARE Proteins Required for Vesicle Fusion*

    PubMed Central

    Daily, Neil J.; Boswell, Kristin L.; James, Declan J.; Martin, Thomas F. J.

    2010-01-01

    CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca2+-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis. PMID:20826818

  18. n-Dodecyl β-D-maltoside specifically competes with general anesthetics for anesthetic binding sites.

    PubMed

    Xu, Longhe; Matsunaga, Felipe; Xi, Jin; Li, Min; Ma, Jingyuan; Liu, Renyu

    2014-01-01

    We recently demonstrated that the anionic detergent sodium dodecyl sulfate (SDS) specifically interacts with the anesthetic binding site in horse spleen apoferritin, a soluble protein which models anesthetic binding sites in receptors. This raises the possibility of other detergents similarly interacting with and occluding such sites from anesthetics, thereby preventing the proper identification of novel anesthetic binding sites. n-Dodecyl β-D-maltoside (DDM) is a non-ionic detergent commonly used during protein-anesthetic studies because of its mild and non-denaturing properties. In this study, we demonstrate that SDS and DDM occupy anesthetic binding sites in the model proteins human serum albumin (HSA) and horse spleen apoferritin and thereby inhibit the binding of the general anesthetics propofol and isoflurane. DDM specifically interacts with HSA (Kd = 40 μM) with a lower affinity than SDS (Kd = 2 μM). DDM exerts all these effects while not perturbing the native structures of either model protein. Computational calculations corroborated the experimental results by demonstrating that the binding sites for DDM and both anesthetics on the model proteins overlapped. Collectively, our results indicate that DDM and SDS specifically interact with anesthetic binding sites and may thus prevent the identification of novel anesthetic sites. Special precaution should be taken when undertaking and interpreting results from protein-anesthetic investigations utilizing detergents like SDS and DDM.

  19. Interactions of the Human LIP5 Regulatory Protein with Endosomal Sorting Complexes Required for Transport*♦

    PubMed Central

    Skalicky, Jack J.; Arii, Jun; Wenzel, Dawn M.; Stubblefield, William-May B.; Katsuyama, Angela; Uter, Nathan T.; Bajorek, Monika; Myszka, David G.; Sundquist, Wesley I.

    2012-01-01

    The endosomal sorting complex required for transport (ESCRT) pathway remodels membranes during multivesicular body biogenesis, the abscission stage of cytokinesis, and enveloped virus budding. The ESCRT-III and VPS4 ATPase complexes catalyze the membrane fission events associated with these processes, and the LIP5 protein helps regulate their interactions by binding directly to a subset of ESCRT-III proteins and to VPS4. We have investigated the biochemical and structural basis for different LIP5-ligand interactions and show that the first microtubule-interacting and trafficking (MIT) module of the tandem LIP5 MIT domain binds CHMP1B (and other ESCRT-III proteins) through canonical type 1 MIT-interacting motif (MIM1) interactions. In contrast, the second LIP5 MIT module binds with unusually high affinity to a novel MIM element within the ESCRT-III protein CHMP5. A solution structure of the relevant LIP5-CHMP5 complex reveals that CHMP5 helices 5 and 6 and adjacent linkers form an amphipathic “leucine collar” that wraps almost completely around the second LIP5 MIT module but makes only limited contacts with the first MIT module. LIP5 binds MIM1-containing ESCRT-III proteins and CHMP5 and VPS4 ligands independently in vitro, but these interactions are coupled within cells because formation of stable VPS4 complexes with both LIP5 and CHMP5 requires LIP5 to bind both a MIM1-containing ESCRT-III protein and CHMP5. Our studies thus reveal how the tandem MIT domain of LIP5 binds different types of ESCRT-III proteins, promoting assembly of active VPS4 enzymes on the polymeric ESCRT-III substrate. PMID:23105106

  20. Ion-binding properties of Calnuc, Ca2+ versus Mg2+--Calnuc adopts additional and unusual Ca2+-binding sites upon interaction with G-protein.

    PubMed

    Kanuru, Madhavi; Samuel, Jebakumar J; Balivada, Lavanya M; Aradhyam, Gopala K

    2009-05-01

    Calnuc is a novel, highly modular, EF-hand containing, Ca(2+)-binding, Golgi resident protein whose functions are not clear. Using amino acid sequences, we demonstrate that Calnuc is a highly conserved protein among various organisms, from Ciona intestinalis to humans. Maximum homology among all sequences is found in the region that binds to G-proteins. In humans, it is known to be expressed in a variety of tissues, and it interacts with several important protein partners. Among other proteins, Calnuc is known to interact with heterotrimeric G-proteins, specifically with the alpha-subunit. Herein, we report the structural implications of Ca(2+) and Mg(2+) binding, and illustrate that Calnuc functions as a downstream effector for G-protein alpha-subunit. Our results show that Ca(2+) binds with an affinity of 7 mum and causes structural changes. Although Mg(2+) binds to Calnuc with very weak affinity, the structural changes that it causes are further enhanced by Ca(2+) binding. Furthermore, isothermal titration calorimetry results show that Calnuc and the G-protein bind with an affinity of 13 nm. We also predict a probable function for Calnuc, that of maintaining Ca(2+) homeostasis in the cell. Using Stains-all and terbium as Ca(2+) mimic probes, we demonstrate that the Ca(2+)-binding ability of Calnuc is governed by the activity-based conformational state of the G-protein. We propose that Calnuc adopts structural sites similar to the ones seen in proteins such as annexins, c2 domains or chromogrannin A, and therefore binds more calcium ions upon binding to Gialpha. With the number of organelle-targeted G-protein-coupled receptors increasing, intracellular communication mediated by G-proteins could become a new paradigm. In this regard, we propose that Calnuc could be involved in the downstream signaling of G-proteins.

  1. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    PubMed

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  2. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    PubMed Central

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  3. aPPRove: An HMM-Based Method for Accurate Prediction of RNA-Pentatricopeptide Repeat Protein Binding Events

    PubMed Central

    Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B.; Ben-Hur, Asa; Boucher, Christina

    2016-01-01

    Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The P class contains tandem P-type motif sequences, and the PLS class contains alternating P, L and S type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a PLS-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the PLS class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for PLS-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805

  4. Rigid-Docking Approaches to Explore Protein-Protein Interaction Space.

    PubMed

    Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ohue, Masahito; Akiyama, Yutaka

    Protein-protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein-protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this. Protein-protein rigid docking has been utilized by several projects, docking-based approaches having the advantages that they can suggest binding poses of predicted binding partners which would help in understanding the interaction mechanisms and that comparing docking results of both non-binders and binders can lead to understanding the specificity of protein-protein interactions from structural viewpoints. In this review we focus on explaining current computational prediction methods to predict pairwise direct protein-protein interactions that form protein complexes.

  5. Measuring protein-protein and protein-nucleic Acid interactions by biolayer interferometry.

    PubMed

    Sultana, Azmiri; Lee, Jeffrey E

    2015-02-02

    Biolayer interferometry (BLI) is a simple, optical dip-and-read system useful for measuring interactions between proteins, peptides, nucleic acids, small molecules, and/or lipids in real time. In BLI, a biomolecular bait is immobilized on a matrix at the tip of a fiber-optic sensor. The binding between the immobilized ligand and another molecule in an analyte solution produces a change in optical thickness at the tip and results in a wavelength shift proportional to binding. BLI provides direct binding affinities and rates of association and dissociation. This unit describes an efficient approach using streptavidin-based BLI to analyze DNA-protein and protein-protein interactions. A quantitative set of equilibrium binding affinities (K(d)) and rates of association and dissociation (k(a)/k(d)) can be measured in minutes using nanomole quantities of sample. Copyright © 2015 John Wiley & Sons, Inc.

  6. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold

    PubMed Central

    Huber, Roland G.; Bond, Peter J.

    2017-01-01

    An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge) are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners. PMID:29016650

  7. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold.

    PubMed

    Ivanov, Stefan M; Cawley, Andrew; Huber, Roland G; Bond, Peter J; Warwicker, Jim

    2017-01-01

    An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge) are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.

  8. Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites

    PubMed Central

    Song, Xiufeng; Gurevich, Eugenia V.; Gurevich, Vsevolod V.

    2008-01-01

    Arrestins are multi-functional regulators of G protein-coupled receptors. Receptor-bound arrestins interact with >30 remarkably diverse proteins and redirect the signaling to G protein-independent pathways. The functions of free arrestins are poorly understood, and the interaction sites of the non-receptor arrestin partners are largely unknown. In this study, we show that cone arrestin, the least studied member of the family, binds c-Jun N-terminal kinase (JNK3) and Mdm2 and regulates their subcellular distribution. Using arrestin mutants with increased or reduced structural flexibility, we demonstrate that arrestin in all conformations binds JNK3 comparably, whereas Mdm2 preferentially binds cone arrestin ‘frozen’ in the basal state. To localize the interaction sites, we expressed separate N- and C-domains of cone and rod arrestins and found that individual domains bind JNK3 and remove it from the nucleus as efficiently as full-length proteins. Thus, the arrestin binding site for JNK3 includes elements in both domains with the affinity of partial sites on individual domains sufficient for JNK3 relocalization. N-domain of rod arrestin binds Mdm2, which localizes its main interaction site to this region. Comparable binding of JNK3 and Mdm2 to four arrestin subtypes allowed us to identify conserved residues likely involved in these interactions. PMID:17680991

  9. Binding preference of carbon nanotube over proline-rich motif ligand on SH3-domain: a comparison with different force fields.

    PubMed

    Shi, Biyun; Zuo, Guanghong; Xiu, Peng; Zhou, Ruhong

    2013-04-04

    With the widespread applications of nanomaterials such as carbon nanotubes, there is a growing concern on the biosafety of these engineered nanoparticles, in particular their interactions with proteins. In molecular simulations of nanoparticle-protein interactions, the choice of empirical parameters (force fields) plays a decisive role, and thus is of great importance and should be examined carefully before wider applications. Here we compare three commonly used force fields, CHARMM, OPLSAA, and AMBER in study of the competitive binding of a single wall carbon nanotube (SWCNT) with a native proline-rich motif (PRM) ligand on its target protein SH3 domain, a ubiquitous protein-protein interaction mediator involved in signaling and regulatory pathways. We find that the SWCNT displays a general preference over the PRM in binding with SH3 domain in all the three force fields examined, although the degree of preference can be somewhat different, with the AMBER force field showing the highest preference. The SWCNT prevents the ligand from reaching its native binding pocket by (i) occupying the binding pocket directly, and (ii) binding with the ligand itself and then being trapped together onto some off-sites. The π-π stacking interactions between the SWCNT and aromatic residues are found to play a significant role in its binding to the SH3 domain in all the three force fields. Further analyses show that even the SWCNT-ligand binding can also be relatively more stable than the native ligand-protein binding, indicating a serious potential disruption to the protein SH3 function.

  10. Lipid vesicle-mediated affinity chromatography using magnetic activated cell sorting (LIMACS): a novel method to analyze protein-lipid interaction.

    PubMed

    Bieberich, Erhard

    2011-04-26

    The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane. Additional lipid protein complexes can be identified using proteomics analysis of lipid binding protein co-purified with the lipid vesicles.

  11. Deciphering RNA-Recognition Patterns of Intrinsically Disordered Proteins.

    PubMed

    Srivastava, Ambuj; Ahmad, Shandar; Gromiha, M Michael

    2018-05-29

    Intrinsically disordered regions (IDRs) and protein (IDPs) are highly flexible owing to their lack of well-defined structures. A subset of such proteins interacts with various substrates; including RNA; frequently adopting regular structures in the final complex. In this work; we have analysed a dataset of protein⁻RNA complexes undergoing disorder-to-order transition (DOT) upon binding. We found that DOT regions are generally small in size (less than 3 residues) for RNA binding proteins. Like structured proteins; positively charged residues are found to interact with RNA molecules; indicating the dominance of electrostatic and cation-π interactions. However, a comparison of binding frequency shows that interface hydrophobic and aromatic residues have more interactions in only DOT regions than in a protein. Further; DOT regions have significantly higher exposure to water than their structured counterparts. Interactions of DOT regions with RNA increase the sheet formation with minor changes in helix forming residues. We have computed the interaction energy for amino acids⁻nucleotide pairs; which showed the preference of His⁻G; Asn⁻U and Ser⁻U at for the interface of DOT regions. This study provides insights to understand protein⁻RNA interactions and the results could also be used for developing a tool for identifying DOT regions in RNA binding proteins.

  12. Interaction of Myosin Phosphatase Target Subunit (MYPT1) with Myosin Phosphatase-RhoA Interacting Protein (MRIP): A Role of Glutamic Acids in the Interaction.

    PubMed

    Lee, Eunhee; Stafford, Walter F

    2015-01-01

    Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724-837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 991-1030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 998-1000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction.

  13. Protein Surface Mimetics: Understanding How Ruthenium Tris(Bipyridines) Interact with Proteins.

    PubMed

    Hewitt, Sarah H; Filby, Maria H; Hayes, Ed; Kuhn, Lars T; Kalverda, Arnout P; Webb, Michael E; Wilson, Andrew J

    2017-01-17

    Protein surface mimetics achieve high-affinity binding by exploiting a scaffold to project binding groups over a large area of solvent-exposed protein surface to make multiple cooperative noncovalent interactions. Such recognition is a prerequisite for competitive/orthosteric inhibition of protein-protein interactions (PPIs). This paper describes biophysical and structural studies on ruthenium(II) tris(bipyridine) surface mimetics that recognize cytochrome (cyt) c and inhibit the cyt c/cyt c peroxidase (CCP) PPI. Binding is electrostatically driven, with enhanced affinity achieved through enthalpic contributions thought to arise from the ability of the surface mimetics to make a greater number of noncovalent interactions than CCP with surface-exposed basic residues on cyt c. High-field natural abundance 1 H, 15 N HSQC NMR experiments are consistent with surface mimetics binding to cyt c in similar manner to CCP. This provides a framework for understanding recognition of proteins by supramolecular receptors and informing the design of ligands superior to the protein partners upon which they are inspired. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    PubMed Central

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane-bounded protein lattice that recruits genomic RNA into the virus and forms the shell of a budding immature viral capsid. In binding studies of HIV-1 Gag MA to model membranes with well-controlled lipid composition, we dissect the multiple interactions of the MA domain with its target membrane. This results in a detailed understanding of the thermodynamic aspects that determine membrane association, preferential lipid recruitment to the viral shell, and those aspects of Gag assembly into the membrane-bound protein lattice that are determined by MA. PMID:26912608

  15. Structural Basis for Antagonism by Suramin of Heparin Binding to Vaccinia Complement Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesh, Vannakambadi K.; Muthuvel, Suresh Kumar; Smith, Scott A.

    2010-07-19

    Suramin is a competitive inhibitor of heparin binding to many proteins, including viral envelope proteins, protein tyrosine phosphatases, and fibroblast growth factors (FGFs). It has been clinically evaluated as a potential therapeutic in treatment of cancers caused by unregulated angiogenesis, triggered by FGFs. Although it has shown clinical promise in treatment of several cancers, suramin has many undesirable side effects. There is currently no experimental structure that reveals the molecular interactions responsible for suramin inhibition of heparin binding, which could be of potential use in structure-assisted design of improved analogues of suramin. We report the structure of suramin, in complexmore » with the heparin-binding site of vaccinia virus complement control protein (VCP), which interacts with heparin in a geometrically similar manner to many FGFs. The larger than anticipated flexibility of suramin manifested in this structure, and other details of VCP-suramin interactions, might provide useful structural information for interpreting interactions of suramin with many proteins.« less

  16. Free energy decomposition of protein-protein interactions.

    PubMed

    Noskov, S Y; Lim, C

    2001-08-01

    A free energy decomposition scheme has been developed and tested on antibody-antigen and protease-inhibitor binding for which accurate experimental structures were available for both free and bound proteins. Using the x-ray coordinates of the free and bound proteins, the absolute binding free energy was computed assuming additivity of three well-defined, physical processes: desolvation of the x-ray structures, isomerization of the x-ray conformation to a nearby local minimum in the gas-phase, and subsequent noncovalent complex formation in the gas phase. This free energy scheme, together with the Generalized Born model for computing the electrostatic solvation free energy, yielded binding free energies in remarkable agreement with experimental data. Two assumptions commonly used in theoretical treatments; viz., the rigid-binding approximation (which assumes no conformational change upon complexation) and the neglect of vdW interactions, were found to yield large errors in the binding free energy. Protein-protein vdW and electrostatic interactions between complementary surfaces over a relatively large area (1400--1700 A(2)) were found to drive antibody-antigen and protease-inhibitor binding.

  17. A novel assay to identify the trafficking proteins that bind to specific vesicle populations

    PubMed Central

    Bentley, Marvin; Banker, Gary

    2016-01-01

    Here we describe a method capable of identifying interactions between candidate trafficking proteins and a defined vesicle population in intact cells. The assay involves the expression of an FKBP12-rapamycin–binding domain (FRB)–tagged candidate vesicle-binding protein that can be inducibly linked to an FKBP-tagged molecular motor. If the FRB-tagged candidate protein binds the labeled vesicles, then linking the FRB and FKBP domains recruits motors to the vesicles and causes a predictable, highly distinctive change in vesicle trafficking. We describe two versions of the assay: a general protocol for use in cells with a typical microtubule-organizing center and a specialized protocol designed to detect protein-vesicle interactions in cultured neurons. We have successfully used this assay to identify kinesins and Rabs that bind to a variety of different vesicle populations. In principle, this assay could be used to investigate interactions between any category of vesicle trafficking proteins and any vesicle population that can be specifically labeled. PMID:26621371

  18. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  19. Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein.

    PubMed

    Sheng, Nan; Li, Juan; Liu, Hui; Zhang, Aiqian; Dai, Jiayin

    2016-01-01

    Perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad distribution in humans and the environment. The liver is an important target for PFAAs, but the mechanisms behind PFAAs interaction with hepatocyte proteins remain poorly understood. We characterized the binding of PFAAs to human liver fatty acid-binding protein (hL-FABP) and identified critical structural features in their interaction. The binding interaction of PFAAs with hL-FABP was determined by fluorescence displacement and isothermal titration calorimetry (ITC) assay. Molecular simulation was conducted to define interactions at the binding sites. ITC measurement revealed that PFOA/PFNA displayed a moderate affinity for hL-FABP at a 1:1 molar ratio, a weak binding affinity for PFHxS and no binding for PFHxA. Moreover, the interaction was mainly mediated by electrostatic attraction and hydrogen bonding. Substitution of Asn111 with Asp caused loss of binding affinity to PFAA, indicating its crucial role for the initial PFAA binding to the outer binding site. Substitution of Arg122 with Gly caused only one molecule of PFAA to bind to hL-FABP. Molecular simulation showed that substitution of Arg122 increased the volume of the outer binding pocket, making it impossible to form intensive hydrophobic stacking and hydrogen bonds with PFOA, and highlighting its crucial role in the binding process. The binding affinity of PFAAs increased significantly with their carbon number. Arg122 and Asn111 played a pivotal role in these interactions. Our findings may help understand the distribution pattern, bioaccumulation, elimination, and toxicity of PFAAs in humans.

  20. Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism▿ †

    PubMed Central

    Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-01-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740

  1. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism.

    PubMed

    Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-03-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.

  2. Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction.

    PubMed

    Liu, Degang; Xu, David; Liu, Min; Knabe, William Eric; Yuan, Cai; Zhou, Donghui; Huang, Mingdong; Meroueh, Samy O

    2017-03-28

    Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.

  3. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation

    NASA Technical Reports Server (NTRS)

    D'Alonzo, Richard C.; Selvamurugan, Nagarajan; Karsenty, Gerard; Partridge, Nicola C.

    2002-01-01

    Previously, we determined that the activator protein-1 (AP-1)-binding site and the runt domain (RD)-binding site and their binding proteins, c-Fos.c-Jun and Cbfa, regulate the collagenase-3 promoter in parathyroid hormone-treated and differentiating osteoblasts. Here we show that Cbfa1 and c-Fos.c-Jun appear to cooperatively bind the RD- and AP-1-binding sites and form ternary structures in vitro. Both in vitro and in vivo co-immunoprecipitation and yeast two-hybrid studies further demonstrate interaction between Cbfa1 with c-Fos and c-Jun in the absence of phosphorylation and without binding to DNA. Additionally, only the runt domain of Cbfa1 was required for interaction with c-Jun and c-Fos. In mammalian cells, overexpression of Cbfa1 enhanced c-Jun activation of AP-1-binding site promoter activity, demonstrating functional interaction. Finally, insertion of base pairs that disrupted the helical phasing between the AP-1- and RD-binding sites also inhibited collagenase-3 promoter activation. Thus, we provide direct evidence that Cbfa1 and c-Fos.c-Jun physically interact and cooperatively bind the AP-1- and RD-binding sites in the collagenase-3 promoter. Moreover, the AP-1- and RD-binding sites appear to be organized in a specific required helical arrangement that facilitates transcription factor interaction and enables promoter activation.

  4. The role of charged surface residues in the binding ability of small hubs in protein-protein interaction networks

    PubMed Central

    Patil, Ashwini; Nakamura, Haruki

    2007-01-01

    Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long – range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions. PMID:27857564

  5. The role of charged surface residues in the binding ability of small hubs in protein-protein interaction networks.

    PubMed

    Patil, Ashwini; Nakamura, Haruki

    2007-01-01

    Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long - range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions.

  6. Effective Identification of Akt Interacting Proteins by Two-Step Chemical Crosslinking, Co-Immunoprecipitation and Mass Spectrometry

    PubMed Central

    Huang, Bill X.; Kim, Hee-Yong

    2013-01-01

    Akt is a critical protein for cell survival and known to interact with various proteins. However, Akt binding partners that modulate or regulate Akt activation have not been fully elucidated. Identification of Akt-interacting proteins has been customarily achieved by co-immunoprecipitation combined with western blot and/or MS analysis. An intrinsic problem of the method is loss of interacting proteins during procedures to remove non-specific proteins. Moreover, antibody contamination often interferes with the detection of less abundant proteins. Here, we developed a novel two-step chemical crosslinking strategy to overcome these problems which resulted in a dramatic improvement in identifying Akt interacting partners. Akt antibody was first immobilized on protein A/G beads using disuccinimidyl suberate and allowed to bind to cellular Akt along with its interacting proteins. Subsequently, dithiobis[succinimidylpropionate], a cleavable crosslinker, was introduced to produce stable complexes between Akt and binding partners prior to the SDS-PAGE and nanoLC-MS/MS analysis. This approach enabled identification of ten Akt partners from cell lysates containing as low as 1.5 mg proteins, including two new potential Akt interacting partners. None of these but one protein was detectable without crosslinking procedures. The present method provides a sensitive and effective tool to probe Akt-interacting proteins. This strategy should also prove useful for other protein interactions, particularly those involving less abundant or weakly associating partners. PMID:23613850

  7. Patterns and plasticity in RNA-protein interactions enable recruitment of multiple proteins through a single site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valley, Cary T.; Porter, Douglas F.; Qiu, Chen

    2012-06-28

    mRNA control hinges on the specificity and affinity of proteins for their RNA binding sites. Regulatory proteins must bind their own sites and reject even closely related noncognate sites. In the PUF [Pumilio and fem-3 binding factor (FBF)] family of RNA binding proteins, individual proteins discriminate differences in the length and sequence of binding sites, allowing each PUF to bind a distinct battery of mRNAs. Here, we show that despite these differences, the pattern of RNA interactions is conserved among PUF proteins: the two ends of the PUF protein make critical contacts with the two ends of the RNA sites.more » Despite this conserved 'two-handed' pattern of recognition, the RNA sequence is flexible. Among the binding sites of yeast Puf4p, RNA sequence dictates the pattern in which RNA bases are flipped away from the binding surface of the protein. Small differences in RNA sequence allow new modes of control, recruiting Puf5p in addition to Puf4p to a single site. This embedded information adds a new layer of biological meaning to the connections between RNA targets and PUF proteins.« less

  8. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging

    PubMed Central

    Li, Jun; Bonkowski, Michael S.; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P.; Ling, Alvin J. Y.; Rajman, Luis A.; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L.; Steegborn, Clemens; Sinclair, David A.

    2017-01-01

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD+ (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD+ to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate–ribose) polymerase], a critical DNA repair protein. As mice age and NAD+ concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD+. Thus, NAD+ directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging. PMID:28336669

  9. Label-Free Determination of Protein Binding in Aqueous Solution using Overlayer Enhanced Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (OE-ATR-FTIR)

    NASA Astrophysics Data System (ADS)

    Ruthenburg, Travis; Aweda, Tolulope; Park, Simon; Meares, Claude; Land, Donald

    2009-03-01

    Protein binding/affinity studies are often performed using Surface Plasmon Resonance techniques that don't produce much spectral information. Measurement of protein binding affinity using FTIR is traditionally performed using high protein concentration or deuterated solvent. By immobilizing a protein near the surface of a gold-coated germanium internal reflection element interactions can be measured between an immobilized protein and free proteins or small molecules in aqueous solution. By monitoring the on and off rates of these interactions, the dissociation constant for the system can be determined. The dissociation constant for the molecule Yttrium-DOTA binding to the antibody 2D12.5 system was determined to be 100nM. Results will also be presented from our measurements of Bovine Serum Albumin (BSA) binding to anti-BSA.

  10. Phosphorylation of ETS Transcription Factor ER81 in a Complex with Its Coactivators CREB-Binding Protein and p300

    PubMed Central

    Papoutsopoulou, Stamatia; Janknecht, Ralf

    2000-01-01

    The ETS protein ER81 is a DNA-binding factor capable of enhancing gene transcription and is implicated in cellular transformation, but presently the mechanisms of its actions are unclear. In this report, ER81 is shown to coimmunoprecipitate with the transcriptional coactivator CREB-binding protein (CBP) and the related p300 protein (together referred to as CBP/p300). Moreover, confocal laser microscopic studies demonstrated that ER81 and p300 colocalized to nuclear speckles. In vitro and in vivo interaction studies revealed that ER81 amino acids 249 to 429, which encompass the ETS DNA-binding domain, are responsible for binding to CBP/p300. However, mutation of a putative protein-protein interaction motif, LXXLL, in the ETS domain of ER81 did not affect interaction with CBP/p300, whereas DNA binding of ER81 was abolished. Furthermore, two regions within CBP, amino acids 451 to 721 and 1891 to 2175, are capable of binding to ER81. Consistent with the physical interaction between ER81 and the coactivators CBP and p300, ER81 transcriptional activity was potentiated by CBP/p300 overexpression. Moreover, an ER81-associated protein kinase activity was enhanced upon p300 overexpression. This protein kinase phosphorylates ER81 on serines 191 and 216, and mutation of these phosphorylation sites increased ER81 transcriptional activity in Mv1Lu cells but not in HeLa cells. Altogether, our data elucidate the mechanism of how ER81 regulates gene transcription, through interaction with the coactivators CBP and p300 and an associated kinase that may cell type specifically modulate the ability of ER81 to activate gene transcription. PMID:10982847

  11. Characterization of a unique motif in LIM mineralization protein-1 that interacts with jun activation-domain-binding protein 1.

    PubMed

    Sangadala, Sreedhara; Yoshioka, Katsuhito; Enyo, Yoshio; Liu, Yunshan; Titus, Louisa; Boden, Scott D

    2014-01-01

    Development and repair of the skeletal system and other organs are highly dependent on precise regulation of the bone morphogenetic protein (BMP) pathway. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, increasing cellular responsiveness to BMPs has become our focus. We determined that an osteogenic LIM mineralization protein, LMP-1 interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads resulting in potentiation of BMP activity. In the region of LMP-1 responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and thus effectively competes for binding with Smad1 and Smad5, key signaling proteins in the BMP pathway. Here we show that the same region also contains a motif that interacts with Jun activation-domain-binding protein 1 (Jab1) which targets a common Smad, Smad4, shared by both the BMP and transforming growth factor-β (TGF-β) pathways, for proteasomal degradation. Jab1 was first identified as a coactivator of the transcription factor c-Jun. Jab1 binds to Smad4, Smad5, and Smad7, key intracellular signaling molecules of the TGF-β superfamily, and causes ubiquitination and/or degradation of these Smads. We confirmed a direct interaction of Jab1 with LMP-1 using recombinantly expressed wild-type and mutant proteins in slot-blot-binding assays. We hypothesized that LMP-1 binding to Jab1 prevents the binding and subsequent degradation of these Smads causing increased accumulation of osteogenic Smads in cells. We identified a sequence motif in LMP-1 that was predicted to interact with Jab1 based on the MAME/MAST sequence analysis of several cellular signaling molecules that are known to interact with Jab-1. We further mutated the potential key interacting residues in LMP-1 and showed loss of binding to Jab1 in binding assays in vitro. The activities of various wild-type and mutant LMP-1 proteins were evaluated using a BMP-responsive luciferase reporter and alkaline phosphatase assay in mouse myoblastic cells that were differentiated toward the osteoblastic phenotype. Finally, to strengthen physiological relevance of LMP-1 and Jab1 interaction, we showed that overexpression of LMP-1 caused nuclear accumulation of Smad4 upon BMP treatment which is reflective of increased Smad signaling in cells.

  12. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    PubMed

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Characterization of Protein-Carbohydrate Interactions by NMR Spectroscopy.

    PubMed

    Grondin, Julie M; Langelaan, David N; Smith, Steven P

    2017-01-01

    Solution-state nuclear magnetic resonance (NMR) spectroscopy can be used to monitor protein-carbohydrate interactions. Two-dimensional 1 H- 15 N heteronuclear single quantum coherence (HSQC)-based techniques described in this chapter can be used quickly and effectively to screen a set of possible carbohydrate binding partners, to quantify the dissociation constant (K d ) of any identified interactions, and to map the carbohydrate binding site on the structure of the protein. Here, we describe the titration of a family 32 carbohydrate binding module from Clostridium perfringens (CpCBM32) with the monosaccharide N-acetylgalactosamine (GalNAc), in which we calculate the apparent dissociation of the interaction, and map the GalNAc binding site onto the structure of CpCBM32.

  14. RNA-binding protein GLD-1/quaking genetically interacts with the mir-35 and the let-7 miRNA pathways in Caenorhabditis elegans

    PubMed Central

    Akay, Alper; Craig, Ashley; Lehrbach, Nicolas; Larance, Mark; Pourkarimi, Ehsan; Wright, Jane E.; Lamond, Angus; Miska, Eric; Gartner, Anton

    2013-01-01

    Messenger RNA translation is regulated by RNA-binding proteins and small non-coding RNAs called microRNAs. Even though we know the majority of RNA-binding proteins and microRNAs that regulate messenger RNA expression, evidence of interactions between the two remain elusive. The role of the RNA-binding protein GLD-1 as a translational repressor is well studied during Caenorhabditis elegans germline development and maintenance. Possible functions of GLD-1 during somatic development and the mechanism of how GLD-1 acts as a translational repressor are not known. Its human homologue, quaking (QKI), is essential for embryonic development. Here, we report that the RNA-binding protein GLD-1 in C. elegans affects multiple microRNA pathways and interacts with proteins required for microRNA function. Using genome-wide RNAi screening, we found that nhl-2 and vig-1, two known modulators of miRNA function, genetically interact with GLD-1. gld-1 mutations enhance multiple phenotypes conferred by mir-35 and let-7 family mutants during somatic development. We used stable isotope labelling with amino acids in cell culture to globally analyse the changes in the proteome conferred by let-7 and gld-1 during animal development. We identified the histone mRNA-binding protein CDL-1 to be, in part, responsible for the phenotypes observed in let-7 and gld-1 mutants. The link between GLD-1 and miRNA-mediated gene regulation is further supported by its biochemical interaction with ALG-1, CGH-1 and PAB-1, proteins implicated in miRNA regulation. Overall, we have uncovered genetic and biochemical interactions between GLD-1 and miRNA pathways. PMID:24258276

  15. Prediction of glycolipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpaA, a protein involved in the adhesion of Helicobacter pylori to gastrointestinal cells.

    PubMed

    Fantini, Jacques; Garmy, Nicolas; Yahi, Nouara

    2006-09-12

    Protein-glycolipid interactions mediate the attachment of various pathogens to the host cell surface as well as the association of numerous cellular proteins with lipid rafts. Thus, it is of primary importance to identify the protein domains involved in glycolipid recognition. Using structure similarity searches, we could identify a common glycolipid-binding domain in the three-dimensional structure of several proteins known to interact with lipid rafts. Yet the three-dimensional structure of most raft-targeted proteins is still unknown. In the present study, we have identified a glycolipid-binding domain in the amino acid sequence of a bacterial adhesin (Helicobacter pylori adhesin A, HpaA). The prediction was based on the major properties of the glycolipid-binding domains previously characterized by structural searches. A short (15-mer) synthetic peptide corresponding to this putative glycolipid-binding domain was synthesized, and we studied its interaction with glycolipid monolayers at the air-water interface. The synthetic HpaA peptide recognized LacCer but not Gb3. This glycolipid specificity was in line with that of the whole bacterium. Molecular modeling studies gave some insights into this high selectivity of interaction. It also suggested that Phe147 in HpaA played a key role in LacCer recognition, through sugar-aromatic CH-pi stacking interactions with the hydrophobic side of the galactose ring of LacCer. Correspondingly, the replacement of Phe147 with Ala strongly affected LacCer recognition, whereas substitution with Trp did not. Our method could be used to identify glycolipid-binding domains in microbial and cellular proteins interacting with lipid shells, rafts, and other specialized membrane microdomains.

  16. Understanding the mechanisms of protein-DNA interactions

    NASA Astrophysics Data System (ADS)

    Lavery, Richard

    2004-03-01

    Structural, biochemical and thermodynamic data on protein-DNA interactions show that specific recognition cannot be reduced to a simple set of binary interactions between the partners (such as hydrogen bonds, ion pairs or steric contacts). The mechanical properties of the partners also play a role and, in the case of DNA, variations in both conformation and flexibility as a function of base sequence can be a significant factor in guiding a protein to the correct binding site. All-atom molecular modeling offers a means of analyzing the role of different binding mechanisms within protein-DNA complexes of known structure. This however requires estimating the binding strengths for the full range of sequences with which a given protein can interact. Since this number grows exponentially with the length of the binding site it is necessary to find a method to accelerate the calculations. We have achieved this by using a multi-copy approach (ADAPT) which allows us to build a DNA fragment with a variable base sequence. The results obtained with this method correlate well with experimental consensus binding sequences. They enable us to show that indirect recognition mechanisms involving the sequence dependent properties of DNA play a significant role in many complexes. This approach also offers a means of predicting protein binding sites on the basis of binding energies, which is complementary to conventional lexical techniques.

  17. H3K9me2/3 Binding of the MBT Domain Protein LIN-61 Is Essential for Caenorhabditis elegans Vulva Development

    PubMed Central

    Koester-Eiserfunke, Nora; Fischle, Wolfgang

    2011-01-01

    MBT domain proteins are involved in developmental processes and tumorigenesis. In vitro binding and mutagenesis studies have shown that individual MBT domains within clustered MBT repeat regions bind mono- and dimethylated histone lysine residues with little to no sequence specificity but discriminate against the tri- and unmethylated states. However, the exact function of promiscuous histone methyl-lysine binding in the biology of MBT domain proteins has not been elucidated. Here, we show that the Caenorhabditis elegans four MBT domain protein LIN-61, in contrast to other MBT repeat factors, specifically interacts with histone H3 when methylated on lysine 9, displaying a strong preference for di- and trimethylated states (H3K9me2/3). Although the fourth MBT repeat is implicated in this interaction, H3K9me2/3 binding minimally requires MBT repeats two to four. Further, mutagenesis of residues conserved with other methyl-lysine binding MBT regions in the fourth MBT repeat does not abolish interaction, implicating a distinct binding mode. In vivo, H3K9me2/3 interaction of LIN-61 is required for C. elegans vulva development within the synMuvB pathway. Mutant LIN-61 proteins deficient in H3K9me2/3 binding fail to rescue lin-61 synMuvB function. Also, previously identified point mutant synMuvB alleles are deficient in H3K9me2/3 interaction although these target residues that are outside of the fourth MBT repeat. Interestingly, lin-61 genetically interacts with two other synMuvB genes, hpl-2, an HP1 homologous H3K9me2/3 binding factor, and met-2, a SETDB1 homologous H3K9 methyl transferase (H3K9MT), in determining C. elegans vulva development and fertility. Besides identifying the first sequence specific and di-/trimethylation binding MBT domain protein, our studies imply complex multi-domain regulation of ligand interaction of MBT domains. Our results also introduce a mechanistic link between LIN-61 function and biology, and they establish interplay of the H3K9me2/3 binding proteins, LIN-61 and HPL-2, as well as the H3K9MT MET-2 in distinct developmental pathways. PMID:21437264

  18. A multiprotein binding interface in an intrinsically disordered region of the tumor suppressor protein interferon regulatory factor-1.

    PubMed

    Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R; Vojtesek, Borivoj; Ball, Kathryn L

    2011-04-22

    The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.

  19. Molecular basis and quantitative assessment of TRF1 and TRF2 protein interactions with TIN2 and Apollo peptides.

    PubMed

    Kalathiya, Umesh; Padariya, Monikaben; Baginski, Maciej

    2017-03-01

    Shelterin is a six-protein complex (TRF1, TRF2, POT1, RAP1, TIN2, and TPP1) that also functions in smaller subsets in regulation and protection of human telomeres. Two closely related proteins, TRF1 and TRF2, make high-affinity contact directly with double-stranded telomeric DNA and serve as a molecular platform. Protein TIN2 binds to TRF1 and TRF2 dimer-forming domains, whereas Apollo makes interaction only with TRF2. To elucidate the molecular basis of these interactions, we employed molecular dynamics (MD) simulations of TRF1 TRFH -TIN2 TBM and TRF2 TRFH -TIN2 TBM /Apollo TBM complexes and of the isolated proteins. MD enabled a structural and dynamical comparison of protein-peptide complexes including H-bond interactions and interfacial residues that may regulate TRF protein binding to the given peptides, especially focusing on interactions described in crystallographic data. Residues with a selective function in both TRF1 TRFH and TRF2 TRFH and forming a stable hydrogen bond network with TIN2 TBM or Apollo TBM peptides were traced. Our study revealed that TIN2 TBM forms a well-defined binding mode with TRF1 TRFH as compared to TRF2 TRFH , and that the binding pocket of TIN2 TBM is deeper for TRF2 TRFH protein than Apollo TBM . The MD data provide a basis for the reinterpretation of mutational data obtained in crystallographic work for the TRF proteins. Together, the previously determined X-ray structure and our MD provide a detailed view of the TRF-peptide binding mode and the structure of TRF1/2 binding pockets. Particular TRF-peptide interactions are very specific for the formation of each protein-peptide complex, identifying TRF proteins as potential targets for the design of inhibitors/drugs modulating telomere machinery for anticancer therapy.

  20. Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Min; Chen, Xin; Zhang, Nuo; Han, Yan-Yan; Wu, Dan; Du, Bin; Wei, Qin

    2009-04-01

    The interaction of a water-soluble cationic porphyrin, meso-tetrakis (4- N, N, N-trimethylanilinium) porphyrin (TMAP), with two proteins, bovine serum albumin (BSA) and human serum albumin (HSA), was studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence anisotropy and synchronous fluorescence spectroscopy at neutral aqueous solutions. Free base TMAP bound to proteins as monomers and no aggregation was observed. The binding of TMAP quenched the fluorescence of the protein. On the contrary, the fluorescence of TMAP was enhanced and the fluorescence anisotropy increased due to the binding. The direct static binding mechanism could account for the quenching by TMAP and the binding constants were calculated. TMAP showed a higher quenching efficiency and binding constant of HSA than BSA. The binding of TMAP had no obvious effect on the molecular conformation of the protein. There was only one binding site for TMAP and it was located on the surface of the protein molecule. Electrostatic force played an important role in the binding due to the opposite charges on porphyrin and the proteins.

  1. Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins.

    PubMed

    Ma, Hong-Min; Chen, Xin; Zhang, Nuo; Han, Yan-Yan; Wu, Dan; Du, Bin; Wei, Qin

    2009-04-01

    The interaction of a water-soluble cationic porphyrin, meso-tetrakis (4-N,N,N-trimethylanilinium) porphyrin (TMAP), with two proteins, bovine serum albumin (BSA) and human serum albumin (HSA), was studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence anisotropy and synchronous fluorescence spectroscopy at neutral aqueous solutions. Free base TMAP bound to proteins as monomers and no aggregation was observed. The binding of TMAP quenched the fluorescence of the protein. On the contrary, the fluorescence of TMAP was enhanced and the fluorescence anisotropy increased due to the binding. The direct static binding mechanism could account for the quenching by TMAP and the binding constants were calculated. TMAP showed a higher quenching efficiency and binding constant of HSA than BSA. The binding of TMAP had no obvious effect on the molecular conformation of the protein. There was only one binding site for TMAP and it was located on the surface of the protein molecule. Electrostatic force played an important role in the binding due to the opposite charges on porphyrin and the proteins.

  2. STUDIES OF METABOLITE-PROTEIN INTERACTIONS: A REVIEW

    PubMed Central

    Matsuda, Ryan; Bi, Cong; Anguizola, Jeanethe; Sobansky, Matthew; Rodriquez, Elliot; Badilla, John Vargas; Zheng, Xiwei; Hage, Benjamin; Hage, David S.

    2014-01-01

    The study of metabolomics can provide valuable information about biochemical pathways and processes at the molecular level. There have been many reports that have examined the structure, identity and concentrations of metabolites in biological systems. However, the binding of metabolites with proteins is also of growing interest. This review examines past reports that have looked at the binding of various types of metabolites with proteins. An overview of the techniques that have been used to characterize and study metabolite-protein binding is first provided. This is followed by examples of studies that have investigated the binding of hormones, fatty acids, drugs or other xenobiotics, and their metabolites with transport proteins and receptors. These examples include reports that have considered the structure of the resulting solute-protein complexes, the nature of the binding sites, the strength of these interactions, the variations in these interactions with solute structure, and the kinetics of these reactions. The possible effects of metabolic diseases on these processes, including the impact of alterations in the structure and function of proteins, are also considered. PMID:24321277

  3. RNA-protein interactions in an unstructured context.

    PubMed

    Zagrovic, Bojan; Bartonek, Lukas; Polyansky, Anton A

    2018-05-31

    Despite their importance, our understanding of noncovalent RNA-protein interactions is incomplete. This especially concerns the binding between RNA and unstructured protein regions, a widespread class of such interactions. Here, we review the recent experimental and computational work on RNA-protein interactions in an unstructured context with a particular focus on how such interactions may be shaped by the intrinsic interaction affinities between individual nucleobases and protein side chains. Specifically, we articulate the claim that the universal genetic code reflects the binding specificity between nucleobases and protein side chains and that, in turn, the code may be seen as the Rosetta stone for understanding RNA-protein interactions in general. © 2018 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  4. Screening of the binding of small molecules to proteins by desorption electrospray ionization mass spectrometry combined with protein microarray.

    PubMed

    Yao, Chenxi; Wang, Tao; Zhang, Buqing; He, Dacheng; Na, Na; Ouyang, Jin

    2015-11-01

    The interaction between bioactive small molecule ligands and proteins is one of the important research areas in proteomics. Herein, a simple and rapid method is established to screen small ligands that bind to proteins. We designed an agarose slide to immobilize different proteins. The protein microarrays were allowed to interact with different small ligands, and after washing, the microarrays were screened by desorption electrospray ionization mass spectrometry (DESI MS). This method can be applied to screen specific protein binding ligands and was shown for seven proteins and 34 known ligands for these proteins. In addition, a high-throughput screening was achieved, with the analysis requiring approximately 4 s for one sample spot. We then applied this method to determine the binding between the important protein matrix metalloproteinase-9 (MMP-9) and 88 small compounds. The molecular docking results confirmed the MS results, demonstrating that this method is suitable for the rapid and accurate screening of ligands binding to proteins. Graphical Abstract ᅟ.

  5. Protein-protein recognition control by modulating electrostatic interactions.

    PubMed

    Han, Song; Yin, Shijin; Yi, Hong; Mouhat, Stéphanie; Qiu, Su; Cao, Zhijian; Sabatier, Jean-Marc; Wu, Yingliang; Li, Wenxin

    2010-06-04

    Protein-protein control recognition remains a huge challenge, and its development depends on understanding the chemical and biological mechanisms by which these interactions occur. Here we describe a protein-protein control recognition technique based on the dominant electrostatic interactions occurring between the proteins. We designed a potassium channel inhibitor, BmP05-T, that was 90.32% identical to wild-type BmP05. Negatively charged residues were translocated from the nonbinding interface to the binding interface of BmP05 inhibitor, such that BmP05-T now used BmP05 nonbinding interface as the binding interface. This switch demonstrated that nonbinding interfaces were able to control the orientation of protein binding interfaces in the process of protein-protein recognition. The novel function findings of BmP05-T peptide suggested that the control recognition technique described here had the potential for use in designing and utilizing functional proteins in many biological scenarios.

  6. Great interactions: How binding incorrect partners can teach us about protein recognition and function

    PubMed Central

    Vamparys, Lydie; Laurent, Benoist; Carbone, Alessandra

    2016-01-01

    ABSTRACT Protein–protein interactions play a key part in most biological processes and understanding their mechanism is a fundamental problem leading to numerous practical applications. The prediction of protein binding sites in particular is of paramount importance since proteins now represent a major class of therapeutic targets. Amongst others methods, docking simulations between two proteins known to interact can be a useful tool for the prediction of likely binding patches on a protein surface. From the analysis of the protein interfaces generated by a massive cross‐docking experiment using the 168 proteins of the Docking Benchmark 2.0, where all possible protein pairs, and not only experimental ones, have been docked together, we show that it is also possible to predict a protein's binding residues without having any prior knowledge regarding its potential interaction partners. Evaluating the performance of cross‐docking predictions using the area under the specificity‐sensitivity ROC curve (AUC) leads to an AUC value of 0.77 for the complete benchmark (compared to the 0.5 AUC value obtained for random predictions). Furthermore, a new clustering analysis performed on the binding patches that are scattered on the protein surface show that their distribution and growth will depend on the protein's functional group. Finally, in several cases, the binding‐site predictions resulting from the cross‐docking simulations will lead to the identification of an alternate interface, which corresponds to the interaction with a biomolecular partner that is not included in the original benchmark. Proteins 2016; 84:1408–1421. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27287388

  7. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    PubMed

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding sitemore » are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.« less

  9. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    PubMed

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Structures of the human Pals1 PDZ domain with and without ligand suggest gated access of Crb to the PDZ peptide-binding groove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Marina E.; Fletcher, Georgina C.; O’Reilly, Nicola

    2015-03-01

    This study characterizes the interaction between the carboxy-terminal (ERLI) motif of the essential polarity protein Crb and the Pals1/Stardust PDZ-domain protein. Structures of human Pals1 PDZ with and without a Crb peptide are described, explaining the highly conserved nature of the ERLI motif and revealing a sterically blocked peptide-binding groove in the absence of ligand. Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member ofmore » the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction.« less

  11. Binding Linkage in a Telomere DNA–Protein Complex at the Ends of Oxytricha nova Chromosomes

    PubMed Central

    Buczek, Pawel; Orr, Rochelle S.; Pyper, Sean R.; Shum, Mili; Ota, Emily Kimmel Irene; Gerum, Shawn E.; Horvath, Martin P.

    2005-01-01

    Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein–protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (KD-DNA=1.4 nM). Another fusion protein, constructed without the C-terminal protein–protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (KD-DNA=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA–protein stability to protein–protein contacts at a remote site may provide a trigger point for DNA–protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase. PMID:15967465

  12. Do Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding?

    PubMed Central

    2017-01-01

    Halogens are present in a significant number of drugs, contributing favorably to ligand–protein binding. Currently, the contribution of halogens, most notably chlorine and bromine, is largely attributed to halogen bonds involving favorable interactions with hydrogen bond acceptors. However, we show that halogens acting as hydrogen bond acceptors potentially make a more favorable contribution to ligand binding than halogen bonds based on quantum mechanical calculations. In addition, bioinformatics analysis of ligand–protein crystal structures shows the presence of significant numbers of such interactions. It is shown that interactions between halogens and hydrogen bond donors (HBDs) are dominated by perpendicular C–X···HBD orientations. Notably, the orientation dependence of the halogen–HBD (X–HBD) interactions is minimal over greater than 100° with favorable interaction energies ranging from −2 to −14 kcal/mol. This contrasts halogen bonds in that X–HBD interactions are substantially more favorable, being comparable to canonical hydrogen bonds, with a smaller orientation dependence, such that they make significant, favorable contributions to ligand–protein binding and, therefore, should be actively considered during rational ligand design. PMID:28657759

  13. Genome-Wide Prediction and Validation of Peptides That Bind Human Prosurvival Bcl-2 Proteins

    PubMed Central

    DeBartolo, Joe; Taipale, Mikko; Keating, Amy E.

    2014-01-01

    Programmed cell death is regulated by interactions between pro-apoptotic and prosurvival members of the Bcl-2 family. Pro-apoptotic family members contain a weakly conserved BH3 motif that can adopt an alpha-helical structure and bind to a groove on prosurvival partners Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. Peptides corresponding to roughly 13 reported BH3 motifs have been verified to bind in this manner. Due to their short lengths and low sequence conservation, BH3 motifs are not detected using standard sequence-based bioinformatics approaches. Thus, it is possible that many additional proteins harbor BH3-like sequences that can mediate interactions with the Bcl-2 family. In this work, we used structure-based and data-based Bcl-2 interaction models to find new BH3-like peptides in the human proteome. We used peptide SPOT arrays to test candidate peptides for interaction with one or more of the prosurvival proteins Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. For the 36 most promising array candidates, we quantified binding to all five human receptors using direct and competition binding assays in solution. All 36 peptides showed evidence of interaction with at least one prosurvival protein, and 22 peptides bound at least one prosurvival protein with a dissociation constant between 1 and 500 nM; many peptides had specificity profiles not previously observed. We also screened the full-length parent proteins of a subset of array-tested peptides for binding to Bcl-xL and Mcl-1. Finally, we used the peptide binding data, in conjunction with previously reported interactions, to assess the affinity and specificity prediction performance of different models. PMID:24967846

  14. In-Solution SH2 Domain Binding Assay Based on Proximity Ligation.

    PubMed

    Machida, Kazuya

    2017-01-01

    Protein-protein interactions mediated by SH2 domains confer specificity in tyrosine kinase pathways. Traditional assays for assessing interactions between an SH2 domain and its interacting protein such as far-Western and pull-down are inherently low throughput. We developed SH2-PLA, an in-solution SH2 domain binding assay, that takes advantage of the speed and sensitivity of proximity ligation and real-time PCR. SH2-PLA allows for rapid assessment of SH2 domain binding to a target protein using only a few microliters of cell lysate, thereby making it an attractive new tool to study tyrosine kinase signaling.

  15. Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation.

    PubMed

    Tang, Xiaoling; Jang, Sung-Wuk; Wang, Xuerong; Liu, Zhixue; Bahr, Scott M; Sun, Shi-Yong; Brat, Daniel; Gutmann, David H; Ye, Keqiang

    2007-10-01

    The neurofibromatosis-2 (NF2) tumour-suppressor gene encodes an intracellular membrane-associated protein, called merlin, whose growth-suppressive function is dependent on its ability to form interactions through its intramolecular amino-terminal domain (NTD) and carboxy-terminal domain (CTD). Merlin phosphorylation plays a critical part in dictating merlin NTD/CTD interactions as well as in controlling binding to its effector proteins. Merlin is partially regulated by phosphorylation of Ser 518, such that hyperphosphorylated merlin is inactive and fails to form productive intramolecular and intermolecular interactions. Here, we show that the protein kinase Akt directly binds to and phosphorylates merlin on residues Thr 230 and Ser 315, which abolishes merlin NTD/CTD interactions and binding to merlin's effector protein PIKE-L and other binding partners. Furthermore, Akt-mediated phosphorylation leads to merlin degradation by ubiquitination. These studies demonstrate that Akt-mediated merlin phosphorylation regulates the function of merlin in the absence of an inactivating mutation.

