Sample records for binding site alteration

  1. Altered binding of thioflavin t to the peripheral anionic site of acetylcholinesterase after phosphorylation of the active site by chlorpyrifos oxon or dichlorvos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultatos, L.G.; Kaushik, R.

    2008-08-01

    The peripheral anionic site of acetylcholinesterase, when occupied by a ligand, is known to modulate reaction rates at the active site of this important enzyme. The current report utilized the peripheral anionic site specific fluorogenic probe thioflavin t to determine if the organophosphates chlorpyrifos oxon and dichlorvos bind to the peripheral anionic site of human recombinant acetylcholinesterase, since certain organophosphates display concentration-dependent kinetics when inhibiting this enzyme. Incubation of 3 nM acetylcholinesterase active sites with 50 nM or 2000 nM inhibitor altered both the B{sub max} and K{sub d} for thioflavin t binding to the peripheral anionic site. However, thesemore » changes resulted from phosphorylation of Ser203 since increasing either inhibitor from 50 nM to 2000 nM did not alter further thioflavin t binding kinetics. Moreover, the organophosphate-induced decrease in B{sub max} did not represent an actual reduction in binding sites, but instead likely resulted from conformational interactions between the acylation and peripheral anionic sites that led to a decrease in the rigidity of bound thioflavin t. A drop in fluorescence quantum yield, leading to an apparent decrease in B{sub max}, would accompany the decreased rigidity of bound thioflavin t molecules. The organophosphate-induced alterations in K{sub d} represented changes in binding affinity of thioflavin t, with diethylphosphorylation of Ser203 increasing K{sub d}, and dimethylphosphorylation of Ser203 decreasing K{sub d}. These results indicate that chlorpyrifos oxon and dichlorvos do not bind directly to the peripheral anionic site of acetylcholinesterase, but can affect binding to that site through phosphorylation of Ser203.« less

  2. AF64A depletes hippocampal high-affinity choline uptake but does not alter the density of alpha-bungarotoxin binding sites or modify the effect of exogenous choline.

    PubMed

    Morley, B J; Garner, L L

    1990-06-11

    Sodium-dependent, high-affinity choline uptake (HACU) and the density of alpha-bungarotoxin (BuTX) receptor-binding sites were measured in the hippocampus following the intraventricular infusion of ethylcholine aziridinium ion (AF64A), a neurotoxin that competes with choline at high-affinity choline transport sites and may result in the degeneration of cholinergic axons. Eight days after the infusion of AF64A into the lateral ventricles (2.5 nmol/side), HACU was depleted by 60% in the hippocampus of experimental animals in comparison with controls, but the density of BuTX-binding sites was not altered. The administration of 15 mg/ml of choline chloride in the drinking water increased the density of BuTX-binding sites, as previously reported by this laboratory. The administration of AF64A did not prevent the effect of exogenous choline on the density of binding sites, nor did choline treatment alter the effect of AF64A on HACU. These data indicate that the density of BuTX-binding sites in the hippocampus is not altered following a substantial decrease in HACU and presumed degeneration of cholinergic axons. Since the effect of exogenous choline was not prevented by AF64A treatment, the data are interpreted to support the hypothesis that the increase in the density of BuTX-binding sites following dietary choline supplementation is attributable to a direct effect of choline on receptor sites.

  3. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4+ T cells

    PubMed Central

    Gilbert, Kathleen M.; Blossom, Sarah J.; Reisfeld, Brad; Erickson, Stephen W.; Vyas, Kanan; Maher, Mary; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A.; Bhattacharyya, Sudeepa

    2017-01-01

    Abstract Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0–15% methylation), and 25% were hypermethylated (85–100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells. PMID:29129997

  4. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palacios, J.M.; Chinaglia, G.; Rigo, M.

    1991-02-01

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ({sup 125}I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of controlmore » cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease.« less

  5. Organizational requirements of the SaeR binding sites for a functional P1 promoter of the sae operon in Staphylococcus aureus.