  16. BclxL changes conformation upon binding to wild-type but not mutant p53 DNA binding domain.

    PubMed

    Hagn, Franz; Klein, Christian; Demmer, Oliver; Marchenko, Natasha; Vaseva, Angelina; Moll, Ute M; Kessler, Horst

    2010-01-29

    p53 can induce apoptosis through mitochondrial membrane permeabilization by interaction of its DNA binding region with the anti-apoptotic proteins BclxL and Bcl2. However, little is known about the action of p53 at the mitochondria in molecular detail. By using NMR spectroscopy and fluorescence polarization we characterized the binding of wild-type and mutant p53 DNA binding domains to BclxL and show that the wild-type p53 DNA binding domain leads to structural changes in the BH3 binding region of BclxL, whereas mutants fail to induce such effects due to reduced affinity. This was probed by induced chemical shift and residual dipolar coupling data. These data imply that p53 partly achieves its pro-apoptotic function at the mitochondria by facilitating interaction between BclxL and BH3-only proteins in an allosteric mode of action. Furthermore, we characterize for the first time the binding behavior of Pifithrin-mu, a specific small molecule inhibitor of the p53-BclxL interaction, and present a structural model of the protein-ligand complex. A rather unusual behavior is revealed whereby Pifithrin-mu binds to both sides of the protein-protein complex. These data should facilitate the rational design of more potent specific BclxL-p53 inhibitors.

  17. Defining the RNA-Protein Interactions in the Trypanosome Preribosomal Complex

    PubMed Central

    Wang, Lei; Ciganda, Martin

    2013-01-01

    In eukaryotes, 5S rRNA is transcribed in the nucleoplasm and requires the ribosomal protein L5 to deliver it to the nucleolus for ribosomal assembly. The trypanosome-specific proteins P34 and P37 form a novel preribosomal complex with the eukaryotic conserved L5-5S rRNA complex in the nucleoplasm. Previous results suggested that P34 acts together with L5 to bridge the interaction with 5S rRNA and thus to stabilize 5S rRNA, an important role in the early steps of ribosomal biogenesis. Here, we have delineated the domains of the two protein components, L5 and P34, and regions of the RNA partner, 5S rRNA, that are critical for protein-RNA interactions within the complex. We found that the L18 domain of L5 and the N terminus and RNA recognition motif of P34 bind 5S rRNA. We showed that Trypanosoma brucei L5 binds the β arm of 5S rRNA, while P34 binds loop A/stem V of 5S rRNA. We demonstrated that 5S rRNA is able to enhance the association between the protein components of the complex, L5 and P34. Both loop A/stem V and the β arm of 5S rRNA can separately enhance the protein-protein association, but their effects are neither additive nor synergistic. Domains in the two proteins for protein-protein and protein-RNA interactions overlap or are close to each other. This suggests that 5S rRNA binding might cause conformational changes in L5 and P34 and might also bridge the interactions, thus enhancing binding between the protein partners of this novel complex. PMID:23397568

  18. Screening of binding proteins that interact with Chinese sacbrood virus VP3 capsid protein in Apis cerana larvae cDNA library by the yeast two-hybrid method.

    PubMed

    Fei, Dongliang; Wei, Dong; Yu, Xiaolei; Yue, Jinjin; Li, Ming; Sun, Li; Jiang, Lili; Li, Yijing; Diao, Qingyun; Ma, Mingxiao

    2018-03-15

    Chinese sacbrood virus (CSBV) causes larval death and apiary collapse of Apis cerana. VP3 is a capsid protein of CSBV but its function is poorly understood. To determine the function of VP3 and screen for novel binding proteins that interact with VP3, we conducted yeast two-hybrid screening, glutathione S-transferase pull-down, and co-immunoprecipitation assays. Galectin (GAL) is a protein involved in immune regulation and host-pathogen interactions. The yeast two-hybrid screen implicated GAL as a major VP3-binding candidate. The assays showed that the VP3 interacted with GAL. Identification of these cellular targets and clarifying their contributions to the host-pathogen interaction may be useful for the development of novel therapeutic and prevention strategies against CSBV infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. In Silico and In Vitro Investigation of the Piperine's Male Contraceptive Effect: Docking and Molecular Dynamics Simulation Studies in Androgen-Binding Protein and Androgen Receptor.

    PubMed

    Chinta, Gopichand; Ramya Chandar Charles, Mariasoosai; Klopčič, Ivana; Sollner Dolenc, Marija; Periyasamy, Latha; Selvaraj Coumar, Mohane

    2015-07-01

    Understanding the molecular mechanism of action of traditional medicines is an important step towards developing marketable drugs from them. Piperine, an active constituent present in the Piper species, is used extensively in Ayurvedic medicines (practiced on the Indian subcontinent). Among others, piperine is known to possess a male contraceptive effect; however, the molecular mechanism of action for this effect is not very clear. In this regard, detailed docking and molecular dynamics simulation studies of piperine with the androgen-binding protein and androgen receptors were carried out. Androgen receptors control male sexual behavior and fertility, while the androgen-binding protein binds testosterone and maintains its concentration at optimal levels to stimulate spermatogenesis in the testis. It was found that piperine docks to the androgen-binding protein, similar to dihydrotestosterone, and to androgen receptors, similar to cyproterone acetate (antagonist). Also, the piperine-androgen-binding protein and piperine-androgen receptors interactions were found to be stable throughout 30 ns of molecular dynamics simulation. Further, two independent simulations for 10 ns each also confirmed the stability of these interactions. Detailed analysis of the piperine-androgen-binding protein interactions shows that piperine interacts with Ser42 of the androgen-binding protein and could block the binding with its natural ligands dihydrotestosterone/testosterone. Moreover, piperine interacts with Thr577 of the androgen receptors in a manner similar to the antagonist cyproterone acetate. Based on the in silico results, piperine was tested in the MDA-kb2 cell line using the luciferase reporter gene assay and was found to antagonize the effect of dihydrotestosterone at nanomolar concentrations. Further detailed biochemical experiments could help to develop piperine as an effective male contraceptive agent in the future. Georg Thieme Verlag KG Stuttgart · New York.

  20. Using peptide array to identify binding motifs and interaction networks for modular domains.

    PubMed

    Li, Shawn S-C; Wu, Chenggang

    2009-01-01

    Specific protein-protein interactions underlie all essential biological processes and form the basis of cellular signal transduction. The recognition of a short, linear peptide sequence in one protein by a modular domain in another represents a common theme of macromolecular recognition in cells, and the importance of this mode of protein-protein interaction is highlighted by the large number of peptide-binding domains encoded by the human genome. This phenomenon also provides a unique opportunity to identify protein-protein binding events using peptide arrays and complementary biochemical assays. Accordingly, high-density peptide array has emerged as a useful tool by which to map domain-mediated protein-protein interaction networks at the proteome level. Using the Src-homology 2 (SH2) and 3 (SH3) domains as examples, we describe the application of oriented peptide array libraries in uncovering specific motifs recognized by an SH2 domain and the use of high-density peptide arrays in identifying interaction networks mediated by the SH3 domain. Methods reviewed here could also be applied to other modular domains, including catalytic domains, that recognize linear peptide sequences.

  1. Characterization of a Novel Association between Two Trypanosome-Specific Proteins and 5S rRNA

    PubMed Central

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are essential and are involved in ribosome biogenesis. Here, we show that these proteins interact in vitro with the 5S rRNA with nearly identical binding characteristics in the absence of other cellular factors. The T. brucei 5S rRNA has a complex secondary structure and presents four accessible loops (A to D) for interactions with RNA-binding proteins. In other eukaryotes, loop C is bound by the L5 ribosomal protein and loop A mainly by TFIIIA. The binding of P34 and P37 to T. brucei 5S rRNA involves the LoopA region of the RNA, but these proteins also protect the L5 binding site located on LoopC. PMID:22253864

  2. A systems wide mass spectrometric based linear motif screen to identify dominant in-vivo interacting proteins for the ubiquitin ligase MDM2.

    PubMed

    Nicholson, Judith; Scherl, Alex; Way, Luke; Blackburn, Elizabeth A; Walkinshaw, Malcolm D; Ball, Kathryn L; Hupp, Ted R

    2014-06-01

    Linear motifs mediate protein-protein interactions (PPI) that allow expansion of a target protein interactome at a systems level. This study uses a proteomics approach and linear motif sub-stratifications to expand on PPIs of MDM2. MDM2 is a multi-functional protein with over one hundred known binding partners not stratified by hierarchy or function. A new linear motif based on a MDM2 interaction consensus is used to select novel MDM2 interactors based on Nutlin-3 responsiveness in a cell-based proteomics screen. MDM2 binds a subset of peptide motifs corresponding to real proteins with a range of allosteric responses to MDM2 ligands. We validate cyclophilin B as a novel protein with a consensus MDM2 binding motif that is stabilised by Nutlin-3 in vivo, thus identifying one of the few known interactors of MDM2 that is stabilised by Nutlin-3. These data invoke two modes of peptide binding at the MDM2 N-terminus that rely on a consensus core motif to control the equilibrium between MDM2 binding proteins. This approach stratifies MDM2 interacting proteins based on the linear motif feature and provides a new biomarker assay to define clinically relevant Nutlin-3 responsive MDM2 interactors. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. On the binding determinants of the glutamate agonist with the glutamate receptor ligand binding domain.

    PubMed

    Speranskiy, Kirill; Kurnikova, Maria

    2005-08-30

    Ionotropic glutamate receptors (GluRs) are ligand-gated membrane channel proteins found in the central neural system that mediate a fast excitatory response of neurons. In this paper, we report theoretical analysis of the ligand-protein interactions in the binding pocket of the S1S2 (ligand binding) domain of the GluR2 receptor in the closed conformation. By utilizing several theoretical methods ranging from continuum electrostatics to all-atom molecular dynamics simulations and quantum chemical calculations, we were able to characterize in detail glutamate agonist binding to the wild-type and E705D mutant proteins. A theoretical model of the protein-ligand interactions is validated via direct comparison of theoretical and Fourier transform infrared spectroscopy (FTIR) measured frequency shifts of the ligand's carboxylate group vibrations [Jayaraman et al. (2000) Biochemistry 39, 8693-8697; Cheng et al. (2002) Biochemistry 41, 1602-1608]. A detailed picture of the interactions in the binding site is inferred by analyzing contributions to vibrational frequencies produced by protein residues forming the ligand-binding pocket. The role of mobility and hydrogen-bonding network of water in the ligand-binding pocket and the contribution of protein residues exposed in the binding pocket to the binding and selectivity of the ligand are discussed. It is demonstrated that the molecular surface of the protein in the ligand-free state has mainly positive electrostatic potential attractive to the negatively charged ligand, and the potential produced by the protein in the ligand-binding pocket in the closed state is complementary to the distribution of the electrostatic potential produced by the ligand itself. Such charge complementarity ensures specificity to the unique charge distribution of the ligand.

  4. Molecular insights into the binding of phosphoinositides to the TH domain region of TIPE proteins.

    PubMed

    Antony, Priya; Baby, Bincy; Vijayan, Ranjit

    2016-11-01

    Phosphatidylinositols and their phosphorylated derivatives, phosphoinositides, play a central role in regulating diverse cellular functions. These phospholipids have been shown to interact with the hydrophobic TH domain of the tumor necrosis factor (TNF)-α-induced protein 8 (TIPE) family of proteins. However, the precise mechanism of interaction of these lipids is unclear. Here we report the binding mode and interactions of these phospholipids in the TH domain, as elucidated using molecular docking and simulations. Results indicate that phosphoinositides bind to the TH domain in a similar way by inserting their lipid tails in the hydrophobic cavity. The exposed head group is stabilized by interactions with critical positively charged residues on the surface of these proteins. Further MD simulations confirmed the dynamic stability of these lipids in the TH domain. This computational analysis thus provides insight into the binding mode of phospholipids in the TH domain of the TIPE family of proteins. Graphical abstract A phosphoinositide (phosphatidylinositol 4-phosphate; PtdIns4P) docked to TIPE2.

  5. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging.

    PubMed

    Li, Jun; Bonkowski, Michael S; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P; Ling, Alvin J Y; Rajman, Luis A; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L; Steegborn, Clemens; Sinclair, David A

    2017-03-24

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD + (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD + to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD + concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD + Thus, NAD + directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging. Copyright © 2017, American Association for the Advancement of Science.

  6. pH-insensitive electrostatic interaction of carmoisine with two serum proteins: a possible caution on its uses in food and pharmaceutical industry.

    PubMed

    Datta, Shubhashis; Mahapatra, Niharendu; Halder, Mintu

    2013-07-05

    Here we have investigated the binding of carmoisine, a water-soluble azo food colorant, with serum proteins (HSA and BSA) by fluorescence and UV-VIS spectroscopy, circular dichroism and molecular docking studies. Results indicate that fluorescence quenching of protein has been due to site-specific binding of the dye with biomacromolecules. Site marker competitive binding and molecular docking explorations show that interaction occurs in the sub-domain ІІA of HSA and the sub-domains ІІA and ІB in the case of BSA. Conformational investigation indicates that dye binding modifies the secondary structure of proteins and this also alters the microenvironment of the tryptophan(s). The interaction is found to be pH-insensitive which can have relevance to the toxicological profiles of the dye, and ionic strength dependence of binding can be exploited in protein purification mediated by such food colorants. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Coarse-Grained MD Simulations and Protein-Protein Interactions: The Cohesin-Dockerin System.

    PubMed

    Hall, Benjamin A; Sansom, Mark S P

    2009-09-08

    Coarse-grained molecular dynamics (CG-MD) may be applied as part of a multiscale modeling approach to protein-protein interactions. The cohesin-dockerin interaction provides a valuable test system for evaluation of the use of CG-MD, as structural (X-ray) data indicate a dual binding mode for the cohesin-dockerin pair. CG-MD simulations (of 5 μs duration) of the association of cohesin and dockerin identify two distinct binding modes, which resemble those observed in X-ray structures. For each binding mode, ca. 80% of interfacial residues are predicted correctly. Furthermore, each of the binding modes identified by CG-MD is conformationally stable when converted to an atomistic model and used as the basis of a conventional atomistic MD simulation of duration 20 ns.

  8. Specific binding of a Pop6/Pop7 heterodimer to the P3 stem of the yeast RNase MRP and RNase P RNAs.

    PubMed

    Perederina, Anna; Esakova, Olga; Koc, Hasan; Schmitt, Mark E; Krasilnikov, Andrey S

    2007-10-01

    Pop6 and Pop7 are protein subunits of Saccharomyces cerevisiae RNase MRP and RNase P. Here we show that bacterially expressed Pop6 and Pop7 form a soluble heterodimer that binds the RNA components of both RNase MRP and RNase P. Footprint analysis of the interaction between the Pop6/7 heterodimer and the RNase MRP RNA, combined with gel mobility assays, demonstrates that the Pop6/7 complex binds to a conserved region of the P3 domain. Binding of these proteins to the MRP RNA leads to local rearrangement in the structure of the P3 loop and suggests that direct interaction of the Pop6/7 complex with the P3 domain of the RNA components of RNases MRP and P may mediate binding of other protein components. These results suggest a role for a key element in the RNase MRP and RNase P RNAs in protein binding, and demonstrate the feasibility of directly studying RNA-protein interactions in the eukaryotic RNases MRP and P complexes.

  9. Structures of the human Pals1 PDZ domain with and without ligand suggest gated access of Crb to the PDZ peptide-binding groove

    PubMed Central

    Ivanova, Marina E.; Fletcher, Georgina C.; O’Reilly, Nicola; Purkiss, Andrew G.; Thompson, Barry J.; McDonald, Neil Q.

    2015-01-01

    Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member of the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction. PMID:25760605

  10. Application of linker technique to trap transiently interacting protein complexes for structural studies

    PubMed Central

    Reddy Chichili, Vishnu Priyanka; Kumar, Veerendra; Sivaraman, J.

    2016-01-01

    Protein-protein interactions are key events controlling several biological processes. We have developed and employed a method to trap transiently interacting protein complexes for structural studies using glycine-rich linkers to fuse interacting partners, one of which is unstructured. Initial steps involve isothermal titration calorimetry to identify the minimum binding region of the unstructured protein in its interaction with its stable binding partner. This is followed by computational analysis to identify the approximate site of the interaction and to design an appropriate linker length. Subsequently, fused constructs are generated and characterized using size exclusion chromatography and dynamic light scattering experiments. The structure of the chimeric protein is then solved by crystallization, and validated both in vitro and in vivo by substituting key interacting residues of the full length, unlinked proteins with alanine. This protocol offers the opportunity to study crucial and currently unattainable transient protein interactions involved in various biological processes. PMID:26985443

  11. Actin-induced dimerization of palladin promotes actin-bundling

    PubMed Central

    Vattepu, Ravi; Yadav, Rahul; Beck, Moriah R

    2015-01-01

    A subset of actin binding proteins is able to form crosslinks between two or more actin filaments, thus producing structures of parallel or networked bundles. These actin crosslinking proteins interact with actin through either bivalent binding or dimerization. We recently identified two binding sites within the actin binding domain of palladin, an actin crosslinking protein that plays an important role in normal cell adhesion and motility during wound healing and embryonic development. In this study, we show that actin induces dimerization of palladin. Furthermore, the extent of dimerization reflects earlier comparisons of actin binding and bundling between different domains of palladin. On the basis of these results we hypothesized that actin binding may promote a conformational change that results in dimerization of palladin, which in turn may drive the crosslinking of actin filaments. The proximal distance between two actin binding sites on crosslinking proteins determines the ultrastructural properties of the filament network, therefore we also explored interdomain interactions using a combination of chemical crosslinking experiments and actin cosedimentation assays. Limited proteolysis data reveals that palladin is less susceptible to enzyme digestion after actin binding. Our results suggest that domain movements in palladin are necessary for interactions with actin and are induced by interactions with actin filaments. Accordingly, we put forth a model linking the structural changes to functional dynamics. PMID:25307943

  12. Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin

    PubMed Central

    Maksimenko, Oksana; Bartkuhn, Marek; Stakhov, Viacheslav; Herold, Martin; Zolotarev, Nickolay; Jox, Theresa; Buxa, Melanie K.; Kirsch, Ramona; Bonchuk, Artem; Fedotova, Anna; Kyrchanova, Olga

    2015-01-01

    Insulators are multiprotein–DNA complexes that regulate the nuclear architecture. The Drosophila CP190 protein is a cofactor for the DNA-binding insulator proteins Su(Hw), CTCF, and BEAF-32. The fact that CP190 has been found at genomic sites devoid of either of the known insulator factors has until now been unexplained. We have identified two DNA-binding zinc-finger proteins, Pita, and a new factor named ZIPIC, that interact with CP190 in vivo and in vitro at specific interaction domains. Genomic binding sites for these proteins are clustered with CP190 as well as with CTCF and BEAF-32. Model binding sites for Pita or ZIPIC demonstrate a partial enhancer-blocking activity and protect gene expression from PRE-mediated silencing. The function of the CTCF-bound MCP insulator sequence requires binding of Pita. These results identify two new insulator proteins and emphasize the unifying function of CP190, which can be recruited by many DNA-binding insulator proteins. PMID:25342723

  13. Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy.

    PubMed

    Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar

    2013-07-01

    The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins.

  14. The Sequence-specific Peptide-binding Activity of the Protein Sulfide Isomerase AGR2 Directs Its Stable Binding to the Oncogenic Receptor EpCAM.

    PubMed

    Mohtar, M Aiman; Hernychova, Lenka; O'Neill, J Robert; Lawrence, Melanie L; Murray, Euan; Vojtesek, Borek; Hupp, Ted R

    2018-04-01

    AGR2 is an oncogenic endoplasmic reticulum (ER)-resident protein disulfide isomerase. AGR2 protein has a relatively unique property for a chaperone in that it can bind sequence-specifically to a specific peptide motif (TTIYY). A synthetic TTIYY-containing peptide column was used to affinity-purify AGR2 from crude lysates highlighting peptide selectivity in complex mixtures. Hydrogen-deuterium exchange mass spectrometry localized the dominant region in AGR2 that interacts with the TTIYY peptide to within a structural loop from amino acids 131-135 (VDPSL). A peptide binding site consensus of Tx[IL][YF][YF] was developed for AGR2 by measuring its activity against a mutant peptide library. Screening the human proteome for proteins harboring this motif revealed an enrichment in transmembrane proteins and we focused on validating EpCAM as a potential AGR2-interacting protein. AGR2 and EpCAM proteins formed a dose-dependent protein-protein interaction in vitro Proximity ligation assays demonstrated that endogenous AGR2 and EpCAM protein associate in cells. Introducing a single alanine mutation in EpCAM at Tyr251 attenuated its binding to AGR2 in vitro and in cells. Hydrogen-deuterium exchange mass spectrometry was used to identify a stable binding site for AGR2 on EpCAM, adjacent to the TLIYY motif and surrounding EpCAM's detergent binding site. These data define a dominant site on AGR2 that mediates its specific peptide-binding function. EpCAM forms a model client protein for AGR2 to study how an ER-resident chaperone can dock specifically to a peptide motif and regulate the trafficking a protein destined for the secretory pathway. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Screening for Protein-DNA Interactions by Automatable DNA-Protein Interaction ELISA

    PubMed Central

    Schüssler, Axel; Kolukisaoglu, H. Üner; Koch, Grit; Wallmeroth, Niklas; Hecker, Andreas; Thurow, Kerstin; Zell, Andreas; Harter, Klaus; Wanke, Dierk

    2013-01-01

    DNA-binding proteins (DBPs), such as transcription factors, constitute about 10% of the protein-coding genes in eukaryotic genomes and play pivotal roles in the regulation of chromatin structure and gene expression by binding to short stretches of DNA. Despite their number and importance, only for a minor portion of DBPs the binding sequence had been disclosed. Methods that allow the de novo identification of DNA-binding motifs of known DBPs, such as protein binding microarray technology or SELEX, are not yet suited for high-throughput and automation. To close this gap, we report an automatable DNA-protein-interaction (DPI)-ELISA screen of an optimized double-stranded DNA (dsDNA) probe library that allows the high-throughput identification of hexanucleotide DNA-binding motifs. In contrast to other methods, this DPI-ELISA screen can be performed manually or with standard laboratory automation. Furthermore, output evaluation does not require extensive computational analysis to derive a binding consensus. We could show that the DPI-ELISA screen disclosed the full spectrum of binding preferences for a given DBP. As an example, AtWRKY11 was used to demonstrate that the automated DPI-ELISA screen revealed the entire range of in vitro binding preferences. In addition, protein extracts of AtbZIP63 and the DNA-binding domain of AtWRKY33 were analyzed, which led to a refinement of their known DNA-binding consensi. Finally, we performed a DPI-ELISA screen to disclose the DNA-binding consensus of a yet uncharacterized putative DBP, AtTIFY1. A palindromic TGATCA-consensus was uncovered and we could show that the GATC-core is compulsory for AtTIFY1 binding. This specific interaction between AtTIFY1 and its DNA-binding motif was confirmed by in vivo plant one-hybrid assays in protoplasts. Thus, the value and applicability of the DPI-ELISA screen for de novo binding site identification of DBPs, also under automatized conditions, is a promising approach for a deeper understanding of gene regulation in any organism of choice. PMID:24146751

  16. Interaction of the Sliding Clamp β-Subunit and Hda, a DnaA-Related Protein

    PubMed Central

    Kurz, Mareike; Dalrymple, Brian; Wijffels, Gene; Kongsuwan, Kritaya

    2004-01-01

    In Escherichia coli, interactions between the replication initiation protein DnaA, the β subunit of DNA polymerase III (the sliding clamp protein), and Hda, the recently identified DnaA-related protein, are required to convert the active ATP-bound form of DnaA to an inactive ADP-bound form through the accelerated hydrolysis of ATP. This rapid hydrolysis of ATP is proposed to be the main mechanism that blocks multiple initiations during cell cycle and acts as a molecular switch from initiation to replication. However, the biochemical mechanism for this crucial step in DNA synthesis has not been resolved. Using purified Hda and β proteins in a plate binding assay and Ni-nitrilotriacetic acid pulldown analysis, we show for the first time that Hda directly interacts with β in vitro. A new β-binding motif, a hexapeptide with the consensus sequence QL[SP]LPL, related to the previously identified β-binding pentapeptide motif (QL[SD]LF) was found in the amino terminus of the Hda protein. Mutants of Hda with amino acid changes in the hexapeptide motif are severely defective in their ability to bind β. A 10-amino-acid peptide containing the E. coli Hda β-binding motif was shown to compete with Hda for binding to β in an Hda-β interaction assay. These results establish that the interaction of Hda with β is mediated through the hexapeptide sequence. We propose that this interaction may be crucial to the events that lead to the inactivation of DnaA and the prevention of excess initiation of rounds of replication. PMID:15150238

  17. Interaction of the sliding clamp beta-subunit and Hda, a DnaA-related protein.

    PubMed

    Kurz, Mareike; Dalrymple, Brian; Wijffels, Gene; Kongsuwan, Kritaya

    2004-06-01

    In Escherichia coli, interactions between the replication initiation protein DnaA, the beta subunit of DNA polymerase III (the sliding clamp protein), and Hda, the recently identified DnaA-related protein, are required to convert the active ATP-bound form of DnaA to an inactive ADP-bound form through the accelerated hydrolysis of ATP. This rapid hydrolysis of ATP is proposed to be the main mechanism that blocks multiple initiations during cell cycle and acts as a molecular switch from initiation to replication. However, the biochemical mechanism for this crucial step in DNA synthesis has not been resolved. Using purified Hda and beta proteins in a plate binding assay and Ni-nitrilotriacetic acid pulldown analysis, we show for the first time that Hda directly interacts with beta in vitro. A new beta-binding motif, a hexapeptide with the consensus sequence QL[SP]LPL, related to the previously identified beta-binding pentapeptide motif (QL[SD]LF) was found in the amino terminus of the Hda protein. Mutants of Hda with amino acid changes in the hexapeptide motif are severely defective in their ability to bind beta. A 10-amino-acid peptide containing the E. coli Hda beta-binding motif was shown to compete with Hda for binding to beta in an Hda-beta interaction assay. These results establish that the interaction of Hda with beta is mediated through the hexapeptide sequence. We propose that this interaction may be crucial to the events that lead to the inactivation of DnaA and the prevention of excess initiation of rounds of replication.

  18. Solution structure and interactions of the Escherichia coli cell division activator protein CedA.

    PubMed

    Chen, Ho An; Simpson, Peter; Huyton, Trevor; Roper, David; Matthews, Stephen

    2005-05-10

    CedA is a protein that is postulated to be involved in the regulation of cell division in Escherichia coli and related organisms; however, little biological data about its possible mode of action are available. Here we present a three-dimensional structure of this protein as determined by NMR spectroscopy. The protein is made up of four antiparallel beta-strands, an alpha-helix, and a large unstructured stretch of residues at the N-terminus. It shows structural similarity to a family of DNA-binding proteins which interact with dsDNA via a three-stranded beta-sheet, suggesting that CedA may be a DNA-binding protein. The putative binding surface of CedA is predominantly positively charged with a number of basic residues surrounding a groove largely dominated by aromatic residues. NMR chemical shift perturbations and gel-shift experiments performed with CedA confirm that the protein binds dsDNA, and its interaction is mediated primarily via the beta-sheet.

  19. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.

  20. Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism.

    PubMed

    Zhang, H; Hu, G; Wang, H; Sciavolino, P; Iler, N; Shen, M M; Abate-Shen, C

    1997-05-01

    Protein-protein interactions are known to be essential for specifying the transcriptional activities of homeoproteins. Here we show that representative members of the Msx and Dlx homeoprotein families form homo- and heterodimeric complexes. We demonstrate that dimerization by Msx and Dlx proteins is mediated through their homeodomains and that the residues required for this interaction correspond to those necessary for DNA binding. Unlike most other known examples of homeoprotein interactions, association of Msx and Dlx proteins does not promote cooperative DNA binding; instead, dimerization and DNA binding are mutually exclusive activities. In particular, we show that Msx and Dlx proteins interact independently and noncooperatively with homeodomain DNA binding sites and that dimerization is specifically blocked by the presence of such DNA sites. We further demonstrate that the transcriptional properties of Msx and Dlx proteins display reciprocal inhibition. Specifically, Msx proteins act as transcriptional repressors and Dlx proteins act as activators, while in combination, Msx and Dlx proteins counteract each other's transcriptional activities. Finally, we show that the expression patterns of representative Msx and Dlx genes (Msx1, Msx2, Dlx2, and Dlx5) overlap in mouse embryogenesis during limb bud and craniofacial development, consistent with the potential for their protein products to interact in vivo. Based on these observations, we propose that functional antagonism through heterodimer formation provides a mechanism for regulating the transcriptional actions of Msx and Dlx homeoproteins in vivo.

  1. Molecular interactions between single-stranded DNA-binding proteins associated with an essential MCAT element in the mouse smooth muscle alpha-actin promoter.

    PubMed

    Kelm, R J; Cogan, J G; Elder, P K; Strauch, A R; Getz, M J

    1999-05-14

    Transcriptional activity of the mouse vascular smooth muscle alpha-actin gene in fibroblasts is regulated, in part, by a 30-base pair asymmetric polypurine-polypyrimidine tract containing an essential MCAT enhancer motif. The double-stranded form of this sequence serves as a binding site for a transcription enhancer factor 1-related protein while the separated single strands interact with two distinct DNA binding activities termed VACssBF1 and 2 (Cogan, J. G., Sun, S., Stoflet, E. S., Schmidt, L. J., Getz, M. J., and Strauch, A. R. (1995) J. Biol. Chem. 270, 11310-11321; Sun, S., Stoflet, E. S., Cogan, J. G., Strauch, A. R., and Getz, M. J. (1995) Mol. Cell. Biol. 15, 2429-2936). VACssBF2 has been recently cloned and shown to consist of two closely related proteins, Puralpha and Purbeta (Kelm, R. J., Elder, P. K., Strauch, A. R., and Getz, M. J. (1997) J. Biol. Chem. 272, 26727-26733). In this study, we demonstrate that Puralpha and Purbeta interact with each other via highly specific protein-protein interactions and bind to the purine-rich strand of the MCAT enhancer in the form of both homo- and heteromeric complexes. Moreover, both Pur proteins interact with MSY1, a VACssBF1-like protein cloned by virtue of its affinity for the pyrimidine-rich strand of the enhancer. Interactions between Puralpha, Purbeta, and MSY1 do not require the participation of DNA. Combinatorial interactions between these three single-stranded DNA-binding proteins may be important in regulating activity of the smooth muscle alpha-actin MCAT enhancer in fibroblasts.

  2. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system.

    PubMed

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.

  3. In Situ Protein Binding Assay Using Fc-Fusion Proteins.

    PubMed

    Padmanabhan, Nirmala; Siddiqui, Tabrez J

    2017-01-01

    This protocol describes an in situ protein-protein interaction assay between tagged recombinant proteins and cell-surface expressed synaptic proteins. The assay is arguably more sensitive than other traditional protein binding assays such as co-immunoprecipitation and pull-downs and provides a visual readout for binding. This assay has been widely used to determine the dissociation constant of binding of trans-synaptic adhesion proteins. The step-wise description in the protocol should facilitate the adoption of this method in other laboratories.

  4. Dissecting Orthosteric Contacts for a Reverse-Fragment-Based Ligand Design.

    PubMed

    Chandramohan, Arun; Tulsian, Nikhil K; Anand, Ganesh S

    2017-08-01

    Orthosteric sites on proteins are formed typically from noncontiguous interacting sites in three-dimensional space where the composite binding interaction of a biological ligand is mediated by multiple synergistic interactions of its constituent functional groups. Through these multiple interactions, ligands stabilize both the ligand binding site and the local secondary structure. However, relative energetic contributions of the individual contacts in these protein-ligand interactions are difficult to resolve. Deconvolution of the contributions of these various functional groups in natural inhibitors/ligand would greatly aid in iterative fragment-based drug discovery (FBDD). In this study, we describe an approach of progressive unfolding of a target protein using a gradient of denaturant urea to reveal the individual energetic contributions of various ligand-functional groups to the affinity of the entire ligand. Through calibrated unfolding of two protein-ligand systems: cAMP-bound regulatory subunit of Protein Kinase A (RIα) and IBMX-bound phosphodiesterase8 (PDE8), monitored by amide hydrogen-deuterium exchange mass spectrometry, we show progressive disruption of individual orthosteric contacts in the ligand binding sites, allowing us to rank the energetic contributions of these individual interactions. In the two cAMP-binding sites of RIα, exocyclic phosphate oxygens of cAMP were identified to mediate stronger interactions than ribose 2'-OH in both the RIα-cAMP binding interfaces. Further, we have also ranked the relative contributions of the different functional groups of IBMX based on their interactions with the orthosteric residues of PDE8. This strategy for deconstruction of individual binding sites and identification of the strongest functional group interaction in enzyme orthosteric sites offers a rational starting point for FBDD.

  5. Carbohydrate-Aromatic Interactions in Proteins.

    PubMed

    Hudson, Kieran L; Bartlett, Gail J; Diehl, Roger C; Agirre, Jon; Gallagher, Timothy; Kiessling, Laura L; Woolfson, Derek N

    2015-12-09

    Protein-carbohydrate interactions play pivotal roles in health and disease. However, defining and manipulating these interactions has been hindered by an incomplete understanding of the underlying fundamental forces. To elucidate common and discriminating features in carbohydrate recognition, we have analyzed quantitatively X-ray crystal structures of proteins with noncovalently bound carbohydrates. Within the carbohydrate-binding pockets, aliphatic hydrophobic residues are disfavored, whereas aromatic side chains are enriched. The greatest preference is for tryptophan with an increased prevalence of 9-fold. Variations in the spatial orientation of amino acids around different monosaccharides indicate specific carbohydrate C-H bonds interact preferentially with aromatic residues. These preferences are consistent with the electronic properties of both the carbohydrate C-H bonds and the aromatic residues. Those carbohydrates that present patches of electropositive saccharide C-H bonds engage more often in CH-π interactions involving electron-rich aromatic partners. These electronic effects are also manifested when carbohydrate-aromatic interactions are monitored in solution: NMR analysis indicates that indole favorably binds to electron-poor C-H bonds of model carbohydrates, and a clear linear free energy relationships with substituted indoles supports the importance of complementary electronic effects in driving protein-carbohydrate interactions. Together, our data indicate that electrostatic and electronic complementarity between carbohydrates and aromatic residues play key roles in driving protein-carbohydrate complexation. Moreover, these weak noncovalent interactions influence which saccharide residues bind to proteins, and how they are positioned within carbohydrate-binding sites.

  6. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site.

    PubMed

    Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon

    2017-08-01

    Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.

    PubMed

    Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Ma, Zhiwei; Grinter, Sam Z; Zou, Xiaoqin

    2017-03-01

    Protein-protein interactions are either through direct contacts between two binding partners or mediated by structural waters. Both direct contacts and water-mediated interactions are crucial to the formation of a protein-protein complex. During the recent CAPRI rounds, a novel parallel searching strategy for predicting water-mediated interactions is introduced into our protein-protein docking method, MDockPP. Briefly, a FFT-based docking algorithm is employed in generating putative binding modes, and an iteratively derived statistical potential-based scoring function, ITScorePP, in conjunction with biological information is used to assess and rank the binding modes. Up to 10 binding modes are selected as the initial protein-protein complex structures for MD simulations in explicit solvent. Water molecules near the interface are clustered based on the snapshots extracted from independent equilibrated trajectories. Then, protein-ligand docking is employed for a parallel search for water molecules near the protein-protein interface. The water molecules generated by ligand docking and the clustered water molecules generated by MD simulations are merged, referred to as the predicted structural water molecules. Here, we report the performance of this protocol for CAPRI rounds 28-29 and 31-35 containing 20 valid docking targets and 11 scoring targets. In the docking experiments, we predicted correct binding modes for nine targets, including one high-accuracy, two medium-accuracy, and six acceptable predictions. Regarding the two targets for the prediction of water-mediated interactions, we achieved models ranked as "excellent" in accordance with the CAPRI evaluation criteria; one of these two targets is considered as a difficult target for structural water prediction. Proteins 2017; 85:424-434. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Conformational dynamics of L-lysine, L-arginine, L-ornithine binding protein reveals ligand-dependent plasticity.

    PubMed

    Silva, Daniel-Adriano; Domínguez-Ramírez, Lenin; Rojo-Domínguez, Arturo; Sosa-Peinado, Alejandro

    2011-07-01

    The molecular basis of multiple ligand binding affinity for amino acids in periplasmic binding proteins (PBPs) and in the homologous domain for class C G-protein coupled receptors is an unsolved question. Here, using unrestrained molecular dynamic simulations, we studied the ligand binding mechanism present in the L-lysine, L-arginine, L-ornithine binding protein. We developed an analysis based on dihedral angles for the description of the conformational changes upon ligand binding. This analysis has an excellent correlation with each of the two main movements described by principal component analysis (PCA) and it's more convenient than RMSD measurements to describe the differences in the conformational ensembles observed. Furthermore, an analysis of hydrogen bonds showed specific interactions for each ligand studied as well as the ligand interaction with the aromatic residues Tyr-14 and Phe-52. Using uncharged histidine tautomers, these interactions are not observed. On the basis of these results, we propose a model in which hydrogen bond interactions place the ligand in the correct orientation to induce a cation-π interaction with Tyr-14 and Phe-52 thereby stabilizing the closed state. Our results also show that this protein adopts slightly different closed conformations to make available specific hydrogen bond interactions for each ligand thus, allowing a single mechanism to attain multiple ligand specificity. These results shed light on the experimental evidence for ligand-dependent conformational plasticity not explained by the previous crystallographic data. Copyright © 2011 Wiley-Liss, Inc.

  9. Novel Interactions of the TRTK12 Peptide with S100 Protein Family Members: Specificity and Thermodynamic Characterization

    PubMed Central

    Wafer, Lucas N.; Tzul, Franco O.; Pandharipande, Pranav P.; Makhatadze, George I.

    2013-01-01

    The S100 protein family consists of small, dimeric proteins that exert their biological functions in response to changing calcium concentrations. S100B is the best studied member and has been shown to interact with over 20 binding partners in a calcium-dependent manner. The TRTK12 peptide, derived from the consensus binding sequence for S100B, has previously been found to interact with S100A1 and has been proposed to be a general binding partner of the S100 family. To test this hypothesis and gain a better understanding of the specificity of binding for the S100 proteins sixteen members of the human S100 family were screened against this peptide and its alanine variants. Novel interactions were only found with two family members: S100P and S100A2, indicating that TRTK12 selectively interacts with a small subset of the S100 proteins. Substantial promiscuity was observed in the binding site of S100B to accommodate variations in the peptide sequence, while S100A1, S100A2, and S100P exhibited larger differences in the binding constants for the TRTK12 alanine variants. This suggests that single-point substitutions can be used to selectively modulate the affinity of TRTK12 peptides for individual S100 proteins. This study has important implications for the rational drug design of inhibitors for the S100 proteins, which are involved in a variety of cancers and neurodegenerative diseases. PMID:23899389

  10. PLI: a web-based tool for the comparison of protein-ligand interactions observed on PDB structures.

    PubMed

    Gallina, Anna Maria; Bisignano, Paola; Bergamino, Maurizio; Bordo, Domenico

    2013-02-01

    A large fraction of the entries contained in the Protein Data Bank describe proteins in complex with low molecular weight molecules such as physiological compounds or synthetic drugs. In many cases, the same molecule is found in distinct protein-ligand complexes. There is an increasing interest in Medicinal Chemistry in comparing protein binding sites to get insight on interactions that modulate the binding specificity, as this structural information can be correlated with other experimental data of biochemical or physiological nature and may help in rational drug design. The web service protein-ligand interaction presented here provides a tool to analyse and compare the binding pockets of homologous proteins in complex with a selected ligand. The information is deduced from protein-ligand complexes present in the Protein Data Bank and stored in the underlying database. Freely accessible at http://bioinformatics.istge.it/pli/.

  11. Intrinsically-disordered N-termini in human parechovirus 1 capsid proteins bind encapsidated RNA.

    PubMed

    Shakeel, Shabih; Evans, James D; Hazelbaker, Mark; Kao, C Cheng; Vaughan, Robert C; Butcher, Sarah J

    2018-04-11

    Human parechoviruses (HPeV) are picornaviruses with a highly-ordered RNA genome contained within icosahedrally-symmetric capsids. Ordered RNA structures have recently been shown to interact with capsid proteins VP1 and VP3 and facilitate virus assembly in HPeV1. Using an assay that combines reversible cross-linking, RNA affinity purification and peptide mass fingerprinting (RCAP), we mapped the RNA-interacting regions of the capsid proteins from the whole HPeV1 virion in solution. The intrinsically-disordered N-termini of capsid proteins VP1 and VP3, and unexpectedly, VP0, were identified to interact with RNA. Comparing these results to those obtained using recombinantly-expressed VP0 and VP1 confirmed the virion binding regions, and revealed unique RNA binding regions in the isolated VP0 not previously observed in the crystal structure of HPeV1. We used RNA fluorescence anisotropy to confirm the RNA-binding competency of each of the capsid proteins' N-termini. These findings suggests that dynamic interactions between the viral RNA and the capsid proteins modulate virus assembly, and suggest a novel role for VP0.

  12. On the binding affinity of macromolecular interactions: daring to ask why proteins interact

    PubMed Central

    Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J.

    2013-01-01

    Interactions between proteins are orchestrated in a precise and time-dependent manner, underlying cellular function. The binding affinity, defined as the strength of these interactions, is translated into physico-chemical terms in the dissociation constant (Kd), the latter being an experimental measure that determines whether an interaction will be formed in solution or not. Predicting binding affinity from structural models has been a matter of active research for more than 40 years because of its fundamental role in drug development. However, all available approaches are incapable of predicting the binding affinity of protein–protein complexes from coordinates alone. Here, we examine both theoretical and experimental limitations that complicate the derivation of structure–affinity relationships. Most work so far has concentrated on binary interactions. Systems of increased complexity are far from being understood. The main physico-chemical measure that relates to binding affinity is the buried surface area, but it does not hold for flexible complexes. For the latter, there must be a significant entropic contribution that will have to be approximated in the future. We foresee that any theoretical modelling of these interactions will have to follow an integrative approach considering the biology, chemistry and physics that underlie protein–protein recognition. PMID:23235262

  13. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    PubMed Central

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386

  14. Protein painting reveals solvent-excluded drug targets hidden within native protein–protein interfaces

    PubMed Central

    Luchini, Alessandra; Espina, Virginia; Liotta, Lance A.

    2014-01-01

    Identifying the contact regions between a protein and its binding partners is essential for creating therapies that block the interaction. Unfortunately, such contact regions are extremely difficult to characterize because they are hidden inside the binding interface. Here we introduce protein painting as a new tool that employs small molecules as molecular paints to tightly coat the surface of protein–protein complexes. The molecular paints, which block trypsin cleavage sites, are excluded from the binding interface. Following mass spectrometry, only peptides hidden in the interface emerge as positive hits, revealing the functional contact regions that are drug targets. We use protein painting to discover contact regions between the three-way interaction of IL1β ligand, the receptor IL1RI and the accessory protein IL1RAcP. We then use this information to create peptides and monoclonal antibodies that block the interaction and abolish IL1β cell signalling. The technology is broadly applicable to discover protein interaction drug targets. PMID:25048602

  15. Energy Fluctuations Shape Free Energy of Nonspecific Biomolecular Interactions

    NASA Astrophysics Data System (ADS)

    Elkin, Michael; Andre, Ingemar; Lukatsky, David B.

    2012-01-01

    Understanding design principles of biomolecular recognition is a key question of molecular biology. Yet the enormous complexity and diversity of biological molecules hamper the efforts to gain a predictive ability for the free energy of protein-protein, protein-DNA, and protein-RNA binding. Here, using a variant of the Derrida model, we predict that for a large class of biomolecular interactions, it is possible to accurately estimate the relative free energy of binding based on the fluctuation properties of their energy spectra, even if a finite number of the energy levels is known. We show that the free energy of the system possessing a wider binding energy spectrum is almost surely lower compared with the system possessing a narrower energy spectrum. Our predictions imply that low-affinity binding scores, usually wasted in protein-protein and protein-DNA docking algorithms, can be efficiently utilized to compute the free energy. Using the results of Rosetta docking simulations of protein-protein interactions from Andre et al. (Proc. Natl. Acad. Sci. USA 105:16148, 2008), we demonstrate the power of our predictions.

  16. The ASPP interaction network: electrostatic differentiation between pro- and anti-apoptotic proteins.

    PubMed

    Benyamini, Hadar; Friedler, Assaf

    2011-01-01

    The ASPP proteins are apoptosis regulators: ASPP1 and ASPP2 promote, while iASPP inhibits, apoptosis. The mechanism by which these different outcomes are achieved is still unknown. The C-terminal ankyrin repeats and SH3 domain (ANK-SH3) mediate the interactions of the ASPP proteins with major apoptosis regulators such as p53, Bcl-2, and NFκB. The structure of the complex between ASPP2(ANK-SH3) and the core domain of p53 (p53CD) was previously determined. We have recently characterized the individual interactions of ASPP2(ANK-SH3) with Bcl-2 and NFκB, as well as a regulatory intramolecular interaction with the proline rich domain of ASPP2. Here we compared the ASPP interactions at two levels: ASPP2(ANK-SH3) with different proteins, and different ASPP family members with each protein partner. We found that the binding sites of ASPP2 to p53CD, Bcl-2, and NFκB are different, yet lie on the same face of ASPP2(ANK-SH3) . The intramolecular binding site to the proline rich domain overlaps the three intermolecular binding sites. To reveal the basis of functional diversity in the ASPP family, we compared their protein-binding domains. A subset of surface-exposed residues differentiates ASPP1 and ASPP2 from iASPP: ASPP1/2 are more negatively charged in specific residues that contact positively charged residues of p53CD, Bcl-2, and NFκB. We also found a gain of positive charge at the non-protein binding face of ASPP1/2, suggesting a role in electrostatic direction towards the negatively charged protein binding face. The electrostatic differences in binding interfaces between the ASPP proteins may be one of the causes for their different function. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Antifreeze Protein Binds Irreversibly to Ice

    NASA Astrophysics Data System (ADS)

    Braslavsky, I.; Pertaya, N.; di Prinzio, C. L.; Wilen, L.; Thomson, E.; Wettlaufer, J. S.; Marshall, C. B.; Davies, P. L.

    2006-03-01

    Many organisms are protected from freezing by antifreeze proteins (AFPs), which bind to ice and prevent its growth by a mechanism not completely understood. Although it has been postulated that AFPs would have to bind irreversibly to arrest the growth of an ice crystal bathed in excess liquid water, the binding forces seem insufficient to support such a tight interaction. By putting a fluorescent tag on a fish AFP, we were able to visualize AFP binding to ice and demonstrate, by lack of recovery after photo-bleaching, that it is indeed irreversible. Because even the most avid protein/ligand interactions exhibit reversibility, this finding is key to understanding the mechanism of antifreeze proteins, which are becoming increasingly valuable in cryopreservation and improving the frost tolerance of crops.

  18. Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins

    ERIC Educational Resources Information Center

    Ingersoll, Christine M.; Strollo, Christen M.

    2007-01-01

    The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.

  19. 3D model for Cancerous Inhibitor of Protein Phosphatase 2A armadillo domain unveils highly conserved protein-protein interaction characteristics.

    PubMed

    Dahlström, Käthe M; Salminen, Tiina A

    2015-12-07

    Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is a human oncoprotein, which exerts its cancer-promoting function through interaction with other proteins, for example Protein Phosphatase 2A (PP2A) and MYC. The lack of structural information for CIP2A significantly prevents the design of anti-cancer therapeutics targeting this protein. In an attempt to counteract this fact, we modeled the three-dimensional structure of the N-terminal domain (CIP2A-ArmRP), analyzed key areas and amino acids, and coupled the results to the existing literature. The model reliably shows a stable armadillo repeat fold with a positively charged groove. The fact that this conserved groove highly likely binds peptides is corroborated by the presence of a conserved polar ladder, which is essential for the proper peptide-binding mode of armadillo repeat proteins and, according to our results, several known CIP2A interaction partners appropriately possess an ArmRP-binding consensus motif. Moreover, we show that Arg229Gln, which has been linked to the development of cancer, causes a significant change in charge and surface properties of CIP2A-ArmRP. In conclusion, our results reveal that CIP2A-ArmRP shares the typical fold, protein-protein interaction site and interaction patterns with other natural armadillo proteins and that, presumably, several interaction partners bind into the central groove of the modeled CIP2A-ArmRP. By providing essential structural characteristics of CIP2A, the present study significantly increases our knowledge on how CIP2A interacts with other proteins in cancer progression and how to develop new therapeutics targeting CIP2A. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition

    PubMed Central

    Kulp, John L.; Cloudsdale, Ian S.; Kulp, John L.

    2017-01-01

    Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition. PMID:28837642

  1. Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition.

    PubMed

    Kulp, John L; Cloudsdale, Ian S; Kulp, John L; Guarnieri, Frank

    2017-01-01

    Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition.

  2. Elucidation of Lipid Binding Sites on Lung Surfactant Protein A Using X-ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations.

    PubMed

    Goh, Boon Chong; Wu, Huixing; Rynkiewicz, Michael J; Schulten, Klaus; Seaton, Barbara A; McCormack, Francis X

    2016-07-05

    Surfactant protein A (SP-A) is a collagenous C-type lectin (collectin) that is critical for pulmonary defense against inhaled microorganisms. Bifunctional avidity of SP-A for pathogen-associated molecular patterns (PAMPs) such as lipid A and for dipalmitoylphosphatidylcholine (DPPC), the major component of surfactant membranes lining the air-liquid interface of the lung, ensures that the protein is poised for first-line interactions with inhaled pathogens. To improve our understanding of the motifs that are required for interactions with microbes and surfactant structures, we explored the role of the tyrosine-rich binding surface on the carbohydrate recognition domain of SP-A in the interaction with DPPC and lipid A using crystallography, site-directed mutagenesis, and molecular dynamics simulations. Critical binding features for DPPC binding include a three-walled tyrosine cage that binds the choline headgroup through cation-π interactions and a positively charged cluster that binds the phosphoryl group. This basic cluster is also critical for binding of lipid A, a bacterial PAMP and target for SP-A. Molecular dynamics simulations further predict that SP-A binds lipid A more tightly than DPPC. These results suggest that the differential binding properties of SP-A favor transfer of the protein from surfactant DPPC to pathogen membranes containing appropriate lipid PAMPs to effect key host defense functions.

  3. Interactions of two odorant-binding proteins from Cnaphalocrocis medinalis Güenée (Lepidoptera: Pyralidae)

    USDA-ARS?s Scientific Manuscript database

    It is well known that the odorant-binding proteins (OBPs) play important roles in insect olfactory systems. However, little attention has been paid to interactions among different OBPs within the same insect antennal sensilla. To explore the interactions of OBPs in olfactory coding in the rice leaff...

  4. Analysis of In Vivo Chromatin and Protein Interactions of Arabidopsis Transcript Elongation Factors.

    PubMed

    Pfab, Alexander; Antosz, Wojciech; Holzinger, Philipp; Bruckmann, Astrid; Griesenbeck, Joachim; Grasser, Klaus D

    2017-01-01

    A central step to elucidate the function of proteins commonly comprises the analysis of their molecular interactions in vivo. For nuclear regulatory proteins this involves determining protein-protein interactions as well as mapping of chromatin binding sites. Here, we present two protocols to identify protein-protein and chromatin interactions of transcript elongation factors (TEFs) in Arabidopsis. The first protocol (Subheading 3.1) describes protein affinity-purification coupled to mass spectrometry (AP-MS) that utilizes suspension cultured cells as experimental system. This approach provides an unbiased view of proteins interacting with epitope-tagged TEFs. The second protocol (Subheading 3.2) depicts details about a chromatin immunoprecipitation (ChIP) procedure to characterize genomic binding sites of TEFs. These methods should be valuable tools for the analysis of a broad variety of nuclear proteins.

  5. From face to interface recognition: a differential geometric approach to distinguish DNA from RNA binding surfaces.

    PubMed

    Shazman, Shula; Elber, Gershon; Mandel-Gutfreund, Yael

    2011-09-01

    Protein nucleic acid interactions play a critical role in all steps of the gene expression pathway. Nucleic acid (NA) binding proteins interact with their partners, DNA or RNA, via distinct regions on their surface that are characterized by an ensemble of chemical, physical and geometrical properties. In this study, we introduce a novel methodology based on differential geometry, commonly used in face recognition, to characterize and predict NA binding surfaces on proteins. Applying the method on experimentally solved three-dimensional structures of proteins we successfully classify double-stranded DNA (dsDNA) from single-stranded RNA (ssRNA) binding proteins, with 83% accuracy. We show that the method is insensitive to conformational changes that occur upon binding and can be applicable for de novo protein-function prediction. Remarkably, when concentrating on the zinc finger motif, we distinguish successfully between RNA and DNA binding interfaces possessing the same binding motif even within the same protein, as demonstrated for the RNA polymerase transcription-factor, TFIIIA. In conclusion, we present a novel methodology to characterize protein surfaces, which can accurately tell apart dsDNA from an ssRNA binding interfaces. The strength of our method in recognizing fine-tuned differences on NA binding interfaces make it applicable for many other molecular recognition problems, with potential implications for drug design.

  6. Blocking the interaction between S100A9 protein and RAGE V domain using S100A12 protein.

    PubMed

    Katte, Revansiddha; Yu, Chin

    2018-01-01

    The proteins S100A9 and S100A12 are associated with the human S100 calcium-binding protein family. These proteins promote interaction with target proteins and alter their conformation when they bind to calcium ions in EF-hand motifs. The V domain of RAGE (Receptor for Advanced Glycation End products) is crucial for S100A9 binding. The binding of RAGE with S100 family proteins aids in cell proliferation. In this report, we demonstrate that S100A12 protein hinders the binding of S100A9 with the RAGE V-domain. We used fluorescence and NMR spectroscopy to analyze the interaction of S100A9 with S100A12. The binary complex models of S100A9-S100A12 were developed using data obtained from 1H-15N HSQC NMR titrations and the HADDOCK program. We overlaid the complex models of S100A9-S100A12 with the same orientation of S100A9 and the RAGE V-domain. This complex showed that S100A12 protein blocks the interaction between S100A9 and the RAGE V-domain. It means S100A12 may be used as an antagonist for S100A9. The results could be favorable for developing anti-cancer drugs based on S100 family proteins.

  7. Mutations in Protein-Binding Hot-Spots on the Hub Protein Smad3 Differentially Affect Its Protein Interactions and Smad3-Regulated Gene Expression

    PubMed Central

    Schiro, Michelle M.; Stauber, Sara E.; Peterson, Tami L.; Krueger, Chateen; Darnell, Steven J.; Satyshur, Kenneth A.; Drinkwater, Norman R.; Newton, Michael A.; Hoffmann, F. Michael

    2011-01-01

    Background Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses. Methodology/Principal Findings We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression. Conclusions/Significance Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful for unraveling which Smad3 protein complexes are critical for specific biological responses. PMID:21949838

  8. Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression.

    PubMed

    Schiro, Michelle M; Stauber, Sara E; Peterson, Tami L; Krueger, Chateen; Darnell, Steven J; Satyshur, Kenneth A; Drinkwater, Norman R; Newton, Michael A; Hoffmann, F Michael

    2011-01-01

    Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses. We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression. Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful for unraveling which Smad3 protein complexes are critical for specific biological responses.

  9. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency

    PubMed Central

    Delius, Judith; Frank, Oliver

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives. PMID:28886151

  10. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    PubMed

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  11. Modulation of 14-3-3 protein interactions with target polypeptides by physical and metabolic effectors.

    PubMed

    Athwal, G S; Lombardo, C R; Huber, J L; Masters, S C; Fu, H; Huber, S C

    2000-04-01

    The proteins commonly referred to as 14-3-3s have recently come to prominence in the study of protein:protein interactions, having been shown to act as allosteric or steric regulators and possibly scaffolds. The binding of 14-3-3 proteins to the regulatory phosphorylation site of nitrate reductase (NR) was studied in real-time by surface plasmon resonance, using primarily an immobilized synthetic phosphopeptide based on spinach NR-Ser543. Both plant and yeast 14-3-3 proteins were shown to bind the immobilized peptide ligand in a Mg2+-stimulated manner. Stimulation resulted from a reduction in KD and an increase in steady-state binding level (Req). As shown previously for plant 14-3-3s, fluorescent probes also indicated that yeast BMH2 interacted directly with cations, which bind and affect surface hydrophobicity. Binding of 14-3-3s to the phosphopeptide ligand occurred in the absence of divalent cations when the pH was reduced below neutral, and the basis for enhanced binding was a reduction in K(D). At pH 7.5 (+Mg2+), AMP inhibited binding of plant 14-3-3s to the NR based peptide ligand. The binding of AMP to 14-3-3s was directly demonstrated by equilibrium dialysis (plant), and from the observation that recombinant plant 14-3-3s have a low, but detectable, AMP phosphatase activity.

  12. Binding of perlecan to transthyretin in vitro.

    PubMed Central

    Smeland, S; Kolset, S O; Lyon, M; Norum, K R; Blomhoff, R

    1997-01-01

    Transthyretin is one of two specific proteins involved in the transport of thyroid hormones in plasma; it possesses two binding sites for serum retinol-binding protein. In the present study we demonstrate that transthyretin also interacts in vitro with [35S]sulphate-labelled material from the medium of HepG2 cells. By using the same strategy as for purifying serum retinol-binding protein, [35S]sulphate-labelled medium was specifically eluted from a transthyretin-affinity column. Ion-exchange chromatography showed that the material was highly polyanionic, and its size and alkali susceptibility suggested that it was a proteoglycan. Structural analyses with chondroitinase ABC lyase and nitrous acid revealed that approx. 20% was chondroitin sulphate and 80% heparan sulphate. Immunoprecipitation showed that the [35S]sulphate-labelled material contained perlecan. Further analysis by binding studies revealed specific and saturable binding of 125I-transthyretin to perlecan-enriched Matrigel. Because inhibition of sulphation by treating HepG2 cells with sodium chlorate increased the affinity of the perlecan for transthyretin, and [3H]heparin was not retained by the transthyretin affinity column, the binding is probably mediated by the core protein and is not a protein-glycosaminoglycan interaction. Because perlecan is released from transthyretin in water, the binding might be due to hydrophobic interactions. PMID:9307034

  13. A structural insight into the inhibitory mechanism of an orally active PI3K/mTOR dual inhibitor, PKI-179 using computational approaches.

    PubMed

    Mohd Rehan

    2015-11-01

    The PI3K/AKT/mTOR signaling pathway has been identified as an important target for cancer therapy. Attempts are increasingly made to design the inhibitors against the key proteins of this pathway for anti-cancer therapy. The PI3K/mTOR dual inhibitors have proved more effective than the inhibitors against only single protein targets. Recently discovered PKI-179, an orally effective compound, is one such dual inhibitor targeting both PI3K and mTOR. This anti-cancer compound is efficacious both in vitro and in vivo. However, the binding mechanisms and the molecular interactions of PKI-179 with PI3K and mTOR are not yet available. The current study investigated the exact binding mode and the molecular interactions of PKI-179 with PI3Kγ and mTOR using molecular docking and (un)binding simulation analyses. The study identified PKI-179 interacting residues of both the proteins and their importance in binding was ranked by the loss in accessible surface area, number of molecular interactions of the residue, and consistent appearance of the residue in (un)binding simulation analysis. The key residues involved in binding of PKI-179 were Ala-805 in PI3Kγ and Ile-2163 in mTOR as they have lost maximum accessible surface area due to binding. In addition, the residues which played a role in binding of the drug but were away from the catalytic site were also identified using (un)binding simulation analyses. Finally, comparison of the interacting residues in the respective catalytic sites was done for the difference in the binding of the drug to the two proteins. Thus, the pairs of the residues falling at the similar location with respect to the docked drug were identified. The striking similarity in the interacting residues of the catalytic site explains the concomitant inhibition of both proteins by a number of inhibitors. In conclusion, the docking and (un)binding simulation analyses of dual inhibitor PKI-179 with PI3K and mTOR will provide a suitable multi-target model for studying drug-protein interactions and thus help in designing the novel drugs with higher potency. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Actin binding by Hip1 (huntingtin-interacting protein 1) and Hip1R (Hip1-related protein) is regulated by clathrin light chain.

    PubMed

    Wilbur, Jeremy D; Chen, Chih-Ying; Manalo, Venus; Hwang, Peter K; Fletterick, Robert J; Brodsky, Frances M

    2008-11-21

    The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function.

  15. Actin Binding by Hip1 (Huntingtin-interacting Protein 1) and Hip1R (Hip1-related Protein) Is Regulated by Clathrin Light Chain*S⃞

    PubMed Central

    Wilbur, Jeremy D.; Chen, Chih-Ying; Manalo, Venus; Hwang, Peter K.; Fletterick, Robert J.; Brodsky, Frances M.

    2008-01-01

    The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function. PMID:18790740

  16. Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity.

    PubMed

    Ghosh, Subhajit; Dey, Joykrishna

    2015-11-15

    The function of a protein depends upon its structure and surfactant molecules are known to alter protein structure. For this reason protein-surfactant interaction is important in biological, pharmaceutical, and cosmetic industries. In the present work, interactions of a series of anionic surfactants having the same hydrocarbon chain length, but different amino acid head group, such as l-alanine, l-valine, l-leucine, and l-phenylalanine with the transport protein, bovine serum albumin (BSA), were studied at low surfactant concentrations using fluorescence and circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The results of fluorescence measurements suggest that the surfactant molecules bind simultaneously to the drug binding site I and II of the protein subdomain IIA and IIIA, respectively. The fluorescence as well as CD spectra suggest that the conformation of BSA goes to a more structured state upon surfactant binding at low concentrations. The binding constants of the surfactants were determined by the use of fluorescence as well as ITC measurements and were compared with that of the corresponding glycine-derived surfactant. The binding constant values clearly indicate a significant head-group effect on the BSA-surfactant interaction and the interaction is mainly hydrophobic in nature. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A Multiprotein Binding Interface in an Intrinsically Disordered Region of the Tumor Suppressor Protein Interferon Regulatory Factor-1*

    PubMed Central

    Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R.; Vojtesek, Borivoj; Ball, Kathryn L.

    2011-01-01

    The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106–140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs. PMID:21245151

  18. Interactions of tea tannins and condensed tannins with proteins.

    PubMed

    Frazier, Richard A; Deaville, Eddie R; Green, Rebecca J; Stringano, Elisabetta; Willoughby, Ian; Plant, John; Mueller-Harvey, Irene

    2010-01-20

    Binding parameters for the interactions of four types of tannins: tea catechins, grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins, and sorghum procyanidins (mDP=17), with gelatin and bovine serum albumin (BSA) have been determined from isothermal titration calorimetry data. Equilibrium binding constants determined for the interaction with gelatin were in the range 10(4) to 10(6) M(-1) and in the order: sorghum procyanidins > grape seed proanthocyanidins > mimosa 5-deoxy proanthocyanidins > tea catechins. Interaction with BSA was generally weaker, with equilibrium binding constants of < or =10(3)M(-1) for grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins and tea catechins, and 10(4)M(-1) for the sorghum procyanidins. In all cases the interactions with proteins were exothermic and involved multiple binding sites on the protein. The data are discussed in relation to the structures and the known nutritional effects of the condensed tannins.

  19. Investigation of Trimethyllysine Binding by the HP1 Chromodomain via Unnatural Amino Acid Mutagenesis.

    PubMed

    Baril, Stefanie A; Koenig, Amber L; Krone, Mackenzie W; Albanese, Katherine I; He, Cyndi Qixin; Lee, Ga Young; Houk, Kendall N; Waters, Marcey L; Brustad, Eric M

    2017-12-06

    Trimethyllysine (Kme3) reader proteins are targets for inhibition due to their role in mediating gene expression. Although all such reader proteins bind Kme3 in an aromatic cage, the driving force for binding may differ; some readers exhibit evidence for cation-π interactions whereas others do not. We report a general unnatural amino acid mutagenesis approach to quantify the contribution of individual tyrosines to cation binding using the HP1 chromodomain as a model system. We demonstrate that two tyrosines (Y24 and Y48) bind to a Kme3-histone tail peptide via cation-π interactions, but linear free energy trends suggest they do not contribute equally to binding. X-ray structures and computational analysis suggest that the distance and degree of contact between Tyr residues and Kme3 plays an important role in tuning cation-π-mediated Kme3 recognition. Although cation-π interactions have been studied in a number of proteins, this work is the first to utilize direct binding assays, X-ray crystallography, and modeling, to pinpoint factors that influence the magnitude of the individual cation-π interactions.

  20. Analysis of binding ability of two tetramethylpyridylporphyrins to albumin and its complex with bilirubin

    NASA Astrophysics Data System (ADS)

    Solomonov, Alexey V.; Shipitsyna, Maria K.; Vashurin, Arthur S.; Rumyantsev, Evgeniy V.; Timin, Alexander S.; Ivanov, Sergey P.

    2016-11-01

    An interaction between 5,10,15,20-tetrakis-(N-methyl-x-pyridyl)porphyrins, x = 2; 4 (TMPyPs) with bovine serum albumin (BSA) and its bilirubin (BR) complex was investigated by UV-Viz and fluorescence spectroscopy under imitated physiological conditions involving molecular docking studies. The parameters of forming intermolecular complexes (binding constants, quenching rate constants, quenching sphere radius etc.) were determined. It was showed that the interaction between proteins and TMPyPs occurs via static quenching of protein fluorescence and has predominantly hydrophobic and electrostatic character. It was revealed that obtained complexes are relatively stable, but in the case of TMPyP4 binding with proteins occurs better than TMPyP2. Nevertheless, both TMPyPs have better binding ability with free protein compared to BRBSA at the same time. The influence of TMPyPs on the conformational changes in protein molecules was studied using synchronous fluorescence spectroscopy. It was found that there is no competition of BR with TMPyPs for binging sites on protein molecule and BR displacement does not occur. Molecular docking calculations have showed that TMPyPs can bind with albumin via tryptophan residue in the hydrophilic binding site of protein molecule but it is not one possible interaction way.

  1. Sliding of proteins non-specifically bound to DNA: Brownian dynamics studies with coarse-grained protein and DNA models.

    PubMed

    Ando, Tadashi; Skolnick, Jeffrey

    2014-12-01

    DNA binding proteins efficiently search for their cognitive sites on long genomic DNA by combining 3D diffusion and 1D diffusion (sliding) along the DNA. Recent experimental results and theoretical analyses revealed that the proteins show a rotation-coupled sliding along DNA helical pitch. Here, we performed Brownian dynamics simulations using newly developed coarse-grained protein and DNA models for evaluating how hydrodynamic interactions between the protein and DNA molecules, binding affinity of the protein to DNA, and DNA fluctuations affect the one dimensional diffusion of the protein on the DNA. Our results indicate that intermolecular hydrodynamic interactions reduce 1D diffusivity by 30%. On the other hand, structural fluctuations of DNA give rise to steric collisions between the CG-proteins and DNA, resulting in faster 1D sliding of the protein. Proteins with low binding affinities consistent with experimental estimates of non-specific DNA binding show hopping along the CG-DNA. This hopping significantly increases sliding speed. These simulation studies provide additional insights into the mechanism of how DNA binding proteins find their target sites on the genome.

  2. Anisotropic energy flow and allosteric ligand binding in albumin

    NASA Astrophysics Data System (ADS)

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.

  3. Anisotropic energy flow and allosteric ligand binding in albumin.

    PubMed

    Li, Guifeng; Magana, Donny; Dyer, R Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.

  4. Anisotropic energy flow and allosteric ligand binding in albumin

    PubMed Central

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. PMID:24445265

  5. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy.

    PubMed

    Delaforge, Elise; Kragelj, Jaka; Tengo, Laura; Palencia, Andrés; Milles, Sigrid; Bouvignies, Guillaume; Salvi, Nicola; Blackledge, Martin; Jensen, Malene Ringkjøbing

    2018-01-24

    Intrinsically disordered proteins (IDPs) display a large number of interaction modes including folding-upon-binding, binding without major structural transitions, or binding through highly dynamic, so-called fuzzy, complexes. The vast majority of experimental information about IDP binding modes have been inferred from crystal structures of proteins in complex with short peptides of IDPs. However, crystal structures provide a mainly static view of the complexes and do not give information about the conformational dynamics experienced by the IDP in the bound state. Knowledge of the dynamics of IDP complexes is of fundamental importance to understand how IDPs engage in highly specific interactions without concomitantly high binding affinity. Here, we combine rotating-frame R 1ρ , Carr-Purcell-Meiboom Gill relaxation dispersion as well as chemical exchange saturation transfer to decipher the dynamic interaction profile of an IDP in complex with its partner. We apply the approach to the dynamic signaling complex formed between the mitogen-activated protein kinase (MAPK) p38α and the intrinsically disordered regulatory domain of the MAPK kinase MKK4. Our study demonstrates that MKK4 employs a subtle combination of interaction modes in order to bind to p38α, leading to a complex displaying significantly different dynamics across the bound regions.

  6. Selectivity in glycosaminoglycan binding dictates the distribution and diffusion of fibroblast growth factors in the pericellular matrix

    PubMed Central

    Marcello, Marco

    2016-01-01

    The range of biological outcomes generated by many signalling proteins in development and homeostasis is increased by their interactions with glycosaminoglycans, particularly heparan sulfate (HS). This interaction controls the localization and movement of these signalling proteins, but whether such control depends on the specificity of the interactions is not known. We used five fibroblast growth factors with an N-terminal HaloTag (Halo-FGFs) for fluorescent labelling, with well-characterized and distinct HS-binding properties, and measured their binding and diffusion in pericellular matrix of fixed rat mammary 27 fibroblasts. Halo-FGF1, Halo-FGF2 and Halo-FGF6 bound to HS, whereas Halo-FGF10 also interacted with chondroitin sulfate/dermatan sulfate, and FGF20 did not bind detectably. The distribution of bound FGFs in the pericellular matrix was not homogeneous, and for FGF10 exhibited striking clusters. Fluorescence recovery after photobleaching showed that FGF2 and FGF6 diffused faster, whereas FGF1 diffused more slowly, and FGF10 was immobile. The results demonstrate that the specificity of the interactions of proteins with glycosaminoglycans controls their binding and diffusion. Moreover, cells regulate the spatial distribution of different protein-binding sites in glycosaminoglycans independently of each other, implying that the extracellular matrix has long-range structure. PMID:27009190

  7. Using affinity capillary electrophoresis and computational models for binding studies of heparinoids with p-selectin and other proteins.

    PubMed

    Mozafari, Mona; Balasupramaniam, Shantheya; Preu, Lutz; El Deeb, Sami; Reiter, Christian G; Wätzig, Hermann

    2017-06-01

    A fast and precise affinity capillary electrophoresis (ACE) method has been developed and applied for the investigation of the binding interactions between P-selectin and heparinoids as potential P-selectin inhibitors in the presence and absence of calcium ions. Furthermore, model proteins and vitronectin were used to appraise the binding behavior of P-selectin. The normalized mobility ratios (∆R/R f ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. It was found that P-selectin interacts more strongly with heparinoids in the presence of calcium ions. P-selectin was affected by heparinoids at the concentration of 3 mg/L. In addition, the results of the ACE experiments showed that among other investigated proteins, albumins and vitronectin exhibited strong interactions with heparinoids. Especially with P-selectin and vitronectin, the interaction may additionally induce conformational changes. Subsequently, computational models were applied to interpret the ACE experiments. Docking experiments explained that the binding of heparinoids on P-selectin is promoted by calcium ions. These docking models proved to be particularly well suited to investigate the interaction of charged compounds, and are therefore complementary to ACE experiments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains*

    PubMed Central

    Guo, Emily Z.; Xu, Zhaohui

    2015-01-01

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. PMID:25657007

  9. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    PubMed

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules in disease development. In the knockout cells, incorrect interactions between proteins were observed without the protein modification by small molecules, indicating the abnormality of the protein network in the transgenic system. The irreversible protein-protein interactions lead to protein aggregation and cell degeneration, which are observed in all aging-associated diseases.

  10. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells

    PubMed Central

    2011-01-01

    Background The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Results Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. Conclusions The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules in disease development. In the knockout cells, incorrect interactions between proteins were observed without the protein modification by small molecules, indicating the abnormality of the protein network in the transgenic system. The irreversible protein-protein interactions lead to protein aggregation and cell degeneration, which are observed in all aging-associated diseases. PMID:21247434

  11. The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain.

    PubMed

    Viola, Ivana L; Uberti Manassero, Nora G; Ripoll, Rodrigo; Gonzalez, Daniel H

    2011-04-01

    The TCP domain is a DNA-binding domain present in plant transcription factors that modulate different processes. In the present study, we show that Arabidopsis class I TCP proteins are able to interact with a dyad-symmetric sequence composed of two GTGGG half-sites. TCP20 establishes symmetric interactions with the 5' half of each strand, whereas TCP11 interacts mainly with the 3' half. SELEX (systematic evolution of ligands by exponential enrichment) experiments with TCP15 and TCP20 indicated that these proteins have similar, although not identical, DNA-binding preferences and are able to interact with non-palindromic binding sites of the type GTGGGNCCNN. TCP11 shows a different DNA-binding specificity, with a preference for the sequence GTGGGCCNNN. The distinct DNA-binding properties of TCP11 are due to the presence of a threonine residue at position 15 of the TCP domain, a position that is occupied by an arginine residue in most TCP proteins. TCP11 also forms heterodimers with TCP15 that have increased DNA-binding efficiency. The expression in plants of a repressor form of TCP11 demonstrated that this protein is a developmental regulator that influences the growth of leaves, stems and petioles, and pollen development. The results suggest that changes in DNA-binding preferences may be one of the mechanisms through which class I TCP proteins achieve functional specificity.

  12. A Colorimetric Microplate Assay for DNA-Binding Activity of His-Tagged MutS Protein.

    PubMed

    Banasik, Michał; Sachadyn, Paweł

    2016-09-01

    A simple microplate method was designed for rapid testing DNA-binding activity of proteins. The principle of the assay involves binding of tested DNA by his-tagged protein immobilized on a nickel-coated ELISA plate, following colorimetric detection of biotinylated DNA with avidin conjugated to horseradish peroxidase. The method was used to compare DNA mismatch binding activities of MutS proteins from three bacterial species. The assay required relatively low amounts of tested protein (approximately 0.5-10 pmol) and DNA (0.1-10 pmol) and a relatively short time of analysis (up to 60 min). The method is very simple to apply and convenient to test different buffer conditions of DNA-protein binding. Sensitive colorimetric detection enables naked eye observations and quantitation with an ELISA reader. The performance of the assay, which we believe is a distinguishing trait of the method, is based on two strong and specific molecular interactions: binding of a his-tagged protein to a nickel-coated microplate and binding of biotinylated DNA to avidin. In the reported experiments, the solution was used to optimize the conditions for DNA mismatch binding by MutS protein; however, the approach could be implemented to test nucleic acids interactions with any protein of interest.

  13. Measles virus fusion machinery activated by sialic acid binding globular domain.

    PubMed

    Talekar, Aparna; Moscona, Anne; Porotto, Matteo

    2013-12-01

    Paramyxoviruses, including the human pathogen measles virus (MV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral envelope with the target cell membrane. This fusion is driven by the concerted action of two viral envelope glycoproteins: the receptor binding protein and the fusion protein (F). The MV receptor binding protein (hemagglutinin [H]) attaches to proteinaceous receptors on host cells, while the receptor binding protein of NDV (hemagglutinin-neuraminidase [HN]) interacts with sialic acid-containing receptors. The receptor-bound HN/H triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. The mechanism of fusion activation has been proposed to be different for sialic acid-binding viruses and proteinaceous receptor-binding viruses. We report that a chimeric protein containing the NDV HN receptor binding region and the MV H stalk domain can activate MV F to fuse, suggesting that the signal to the stalk of a protein-binding receptor binding molecule can be transmitted from a sialic acid binding domain. By engineering the NDV HN globular domain to interact with a proteinaceous receptor, the fusion activation signal was preserved. Our findings are consistent with a unified mechanism of fusion activation, at least for the Paramyxovirinae subfamily, in which the receptor binding domains of the receptor binding proteins are interchangeable and the stalk determines the specificity of F activation.

  14. Protein interactions and ligand binding: from protein subfamilies to functional specificity.

    PubMed

    Rausell, Antonio; Juan, David; Pazos, Florencio; Valencia, Alfonso

    2010-02-02

    The divergence accumulated during the evolution of protein families translates into their internal organization as subfamilies, and it is directly reflected in the characteristic patterns of differentially conserved residues. These specifically conserved positions in protein subfamilies are known as "specificity determining positions" (SDPs). Previous studies have limited their analysis to the study of the relationship between these positions and ligand-binding specificity, demonstrating significant yet limited predictive capacity. We have systematically extended this observation to include the role of differential protein interactions in the segregation of protein subfamilies and explored in detail the structural distribution of SDPs at protein interfaces. Our results show the extensive influence of protein interactions in the evolution of protein families and the widespread association of SDPs with protein interfaces. The combined analysis of SDPs in interfaces and ligand-binding sites provides a more complete picture of the organization of protein families, constituting the necessary framework for a large scale analysis of the evolution of protein function.

  15. ATP interacts with the CPVT mutation-associated central domain of the cardiac ryanodine receptor.

    PubMed

    Blayney, Lynda; Beck, Konrad; MacDonald, Ewan; D'Cruz, Leon; Nomikos, Michail; Griffiths, Julia; Thanassoulas, Angelos; Nounesis, George; Lai, F Anthony

    2013-10-01

    This study was designed to determine whether the cardiac ryanodine receptor (RyR2) central domain, a region associated with catecholamine polymorphic ventricular tachycardia (CPVT) mutations, interacts with the RyR2 regulators, ATP and the FK506-binding protein 12.6 (FKBP12.6). Wild-type (WT) RyR2 central domain constructs (G(2236)to G(2491)) and those containing the CPVT mutations P2328S and N2386I, were expressed as recombinant proteins. Folding and stability of the proteins were examined by circular dichroism (CD) spectroscopy and guanidine hydrochloride chemical denaturation. The far-UV CD spectra showed a soluble stably-folded protein with WT and mutant proteins exhibiting a similar secondary structure. Chemical denaturation analysis also confirmed a stable protein for both WT and mutant constructs with similar two-state unfolding. ATP and caffeine binding was measured by fluorescence spectroscopy. Both ATP and caffeine bound with an EC50 of ~200-400μM, and the affinity was the same for WT and mutant constructs. Sequence alignment with other ATP binding proteins indicated the RyR2 central domain contains the signature of an ATP binding pocket. Interaction of the central domain with FKBP12.6 was tested by glutaraldehyde cross-linking and no association was found. The RyR2 central domain, expressed as a 'correctly' folded recombinant protein, bound ATP in accord with bioinformatics evidence of conserved ATP binding sequence motifs. An interaction with FKBP12.6 was not evident. CPVT mutations did not disrupt the secondary structure nor binding to ATP. Part of the RyR2 central domain CPVT mutation cluster, can be expressed independently with retention of ATP binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G

    PubMed Central

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P.; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus

    2017-01-01

    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis. PMID:28401063

  17. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    PubMed Central

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  18. Alpha-crystallins are involved in specific interactions with the murine gamma D/E/F-crystallin-encoding gene.

    PubMed

    Pietrowski, D; Durante, M J; Liebstein, A; Schmitt-John, T; Werner, T; Graw, J

    1994-07-08

    The promoter of the murine gamma E-crystallin (gamma E-Cry) encoding gene (gamma E-cry) was analyzed for specific interactions with lenticular proteins in a gel-retardation assay. A 21-bp fragment immediately downstream of the transcription initiation site (DOTIS) is demonstrated to be responsible for specific interactions with lens extracts. The DOTIS-binding protein(s) accept only the sense DNA strand as target; anti-sense or double-stranded DNA do not interact with these proteins. The DOTIS sequence element is highly conserved among the murine gamma D-, gamma E- and gamma F-cry and is present at comparable positions in the orthologous rat genes. Only a weak or even no protein-binding activity is observed if a few particular bases are changed, as in the rat gamma A-, gamma C- and gamma E-cry elements. DOTIS-binding proteins were found in commercially available bovine alpha-Cry preparations. The essential participation of alpha-Cry in the DNA-binding protein complex was confirmed using alpha-Cry-specific monoclonal antibody. The results reported here point to a novel function of alpha-Cry besides the structural properties in the lens.

  19. Analysis of Paracoccidioides secreted proteins reveals fructose 1,6-bisphosphate aldolase as a plasminogen-binding protein.

    PubMed

    Chaves, Edilânia Gomes Araújo; Weber, Simone Schneider; Báo, Sonia Nair; Pereira, Luiz Augusto; Bailão, Alexandre Melo; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2015-02-27

    Despite being important thermal dimorphic fungi causing Paracoccidioidomycosis, the pathogenic mechanisms that underlie the genus Paracoccidioides remain largely unknown. Microbial pathogens express molecules that can interact with human plasminogen, a protein from blood plasma, which presents fibrinolytic activity when activated into plasmin. Additionally, plasmin exhibits the ability of degrading extracellular matrix components, favoring the pathogen spread to deeper tissues. Previous work from our group demonstrated that Paracoccidioides presents enolase, as a protein able to bind and activate plasminogen, increasing the fibrinolytic activity of the pathogen, and the potential for adhesion and invasion of the fungus to host cells. By using proteomic analysis, we aimed to identify other proteins of Paracoccidioides with the ability of binding to plasminogen. In the present study, we employed proteomic analysis of the secretome, in order to identify plasminogen-binding proteins of Paracoccidioides, Pb01. Fifteen proteins were present in the fungal secretome, presenting the ability to bind to plasminogen. Those proteins are probable targets of the fungus interaction with the host; thus, they could contribute to the invasiveness of the fungus. For validation tests, we selected the protein fructose 1,6-bisphosphate aldolase (FBA), described in other pathogens as a plasminogen-binding protein. The protein FBA at the fungus surface and the recombinant FBA (rFBA) bound human plasminogen and promoted its conversion to plasmin, potentially increasing the fibrinolytic capacity of the fungus, as demonstrated in fibrin degradation assays. The addition of rFBA or anti-rFBA antibodies was capable of reducing the interaction between macrophages and Paracoccidioides, possibly by blocking the binding sites for FBA. These data reveal the possible participation of the FBA in the processes of cell adhesion and tissue invasion/dissemination of Paracoccidioides. These data indicate that Paracoccidioides is a pathogen that has several plasminogen-binding proteins that likely play important roles in pathogen-host interaction. In this context, FBA is a protein that might be involved somehow in the processes of invasion and spread of the fungus during infection.

  20. A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones.

    PubMed

    Siebert, Matthias; Böhme, Mathias A; Driller, Jan H; Babikir, Husam; Mampell, Malou M; Rey, Ulises; Ramesh, Niraja; Matkovic, Tanja; Holton, Nicole; Reddy-Alla, Suneel; Göttfert, Fabian; Kamin, Dirk; Quentin, Christine; Klinedinst, Susan; Andlauer, Till Fm; Hell, Stefan W; Collins, Catherine A; Wahl, Markus C; Loll, Bernhard; Sigrist, Stephan J

    2015-08-14

    Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes.

  1. Interaction of sucralose with whey protein: Experimental and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Sun, Shixin; Wang, Yanqing; Cao, Jian

    2017-12-01

    The objective of this research was to study the interactions of sucralose with whey protein isolate (WPI) by using the three-dimensional fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling. The results showed that the peptide strands structure of WPI had been changed by sucralose. Sucralose binding induced the secondary structural changes and increased content of aperiodic structure of WPI. Sucralose decreased the thermal stability of WPI and acted as a structure destabilizer during the thermal unfolding process of protein. In addition, the existence of sucralose decreased the reversibility of the unfolding of WPI. Nonetheless, sucralose-WPI complex was less stable than protein alone. The molecular modeling result showed that van der Waals and hydrogen bonding interactions contribute to the complexation free binding energy. There are more than one possible binding sites of WPI with sucralose by surface binding mode.

  2. A force-based protein biochip

    NASA Astrophysics Data System (ADS)

    Blank, K.; Mai, T.; Gilbert, I.; Schiffmann, S.; Rankl, J.; Zivin, R.; Tackney, C.; Nicolaus, T.; Spinnler, K.; Oesterhelt, F.; Benoit, M.; Clausen-Schaumann, H.; Gaub, H. E.

    2003-09-01

    A parallel assay for the quantification of single-molecule binding forces was developed based on differential unbinding force measurements where ligand-receptor interactions are compared with the unzipping forces of DNA hybrids. Using the DNA zippers as molecular force sensors, the efficient discrimination between specific and nonspecific interactions was demonstrated for small molecules binding to specific receptors, as well as for protein-protein interactions on protein arrays. Finally, an antibody sandwich assay with different capture antibodies on one chip surface and with the detection antibodies linked to a congruent surface via the DNA zippers was used to capture and quantify a recombinant hepatitis C antigen from solution. In this case, the DNA zippers enable not only discrimination between specific and nonspecific binding, but also allow for the local application of detection antibodies, thereby eliminating false-positive results caused by cross-reactive antibodies and nonspecific binding.

  3. The Proliferating Cell Nuclear Antigen (PCNA)-interacting Protein (PIP) Motif of DNA Polymerase η Mediates Its Interaction with the C-terminal Domain of Rev1*

    PubMed Central

    Boehm, Elizabeth M.; Powers, Kyle T.; Kondratick, Christine M.; Spies, Maria; Houtman, Jon C. D.; Washington, M. Todd

    2016-01-01

    Y-family DNA polymerases, such as polymerase η, polymerase ι, and polymerase κ, catalyze the bypass of DNA damage during translesion synthesis. These enzymes are recruited to sites of DNA damage by interacting with the essential replication accessory protein proliferating cell nuclear antigen (PCNA) and the scaffold protein Rev1. In most Y-family polymerases, these interactions are mediated by one or more conserved PCNA-interacting protein (PIP) motifs that bind in a hydrophobic pocket on the front side of PCNA as well as by conserved Rev1-interacting region (RIR) motifs that bind in a hydrophobic pocket on the C-terminal domain of Rev1. Yeast polymerase η, a prototypical translesion synthesis polymerase, binds both PCNA and Rev1. It possesses a single PIP motif but not an RIR motif. Here we show that the PIP motif of yeast polymerase η mediates its interactions both with PCNA and with Rev1. Moreover, the PIP motif of polymerase η binds in the hydrophobic pocket on the Rev1 C-terminal domain. We also show that the RIR motif of human polymerase κ and the PIP motif of yeast Msh6 bind both PCNA and Rev1. Overall, these findings demonstrate that PIP motifs and RIR motifs have overlapping specificities and can interact with both PCNA and Rev1 in structurally similar ways. These findings also suggest that PIP motifs are a more versatile protein interaction motif than previously believed. PMID:26903512

  4. Calcium-dependent interaction of monomeric S100P protein with serum albumin.

    PubMed

    Kazakov, Alexei S; Shevelyova, Marina P; Ismailov, Ramis G; Permyakova, Maria E; Litus, Ekaterina A; Permyakov, Eugene A; Permyakov, Sergei E

    2018-03-01

    S100 proteins are multifunctional (intra/extra)cellular mostly dimeric calcium-binding proteins engaged into numerous diseases. We have found that monomeric recombinant human S100P protein interacts with intact human serum albumin (HSA) in excess of calcium ions with equilibrium dissociation constant of 25-50nM, as evidenced by surface plasmon resonance spectroscopy and fluorescent titration by HSA of S100P labelled by fluorescein isothiocyanate. Calcium removal or S100P dimerization abolish the S100P-HSA interaction. The interaction is selective, since S100P does not bind bovine serum albumin and monomeric human S100B lacks interaction with HSA. In vitro glycation of HSA disables its binding to S100P. The revealed selective and highly specific conformation-dependent interaction between S100P and HSA shows that functional properties of monomeric and dimeric forms of S100 proteins are different, and raises concerns on validity of cell-based assays and animal models used for studies of (patho)physiological roles of extracellular S100 proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Binding Direction-Based Two-Dimensional Flattened Contact Area Computing Algorithm for Protein-Protein Interactions.

    PubMed

    Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin

    2017-10-13

    Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.

  6. Desthiobiotin-Streptavidin-Affinity Mediated Purification of RNA-Interacting Proteins in Mesothelioma Cells.

    PubMed

    Kresoja-Rakic, Jelena; Felley-Bosco, Emanuela

    2018-04-25

    The in vitro RNA-pulldown is still largely used in the first steps of protocols aimed at identifying RNA-binding proteins that recognize specific RNA structures and motifs. In this RNA-pulldown protocol, commercially synthesized RNA probes are labeled with a modified form of biotin, desthiobiotin, at the 3' terminus of the RNA strand, which reversibly binds to streptavidin and thus allows elution of proteins under more physiological conditions. The RNA-desthiobiotin is immobilized through interaction with streptavidin on magnetic beads, which are used to pull down proteins that specifically interact with the RNA of interest. Non-denatured and active proteins from the cytosolic fraction of mesothelioma cells are used as the source of proteins. The method described here can be applied to detect the interaction between known RNA binding proteins and a 25-nucleotide (nt) long RNA probe containing a sequence of interest. This is useful to complete the functional characterization of stabilizing or destabilizing elements present in RNA molecules achieved using a reporter vector assay.

  7. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence.

    PubMed

    Gustafsson, Mattias C U; Lannergård, Jonas; Nilsson, O Rickard; Kristensen, Bodil M; Olsen, John E; Harris, Claire L; Ufret-Vincenty, Rafael L; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.

  8. Factor H Binds to the Hypervariable Region of Many Streptococcus pyogenes M Proteins but Does Not Promote Phagocytosis Resistance or Acute Virulence

    PubMed Central

    Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608

  9. Unraveling the binding interaction of a bioactive pyrazole-based probe with serum proteins: Relative concentration dependent 1:1 and 2:1 probe-protein stoichiometries.

    PubMed

    Kundu, Pronab; Chattopadhyay, Nitin

    2018-06-15

    Molecular interactions and binding of probes/drugs with biomacromolecular systems are of fundamental importance in understanding the mechanism of action and hence designing of proactive drugs. In the present study, binding interactions of a biologically potent fluorophore, (E)-1,5-diphenyl-3-styryl-4,5-dihydro-1H-pyrazole (DSDP) with two serum transport proteins, human serum albumin and bovine serum albumin, have been investigated exploiting multi-spectroscopic techniques. The spectrophotometric and fluorometric studies together with fluorescence quenching, fluorescence anisotropy, urea induced denaturation studies and fluorescence lifetime measurements reveal strong binding of DSDP with both the plasma proteins. Going beyond the vast literature data mostly providing 1:1 probe-protein complexation, the present investigation portrays 2:1 probe-protein complex formation at higher relative probe concentration. A newer approach has been developed to have an estimate of the binding constants varying the concentration of the protein, instead of the usual practice of varying the probe. The binding constants for the 2:1 DSDP-protein complexes are determined to be 1.37 × 10 10  M -2 and 1.47 × 10 10  M -2 for HSA and BSA respectively, while those for the 1:1 complexation process come out to be 1.85 × 10 5  M -1 and 1.73 × 10 5  M -1 for DSDP-HSA and DSDP-BSA systems respectively. Thermodynamic analysis at different temperatures implies that the forces primarily involved in the binding process are hydrogen bonding and hydrophobic interactions. Competitive replacement studies with known site markers and molecular docking simulations direct to the possible locations and binding energies of DSDP with the two serum proteins, corroborating well with the experimental results. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Protein–protein interactions and selection: yeast-based approaches that exploit guanine nucleotide-binding protein signaling.

    PubMed

    Ishii, Jun; Fukuda, Nobuo; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2010-05-01

    For elucidating protein–protein interactions, many methodologies have been developed during the past two decades. For investigation of interactions inside cells under physiological conditions, yeast is an attractive organism with which to quickly screen for hopeful candidates using versatile genetic technologies, and various types of approaches are now available.Among them, a variety of unique systems using the guanine nucleotide-binding protein (G-protein) signaling pathway in yeast have been established to investigate the interactions of proteins for biological study and pharmaceutical research. G-proteins involved in various cellular processes are mainly divided into two groups: small monomeric G-proteins,and heterotrimeric G-proteins. In this minireview, we summarize the basic principles and applications of yeast-based screening systems, using these two types of G-protein, which are typically used for elucidating biological protein interactions but are differentiated from traditional yeast two-hybrid systems.

  11. Relationship between Hot Spot Residues and Ligand Binding Hot Spots in Protein-Protein Interfaces

    PubMed Central

    Zerbe, Brandon S.; Hall, David R.

    2013-01-01

    In the context of protein-protein interactions, the term “hot spot” refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening. PMID:22770357

  12. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    PubMed

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  13. An efficient way of studying protein-protein interactions involving HIF-α, c-Myc, and Sp1.

    PubMed

    To, Kenneth K-W; Huang, L Eric

    2013-01-01

    Protein-protein interaction is an essential biochemical event that mediates various cellular processes including gene expression, intracellular signaling, and intercellular interaction. Understanding such interaction is key to the elucidation of mechanisms of cellular processes in biology and diseases. The hypoxia-inducible transcription factor HIF-1α possesses a non-transcriptional activity that competes with c-Myc for Sp1 binding, whereas its isoform HIF-2α lacks Sp1-binding activity due to phosphorylation. Here, we describe the use of in vitro translation to effectively investigate the dynamics of protein-protein interactions among HIF-1α, c-Myc, and Sp1 and to demonstrate protein phosphorylation as a molecular determinant that functionally distinguishes HIF-2α from HIF-1α.

  14. Structural and thermodynamic characterization of the recognition of the S100-binding peptides TRTK12 and p53 by calmodulin

    PubMed Central

    Wafer, Lucas N; Tzul, Franco O; Pandharipande, Pranav P; McCallum, Scott A; Makhatadze, George I

    2014-01-01

    Calmodulin (CaM) is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells in a calcium-dependent manner. CaM has been proposed to be functionally distinct from the S100 proteins, a related family of eukaryotic calcium-binding proteins. Previously, it was demonstrated that peptides derived from the actin-capping protein, TRTK12, and the tumor-suppressor protein, p53, interact with multiple members of the S100 proteins. To test the specificity of these peptides, they were screened using isothermal titration calorimetry against 16 members of the human S100 protein family, as well as CaM, which served as a negative control. Interestingly, both the TRTK12 and p53 peptides were found to interact with CaM. These interactions were further confirmed by both fluorescence and nuclear magnetic resonance spectroscopies. These peptides have distinct sequences from the known CaM target sequences. The TRTK12 peptide was found to independently interact with both CaM domains and bind with a stoichiometry of 2:1 and dissociations constants Kd,C-term = 2 ± 1 µM and Kd,N-term = 14 ± 1 µM. In contrast, the p53 peptide was found to interact only with the C-terminal domain of CaM, Kd,C-term =2 ± 1 µM, 25°C. Using NMR spectroscopy, the locations of the peptide binding sites were mapped onto the structure of CaM. The binding sites for both peptides were found to overlap with the binding interface for previously identified targets on both domains of CaM. This study demonstrates the plasticity of CaM in target binding and may suggest a possible overlap in target specificity between CaM and the S100 proteins. PMID:24947426

  15. BiFC Assay to Detect Calmodulin Binding to Plant Receptor Kinases.

    PubMed

    Fischer, Cornelia; Sauter, Margret; Dietrich, Petra

    2017-01-01

    Plant receptor-like kinases (RLKs) are regulated at various levels including posttranscriptional modification and interaction with regulatory proteins. Calmodulin (CaM) is a calcium-sensing protein that was shown to bind to some RLKs such as the PHYTOSULFOKINE RECEPTOR1 (PSKR1). The CaM-binding site is embedded in subdomain VIa of the kinase domain. It is possible that many more of RLKs interact with CaM than previously described. To unequivocally confirm CaM binding, several methods exist. Bimolecular fluorescence complementation (BiFC) and pull-down assays have been successfully used to study CaM binding to PSKR1 and are described in this chapter (BiFC) and in Chapter 15 (pull down). The two methods are complementary. BiFC is useful to show localization and interaction of soluble as well as of membrane-bound proteins in planta.

  16. Non-canonical dynamic mechanisms of interaction between the p66Shc protein and Met receptor

    PubMed Central

    Landry, Mélissa; Pomerleau, Véronique; Saucier, Caroline

    2016-01-01

    Met receptor tyrosine kinase (RTK) is known to bind to the three distinct protein isoforms encoded by the ShcA (Shc) gene. Structure–function studies have unveiled critical roles for p52Shc-dependent signalling pathways in Met-regulated biological functions. The molecular basis of the interaction between the Met and p52Shc proteins is well-defined, but not for the longest protein isoform, p66Shc. In the present study, co-immunoprecipitation assays were performed in human embryonic kidney 293 (HEK293) cells, transiently co-transfected with Met and p66Shc mutants, in order to define the molecular determinants involved in mediating Met–p66Shc interaction. Our results show that p66Shc interacts constitutively with the receptor Met, and the Grb2 (growth factor receptor-bound protein-2) and Gab1 (Grb2-associated binder-1) adaptor proteins. Although its phosphotyrosine-binding domain (PTB) and Src homology 2 (SH2) domains co-ordinate p66Shc binding to non-activated Met receptor, these phosphotyrosine-binding modules, and its collagen homology domain 2 (CH2) region, exert negative constraints. In contrast, p66Shc interaction with the activated Met depends mainly on the integrity of its PTB domain, and to a lesser extent of its SH2 domain. Even though not required for the recruitment of p66Shc, tyrosine phosphorylation of p66Shc by activated Met enhances these interactions by mechanisms not reliant on the integrity of the Met multisubstrate-binding site. In turn, this increases phosphotyrosine-dependent p66Shc–Grb2–Gab1 complex formation away from the receptor, while blocking Grb2 and Gab1 recruitment to activated Met. In conclusion, we identify, for the first time, a novel non-canonical dynamic mode of interaction between Met and the p66 protein isoform of Shc and its effects on rewiring binding effector complexes according to the activation state of the receptor. PMID:27048591

  17. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles

    PubMed Central

    Brender, Jeffrey R.; Zhang, Yang

    2015-01-01

    The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies. PMID:26506533

  18. Intracellular interaction of EBV/C3d receptor (CR2) with p68, a calcium-binding protein present in normal but not in transformed B lymphocytes.

    PubMed

    Barel, M; Gauffre, A; Lyamani, F; Fiandino, A; Hermann, J; Frade, R

    1991-08-15

    To analyze direct intracellular interactions of CR2 in normal human B lymphocytes, we used polyclonal anti-Id anti-CR2 antibodies (Ab2) prepared against the highly purified CR2 molecule (gp140) as original immunogen. We previously demonstrated that this Ab2 contained specificities that mimicked extracellular and intracellular domains of CR2 and was helpful for identifying CR2-specific ligands. Indeed, some Ab2 specificities recognized human C3d and EBV, two extracellular CR2 ligands. In addition, other Ab2 specificities interacted directly, as CR2, with the intracellular p53 antioncoprotein that is expressed in transformed cells and not in normal cells. We demonstrate herein that Ab2 detected in normal B lymphocytes a 68-kDa protein, p68, that was not expressed in transformed B cells. p68 was localized in purified plasma membranes and cytosol fractions. Direct interaction of purified CR2 with purified p68 was demonstrated. Competitive studies supported that CR2 and Ab2 interacted with identical sites on p68. These interactions were calcium dependent. p68 was identified as a calcium-binding protein by its ability to be solubilized from B lymphocyte membranes by EGTA, a calcium-chelating agent, to bind specifically on phenothiazine-Sepharose in a calcium-dependent interaction, and to be recognized by specific antibodies directed against human p68, a calcium-binding protein of the annexin VI family. Thus, demonstration of different intracellular interactions of CR2 with distinct regulatory proteins, such as p53, the antioncoprotein, and p68, a calcium-binding protein, supports involvement of two regulatory pathways of signal transduction through CR2, depending on the normal or transformed state of human B lymphocytes.

  19. Interaction of Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) with erythrocyte ankyrin R is required for its attachment to the erythrocyte membrane.

    PubMed

    Weng, Haibo; Guo, Xinhua; Papoin, Julien; Wang, Jie; Coppel, Ross; Mohandas, Narla; An, Xiuli

    2014-01-01

    The malaria parasite Plasmodium falciparum exports a large number of proteins into the erythrocyte cytoplasm during the asexual intraerythrocytic stage of its life cycle. A subset of these proteins interacts with erythrocyte membrane skeletal proteins and grossly alters the structure and function of the membrane. Several of the exported proteins, such as PfEMP1, PfEMP3, RESA and KAHRP, interact with the preponderant erythrocyte skeleton protein, spectrin. Here we have searched for possible interaction of these four malaria proteins with another major erythrocyte skeleton protein, ankyrin R. We have shown that KAHRP, but none of the other three, binds to ankyrin R. We have mapped the binding site for ankyrin R to a 79-residue segment of the KAHRP sequence, and the reciprocal binding site for KAHRP in ankyrin R to a subdomain (D3) of the 89kDa ankyrin R membrane-binding domain. Interaction of intact ankyrin R with KAHRP was inhibited by the free D3 subdomain. When, moreover, red cells loaded with the soluble D3 subdomain were infected with P. falciparum, KAHRP secreted by the intraerythrocytic parasite no longer migrated to the host cell membrane, but remained diffusely distributed throughout the cytosol. Our findings suggest a potentially important role for interaction of KAHRP with red cell membrane skeleton in promoting the adhesion of malaria-infected red cells to endothelial surfaces, a central element in the pathophysiology of malaria. © 2013.

  20. Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing; Progress report, June 1, 1990--May 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, C.C.