    PubMed

    Cho, Hoonsik; Jeong, Do-Won; Li, Chunling; Bae, Taeok

    2012-06-01

    In Staphylococcus aureus, the SaeRS two-component system controls the expression of multiple virulence factors. Of the two promoters in the sae operon, P1 is autoinduced and has two binding sites for the response regulator SaeR. In this study, we examined the organizational requirements of the SaeR binding sites in P1 for transcription activation. Mutational studies showed that both binding sites are essential for binding to phosphorylated SaeR (P-SaeR) and transcription activation. When the 21-bp distance between the centers of the two SaeR binding sites was altered to 26 bp, 31 bp, 36 bp, or 41 bp, only the 31-bp mutant retained approximately 40% of the original promoter activity. When the -1-bp spacing (i.e.,1-bp overlap) between the primary SaeR binding site and the -35 promoter region was altered, all mutant P1 promoters failed to initiate transcription; however, when the first nucleotide of the -35 region was changed from A to T, the mutants with 0-bp or 22-bp spacing showed detectable promoter activity. Although P-SaeR was essential for the binding of RNA polymerase to P1, it was not essential for the binding of the enzyme to the alpha-hemolysin promoter. When the nonoptimal spacing between promoter elements in P1 or the coagulase promoter was altered to the optimal spacing of 17 bp, both promoters failed to initiate transcription. These results suggest that SaeR binding sites are under rather strict organizational restrictions and provide clues for understanding the molecular mechanism of sae-mediated transcription activation.

  6. The involvement of the sodium-potassium pump in postjunctional supersensitivity of the guinea-pig vas deferens as assessed by [3H]ouabain binding.

    PubMed

    Wong, S K; Westfall, D P; Fedan, J S; Fleming, W W

    1981-10-01

    Previous evidence has suggested that postjunctional supersensitivity of the guinea-pig vas deferens results, in part, from partial depolarization of the cell membrane. The depolarization is believed to result from a reduction in the activity of the Na-K pump. Indeed, the Na, K+ -adenosine triphosphatase activity of subcellular fractions from supersensitive vas deferens is reduced. In order to determine whether the biochemical alteration seen in subcellular fractions correlate with Na-K pump sites in intact tissues, we have studied the binding of [3H] ouabain to intact vas deferens. [3H]ouabain binds to membrane sites which have the characteristics expected of Na+, K+ - adenosine triphosphatase. Specific binding was saturable and reversible. Scatchard analysis of ouabain-binding in control tissues yielded a single class of binding sites with a dissociation constant (KD) of 156 +/- 7 nM and a maximum number of binding sites (Bmax) of 558.7 +/- 15.6 fmol/mg wet wt. [3H]Ouabain binding was displaceable by several cardiac glycosides and aglycones, but not by steroid hormones or sodium vanadate. Alteration of concentrations of Na+ and K+ markedly affected ouabain binding. Denervation (with 6-hydroxydopamine), decentralization or reserpine treatment for 1 day, which do not produce supersensitivity, did not alter the Bmax, whereas 5 to 7 days after these procedures, when supersensitivity was present, the Bmax was significantly reduced by 20 to 40%. The KD was not changed by any of the treatments. These data provide additional support for the concept that a reduction in the NaK pump sites contributes to postjunctional supersensitivity.

  7. Expression of Ulex europaeus agglutinin I lectin-binding sites in squamous cell carcinomas and their absence in basal cell carcinomas. Indicator of tumor type and differentiation.

    PubMed

    Heng, M C; Fallon-Friedlander, S; Bennett, R

    1992-06-01

    Lectins bind tightly to carbohydrate moieties on cell surfaces. Alterations in lectin binding have been reported to accompany epidermal cell differentiation, marking alterations in membrane sugars during this process. The presence of UEA I (Ulex europaeus agglutinin I) L-fucose-specific lectin-binding sites has been used as a marker for terminally differentiated (committed) keratinocytes. In this article, we report the presence of UEA-I-binding sites on squamous keratinocytes of well-differentiated squamous cell carcinomas, with patchy loss of UEA I positivity on poorly differentiated cells of squamous cell carcinomas, suggesting a possible use for this technique in the rapid assessment of less differentiated areas within the squamous cell tumor. The absence of UEA-I-binding sites on basal cell carcinomas may be related to an inability of cells comprising this tumor to convert the L-D-pyranosyl moiety on basal cells to the L-fucose moiety, resulting in an inability of basal cell carcinoma cell to undergo terminal differentiation into a committed keratinocyte.

  8. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects.

    PubMed

    Smith, Kyle P; Gifford, Kathleen M; Waitzman, Joshua S; Rice, Sarah E

    2015-01-01

    While it is currently estimated that 40 to 50% of eukaryotic proteins are phosphorylated, little is known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor binding sites. In this study, we investigated how frequently phosphorylation may affect the binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data Bank (PDB). We cross-referenced these structures with phosphorylation data available from the PhosphoSitePlus database. Three hundred twenty-two of 453 (71%) of drug targets have evidence of phosphorylation that has been validated by multiple methods or labs. For 132 of 453 (29%) of those, the phosphorylation site is within 12 Å of the small molecule-binding site, where it would likely alter small molecule binding affinity. We propose a framework for distinguishing between drug-phosphorylation site interactions that are likely to alter the efficacy of drugs versus those that are not. In addition we highlight examples of well-established drug targets, such as estrogen receptor alpha, for which phosphorylation may affect drug affinity and clinical efficacy. Our data suggest that phosphorylation may affect drug binding and efficacy for a significant fraction of drug target proteins. © 2014 Wiley Periodicals, Inc.