    1993-12-31

    This project focuses on the DNA polymerase (gene 5 protein) of phage T7 for use in DNA sequence analysis. Gene 5 protein interacts with accessory proteins to acquire properties essential for DNA replication. One goal is to understand these interactions in order to modify the proteins for use in DNA sequencing. E. coli thioredoxin, binds to gene 5 protein and clamps it to a primer-template. They have analyzed the binding of gene 5 protein-thioredoxin to primer-templates and have defined the optimal conditions to form an extremely stable complex with a dNTP in the polymerase catalytic site. The spatial proximity ofmore » these components has been determined using fluorescence emission anisotropy. The T7 DNA binding protein, the gene 2.5 protein, interacts with gene 5 protein and gene 4 protein to increase processivity and primer synthesis, respectively. Mutant gene 2.5 proteins have been isolated that do not interact with T7 DNA polymerase and can not support T7 growth. The nucleotide binding site of the T7 helicase has been identified and mutations affecting the site provide information on how the hydrolysis of NTPs fuel its unidirectional translocation. The sequence, GTC, has been shown to be necessary and sufficient for recognition by the T7 primase. The T7 gene 5.5 protein interacts with the E. coli nucleoid protein, H-NS, and also overcomes the phage {lambda} rex restriction system.« less

  1. Detection of specific protein-protein interactions in nanocages by engineering bipartite FlAsH binding sites.

    PubMed

    Cornell, Thomas A; Fu, Jing; Newland, Stephanie H; Orner, Brendan P

    2013-11-06

    Proteins that form cage-like structures have been of much recent cross-disciplinary interest due to their application to bioconjugate and materials chemistry, their biological functions spanning multiple essential cellular processes, and their complex structure, often defined by highly symmetric protein–protein interactions. Thus, establishing the fundamentals of their formation, through detecting and quantifying important protein–protein interactions, could be crucial to understanding essential cellular machinery, and for further development of protein-based technologies. Herein we describe a method to monitor the assembly of protein cages by detecting specific, oligomerization state dependent, protein–protein interactions. Our strategy relies on engineering protein monomers to include cysteine pairs that are presented proximally if the cage state assembles. These assembled pairs of cysteines act as binding sites for the fluorescent reagent FlAsH, which, once bound, provides a readout for successful oligomerization. As a proof of principle, we applied this technique to the iron storage protein, DNA-binding protein from starved cells from E. coli. Several linker lengths and conformations for the presentation of the cysteine pairs were screened to optimize the engineered binding sites. We confirmed that our designs were successful in both lysates and with purified proteins, and that FlAsH binding was dependent upon cage assembly. Following successful characterization of the assay, its throughput was expanded. A two-dimension matrix of pH and denaturing buffer conditions was screened to optimize nanocage stability. We intend to use this method for the high throughput screening of protein cage libraries and of conditions for the generation of inorganic nanoparticles within the cavity of these and other cage proteins.

  2. Template-Based Modeling of Protein-RNA Interactions.

    PubMed

    Zheng, Jinfang; Kundrotas, Petras J; Vakser, Ilya A; Liu, Shiyong

    2016-09-01

    Protein-RNA complexes formed by specific recognition between RNA and RNA-binding proteins play an important role in biological processes. More than a thousand of such proteins in human are curated and many novel RNA-binding proteins are to be discovered. Due to limitations of experimental approaches, computational techniques are needed for characterization of protein-RNA interactions. Although much progress has been made, adequate methodologies reliably providing atomic resolution structural details are still lacking. Although protein-RNA free docking approaches proved to be useful, in general, the template-based approaches provide higher quality of predictions. Templates are key to building a high quality model. Sequence/structure relationships were studied based on a representative set of binary protein-RNA complexes from PDB. Several approaches were tested for pairwise target/template alignment. The analysis revealed a transition point between random and correct binding modes. The results showed that structural alignment is better than sequence alignment in identifying good templates, suitable for generating protein-RNA complexes close to the native structure, and outperforms free docking, successfully predicting complexes where the free docking fails, including cases of significant conformational change upon binding. A template-based protein-RNA interaction modeling protocol PRIME was developed and benchmarked on a representative set of complexes.

  3. Rational redesign of neutral endopeptidase binding to merlin and moesin proteins

    PubMed Central

    Niv, Masha Y; Iida, Katsuyuki; Zheng, Rong; Horiguchi, Akio; Shen, Ruoqian; Nanus, David M

    2009-01-01

    Neutral endopeptidase (NEP) is a 90- to 110-kDa cell-surface peptidase that is normally expressed by numerous tissues but whose expression is lost or reduced in a variety of malignancies. The anti-tumorigenic function of NEP is mediated not only by its catalytic activity but also through direct protein–protein interactions of its cytosolic region with several binding partners, including Lyn kinase, PTEN, and ezrin/radixin/moesin (ERM) proteins. We have previously shown that mutation of the K19K20K21 basic cluster in NEPs' cytosolic region to residues QNI disrupts binding to the ERM proteins. Here we show that the ERM-related protein merlin (NF2) does not bind NEP or its cytosolic region. Using experimental data, threading, and sequence analysis, we predicted the involvement of moesin residues E159Q160 in binding to the NEP cytosolic domain. Mutation of these residues to NL (to mimic the corresponding N159L160 residues in the nonbinder merlin) disrupted moesin binding to NEP. Mutation of residues N159L160Y161K162M163 in merlin to the corresponding moesin residues resulted in NEP binding to merlin. This engineered NEP peptide–merlin interaction was diminished by the QNI mutation in NEP, supporting the role of the NEP basic cluster in binding. We thus identified the region of interaction between NEP and moesin, and engineered merlin into a NEP-binding protein. These data form the basis for further exploration of the details of NEP-ERM binding and function. PMID:19388049

  4. Predicting Displaceable Water Sites Using Mixed-Solvent Molecular Dynamics.

    PubMed

    Graham, Sarah E; Smith, Richard D; Carlson, Heather A

    2018-02-26

    Water molecules are an important factor in protein-ligand binding. Upon binding of a ligand with a protein's surface, waters can either be displaced by the ligand or may be conserved and possibly bridge interactions between the protein and ligand. Depending on the specific interactions made by the ligand, displacing waters can yield a gain in binding affinity. The extent to which binding affinity may increase is difficult to predict, as the favorable displacement of a water molecule is dependent on the site-specific interactions made by the water and the potential ligand. Several methods have been developed to predict the location of water sites on a protein's surface, but the majority of methods are not able to take into account both protein dynamics and the interactions made by specific functional groups. Mixed-solvent molecular dynamics (MixMD) is a cosolvent simulation technique that explicitly accounts for the interaction of both water and small molecule probes with a protein's surface, allowing for their direct competition. This method has previously been shown to identify both active and allosteric sites on a protein's surface. Using a test set of eight systems, we have developed a method using MixMD to identify conserved and displaceable water sites. Conserved sites can be determined by an occupancy-based metric to identify sites which are consistently occupied by water even in the presence of probe molecules. Conversely, displaceable water sites can be found by considering the sites which preferentially bind probe molecules. Furthermore, the inclusion of six probe types allows the MixMD method to predict which functional groups are capable of displacing which water sites. The MixMD method consistently identifies sites which are likely to be nondisplaceable and predicts the favorable displacement of water sites that are known to be displaced upon ligand binding.

  5. Multivalent binding of formin-binding protein 21 (FBP21)-tandem-WW domains fosters protein recognition in the pre-spliceosome.

    PubMed

    Klippel, Stefan; Wieczorek, Marek; Schümann, Michael; Krause, Eberhard; Marg, Berenice; Seidel, Thorsten; Meyer, Tim; Knapp, Ernst-Walter; Freund, Christian

    2011-11-04

    The high abundance of repetitive but nonidentical proline-rich sequences in spliceosomal proteins raises the question of how these known interaction motifs recruit their interacting protein domains. Whereas complex formation of these adaptors with individual motifs has been studied in great detail, little is known about the binding mode of domains arranged in tandem repeats and long proline-rich sequences including multiple motifs. Here we studied the interaction of the two adjacent WW domains of spliceosomal protein FBP21 with several ligands of different lengths and composition to elucidate the hallmarks of multivalent binding for this class of recognition domains. First, we show that many of the proteins that define the cellular proteome interacting with FBP21-WW1-WW2 contain multiple proline-rich motifs. Among these is the newly identified binding partner SF3B4. Fluorescence resonance energy transfer (FRET) analysis reveals the tandem-WW domains of FBP21 to interact with splicing factor 3B4 (SF3B4) in nuclear speckles where splicing takes place. Isothermal titration calorimetry and NMR shows that the tandem arrangement of WW domains and the multivalency of the proline-rich ligands both contribute to affinity enhancement. However, ligand exchange remains fast compared with the NMR time scale. Surprisingly, a N-terminal spin label attached to a bivalent ligand induces NMR line broadening of signals corresponding to both WW domains of the FBP21-WW1-WW2 protein. This suggests that distinct orientations of the ligand contribute to a delocalized and semispecific binding mode that should facilitate search processes within the spliceosome.

  6. Multivalent Binding of Formin-binding Protein 21 (FBP21)-Tandem-WW Domains Fosters Protein Recognition in the Pre-spliceosome*

    PubMed Central

    Klippel, Stefan; Wieczorek, Marek; Schümann, Michael; Krause, Eberhard; Marg, Berenice; Seidel, Thorsten; Meyer, Tim; Knapp, Ernst-Walter; Freund, Christian

    2011-01-01

    The high abundance of repetitive but nonidentical proline-rich sequences in spliceosomal proteins raises the question of how these known interaction motifs recruit their interacting protein domains. Whereas complex formation of these adaptors with individual motifs has been studied in great detail, little is known about the binding mode of domains arranged in tandem repeats and long proline-rich sequences including multiple motifs. Here we studied the interaction of the two adjacent WW domains of spliceosomal protein FBP21 with several ligands of different lengths and composition to elucidate the hallmarks of multivalent binding for this class of recognition domains. First, we show that many of the proteins that define the cellular proteome interacting with FBP21-WW1-WW2 contain multiple proline-rich motifs. Among these is the newly identified binding partner SF3B4. Fluorescence resonance energy transfer (FRET) analysis reveals the tandem-WW domains of FBP21 to interact with splicing factor 3B4 (SF3B4) in nuclear speckles where splicing takes place. Isothermal titration calorimetry and NMR shows that the tandem arrangement of WW domains and the multivalency of the proline-rich ligands both contribute to affinity enhancement. However, ligand exchange remains fast compared with the NMR time scale. Surprisingly, a N-terminal spin label attached to a bivalent ligand induces NMR line broadening of signals corresponding to both WW domains of the FBP21-WW1-WW2 protein. This suggests that distinct orientations of the ligand contribute to a delocalized and semispecific binding mode that should facilitate search processes within the spliceosome. PMID:21917930

  7. Multiple protein–protein interactions converging on the Prp38 protein during activation of the human spliceosome

    PubMed Central

    Schütze, Tonio; Ulrich, Alexander K.C.; Apelt, Luise; Will, Cindy L.; Bartlick, Natascha; Seeger, Martin; Weber, Gert; Lührmann, Reinhard; Stelzl, Ulrich; Wahl, Markus C.

    2016-01-01

    Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein–protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein–protein interaction platform that might organize the relative positioning of other proteins during splicing. PMID:26673105

  8. Sulfatide-Hsp70 Interaction Promotes Hsp70 Clustering and Stabilizes Binding to Unfolded Protein

    PubMed Central

    Harada, Yoichiro; Sato, Chihiro; Kitajima, Ken

    2015-01-01

    The 70-kDa heat shock protein (Hsp70), one of the major stress-inducible molecular chaperones, is localized not only in the cytosol, but also in extracellular milieu in mammals. Hsp70 interacts with various cell surface glycolipids including sulfatide (3'-sulfogalactosphingolipid). However, the molecular mechanism, as well as the biological relevance, underlying the glycolipid-Hsp70 interaction is unknown. Here we report that sulfatide promotes Hsp70 oligomerization through the N-terminal ATPase domain, which stabilizes the binding of Hsp70 to unfolded protein in vitro. We find that the Hsp70 oligomer has apparent molecular masses ranging from 440 kDa to greater than 669 kDa. The C-terminal peptide-binding domain is dispensable for the sulfatide-induced oligomer formation. The oligomer formation is impaired in the presence of ATP, while the Hsp70 oligomer, once formed, is unable to bind to ATP. These results suggest that sulfatide locks Hsp70 in a high-affinity state to unfolded proteins by clustering the peptide-binding domain and blocking the binding to ATP that induces the dissociation of Hsp70 from protein substrates. PMID:25989600

  9. Prediction of fatty acid-binding residues on protein surfaces with three-dimensional probability distributions of interacting atoms.

    PubMed

    Mahalingam, Rajasekaran; Peng, Hung-Pin; Yang, An-Suei

    2014-08-01

    Protein-fatty acid interaction is vital for many cellular processes and understanding this interaction is important for functional annotation as well as drug discovery. In this work, we present a method for predicting the fatty acid (FA)-binding residues by using three-dimensional probability density distributions of interacting atoms of FAs on protein surfaces which are derived from the known protein-FA complex structures. A machine learning algorithm was established to learn the characteristic patterns of the probability density maps specific to the FA-binding sites. The predictor was trained with five-fold cross validation on a non-redundant training set and then evaluated with an independent test set as well as on holo-apo pair's dataset. The results showed good accuracy in predicting the FA-binding residues. Further, the predictor developed in this study is implemented as an online server which is freely accessible at the following website, http://ismblab.genomics.sinica.edu.tw/. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. An internal thioester in a pathogen surface protein mediates covalent host binding

    PubMed Central

    Walden, Miriam; Edwards, John M; Dziewulska, Aleksandra M; Bergmann, Rene; Saalbach, Gerhard; Kan, Su-Yin; Miller, Ona K; Weckener, Miriam; Jackson, Rosemary J; Shirran, Sally L; Botting, Catherine H; Florence, Gordon J; Rohde, Manfred; Banfield, Mark J; Schwarz-Linek, Ulrich

    2015-01-01

    To cause disease and persist in a host, pathogenic and commensal microbes must adhere to tissues. Colonization and infection depend on specific molecular interactions at the host-microbe interface that involve microbial surface proteins, or adhesins. To date, adhesins are only known to bind to host receptors non-covalently. Here we show that the streptococcal surface protein SfbI mediates covalent interaction with the host protein fibrinogen using an unusual internal thioester bond as a ‘chemical harpoon’. This cross-linking reaction allows bacterial attachment to fibrin and SfbI binding to human cells in a model of inflammation. Thioester-containing domains are unexpectedly prevalent in Gram-positive bacteria, including many clinically relevant pathogens. Our findings support bacterial-encoded covalent binding as a new molecular principle in host-microbe interactions. This represents an as yet unexploited target to treat bacterial infection and may also offer novel opportunities for engineering beneficial interactions. DOI: http://dx.doi.org/10.7554/eLife.06638.001 PMID:26032562

  11. The modular architecture of protein-protein binding interfaces.

    PubMed

    Reichmann, D; Rahat, O; Albeck, S; Meged, R; Dym, O; Schreiber, G

    2005-01-04

    Protein-protein interactions are essential for life. Yet, our understanding of the general principles governing binding is not complete. In the present study, we show that the interface between proteins is built in a modular fashion; each module is comprised of a number of closely interacting residues, with few interactions between the modules. The boundaries between modules are defined by clustering the contact map of the interface. We show that mutations in one module do not affect residues located in a neighboring module. As a result, the structural and energetic consequences of the deletion of entire modules are surprisingly small. To the contrary, within their module, mutations cause complex energetic and structural consequences. Experimentally, this phenomenon is shown on the interaction between TEM1-beta-lactamase and beta-lactamase inhibitor protein (BLIP) by using multiple-mutant analysis and x-ray crystallography. Replacing an entire module of five interface residues with Ala created a large cavity in the interface, with no effect on the detailed structure of the remaining interface. The modular architecture of binding sites, which resembles human engineering design, greatly simplifies the design of new protein interactions and provides a feasible view of how these interactions evolved.

  12. Biophysical insights into the interaction of clofazimine with human alpha 1-acid glycoprotein: a multitechnique approach.

    PubMed

    Ajmal, Mohammad Rehan; Almutairi, Fahad; Zaidi, Nida; Alam, Parvez; Siddiqi, Mohammad Khursheed; Khan, Mohsin Vahid; Zaman, Masihuz; Ishtikhar, Mohd; Khan, Rizwan Hasan

    2018-04-25

    Alpha1-acid glycoprotein (AAG) is a major acute phase protein of human plasma. Binding of clofazimine to AAG is investigated using optical spectroscopy and molecular docking tools. We found significant quenching of intrinsic fluorescence of AAG upon the binding of clofazimine, binding mode is static with binding constant of 3.52 × 10 4 at 298 K. The Gibbs free energy change is found to be negative for the interaction of clofazimine with AAG indicating spontaneity of the binding process. Binding of clofazimine induced ordered structure in protein and lead to molecular compaction. Molecular docking results indicate the binding site is located in the central beta barrel, hydrogen bonding and hydrophobic interactions are main bonding forces between AAG-clofazimine.

  13. Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin.

    PubMed

    Maksimenko, Oksana; Bartkuhn, Marek; Stakhov, Viacheslav; Herold, Martin; Zolotarev, Nickolay; Jox, Theresa; Buxa, Melanie K; Kirsch, Ramona; Bonchuk, Artem; Fedotova, Anna; Kyrchanova, Olga; Renkawitz, Rainer; Georgiev, Pavel

    2015-01-01

    Insulators are multiprotein-DNA complexes that regulate the nuclear architecture. The Drosophila CP190 protein is a cofactor for the DNA-binding insulator proteins Su(Hw), CTCF, and BEAF-32. The fact that CP190 has been found at genomic sites devoid of either of the known insulator factors has until now been unexplained. We have identified two DNA-binding zinc-finger proteins, Pita, and a new factor named ZIPIC, that interact with CP190 in vivo and in vitro at specific interaction domains. Genomic binding sites for these proteins are clustered with CP190 as well as with CTCF and BEAF-32. Model binding sites for Pita or ZIPIC demonstrate a partial enhancer-blocking activity and protect gene expression from PRE-mediated silencing. The function of the CTCF-bound MCP insulator sequence requires binding of Pita. These results identify two new insulator proteins and emphasize the unifying function of CP190, which can be recruited by many DNA-binding insulator proteins. © 2015 Maksimenko et al.; Published by Cold Spring Harbor Laboratory Press.

  14. MIT domain of Vps4 is a Ca2+-dependent phosphoinositide-binding domain.

    PubMed

    Iwaya, Naoko; Takasu, Hirotoshi; Goda, Natsuko; Shirakawa, Masahiro; Tanaka, Toshiki; Hamada, Daizo; Hiroaki, Hidekazu

    2013-05-01

    The microtubule interacting and trafficking (MIT) domain is a small protein module that is conserved in proteins of diverged function, such as Vps4, spastin and sorting nexin 15 (SNX15). The molecular function of the MIT domain is protein-protein interaction, in which the domain recognizes peptides containing MIT-interacting motifs. Recently, we identified an evolutionarily related domain, 'variant' MIT domain at the N-terminal region of the microtubule severing enzyme katanin p60. We found that the domain was responsible for binding to microtubules and Ca(2+). Here, we have examined whether the authentic MIT domains also bind Ca(2+). We found that the loop between the first and second α-helices of the MIT domain binds a Ca(2+) ion. Furthermore, the MIT domains derived from Vps4b and SNX15a showed phosphoinositide-binding activities in a Ca(2+)-dependent manner. We propose that the MIT domain is a novel membrane-associating domain involved in endosomal trafficking.

  15. Amino Acid Change in the Carbohydrate Response Element Binding Protein is associated with lower triglycerides and myocardial infarction incidence depending on level of adherence to the Mediterranean diet in the PREDIMED trial

    USDA-ARS?s Scientific Manuscript database

    A variant (rs3812316, C771G, and Gln241His) in the MLXIPL (Max-like protein X interacting protein-like) gene encoding the carbohydrate response element binding protein has been associated with lower triglycerides. However, its association with cardiovascular diseases and gene-diet interactions modul...

  16. Mapping a Noncovalent Protein-Peptide Interface by Top-Down FTICR Mass Spectrometry Using Electron Capture Dissociation

    NASA Astrophysics Data System (ADS)

    Clarke, David J.; Murray, Euan; Hupp, Ted; Mackay, C. Logan; Langridge-Smith, Pat R. R.

    2011-08-01

    Noncovalent protein-ligand and protein-protein complexes are readily detected using electrospray ionization mass spectrometry (ESI MS). Furthermore, recent reports have demonstrated that careful use of electron capture dissociation (ECD) fragmentation allows covalent backbone bonds of protein complexes to be dissociated without disruption of noncovalent protein-ligand interactions. In this way the site of protein-ligand interfaces can be identified. To date, protein-ligand complexes, which have proven tractable to this technique, have been mediated by ionic electrostatic interactions, i.e., ion pair interactions or salt bridging. Here we extend this methodology by applying ECD to study a protein-peptide complex that contains no electrostatics interactions. We analyzed the complex between the 21 kDa p53-inhibitor protein anterior gradient-2 and its hexapeptide binding ligand (PTTIYY). ECD fragmentation of the 1:1 complex occurs with retention of protein-peptide binding and analysis of the resulting fragments allows the binding interface to be localized to a C-terminal region between residues 109 and 175. These finding are supported by a solution-phase competition assay, which implicates the region between residues 108 and 122 within AGR2 as the PTTIYY binding interface. Our study expands previous findings by demonstrating that top-down ECD mass spectrometry can be used to determine directly the sites of peptide-protein interfaces. This highlights the growing potential of using ECD and related top-down fragmentation techniques for interrogation of protein-protein interfaces.

  17. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  18. The pure estrogen receptor antagonist ICI 182,780 promotes a novel interaction of estrogen receptor-alpha with the 3',5'-cyclic adenosine monophosphate response element-binding protein-binding protein/p300 coactivators.

    PubMed

    Jaber, Basem M; Gao, Tong; Huang, Luping; Karmakar, Sudipan; Smith, Carolyn L

    2006-11-01

    Estrogen receptor-alpha (ERalpha) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. Abundant evidence demonstrates that ERalpha agonists promote, whereas antagonists inhibit, receptor binding to coactivators. In this report we demonstrate that binding of the ICI 182,780 (ICI) pure antiestrogen to ERalpha promotes its interaction with the cAMP response element-binding protein-binding protein (CBP)/p300 but not the p160 family of coactivators, demonstrating the specificity of this interaction. Amino acid mutations within the coactivator binding surface of the ERalpha ligand-binding domain revealed that CBP binds to this region of the ICI-liganded receptor. The carboxy-terminal cysteine-histidine rich domain 3 of CBP, rather than its amino-terminal nuclear interacting domain, shown previously to mediate agonist-dependent interactions of CBP with nuclear receptors, is required for binding to ICI-liganded ERalpha. Chromatin immunoprecipitation assays revealed that ICI but not the partial agonist/antagonist 4-hydroxytamoxifen is able to recruit CBP to the pS2 promoter, and this distinguishes ICI from this class of antiestrogens. Chromatin immunoprecipitation assays for pS2 and cytochrome P450 1B1 promoter regions revealed that ICI-dependent recruitment of CBP, but not receptor, to ERalpha targets is gene specific. ICI treatment did not recruit the steroid receptor coactivator 1 to the pS2 promoter, and it failed to induce the expression of this gene. Taken together, these data indicate that recruitment of the CBP coactivator/cointegrator without steroid receptor coactivator 1 to ERalpha is insufficient to promote transcription of ERalpha target genes.

  19. The neuronal Ca(2+) -binding protein 2 (NECAB2) interacts with the adenosine A(2A) receptor and modulates the cell surface expression and function of the receptor.

    PubMed

    Canela, Laia; Luján, Rafael; Lluís, Carme; Burgueño, Javier; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Ciruela, Francisco

    2007-09-01

    Heptaspanning membrane also known as G protein-coupled receptors (GPCR) do interact with a variety of intracellular proteins whose function is regulate receptor traffic and/or signaling. Using a yeast two-hybrid screen, NECAB2, a neuronal calcium binding protein, was identified as a binding partner for the adenosine A(2A) receptor (A(2A)R) interacting with its C-terminal domain. Co-localization, co-immunoprecipitation and pull-down experiments showed a close and specific interaction between A(2A)R and NECAB2 in both transfected HEK-293 cells and also in rat striatum. Immunoelectron microscopy detection of NECAB2 and A(2A)R in the rat striatopallidal structures indicated that both proteins are co-distributed in the same glutamatergic nerve terminals. The interaction of NECAB2 with A(2A)R modulated the cell surface expression, the ligand-dependent internalization and the receptor-mediated activation of the MAPK pathway. Overall, these results show that A(2A)R interacts with NECAB2 in striatal neurones co-expressing the two proteins and that the interaction is relevant for A(2A)R function.

  20. Protein protein interactions: organization, cooperativity and mapping in a bottom-up Systems Biology approach

    NASA Astrophysics Data System (ADS)

    Keskin, Ozlem; Ma, Buyong; Rogale, Kristina; Gunasekaran, K.; Nussinov, Ruth

    2005-06-01

    Understanding and ultimately predicting protein associations is immensely important for functional genomics and drug design. Here, we propose that binding sites have preferred organizations. First, the hot spots cluster within densely packed 'hot regions'. Within these regions, they form networks of interactions. Thus, hot spots located within a hot region contribute cooperatively to the stability of the complex. However, the contributions of separate, independent hot regions are additive. Moreover, hot spots are often already pre-organized in the unbound (free) protein states. Describing a binding site through independent local hot regions has implications for binding site definition, design and parametrization for prediction. The compactness and cooperativity emphasize the similarity between binding and folding. This proposition is grounded in computation and experiment. It explains why summation of the interactions may over-estimate the stability of the complex. Furthermore, statistically, charge-charge coupling of the hot spots is disfavored. However, since within the highly packed regions the solvent is screened, the electrostatic contributions are strengthened. Thus, we propose a new description of protein binding sites: a site consists of (one or a few) self-contained cooperative regions. Since the residue hot spots are those conserved by evolution, proteins binding multiple partners at the same sites are expected to use all or some combination of these regions.

  1. Arrestin Scaffolds NHERF1 to the P2Y12 Receptor to Regulate Receptor Internalization*

    PubMed Central

    Nisar, Shaista P.; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J.; Kelly, Eamonn; Mundell, Stuart J.

    2012-01-01

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y12 receptor (P2Y12R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y12R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y12R internalization. In vitro and prior to agonist stimulation P2Y12R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. PMID:22610101

  2. Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization.

    PubMed

    Nisar, Shaista P; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J; Kelly, Eamonn; Mundell, Stuart J

    2012-07-13

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.

  3. Solid-phase synthesis and screening of N-acylated polyamine (NAPA) combinatorial libraries for protein binding.

    PubMed

    Iera, Jaclyn A; Jenkins, Lisa M Miller; Kajiyama, Hiroshi; Kopp, Jeffrey B; Appella, Daniel H

    2010-11-15

    Inhibitors for protein-protein interactions are challenging to design, in part due to the unique and complex architectures of each protein's interaction domain. Most approaches to develop inhibitors for these interactions rely on rational design, which requires prior structural knowledge of the target and its ligands. In the absence of structural information, a combinatorial approach may be the best alternative to finding inhibitors of a protein-protein interaction. Current chemical libraries, however, consist mostly of molecules designed to inhibit enzymes. In this manuscript, we report the synthesis and screening of a library based on an N-acylated polyamine (NAPA) scaffold that we designed to have specific molecular features necessary to inhibit protein-protein interactions. Screens of the library identified a member with favorable binding properties to the HIV viral protein R (Vpr), a regulatory protein from HIV, that is involved in numerous interactions with other proteins critical for viral replication. Published by Elsevier Ltd.

  4. Efficient identification of tubby-binding proteins by an improved system of T7 phage display.

    PubMed

    Caberoy, Nora B; Zhou, Yixiong; Jiang, Xiaoyu; Alvarado, Gabriela; Li, Wei

    2010-01-01

    Mutation in the tubby gene causes adult-onset obesity, progressive retinal, and cochlear degeneration with unknown mechanism. In contrast, mutations in tubby-like protein 1 (Tulp1), whose C-terminus is highly homologous to tubby, only lead to retinal degeneration. We speculate that their diverse N-terminus may define their distinct disease profile. To elucidate the binding partners of tubby, we used tubby N-terminus (tubby-N) as bait to identify unknown binding proteins with open-reading-frame (ORF) phage display. T7 phage display was engineered with three improvements: high-quality ORF phage display cDNA library, specific phage elution by protease cleavage, and dual phage display for sensitive high throughput screening. The new system is capable of identifying unknown bait-binding proteins in as fast as approximately 4-7 days. While phage display with conventional cDNA libraries identifies high percentage of out-of-frame unnatural short peptides, all 28 tubby-N-binding clones identified by ORF phage display were ORFs. They encode 16 proteins, including 8 nuclear proteins. Fourteen proteins were analyzed by yeast two-hybrid assay and protein pull-down assay with ten of them independently verified. Comparative binding analyses revealed several proteins binding to both tubby and Tulp1 as well as one tubby-specific binding protein. These data suggest that tubby-N is capable of interacting with multiple nuclear and cytoplasmic protein binding partners. These results demonstrated that the newly-engineered ORF phage display is a powerful technology to identify unknown protein-protein interactions. (c) 2009 John Wiley & Sons, Ltd.

  5. Effects of urea on selectivity and protein-ligand interactions in multimodal cation exchange chromatography.

    PubMed

    Holstein, Melissa A; Parimal, Siddharth; McCallum, Scott A; Cramer, Steven M

    2013-01-08

    Nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations were employed in concert with chromatography to provide insight into the effect of urea on protein-ligand interactions in multimodal (MM) chromatography. Chromatographic experiments with a protein library in ion exchange (IEX) and MM systems indicated that, while urea had a significant effect on protein retention and selectivity for a range of proteins in MM systems, the effects were much less pronounced in IEX. NMR titration experiments carried out with a multimodal ligand, and isotopically enriched human ubiquitin indicated that, while the ligand binding face of ubiquitin remained largely intact in the presence of urea, the strength of binding was decreased. MD simulations were carried out to provide further insight into the effect of urea on MM ligand binding. These results indicated that, while the overall ligand binding face of ubiquitin remained the same, there was a reduction in the occupancy of the MM ligand interaction region along with subtle changes in the residues involved in these interactions. This work demonstrates the effectiveness of urea in enhancing selectivity in MM chromatographic systems and also provides an in-depth analysis of how MM ligand-protein interactions are altered in the presence of this fluid phase modifier.

  6. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM.

    PubMed

    Tuncbag, Nurcan; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem

    2011-08-11

    Prediction of protein-protein interactions at the structural level on the proteome scale is important because it allows prediction of protein function, helps drug discovery and takes steps toward genome-wide structural systems biology. We provide a protocol (termed PRISM, protein interactions by structural matching) for large-scale prediction of protein-protein interactions and assembly of protein complex structures. The method consists of two components: rigid-body structural comparisons of target proteins to known template protein-protein interfaces and flexible refinement using a docking energy function. The PRISM rationale follows our observation that globally different protein structures can interact via similar architectural motifs. PRISM predicts binding residues by using structural similarity and evolutionary conservation of putative binding residue 'hot spots'. Ultimately, PRISM could help to construct cellular pathways and functional, proteome-scale annotation. PRISM is implemented in Python and runs in a UNIX environment. The program accepts Protein Data Bank-formatted protein structures and is available at http://prism.ccbb.ku.edu.tr/prism_protocol/.

  7. Nuclear proteins that bind the human gamma-globin gene promoter: alterations in binding produced by point mutations associated with hereditary persistence of fetal hemoglobin.

    PubMed Central

    Gumucio, D L; Rood, K L; Gray, T A; Riordan, M F; Sartor, C I; Collins, F S

    1988-01-01

    The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation. Images PMID:2468996

  8. Metallofullerenol Gd@C82(OH)22 distracts the proline-rich-motif from putative binding on the SH3 domain

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Gu; Huynh, Tien; Zhou, Ruhong

    2013-03-01

    Biocompatibility is often regarded as one important aspect of de novo designed nanomaterials for biosafety. However, the toxicological effect, appearing along with its latency, is much more difficult to address by linearly mapping physicochemical properties of related nanomaterials with biological effects such as immune or cellular regulatory responses due to the complicated protein-protein interactions. Here, we investigate a potential interference of a metallofullerenol, Gd@C82(OH)22, on the function of SH3 domain, a highly promiscuous protein-protein interaction mediator involved in signaling and regulatory pathways through its binding with the proline-rich motif (PRM) peptides, using the atomistic molecular dynamics simulation. Our study shows that when only Gd@C82(OH)22 and the SH3 domain are present (without the PRM ligand), Gd@C82(OH)22 can interact with the SH3 domain by either directly blocking the hydrophobic active site or binding with a hydrophilic off-site with almost equal probability, which can be understood from its intrinsic amphiphilic nature. In a binding competition with the PRM onto the SH3 domain, however, the on-site binding mode is depleted while Gd@C82(OH)22 effectively intercepts the PRM from the putative binding site of the SH3 domain, implying that Gd@C82(OH)22 can disturb protein-protein interactions mediated by the SH3 domain. Despite a successful surface modification in an aqueous biological medium and a more recent demonstration as potential de novo cancer therapeutics, our study indicates that greater attention is needed in assessing the potential cytotoxicity of these nanomaterials.Biocompatibility is often regarded as one important aspect of de novo designed nanomaterials for biosafety. However, the toxicological effect, appearing along with its latency, is much more difficult to address by linearly mapping physicochemical properties of related nanomaterials with biological effects such as immune or cellular regulatory responses due to the complicated protein-protein interactions. Here, we investigate a potential interference of a metallofullerenol, Gd@C82(OH)22, on the function of SH3 domain, a highly promiscuous protein-protein interaction mediator involved in signaling and regulatory pathways through its binding with the proline-rich motif (PRM) peptides, using the atomistic molecular dynamics simulation. Our study shows that when only Gd@C82(OH)22 and the SH3 domain are present (without the PRM ligand), Gd@C82(OH)22 can interact with the SH3 domain by either directly blocking the hydrophobic active site or binding with a hydrophilic off-site with almost equal probability, which can be understood from its intrinsic amphiphilic nature. In a binding competition with the PRM onto the SH3 domain, however, the on-site binding mode is depleted while Gd@C82(OH)22 effectively intercepts the PRM from the putative binding site of the SH3 domain, implying that Gd@C82(OH)22 can disturb protein-protein interactions mediated by the SH3 domain. Despite a successful surface modification in an aqueous biological medium and a more recent demonstration as potential de novo cancer therapeutics, our study indicates that greater attention is needed in assessing the potential cytotoxicity of these nanomaterials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33756a

  9. Volatile anesthetic binding to proteins is influenced by solvent and aliphatic residues.

    PubMed

    Streiff, John H; Jones, Keith A

    2008-10-01

    The main objective of this work was to characterize VA binding sites in multiple anesthetic target proteins. A computational algorithm was used to quantify the solvent exclusion and aliphatic character of amphiphilic pockets in the structures of VA binding proteins. VA binding sites in the protein structures were defined as the pockets with solvent exclusion and aliphatic character that exceeded minimum values observed in the VA binding sites of serum albumin, firefly luciferase, and apoferritin. We found that the structures of VA binding proteins are enriched in these pockets and that the predicted binding sites were consistent with experimental determined binding locations in several proteins. Autodock3 was used to dock the simulated molecules of 1,1,1,2,2-pentafluoroethane, difluoromethyl 1,1,1,2-tetrafluoroethyl ether, and sevoflurane and the isomers of halothane and isoflurane into these potential binding sites. We found that the binding of the various VA molecules to the amphiphilic pockets is driven primarily by VDW interactions and to a lesser extent by weak hydrogen bonding and electrostatic interactions. In addition, the trend in Delta G binding values follows the Meyer-Overton rule. These results suggest that VA potencies are related to the VDW interactions between the VA ligand and protein target. It is likely that VA bind to sites with a high degree of solvent exclusion and aliphatic character because aliphatic residues provide favorable VDW contacts and weak hydrogen bond donors. Water molecules occupying these sites maintain pocket integrity, associate with the VA ligand, and diminish the unfavorable solvation enthalpy of the VA. Water molecules displaced into the bulk by the VA ligand may provide an additional favorable enthalpic contribution to VA binding. Anesthesia is a component of many health related procedures, the outcomes of which could be improved with a better understanding of the molecular targets and mechanisms of anesthetic action.

  10. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination.

    PubMed

    Ahmed, M Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2011-05-10

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmunoprecipitation of endogenous proteins from brain tissue and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both nonvisual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology.

  11. Microscopy basics and the study of actin-actin-binding protein interactions.

    PubMed

    Thomasson, Maggie S; Macnaughtan, Megan A

    2013-12-15

    Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin-ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection

    NASA Astrophysics Data System (ADS)

    Elliott, David J.; Bourgeois, Cyril F.; Klink, Albrecht; Stévenin, James; Cooke, Howard J.

    2000-05-01

    RNA-binding motif (RBM) genes are found on all mammalian Y chromosomes and are implicated in spermatogenesis. Within human germ cells, RBM protein shows a similar nuclear distribution to components of the pre-mRNA splicing machinery. To address the function of RBM, we have used protein-protein interaction assays to test for possible physical interactions between these proteins. We find that RBM protein directly interacts with members of the SR family of splicing factors and, in addition, strongly interacts with itself. We have mapped the protein domains responsible for mediating these interactions and expressed the mouse RBM interaction region as a bacterial fusion protein. This fusion protein can pull-down several functionally active SR protein species from cell extracts. Depletion and add-back experiments indicate that these SR proteins are the only splicing factors bound by RBM which are required for the splicing of a panel of pre-mRNAs. Our results suggest that RBM protein is an evolutionarily conserved mammalian splicing regulator which operates as a germ cell-specific cofactor for more ubiquitously expressed pre-mRNA splicing activators.

  13. Association of papillomavirus E6 proteins with either MAML1 or E6AP clusters E6 proteins by structure, function, and evolutionary relatedness

    PubMed Central

    Brimer, Nicole

    2017-01-01

    Papillomavirus E6 proteins bind to LXXLL peptide motifs displayed on targeted cellular proteins. Alpha genus HPV E6 proteins associate with the cellular ubiquitin ligase E6AP (UBE3A), by binding to an LXXLL peptide (ELTLQELLGEE) displayed by E6AP, thereby stimulating E6AP ubiquitin ligase activity. Beta, Gamma, and Delta genera E6 proteins bind a similar LXXLL peptide (WMSDLDDLLGS) on the cellular transcriptional co-activator MAML1 and thereby repress Notch signaling. We expressed 45 different animal and human E6 proteins from diverse papillomavirus genera to ascertain the overall preference of E6 proteins for E6AP or MAML1. E6 proteins from all HPV genera except Alpha preferentially interacted with MAML1 over E6AP. Among animal papillomaviruses, E6 proteins from certain ungulate (SsPV1 from pigs) and cetacean (porpoises and dolphins) hosts functionally resembled Alpha genus HPV by binding and targeting the degradation of E6AP. Beta genus HPV E6 proteins functionally clustered with Delta, Pi, Tau, Gamma, Chi, Mu, Lambda, Iota, Dyokappa, Rho, and Dyolambda E6 proteins to bind and repress MAML1. None of the tested E6 proteins physically and functionally interacted with both MAML1 and E6AP, indicating an evolutionary split. Further, interaction of an E6 protein was insufficient to activate degradation of E6AP, indicating that E6 proteins that target E6AP co-evolved to separately acquire both binding and triggering of ubiquitin ligase activation. E6 proteins with similar biological function clustered together in phylogenetic trees and shared structural features. This suggests that the divergence of E6 proteins from either MAML1 or E6AP binding preference is a major event in papillomavirus evolution. PMID:29281732

  14. Analyses of Interactions Between Heparin and the Apical Surface Proteins of Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kyousuke; Takano, Ryo; Takemae, Hitoshi; Sugi, Tatsuki; Ishiwa, Akiko; Gong, Haiyan; Recuenco, Frances C.; Iwanaga, Tatsuya; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2013-11-01

    Heparin, a sulfated glycoconjugate, reportedly inhibits the blood-stage growth of the malaria parasite Plasmodium falciparum. Elucidation of the inhibitory mechanism is valuable for developing novel invasion-blocking treatments based on heparin. Merozoite surface protein 1 has been reported as a candidate target of heparin; however, to better understand the molecular mechanisms involved, we characterized the molecules that bind to heparin during merozoite invasion. Here, we show that heparin binds only at the apical tip of the merozoite surface and that multiple heparin-binding proteins localize preferentially in the apical organelles. To identify heparin-binding proteins, parasite proteins were fractionated by means of heparin affinity chromatography and subjected to immunoblot analysis with ligand-specific antibodies. All tested members of the Duffy and reticulocyte binding-like families bound to heparin with diverse affinities. These findings suggest that heparin masks the apical surface of merozoites and blocks interaction with the erythrocyte membrane after initial attachment.

  15. The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants

    PubMed Central

    Bakó, László; Umeda, Masaaki; Tiburcio, Antonio F.; Schell, Jeff; Koncz, Csaba

    2003-01-01

    The bacterial virulence protein VirD2 plays an important role in nuclear import and chromosomal integration of Agrobacterium-transferred DNA in fungal, plant, animal, and human cells. Here we show that in nuclei of alfalfa cells, VirD2 interacts with and is phosphorylated by CAK2Ms, a conserved plant ortholog of cyclin-dependent kinase-activating kinases. CAK2Ms binds to and phosphorylates the C-terminal regulatory domain of RNA polymerase II largest subunit, which can recruit the TATA box-binding protein. VirD2 is found in tight association with the TATA box-binding protein in vivo. These results indicate that recognition of VirD2 is mediated by widely conserved nuclear factors in eukaryotes. PMID:12900506

  16. Identification and biochemical analysis of Slac2-c/MyRIP as a Rab27A-, myosin Va/VIIa-, and actin-binding protein.

    PubMed

    Kuroda, Taruho S; Fukuda, Mitsunori

    2005-01-01

    Slac2-c/MyRIP is a specific Rab27A-binding protein that contains an N-terminal synaptotagmin-like protein (Slp) homology domain (SHD, a newly identified GTP-Rab27A-binding motif), but in contrast to the Slp family proteins, it lacks C-terminal tandem C2 domains. In vitro Slac2-c simultaneously directly interacts with both Rab27A and an actin-based motor protein, myosin Va, via its N-terminal SHD and middle region, respectively, consistent with the fact that the overall structure of Slac2-c is similar to that of Slac2-a/melanophilin, a linker protein between Rab27A and myosin Va in the melanosome transport in melanocytes. Unlike Slac2-a, however, the middle region of Slac2-c interacts with two types of myosins, myosin Va and myosin VIIa. In addition, the most C-terminal part of both Slac2-a and Slac2-c functions as an actin-binding domain: it directly interacts with globular and fibrous actin in vitro, and the actin-binding domain of Slac2-a and Slac2-c colocalizes with actin filaments when it is expressed in living cells (i.e., PC12 cells and mouse melanocytes). In this chapter we describe the methods that have been used to analyze the protein-protein interactions of Slac2-c, specifically with Rab27A, myosin Va/VIIa, and actin.

  17. From face to interface recognition: a differential geometric approach to distinguish DNA from RNA binding surfaces

    PubMed Central

    Shazman, Shula; Elber, Gershon; Mandel-Gutfreund, Yael

    2011-01-01

    Protein nucleic acid interactions play a critical role in all steps of the gene expression pathway. Nucleic acid (NA) binding proteins interact with their partners, DNA or RNA, via distinct regions on their surface that are characterized by an ensemble of chemical, physical and geometrical properties. In this study, we introduce a novel methodology based on differential geometry, commonly used in face recognition, to characterize and predict NA binding surfaces on proteins. Applying the method on experimentally solved three-dimensional structures of proteins we successfully classify double-stranded DNA (dsDNA) from single-stranded RNA (ssRNA) binding proteins, with 83% accuracy. We show that the method is insensitive to conformational changes that occur upon binding and can be applicable for de novo protein-function prediction. Remarkably, when concentrating on the zinc finger motif, we distinguish successfully between RNA and DNA binding interfaces possessing the same binding motif even within the same protein, as demonstrated for the RNA polymerase transcription-factor, TFIIIA. In conclusion, we present a novel methodology to characterize protein surfaces, which can accurately tell apart dsDNA from an ssRNA binding interfaces. The strength of our method in recognizing fine-tuned differences on NA binding interfaces make it applicable for many other molecular recognition problems, with potential implications for drug design. PMID:21693557

  18. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses

    PubMed Central

    Montanuy, Imma; Alejo, Ali; Alcami, Antonio

    2011-01-01

    Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.—Montanuy, I., Alejo, A., Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. PMID:21372110

  19. A Shared Docking Motif in TRF1 and TRF2 Used for Differential Recruitment of Telomeric Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yong; Yang, Yuting; van Overbeek, Megan

    2008-05-01

    Mammalian telomeres are protected by a six-protein complex: shelterin. Shelterin contains two closely related proteins (TRF1 and TRF2), which recruit various proteins to telomeres. We dissect the interactions of TRF1 and TRF2 with their shared binding partner (TIN2) and other shelterin accessory factors. TRF1 recognizes TIN2 using a conserved molecular surface in its TRF homology (TRFH) domain. However, this same surface does not act as a TIN2 binding site in TRF2, and TIN2 binding to TRF2 is mediated by a region outside the TRFH domain. Instead, the TRFH docking site of TRF2 binds a shelterin accessory factor (Apollo), which doesmore » not interact with the TRFH domain of TRF1. Conversely, the TRFH domain of TRF1, but not of TRF2, interacts with another shelterin-associated factor: PinX1.« less

  20. Prediction of Protein-Protein Interaction Sites Using Electrostatic Desolvation Profiles

    PubMed Central

    Fiorucci, Sébastien; Zacharias, Martin

    2010-01-01

    Abstract Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. PMID:20441756

  1. Probing the binding interaction of a phenazinium dye with serum transport proteins: a combined fluorometric and circular dichroism study.

    PubMed

    Bose, Debosreeta; Sarkar, Deboleena; Chattopadhyay, Nitin

    2010-01-01

    In the present investigation, an attempt has been made to study the interaction of phenosafranin (PSF), a cationic phenazinium dye with the transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), employing steady-state and time-resolved fluorometric and circular dichroism (CD) techniques. The photophysical properties of the dye are altered on binding with the serum proteins. An explicit study with respect to the modification of the fluorescence and fluorescence anisotropy upon binding, effect of denaturant, fluorescence lifetime and CD measurements reveal that the dye binds to both BSA and HSA with almost the same affinity. Far-UV CD spectra indicate a decrease in the percentage of alpha-helicity only for BSA upon binding with the probe. Near-UV CD responses indicate an alteration in the tertiary structure of both the transport proteins because of binding.

  2. Computational Design of Ligand Binding Proteins with High Affinity and Selectivity

    PubMed Central

    Dou, Jiayi; Doyle, Lindsey; Nelson, Jorgen W.; Schena, Alberto; Jankowski, Wojciech; Kalodimos, Charalampos G.; Johnsson, Kai; Stoddard, Barry L.; Baker, David

    2014-01-01

    The ability to design proteins with high affinity and selectivity for any given small molecule would have numerous applications in biosensing, diagnostics, and therapeutics, and is a rigorous test of our understanding of the physiochemical principles that govern molecular recognition phenomena. Attempts to design ligand binding proteins have met with little success, however, and the computational design of precise molecular recognition between proteins and small molecules remains an “unsolved problem”1. We describe a general method for the computational design of small molecule binding sites with pre-organized hydrogen bonding and hydrophobic interfaces and high overall shape complementary to the ligand, and use it to design protein binding sites for the steroid digoxigenin (DIG). Of 17 designs that were experimentally characterized, two bind DIG; the highest affinity design has the lowest predicted interaction energy and the most pre-organized binding site in the set. A comprehensive binding-fitness landscape of this design generated by library selection and deep sequencing was used to guide optimization of binding affinity to a picomolar level, and two X-ray co-crystal structures of optimized complexes show atomic level agreement with the design models. The designed binder has a high selectivity for DIG over the related steroids digitoxigenin, progesterone, and β-estradiol, which can be reprogrammed through the designed hydrogen-bonding interactions. Taken together, the binding fitness landscape, co-crystal structures, and thermodynamic binding parameters illustrate how increases in binding affinity can result from distal sequence changes that limit the protein ensemble to conformers making the most energetically favorable interactions with the ligand. The computational design method presented here should enable the development of a new generation of biosensors, therapeutics, and diagnostics. PMID:24005320

  3. Structure-Based Rational Design of a Toll-like Receptor 4 (TLR4) Decoy Receptor with High Binding Affinity for a Target Protein

    PubMed Central

    Lee, Sang-Chul; Hong, Seungpyo; Park, Keunwan; Jeon, Young Ho; Kim, Dongsup; Cheong, Hae-Kap; Kim, Hak-Sung

    2012-01-01

    Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4) decoy receptor composed of leucine-rich repeat (LRR) modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2). Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (KD) one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities. PMID:22363519

  4. Multitargeting by curcumin as revealed by molecular interaction studies

    PubMed Central

    Gupta, Subash C.; Prasad, Sahdeo; Kim, Ji Hye; Patchva, Sridevi; Webb, Lauren J.; Priyadarsini, Indira K.

    2012-01-01

    Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca2+ ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto–enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting binding sites, has also been used to further characterize curcumin’s binding sites. Furthermore, the ability of curcumin to bind directly to carrier proteins improves its solubility and bioavailability. In this review, we focus on how curcumin directly targets signaling molecules, as well as the different forces that bind the curcumin–protein complex and how this interaction affects the biological properties of proteins. We will also discuss various analogues of curcumin designed to bind selective targets with increased affinity. PMID:21979811

  5. The Carboxy-Terminal Domain of Hsc70 Provides Binding Sites for a Distinct Set of Chaperone Cofactors

    PubMed Central

    Demand, Jens; Lüders, Jens; Höhfeld, Jörg

    1998-01-01

    The modulation of the chaperone activity of the heat shock cognate Hsc70 protein in mammalian cells involves cooperation with chaperone cofactors, such as Hsp40; BAG-1; the Hsc70-interacting protein, Hip; and the Hsc70-Hsp90-organizing protein, Hop. By employing the yeast two-hybrid system and in vitro interaction assays, we have provided insight into the structural basis that underlies Hsc70’s cooperation with different cofactors. The carboxy-terminal domain of Hsc70, previously shown to form a lid over the peptide binding pocket of the chaperone protein, mediates the interaction of Hsc70 with Hsp40 and Hop. Remarkably, the two cofactors bind to the carboxy terminus of Hsc70 in a noncompetitive manner, revealing the existence of distinct binding sites for Hsp40 and Hop within this domain. In contrast, Hip interacts exclusively with the amino-terminal ATPase domain of Hsc70. Hence, Hsc70 possesses separate nonoverlapping binding sites for Hsp40, Hip, and Hop. This appears to enable the chaperone protein to cooperate simultaneously with multiple cofactors. On the other hand, BAG-1 and Hip have recently been shown to compete in binding to the ATPase domain. Our data thus establish the existence of a network of cooperating and competing cofactors regulating the chaperone activity of Hsc70 in the mammalian cell. PMID:9528774

  6. Effects of human chromosome 12 on interactions between Tat and TAR of human immunodeficiency virus type 1.

    PubMed Central

    Alonso, A; Cujec, T P; Peterlin, B M

    1994-01-01

    Rates of transcriptions of the human immunodeficiency virus are greatly increased by the viral trans activator Tat. In vitro, Tat binds to the 5' bulge of the trans-activation response (TAR) RNA stem-loop, which is present in all viral transcripts. In human cells, the central loop in TAR and its cellular RNA-binding proteins are also critical for the function of Tat. Previously, we demonstrated that in rodent cells (CHO cells), but not in those which contain the human chromosome 12 (CHO12 cells), Tat-TAR interactions are compromised. In this study, we examined the roles of the bulge and loop in TAR in Tat trans activation in these cells. Whereas low levels of trans activation depended solely on interactions between Tat and the bulge in CHO cells, high levels of trans activation depended also on interactions between Tat and the loop in CHO12 cells. Since the TAR loop binding proteins in these two cell lines were identical and different from their human counterpart, the human chromosome 12 does not encode TAR loop binding proteins. In vivo binding competition studies with TAR decoys confirmed that the binding of Tat to TAR is more efficient in CHO12 cells. Thus, the protein(s) encoded on human chromosome 12 helps to tether Tat to TAR via its loop, which results in high levels of trans activation. Images PMID:8083988

  7. A novel method for the study of molecular interaction by using microscale thermophoresis.

    PubMed

    Mao, Yexuan; Yu, Lanlan; Yang, Ran; Qu, Ling-bo; Harrington, Perter de B

    2015-01-01

    The fundamental studies for the binding events of protein and its partner are crucial in drug development. In this study, a novel technology named microscale thermophoresis (MST) was applied in the investigation of molecular interaction between an organic dye fluorescein isothiocyanate (FITC) and bovine serum albumin (BSA), and the results were compared with those obtained from conventional fluorescence spectroscopy. The MST data demonstrated that with a short interaction time, FITC showed a high binding affinity for BSA by weak interaction instead of labeling the protein. By using competitive strategies in which warfarin and ibuprofen acted as the site markers of BSA, FITC was proven to mainly bind to the hydrophobic pocket of site II of BSA compared to site I of BSA. Except for the binding affinity, MST also provided additional information with respect to the aggregation of BSA and the binding of FITC to BSA aggregates, which is unobtainable by fluorescence spectroscopy. This work proves that MST as a new approach is powerful and reliable for investigation of protein-small molecule interaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Multiple protein-protein interactions converging on the Prp38 protein during activation of the human spliceosome.

    PubMed

    Schütze, Tonio; Ulrich, Alexander K C; Apelt, Luise; Will, Cindy L; Bartlick, Natascha; Seeger, Martin; Weber, Gert; Lührmann, Reinhard; Stelzl, Ulrich; Wahl, Markus C

    2016-02-01

    Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein-protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein-protein interaction platform that might organize the relative positioning of other proteins during splicing. © 2016 Schütze et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    PubMed Central

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-01-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL. PMID:25737239

  10. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE PAGES

    Zhang, Meng; Charles, River; Tong, Huimin; ...

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore » environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  11. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  12. Multifarious Roles of Intrinsic Disorder in Proteins Illustrate Its Broad Impact on Plant Biology

    PubMed Central

    Sun, Xiaolin; Rikkerink, Erik H.A.; Jones, William T.; Uversky, Vladimir N.

    2013-01-01

    Intrinsically disordered proteins (IDPs) are highly abundant in eukaryotic proteomes. Plant IDPs play critical roles in plant biology and often act as integrators of signals from multiple plant regulatory and environmental inputs. Binding promiscuity and plasticity allow IDPs to interact with multiple partners in protein interaction networks and provide important functional advantages in molecular recognition through transient protein–protein interactions. Short interaction-prone segments within IDPs, termed molecular recognition features, represent potential binding sites that can undergo disorder-to-order transition upon binding to their partners. In this review, we summarize the evidence for the importance of IDPs in plant biology and evaluate the functions associated with intrinsic disorder in five different types of plant protein families experimentally confirmed as IDPs. Functional studies of these proteins illustrate the broad impact of disorder on many areas of plant biology, including abiotic stress, transcriptional regulation, light perception, and development. Based on the roles of disorder in the protein–protein interactions, we propose various modes of action for plant IDPs that may provide insight for future experimental approaches aimed at understanding the molecular basis of protein function within important plant pathways. PMID:23362206

  13. JET2 Viewer: a database of predicted multiple, possibly overlapping, protein-protein interaction sites for PDB structures.

    PubMed

    Ripoche, Hugues; Laine, Elodie; Ceres, Nicoletta; Carbone, Alessandra

    2017-01-04

    The database JET2 Viewer, openly accessible at http://www.jet2viewer.upmc.fr/, reports putative protein binding sites for all three-dimensional (3D) structures available in the Protein Data Bank (PDB). This knowledge base was generated by applying the computational method JET 2 at large-scale on more than 20 000 chains. JET 2 strategy yields very precise predictions of interacting surfaces and unravels their evolutionary process and complexity. JET2 Viewer provides an online intelligent display, including interactive 3D visualization of the binding sites mapped onto PDB structures and suitable files recording JET 2 analyses. Predictions were evaluated on more than 15 000 experimentally characterized protein interfaces. This is, to our knowledge, the largest evaluation of a protein binding site prediction method. The overall performance of JET 2 on all interfaces are: Sen = 52.52, PPV = 51.24, Spe = 80.05, Acc = 75.89. The data can be used to foster new strategies for protein-protein interactions modulation and interaction surface redesign. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. The MTA family proteins as novel histone H3 binding proteins.

    PubMed

    Wu, Meng; Wang, Lina; Li, Qian; Li, Jiwen; Qin, Jun; Wong, Jiemin

    2013-01-03

    The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.

  15. The MTA family proteins as novel histone H3 binding proteins

    PubMed Central

    2013-01-01

    Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail. PMID:23286669

  16. Comprehensive identification of proteins binding to RNA G-quadruplex motifs in the 5' UTR of tumor-associated mRNAs.

    PubMed

    Serikawa, Tatsuo; Spanos, Christos; von Hacht, Annekathrin; Budisa, Nediljko; Rappsilber, Juri; Kurreck, Jens

    2018-01-01

    G-quadruplex structures in the 5' UTR of mRNAs are widely considered to suppress translation without affecting transcription. The current study describes the comprehensive analysis of proteins binding to four different G-quadruplex motifs located in mRNAs of the cancer-related genes Bcl-2, NRAS, MMP16, and ARPC2. Following metabolic labeling (Stable Isotope Labeling with Amino acids in Cell culture, SILAC) of proteins in the human cell line HEK293, G-quadruplex binding proteins were enriched by pull-down assays and identified by LC-orbitrap mass spectrometry. We found different patterns of interactions for the G-quadruplex motifs under investigation. While the G-quadruplexes in the mRNAs of NRAS and MMP16 specifically interacted with a small number of proteins, the Bcl-2 and ARPC2 G-quadruplexes exhibited a broad range of proteinaceous interaction partners with 99 and 82 candidate proteins identified in at least two replicates, respectively. The use of a control composed of samples from all G-quadruplex-forming sequences and their mutated controls ensured that the identified proteins are specific for RNA G-quadruplex structures and are not general RNA-binding proteins. Independent validation experiments based on pull-down assays and Western blotting confirmed the MS data. Among the interaction partners were many proteins known to bind to RNA, including multiple heterogenous nuclear ribonucleoproteins (hnRNPs). Several of the candidate proteins are likely to reflect stalling of the ribosome by RNA G-quadruplex structures. Interestingly, additional proteins were identified that have not previously been described to interact with RNA. Gene ontology analysis of the candidate proteins revealed that many interaction partners are known to be tumor related. The majority of the identified RNA G-quadruplex interacting proteins are thought to be involved in post-transcriptional processes, particularly in splicing. These findings indicate that protein-G-quadruplex interactions are not only important for the fine-tuning of translation but are also relevant to the regulation of mRNA maturation and may play an important role in tumor biology. Proteomic data are available via ProteomeXchange with identifier PXD005761. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. Increasing the affinity of selective bZIP-binding peptides through surface residue redesign.

    PubMed

    Kaplan, Jenifer B; Reinke, Aaron W; Keating, Amy E

    2014-07-01

    The coiled-coil dimer is a prevalent protein interaction motif that is important for many cellular processes. The basic leucine-zipper (bZIP) transcription factors are one family of proteins for which coiled-coil mediated dimerization is essential for function, and misregulation of bZIPs can lead to disease states including cancer. This makes coiled coils attractive protein-protein interaction targets to disrupt using engineered molecules. Previous work designing peptides to compete with native coiled-coil interactions focused primarily on designing the core residues of the interface to achieve affinity and specificity. However, folding studies on the model bZIP GCN4 show that coiled-coil surface residues also contribute to binding affinity. Here we extend a prior study in which peptides were designed to bind tightly and specifically to representative members of each of 20 human bZIP families. These "anti-bZIP" peptides were designed with an emphasis on target-binding specificity, with contributions to design-target specificity and affinity engineered considering only the coiled-coil core residues. High-throughput testing using peptide arrays indicated many successes. We have now measured the binding affinities and specificities of anti-bZIPs that bind to FOS, XBP1, ATF6, and CREBZF in solution and tested whether redesigning the surface residues can increase design-target affinity. Incorporating residues that favor helix formation into the designs increased binding affinities in all cases, providing low-nanomolar binders of each target. However, changes in surface electrostatic interactions sometimes changed the binding specificity of the designed peptides. © 2014 The Protein Society.

  18. The potential role of CacyBP/SIP in tumorigenesis.

    PubMed

    Ning, Xiaoxuan; Chen, Yang; Wang, Xiaosu; Li, Qiaoneng; Sun, Shiren

    2016-08-01

    Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) was initially described as a binding partner of S100A6 in the Ehrlich ascites tumor cells and later as a Siah-1-interacting protein. This 30 kDa protein includes three domains and is involved in cell proliferation, differentiation, cytoskeletal rearrangement, and transcriptional regulation via binding to various proteins. Studies have also shown that the CacyBP/SIP is a critical protein in tumorigenesis. But, its promotion or suppression of cancer progression may depend on the cell type. In this review, the biological characteristics and target proteins of CacyBP/SIP have been described. Moreover, the exact role of CacyBP/SIP in various cancers is discussed.

  19. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.

    PubMed

    Guo, Emily Z; Xu, Zhaohui

    2015-03-27

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains

    DOE PAGES

    Guo, Emily Z.; Xu, Zhaohui

    2015-02-05

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). In this paper, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed thatmore » IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. Finally, these observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.« less

  1. New insight on the S100A1-STIP1 complex highlights the important relationship between allostery and entropy in protein function.

    PubMed

    Nucci, Nathaniel V

    2017-08-17

    Calcium signaling serves as a nexus of many vital cellular processes. Of particular importance is the role the calcium signaling plays in the prevention of protein misfolding, and the S100 family of calcium-binding proteins is a key player in this pathway. While the S100 proteins carry out a range of roles, the interaction of S100A1 and the stress-inducible phosphoprotein 1 (STIP1) has been shown to be particularly important. A recent study by Maciejewski et al. in Biochemical Journal ( Biochemical Journal (2017) 474 , 1853-1866) revealed new insights into the nature of the S100A1-STIP1 interaction. Not only did the present paper indicate the stoichiometry of binding for this interaction (three S100A1 dimers : one STIP1), it also demonstrated that the binding interaction is highly co-operative and that each S100A1-STIP1-binding interaction is entropically driven. The findings presented raise important new questions regarding the relationship between entropy and allostery in protein function. Recently, the dynamical underpinnings of allostery in protein function have become a topic of increased interest. A broad range of investigations have demonstrated that allostery can be mediated by entropic processes such as changes in the flexibility of the protein backbone and in the range of motions explored by side chains. The S100A1-STIP1 complex as described by Maciejewski et al. suggests a new system in which an allosteric-binding interaction driven by entropic processes may be systematically dissected in the future. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. AlphaII-spectrin interacts with Tes and EVL, two actin-binding proteins located at cell contacts.

    PubMed

    Rotter, Björn; Bournier, Odile; Nicolas, Gael; Dhermy, Didier; Lecomte, Marie-Christine

    2005-06-01

    The spectrin-based membrane skeleton, a multi-protein scaffold attached to diverse cellular membranes, is presumed to be involved in the stabilization of membranes, the establishment of membrane domains as well as in vesicle trafficking and nuclear functions. Spectrin tetramers made of alpha- and beta-subunits are linked to actin microfilaments, forming a network that binds a multitude of proteins. The most prevalent alpha-spectrin subunit in non-erythroid cells, alphaII-spectrin, contains two particular spectrin repeats in its central region, alpha9 and alpha10, which host an Src homology 3 domain, a tissue-specific spliced sequence of 20 residues, a calmodulin-binding site and major cleavage sites for caspases and calpains. Using yeast two-hybrid screening of kidney libraries, we identified two partners of the alpha9-alpha10 repeats: the potential tumour suppressor Tes, an actin-binding protein mainly located at focal adhesions; and EVL (Ena/vasodilator-stimulated phosphoprotein-like protein), another actin-binding protein, equally recruited at focal adhesions. Interactions between spectrin and overexpressed Tes and EVL were confirmed by co-immunoprecipitation. In vitro studies showed that the interaction between Tes and spectrin is mediated by a LIM (Lin-11, Isl-1 and Mec3) domain of Tes and by the alpha10 repeat of alphaII-spectrin whereas EVL interacts with the Src homology 3 domain located within the alpha9 repeat. Moreover, we describe an in vitro interaction between Tes and EVL, and a co-localization of these two proteins at focal adhesions. These interactions between alphaII-spectrin, Tes and EVL indicate new functions for spectrin in actin dynamics and focal adhesions.

  3. Protein-Protein Interactions within Late Pre-40S Ribosomes

    PubMed Central

    Campbell, Melody G.; Karbstein, Katrin

    2011-01-01

    Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps. PMID:21283762

  4. Protein-protein interactions within late pre-40S ribosomes.

    PubMed

    Campbell, Melody G; Karbstein, Katrin

    2011-01-20

    Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  5. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  6. Ethanol Concentration Influences the Mechanisms of Wine Tannin Interactions with Poly(L-proline) in Model Wine.

    PubMed

    McRae, Jacqui M; Ziora, Zyta M; Kassara, Stella; Cooper, Matthew A; Smith, Paul A

    2015-05-06

    Changes in ethanol concentration influence red wine astringency, and yet the effect of ethanol on wine tannin-salivary protein interactions is not well understood. Isothermal titration calorimetry (ITC) was used to measure the binding strength between the model salivary protein, poly(L-proline) (PLP) and a range of wine tannins (tannin fractions from a 3- and a 7-year old Cabernet Sauvignon wine) across different ethanol concentrations (5, 10, 15, and 40% v/v). Tannin-PLP interactions were stronger at 5% ethanol than at 40% ethanol. The mechanism of interaction changed for most tannin samples across the wine-like ethanol range (10-15%) from a combination of hydrophobic and hydrogen binding at 10% ethanol to only hydrogen binding at 15% ethanol. These results indicate that ethanol concentration can influence the mechanisms of wine tannin-protein interactions and that the previously reported decrease in wine astringency with increasing alcohol may, in part, relate to a decrease tannin-protein interaction strength.

  7. Replication protein A 32 interacts through a similar binding interface with TIPIN, XPA, and UNG2.

    PubMed

    Ali, Seikh Imtiaz; Shin, Jae-Sun; Bae, Sung-Hun; Kim, Byoungkook; Choi, Byong-Seok

    2010-07-01

    The 32kDa subunit of replication protein A (RPA32) is involved in various DNA repair systems such as nucleotide excision repair, base excision repair, and homologous recombination. In these processes, RPA32 interacts with different binding partners via its C-terminal domain (RPA32C; residues 172-270). It has been reported recently that RPA32C also interacts with TIPIN during the intra-S checkpoint. To determine the significance of the interaction of RPA32C with TIPIN, we have examined the interaction mode using NMR spectroscopy and an in silico modeling approach. Here, we show that TIPIN(185-218), which shares high sequence similarity with XPA(10-43) and UNG2(56-89), is less ordered in the free state and then forms a longer alpha-helix upon binding to RPA32C. The binding interface between TIPIN(185-218) and RPA32C is similar to those of XPA and UNG2, but its mode of interaction is different. The results suggest that RPA32 is an exchange point for multiple proteins involved in DNA repair, homologous recombination, and checkpoint processes and that it binds to different partners with comparable binding affinity using a single site. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. The protein-protein interactions between SMPI and thermolysin studied by molecular dynamics and MM/PBSA calculations.

    PubMed

    Adekoya, Olayiwola A; Willassen, Nils-Peder; Sylte, Ingebrigt

    2005-04-01

    Thermolysin is a zinc-metalloendopeptidase secreted by the gram-positive thermophilic bacterium Bacillus thermoproteolyticus. Thermolysin belongs to the gluzinicin family of enzymes, which is selectively inhibited by Steptomyces metalloproteinase inhibitor (SMPI). Very little is known about the interaction between SMPI and thermolysin. Knowledge about the protein-protein interactions is very important for designing new thermolysin inhibitors with possible industrial or pharmaceutical applications. In the present study, two binding modes between SMPI and thermolysin were studied by 2300 picoseconds (ps) of comparative molecular dynamics (MD) simulations and calculation of the free energy of binding using the molecular mechanics-Poisson-Boltmann surface area (MM/PBSA) method. One of the positions, the 'horizontal arrow head docking' (HAHD) was similar to the previously proposed binding mode by Tate et al. (Tate, S., Ohno, A., Seeram, S. S., Hiraga, K., Oda, K., and Kainosho, M. J. Mol. Biol. 282, 435-446 (1998)). The other position, the 'vertical arrow head docking' (VAHD) was obtained by a manual docking guided by the shape and charge distribution of SMPI and the binding pocket of thermolysin. The calculations showed that SMPI had stronger interactions with thermolysin in the VAHD than in the HAHD complex, and the VAHD complex was considered more realistic than the HAHD complex. SMPI interacted with thermolysin not only at the active site but had auxiliary binding sites contributing to proper interactions. The VAHD complex can be used for designing small molecule inhibitors mimicking the SMPI-thermolysin binding interfaces.

  9. Calcium Regulates Molecular Interactions of Otoferlin with Soluble NSF Attachment Protein Receptor (SNARE) Proteins Required for Hair Cell Exocytosis*

    PubMed Central

    Ramakrishnan, Neeliyath A.; Drescher, Marian J.; Morley, Barbara J.; Kelley, Philip M.; Drescher, Dennis G.

    2014-01-01

    Mutations in otoferlin, a C2 domain-containing ferlin family protein, cause non-syndromic hearing loss in humans (DFNB9 deafness). Furthermore, transmitter secretion of cochlear inner hair cells is compromised in mice lacking otoferlin. In the present study, we show that the C2F domain of otoferlin directly binds calcium (KD = 267 μm) with diminished binding in a pachanga (D1767G) C2F mouse mutation. Calcium was found to differentially regulate binding of otoferlin C2 domains to target SNARE (t-SNARE) proteins and phospholipids. C2D–F domains interact with the syntaxin-1 t-SNARE motif with maximum binding within the range of 20–50 μm Ca2+. At 20 μm Ca2+, the dissociation rate was substantially lower, indicating increased binding (KD = ∼10−9) compared with 0 μm Ca2+ (KD = ∼10−8), suggesting a calcium-mediated stabilization of the C2 domain·t-SNARE complex. C2A and C2B interactions with t-SNAREs were insensitive to calcium. The C2F domain directly binds the t-SNARE SNAP-25 maximally at 100 μm and with reduction at 0 μm Ca2+, a pattern repeated for C2F domain interactions with phosphatidylinositol 4,5-bisphosphate. In contrast, C2F did not bind the vesicle SNARE protein synaptobrevin-1 (VAMP-1). Moreover, an antibody targeting otoferlin immunoprecipitated syntaxin-1 and SNAP-25 but not synaptobrevin-1. As opposed to an increase in binding with increased calcium, interactions between otoferlin C2F domain and intramolecular C2 domains occurred in the absence of calcium, consistent with intra-C2 domain interactions forming a “closed” tertiary structure at low calcium that “opens” as calcium increases. These results suggest a direct role for otoferlin in exocytosis and modulation of calcium-dependent membrane fusion. PMID:24478316

  10. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less

  11. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE PAGES

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less

  12. Common structural features of cholesterol binding sites in crystallized soluble proteins

    PubMed Central

    Bukiya, Anna N.; Dopico, Alejandro M.

    2017-01-01

    Cholesterol-protein interactions are essential for the architectural organization of cell membranes and for lipid metabolism. While cholesterol-sensing motifs in transmembrane proteins have been identified, little is known about cholesterol recognition by soluble proteins. We reviewed the structural characteristics of binding sites for cholesterol and cholesterol sulfate from crystallographic structures available in the Protein Data Bank. This analysis unveiled key features of cholesterol-binding sites that are present in either all or the majority of sites: i) the cholesterol molecule is generally positioned between protein domains that have an organized secondary structure; ii) the cholesterol hydroxyl/sulfo group is often partnered by Asn, Gln, and/or Tyr, while the hydrophobic part of cholesterol interacts with Leu, Ile, Val, and/or Phe; iii) cholesterol hydrogen-bonding partners are often found on α-helices, while amino acids that interact with cholesterol’s hydrophobic core have a slight preference for β-strands and secondary structure-lacking protein areas; iv) the steroid’s C21 and C26 constitute the “hot spots” most often seen for steroid-protein hydrophobic interactions; v) common “cold spots” are C8–C10, C13, and C17, at which contacts with the proteins were not detected. Several common features we identified for soluble protein-steroid interaction appear evolutionarily conserved. PMID:28420706

  13. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  14. PDZ Binding Domains, Structural Disorder and Phosphorylation: A Menage-a-trois Tailing Dcp2 mRNA Decapping Enzymes.

    PubMed

    Gunawardana, Dilantha

    2016-01-01

    Diverse cellular activities are mediated through the interaction of protein domains and their binding partners. One such protein domain widely distributed in the higher metazoan world is the PDZ domain, which facilitates abundant protein-protein interactions. The PDZ domain-PDZ binding domain interaction has been implicated in several pathologies including Alzheimer's disease, Parkinson's disease and Down syndrome. PDZ domains bind to C-terminal peptides/proteins which have either of the following combinations: S/T-X-hydrophobic-COOH for type I, hydrophobic-Xhydrophobic- COOH for type II, and D/E-X-hydrophobic-COOH for type III, although hydrophobicity in the termini form the key characteristic of the PDZ-binding domains. We identified and characterized a Dcp2 type mRNA decapping enzyme from Arabidopsis thaliana, a protein containing a putative PDZ-binding domain using mutagenesis and protein biochemistry. Now we are using bioinformatics to study the Cterminal end of mRNA decapping enzymes from complex metazoans with the aim of (1) identifying putative PDZ-binding domains (2) Correlating structural disorder with PDZ binding domains and (3) Demonstrating the presence of phosphorylation sites in C-terminal extremities of Dcp2 type mRNA decapping enzymes. It is proposed here that the trinity of PDZbinding domains, structural disorder and phosphorylation-susceptible sites are a feature of the Dcp2 family of decapping enzymes and perhaps is a wider trick in protein evolution where scaffolding/tethering is a requirement for localization and function. It is critical though laboratory-based supporting evidence is sought to back-up this bioinformatics exploration into tail regions of mRNA decapping enzymes.

  15. The Promiscuous Protein Binding Ability of Erythrosine B Studied by Metachromasy (Metachromasia)

    PubMed Central

    Ganesan, Lakshmi; Buchwald, Peter

    2013-01-01

    The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly-iodinated xanthene dye and an FDA-approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein–protein interactions (PPI) with a remarkably consistent median inhibitory concentration (IC50) in the 5–30 µM range. Because ErB exhibits metachromasy, i.e., color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd) and stoichiometry (nb) using spectrophotometric methods. Binding was reversible and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 µM for BSA and CD40L, respectively) were in good agreement with that expected from the protein–protein interaction (PPI) inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5–6 and 8–9 for BSA and CD40L, respectively) indicating the possibility of nonspecific binding of the flat an rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding. PMID:23456742

  16. Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein*

    PubMed Central

    Kacirova, Miroslava; Kosek, Dalibor; Kadek, Alan; Man, Petr; Vecer, Jaroslav; Herman, Petr; Obsilova, Veronika; Obsil, Tomas

    2015-01-01

    Phosducin (Pdc), a highly conserved phosphoprotein involved in the regulation of retinal phototransduction cascade, transcriptional control, and modulation of blood pressure, is controlled in a phosphorylation-dependent manner, including the binding to the 14-3-3 protein. However, the molecular mechanism of this regulation is largely unknown. Here, the solution structure of Pdc and its interaction with the 14-3-3 protein were investigated using small angle x-ray scattering, time-resolved fluorescence spectroscopy, and hydrogen-deuterium exchange coupled to mass spectrometry. The 14-3-3 protein dimer interacts with Pdc using surfaces both inside and outside its central channel. The N-terminal domain of Pdc, where both phosphorylation sites and the 14-3-3-binding motifs are located, is an intrinsically disordered protein that reduces its flexibility in several regions without undergoing dramatic disorder-to-order transition upon binding to 14-3-3. Our data also indicate that the C-terminal domain of Pdc interacts with the outside surface of the 14-3-3 dimer through the region involved in Gtβγ binding. In conclusion, we show that the 14-3-3 protein interacts with and sterically occludes both the N- and C-terminal Gtβγ binding interfaces of phosphorylated Pdc, thus providing a mechanistic explanation for the 14-3-3-dependent inhibition of Pdc function. PMID:25971962

  17. Design of Stomach Acid-Stable and Mucin-Binding Enzyme Polymer Conjugates.

    PubMed

    Cummings, Chad S; Campbell, Alan S; Baker, Stefanie L; Carmali, Sheiliza; Murata, Hironobu; Russell, Alan J

    2017-02-13

    The reduced immunogenicity and increased stability of protein-polymer conjugates has made their use in therapeutic applications particularly attractive. However, the physicochemical interactions between polymer and protein, as well as the effect of this interaction on protein activity and stability, are still not fully understood. In this work, polymer-based protein engineering was used to examine the role of polymer physicochemical properties on the activity and stability of the chymotrypsin-polymer conjugates and their degree of binding to intestinal mucin. Four different chymotrypsin-polymer conjugates, each with the same polymer density, were synthesized using "grafting-from" atom transfer radical polymerization. The influence of polymer charge on chymotrypsin-polymer conjugate mucin binding, bioactivity, and stability in stomach acid was determined. Cationic polymers covalently attached to chymotrypsin showed high mucin binding, while zwitterionic, uncharged, and anionic polymers showed no mucin binding. Cationic polymers also increased chymotrypsin activity from pH 6-8, while zwitterionic polymers had no effect, and uncharged and anionic polymers decreased enzyme activity. Lastly, cationic polymers decreased the tendency of chymotrypsin to structurally unfold at extremely low pH, while uncharged and anionic polymers induced unfolding more quickly. We hypothesized that when polymers are covalently attached to the surface of a protein, the degree to which those polymers interact with the protein surface is the predominant determinant of whether the polymer will stabilize or inactivate the protein. Preferential interactions between the polymer and the protein lead to removal of water from the surface of the protein, and this, we believe, inactivates the enzyme.

  18. A Bromodomain-Containing Protein from Tomato Specifically Binds Potato Spindle Tuber Viroid RNA In Vitro and In Vivo

    PubMed Central

    Martínez de Alba, Angel Emilio; Sägesser, Rudolf; Tabler, Martin; Tsagris, Mina

    2003-01-01

    For the identification of RNA-binding proteins that specifically interact with potato spindle tuber viroid (PSTVd), we subjected a tomato cDNA expression library prepared from viroid-infected leaves to an RNA ligand screening procedure. We repeatedly identified cDNA clones that expressed a protein of 602 amino acids. The protein contains a bromodomain and was termed viroid RNA-binding protein 1 (VIRP1). The specificity of interaction of VIRP1 with viroid RNA was studied by different methodologies, which included Northwestern blotting, plaque lift, and electrophoretic mobility shift assays. VIRP1 interacted strongly and specifically with monomeric and oligomeric PSTVd positive-strand RNA transcripts. Other RNAs, for example, U1 RNA, did not bind to VIRP1. Further, we could immunoprecipitate complexes from infected tomato leaves that contained VIRP1 and viroid RNA in vivo. Analysis of the protein sequence revealed that VIRP1 is a member of a newly identified family of transcriptional regulators associated with chromatin remodeling. VIRP1 is the first member of this family of proteins, for which a specific RNA-binding activity is shown. A possible role of VIRP1 in viroid replication and in RNA mediated chromatin remodeling is discussed. PMID:12915580

  19. Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism.

    PubMed Central

    Spearman, P; Horton, R; Ratner, L; Kuli-Zade, I

    1997-01-01

    The interaction of the human immunodeficiency virus (HIV) Gag protein with the plasma membrane of a cell is a critical event in the assembly of HIV particles. The matrix protein region (MA) of HIV type 1 (HIV-1) Pr55Gag has previously been demonstrated to confer membrane-binding properties on the precursor polyprotein. Both the myristic acid moiety and additional determinants within MA are essential for plasma membrane binding and subsequent particle formation. In this study, we demonstrated the myristylation-dependent membrane interaction of MA in an in vivo membrane-binding assay. When expressed within mammalian cells, MA was found both in association with cellular membranes and in a membrane-free form. In contrast, the intact precursor Pr55Gag molecule analyzed in an identical manner was found almost exclusively bound to membranes. Both membrane-bound and membrane-free forms of MA were myristylated and phosphorylated. Differential membrane binding was not due to the formation of multimers, as dimeric and trimeric forms of MA were also found in both membrane-bound and membrane-free fractions. To define the requirements for membrane binding of MA, we analyzed the membrane binding of a series of MA deletion mutants. Surprisingly, deletions within alpha-helical regions forming the globular head of MA led to a dramatic increase in overall membrane binding. The stability of the MA-membrane interaction was not affected by these deletions, and no deletion eliminated membrane binding of the molecule. These results establish that myristic acid is a primary determinant of the stability of the Gag protein-membrane interaction and provide support for the hypothesis that a significant proportion of HIV-1 MA molecules may adopt a conformation in which myristic acid is hidden and unavailable for membrane interaction. PMID:9261380

  20. Oleic acid transfer from microsomes to egg lecithin liposomes: participation of fatty acid binding protein.

    PubMed

    Catalá, A; Avanzati, B

    1983-11-01

    Oleic acid transfer from microsomes or mitochondria to egg lecithin liposomes was stimulated by fatty acid binding protein. By gel filtration, it could be demonstrated that this protein incorporates oleic acid into liposomes. Fatty acid binding protein transfer activity was higher using microsomes rather than mitochondria, which suggests a selective interaction with different kinds of membranes. Transfer of oleic acid by this soluble protein is greater than that of stearic acid. The results indicate that fatty acid binding protein may participate in the intracellular transport of fatty acids.

  1. Optimizing pH response of affinity between protein G and IgG Fc: how electrostatic modulations affect protein-protein interactions.

    PubMed

    Watanabe, Hideki; Matsumaru, Hiroyuki; Ooishi, Ayako; Feng, Yanwen; Odahara, Takayuki; Suto, Kyoko; Honda, Shinya

    2009-05-01

    Protein-protein interaction in response to environmental conditions enables sophisticated biological and biotechnological processes. Aiming toward the rational design of a pH-sensitive protein-protein interaction, we engineered pH-sensitive mutants of streptococcal protein G B1, a binder to the IgG constant region. We systematically introduced histidine residues into the binding interface to cause electrostatic repulsion on the basis of a rigid body model. Exquisite pH sensitivity of this interaction was confirmed by surface plasmon resonance and affinity chromatography employing a clinically used human IgG. The pH-sensitive mechanism of the interaction was analyzed and evaluated from kinetic, thermodynamic, and structural viewpoints. Histidine-mediated electrostatic repulsion resulted in significant loss of exothermic heat of the binding that decreased the affinity only at acidic conditions, thereby improving the pH sensitivity. The reduced binding energy was partly recovered by "enthalpy-entropy compensation." Crystal structures of the designed mutants confirmed the validity of the rigid body model on which the effective electrostatic repulsion was based. Moreover, our data suggested that the entropy gain involved exclusion of water molecules solvated in a space formed by the introduced histidine and adjacent tryptophan residue. Our findings concerning the mechanism of histidine-introduced interactions will provide a guideline for the rational design of pH-sensitive protein-protein recognition.

  2. Binding of carbonyl flavours to canola, pea and wheat proteins using GC/MS approach.

    PubMed

    Wang, Kun; Arntfield, Susan D

    2014-08-15

    Interactions of homologous aldehydes (hexanal, heptanal, and octanal) and ketones (2-hexanone, 2-heptanone, and 2-octanone) to salt and alkaline-extracted canola and pea proteins and commercial wheat gluten were studied using GC/MS. Long-chain aldehyde flavours exhibited higher binding affinity, regardless of protein type and isolation method. Salt-extracted canola protein isolates (CPIs) revealed the highest binding capacity to all aldehydes followed by wheat gluten and salt-extracted pea protein isolates (PPIs), while binding of ketone flavours decreased in the order: PPIs>wheat gluten>CPIs. Two aldolisation products, 2-butyl-2-octenal and 2-pentyl-2-nonenal, were detected from the interactions between CPIs with hexanal and heptanal, respectively. Protein thermal behaviour in the presence of these compounds was analysed by differential scanning calorimeter, where decreased ΔH inferred potential conformational changes due to partial denaturation of PPIs. Compared to ketones, aldehyde flavours possessed much higher "unfolding capacity" (lower ΔH), which accounted for their higher binding affinities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction.

    PubMed

    Ray, Swagat; Anderson, Emma C

    2016-03-03

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression.

  4. Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins.

    PubMed

    Mackenzie, Kimberly D; Lim, Yoon; Duffield, Michael D; Chataway, Timothy; Zhou, Xin-Fu; Keating, Damien J

    2017-07-01

    Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1 -/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The simulation study of protein-protein interfaces based on the 4-helix bundle structure

    NASA Astrophysics Data System (ADS)

    Fukuda, Masaki; Komatsu, Yu; Morikawa, Ryota; Miyakawa, Takeshi; Takasu, Masako; Akanuma, Satoshi; Yamagishi, Akihiko

    2013-02-01

    Docking of two protein molecules is induced by intermolecular interactions. Our purposes in this study are: designing binding interfaces on the two proteins, which specifically interact to each other; and inducing intermolecular interactions between the two proteins by mixing them. A 4-helix bundle structure was chosen as a scaffold on which binding interfaces were created. Based on this scaffold, we designed binding interfaces involving charged and nonpolar amino acid residues. We performed molecular dynamics (MD) simulation to identify suitable amino acid residues for the interfaces. We chose YciF protein as the scaffold for the protein-protein docking simulation. We observed the structure of two YciF protein molecules (I and II), and we calculated the distance between centroids (center of gravity) of the interfaces' surface planes of the molecules I and II. We found that the docking of the two protein molecules can be controlled by the number of hydrophobic and charged amino acid residues involved in the interfaces. Existence of six hydrophobic and five charged amino acid residues within an interface were most suitable for the protein-protein docking.

  6. N-ethylmaleimide-sensitive factor interacts with the serotonin transporter and modulates its trafficking: implications for pathophysiology in autism

    PubMed Central

    2014-01-01

    Background Changes in serotonin transporter (SERT) function have been implicated in autism. SERT function is influenced by the number of transporter molecules present at the cell surface, which is regulated by various cellular mechanisms including interactions with other proteins. Thus, we searched for novel SERT-binding proteins and investigated whether the expression of one such protein was affected in subjects with autism. Methods Novel SERT-binding proteins were examined by a pull-down system. Alterations of SERT function and membrane expression upon knockdown of the novel SERT-binding protein were studied in HEK293-hSERT cells. Endogenous interaction of SERT with the protein was evaluated in mouse brains. Alterations in the mRNA expression of SERT (SLC6A4) and the SERT-binding protein in the post-mortem brains and the lymphocytes of autism patients were compared to nonclinical controls. Results N-ethylmaleimide-sensitive factor (NSF) was identified as a novel SERT-binding protein. NSF was co-localized with SERT at the plasma membrane, and NSF knockdown resulted in decreased SERT expression at the cell membranes and decreased SERT uptake function. NSF was endogenously co-localized with SERT and interacted with SERT. While SLC6A4 expression was not significantly changed, NSF expression tended to be reduced in post-mortem brains, and was significantly reduced in lymphocytes of autistic subjects, which correlated with the severity of the clinical symptoms. Conclusions These data clearly show that NSF interacts with SERT under physiological conditions and is required for SERT membrane trafficking and uptake function. A possible role for NSF in the pathophysiology of autism through modulation of SERT trafficking, is suggested. PMID:24834316

  7. Noncovalent PEGylation through Protein-Polyelectrolyte Interaction: Kinetic Experiment and Molecular Dynamics Simulation.

    PubMed

    Kurinomaru, Takaaki; Kuwada, Kengo; Tomita, Shunsuke; Kameda, Tomoshi; Shiraki, Kentaro

    2017-07-20

    Noncovalent binding of polyethylene glycol (PEG) to a protein surface is a unique protein handling technique to control protein function and stability. A diblock copolymer containing PEG and polyelectrolyte chains (PEGylated polyelectrolyte) is a promising candidate for noncovalent attachment of PEG to a protein surface because of the binding through multiple electrostatic interactions without protein denaturation. To obtain a deeper understanding of protein-polyelectrolyte interaction at the molecular level, we investigated the manner in which cationic PEGylated polyelectrolyte binds to anionic α-amylase in enzyme kinetic experiments and molecular dynamics (MD) simulations. Cationic PEG-block-poly(N,N-dimethylaminoethyl) (PEG-b-PAMA) inhibited the enzyme activity of anionic α-amylase due to binding of PAMA chains. Enzyme kinetics revealed that the inhibition of α-amylase activity by PEG-b-PAMA is noncompetitive inhibition manner. In MD simulations, the PEG-b-PAMA molecule was initially located at six different placements of the x-, y-, and z-axis ±20 Å from the center of α-amylase, which showed that the PEG-b-PAMA nonspecifically bound to the α-amylase surface, corresponding to the noncompetitive inhibition manner that stems from the polymer binding to an enzyme surface other than the active site. In addition, the enzyme activity of α-amylase in the presence of PEG-b-PAMA was not inhibited by increasing the ionic strength, consistent with the MD simulation; i.e., PEG-b-PAMA did not interact with α-amylase in high ionic strength conditions. The results reported in this paper suggest that enzyme inhibition by PEGylated polyelectrolyte can be attributed to the random electrostatic interaction between protein and polyelectrolyte.

  8. Interaction of classical platinum agents with the monomeric and dimeric Atox1 proteins: a molecular dynamics simulation study.

    PubMed

    Wang, Xiaolei; Li, Chaoqun; Wang, Yan; Chen, Guangju

    2013-12-20

    We carried out molecular dynamics simulations and free energy calculations for a series of binary and ternary models of the cisplatin, transplatin and oxaliplatin agents binding to a monomeric Atox1 protein and a dimeric Atox1 protein to investigate their interaction mechanisms. All three platinum agents could respectively combine with the monomeric Atox1 protein and the dimeric Atox1 protein to form a stable binary and ternary complex due to the covalent interaction of the platinum center with the Atox1 protein. The results suggested that the extra interaction from the oxaliplatin ligand-Atox1 protein interface increases its affinity only for the OxaliPt + Atox1 model. The binding of the oxaliplatin agent to the Atox1 protein might cause larger deformation of the protein than those of the cisplatin and transplatin agents due to the larger size of the oxaliplatin ligand. However, the extra interactions to facilitate the stabilities of the ternary CisPt + 2Atox1 and OxaliPt + 2Atox1 models come from the α1 helices and α2-β4 loops of the Atox1 protein-Atox1 protein interface due to the cis conformation of the platinum agents. The combinations of two Atox1 proteins in an asymmetric way in the three ternary models were analyzed. These investigations might provide detailed information for understanding the interaction mechanism of the platinum agents binding to the Atox1 protein in the cytoplasm.

  9. Molecular Probing of the HPV-16 E6 Protein Alpha Helix Binding Groove with Small Molecule Inhibitors

    PubMed Central

    Rietz, Anne; Petrov, Dino P.; Bartolowits, Matthew; DeSmet, Marsha; Davisson, V. Jo; Androphy, Elliot J.

    2016-01-01

    The human papillomavirus (HPV) HPV E6 protein has emerged as a central oncoprotein in HPV-associated cancers in which sustained expression is required for tumor progression. A majority of the E6 protein interactions within the human proteome use an alpha-helix groove interface for binding. The UBE3A/E6AP HECT domain ubiquitin ligase binds E6 at this helix-groove interface. This enables formation of a trimeric complex with p53, resulting in destruction of this tumor suppressor. While recent x-ray crystal structures are useful, examples of small molecule probes that can modulate protein interactions at this interface are limited. To develop insights useful for potential structure-based design of ligands for HPV E6, a series of 2,6-disubstituted benzopyranones were prepared and tested as competitive antagonists of E6-E6AP helix-groove interactions. These small molecule probes were used in both binding and functional assays to evaluate recognition features of the E6 protein. Evidence for an ionic functional group interaction within the helix groove was implicated by the structure-activity among the highest affinity ligands. The molecular topographies of these protein-ligand interactions were evaluated by comparing the binding and activities of single amino acid E6 mutants with the results of molecular dynamic simulations. A group of arginine residues that form a rim-cap over the E6 helix groove offer compensatory roles in binding and recognition of the small molecule probes. The flexibility and impact on the overall helix-groove shape dictated by these residues offer new insights for structure-based targeting of HPV E6. PMID:26915086

  10. Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor

    PubMed Central

    Wang, Hao-Ching; Ko, Tzu-Ping; Wu, Mao-Lun; Ku, Shan-Chi; Wu, Hsing-Ju; Wang, Andrew H.-J.

    2012-01-01

    DNA mimic proteins occupy the DNA binding sites of DNA-binding proteins, and prevent these sites from being accessed by DNA. We show here that the Neisseria conserved hypothetical protein DMP19 acts as a DNA mimic. The crystal structure of DMP19 shows a dsDNA-like negative charge distribution on the surface, suggesting that this protein should be added to the short list of known DNA mimic proteins. The crystal structure of another related protein, NHTF (Neisseria hypothetical transcription factor), provides evidence that it is a member of the xenobiotic-response element (XRE) family of transcriptional factors. NHTF binds to a palindromic DNA sequence containing a 5′-TGTNAN11TNACA-3′ recognition box that controls the expression of an NHTF-related operon in which the conserved nitrogen-response protein [i.e. (Protein-PII) uridylyltransferase] is encoded. The complementary surface charges between DMP19 and NHTF suggest specific charge–charge interaction. In a DNA-binding assay, we found that DMP19 can prevent NHTF from binding to its DNA-binding sites. Finally, we used an in situ gene regulation assay to provide evidence that NHTF is a repressor of its down-stream genes and that DMP19 can neutralize this effect. We therefore conclude that the interaction of DMP19 and NHTF provides a novel gene regulation mechanism in Neisseria spps. PMID:22373915

  11. Specificity in substrate binding by protein folding catalysts: tyrosine and tryptophan residues are the recognition motifs for the binding of peptides to the pancreas-specific protein disulfide isomerase PDIp.

    PubMed Central

    Ruddock, L. W.; Freedman, R. B.; Klappa, P.

    2000-01-01

    Using a cross-linking approach, we recently demonstrated that radiolabeled peptides or misfolded proteins specifically interact in vitro with two luminal proteins in crude extracts from pancreas microsomes. The proteins were the folding catalysts protein disulfide isomerase (PDI) and PDIp, a glycosylated, PDI-related protein, expressed exclusively in the pancreas. In this study, we explore the specificity of these proteins in binding peptides and related ligands and show that tyrosine and tryptophan residues in peptides are the recognition motifs for their binding by PDIp. This peptide-binding specificity may reflect the selectivity of PDIp in binding regions of unfolded polypeptide during catalysis of protein folding. PMID:10794419

  12. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).

    PubMed

    González, Javier M; Fisher, S Zoë

    2015-02-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.

  13. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    NASA Astrophysics Data System (ADS)

    Liu, Shuang

    Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands are suggested to be useful for elucidating architecture effects on multivalent interactions, manipulating multivalent interactions and the subsequent cellular responses in different systems. These materials have great potential applications in therapeutics and could also provide guidelines for design of multivalent ligands for other protein receptors.

  14. Exploring the binding pathways of the 14-3-3ζ protein: Structural and free-energy profiles revealed by Hamiltonian replica exchange molecular dynamics with distancefield distance restraints

    PubMed Central

    Nagy, Gabor; Oostenbrink, Chris; Hritz, Jozef

    2017-01-01

    The 14-3-3 protein family performs regulatory functions in eukaryotic organisms by binding to a large number of phosphorylated protein partners. Whilst the binding mode of the phosphopeptides within the primary 14-3-3 binding site is well established based on the crystal structures of their complexes, little is known about the binding process itself. We present a computational study of the process by which phosphopeptides bind to the 14-3-3ζ protein. Applying a novel scheme combining Hamiltonian replica exchange molecular dynamics and distancefield restraints allowed us to map and compare the most likely phosphopeptide-binding pathways to the 14-3-3ζ protein. The most important structural changes to the protein and peptides involved in the binding process were identified. In order to bind phosphopeptides to the primary interaction site, the 14-3-3ζ adopted a newly found wide-opened conformation. Based on our findings we additionally propose a secondary interaction site on the inner surface of the 14-3-3ζ dimer, and a direct interference on the binding process by the flexible C-terminal tail. A minimalistic model was designed to allow for the efficient calculation of absolute binding affinities. Binding affinities calculated from the potential of mean force along the binding pathway are in line with the available experimental estimates for two of the studied systems. PMID:28727767

  15. Preferential binding effects on protein structure and dynamics revealed by coarse-grained Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Jacobs, D. J.; Farmer, B. L.

    2017-05-01

    The effect of preferential binding of solute molecules within an aqueous solution on the structure and dynamics of the histone H3.1 protein is examined by a coarse-grained Monte Carlo simulation. The knowledge-based residue-residue and hydropathy-index-based residue-solvent interactions are used as input to analyze a number of local and global physical quantities as a function of the residue-solvent interaction strength (f). Results from simulations that treat the aqueous solution as a homogeneous effective solvent medium are compared to when positional fluctuations of the solute molecules are explicitly considered. While the radius of gyration (Rg) of the protein exhibits a non-monotonic dependence on solvent interaction over a wide range of f within an effective medium, an abrupt collapse in Rg occurs in a narrow range of f when solute molecules rapidly bind to a preferential set of sites on the protein. The structure factor S(q) of the protein with wave vector (q) becomes oscillatory in the collapsed state, which reflects segmental correlations caused by spatial fluctuations in solute-protein binding. Spatial fluctuations in solute binding also modify the effective dimension (D) of the protein in fibrous (D ˜ 1.3), random-coil (D ˜ 1.75), and globular (D ˜ 3) conformational ensembles as the interaction strength increases, which differ from an effective medium with respect to the magnitude of D and the length scale.

  16. Computer-aided rational design of novel EBF analogues with an aromatic ring.

    PubMed

    Wang, Shanshan; Sun, Yufeng; Du, Shaoqing; Qin, Yaoguo; Duan, Hongxia; Yang, Xinling

    2016-06-01

    Odorant binding proteins (OBPs) are important in insect olfactory recognition. These proteins bind specifically to insect semiochemicals and induce their seeking, mating, and alarm behaviors. Molecular docking and molecular dynamics simulations were performed to provide computational insight into the interaction mode between AgamOBP7 and novel (E)-β-farnesene (EBF) analogues with an aromatic ring. The ligand-binding cavity in OBP7 was found to be mostly hydrophobic due to the presence of several nonpolar residues. The interactions between the EBF analogues and the hydrophobic residues in the binding cavity increased in strength as the distance between them decreased. The EBF analogues with an N-methyl formamide or ester linkage had higher docking scores than those with an amide linkage. Moreover, delocalized π-π and electrostatic interactions were found to contribute significantly to the binding between the ligand benzene ring and nearby protein residues. To design new compounds with higher activity, four EBF analogues D1-D4 with a benzene ring were synthesized and evaluated based on their docking scores and binding affinities. D2, which had an N-methyl formamide group linkage, exhibited stronger binding than D1, which had an amide linkage. D4 exhibited particularly strong binding due to multiple hydrophobic interactions with the protein. This study provides crucial foundations for designing novel EBF analogues based on the OBP structure. Graphical abstract The design strategy of new EBF analogues based on the OBP7 structure.

  17. The Rice Resistance Protein Pair RGA4/RGA5 Recognizes the Magnaporthe oryzae Effectors AVR-Pia and AVR1-CO39 by Direct Binding[W][OA

    PubMed Central

    Cesari, Stella; Thilliez, Gaëtan; Ribot, Cécile; Chalvon, Véronique; Michel, Corinne; Jauneau, Alain; Rivas, Susana; Alaux, Ludovic; Kanzaki, Hiroyuki; Okuyama, Yudai; Morel, Jean-Benoit; Fournier, Elisabeth; Tharreau, Didier; Terauchi, Ryohei; Kroj, Thomas

    2013-01-01

    Resistance (R) proteins recognize pathogen avirulence (Avr) proteins by direct or indirect binding and are multidomain proteins generally carrying a nucleotide binding (NB) and a leucine-rich repeat (LRR) domain. Two NB-LRR protein-coding genes from rice (Oryza sativa), RGA4 and RGA5, were found to be required for the recognition of the Magnaporthe oryzae effector AVR1-CO39. RGA4 and RGA5 also mediate recognition of the unrelated M. oryzae effector AVR-Pia, indicating that the corresponding R proteins possess dual recognition specificity. For RGA5, two alternative transcripts, RGA5-A and RGA5-B, were identified. Genetic analysis showed that only RGA5-A confers resistance, while RGA5-B is inactive. Yeast two-hybrid, coimmunoprecipitation, and fluorescence resonance energy transfer–fluorescence lifetime imaging experiments revealed direct binding of AVR-Pia and AVR1-CO39 to RGA5-A, providing evidence for the recognition of multiple Avr proteins by direct binding to a single R protein. Direct binding seems to be required for resistance as an inactive AVR-Pia allele did not bind RGA5-A. A small Avr interaction domain with homology to the Avr recognition domain in the rice R protein Pik-1 was identified in the C terminus of RGA5-A. This reveals a mode of Avr protein recognition through direct binding to a novel, non-LRR interaction domain. PMID:23548743

  18. The juxtamembrane domain of the E-cadherin cytoplasmic tail contributes to its interaction with Myosin VI

    PubMed Central

    Mangold, Sabine; Norwood, Suzanne J.; Yap, Alpha S.; Collins, Brett M.

    2012-01-01

    We recently identified the atypical myosin, Myosin VI, as a component of epithelial cell-cell junctions that interacts with E-cadherin. Recombinant proteins bearing the cargo-binding domain of Myosin VI (Myo VI-CBD) or the cytoplasmic tail of E-cadherin can interact directly with one another. In this report we further investigate the molecular requirements of the interaction between Myo VI-CBD and E-cadherin combining truncation mutation analysis with in vitro binding assays. We report that a short (28 amino acid) juxtamembrane region of the cadherin cytoplasmic tail is sufficient to bind Myo VI-CBD. However, central regions of the cadherin tail adjacent to the juxtamembrane sequence also display binding activity for Myo VI-CBD. It is therefore possible that the cadherin tail bears two binding sites for Myosin VI, or an extended binding site that includes the juxtamembrane region. Nevertheless, our biochemical data highlight the capacity for the juxtamembrane region to interact with functionally-significant cytoplasmic proteins. PMID:23007415

  19. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backues, Steven K.; Bednarek, Sebastian Y., E-mail: sybednar@wisc.edu

    2010-03-19

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion andmore » do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.« less

  20. Physical interaction between replication protein A (RPA) and MRN: involvement of RPA2 phosphorylation and the N-terminus of RPA1.

    PubMed

    Oakley, Greg G; Tillison, Kristin; Opiyo, Stephen A; Glanzer, Jason G; Horn, Jeffrey M; Patrick, Steve M

    2009-08-11

    Replication protein A (RPA) is a heterotrimeric protein consisting of RPA1, RPA2, and RPA3 subunits that binds to single-stranded DNA (ssDNA) with high affinity. The response to replication stress requires the recruitment of RPA and the MRE11-RAD50-NBS1 (MRN) complex. RPA bound to ssDNA stabilizes stalled replication forks by recruiting checkpoint proteins involved in fork stabilization. MRN can bind DNA structures encountered at stalled or collapsed replication forks, such as ssDNA-double-stranded DNA (dsDNA) junctions or breaks, and promote the restart of DNA replication. Here, we demonstrate that RPA2 phosphorylation regulates the assembly of DNA damage-induced RPA and MRN foci. Using purified proteins, we observe a direct interaction between RPA with both NBS1 and MRE11. By utilizing RPA bound to ssDNA, we demonstrate that substituting RPA with phosphorylated RPA or a phosphomimetic weakens the interaction with the MRN complex. Also, the N-terminus of RPA1 is a critical component of the RPA-MRN protein-protein interaction. Deletion of the N-terminal oligonucleotide-oligosaccharide binding fold (OB-fold) of RPA1 abrogates interactions of RPA with MRN and individual proteins of the MRN complex. Further identification of residues critical for MRN binding in the N-terminus of RPA1 shows that substitution of Arg31 and Arg41 with alanines disrupts the RPA-MRN interaction and alters cell cycle progression in response to DNA damage. Thus, the N-terminus of RPA1 and phosphorylation of RPA2 regulate RPA-MRN interactions and are important in the response to DNA damage.

  1. Analysis of Protein-RNA and Protein-Peptide Interactions in Equine Infectious Anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-Hyung

    2007-01-01

    Macromolecular interactions are essential for virtually all cellular functions including signal transduction processes, metabolic processes, regulation of gene expression and immune responses. This dissertation focuses on the characterization of two important macromolecular interactions involved in the relationship between Equine Infectious Anemia Virus (EIAV) and its host cell in horse: (1) the interaction between the EIAV Rev protein and its binding site, the Rev-responsive element (RRE) and (2) interactions between equine MHC class I molecules and epitope peptides derived from EIAV proteins. EIAV, one of the most divergent members of the lentivirus family, has a single-stranded RNA genome and carries severalmore » regulatory and structural proteins within its viral particle. Rev is an essential EIAV regulatory encoded protein that interacts with the viral RRE, a specific binding site in the viral mRNA. Using a combination of experimental and computational methods, the interactions between EIAV Rev and RRE were characterized in detail. EIAV Rev was shown to have a bipartite RNA binding domain contain two arginine rich motifs (ARMs). The RRE secondary structure was determined and specific structural motifs that act as cis-regulatory elements for EIAV Rev-RRE interaction were identified. Interestingly, a structural motif located in the high affinity Rev binding site is well conserved in several diverse lentiviral genoes, including HIV-1. Macromolecular interactions involved in the immune response of the horse to EIAV infection were investigated by analyzing complexes between MHC class I proteins and epitope peptides derived from EIAV Rev, Env and Gag proteins. Computational modeling results provided a mechanistic explanation for the experimental finding that a single amino acid change in the peptide binding domain of the quine MHC class I molecule differentially affectes the recognitino of specific epitopes by EIAV-specific CTL. Together, the findings in this dissertation provide novel insights into the strategy used by EIAV to replicate itself, and provide new details about how the host cell responds to and defends against EIAV upon the infection. Moreover, they have contributed to the understanding of the macromolecular recognition events that regulate these processes.« less

  2. A histone-mimicking interdomain linker in a multidomain protein modulates multivalent histone binding

    PubMed Central

    Kostrhon, Sebastian; Kontaxis, Georg; Kaufmann, Tanja; Schirghuber, Erika; Kubicek, Stefan; Konrat, Robert

    2017-01-01

    N-terminal histone tails are subject to many posttranslational modifications that are recognized by and interact with designated reader domains in histone-binding proteins. BROMO domain adjacent to zinc finger 2B (BAZ2B) is a multidomain histone-binding protein that contains two histone reader modules, a plant homeodomain (PHD) and a bromodomain (BRD), linked by a largely disordered linker. Although previous studies have reported specificity of the PHD domain for the unmodified N terminus of histone H3 and of the BRD domain for H3 acetylated at Lys14 (H3K14ac), the exact mode of H3 binding by BAZ2B and its regulation are underexplored. Here, using isothermal titration calorimetry and NMR spectroscopy, we report that acidic residues in the BAZ2B PHD domain are essential for H3 binding and that BAZ2B PHD–BRD establishes a polyvalent interaction with H3K14ac. Furthermore, we provide evidence that the disordered interdomain linker modulates the histone-binding affinity by interacting with the PHD domain. In particular, lysine-rich stretches in the linker, which resemble the positively charged N terminus of histone H3, reduce the binding affinity of the PHD finger toward the histone substrate. Phosphorylation, acetylation, or poly(ADP-ribosyl)ation of the linker residues may therefore act as a cellular mechanism to transiently tune BAZ2B histone-binding affinity. Our findings further support the concept of interdomain linkers serving a dual role in substrate binding by appropriately positioning the adjacent domains and by electrostatically modulating substrate binding. Moreover, inhibition of histone binding by a histone-mimicking interdomain linker represents another example of regulation of protein–protein interactions by intramolecular mimicry. PMID:28864776

  3. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A

    PubMed Central

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5’-end including the 5’-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer. PMID:26221730

  4. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    PubMed

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  5. Interactions of the sulfonylurea receptor 1 subunit in the molecular assembly of beta-cell K(ATP) channels.

    PubMed

    Mikhailov, M V; Ashcroft, S J

    2000-02-04

    We have investigated protein interactions involved in pancreatic beta-cell ATP-sensitive potassium channel assembly. These channels, which are of key importance for control of insulin release, are a hetero-oligomeric complex of pore-forming Kir6.2 subunits and sulfonylurea receptor (SUR1) subunits with two nucleotide-binding domains (NBD1 and NBD2). We divided SUR1 into two halves at Pro-1042. Expression of either the individual N- or C-terminal domain in a baculovirus expression system did not lead to glibenclamide binding activity, although studies with green fluorescent protein fusion proteins showed that both half-molecules were inserted into the plasma membrane. However, significant glibenclamide binding activity was observed when the half-molecules were co-expressed (even when NBD2 was deleted from the C-terminal half-molecule). Simultaneous expression of Kir6.2 resulted in enhanced glibenclamide binding activity. We conclude that the glibenclamide-binding site includes amino acid residues from both halves of the molecule, that there is strong interaction between different regions of SUR1, that NBD2 is not essential for glibenclamide binding, and that interactions between Kir6.2 and SUR1 participate in ATP-sensitive potassium channel assembly. Investigation of NBD1-green fluorescent protein fusion protein distribution inside insect cells expressing C-terminal halves of SUR1 demonstrated strong interaction between NBD1 and NBD2. We also expressed and purified NBD1 from Escherichia coli. Purified NBD1 was found to exist as a tetramer indicating strong homomeric attractions and a possible role for NBD1 in SUR1 assembly.

  6. A molecular dynamics investigation of CDK8/CycC and ligand binding: conformational flexibility and implication in drug discovery

    NASA Astrophysics Data System (ADS)

    Cholko, Timothy; Chen, Wei; Tang, Zhiye; Chang, Chia-en A.

    2018-05-01

    Abnormal activity of cyclin-dependent kinase 8 (CDK8) along with its partner protein cyclin C (CycC) is a common feature of many diseases including colorectal cancer. Using molecular dynamics (MD) simulations, this study determined the dynamics of the CDK8-CycC system and we obtained detailed breakdowns of binding energy contributions for four type-I and five type-II CDK8 inhibitors. We revealed system motions and conformational changes that will affect ligand binding, confirmed the essentialness of CycC for inclusion in future computational studies, and provide guidance in development of CDK8 binders. We employed unbiased all-atom MD simulations for 500 ns on twelve CDK8-CycC systems, including apoproteins and protein-ligand complexes, then performed principal component analysis (PCA) and measured the RMSF of key regions to identify protein dynamics. Binding pocket volume analysis identified conformational changes that accompany ligand binding. Next, H-bond analysis, residue-wise interaction calculations, and MM/PBSA were performed to characterize protein-ligand interactions and find the binding energy. We discovered that CycC is vital for maintaining a proper conformation of CDK8 to facilitate ligand binding and that the system exhibits motion that should be carefully considered in future computational work. Surprisingly, we found that motion of the activation loop did not affect ligand binding. Type-I and type-II ligand binding is driven by van der Waals interactions, but electrostatic energy and entropic penalties affect type-II binding as well. Binding of both ligand types affects protein flexibility. Based on this we provide suggestions for development of tighter-binding CDK8 inhibitors and offer insight that can aid future computational studies.

  7. Interaction study on bovine serum albumin physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Zhong, Ruibo; Li, Wanrong; Liu, Yushuang; Bai, Zhijun; Yin, Jun; Liu, Jingran; Gong, Pei; Zhao, Xinmin; Zhang, Feng

    2015-12-01

    The nanostructures formed by inorganic nanoparticles together with organic molecules especially biomolecules have attracted increasing attention from both industries and researching fields due to their unique hybrid properties. In this paper, we systemically studied the interactions between amphiphilic polymer coated silver nanoparticles and bovine serum albumins by employing the fluorescence quenching approach in combination with the Stern-Volmer and Hill equations. The binding affinity was determined to 1.30 × 107 M-1 and the interaction was spontaneously driven by mainly the van der Waals force and hydrogen-bond mediated interactions, and negatively cooperative from the point of view of thermodynamics. With the non-uniform coating of amphiphilic polymer, the silver nanoparticles can form protein coronas which can become discrete protein-nanoparticle conjugates when controlling their molar ratios of mixing. The protein's conformational changes upon binding nanoparticles was also studied by using the three-dimensional fluorescence spectroscopy.

  8. Time-resolved analysis of DNA-protein interactions in living cells by UV laser pulses.

    PubMed

    Nebbioso, Angela; Benedetti, Rosaria; Conte, Mariarosaria; Carafa, Vincenzo; De Bellis, Floriana; Shaik, Jani; Matarese, Filomena; Della Ventura, Bartolomeo; Gesuele, Felice; Velotta, Raffaele; Martens, Joost H A; Stunnenberg, Hendrik G; Altucci, Carlo; Altucci, Lucia

    2017-09-15

    Interactions between DNA and proteins are mainly studied through chemical procedures involving bi-functional reagents, mostly formaldehyde. Chromatin immunoprecipitation is used to identify the binding between transcription factors (TFs) and chromatin, and to evaluate the occurrence and impact of histone/DNA modifications. The current bottleneck in probing DNA-protein interactions using these approaches is caused by the fact that chemical crosslinkers do not discriminate direct and indirect bindings or short-lived chromatin occupancy. Here, we describe a novel application of UV laser-induced (L-) crosslinking and demonstrate that a combination of chemical and L-crosslinking is able to distinguish between direct and indirect DNA-protein interactions in a small number of living cells. The spatial and temporal dynamics of TF bindings to chromatin and their role in gene expression regulation may thus be assessed. The combination of chemical and L-crosslinking offers an exciting and unprecedented tool for biomedical applications.

  9. Design, synthesis and characterization of peptidomimetic conjugate of BODIPY targeting HER2 protein extracellular domain

    PubMed Central

    Banappagari, Sashikanth; McCall, Alecia; Fontenot, Krystal; Vicente, M. Graca H.; Gujar, Amit; Satyanarayanajois, Seetharama

    2013-01-01

    Among the EGFRs, HER2 is a major heterodimer partner and also has important implications in the formation of particular tumors. Interaction of HER2 protein with other EGFR proteins can be modulated by small molecule ligands and, hence, these protein-protein interactions play a key role in biochemical reactions related to control of cell growth. A peptidomimetic (compound 5-1) that binds to HER2 protein extracellular domain and inhibits protein-protein interactions of EGFRs was conjugated with BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene). Conjugation of BODIPY to the peptidomimetic was investigated by different approaches. The conjugate was characterized for its ability to bind to HER2 overexpressing SKBR-3 and BT-474 cells. Furthermore, cellular uptake of conjugate of BODIPY was studied in the presence of membrane tracker and Lyso tracker using confocal microscopy. Our results suggested that fluorescently labeled compound 5-7 binds to the extracellular domain and stays in the membrane for nearly 24 h. After 24 h there is an indication of internalization of the conjugate. Inhibition of protein-protein interaction and downstream signaling effect of compound 5-1 was also studied by proximity ligation assay and western blot analysis. Results suggested that compound 5-1 inhibits protein-protein interactions of HER2-HER3 and phosphorylation of HER2 in a time-dependent manner. PMID:23688700

  10. Template-Based Modeling of Protein-RNA Interactions

    PubMed Central

    Zheng, Jinfang; Kundrotas, Petras J.; Vakser, Ilya A.

    2016-01-01

    Protein-RNA complexes formed by specific recognition between RNA and RNA-binding proteins play an important role in biological processes. More than a thousand of such proteins in human are curated and many novel RNA-binding proteins are to be discovered. Due to limitations of experimental approaches, computational techniques are needed for characterization of protein-RNA interactions. Although much progress has been made, adequate methodologies reliably providing atomic resolution structural details are still lacking. Although protein-RNA free docking approaches proved to be useful, in general, the template-based approaches provide higher quality of predictions. Templates are key to building a high quality model. Sequence/structure relationships were studied based on a representative set of binary protein-RNA complexes from PDB. Several approaches were tested for pairwise target/template alignment. The analysis revealed a transition point between random and correct binding modes. The results showed that structural alignment is better than sequence alignment in identifying good templates, suitable for generating protein-RNA complexes close to the native structure, and outperforms free docking, successfully predicting complexes where the free docking fails, including cases of significant conformational change upon binding. A template-based protein-RNA interaction modeling protocol PRIME was developed and benchmarked on a representative set of complexes. PMID:27662342

  11. Analysis of Structural Features Contributing to Weak Affinities of Ubiquitin/Protein Interactions.

    PubMed

    Cohen, Ariel; Rosenthal, Eran; Shifman, Julia M

    2017-11-10

    Ubiquitin is a small protein that enables one of the most common post-translational modifications, where the whole ubiquitin molecule is attached to various target proteins, forming mono- or polyubiquitin conjugations. As a prototypical multispecific protein, ubiquitin interacts non-covalently with a variety of proteins in the cell, including ubiquitin-modifying enzymes and ubiquitin receptors that recognize signals from ubiquitin-conjugated substrates. To enable recognition of multiple targets and to support fast dissociation from the ubiquitin modifying enzymes, ubiquitin/protein interactions are characterized with low affinities, frequently in the higher μM and lower mM range. To determine how structure encodes low binding affinity of ubiquitin/protein complexes, we analyzed structures of more than a hundred such complexes compiled in the Ubiquitin Structural Relational Database. We calculated various structure-based features of ubiquitin/protein binding interfaces and compared them to the same features of general protein-protein interactions (PPIs) with various functions and generally higher affinities. Our analysis shows that ubiquitin/protein binding interfaces on average do not differ in size and shape complementarity from interfaces of higher-affinity PPIs. However, they contain fewer favorable hydrogen bonds and more unfavorable hydrophobic/charge interactions. We further analyzed how binding interfaces change upon affinity maturation of ubiquitin toward its target proteins. We demonstrate that while different features are improved in different experiments, the majority of the evolved complexes exhibit better shape complementarity and hydrogen bond pattern compared to wild-type complexes. Our analysis helps to understand how low-affinity PPIs have evolved and how they could be converted into high-affinity PPIs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evidence for a differential interaction of brivaracetam and levetiracetam with the synaptic vesicle 2A protein.

    PubMed

    Wood, Martyn D; Gillard, Michel

    2017-02-01

    Brivaracetam (BRV) and levetiracetam (LEV) are effective antiepileptic drugs that bind selectively to the synaptic vesicle 2A (SV2A) protein. However, BRV differs from LEV in that it exhibits more potent and complete seizure suppression in animal models including in amygdala-kindled mice, where BRV afforded nearly complete seizure suppression. This raises the possibility that aside from potency differences, BRV and LEV may interact differently with the SV2A protein, which is not apparent in radioligand-binding competition studies. In this study, we used a recently identified SV2A allosteric modulator, UCB1244283, that appears to induce conformational changes in SV2A, to probe the binding properties of labeled BRV and LEV. Radioligand binding studies were carried out using [ 3 H]BRV and [ 3 H]LEV. Studies were performed in membranes from both recombinant cells expressing human SV2A protein and human brain tissue. The modulator increased the binding of both radioligands but by different mechanisms. For [ 3 H]BRV, the increase was driven mainly by an increase in affinity, whereas for [ 3 H]LEV, the increase was due to an increase in the number of apparent binding sites. Kinetic studies confirmed this differential effect. These studies suggest that LEV and BRV may act at different binding sites or interact with different conformational states of the SV2A protein. It is possible that some of the pharmacologic differences between BRV and LEV could be due to different interactions with the SV2A protein. © 2016 The Authors. Epilepsia published by Wiley Periodicals Inc. on behalf of International League Against Epilepsy.

  13. A Protein Preparation Method for the High-throughput Identification of Proteins Interacting with a Nuclear Cofactor Using LC-MS/MS Analysis.

    PubMed

    Tsuchiya, Megumi; Karim, M Rezaul; Matsumoto, Taro; Ogawa, Hidesato; Taniguchi, Hiroaki

    2017-01-24

    Transcriptional coregulators are vital to the efficient transcriptional regulation of nuclear chromatin structure. Coregulators play a variety of roles in regulating transcription. These include the direct interaction with transcription factors, the covalent modification of histones and other proteins, and the occasional chromatin conformation alteration. Accordingly, establishing relatively quick methods for identifying proteins that interact within this network is crucial to enhancing our understanding of the underlying regulatory mechanisms. LC-MS/MS-mediated protein binding partner identification is a validated technique used to analyze protein-protein interactions. By immunoprecipitating a previously-identified member of a protein complex with an antibody (occasionally with an antibody for a tagged protein), it is possible to identify its unknown protein interactions via mass spectrometry analysis. Here, we present a method of protein preparation for the LC-MS/MS-mediated high-throughput identification of protein interactions involving nuclear cofactors and their binding partners. This method allows for a better understanding of the transcriptional regulatory mechanisms of the targeted nuclear factors.

  14. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.

    PubMed

    Srinivasulu, Yerukala Sathipati; Wang, Jyun-Rong; Hsu, Kai-Ti; Tsai, Ming-Ju; Charoenkwan, Phasit; Huang, Wen-Lin; Huang, Hui-Ling; Ho, Shinn-Ying

    2015-01-01

    Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes.

  15. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes

    PubMed Central

    2015-01-01

    Background Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. Results This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. Conclusions The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes. PMID:26681483

  16. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods

    PubMed Central

    Du, Xing; Li, Yi; Xia, Yuan-Ling; Ai, Shi-Meng; Liang, Jing; Sang, Peng; Ji, Xing-Lai; Liu, Shu-Qun

    2016-01-01

    Molecular recognition, which is the process of biological macromolecules interacting with each other or various small molecules with a high specificity and affinity to form a specific complex, constitutes the basis of all processes in living organisms. Proteins, an important class of biological macromolecules, realize their functions through binding to themselves or other molecules. A detailed understanding of the protein–ligand interactions is therefore central to understanding biology at the molecular level. Moreover, knowledge of the mechanisms responsible for the protein-ligand recognition and binding will also facilitate the discovery, design, and development of drugs. In the present review, first, the physicochemical mechanisms underlying protein–ligand binding, including the binding kinetics, thermodynamic concepts and relationships, and binding driving forces, are introduced and rationalized. Next, three currently existing protein-ligand binding models—the “lock-and-key”, “induced fit”, and “conformational selection”—are described and their underlying thermodynamic mechanisms are discussed. Finally, the methods available for investigating protein–ligand binding affinity, including experimental and theoretical/computational approaches, are introduced, and their advantages, disadvantages, and challenges are discussed. PMID:26821017

  17. Evolution of RNA-Protein Interactions: Non-Specific Binding Led to RNA Splicing Activity of Fungal Mitochondrial Tyrosyl-tRNA Synthetases

    PubMed Central

    Lamech, Lilian T.; Mallam, Anna L.; Lambowitz, Alan M.

    2014-01-01

    The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (mtTyrRS; CYT-18 protein) evolved a new function as a group I intron splicing factor by acquiring the ability to bind group I intron RNAs and stabilize their catalytically active RNA structure. Previous studies showed: (i) CYT-18 binds group I introns by using both its N-terminal catalytic domain and flexibly attached C-terminal anticodon-binding domain (CTD); and (ii) the catalytic domain binds group I introns specifically via multiple structural adaptations that occurred during or after the divergence of Peziomycotina and Saccharomycotina. However, the function of the CTD and how it contributed to the evolution of splicing activity have been unclear. Here, small angle X-ray scattering analysis of CYT-18 shows that both CTDs of the homodimeric protein extend outward from the catalytic domain, but move inward to bind opposite ends of a group I intron RNA. Biochemical assays show that the isolated CTD of CYT-18 binds RNAs non-specifically, possibly contributing to its interaction with the structurally different ends of the intron RNA. Finally, we find that the yeast mtTyrRS, which diverged from Pezizomycotina fungal mtTyrRSs prior to the evolution of splicing activity, binds group I intron and other RNAs non-specifically via its CTD, but lacks further adaptations needed for group I intron splicing. Our results suggest a scenario of constructive neutral (i.e., pre-adaptive) evolution in which an initial non-specific interaction between the CTD of an ancestral fungal mtTyrRS and a self-splicing group I intron was “fixed” by an intron RNA mutation that resulted in protein-dependent splicing. Once fixed, this interaction could be elaborated by further adaptive mutations in both the catalytic domain and CTD that enabled specific binding of group I introns. Our results highlight a role for non-specific RNA binding in the evolution of RNA-binding proteins. PMID:25536042

  18. Evolution of RNA-protein interactions: non-specific binding led to RNA splicing activity of fungal mitochondrial tyrosyl-tRNA synthetases.

    PubMed

    Lamech, Lilian T; Mallam, Anna L; Lambowitz, Alan M

    2014-12-01

    The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (mtTyrRS; CYT-18 protein) evolved a new function as a group I intron splicing factor by acquiring the ability to bind group I intron RNAs and stabilize their catalytically active RNA structure. Previous studies showed: (i) CYT-18 binds group I introns by using both its N-terminal catalytic domain and flexibly attached C-terminal anticodon-binding domain (CTD); and (ii) the catalytic domain binds group I introns specifically via multiple structural adaptations that occurred during or after the divergence of Peziomycotina and Saccharomycotina. However, the function of the CTD and how it contributed to the evolution of splicing activity have been unclear. Here, small angle X-ray scattering analysis of CYT-18 shows that both CTDs of the homodimeric protein extend outward from the catalytic domain, but move inward to bind opposite ends of a group I intron RNA. Biochemical assays show that the isolated CTD of CYT-18 binds RNAs non-specifically, possibly contributing to its interaction with the structurally different ends of the intron RNA. Finally, we find that the yeast mtTyrRS, which diverged from Pezizomycotina fungal mtTyrRSs prior to the evolution of splicing activity, binds group I intron and other RNAs non-specifically via its CTD, but lacks further adaptations needed for group I intron splicing. Our results suggest a scenario of constructive neutral (i.e., pre-adaptive) evolution in which an initial non-specific interaction between the CTD of an ancestral fungal mtTyrRS and a self-splicing group I intron was "fixed" by an intron RNA mutation that resulted in protein-dependent splicing. Once fixed, this interaction could be elaborated by further adaptive mutations in both the catalytic domain and CTD that enabled specific binding of group I introns. Our results highlight a role for non-specific RNA binding in the evolution of RNA-binding proteins.

  19. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    NASA Astrophysics Data System (ADS)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be facilitated by hydration. On the other hand, alcohols can bind to many nonspecific sites on the protein. In dry proteins, this type of binding only occurs above a threshold of alcohol vapor pressure. Such a threshold is gradually reduced by increasing the hydration level and can be removed above a critical hydration level. Hydration also shifts the nonspecific alcohol binding from an entropy-driven to an enthalpy-driven process. This dissertation reveals the mechanism of protein hydration and the detailed roles of hydration in ligand binding, with important implications for the understanding of protein functions.

  20. Flexible DNA binding of the BTB/POZ-domain protein FBI-1.

    PubMed

    Pessler, Frank; Hernandez, Nouria

    2003-08-01

    POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.

  1. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  2. Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA-binding domain of the nucleocapsid protein.

    PubMed

    Kuo, Lili; Koetzner, Cheri A; Hurst, Kelley R; Masters, Paul S

    2014-04-01

    The coronavirus nucleocapsid (N) protein forms a helical ribonucleoprotein with the viral positive-strand RNA genome and binds to the principal constituent of the virion envelope, the membrane (M) protein, to facilitate assembly and budding. Besides these structural roles, N protein associates with a component of the replicase-transcriptase complex, nonstructural protein 3, at a critical early stage of infection. N protein has also been proposed to participate in the replication and selective packaging of genomic RNA and the transcription and translation of subgenomic mRNA. Coronavirus N proteins contain two structurally distinct RNA-binding domains, an unusual characteristic among RNA viruses. To probe the functions of these domains in the N protein of the model coronavirus mouse hepatitis virus (MHV), we constructed mutants in which each RNA-binding domain was replaced by its counterpart from the N protein of severe acute respiratory syndrome coronavirus (SARS-CoV). Mapping of revertants of the resulting chimeric viruses provided evidence for extensive intramolecular interactions between the two RNA-binding domains. Through analysis of viral RNA that was packaged into virions we identified the second of the two RNA-binding domains as a principal determinant of MHV packaging signal recognition. As expected, the interaction of N protein with M protein was not affected in either of the chimeric viruses. Moreover, the SARS-CoV N substitutions did not alter the fidelity of leader-body junction formation during subgenomic mRNA synthesis. These results more clearly delineate the functions of N protein and establish a basis for further exploration of the mechanism of genomic RNA packaging. This work describes the interactions of the two RNA-binding domains of the nucleocapsid protein of a model coronavirus, mouse hepatitis virus. The main finding is that the second of the two domains plays an essential role in recognizing the RNA structure that allows the selective packaging of genomic RNA into assembled virions.

  3. BcL-xL Conformational Changes upon Fragment Binding Revealed by NMR

    PubMed Central

    Aguirre, Clémentine; ten Brink, Tim; Walker, Olivier; Guillière, Florence; Davesne, Dany; Krimm, Isabelle

    2013-01-01

    Protein-protein interactions represent difficult but increasingly important targets for the design of therapeutic compounds able to interfere with biological processes. Recently, fragment-based strategies have been proposed as attractive approaches for the elaboration of protein-protein surface inhibitors from fragment-like molecules. One major challenge in targeting protein-protein interactions is related to the structural adaptation of the protein surface upon molecular recognition. Methods capable of identifying subtle conformational changes of proteins upon fragment binding are therefore required at the early steps of the drug design process. In this report we present a fast NMR method able to probe subtle conformational changes upon fragment binding. The approach relies on the comparison of experimental fragment-induced Chemical Shift Perturbation (CSP) of amine protons to CSP simulated for a set of docked fragment poses, considering the ring-current effect from fragment binding. We illustrate the method by the retrospective analysis of the complex between the anti-apoptotic Bcl-xL protein and the fragment 4′-fluoro-[1,1′-biphenyl]-4-carboxylic acid that was previously shown to bind one of the Bcl-xL hot spots. The CSP-based approach shows that the protein undergoes a subtle conformational rearrangement upon interaction, for residues located in helices 2, 3 and the very beginning of 5. Our observations are corroborated by residual dipolar coupling measurements performed on the free and fragment-bound forms of the Bcl-xL protein. These NMR-based results are in total agreement with previous molecular dynamic calculations that evidenced a high flexibility of Bcl-xL around the binding site. Here we show that CSP of protein amine protons are useful and reliable structural probes. Therefore, we propose to use CSP simulation to assess protein conformational changes upon ligand binding in the fragment-based drug design approach. PMID:23717610

  4. Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction PII protein GlnZ from Azospirillum brasilense.

    PubMed

    Truan, Daphné; Bjelić, Saša; Li, Xiao-Dan; Winkler, Fritz K

    2014-07-29

    The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Interaction of CSFV E2 Protein with Swine Host Factors as Detected by Yeast Two-Hybrid System

    PubMed Central

    Gladue, Douglas P.; Baker-Bransetter, Ryan; Holinka, Lauren G.; Fernandez-Sainz, Ignacio J.; O’Donnell, Vivian; Fletcher, Paige; Lu, Zhiqiang; Borca, Manuel V.

    2014-01-01

    E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. However, there is no information regarding any host binding partners for the E2 proteins. Here, we utilized the yeast two-hybrid system and identified fifty-seven host proteins as positive binding partners which bound E2 from both CSFV and BVDV with the exception of two proteins that were found to be positive for binding only to CSFV E2. Alanine scanning of CSFV E2 demonstrated that the binding sites for these cellular proteins on E2 are likely non-linear binding sites. The possible roles of the identified host proteins are discussed as the results presented here will be important for future studies to elucidate mechanisms of host protein-virus interactions during pestivirus infection. However, due to the limitations of the yeast two hybrid system, the proteins identified is not exhaustive and each interaction identified needs to be confirmed by independent experimental approaches in the context of virus-infected cells before any definitive conclusion can be drawn on relevance for the virus life cycle. PMID:24416391

  6. Hybrid In Silico/In Vitro Approaches for the Identification of Functional Cholesterol-Binding Domains in Membrane Proteins.

    PubMed

    Di Scala, Coralie; Fantini, Jacques

    2017-01-01

    In eukaryotic cells, cholesterol is an important regulator of a broad range of membrane proteins, including receptors, transporters, and ion channels. Understanding how cholesterol interacts with membrane proteins is a difficult task because structural data of these proteins complexed with cholesterol are scarce. Here, we describe a dual approach based on in silico studies of protein-cholesterol interactions, combined with physico-chemical measurements of protein insertion into cholesterol-containing monolayers. Our algorithm is validated through careful analysis of the effect of key mutations within and outside the predicted cholesterol-binding site. Our method is illustrated by a complete analysis of cholesterol-binding to Alzheimer's β-amyloid peptide, a protein that penetrates the plasma membrane of brain cells through a cholesterol-dependent process.

  7. DIBS: a repository of disordered binding sites mediating interactions with ordered proteins.

    PubMed

    Schad, Eva; Fichó, Erzsébet; Pancsa, Rita; Simon, István; Dosztányi, Zsuzsanna; Mészáros, Bálint

    2018-02-01

    Intrinsically Disordered Proteins (IDPs) mediate crucial protein-protein interactions, most notably in signaling and regulation. As their importance is increasingly recognized, the detailed analyses of specific IDP interactions opened up new opportunities for therapeutic targeting. Yet, large scale information about IDP-mediated interactions in structural and functional details are lacking, hindering the understanding of the mechanisms underlying this distinct binding mode. Here, we present DIBS, the first comprehensive, curated collection of complexes between IDPs and ordered proteins. DIBS not only describes by far the highest number of cases, it also provides the dissociation constants of their interactions, as well as the description of potential post-translational modifications modulating the binding strength and linear motifs involved in the binding. Together with the wide range of structural and functional annotations, DIBS will provide the cornerstone for structural and functional studies of IDP complexes. DIBS is freely accessible at http://dibs.enzim.ttk.mta.hu/. The DIBS application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. dosztanyi@caesar.elte.hu or bmeszaros@caesar.elte.hu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  8. DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions

    PubMed Central

    Lambrughi, Matteo; De Gioia, Luca; Gervasio, Francesco Luigi; Lindorff-Larsen, Kresten; Nussinov, Ruth; Urani, Chiara; Bruschi, Maurizio; Papaleo, Elena

    2016-01-01

    Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling. PMID:27604871

  9. The effect of fenoterol stereochemistry on the β2 adrenergic receptor system: ligand directed chiral recognition

    PubMed Central

    Jozwiak, Krzysztof; Plazinska, Anita; Toll, Lawrence; Jimenez, Lucita; Woo, Anthony Yiu-Ho; Xiao, Rui-Ping; Wainer, Irving W.

    2011-01-01

    The β2 adrenergic receptor (β2-AR) is a model system for studying the ligand recognition process in G-protein coupled receptors. Fenoterol (FEN) is a β2-AR selective agonist that has two centers of chirality and exists as four stereoisomers. Radioligand binding studies determined that stereochemistry greatly influences the binding affinity. Subsequent Van’t Hoff analysis shows very different thermodynamics of binding depending on the stereoconfiguration of the molecule. The binding of (S,x’)-isomers is almost entirely enthalpy controlled whereas binding of (R,x’)-isomers is purely entropy driven. Stereochemistry of FEN molecule also affects the coupling of the receptor to different G proteins. In a rat cardiomyocyte contractility model, (R,R’)-FEN was shown to selectively activate Gs protein signaling while the (S,R’)- isomer activated both Gi and Gs protein. The overall data demonstrate that the chirality at the two chiral centers of the FEN molecule influences the magnitude of binding affinity, thermodynamics of local interactions within the binding site and the global mechanism of β2-AR activation. Differences in thermodynamic parameters and non-uniform G-protein coupling suggest a mechanism of chiral recognition in which observed enantioselectivities arise from the interaction of the (R,x’)-FEN stereoisomers with a different receptor conformation than the one with which the (S,x’)-isomer interacts. PMID:21618615

  10. Effect of fenoterol stereochemistry on the β2 adrenergic receptor system: ligand-directed chiral recognition.

    PubMed

    Jozwiak, Krzysztof; Plazinska, Anita; Toll, Lawrence; Jimenez, Lucita; Woo, Anthony Yiu-Ho; Xiao, Rui-Ping; Wainer, Irving W

    2011-01-01

    The β(2) adrenergic receptor (β(2)-AR) is a model system for studying the ligand recognition process in G protein-coupled receptors. Fenoterol (FEN) is a β(2)-AR selective agonist that has two centers of chirality and exists as four stereoisomers. Radioligand binding studies determined that stereochemistry greatly influences the binding affinity. Subsequent Van't Hoff analysis shows very different thermodynamics of binding depending on the stereoconfiguration of the molecule. The binding of (S,x')-isomers is almost entirely enthalpy controlled whereas binding of (R,x')-isomers is purely entropy driven. Stereochemistry of FEN molecule also affects the coupling of the receptor to different G proteins. In a rat cardiomyocyte contractility model, (R,R')-FEN was shown to selectively activate G(s) protein signaling while the (S,R')-isomer activated both G(i) and G(s) protein. The overall data demonstrate that the chirality at the two chiral centers of the FEN molecule influences the magnitude of binding affinity, thermodynamics of local interactions within the binding site, and the global mechanism of β(2)-AR activation. Differences in thermodynamic parameters and nonuniform G-protein coupling suggest a mechanism of chiral recognition in which observed enantioselectivities arise from the interaction of the (R,x')-FEN stereoisomers with a different receptor conformation than the one with which the (S,x')-isomer interacts. Copyright © 2011 Wiley-Liss, Inc.

  11. Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis.

    PubMed

    Liu, Chune; Yang, Zhihong; Wu, Jianguo; Zhang, Li; Lee, Sangmin; Shin, Dong-Ju; Tran, Melanie; Wang, Li

    2018-05-01

    H19 is an imprinted long noncoding RNA abundantly expressed in embryonic liver and repressed after birth. We show that H19 serves as a lipid sensor by synergizing with the RNA-binding polypyrimidine tract-binding protein 1 (PTBP1) to modulate hepatic metabolic homeostasis. H19 RNA interacts with PTBP1 to facilitate its association with sterol regulatory element-binding protein 1c mRNA and protein, leading to increased stability and nuclear transcriptional activity. H19 and PTBP1 are up-regulated by fatty acids in hepatocytes and in diet-induced fatty liver, which further augments lipid accumulation. Ectopic expression of H19 induces steatosis and pushes the liver into a "pseudo-fed" state in response to fasting by promoting sterol regulatory element-binding protein 1c protein cleavage and nuclear translocation. Deletion of H19 or knockdown of PTBP1 abolishes high-fat and high-sucrose diet-induced steatosis. Our study unveils an H19/PTBP1/sterol regulatory element-binding protein 1 feedforward amplifying signaling pathway to exacerbate the development of fatty liver. (Hepatology 2018;67:1768-1783). © 2017 by the American Association for the Study of Liver Diseases.

  12. GREEN: A program package for docking studies in rational drug design

    NASA Astrophysics Data System (ADS)

    Tomioka, Nobuo; Itai, Akiko

    1994-08-01

    A program package, GREEN, has been developed that enables docking studies between ligand molecules and a protein molecule. Based on the structure of the protein molecule, the physical and chemical environment of the ligand-binding site is expressed as three-dimensional grid-point data. The grid-point data are used for the real-time evaluation of the protein-ligand interaction energy, as well as for the graphical representation of the binding-site environment. The interactive docking operation is facilitated by various built-in functions, such as energy minimization, energy contribution analysis and logging of the manipulation trajectory. Interactive modeling functions are incorporated for designing new ligand molecules while considering the binding-site environment and the protein-ligand interaction. As an example of the application of GREEN, a docking study is presented on the complex between trypsin and a synthetic trypsin inhibitor. The program package will be useful for rational drug design, based on the 3D structure of the target protein.

  13. A method for fast energy estimation and visualization of protein-ligand interaction

    NASA Astrophysics Data System (ADS)

    Tomioka, Nobuo; Itai, Akiko; Iitaka, Yoichi

    1987-10-01

    A new computational and graphical method for facilitating ligand-protein docking studies is developed on a three-dimensional computer graphics display. Various physical and chemical properties inside the ligand binding pocket of a receptor protein, whose structure is elucidated by X-ray crystal analysis, are calculated on three-dimensional grid points and are stored in advance. By utilizing those tabulated data, it is possible to estimate the non-bonded and electrostatic interaction energy and the number of possible hydrogen bonds between protein and ligand molecules in real time during an interactive docking operation. The method also provides a comprehensive visualization of the local environment inside the binding pocket. With this method, it becomes easier to find a roughly stable geometry of ligand molecules, and one can therefore make a rapid survey of the binding capability of many drug candidates. The method will be useful for drug design as well as for the examination of protein-ligand interactions.

  14. High-throughput analysis of peptide binding modules

    PubMed Central

    Liu, Bernard A.; Engelmann, Brett; Nash, Piers D.

    2014-01-01

    Modular protein interaction domains that recognize linear peptide motifs are found in hundreds of proteins within the human genome. Some protein interaction domains such as SH2, 14-3-3, Chromo and Bromo domains serve to recognize post-translational modification of amino acids (such as phosphorylation, acetylation, methylation etc.) and translate these into discrete cellular responses. Other modules such as SH3 and PDZ domains recognize linear peptide epitopes and serve to organize protein complexes based on localization and regions of elevated concentration. In both cases, the ability to nucleate specific signaling complexes is in large part dependent on the selectivity of a given protein module for its cognate peptide ligand. High throughput analysis of peptide-binding domains by peptide or protein arrays, phage display, mass spectrometry or other HTP techniques provides new insight into the potential protein-protein interactions prescribed by individual or even whole families of modules. Systems level analyses have also promoted a deeper understanding of the underlying principles that govern selective protein-protein interactions and how selectivity evolves. Lastly, there is a growing appreciation for the limitations and potential pitfalls of high-throughput analysis of protein-peptide interactomes. This review will examine some of the common approaches utilized for large-scale studies of protein interaction domains and suggest a set of standards for the analysis and validation of datasets from large-scale studies of peptide-binding modules. We will also highlight how data from large-scale studies of modular interaction domain families can provide insight into systems level properties such as the linguistics of selective interactions. PMID:22610655

  15. Alcohol-Binding Sites in Distinct Brain Proteins: The Quest for Atomic Level Resolution

    PubMed Central

    Howard, Rebecca J.; Slesinger, Paul A.; Davies, Daryl L.; Das, Joydip; Trudell, James R.; Harris, R. Adron

    2011-01-01

    Defining the sites of action of ethanol on brain proteins is a major prerequisite to understanding the molecular pharmacology of this drug. The main barrier to reaching an atomic-level understanding of alcohol action is the low potency of alcohols, ethanol in particular, which is a reflection of transient, low-affinity interactions with their targets. These mechanisms are difficult or impossible to study with traditional techniques such as radioligand binding or spectroscopy. However, there has been considerable recent progress in combining X-ray crystallography, structural modeling, and site-directed mutagenesis to define the sites and mechanisms of action of ethanol and related alcohols on key brain proteins. We review such insights for several diverse classes of proteins including inwardly rectifying potassium, transient receptor potential, and neurotransmit-ter-gated ion channels, as well as protein kinase C epsilon. Some common themes are beginning to emerge from these proteins, including hydrogen bonding of the hydroxyl group and van der Waals interactions of the methylene groups of ethanol with specific amino acid residues. The resulting binding energy is proposed to facilitate or stabilize low-energy state transitions in the bound proteins, allowing ethanol to act as a “molecular lubricant” for protein function. We discuss evidence for characteristic, discrete alcohol-binding sites on protein targets, as well as evidence that binding to some proteins is better characterized by an interaction region that can accommodate multiple molecules of ethanol. PMID:21676006

  16. Prediction of protein-protein interaction sites using electrostatic desolvation profiles.

    PubMed

    Fiorucci, Sébastien; Zacharias, Martin

    2010-05-19

    Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Structural analyses of von Willebrand factor C domains of collagen 2A and CCN3 reveal an alternative mode of binding to bone morphogenetic protein-2.

    PubMed

    Xu, Emma-Ruoqi; Blythe, Emily E; Fischer, Gerhard; Hyvönen, Marko

    2017-07-28

    Bone morphogenetic proteins (BMPs) are secreted growth factors that promote differentiation processes in embryogenesis and tissue development. Regulation of BMP signaling involves binding to a variety of extracellular proteins, among which are many von Willebrand factor C (vWC) domain-containing proteins. Although the crystal structure of the complex of crossveinless-2 (CV-2) vWC1 and BMP-2 previously revealed one mode of the vWC/BMP-binding mechanism, other vWC domains may bind to BMP differently. Here, using X-ray crystallography, we present for the first time structures of the vWC domains of two proteins thought to interact with BMP-2: collagen IIA and matricellular protein CCN3. We found that these two vWC domains share a similar N-terminal fold that differs greatly from that in CV-2 vWC, which comprises its BMP-2-binding site. We analyzed the ability of these vWC domains to directly bind to BMP-2 and detected an interaction only between the collagen IIa vWC and BMP-2. Guided by the collagen IIa vWC domain crystal structure and conservation of surface residues among orthologous domains, we mapped the BMP-binding epitope on the subdomain 1 of the vWC domain. This binding site is different from that previously observed in the complex between CV-2 vWC and BMP-2, revealing an alternative mode of interaction between vWC domains and BMPs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus.

    PubMed

    Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji

    2012-01-01

    Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β(2)-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus.

  19. Efficient generation of transgenic reporter strains and analysis of expression patterns in Caenorhabditis elegans using Library MosSCI

    PubMed Central

    Kaymak, Ebru; Farley, Brian M.; Hay, Samantha A.; Li, Chihua; Ho, Samantha; Hartman, Daniel J.; Ryder, Sean P.

    2016-01-01

    Background In C. elegans, germline development and early embryogenesis rely on post-transcriptional regulation of maternally transcribed mRNAs. In many cases, the 3′UTR is sufficient to govern the expression patterns of these transcripts. Several RNA-binding proteins are required to regulate maternal mRNAs through the 3′UTR. Despite intensive efforts to map RNA-binding protein-mRNA interactions in vivo, the biological impact of most binding events remains unknown. Reporter studies using single copy integrated transgenes are essential to evaluate the functional consequences of interactions between RNA-binding proteins and their associated mRNAs. Results In this report, we present an efficient method of generating reporter strains with improved throughput by using a library variant of MosSCI transgenesis. Furthermore, using RNA interference, we identify the suite of RBPs that control the expression pattern of five different maternal mRNAs. Conclusions The results provide a generalizable and efficient strategy to assess the functional relevance of protein-RNA interactions in vivo, and reveal new regulatory connections between key RNA-binding proteins and their maternal mRNA targets. PMID:27294288

  20. Interaction between the phage HK022 Nun protein and the nut RNA of phage lambda.

    PubMed

    Chattopadhyay, S; Hung, S C; Stuart, A C; Palmer, A G; Garcia-Mena, J; Das, A; Gottesman, M E

    1995-12-19

    The nun gene product of prophage HK022 excludes phage lambda infection by blocking the expression of genes downstream from the lambda nut sequence. The Nun protein functions both by competing with lambda N transcription-antitermination protein and by actively inducing transcription termination on the lambda chromosome. We demonstrate that Nun binds directly to a stem-loop structure within nut RNA, boxB, which is also the target for the N antiterminator. The two proteins show comparable affinities for boxB and they compete with each other. Their interactions with boxB are similar, as shown by RNase protection experiments, NMR spectroscopy, and analysis of boxB mutants. Each protein binds the 5' strand of the boxB stem and the adjacent loop. The stem does not melt upon the binding of Nun or N, as the 3' strand remains sensitive to a double-strand-specific RNase. The binding of RNA partially protects Nun from proteolysis and changes its NMR spectra. Evidently, although Nun and N bind to the same surface of boxB RNA, their respective complexes interact differently with RNA polymerase, inducing transcription termination or antitermination, respectively.

  1. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jing; Gurung, Buddha; Wan, Bingbing

    2013-04-08

    Menin is a tumour suppressor protein whose loss or inactivation causes multiple endocrine neoplasia 1 (MEN1), a hereditary autosomal dominant tumour syndrome that is characterized by tumorigenesis in multiple endocrine organs. Menin interacts with many proteins and is involved in a variety of cellular processes. Menin binds the JUN family transcription factor JUND and inhibits its transcriptional activity. Several MEN1 missense mutations disrupt the menin-JUND interaction, suggesting a correlation between the tumour-suppressor function of menin and its suppression of JUND-activated transcription. Menin also interacts with mixed lineage leukaemia protein 1 (MLL1), a histone H3 lysine 4 methyltransferase, and functions asmore » an oncogenic cofactor to upregulate gene transcription and promote MLL1-fusion-protein-induced leukaemogenesis. A recent report on the tethering of MLL1 to chromatin binding factor lens epithelium-derived growth factor (LEDGF) by menin indicates that menin is a molecular adaptor coordinating the functions of multiple proteins. Despite its importance, how menin interacts with many distinct partners and regulates their functions remains poorly understood. Here we present the crystal structures of human menin in its free form and in complexes with MLL1 or with JUND, or with an MLL1-LEDGF heterodimer. These structures show that menin contains a deep pocket that binds short peptides of MLL1 or JUND in the same manner, but that it can have opposite effects on transcription. The menin-JUND interaction blocks JUN N-terminal kinase (JNK)-mediated JUND phosphorylation and suppresses JUND-induced transcription. In contrast, menin promotes gene transcription by binding the transcription activator MLL1 through the peptide pocket while still interacting with the chromatin-anchoring protein LEDGF at a distinct surface formed by both menin and MLL1.« less

  2. Hepatitis B virus X protein modulates peroxisome proliferator-activated receptor gamma through protein-protein interaction.

    PubMed

    Choi, Youn-Hee; Kim, Ha-il; Seong, Je Kyung; Yu, Dae-Yeul; Cho, Hyeseong; Lee, Mi-Ock; Lee, Jae Myun; Ahn, Yong-ho; Kim, Se Jong; Park, Jeon Han

    2004-01-16

    Ligand activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been reported to induce growth inhibition and apoptosis in various cancers including hepatocellular carcinoma (HCC). However, the effect of hepatitis B virus X protein (HBx) on PPARgamma activation has not been characterized in hepatitis B virus (HBV)-associated HCC. Herein, we demonstrated that HBx counteracted growth inhibition caused by PPARgamma ligand in HBx-associated HCC cells. We found that HBx bound to DNA binding domain of PPARgamma and HBx/PPARgamma interaction blocked nuclear localization and binding to recognition site of PPARgamma. HBx significantly suppressed a PPARgamma-mediated transactivation. These results suggest that HBx modulates PPARgamma function through protein-protein interaction.

  3. Polyamines: naturally occurring small molecule modulators of electrostatic protein-protein interactions.

    PubMed

    Berwanger, Anja; Eyrisch, Susanne; Schuster, Inge; Helms, Volkhard; Bernhardt, Rita

    2010-02-01

    Modulations of protein-protein interactions are a key step in regulating protein function, especially in networks. Modulators of these interactions are supposed to be candidates for the development of novel drugs. Here, we describe the role of the small, polycationic and highly abundant natural polyamines that could efficiently bind to charged spots at protein interfaces as modulators of such protein-protein interactions. Using the mitochondrial cytochrome P45011A1 (CYP11A1) electron transfer system as a model, we have analyzed the capability of putrescine, spermidine, and spermine at physiologically relevant concentrations to affect the protein-protein interactions between adrenodoxin reductase (AdR), adrenodoxin (Adx), and CYP11A1. The actions of polyamines on the individual components, on their association/dissociation, on electron transfer, and on substrate conversion were examined. These studies revealed modulating effects of polyamines on distinct interactions and on the entire system in a complex way. Modulation via changed protein-protein interactions appeared plausible from docking experiments that suggested favourable high-affinity binding sites of polyamines (spermine>spermidine>putrescine) at the AdR-Adx interface. Our findings imply for the first time that small endogenous compounds are capable of interfering with distinct components of transient protein complexes and might control protein functions by modulating electrostatic protein-protein interactions.

  4. REVIEW ARTICLE: How do biomolecular systems speed up and regulate rates?

    NASA Astrophysics Data System (ADS)

    Zhou, Huan-Xiang

    2005-09-01

    The viability of a biological system depends upon careful regulation of the rates of various processes. These rates have limits imposed by intrinsic chemical or physical steps (e.g., diffusion). These limits can be expanded by interactions and dynamics of the biomolecules. For example, (a) a chemical reaction is catalyzed when its transition state is preferentially bound to an enzyme; (b) the folding of a protein molecule is speeded up by specific interactions within the transition-state ensemble and may be assisted by molecular chaperones; (c) the rate of specific binding of a protein molecule to a cellular target can be enhanced by mechanisms such as long-range electrostatic interactions, nonspecific binding and folding upon binding; (d) directional movement of motor proteins is generated by capturing favorable Brownian motion through intermolecular binding energy; and (e) conduction and selectivity of ions through membrane channels are controlled by interactions and the dynamics of channel proteins. Simple physical models are presented here to illustrate these processes and provide a unifying framework for understanding speed attainment and regulation in biomolecular systems.

  5. New fluorescent reagents specific for Ca{sup 2+}-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Hail, Danya; Lemelson, Daniela; Israelson, Adrian

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer New reagents specifically inhibit the activity of Ca{sup 2+}-dependent proteins. Black-Right-Pointing-Pointer FITC-Ru and EITC-Ru allow for mechanism-independent probing of Ca{sup 2+}-binding proteins. Black-Right-Pointing-Pointer Changes in reagents fluorescence allow characterization of protein Ca{sup 2+}-binding properties. -- Abstract: Ca{sup 2+} carries information pivotal to cell life and death via its interactions with specific binding sites in a protein. We previously developed a novel photoreactive reagent, azido ruthenium (AzRu), which strongly inhibits Ca{sup 2+}-dependent activities. Here, we synthesized new fluorescent ruthenium-based reagents containing FITC or EITC, FITC-Ru and EITC-Ru. These reagents were purified, characterized and found to specifically interact with andmore » markedly inhibit Ca{sup 2+}-dependent activities but not the activity of Ca{sup 2+}-independent reactions. In contrast to many reagents that serve as probes for Ca{sup 2+}, FITC-Ru and EITC-Ru are the first fluorescent divalent cation analogs to be synthesized and characterized that specifically bind to Ca{sup 2+}-binding proteins and inhibit their activity. Such reagents will assist in characterizing Ca{sup 2+}-binding proteins, thereby facilitating better understanding of the function of Ca{sup 2+} as a key bio-regulator.« less

  6. Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery

    PubMed Central

    Merino, Felipe; Bouvier, Benjamin; Cojocaru, Vlad

    2015-01-01

    Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions. PMID:26067358

  7. Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery.

    PubMed

    Merino, Felipe; Bouvier, Benjamin; Cojocaru, Vlad

    2015-06-01

    Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions.

  8. Detection and characterization of nonspecific, sparsely-populated binding modes in the early stages of complexation

    PubMed Central

    Cardone, A.; Bornstein, A.; Pant, H. C.; Brady, M.; Sriram, R.; Hassan, S. A.

    2015-01-01

    A method is proposed to study protein-ligand binding in a system governed by specific and non-specific interactions. Strong associations lead to narrow distributions in the proteins configuration space; weak and ultra-weak associations lead instead to broader distributions, a manifestation of non-specific, sparsely-populated binding modes with multiple interfaces. The method is based on the notion that a discrete set of preferential first-encounter modes are metastable states from which stable (pre-relaxation) complexes at equilibrium evolve. The method can be used to explore alternative pathways of complexation with statistical significance and can be integrated into a general algorithm to study protein interaction networks. The method is applied to a peptide-protein complex. The peptide adopts several low-population conformers and binds in a variety of modes with a broad range of affinities. The system is thus well suited to analyze general features of binding, including conformational selection, multiplicity of binding modes, and nonspecific interactions, and to illustrate how the method can be applied to study these problems systematically. The equilibrium distributions can be used to generate biasing functions for simulations of multiprotein systems from which bulk thermodynamic quantities can be calculated. PMID:25782918

  9. Genome scale enzyme–metabolite and drug–target interaction predictions using the signature molecular descriptor

    DOE PAGES

    Faulon, Jean-Loup; Misra, Milind; Martin, Shawn; ...

    2007-11-23

    Motivation: Identifying protein enzymatic or pharmacological activities are important areas of research in biology and chemistry. Biological and chemical databases are increasingly being populated with linkages between protein sequences and chemical structures. Additionally, there is now sufficient information to apply machine-learning techniques to predict interactions between chemicals and proteins at a genome scale. Current machine-learning techniques use as input either protein sequences and structures or chemical information. We propose here a method to infer protein–chemical interactions using heterogeneous input consisting of both protein sequence and chemical information. Results: Our method relies on expressing proteins and chemicals with a common cheminformaticsmore » representation. We demonstrate our approach by predicting whether proteins can catalyze reactions not present in training sets. We also predict whether a given drug can bind a target, in the absence of prior binding information for that drug and target. Lastly, such predictions cannot be made with current machine-learning techniques requiring binding information for individual reactions or individual targets.« less

  10. Interactions of the chemotaxis signal protein CheY with bacterial flagellar motors visualized by evanescent wave microscopy.

    PubMed

    Khan, S; Pierce, D; Vale, R D

    The chemotaxis signal protein CheY of enteric bacteria shuttles between transmembrane methyl-accepting chemotaxis protein (MCP) receptor complexes and flagellar basal bodies [1]. The basal body C-rings, composed of the FliM, FliG and FliN proteins, form the rotor of the flagellar motor [2]. Phosphorylated CheY binds to isolated FliM [3] and may also interact with FliG [4], but its binding to basal bodies has not been measured. Using the chemorepellent acetate to phosphorylate and acetylate CheY [5], we have measured the covalent-modification-dependent binding of a green fluorescent protein-CheY fusion (GFP-CheY) to motor assemblies in bacteria lacking MCP complexes by evanescent wave microscopy [6]. At acetate concentrations that cause solely clockwise rotation, GFP-CheY molecules bound to native basal bodies or to overproduced rotor complexes with a stoichiometry comparable to the number of C-ring subunits. GFP-CheY did not bind to rotors lacking FIiM/FliN, showing that these subunits are essential for the association. This assay provides a new means of monitoring protein-protein interactions in signal transduction pathways in living cells.

  11. The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptin-binding protein involved in receptor-mediated endocytosis.

    PubMed

    Waelter, S; Scherzinger, E; Hasenbank, R; Nordhoff, E; Lurz, R; Goehler, H; Gauss, C; Sathasivam, K; Bates, G P; Lehrach, H; Wanker, E E

    2001-08-15

    The huntingtin interacting protein (HIP1) is enriched in membrane-containing cell fractions and has been implicated in vesicle trafficking. It is a multidomain protein containing an N-terminal ENTH domain, a central coiled-coil forming region and a C-terminal actin-binding domain. In the present study we have identified three HIP1 associated proteins, clathrin heavy chain and alpha-adaptin A and C. In vitro binding studies revealed that the central coiled-coil domain is required for the interaction of HIP1 with clathrin, whereas DPF-like motifs located upstream to this domain are important for the binding of HIP1 to the C-terminal 'appendage' domain of alpha-adaptin A and C. Expression of full length HIP1 in mammalian cells resulted in a punctate cytoplasmic immunostaining characteristic of clathrin-coated vesicles. In contrast, when a truncated HIP1 protein containing both the DPF-like motifs and the coiled-coil domain was overexpressed, large perinuclear vesicle-like structures containing HIP1, huntingtin, clathrin and endocytosed transferrin were observed, indicating that HIP1 is an endocytic protein, the structural integrity of which is crucial for maintenance of normal vesicle size in vivo.

  12. Molecular modeling of the AhR structure and interactions can shed light on ligand-dependent activation and transformation mechanisms.

    PubMed

    Bonati, Laura; Corrada, Dario; Tagliabue, Sara Giani; Motta, Stefano

    2017-02-01

    Molecular modeling has given important contributions to elucidation of the main stages in the AhR signal transduction pathway. Despite the lack of experimentally determined structures of the AhR functional domains, information derived from homologous systems has been exploited for modeling their structure and interactions. Homology models of the AhR PASB domain have provided information on the binding cavity and contributed to elucidate species-specific differences in ligand binding. Molecular Docking simulations of the ligand binding process have given insights into differences in binding of diverse agonists, antagonists, and selective AhR modulators, and their application to virtual screening of large databases of compounds have allowed identification of novel AhR ligands. Recently available structural information on protein-protein and protein-DNA complexes of other bHLH-PAS systems has opened the way for modeling the AhR:ARNT dimer structure and investigating the mechanisms of AhR transformation and DNA binding. Future research directions should include simulation of the protein dynamics to obtain a more reliable description of intermolecular interactions involved in signal transmission.

  13. Electrostatic interactions play an essential role in the binding of oleic acid with α-lactalbumin in the HAMLET-like complex: a study using charge-specific chemical modifications.

    PubMed

    Xie, Yongjing; Min, Soyoung; Harte, Níal P; Kirk, Hannah; O'Brien, John E; Voorheis, H Paul; Svanborg, Catharina; Hun Mok, K

    2013-01-01

    Human α-lactalbumin made lethal to tumor cells (HAMLET) and its analogs are partially unfolded protein-oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge-specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively-charged lysine residues to negatively-charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells. Retention of the positive charges by converting lysine residues to homoarginine groups (guanidination); however, yielded unchanged binding of OA to protein and identical tumoricidal activity to that displayed by the wild-type α-lactalbumin-oleic acid complex. With the addition of OA, the wild-type and guanidinated α-lactalbumin proteins underwent substantial conformational changes, such as partial unfolding, loss of tertiary structure, but retention of secondary structure. In contrast, no significant conformational changes were observed in the citraconylated and acetylated α-lactalbumins, most likely because of the absence of OA binding. These results suggest that electrostatic interactions between the positively-charged basic groups on α-lactalbumin and the negatively-charged carboxylate groups on OA molecules play an essential role in the binding of OA to α-lactalbumin and that these interactions appear to be as important as hydrophobic interactions. Copyright © 2012 Wiley Periodicals, Inc.

  14. The simulation approach to lipid-protein interactions.

    PubMed

    Paramo, Teresa; Garzón, Diana; Holdbrook, Daniel A; Khalid, Syma; Bond, Peter J

    2013-01-01

    The interactions between lipids and proteins are crucial for a range of biological processes, from the folding and stability of membrane proteins to signaling and metabolism facilitated by lipid-binding proteins. However, high-resolution structural details concerning functional lipid/protein interactions are scarce due to barriers in both experimental isolation of native lipid-bound complexes and subsequent biophysical characterization. The molecular dynamics (MD) simulation approach provides a means to complement available structural data, yielding dynamic, structural, and thermodynamic data for a protein embedded within a physiologically realistic, modelled lipid environment. In this chapter, we provide a guide to current methods for setting up and running simulations of membrane proteins and soluble, lipid-binding proteins, using standard atomistically detailed representations, as well as simplified, coarse-grained models. In addition, we outline recent studies that illustrate the power of the simulation approach in the context of biologically relevant lipid/protein interactions.

  15. Mass-action equilibrium and non-specific interactions in protein binding networks

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei

    2009-03-01

    Large-scale protein binding networks serve as a paradigm of complex properties of living cells. These networks are naturally weighted with edges characterized by binding strength and protein-nodes -- by their concentrations. However, the state-of-the-art high-throughput experimental techniques generate just a binary (yes or no) information about individual interactions. As a result, most of the previous research concentrated just on topology of these networks. In a series of recent publications [1-4] my collaborators and I went beyond purely topological studies and calculated the mass-action equilibrium of a genome-wide binding network using experimentally determined protein concentrations, localizations, and reliable binding interactions in baker's yeast. We then studied how this equilibrium responds to large perturbations [1-2] and noise [3] in concentrations of proteins. We demonstrated that the change in the equilibrium concentration of a protein exponentially decays (and sign-alternates) with its network distance away from the perturbed node. This explains why, despite a globally connected topology, individual functional modules in such networks are able to operate fairly independently. In a separate study [4] we quantified the interplay between specific and non-specific binding interactions under crowded conditions inside living cells. We show how the need to limit the waste of resources constrains the number of types and concentrations of proteins that are present at the same time and at the same place in yeast cells. [1] S Maslov, I. Ispolatov, PNAS 104:13655 (2007). [2] S. Maslov, K. Sneppen, I. Ispolatov, New J. of Phys. 9: 273 (2007). [3] K-K. Yan, D. Walker, S. Maslov, PRL accepted (2008). [4] J. Zhang, S. Maslov, and E. I. Shakhnovich, Mol Syst Biol 4, 210 (2008).

  16. Probing the interaction of anticancer drug temsirolimus with human serum albumin: molecular docking and spectroscopic insight.

    PubMed

    Shamsi, Anas; Ahmed, Azaj; Bano, Bilqees

    2018-05-01

    The binding interaction between temsirolimus, an important antirenal cancer drug, and HSA, an important carrier protein was scrutinized making use of UV and fluorescence spectroscopy. Hyper chromaticity observed in UV spectroscopy in the presence of temsirolimus as compared to free HSA suggests the formation of complex between HSA and temsirolimus. Fluorescence quenching experiments clearly showed quenching in the fluorescence of HSA in the presence of temsirolimus confirming the complex formation and also confirmed that static mode of interaction is operative for this binding process. Binding constant values obtained through UV and fluorescence spectroscopy reveal strong interaction; temsirolimus binds to HSA at 298 K with a binding constant of 2.9 × 10 4  M -1 implying the strength of interaction. The negative Gibbs free energy obtained through Isothermal titration calorimetry as well as quenching experiments suggests that binding process is spontaneous. Molecular docking further provides an insight of various residues that are involved in this binding process; showing the binding energy to be -12.9 kcal/mol. CD spectroscopy was retorted to analyze changes in secondary structure of HSA; increased intensity in presence of temsirolimus showing changes in secondary structure of HSA induced by temsirolimus. This study is of importance as it provides an insight into the binding mechanism of an important antirenal cancer drug with an important carrier protein. Once temsirolimus binds to HSA, it changes conformation of HSA which in turn can alter the functionality of this important carrier protein and this altered functionality of HSA can be highlighted in variety of diseases.

  17. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA.

    PubMed

    Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm

    2015-07-27

    VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone

    PubMed Central

    Góral, Agnieszka; Bieganowski, Paweł; Prus, Wiktor; Krzemień-Ojak, Łucja; Kądziołka, Beata; Fabczak, Hanna; Filipek, Anna

    2016-01-01

    The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery. PMID:27249023

  19. Analysis of Protein Interactions with Picomolar Binding Affinity by Fluorescence-Detected Sedimentation Velocity

    PubMed Central

    2014-01-01

    The study of high-affinity protein interactions with equilibrium dissociation constants (KD) in the picomolar range is of significant interest in many fields, but the characterization of stoichiometry and free energy of such high-affinity binding can be far from trivial. Analytical ultracentrifugation has long been considered a gold standard in the study of protein interactions but is typically applied to systems with micromolar KD. Here we present a new approach for the study of high-affinity interactions using fluorescence detected sedimentation velocity analytical ultracentrifugation (FDS-SV). Taking full advantage of the large data sets in FDS-SV by direct boundary modeling with sedimentation coefficient distributions c(s), we demonstrate detection and hydrodynamic resolution of protein complexes at low picomolar concentrations. We show how this permits the characterization of the antibody–antigen interactions with low picomolar binding constants, 2 orders of magnitude lower than previously achieved. The strongly size-dependent separation and quantitation by concentration, size, and shape of free and complex species in free solution by FDS-SV has significant potential for studying high-affinity multistep and multicomponent protein assemblies. PMID:24552356

  20. The Receptor-Binding Site of the Measles Virus Hemagglutinin Protein Itself Constitutes a Conserved Neutralizing Epitope

    PubMed Central

    Ohno, Shinji; Sakai, Kouji; Ito, Yuri; Fukuhara, Hideo; Komase, Katsuhiro; Brindley, Melinda A.; Rota, Paul A.; Plemper, Richard K.; Maenaka, Katsumi; Takeda, Makoto

    2013-01-01

    Here, we provide direct evidence that the receptor-binding site of measles virus (MV) hemagglutinin protein itself forms an effective conserved neutralizing epitope (CNE). Several receptor-interacting residues constitute the CNE. Thus, viral escape from neutralization has to be associated with loss of receptor-binding activity. Since interactions with both the signaling lymphocyte activation molecule (SLAM) and nectin4 are critical for MV pathogenesis, its escape, which results from loss of receptor-binding activity, should not occur in nature. PMID:23283964

  1. Cotton and Protein Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, itmore » may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.« less

  2. Ligand binding by repeat proteins: natural and designed

    PubMed Central

    Grove, Tijana Z; Cortajarena, Aitziber L; Regan, Lynne

    2012-01-01

    Repeat proteins contain tandem arrays of small structural motifs. As a consequence of this architecture, they adopt non-globular, extended structures that present large, highly specific surfaces for ligand binding. Here we discuss recent advances toward understanding the functional role of this unique modular architecture. We showcase specific examples of natural repeat proteins interacting with diverse ligands and also present examples of designed repeat protein–ligand interactions. PMID:18602006

  3. Pseudouridine and N6-methyladenosine modifications weaken PUF protein/RNA interactions

    PubMed Central

    AlSadhan, Ishraq; Merriman, Dawn K.; Al-Hashimi, Hashim M.; Herschlag, Daniel

    2017-01-01

    RNA modifications are ubiquitous in biology, with over 100 distinct modifications. While the vast majority were identified and characterized on abundant noncoding RNA such as tRNA and rRNA, the advent of sensitive sequencing-based approaches has led to the discovery of extensive and regulated modification of eukaryotic messenger RNAs as well. The two most abundant mRNA modifications—pseudouridine (Ψ) and N6-methyladenosine (m6A)—affect diverse cellular processes including mRNA splicing, localization, translation, and decay and modulate RNA structure. Here, we test the hypothesis that RNA modifications directly affect interactions between RNA-binding proteins and target RNA. We show that Ψ and m6A weaken the binding of the human single-stranded RNA binding protein Pumilio 2 (hPUM2) to its consensus motif, with individual modifications having effects up to approximately threefold and multiple modifications giving larger effects. While there are likely to be some cases where RNA modifications essentially fully ablate protein binding, here we see modest responses that may be more common. Such modest effects could nevertheless profoundly alter the complex landscape of RNA:protein interactions, and the quantitative rather than qualitative nature of these effects underscores the need for quantitative, systems-level accounting of RNA:protein interactions to understand post-transcriptional regulation. PMID:28138061

  4. Identification of DNA-binding proteins that interact with the 5'-flanking region of the human D-amino acid oxidase gene by pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Tran, Diem Hong; Shishido, Yuji; Chung, Seong Pil; Trinh, Huong Thi Thanh; Yorita, Kazuko; Sakai, Takashi; Fukui, Kiyoshi

    2015-12-10

    D-Amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids and is expected to be a promising therapeutic target of schizophrenia and glioblastoma. The study of DNA-binding proteins has yielded much information in the regulation of transcription and other biological processes. However, proteins interacting with DAO gene have not been elucidated. Our assessment of human DAO promoter activity using luciferase reporter system indicated the 5'-flanking region of this gene (-4289 bp from transcription initiation site) has a regulatory sequence for gene expression, which is regulated by multi-protein complexes interacting with this region. By using pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry, we identified six proteins binding to the 5'-flanking region of the human DAO gene (zinc finger C2HC domain-containing protein 1A; histidine-tRNA ligase, cytoplasmic; molybdenum cofactor biosynthesis protein; 60S ribosomal protein L37; calponin-1; calmodulin binding protein and heterogeneous nuclear ribonucleoprotein A2/B1). These preliminary results will contribute to the advance in the understanding of the potential factors associated with the regulatory mechanism of DAO expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Histone and RNA-binding protein interaction creates crosstalk network for regulation of alternative splicing.

    PubMed

    Kim, Yong-Eun; Park, Chungoo; Kim, Kyoon Eon; Kim, Kee K

    2018-04-30

    Alternative splicing is an essential process in eukaryotes, as it increases the complexity of gene expression by generating multiple proteins from a single pre-mRNA. However, information on the regulatory mechanisms for alternative splicing is lacking, because splicing occurs over a short period via the transient interactions of proteins within functional complexes of the spliceosome. Here, we investigated in detail the molecular mechanisms connecting alternative splicing with epigenetic mechanisms. We identified interactions between histone proteins and splicing factors such as Rbfox2, Rbfox3, and splicing factor proline and glutamine rich protein (SFPQ) by in vivo crosslinking and immunoprecipitation. Furthermore, we confirmed that splicing factors were bound to specific modified residues of histone proteins. Additionally, changes in histone methylation due to histone methyltransferase inhibitor treatment notably affected alternative splicing in selected genes. Therefore, we suggested that there may be crosstalk mechanisms connecting histone modifications and RNA-binding proteins that increase the local concentration of RNA-binding proteins in alternative exon loci of nucleosomes by binding specific modified histone proteins, leading to alternative splicing. This crosstalk mechanism may play a major role in epigenetic processes such as histone modification and the regulation of alternative splicing. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. New Binding Mode to TNF-Alpha Revealed by Ubiquitin-Based Artificial Binding Protein

    PubMed Central

    Hoffmann, Andreas; Kovermann, Michael; Lilie, Hauke; Fiedler, Markus; Balbach, Jochen; Rudolph, Rainer; Pfeifer, Sven

    2012-01-01

    A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF)-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1∶3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins – designed ankyrin repeat proteins – without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies. PMID:22363609

  7. SITEHOUND-web: a server for ligand binding site identification in protein structures.

    PubMed

    Hernandez, Marylens; Ghersi, Dario; Sanchez, Roberto

    2009-07-01

    SITEHOUND-web (http://sitehound.sanchezlab.org) is a binding-site identification server powered by the SITEHOUND program. Given a protein structure in PDB format SITEHOUND-web will identify regions of the protein characterized by favorable interactions with a probe molecule. These regions correspond to putative ligand binding sites. Depending on the probe used in the calculation, sites with preference for different ligands will be identified. Currently, a carbon probe for identification of binding sites for drug-like molecules, and a phosphate probe for phosphorylated ligands (ATP, phoshopeptides, etc.) have been implemented. SITEHOUND-web will display the results in HTML pages including an interactive 3D representation of the protein structure and the putative sites using the Jmol java applet. Various downloadable data files are also provided for offline data analysis.

  8. Comprehensive comparative analysis and identification of RNA-binding protein domains: multi-class classification and feature selection.

    PubMed

    Jahandideh, Samad; Srinivasasainagendra, Vinodh; Zhi, Degui

    2012-11-07

    RNA-protein interaction plays an important role in various cellular processes, such as protein synthesis, gene regulation, post-transcriptional gene regulation, alternative splicing, and infections by RNA viruses. In this study, using Gene Ontology Annotated (GOA) and Structural Classification of Proteins (SCOP) databases an automatic procedure was designed to capture structurally solved RNA-binding protein domains in different subclasses. Subsequently, we applied tuned multi-class SVM (TMCSVM), Random Forest (RF), and multi-class ℓ1/ℓq-regularized logistic regression (MCRLR) for analysis and classifying RNA-binding protein domains based on a comprehensive set of sequence and structural features. In this study, we compared prediction accuracy of three different state-of-the-art predictor methods. From our results, TMCSVM outperforms the other methods and suggests the potential of TMCSVM as a useful tool for facilitating the multi-class prediction of RNA-binding protein domains. On the other hand, MCRLR by elucidating importance of features for their contribution in predictive accuracy of RNA-binding protein domains subclasses, helps us to provide some biological insights into the roles of sequences and structures in protein-RNA interactions.

  9. Structural investigation of C4b-binding protein by molecular modeling: localization of putative binding sites.

    PubMed

    Villoutreix, B O; Härdig, Y; Wallqvist, A; Covell, D G; García de Frutos, P; Dahlbäck, B

    1998-06-01

    C4b-binding protein (C4BP) contributes to the regulation of the classical pathway of the complement system and plays an important role in blood coagulation. The main human C4BP isoform is composed of one beta-chain and seven alpha-chains essentially built from three and eight complement control protein (CCP) modules, respectively, followed by a nonrepeat carboxy-terminal region involved in polymerization of the chains. C4BP is known to interact with heparin, C4b, complement factor I, serum amyloid P component, streptococcal Arp and Sir proteins, and factor VIII/VIIIa via its alpha-chains and with protein S through its beta-chain. The principal aim of the present study was to localize regions of C4BP involved in the interaction with C4b, Arp, and heparin. For this purpose, a computer model of the 8 CCP modules of C4BP alpha-chain was constructed, taking into account data from previous electron microscopy (EM) studies. This structure was investigated in the context of known and/or new experimental data. Analysis of the alpha-chain model, together with monoclonal antibody studies and heparin binding experiments, suggests that a patch of positively charged residues, at the interface between the first and second CCP modules, plays an important role in the interaction between C4BP and C4b/Arp/Sir/heparin. Putative binding sites, secondary-structure prediction for the central core, and an overall reevaluation of the size of the C4BP molecule are also presented. An understanding of these intermolecular interactions should contribute to the rational design of potential therapeutic agents aiming at interfering specifically some of these protein-protein interactions.

  10. FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1

    PubMed Central

    David, Pamela S.; Tanveer, Rasheeda; Port, J. David

    2007-01-01

    A number of highly regulated gene classes are regulated post-transcriptionally at the level of mRNA stability. A central feature in these mRNAs is the presence of A+U-rich elements (ARE) within their 3′ UTRs. Two ARE binding proteins, HuR and AUF1, are associated with mRNA stabilization and destabilization, respectively. Previous studies have demonstrated homomultimerization of each protein and the capacity to bind simultaneous or competitively to a single ARE. To investigate this possibility further, cell biological and biophysical approaches were undertaken. Protein–protein interaction was monitored by fluorescence resonance energy transfer (FRET) and by immunocytochemistry in live and fixed cells using fluorescently labeled CFP/YFP fusion proteins of HuR and p37AUF1. Strong nuclear FRET between HuR/HuR and AUF1/AUF1 homodimers as well as HuR/AUF1 heterodimers was observed. Treatment with the MAP kinase activator, anisomycin, which commonly stabilizes ARE-containing mRNAs, caused rapid nuclear to cytoplasmic shuttling of HuR. AUF1 also underwent shuttling, but on a longer time scale. After shuttling, HuR/HuR, AUF1/AUF1, and HuR/AUF1, FRET was also observed in the cytoplasm. In further studies, arsenite rapidly induced the formation of stress granules containing HuR and TIA-1 but not AUF1. The current studies demonstrate that two mRNA binding proteins, HuR and AUF1, are colocalized and are capable of functional interaction in both the nucleus and cytoplasm. FRET-based detection of AUF1/HuR interaction may serve as a basis of opening up new dimensions in delineating the functional interaction of mRNA binding proteins with RNA turnover. PMID:17626845

  11. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    PubMed Central

    Elengoe, Asita; Naser, Mohammed Abu; Hamdan, Salehhuddin

    2015-01-01

    Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD) of heat shock 70 kDa protein (PDB: 1HJO) with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD) simulation. Human DNA binding domain of p53 motif (SCMGGMNR) retrieved from UniProt (UniProtKB: P04637) was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy. PMID:26098630

  12. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif.

    PubMed

    Elengoe, Asita; Naser, Mohammed Abu; Hamdan, Salehhuddin

    2015-01-01

    Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD) of heat shock 70 kDa protein (PDB: 1HJO) with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD) simulation. Human DNA binding domain of p53 motif (SCMGGMNR) retrieved from UniProt (UniProtKB: P04637) was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were -0.44 Kcal/mol and -9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  13. HIP1 and HIP1r stabilize receptor tyrosine kinases and bind 3-phosphoinositides via epsin N-terminal homology domains.

    PubMed

    Hyun, Teresa S; Rao, Dinesh S; Saint-Dic, Djenann; Michael, L Evan; Kumar, Priti D; Bradley, Sarah V; Mizukami, Ikuko F; Oravecz-Wilson, Katherine I; Ross, Theodora S

    2004-04-02

    Huntingtin-interacting protein 1-related (HIP1r) is the only known mammalian relative of huntingtin-interacting protein 1 (HIP1), a protein that transforms fibroblasts via undefined mechanisms. Here we demonstrate that both HIP1r and HIP1 bind inositol lipids via their epsin N-terminal homology (ENTH) domains. In contrast to other ENTH domain-containing proteins, lipid binding is preferential to the 3-phosphate-containing inositol lipids, phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,5-bisphosphate. Furthermore, the HIP1r ENTH domain, like that of HIP1, is necessary for lipid binding, and expression of an ENTH domain-deletion mutant, HIP1r/deltaE, induces apoptosis. Consistent with the ability of HIP1r and HIP1 to affect cell survival, full-length HIP1 and HIP1r stabilize pools of growth factor receptors by prolonging their half-life following ligand-induced endocytosis. Although HIP1r and HIP1 display only a partially overlapping pattern of protein interactions, these data suggest that both proteins share a functional homology by binding 3-phosphorylated inositol lipids and stabilizing receptor tyrosine kinases in a fashion that may contribute to their ability to alter cell growth and survival.

  14. Phosphorylation of human tristetraprolin in response to its interaction with the Cbl interacting protein CIN85.

    PubMed

    Kedar, Vishram P; Darby, Martyn K; Williams, Jason G; Blackshear, Perry J

    2010-03-08

    Tristetraprolin (TTP) is the prototype member of a family of CCCH tandem zinc finger proteins and is considered to be an anti-inflammatory protein in mammals. TTP plays a critical role in the decay of tumor necrosis factor alpha (TNF) mRNA, among others, by binding AU-rich RNA elements in the 3'-untranslated regions of this transcript and promoting its deadenylation and degradation. We used yeast two-hybrid analysis to identify potential protein binding partners for human TTP (hTTP). Various regions of hTTP recovered 31 proteins that fell into 12 categories based on sequence similarities. Among these, the interactions between hTTP and CIN85, cytoplasmic poly (A) binding protein (PABP), nucleolin and heat shock protein 70 were confirmed by co-immunoprecipitation experiments. CIN85 and hTTP co-localized in the cytoplasm of cells as determined by confocal microscopy. CIN85 contains three SH3 domains that specifically bind a unique proline-arginine motif (PXXXPR) found in several CIN85 effectors. We found that the SH3 domains of CIN85 bound to a PXXXPR motif located near the C-terminus of hTTP. Co-expression of CIN85 with hTTP resulted in the increased phosphorylation of hTTP at serine residues in positions 66 and 93, possibly due in part to the demonstrated association of mitogen-activated protein kinase kinase kinase 4 (MEKK4) to both proteins. The presence of CIN85 did not appear to alter hTTP's binding to RNA probes or its stimulated breakdown of TNF mRNA. These studies describe interactions between hTTP and nucleolin, cytoplasmic PABP, heat shock protein 70 and CIN85; these interactions were initially discovered by two-hybrid analysis, and confirmed by co-immunoprecipitation. We found that CIN85 binding to a C-terminal motif within hTTP led to the increased phosphorylation of hTTP, possibly through enhanced association with MEKK4. The functional consequences to each of the members of this putative complex remain to be determined.

  15. Optimization of binding electrostatics: Charge complementarity in the barnase-barstar protein complex

    PubMed Central

    lee, Lee-Peng; Tidor, Bruce

    2001-01-01

    Theoretical and experimental studies have shown that the large desolvation penalty required for polar and charged groups frequently precludes their involvement in electrostatic interactions that contribute strongly to net stability in the folding or binding of proteins in aqueous solution near room temperature. We have previously developed a theoretical framework for computing optimized electrostatic interactions and illustrated use of the algorithm with simplified geometries. Given a receptor and model assumptions, the method computes the ligand-charge distribution that provides the most favorable balance of desolvation and interaction effects on binding. In this paper the method has been extended to treat complexes using actual molecular shapes. The barnase-barstar protein complex was investigated with barnase treated as a target receptor. The atomic point charges of barstar were varied to optimize the electrostatic binding free energy. Barnase and natural barstar form a tight complex (Kd ∼ 10−14 M) with many charged and polar groups near the interface that make this a particularly relevant system for investigating the role of electrostatic effects on binding. The results show that sets of barstar charges (resulting from optimization with different constraints) can be found that give rise to relatively large predicted improvements in electrostatic binding free energy. Principles for enhancing the effect of electrostatic interactions in molecular binding in aqueous environments are discussed in light of the optima. Our findings suggest that, in general, the enhancements in electrostatic binding free energy resulting from modification of polar and charged groups can be substantial. Moreover, a recently proposed definition of electrostatic complementarity is shown to be a useful tool for examining binding interfaces. Finally, calculational results suggest that wild-type barstar is closer to being affinity optimized than is barnase for their mutual binding, consistent with the known roles of these proteins. PMID:11266622

  16. Interactions of poly(amidoamine) dendrimers with human serum albumin: binding constants and mechanisms.

    PubMed

    Giri, Jyotsnendu; Diallo, Mamadou S; Simpson, André J; Liu, Yi; Goddard, William A; Kumar, Rajeev; Woods, Gwen C

    2011-05-24

    The interactions of nanomaterials with plasma proteins have a significant impact on their in vivo transport and fate in biological fluids. This article discusses the binding of human serum albumin (HSA) to poly(amidoamine) [PAMAM] dendrimers. We use protein-coated silica particles to measure the HSA binding constants (K(b)) of a homologous series of 19 PAMAM dendrimers in aqueous solutions at physiological pH (7.4) as a function of dendrimer generation, terminal group, and core chemistry. To gain insight into the mechanisms of HSA binding to PAMAM dendrimers, we combined (1)H NMR, saturation transfer difference (STD) NMR, and NMR diffusion ordered spectroscopy (DOSY) of dendrimer-HSA complexes with atomistic molecular dynamics (MD) simulations of dendrimer conformation in aqueous solutions. The binding measurements show that the HSA binding constants (K(b)) of PAMAM dendrimers depend on dendrimer size and terminal group chemistry. The NMR (1)H and DOSY experiments indicate that the interactions between HSA and PAMAM dendrimers are relatively weak. The (1)H NMR STD experiments and MD simulations suggest that the inner shell protons of the dendrimers groups interact more strongly with HSA proteins. These interactions, which are consistently observed for different dendrimer generations (G0-NH(2)vs G4-NH(2)) and terminal groups (G4-NH(2)vs G4-OH with amidoethanol groups), suggest that PAMAM dendrimers adopt backfolded configurations as they form weak complexes with HSA proteins in aqueous solutions at physiological pH (7.4).

  17. STARD4 Membrane Interactions and Sterol Binding

    PubMed Central

    2016-01-01

    The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/β helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix. PMID:26168008

  18. The organization of RNA contacts by PTB for regulation of FAS splicing

    PubMed Central

    Mickleburgh, Ian; Kafasla, Panagiota; Cherny, Dmitry; Llorian, Miriam; Curry, Stephen; Jackson, Richard J.; Smith, Christopher W.J.

    2014-01-01

    Post-transcriptional steps of gene expression are regulated by RNA binding proteins. Major progress has been made in characterizing RNA-protein interactions, from high resolution structures to transcriptome-wide profiling. Due to the inherent technical challenges, less attention has been paid to the way in which proteins with multiple RNA binding domains engage with target RNAs. We have investigated how the four RNA recognition motif (RRM) domains of Polypyrimidine tract binding (PTB) protein, a major splicing regulator, interact with FAS pre-mRNA under conditions in which PTB represses FAS exon 6 splicing. A combination of tethered hydroxyl radical probing, targeted inactivation of individual RRMs and single molecule analyses revealed an unequal division of labour between the four RRMs of PTB. RNA binding by RRM4 is the most important for function despite the low intrinsic binding specificity and the complete lack of effect of disrupting individual RRM4 contact points on the RNA. The ordered RRM3-4 di-domain packing provides an extended binding surface for RNA interacting at RRM4, via basic residues in the preceding linker. Our results illustrate how multiple alternative low-specificity binding configurations of RRM4 are consistent with repressor function as long as the overall ribonucleoprotein architecture provided by appropriate di-domain packing is maintained. PMID:24957602

  19. Spectroscopic and molecular modeling studies on the binding of the flavonoid luteolin and human serum albumin.

    PubMed

    Jurasekova, Zuzana; Marconi, Giancarlo; Sanchez-Cortes, Santiago; Torreggiani, Armida

    2009-11-01

    Luteolin (LUT) is a polyphenolic compound, found in a variety of fruits, vegetables, and seeds, which has a variety of pharmacological properties. In the present contribution, binding of LUT to human serum albumin (HSA), the most abundant carrier protein in the blood, was investigated with the aim of describing the binding mode and parameters of the interaction. The application of circular dichroism, UV-Vis absorption, fluorescence, Raman and surface-enhanced Raman scattering spectroscopy combined with molecular modeling afforded a clear picture of the association mode of LUT to HSA. Specific interactions with protein amino acids were evidenced. LUT was found to be associated in subdomain IIA where an interaction with Trp-214 is established. Hydrophobic and electrostatic interactions are the major acting forces in the binding of LUT to HSA. The HSA conformations were slightly altered by the drug complexation with reduction of alpha-helix and increase of beta-turns structures, suggesting a partial protein unfolding. Also the configuration of at least two disulfide bridges were altered. Furthermore, the study of molecular modeling afforded the binding geometry. 2009 Wiley Periodicals, Inc.

  20. Insights into the RNA quadruplex binding specificity of DDX21.

    PubMed

    McRae, Ewan K S; Davidson, David E; Dupas, Steven J; McKenna, Sean A

    2018-06-12

    Guanine quadruplexes can form in both DNA and RNA and influence many biological processes through various protein interactions. The DEAD-box RNA helicase protein DDX21 has been shown to bind and remodel RNA quadruplexes but little is known about its specificity for different quadruplex species. Previous reports have suggested DDX21 may interact with telomeric repeat containing RNA quadruplex (TERRA), an integral component of the telomere that contributes to telomeric heterochromatin formation and telomere length regulation. Here we report that the C-terminus of DDX21 specifically binds to TERRA. We use, for the first time, 2D saturation transfer difference NMR to map the protein binding site on a ribonucleic acid species and show that the quadruplex binding domain of DDX21 interacts primarily with the phosphoribose backbone of quadruplexes. Furthermore, by mutating the 2'OH of loop nucleotides we can drastically reduce DDX21's affinity for quadruplex, indicating that the recognition of quadruplex and specificity for TERRA is mediated by interactions with the 2'OH of loop nucleotides. Copyright © 2018. Published by Elsevier B.V.

  1. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination

    PubMed Central

    Ahmed, M. Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2011-01-01

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmuno-precipitation of endogenous proteins from brain tissue, and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both non-visual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology. PMID:21466165

  2. Determinants of BH3 Binding Specificity for Mcl-1 versus Bcl-x[subscript L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Sanjib; Gullá, Stefano; Chen, T. Scott

    2010-06-25

    Interactions among Bcl-2 family proteins are important for regulating apoptosis. Prosurvival members of the family interact with proapoptotic BH3 (Bcl-2-homology-3)-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the {alpha}-helical BH3 region of the proapoptotic proteins to a conserved hydrophobic groove on the prosurvival proteins. Native BH3-only proteins exhibit selectivity in binding prosurvival members, as do small molecules that block these interactions. Understanding the sequence and structural basis of interaction specificity in this family is important, as it may allow the prediction of new Bcl-2 family associations and/or the designmore » of new classes of selective inhibitors to serve as reagents or therapeutics. In this work, we used two complementary techniques - yeast surface display screening from combinatorial peptide libraries and SPOT peptide array analysis - to elucidate specificity determinants for binding to Bcl-x{sub L} versus Mcl-1, two prominent prosurvival proteins. We screened a randomized library and identified BH3 peptides that bound to either Mcl-1 or Bcl-x{sub L} selectively or to both with high affinity. The peptides competed with native ligands for binding into the conserved hydrophobic groove, as illustrated in detail by a crystal structure of a specific peptide bound to Mcl-1. Mcl-1-selective peptides from the screen were highly specific for binding Mcl-1 in preference to Bcl-x{sub L}, Bcl-2, Bcl-w, and Bfl-1, whereas Bcl-x{sub L}-selective peptides showed some cross-interaction with related proteins Bcl-2 and Bcl-w. Mutational analyses using SPOT arrays revealed the effects of 170 point mutations made in the background of a peptide derived from the BH3 region of Bim, and a simple predictive model constructed using these data explained much of the specificity observed in our Mcl-1 versus Bcl-x{sub L} binders.« less

  3. Determinants of BH3 binding specificity for Mcl-1 vs. Bcl-xL

    PubMed Central

    Dutta, Sanjib; Gullá, Stefano; Chen, T. Scott; Fire, Emiko; Grant, Robert A.; Keating, Amy E.

    2010-01-01

    Interactions among Bcl-2 family proteins are important for regulating apoptosis. Pro-survival members of the family interact with pro-apoptotic BH3-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the alpha-helical BH3 region of the pro-apoptotic proteins to a conserved hydrophobic groove on the pro-survival proteins. Native BH3-only proteins exhibit selectivity in binding pro-survival members, as do small molecules that block these interactions. Understanding the sequence and structural basis of interaction specificity in this family is important, as it may allow the prediction of new Bcl-2 family associations and/or the design of new classes of selective inhibitors to serve as reagents or therapeutics. In this work we used two complementary techniques, yeast surface display screening from combinatorial peptide libraries and SPOT peptide array analysis, to elucidate specificity determinants for binding to Bcl-xL vs. Mcl-1, two prominent pro-survival proteins. We screened a randomized library and identified BH3 peptides that bound to either Mcl-1 or Bcl-xL selectively, or to both with high affinity. The peptides competed with native ligands for binding into the conserved hydrophobic groove, as illustrated in detail by a crystal structure of a specific peptide bound to Mcl-1. Mcl-1 selective peptides from the screen were highly specific for binding Mcl-1 in preference to Bcl-xL, Bcl-2, Bcl-w and Bfl-1, whereas Bcl-xL selective peptides showed some cross-interaction with related proteins Bcl-2 and Bcl-w. Mutational analyses using SPOT arrays revealed the effects of 170 point mutations made in the background of a peptide derived from the BH3 region of Bim, and a simple predictive model constructed using these data explained much of the specificity observed in our Mcl-1 vs. Bcl-xL binders. PMID:20363230

  4. The Application of Ligand-Mapping Molecular Dynamics Simulations to the Rational Design of Peptidic Modulators of Protein-Protein Interactions.

    PubMed

    Tan, Yaw Sing; Spring, David R; Abell, Chris; Verma, Chandra S

    2015-07-14

    A computational ligand-mapping approach to detect protein surface pockets that interact with hydrophobic moieties is presented. In this method, we incorporated benzene molecules into explicit solvent molecular dynamics simulations of various protein targets. The benzene molecules successfully identified the binding locations of hydrophobic hot-spot residues and all-hydrocarbon cross-links from known peptidic ligands. They also unveiled cryptic binding sites that are occluded by side chains and the protein backbone. Our results demonstrate that ligand-mapping molecular dynamics simulations hold immense promise to guide the rational design of peptidic modulators of protein-protein interactions, including that of stapled peptides, which show promise as an exciting new class of cell-penetrating therapeutic molecules.

  5. Modulation of kinase-inhibitor interactions by auxiliary protein binding: Crystallography studies on Aurora A interactions with VX-680 and with TPX2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Baoguang; Smallwood, Angela; Yang, Jingsong

    2008-10-24

    VX-680, also known as MK-0457, is an ATP-competitive small molecule inhibitor of the Aurora kinases that has entered phase II clinical trials for the treatment of cancer. We have solved the cocrystal structure of AurA/TPX2/VX-680 at 2.3 {angstrom} resolution. In the crystal structure, VX-680 binds to the active conformation of AurA. The glycine-rich loop in AurA adopts a unique bent conformation, forming a {pi}-{pi} interaction with the phenyl group of VX-680. In contrast, in the published AurA/VX-680 structure, VX-680 binds to AurA in the inactive conformation, interacting with a hydrophobic pocket only present in the inactive conformation. These data suggestmore » that TPX2, a protein cofactor, can alter the binding mode of VX-680 with AurA. More generally, the presence of physiologically relevant cofactor proteins can alter the kinetics, binding interactions, and inhibition of enzymes, and studies with these multiprotein complexes may be beneficial to the discovery and optimization of enzyme inhibitors as therapeutic agents.« less

  6. Combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis reveal the cognitive characteristics of honey bee chemosensory protein to plant semiochemical.

    PubMed

    Tan, Jing; Song, Xinmi; Fu, Xiaobin; Wu, Fan; Hu, Fuliang; Li, Hongliang

    2018-08-05

    In the chemoreceptive system of insects, there are always some soluble binding proteins, such as some antennal-specific chemosensory proteins (CSPs), which are abundantly distributed in the chemosensory sensillar lymph. The antennal-specific CSPs usually have strong capability to bind diverse semiochemicals, while the detailed interaction between CSPs and the semiochemicals remain unclear. Here, by means of the combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis, we detailedly interpreted a binding interaction between a plant semiochemical β-ionone and antennal-specific CSP1 from the worker honey bee. Thermodynamic parameters (ΔH < 0, ΔS > 0) indicate that the interaction is mainly driven by hydrophobic forces and electrostatic interactions. Docking prediction results showed that there are two key amino acids, Phe44 and Gln63, may be involved in the interacting process of CSP1 to β-ionone. In order to confirm the two key amino acids, site-directed mutagenesis were performed and the binding constant (K A ) for two CSP1 mutant proteins was reduced by 60.82% and 46.80% compared to wild-type CSP1. The thermodynamic analysis of mutant proteins furtherly verified that Phe44 maintained an electrostatic interaction and Gln63 contributes hydrophobic and electrostatic forces. Our investigation initially elucidates the physicochemical mechanism of the interaction between antennal-special CSPs in insects including bees to plant semiochemicals, as well as the development of twice thermodynamic analysis (wild type and mutant proteins) combined with multispectral and site-directed mutagenesis methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The basic leucine zipper domain of c-Jun functions in transcriptional activation through interaction with the N terminus of human TATA-binding protein-associated factor-1 (human TAF(II)250).

    PubMed

    Lively, Tricia N; Nguyen, Tuan N; Galasinski, Shelly K; Goodrich, James A

    2004-06-18

    We previously reported that c-Jun binds directly to the N-terminal 163 amino acids of Homo sapiens TATA-binding protein-associated factor-1 (hsTAF1), causing a derepression of transcription factor IID (TFIID)-driven transcription (Lively, T. N., Ferguson, H. A., Galasinski, S. K., Seto, A. G., and Goodrich, J. A. (2001) J. Biol. Chem. 276, 25582-25588). This region of hsTAF1 binds TATA-binding protein to repress TFIID DNA binding and transcription. Here we show that the basic leucine zipper domain of c-Jun, which allows for DNA binding and homodimerization, is necessary and sufficient for interaction with hsTAF1. Interestingly, the isolated basic leucine zipper domain of c-Jun was able to derepress TFIID-directed basal transcription in vitro. Moreover, when the N-terminal region of hsTAF1 was added to in vitro transcription reactions and overexpressed in cells, it blocked c-Jun activation. c-Fos, another basic leucine zipper protein, did not interact with hsTAF1, but c-Fos/c-Jun heterodimers did bind the N terminus of hsTAF1. Our studies show that, in addition to dimerization and DNA binding, the well characterized basic leucine zipper domain of c-Jun functions in transcriptional activation by binding to the N terminus of hsTAF1 to derepress transcription.

  8. Phosphatidylglycerol directs binding and inhibitory action of EIIAGlc protein on the maltose transporter.

    PubMed

    Bao, Huan; Duong, Franck

    2013-08-16

    The signal-transducing protein EIIA(Glc) belongs to the phosphoenolpyruvate carbohydrate phosphotransferase system. In its dephosphorylated state, EIIA(Glc) is a negative regulator for several permeases, including the maltose transporter MalFGK2. How EIIA(Glc) is targeted to the membrane, how it interacts with the transporter, and how it inhibits sugar uptake remain obscure. We show here that acidic phospholipids together with the N-terminal tail of EIIA(Glc) are essential for the high affinity binding of the protein to the transporter. Using protein docking prediction and chemical cross-linking, we demonstrate that EIIA(Glc) binds to the MalK dimer, interacting with both the nucleotide-binding and the C-terminal regulatory domains. Dissection of the ATPase cycle reveals that EIIA(Glc) does not affect the binding of ATP but rather inhibits the capacity of MalK to cleave ATP. We propose a mechanism of maltose transport inhibition by this central amphitropic regulatory protein.

  9. Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein-Ligand Binding: Binding Site Variability

    PubMed Central

    Raman, E. Prabhu; MacKerell, Alexander D.

    2015-01-01

    The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  10. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Calcium Binding Properties and Allosteric Regulation of Downstream Regulatory Element Antagonist Modulator (DREAM).

    PubMed

    Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L

    2017-07-18

    Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.

  11. Proteins and Their Interacting Partners: An Introduction to Protein-Ligand Binding Site Prediction Methods.

    PubMed

    Roche, Daniel Barry; Brackenridge, Danielle Allison; McGuffin, Liam James

    2015-12-15

    Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein-ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein-ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein-ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.

  12. Multiple structure-intrinsic disorder interactions regulate and coordinate Hox protein function

    NASA Astrophysics Data System (ADS)

    Bondos, Sarah

    During animal development, Hox transcription factors determine fate of developing tissues to generate diverse organs and appendages. Hox proteins are famous for their bizarre mutant phenotypes, such as replacing antennae with legs. Clearly, the functions of individual Hox proteins must be distinct and reliable in vivo, or the organism risks malformation or death. However, within the Hox protein family, the DNA-binding homeodomains are highly conserved and the amino acids that contact DNA are nearly invariant. These observations raise the question: How do different Hox proteins correctly identify their distinct target genes using a common DNA binding domain? One possible means to modulate DNA binding is through the influence of the non-homeodomain protein regions, which differ significantly among Hox proteins. However genetic approaches never detected intra-protein interactions, and early biochemical attempts were hindered because the special features of ``intrinsically disordered'' sequences were not appreciated. We propose the first-ever structural model of a Hox protein to explain how specific contacts between distant, intrinsically disordered regions of the protein and the homeodomain regulate DNA binding and coordinate this activity with other Hox molecular functions.

  13. Heat shock protein 47 and 65-kDa FK506-binding protein weakly but synergistically interact during collagen folding in the endoplasmic reticulum.

    PubMed

    Ishikawa, Yoshihiro; Holden, Paul; Bächinger, Hans Peter

    2017-10-20

    Collagen is the most abundant protein in the extracellular matrix in humans and is critical to the integrity and function of many musculoskeletal tissues. A molecular ensemble comprising more than 20 molecules is involved in collagen biosynthesis in the rough endoplasmic reticulum. Two proteins, heat shock protein 47 (Hsp47/ SERPINH1 ) and 65-kDa FK506-binding protein (FKBP65/ FKBP10 ), have been shown to play important roles in this ensemble. In humans, autosomal recessive mutations in both genes cause similar osteogenesis imperfecta phenotypes. Whereas it has been proposed that Hsp47 and FKBP65 interact in the rough endoplasmic reticulum, there is neither clear evidence for this interaction nor any data regarding their binding affinities for each other. In this study using purified endogenous proteins, we examined the interaction between Hsp47, FKBP65, and collagen and also determined their binding affinities and functions in vitro Hsp47 and FKBP65 show a direct but weak interaction, and FKBP65 prefers to interact with Hsp47 rather than type I collagen. Our results suggest that a weak interaction between Hsp47 and FKBP65 confers mutual molecular stability and also allows for a synergistic effect during collagen folding. We also propose that Hsp47 likely acts as a hub molecule during collagen folding and secretion by directing other molecules to reach their target sites on collagens. Our findings may explain why osteogenesis imperfecta-causing mutations in both genes result in similar phenotypes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Ubiquitin Regulates Caspase Recruitment Domain-mediated Signaling by Nucleotide-binding Oligomerization Domain-containing Proteins NOD1 and NOD2*

    PubMed Central

    Ver Heul, Aaron M.; Fowler, C. Andrew; Ramaswamy, S.; Piper, Robert C.

    2013-01-01

    NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins) are intracellular pattern recognition receptors that activate inflammation and autophagy. These pathways rely on the caspase recruitment domains (CARDs) within the receptors, which serve as protein interaction platforms that coordinately regulate immune signaling. We show that NOD1 CARD binds ubiquitin (Ub), in addition to directly binding its downstream targets receptor-interacting protein kinase 2 (RIP2) and autophagy-related protein 16-1 (ATG16L1). NMR spectroscopy and structure-guided mutagenesis identified a small hydrophobic surface of NOD1 CARD that binds Ub. In vitro, Ub competes with RIP2 for association with NOD1 CARD. In vivo, we found that the ligand-stimulated activity of NOD1 with a mutant CARD lacking Ub binding but retaining ATG16L1 and RIP2 binding is increased relative to wild-type NOD1. Likewise, point mutations in the tandem NOD2 CARDs at positions analogous to the surface residues defining the Ub interface on NOD1 resulted in loss of Ub binding and increased ligand-stimulated NOD2 signaling. These data suggest that Ub binding provides a negative feedback loop upon NOD-dependent activation of RIP2. PMID:23300079

  15. Analysis of molecular assemblies by flow cytometry: determinants of Gi1 and by binding

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Noune A.; Neubig, Richard R.

    1998-05-01

    We report here a novel application of flow cytometry for the quantitative analysis of the high affinity interaction between membrane proteins both in detergent solutions and when reconstituted into lipid vesicles. The approach is further advanced to permit the analysis of binding to expressed protein complexes in native cell membranes. The G protein heterotrimer signal transduction function links the extracellularly activated transmembrane receptors and intracellular effectors. Upon activation, (alpha) and (beta) (gamma) subunits of G protein undergo a dissociation/association cycle on the cell membrane interface. The binding parameters of solubilized G protein (alpha) and (beta) (gamma) subunits have been defined but little is known quantitatively about their interactions in the membrane. Using a novel flow cytometry approach, the binding of low nanomolar concentrations of fluorescein-labeled G(alpha) i1 (F- (alpha) ) to (beta) (gamma) both in detergent solution and in a lipid environment was quantitatively compared. Unlabeled (beta) $gama reconstituted in biotinylated phospholipid vesicles bound F-(alpha) tightly (Kd 6 - 12 nM) while the affinity for biotinylated-(beta) (gamma) in Lubrol was even higher (Kd of 2.9 nM). The application of this approach to proteins expressed in native cell membranes will advance our understanding of G protein function in context of receptor and effector interaction. More generally, this approach can be applied to study the interaction of any fluorescently labeled protein with a membrane protein which can be expressed in Sf9 plasma membranes.

  16. Remodeling of the plasma membrane in preparation for sperm–egg recognition: roles of acrosomal proteins

    PubMed Central

    Tanphaichitr, Nongnuj; Kongmanas, Kessiri; Kruevaisayawan, Hathairat; Saewu, Arpornrad; Sugeng, Clarissa; Fernandes, Jason; Souda, Puneet; Angel, Jonathan B; Faull, Kym F; Aitken, R John; Whitelegge, Julian; Hardy, Daniel; Berger, Trish; Baker, Mark

    2015-01-01

    The interaction of sperm with the egg's extracellular matrix, the zona pellucida (ZP) is the first step of the union between male and female gametes. The molecular mechanisms of this process have been studied for the past six decades with the results obtained being both interesting and confusing. In this article, we describe our recent work, which attempts to address two lines of questions from previous studies. First, because there are numerous ZP binding proteins reported by various researchers, how do these proteins act together in sperm–ZP interaction? Second, why do a number of acrosomal proteins have ZP affinity? Are they involved mainly in the initial sperm–ZP binding or rather in anchoring acrosome reacting/reacted spermatozoa to the ZP? Our studies reveal that a number of ZP binding proteins and chaperones, extracted from the anterior sperm head plasma membrane, coexist as high molecular weight (HMW) complexes, and that these complexes in capacitated spermatozoa have preferential ability to bind to the ZP. Zonadhesin (ZAN), known as an acrosomal protein with ZP affinity, is one of these proteins in the HMW complexes. Immunoprecipitation indicates that ZAN interacts with other acrosomal proteins, proacrosin/acrosin and sp32 (ACRBP), also present in the HMW complexes. Immunodetection of ZAN and proacrosin/acrosin on spermatozoa further indicates that both proteins traffic to the sperm head surface during capacitation where the sperm acrosomal matrix is still intact, and therefore they are likely involved in the initial sperm–ZP binding step. PMID:25994642

  17. A data-mining approach to rank candidate protein-binding partners-The case of biogenesis of lysosome-related organelles complex-1 (BLOC-1).

    PubMed

    Rodriguez-Fernandez, I A; Dell'Angelica, E C

    2009-04-01

    The study of protein-protein interactions is a powerful approach to uncovering the molecular function of gene products associated with human disease. Protein-protein interaction data are accumulating at an unprecedented pace owing to interactomics projects, although it has been recognized that a significant fraction of these data likely represents false positives. During our studies of biogenesis of lysosome-related organelles complex-1 (BLOC-1), a protein complex involved in protein trafficking and containing the products of genes mutated in Hermansky-Pudlak syndrome, we faced the problem of having too many candidate binding partners to pursue experimentally. In this work, we have explored ways of efficiently gathering high-quality information about candidate binding partners and presenting the information in a visually friendly manner. We applied the approach to rank 70 candidate binding partners of human BLOC-1 and 102 candidates of its counterpart from Drosophila melanogaster. The top candidate for human BLOC-1 was the small GTPase encoded by the RAB11A gene, which is a paralogue of the Rab38 and Rab32 proteins in mammals and the lightoid gene product in flies. Interestingly, genetic analyses in D. melanogaster uncovered a synthetic sick/lethal interaction between Rab11 and lightoid. The data-mining approach described herein can be customized to study candidate binding partners for other proteins or possibly candidates derived from other types of 'omics' data.

  18. Structure Prediction of Protein Complexes

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Weng, Zhiping

    Protein-protein interactions are critical for biological function. They directly and indirectly influence the biological systems of which they are a part. Antibodies bind with antigens to detect and stop viruses and other infectious agents. Cell signaling is performed in many cases through the interactions between proteins. Many diseases involve protein-protein interactions on some level, including cancer and prion diseases.

  19. A simple model for DNA bridging proteins and bacterial or human genomes: bridging-induced attraction and genome compaction

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Brackley, C. A.; Cook, P. R.; Marenduzzo, D.

    2015-02-01

    We present computer simulations of the phase behaviour of an ensemble of proteins interacting with a polymer, mimicking non-specific binding to a piece of bacterial DNA or eukaryotic chromatin. The proteins can simultaneously bind to the polymer in two or more places to create protein bridges. Despite the lack of any explicit interaction between the proteins or between DNA segments, our simulations confirm previous results showing that when the protein-polymer interaction is sufficiently strong, the proteins come together to form clusters. Furthermore, a sufficiently large concentration of bridging proteins leads to the compaction of the swollen polymer into a globular phase. Here we characterise both the formation of protein clusters and the polymer collapse as a function of protein concentration, protein-polymer affinity and fibre flexibility.

  20. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain.

    PubMed

    Legendre-Guillemin, Valerie; Metzler, Martina; Charbonneau, Martine; Gan, Lu; Chopra, Vikramjit; Philie, Jacynthe; Hayden, Michael R; McPherson, Peter S

    2002-05-31

    Huntingtin-interacting protein 1 (HIP1) and HIP12 are orthologues of Sla2p, a yeast protein with essential functions in endocytosis and regulation of the actin cytoskeleton. We now report that HIP1 and HIP12 are major components of the clathrin coat that interact but differ in their ability to bind clathrin and the clathrin adaptor AP2. HIP1 contains a clathrin-box and AP2 consensus-binding sites that display high affinity binding to the terminal domain of the clathrin heavy chain and the ear domain of the AP2 alpha subunit, respectively. These consensus sites are poorly conserved in HIP12 and correspondingly, HIP12 does not bind to AP2 nor does it demonstrate high affinity clathrin binding. Moreover, HIP12 co-sediments with F-actin in contrast to HIP1, which exhibits no interaction with actin in vitro. Despite these differences, both proteins efficiently stimulate clathrin assembly through their central helical domain. Interestingly, in both HIP1 and HIP12, this domain binds directly to the clathrin light chain. Our data suggest that HIP1 and HIP12 play related yet distinct functional roles in clathrin-mediated endocytosis.

  1. Mapping Protein-Protein Interactions of the Resistance-Related Bacterial Zeta Toxin-Epsilon Antitoxin Complex (ε₂ζ₂) with High Affinity Peptide Ligands Using Fluorescence Polarization.

    PubMed

    Fernández-Bachiller, María Isabel; Brzozowska, Iwona; Odolczyk, Norbert; Zielenkiewicz, Urszula; Zielenkiewicz, Piotr; Rademann, Jörg

    2016-07-16

    Toxin-antitoxin systems constitute a native survival strategy of pathogenic bacteria and thus are potential targets of antibiotic drugs. Here, we target the Zeta-Epsilon toxin-antitoxin system, which is responsible for the stable maintenance of certain multiresistance plasmids in Gram-positive bacteria. Peptide ligands were designed on the basis of the ε₂ζ₂ complex. Three α helices of Zeta forming the protein-protein interaction (PPI) site were selected and peptides were designed conserving the residues interacting with Epsilon antitoxin while substituting residues binding intramolecularly to other parts of Zeta. Designed peptides were synthesized with an N-terminal fluoresceinyl-carboxy-residue for binding assays and provided active ligands, which were used to define the hot spots of the ε₂ζ₂ complex. Further shortening and modification of the binding peptides provided ligands with affinities <100 nM, allowing us to determine the most relevant PPIs and implement a robust competition binding assay.

  2. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    NASA Astrophysics Data System (ADS)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  3. hPDI: a database of experimental human protein-DNA interactions.

    PubMed

    Xie, Zhi; Hu, Shaohui; Blackshaw, Seth; Zhu, Heng; Qian, Jiang

    2010-01-15

    The human protein DNA Interactome (hPDI) database holds experimental protein-DNA interaction data for humans identified by protein microarray assays. The unique characteristics of hPDI are that it contains consensus DNA-binding sequences not only for nearly 500 human transcription factors but also for >500 unconventional DNA-binding proteins, which are completely uncharacterized previously. Users can browse, search and download a subset or the entire data via a web interface. This database is freely accessible for any academic purposes. http://bioinfo.wilmer.jhu.edu/PDI/.

  4. Quantification of Ligand Binding to G-Protein Coupled Receptors on Cell Membranes by Ellipsometry

    PubMed Central

    Kriechbaumer, Verena; Nabok, Alexei; Widdowson, Robert; Smith, David P.; Abell, Ben M.

    2012-01-01

    G-protein-coupled receptors (GPCRs) are prime drug targets and targeted by approximately 60% of current therapeutic drugs such as β-blockers, antipsychotics and analgesics. However, no biophysical methods are available to quantify their interactions with ligand binding in a native environment. Here, we use ellipsometry to quantify specific interactions of receptors within native cell membranes. As a model system, the GPCR-ligand CXCL12α and its receptor CXCR4 are used. Human-derived Ishikawa cells were deposited onto gold coated slides via Langmuir-Schaefer film deposition and interactions between the receptor CXCR4 on these cells and its ligand CXCL12α were detected via total internal reflection ellipsometry (TIRE). This interaction could be inhibited by application of the CXCR4-binding drug AMD3100. Advantages of this approach are that it allows measurement of interactions in a lipid environment without the need for labelling, protein purification or reconstitution of membrane proteins. This technique is potentially applicable to a wide variety of cell types and their membrane receptors, providing a novel method to determine ligand or drug interactions targeting GPCRs and other membrane proteins. PMID:23049983

  5. RNA Modulates the Interaction between Influenza A Virus NS1 and Human PABP1.

    PubMed

    Arias-Mireles, Bryan H; de Rozieres, Cyrus M; Ly, Kevin; Joseph, Simpson

    2018-05-25

    Nonstructural protein 1 (NS1) is a multifunctional protein involved in preventing host-interferon response in influenza A virus (IAV). Previous studies have indicated that NS1 also stimulates the translation of viral mRNA by binding to conserved sequences in the viral 5'-UTR. Additionally, NS1 binds to poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G (eIF4G). The interaction of NS1 with the viral 5'-UTR, PABP1, and eIF4G has been suggested to specifically enhance the translation of viral mRNAs. In contrast, we report that NS1 does not directly bind to sequences in the viral 5'-UTR, indicating that NS1 is not responsible for providing the specificity to stimulate viral mRNA translation. We also monitored the interaction of NS1 with PABP1 using a new, quantitative FRET assay. Our data show that NS1 binds to PABP1 with high affinity; however, the binding of double-stranded RNA (dsRNA) to NS1 weakens the binding of NS1 to PABP1. Correspondingly, the binding of PABP1 to NS1 weakens the binding of NS1 to double-stranded RNA (dsRNA). In contrast, the affinity of PABP1 for binding to poly(A) RNA is not significantly changed by NS1. We propose that the modulation of NS1·PABP1 interaction by dsRNA may be important for the viral cycle.

  6. The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions.

    PubMed

    Beckmann, Benedikt M; Castello, Alfredo; Medenbach, Jan

    2016-06-01

    Post-transcriptional regulation of gene expression plays a critical role in almost all cellular processes. Regulation occurs mostly by RNA-binding proteins (RBPs) that recognise RNA elements and form ribonucleoproteins (RNPs) to control RNA metabolism from synthesis to decay. Recently, the repertoire of RBPs was significantly expanded owing to methodological advances such as RNA interactome capture. The newly identified RNA binders are involved in diverse biological processes and belong to a broad spectrum of protein families, many of them exhibiting enzymatic activities. This suggests the existence of an extensive crosstalk between RNA biology and other, in principle unrelated, cell functions such as intermediary metabolism. Unexpectedly, hundreds of new RBPs do not contain identifiable RNA-binding domains (RBDs), raising the question of how they interact with RNA. Despite the many functions that have been attributed to RNA, our understanding of RNPs is still mostly governed by a rather protein-centric view, leading to the idea that proteins have evolved to bind to and regulate RNA and not vice versa. However, RNPs formed by an RNA-driven interaction mechanism (RNA-determined RNPs) are abundant and offer an alternative explanation for the surprising lack of classical RBDs in many RNA-interacting proteins. Moreover, RNAs can act as scaffolds to orchestrate and organise protein networks and directly control their activity, suggesting that nucleic acids might play an important regulatory role in many cellular processes, including metabolism.

  7. Role of water mediated interactions in protein-protein recognition landscapes.

    PubMed

    Papoian, Garegin A; Ulander, Johan; Wolynes, Peter G

    2003-07-30

    The energy landscape picture of protein folding and binding is employed to optimize a number of pair potentials for direct and water-mediated interactions in protein complex interfaces. We find that water-mediated interactions greatly complement direct interactions in discriminating against various types of trap interactions that model those present in the cell. We highlight the context dependent nature of knowledge-based binding potentials, as contrasted with the situation for autonomous folding. By performing a Principal Component Analysis (PCA) of the corresponding interaction matrixes, we rationalize the strength of the recognition signal for each combination of the contact type and reference trap states using the differential in the idealized "canonical" amino acid compositions of native and trap layers. The comparison of direct and water-mediated contact potential matrixes emphasizes the importance of partial solvation in stabilizing charged groups in the protein interfaces. Specific water-mediated interresidue interactions are expected to influence significantly the kinetics as well as thermodynamics of protein association.

  8. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    PubMed

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Visualization of RNA–protein interactions in living cells: FMRP and IMP1 interact on mRNAs

    PubMed Central

    Rackham, Oliver; Brown, Chris M

    2004-01-01

    Protein expression depends significantly on the stability, translation efficiency and localization of mRNA. These qualities are largely dictated by the RNA-binding proteins associated with an mRNA. Here, we report a method to visualize and localize RNA–protein interactions in living mammalian cells. Using this method, we found that the fragile X mental retardation protein (FMRP) isoform 18 and the human zipcode-binding protein 1 ortholog IMP1, an RNA transport factor, were present on common mRNAs. These interactions occurred predominantly in the cytoplasm, in granular structures. In addition, FMRP and IMP1 interacted independently of RNA. Tethering of FMRP to an mRNA caused IMP1 to be recruited to the same mRNA and resulted in granule formation. The intimate association of FMRP and IMP1 suggests a link between mRNA transport and translational repression in mammalian cells. PMID:15282548

  10. Computational biology of RNA interactions.

    PubMed

    Dieterich, Christoph; Stadler, Peter F

    2013-01-01

    The biodiversity of the RNA world has been underestimated for decades. RNA molecules are key building blocks, sensors, and regulators of modern cells. The biological function of RNA molecules cannot be separated from their ability to bind to and interact with a wide space of chemical species, including small molecules, nucleic acids, and proteins. Computational chemists, physicists, and biologists have developed a rich tool set for modeling and predicting RNA interactions. These interactions are to some extent determined by the binding conformation of the RNA molecule. RNA binding conformations are approximated with often acceptable accuracy by sequence and secondary structure motifs. Secondary structure ensembles of a given RNA molecule can be efficiently computed in many relevant situations by employing a standard energy model for base pair interactions and dynamic programming techniques. The case of bi-molecular RNA-RNA interactions can be seen as an extension of this approach. However, unbiased transcriptome-wide scans for local RNA-RNA interactions are computationally challenging yet become efficient if the binding motif/mode is known and other external information can be used to confine the search space. Computational methods are less developed for proteins and small molecules, which bind to RNA with very high specificity. Binding descriptors of proteins are usually determined by in vitro high-throughput assays (e.g., microarrays or sequencing). Intriguingly, recent experimental advances, which are mostly based on light-induced cross-linking of binding partners, render in vivo binding patterns accessible yet require new computational methods for careful data interpretation. The grand challenge is to model the in vivo situation where a complex interplay of RNA binders competes for the same target RNA molecule. Evidently, bioinformaticians are just catching up with the impressive pace of these developments. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Unconventional RNA-binding proteins: an uncharted zone in RNA biology.

    PubMed

    Albihlal, Waleed S; Gerber, André P

    2018-06-16

    RNA-binding proteins play essential roles in the post-transcriptional regulation of gene expression. While hundreds of RNA-binding proteins can be predicted computationally, the recent introduction of proteome-wide approaches has dramatically expanded the repertoire of proteins interacting with RNA. Besides canonical RNA-binding proteins that contain characteristic RNA-binding domains, many proteins that lack such domains but have other well-characterised cellular functions were identified; including metabolic enzymes, heat shock proteins, kinases, as well as transcription factors and chromatin-associated proteins. In the context of these recently published RNA-protein interactome datasets obtained from yeast, nematodes, flies, plants and mammalian cells, we discuss examples for seemingly evolutionary conserved "unconventional" RNA-binding proteins that act in central carbon metabolism, stress response or regulation of transcription. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Conserved mRNA-binding proteomes in eukaryotic organisms.

    PubMed

    Matia-González, Ana M; Laing, Emma E; Gerber, André P

    2015-12-01

    RNA-binding proteins (RBPs) are essential for post-transcriptional regulation of gene expression. Recent high-throughput screens have dramatically increased the number of experimentally identified RBPs; however, comprehensive identification of RBPs within living organisms is elusive. Here we describe the repertoire of 765 and 594 proteins that reproducibly interact with polyadenylated mRNAs in Saccharomyces cerevisiae and Caenorhabditis elegans, respectively. Furthermore, we report the differential association of mRNA-binding proteins (mRPBs) upon induction of apoptosis in C. elegans L4-stage larvae. Strikingly, most proteins composing mRBPomes, including components of early metabolic pathways and the proteasome, are evolutionarily conserved between yeast and C. elegans. We speculate, on the basis of our evidence that glycolytic enzymes bind distinct glycolytic mRNAs, that enzyme-mRNA interactions relate to an ancient mechanism for post-transcriptional coordination of metabolic pathways that perhaps was established during the transition from the early 'RNA world' to the 'protein world'.

  13. Kupffer cell/tumor cell interactions and hepatic metastasis in colorectal cancer.

    PubMed

    Meterissian, S H; Toth, C A; Steele, G; Thomas, P

    1994-06-15

    The degree of interaction with Kupffer cells of two moderately well differentiated cell lines, CX-1 and CCl-188 of high metastatic potential (61%) were compared to two poorly differentiated cell lines, MIP-101 and Clone A of low metastatic potential (6%) in the intrasplenic injection model for liver metastasis. MIP-101 and Clone A bound significantly better to mouse Kupffer cells in vitro than either CX-1 or CCL-188. We also identified specific cell surface proteins mediating attachment of colorectal carcinoma cells to murine Kupffer cells. Kupffer cells were radiolabelled and their surface proteins incubated with MIP-101 and CX-1. Two radiolabelled proteins from murine Kupffer cells of 14 and 34 kDa were identified consistently binding to the tumor cells. Binding of both proteins was inhibited by asialofetuin but not by fetuin. This suggests that the major binding proteins between Kupffer cells and colorectal cancer cells are galactose binding lectins.

  14. Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique

    NASA Astrophysics Data System (ADS)

    Geer, M. Ariel; Fitzgerald, Michael C.

    2016-02-01

    The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the Saccharomyces cerevisiae proteome. The SPROX methodology utilized in this work enabled 373 proteins in a yeast cell lysate to be assayed for ATP interactions (both direct and indirect) using the non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP). A total of 28 proteins were identified with AMP-PNP-induced thermodynamic stability changes. These protein hits included 14 proteins that were previously annotated as ATP-binding proteins in the Saccharomyces Genome Database (SGD). The 14 non-annotated ATP-binding proteins included nine proteins that were previously found to be ATP-sensitive in an earlier SPROX study using a stable isotope labeling with amino acids in cell culture (SILAC)-based approach. A bioinformatics analysis of the protein hits identified here and in the earlier SILAC-SPROX experiments revealed that many of the previously annotated ATP-binding protein hits were kinases, ligases, and chaperones. In contrast, many of the newly discovered ATP-sensitive proteins were not from these protein classes, but rather were hydrolases, oxidoreductases, and nucleic acid-binding proteins.

  15. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects.

    PubMed

    Cala, Olivier; Pinaud, Noël; Simon, Cécile; Fouquet, Eric; Laguerre, Michel; Dufourc, Erick J; Pianet, Isabelle

    2010-11-01

    In organoleptic science, the association of tannins to saliva proteins leads to the poorly understood phenomenon of astringency. To decipher this interaction at molecular and colloidal levels, the binding of 4 procyanidin dimers (B1-4) and 1 trimer (C2) to a human saliva proline-rich peptide, IB7(14), was studied. Interactions have been characterized by measuring dissociation constants, sizes of complexes, number, and nature of binding sites using NMR (chemical shift variations, diffusion-ordered spectroscopy, and saturation transfer diffusion). The binding sites were identified using molecular mechanics, and the hydrophilic/hydrophobic nature of the interactions was resolved by calculating the molecular lipophilicity potential within the complexes. The following comprehensive scheme can be proposed: 1) below the tannin critical micelle concentration (CMC), interaction is specific, and the procyanidin anchorage always occurs on the same three IB7(14) sites. The tannin 3-dimensional structure plays a key role in the binding force and in the tannin's ability to act as a bidentate ligand: tannins adopting an extended conformation exhibit higher affinity toward protein and initiate the formation of a network. 2) Above the CMC, after the first specific hydrophilic interaction has taken place, a random hydrophobic stacking occurs between tannins and proteins. The whole process is discussed in the general frame of wine tannins eliciting astringency.

  16. Analysis of the interactome of the Ser/Thr Protein Phosphatase type 1 in Plasmodium falciparum.

    PubMed

    Hollin, Thomas; De Witte, Caroline; Lenne, Astrid; Pierrot, Christine; Khalife, Jamal

    2016-03-17

    Protein Phosphatase 1 (PP1) is an enzyme essential to cell viability in the malaria parasite Plasmodium falciparum (Pf). The activity of PP1 is regulated by the binding of regulatory subunits, of which there are up to 200 in humans, but only 3 have been so far reported for the parasite. To better understand the P. falciparum PP1 (PfPP1) regulatory network, we here report the use of three strategies to characterize the PfPP1 interactome: co-affinity purified proteins identified by mass spectrometry, yeast two-hybrid (Y2H) screening and in silico analysis of the P. falciparum predicted proteome. Co-affinity purification followed by MS analysis identified 6 PfPP1 interacting proteins (Pips) of which 3 contained the RVxF consensus binding, 2 with a Fxx[RK]x[RK] motif, also shown to be a PP1 binding motif and one with both binding motifs. The Y2H screens identified 134 proteins of which 30 present the RVxF binding motif and 20 have the Fxx[RK]x[RK] binding motif. The in silico screen of the Pf predicted proteome using a consensus RVxF motif as template revealed the presence of 55 potential Pips. As further demonstration, 35 candidate proteins were validated as PfPP1 interacting proteins in an ELISA-based assay. To the best of our knowledge, this is the first study on PfPP1 interactome. The data reports several conserved PP1 interacting proteins as well as a high number of specific interactors to PfPP1. Their analysis indicates a high diversity of biological functions for PP1 in Plasmodium. Based on the present data and on an earlier study of the Pf interactome, a potential implication of Pips in protein folding/proteolysis, transcription and pathogenicity networks is proposed. The present work provides a starting point for further studies on the structural basis of these interactions and their functions in P. falciparum.

  17. Interaction between IGFBP7 and insulin: a theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Ruan, Wenjing; Kang, Zhengzhong; Li, Youzhao; Sun, Tianyang; Wang, Lipei; Liang, Lijun; Lai, Maode; Wu, Tao

    2016-04-01

    Insulin-like growth factor binding protein 7 (IGFBP7) can bind to insulin with high affinity which inhibits the early steps of insulin action. Lack of recognition mechanism impairs our understanding of insulin regulation before it binds to insulin receptor. Here we combine computational simulations with experimental methods to investigate the interaction between IGFBP7 and insulin. Molecular dynamics simulations indicated that His200 and Arg198 in IGFBP7 were key residues. Verified by experimental data, the interaction remained strong in single mutation systems R198E and H200F but became weak in double mutation system R198E-H200F relative to that in wild-type IGFBP7. The results and methods in present study could be adopted in future research of discovery of drugs by disrupting protein-protein interactions in insulin signaling. Nevertheless, the accuracy, reproducibility, and costs of free-energy calculation are still problems that need to be addressed before computational methods can become standard binding prediction tools in discovery pipelines.

  18. Heterogeneous RNA-binding protein M4 is a receptor for carcinoembryonic antigen in Kupffer cells.

    PubMed

    Bajenova, O V; Zimmer, R; Stolper, E; Salisbury-Rowswell, J; Nanji, A; Thomas, P

    2001-08-17

    Here we report the isolation of the recombinant cDNA clone from rat macrophages, Kupffer cells (KC) that encodes a protein interacting with carcinoembryonic antigen (CEA). To isolate and identify the CEA receptor gene we used two approaches: screening of a KC cDNA library with a specific antibody and the yeast two-hybrid system for protein interaction using as a bait the N-terminal part of the CEA encoding the binding site. Both techniques resulted in the identification of the rat heterogeneous RNA-binding protein (hnRNP) M4 gene. The rat ortholog cDNA sequence has not been previously described. The open reading frame for this gene contains a 2351-base pair sequence with the polyadenylation signal AATAAA and a termination poly(A) tail. The mRNA shows ubiquitous tissue expression as a 2.4-kilobase transcript. The deduced amino acid sequence comprised a 78-kDa membrane protein with 3 putative RNA-binding domains, arginine/methionine/glutamine-rich C terminus and 3 potential membrane spanning regions. When hnRNP M4 protein is expressed in pGEX4T-3 vector system in Escherichia coli it binds (125)I-labeled CEA in a Ca(2+)-dependent fashion. Transfection of rat hnRNP M4 cDNA into a non-CEA binding mouse macrophage cell line p388D1 resulted in CEA binding. These data provide evidence for a new function of hnRNP M4 protein as a CEA-binding protein in Kupffer cells.

  19. Effect of the Flexible Regions of the Oncoprotein Mouse Double Minute X on Inhibitor Binding Affinity.

    PubMed

    Qin, Lingyun; Liu, Huili; Chen, Rong; Zhou, Jingjing; Cheng, Xiyao; Chen, Yao; Huang, Yongqi; Su, Zhengding

    2017-11-07

    The oncoprotein MdmX (mouse double minute X) is highly homologous to Mdm2 (mouse double minute 2) in terms of their amino acid sequences and three-dimensional conformations, but Mdm2 inhibitors exhibit very weak affinity for MdmX, providing an excellent model for exploring how protein conformation distinguishes and alters inhibitor binding. The intrinsic conformation flexibility of proteins plays pivotal roles in determining and predicting the binding properties and the design of inhibitors. Although the molecular dynamics simulation approach enables us to understand protein-ligand interactions, the mechanism underlying how a flexible binding pocket adapts an inhibitor has been less explored experimentally. In this work, we have investigated how the intrinsic flexible regions of the N-terminal domain of MdmX (N-MdmX) affect the affinity of the Mdm2 inhibitor nutlin-3a using protein engineering. Guided by heteronuclear nuclear Overhauser effect measurements, we identified the flexible regions that affect inhibitor binding affinity around the ligand-binding pocket on N-MdmX. A disulfide engineering mutant, N-MdmX C25-C110/C76-C88 , which incorporated two staples to rigidify the ligand-binding pocket, allowed an affinity for nutlin-3a higher than that of wild-type N-MdmX (K d ∼ 0.48 vs K d ∼ 20.3 μM). Therefore, this mutant provides not only an effective protein model for screening and designing of MdmX inhibitors but also a valuable clue for enhancing the intermolecular interactions of the pharmacophores of a ligand with pronounced flexible regions. In addition, our results revealed an allosteric ligand-binding mechanism of N-MdmX in which the ligand initially interacts with a compact core, followed by augmenting intermolecular interactions with intrinsic flexible regions. This strategy should also be applicable to many other protein targets to accelerate drug discovery.

  20. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.

    PubMed

    Williams, Glyn; Ferenczy, György G; Ulander, Johan; Keserű, György M

    2017-04-01

    Small is beautiful - reducing the size and complexity of chemical starting points for drug design allows better sampling of chemical space, reveals the most energetically important interactions within protein-binding sites and can lead to improvements in the physicochemical properties of the final drug. The impact of fragment-based drug discovery (FBDD) on recent drug discovery projects and our improved knowledge of the structural and thermodynamic details of ligand binding has prompted us to explore the relationships between ligand-binding thermodynamics and FBDD. Information on binding thermodynamics can give insights into the contributions to protein-ligand interactions and could therefore be used to prioritise compounds with a high degree of specificity in forming key interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    PubMed

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  2. Multivalent DNA-binding properties of the HMG-1 proteins.

    PubMed Central

    Maher, J F; Nathans, D

    1996-01-01

    HMG-I proteins are DNA-binding proteins thought to affect the formation and function of transcription complexes. Each protein contains three DNA-binding motifs, known as AT-hooks, that bind in the minor groove of AT tracts in DNA. Multiple AT-hooks within a polypeptide chain should contact multiple AT tracts, but the rules governing these interactions have not been defined. In this study, we demonstrate that high-affinity binding uses two or three appropriately spaced AT tracts as a single multivalent binding site. These principles have implications for binding to regulatory elements such as the interferon beta enhancer, TATA boxes, and serum response elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692884

  3. Periplakin interferes with G protein activation by the melanin-concentrating hormone receptor-1 by binding to the proximal segment of the receptor C-terminal tail.

    PubMed

    Murdoch, Hannah; Feng, Gui-Jie; Bächner, Dietmar; Ormiston, Laura; White, Julia H; Richter, Dietmar; Milligan, Graeme

    2005-03-04

    In mice genetic ablation of expression of either melanin-concentrating hormone or the melanin-concentrating hormone-1 receptor results in alterations in energy metabolism and a lean phenotype. There is thus great interest in the function and regulation of this receptor. Using the yeast two-hybrid system we identified an interaction of the actin- and intermediate filament-binding protein periplakin with the intracellular C-terminal tail of the melanin-concentrating hormone-1 receptor. Direct association of these proteins was verified in pull-down and coimmunoprecipitation experiments. Truncations and internal deletions delineated the site of interaction to a group of 11 amino acids proximal to transmembrane helix VII, which was distinct from the binding site for the melanin-concentrating hormone-1 receptor-interacting zinc finger protein. Immunohistochemistry demonstrated coexpression of periplakin with melanin-concentrating hormone-1 receptor in specific cells of the piriform cortex, amygdala, and other structures of the adult mouse brain. Coexpression of the melanin-concentrating hormone-1 receptor with periplakin in human embryonic kidney 293 cells did not prevent agonist-mediated internalization of the receptor but did interfere with binding of (35)S-labeled guanosine 5'-3-O-(thio)triphosphate ([(35)S]GTPgammaS) to the G protein Galpha(o1) and the elevation of [Ca(2+)](i). Coexpression of the receptor with the interacting zinc finger protein did not modulate receptor internalization or G protein activation. The interaction of periplakin with receptors was selective. Coexpression of periplakin with the IP prostanoid receptor did not result in coimmunoprecipitation nor interfere with agonist-mediated binding of [(35)S]GTPgammaS to the G protein Galpha(s). Periplakin is the first protein described to modify the capacity of the melanin-concentrating hormone-1 receptor to initiate signal transduction.

  4. Large heat capacity change in a protein-monovalent cation interaction.

    PubMed

    Guinto, E R; Di Cera, E

    1996-07-09

    Current views about protein-ligand interactions state that electrostatic forces drive the binding of charged species and that burial of hydrophobic and polar surfaces controls the heat capacity change associated with the reaction. For the interaction of a protein with a monovalent cation the electrostatic components are expected to be significant due to the ionic nature of the ligand, whereas the heat capacity change is expected to be small due to the size of the surface area involved in the recognition event. The physiologically important interaction of Na+ with thrombin was studied over the temperature range from 5 to 45 degrees C and the ionic strength range from 50 to 800 mM. These measurements reveal an unanticipated result that bears quite generally on studies of molecular recognition and protein folding. Binding of Na+ to thrombin is characterized by a modest dependence on ionic strength but a large and negative heat capacity change of -1.1 +/- 0.1 kcal mol-1 K-1. The small electrostatic coupling can be explained in terms of a minimal perturbation of the ionic atmosphere of the protein upon Na+ binding. The large heat capacity change, however, is difficult to reconcile with current views on the origin of this effect from surface area changes or large folding transitions coupled to binding. It is proposed that this change is linked to burial of a large cluster of water molecules in the Na+ binding pocket upon Na+ binding. Due to their reduced mobility and highly ordered structure, water molecules sequestered in the interior of a protein must have a lower heat capacity compared to those on the surface of a protein or in the bulk solvent. Hence, a binding or folding event where water molecules are buried may result in significant heat capacity changes independent of changes in exposed hydrophobic surface or coupled conformational transitions.

  5. Topology-based modeling of intrinsically disordered proteins: balancing intrinsic folding and intermolecular interactions.

    PubMed

    Ganguly, Debabani; Chen, Jianhan

    2011-04-01

    Coupled binding and folding is frequently involved in specific recognition of so-called intrinsically disordered proteins (IDPs), a newly recognized class of proteins that rely on a lack of stable tertiary fold for function. Here, we exploit topology-based Gō-like modeling as an effective tool for the mechanism of IDP recognition within the theoretical framework of minimally frustrated energy landscape. Importantly, substantial differences exist between IDPs and globular proteins in both amino acid sequence and binding interface characteristics. We demonstrate that established Gō-like models designed for folded proteins tend to over-estimate the level of residual structures in unbound IDPs, whereas under-estimating the strength of intermolecular interactions. Such systematic biases have important consequences in the predicted mechanism of interaction. A strategy is proposed to recalibrate topology-derived models to balance intrinsic folding propensities and intermolecular interactions, based on experimental knowledge of the overall residual structure level and binding affinity. Applied to pKID/KIX, the calibrated Gō-like model predicts a dominant multistep sequential pathway for binding-induced folding of pKID that is initiated by KIX binding via the C-terminus in disordered conformations, followed by binding and folding of the rest of C-terminal helix and finally the N-terminal helix. This novel mechanism is consistent with key observations derived from a recent NMR titration and relaxation dispersion study and provides a molecular-level interpretation of kinetic rates derived from dispersion curve analysis. These case studies provide important insight into the applicability and potential pitfalls of topology-based modeling for studying IDP folding and interaction in general. Copyright © 2011 Wiley-Liss, Inc.

  6. Arginine methylation of translocated in liposarcoma (TLS) inhibits its binding to long noncoding RNA, abrogating TLS-mediated repression of CBP/p300 activity.

    PubMed

    Cui, Wei; Yoneda, Ryoma; Ueda, Naomi; Kurokawa, Riki

    2018-05-21

    Translocated in liposarcoma (TLS) is an RNA-binding protein and a transcription-regulatory sensor of DNA damage. TLS binds promoter-associated noncoding RNA (pncRNA) and inhibits histone acetyltransferase (HAT) activity of CREB-binding protein (CBP)/E1A-binding protein P300 (p300) on the cyclin D1 (CCND1) gene. Although post-translational modifications of TLS, such as arginine methylation, are known to regulate TLS's nucleocytoplasmic shuttling and assembly in stress granules, its interactions with RNAs remain poorly characterized. Herein, using various biochemical assays, we confirmed the earlier observations that TLS is methylated by protein arginine methyltransferase 1 (PRMT1) in vitro. The arginine methylation of TLS disrupted binding to pncRNA and also prevented binding of TLS to and inhibition of CBP/p300. This result indicated that arginine methylation of TLS abrogates both binding to pncRNA and TLS-mediated inhibition of CBP/p300 HAT activities. We also report that an arginine residue within the Arg-Gly-Gly domain of TLS, Arg-476, serves as the major determinant for binding to pncRNA. Either methylation or mutation of Arg-476 of TLS significantly decreased pncRNA binding and thereby prevented a pncRNA-induced allosteric alteration in TLS that is required for its interaction with CBP/p300. Moreover, unlike wildtype TLS, an R476A TLS mutant did not inhibit CCND1 promoter activity in luciferase reporter assays. Taken together, we propose the hypothesis that arginine methylation of TLS regulates both TLS-nucleic acid and TLS-protein interactions and thereby participates in transcriptional regulation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The RNA-binding region of human TRBP interacts with microRNA precursors through two independent domains

    PubMed Central

    Benoit, Matthieu P. M. H.; Imbert, Lionel; Palencia, Andrés; Pérard, Julien; Ebel, Christine; Boisbouvier, Jérôme; Plevin, Michael J.

    2013-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through RNA interference. Human miRNAs are generated through a series of enzymatic processing steps. The precursor miRNA (pre-miRNA) is recognized and cleaved by a complex containing Dicer and several non-catalytic accessory proteins. HIV TAR element binding protein (TRBP) is a constituent of the Dicer complex, which augments complex stability and potentially functions in substrate recognition and product transfer to the RNA-induced silencing complex. Here we have analysed the interaction between the RNA-binding region of TRBP and an oncogenic human miRNA, miR-155, at different stages in the biogenesis pathway. We show that the region of TRBP that binds immature miRNAs comprises two independent double-stranded RNA-binding domains connected by a 60-residue flexible linker. No evidence of contact between the two double-stranded RNA-binding domains was observed either in the apo- or RNA-bound state. We establish that the RNA-binding region of TRBP interacts with both pre-miR-155 and the miR-155/miR-155* duplex through the same binding surfaces and with similar affinities, and that two protein molecules can simultaneously interact with each immature miRNA. These data suggest that TRBP could play a role before and after processing of pre-miRNAs by Dicer. PMID:23435228

  8. Modulated photophysics of a cationic DNA-staining dye inside protein bovine serum albumin: Study of binding interaction and structural changes of protein

    NASA Astrophysics Data System (ADS)

    Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil

    2014-03-01

    The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin.

  9. The monomeric form of Neisseria DNA mimic protein DMP19 prevents DNA from binding to the histone-like HU protein

    PubMed Central

    Ko, Tzu-Ping; Liao, Yi-Ting; Hsu, Kai-Cheng

    2017-01-01

    DNA mimicry is a direct and effective strategy by which the mimic competes with DNA for the DNA binding sites on other proteins. Until now, only about a dozen proteins have been shown to function via this strategy, including the DNA mimic protein DMP19 from Neisseria meningitides. We have shown previously that DMP19 dimer prevents the operator DNA from binding to the transcription factor NHTF. Here, we provide new evidence that DMP19 monomer can also interact with the Neisseria nucleoid-associated protein HU. Using BS3 crosslinking, gel filtration and isothermal titration calorimetry assays, we found that DMP19 uses its monomeric form to interact with the Neisseria HU dimer. Crosslinking conjugated mass spectrometry was used to investigate the binding mode of DMP19 monomer and HU dimer. Finally, an electrophoretic mobility shift assay (EMSA) confirmed that the DNA binding affinity of HU is affected by DMP19. These results showed that DMP19 is bifunctional in the gene regulation of Neisseria through its variable oligomeric forms. PMID:29220372

  10. Phosphorylated nitrate reductase and 14-3-3 proteins. Site of interaction, effects of ions, and evidence for an amp-binding site on 14-3-3 proteins.

    PubMed

    Athwal, G S; Huber, J L; Huber, S C

    1998-11-01

    The inactivation of phosphorylated nitrate reductase (NR) by the binding of 14-3-3 proteins is one of a very few unambiguous biological functions for 14-3-3 proteins. We report here that serine and threonine residues at the +6 to +8 positions, relative to the known regulatory binding site involving serine-543, are important in the interaction with GF14omega, a recombinant plant 14-3-3. Also shown is that an increase in ionic strength with KCl or inorganic phosphate, known physical effectors of NR activity, directly disrupts the binding of protein and peptide ligands to 14-3-3 proteins. Increased ionic strength attributable to KCl caused a change in conformation of GF14omega, resulting in reduced surface hydrophobicity, as visualized with a fluorescent probe. Similarly, it is shown that the 5' isomer of AMP was specifically able to disrupt the inactive phosphorylated NR:14-3-3 complex. Using the 5'-AMP fluorescent analog trinitrophenyl-AMP, we show that there is a probable AMP-binding site on GF14omega.

  11. Surface reengineering of RPA70N enables cocrystallization with an inhibitor of the replication protein A interaction motif of ATR interacting protein.

    PubMed

    Feldkamp, Michael D; Frank, Andreas O; Kennedy, J Phillip; Patrone, James D; Vangamudi, Bhavatarini; Waterson, Alex G; Fesik, Stephen W; Chazin, Walter J

    2013-09-17

    Replication protein A (RPA) is the primary single-stranded DNA (ssDNA) binding protein in eukaryotes. The N-terminal domain of the RPA70 subunit (RPA70N) interacts via a basic cleft with a wide range of DNA processing proteins, including several that regulate DNA damage response and repair. Small molecule inhibitors that disrupt these protein-protein interactions are therefore of interest as chemical probes of these critical DNA processing pathways and as inhibitors to counter the upregulation of DNA damage response and repair associated with treatment of cancer patients with radiation or DNA-damaging agents. Determination of three-dimensional structures of protein-ligand complexes is an important step for elaboration of small molecule inhibitors. However, although crystal structures of free RPA70N and an RPA70N-peptide fusion construct have been reported, RPA70N-inhibitor complexes have been recalcitrant to crystallization. Analysis of the P61 lattice of RPA70N crystals led us to hypothesize that the ligand-binding surface was occluded. Surface reengineering to alter key crystal lattice contacts led to the design of RPA70N E7R, E100R, and E7R/E100R mutants. These mutants crystallized in a P212121 lattice that clearly had significant solvent channels open to the critical basic cleft. Analysis of X-ray crystal structures, target peptide binding affinities, and (15)N-(1)H heteronuclear single-quantum coherence nuclear magnetic resonance spectra showed that the mutations do not result in perturbations of the RPA70N ligand-binding surface. The success of the design was demonstrated by determining the structure of RPA70N E7R soaked with a ligand discovered in a previously reported molecular fragment screen. A fluorescence anisotropy competition binding assay revealed this compound can inhibit the interaction of RPA70N with the peptide binding motif from the DNA damage response protein ATRIP. The implications of the results are discussed in the context of ongoing efforts to design RPA70N inhibitors.

  12. Lactoferrin-binding proteins in Shigella flexneri.

    PubMed Central

    Tigyi, Z; Kishore, A R; Maeland, J A; Forsgren, A; Naidu, A S

    1992-01-01

    The ability of Shigella flexneri to interact with lactoferrin (Lf) was examined with a 125I-labeled protein-binding assay. The percent binding of human lactoferrin (HLf) and bovine lactoferrin (BLf) to 45 S. flexneri strains was 19 +/- 3 and 21 +/- 3 (mean +/- standard error of the mean), respectively. 125I-labeled HLf and BLf binding to strain M90T reached an equilibrium within 2 h. Unlabeled HLf and BLf displaced the 125I-HLf-bacteria interaction in a dose-dependent manner. The Lf-bacterium complex was uncoupled by KSCN or urea, but not by NaCl. The interaction was specific, and approximately 4,800 HLf binding sites (affinity constant [Ka], 690 nM) or approximately 5,700 BLf binding sites (Ka, 104 nM) per cell were estimated in strain M90T by a Scatchard plot analysis. The native cell envelope (CE) and outer membrane (OM) did not reveal Lf-binding components in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, after being boiled, the CE and OM preparations showed three distinct horseradish peroxidase-Lf reactive bands of about 39, 22, and 16 kDa. The 39-kDa component was also reactive to a monoclonal antibody specific for porin (PoI) proteins of members of the family Enterobacteriaceae. The Lf-binding protein pattern was similar with BLf or HLf, for Crb+ and Crb- strains. The protein-Lf complex was dissociable by KSCN or urea and was stable after treatment with NaCl. Variation (loss) in the O chain of lipopolysaccharide (LPS) markedly enhanced the Lf-binding capacity in the isogenic rough strain SFL1070-15 compared with its smooth parent strain, SFL1070. These data establish that Lf binds to specific components in the bacterial OM; the heat-modifiable, anti-PoI-reactive, and LPS-associated properties suggested that the Lf-binding proteins are porins in S. flexneri. Images PMID:1319403

  13. Non-canonical binding interactions of the RNA recognition motif (RRM) domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP).

    PubMed

    Kamina, Anyango D; Williams, Noreen

    2017-01-01

    RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP) and P34 binds to 5S ribosomal RNA (rRNA) and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM) domains. We generated truncated P34 proteins to determine these domains' interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP) 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP.

  14. Non-canonical binding interactions of the RNA recognition motif (RRM) domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP)

    PubMed Central

    Kamina, Anyango D.; Williams, Noreen

    2017-01-01

    RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP) and P34 binds to 5S ribosomal RNA (rRNA) and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM) domains. We generated truncated P34 proteins to determine these domains’ interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP) 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP. PMID:28542332

  15. A Hot-Spot Motif Characterizes the Interface between a Designed Ankyrin-Repeat Protein and Its Target Ligand

    PubMed Central

    Cheung, Luthur Siu-Lun; Kanwar, Manu; Ostermeier, Marc; Konstantopoulos, Konstantinos

    2012-01-01

    Nonantibody scaffolds such as designed ankyrin repeat proteins (DARPins) can be rapidly engineered to detect diverse target proteins with high specificity and offer an attractive alternative to antibodies. Using molecular simulations, we predicted that the binding interface between DARPin off7 and its ligand (maltose binding protein; MBP) is characterized by a hot-spot motif in which binding energy is largely concentrated on a few amino acids. To experimentally test this prediction, we fused MBP to a transmembrane domain to properly orient the protein into a polymer-cushioned lipid bilayer, and characterized its interaction with off7 using force spectroscopy. Using this, to our knowledge, novel technique along with surface plasmon resonance, we validated the simulation predictions and characterized the effects of select mutations on the kinetics of the off7-MBP interaction. Our integrated approach offers scientific insights on how the engineered protein interacts with the target molecule. PMID:22325262

  16. Proteomic analysis of the gamma human papillomavirus type 197 E6 and E7 associated cellular proteins

    PubMed Central

    Grace, Miranda; Munger, Karl

    2016-01-01

    Gamma HPV197 was the most frequently identified HPV when human skin cancer specimens were analyzed by deep sequencing. To gain insight into the biological activities of HPV197, we investigated the cellular interactomes of HPV197 E6 and E7. HPV197 E6 protein interacts with a broad spectrum of cellular LXXLL domain proteins, including UBE3A and MAML1. HPV197 E6 also binds and inhibits the TP53 tumor suppressor and interacts with the CCR4-NOT ubiquitin ligase and deadenylation complex. Despite lacking a canonical retinoblastoma (RB1) tumor suppressor binding site, HPV197 E7 binds RB1 and activates E2F transcription. Hence, HPV197 E6 and E7 proteins interact with a similar set of cellular proteins as E6 and E7 proteins encoded by HPVs that have been linked to human carcinogenesis and/or have transforming activities in vitro. PMID:27771561

  17. Lipid-binding analysis using a fat blot assay.

    PubMed

    Munnik, Teun; Wierzchowiecka, Magdalena

    2013-01-01

    Protein-lipid interactions play an important role in lipid metabolism, membrane trafficking and cell -signaling by regulating protein localization, activation, and function. The Fat Blot assay is a relatively simple and inexpensive method to examine these interactions using nitrocellulose membrane-immobilized lipids. The assay is adapted from the method by Dowler et al. (Sci STKE 129:pl6, 2002) and provides qualitative and quantitative information on the relative affinity with which a protein binds to a particular lipid. To perform a Fat Blot assay, serial dilutions of different phospholipids are spotted onto a nitrocellulose membrane. These membranes are then incubated with a lipid-binding protein possessing a GST (or other epitope) tag. The membranes are washed and the protein, which is bound to the membrane by virtue of its interaction with the lipid's head group, is detected by immunoblotting with an antibody against GST (or other epitope). The procedure only requires a few micrograms of protein and is quick, simple and cheap to perform.

  18. Kinome signaling through regulated protein-protein interactions in normal and cancer cells.

    PubMed

    Pawson, Tony; Kofler, Michael

    2009-04-01

    The flow of molecular information through normal and oncogenic signaling pathways frequently depends on protein phosphorylation, mediated by specific kinases, and the selective binding of the resulting phosphorylation sites to interaction domains present on downstream targets. This physical and functional interplay of catalytic and interaction domains can be clearly seen in cytoplasmic tyrosine kinases such as Src, Abl, Fes, and ZAP-70. Although the kinase and SH2 domains of these proteins possess similar intrinsic properties of phosphorylating tyrosine residues or binding phosphotyrosine sites, they also undergo intramolecular interactions when linked together, in a fashion that varies from protein to protein. These cooperative interactions can have diverse effects on substrate recognition and kinase activity, and provide a variety of mechanisms to link the stimulation of catalytic activity to substrate recognition. Taken together, these data have suggested how protein kinases, and the signaling pathways in which they are embedded, can evolve complex properties through the stepwise linkage of domains within single polypeptides or multi-protein assemblies.

  19. Cross-regulatory protein-protein interactions between Hox and Pax transcription factors.

    PubMed

    Plaza, Serge; Prince, Frederic; Adachi, Yoshitsugu; Punzo, Claudio; Cribbs, David L; Gehring, Walter J

    2008-09-09

    Homeotic Hox selector genes encode highly conserved transcriptional regulators involved in the differentiation of multicellular organisms. Ectopic expression of the Antennapedia (ANTP) homeodomain protein in Drosophila imaginal discs induces distinct phenotypes, including an antenna-to-leg transformation and eye reduction. We have proposed that the eye loss phenotype is a consequence of a negative posttranslational control mechanism because of direct protein-protein interactions between ANTP and Eyeless (EY). In the present work, we analyzed the effect of various ANTP homeodomain mutations for their interaction with EY and for head development. Contrasting with the eye loss phenotype, we provide evidence that the antenna-to-leg transformation involves ANTP DNA-binding activity. In a complementary genetic screen performed in yeast, we isolated mutations located in the N terminus of the ANTP homeodomain that inhibit direct interactions with EY without abolishing DNA binding in vitro and in vivo. In a bimolecular fluorescence complementation assay, we detected the ANTP-EY interaction in vivo, these interactions occurring through the paired domain and/or the homeodomain of EY. These results demonstrate that the homeodomain supports multiple molecular regulatory functions in addition to protein-DNA and protein-RNA interactions; it is also involved in protein-protein interactions.

  20. Tubulin chaperone E binds microtubules and proteasomes and protects against misfolded protein stress.

    PubMed

    Voloshin, Olga; Gocheva, Yana; Gutnick, Marina; Movshovich, Natalia; Bakhrat, Anya; Baranes-Bachar, Keren; Bar-Zvi, Dudy; Parvari, Ruti; Gheber, Larisa; Raveh, Dina

    2010-06-01

    Mutation of tubulin chaperone E (TBCE) underlies hypoparathyroidism, retardation, and dysmorphism (HRD) syndrome with defective microtubule (MT) cytoskeleton. TBCE/yeast Pac2 comprises CAP-Gly, LRR (leucine-rich region), and UbL (ubiquitin-like) domains. TBCE folds alpha-tubulin and promotes alpha/beta dimerization. We show that Pac2 functions in MT dynamics: the CAP-Gly domain binds alpha-tubulin and MTs, and functions in suppression of benomyl sensitivity of pac2Delta mutants. Pac2 binds proteasomes: the LRR binds Rpn1, and the UbL binds Rpn10; the latter interaction mediates Pac2 turnover. The UbL also binds the Skp1-Cdc53-F-box (SCF) ubiquitin ligase complex; these competing interactions for the UbL may impact on MT dynamics. pac2Delta mutants are sensitive to misfolded protein stress. This is suppressed by ectopic PAC2 with both the CAP-Gly and UbL domains being essential. We propose a novel role for Pac2 in the misfolded protein stress response based on its ability to interact with both the MT cytoskeleton and the proteasomes.

Top