  9. SP transcription factor paralogs and DNA-binding sites coevolve and adaptively converge in mammals and birds.

    PubMed

    Yokoyama, Ken Daigoro; Pollock, David D

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins.

  10. SP Transcription Factor Paralogs and DNA-Binding Sites Coevolve and Adaptively Converge in Mammals and Birds

    PubMed Central

    Yokoyama, Ken Daigoro; Pollock, David D.

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068

  11. Impact of germline and somatic missense variations on drug binding sites.

    PubMed

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and germline nsSNVs that disrupt these binding sites can provide valuable knowledge for personalized medicine treatment. A web portal is available where nsSNVs from individual patient can be checked by scanning against DrugVar to determine whether any of the SNVs affect the binding of any drug in the database.

  12. A cross-study analysis of prenatal exposures to environmental contaminants and the epigenome: support for stress-responsive transcription factor occupancy as a mediator of gene-specific CpG methylation patterning

    PubMed Central

    Martin, Elizabeth M.; Fry, Rebecca C.

    2016-01-01

    Abstract A biological mechanism by which exposure to environmental contaminants results in gene-specific CpG methylation patterning is currently unknown. We hypothesize that gene-specific CpG methylation is related to environmentally perturbed transcription factor occupancy. To test this hypothesis, a database of 396 genes with altered CpG methylation either in cord blood leukocytes or placental tissue was compiled from 14 studies representing assessments of six environmental contaminants. Subsequently, an in silico approach was used to identify transcription factor binding sites enriched among the genes with altered CpG methylation in relationship to the suite of environmental contaminants. For each study, the sequences of the promoter regions (representing −1000 to +500 bp from the transcription start site) of all genes with altered CpG methylation were analyzed for enrichment of transcription factor binding sites. Binding sites for a total of 56 unique transcription factors were identified to be enriched within the promoter regions of the genes. Binding sites for the Kidney-Enriched Krupple-like Factor 15, a known responder to endogenous stress, were enriched ( P  < 0.001–0.041) among the genes with altered CpG methylation associated for five of the six environmental contaminants. These data support the transcription factor occupancy theory as a potential mechanism underlying environmentally-induced gene-specific CpG methylation. PMID:27066266

  13. Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III.

    PubMed

    Kim, Kyungsub; Sim, Se-Hoon; Jeon, Che Ok; Lee, Younghoon; Lee, Kangseok

    2011-02-01

    RNase III, a double-stranded RNA-specific endoribonuclease, degrades bdm mRNA via cleavage at specific sites. To better understand the mechanism of cleavage site selection by RNase III, we performed a genetic screen for sequences containing mutations at the bdm RNA cleavage sites that resulted in altered mRNA stability using a transcriptional bdm'-'cat fusion construct. While most of the isolated mutants showed the increased bdm'-'cat mRNA stability that resulted from the inability of RNase III to cleave the mutated sequences, one mutant sequence (wt-L) displayed in vivo RNA stability similar to that of the wild-type sequence. In vivo and in vitro analyses of the wt-L RNA substrate showed that it was cut only once on the RNA strand to the 5'-terminus by RNase III, while the binding constant of RNase III to this mutant substrate was moderately increased. A base substitution at the uncleaved RNase III cleavage site in wt-L mutant RNA found in another mutant lowered the RNA-binding affinity by 11-fold and abolished the hydrolysis of scissile bonds by RNase III. Our results show that base substitutions at sites forming the scissile bonds are sufficient to alter RNA cleavage as well as the binding activity of RNase III. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Characterization of Escherichia coli Type 1 Pilus Mutants with Altered Binding Specificities

    PubMed Central

    Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Hamrick, Terri S.; Horton, John R.; Orndorff, Paul E.

    2001-01-01

    PCR mutagenesis and a unique enrichment scheme were used to obtain two mutants, each with a single lesion in fimH, the chromosomal gene that encodes the adhesin protein (FimH) of Escherichia coli type 1 pili. These mutants were noteworthy in part because both were altered in the normal range of cell types bound by FimH. One mutation altered an amino acid at a site previously shown to be involved in temperature-dependent binding, and the other altered an amino acid lining the predicted FimH binding pocket. PMID:11395476

  15. Denervation does not alter the number of neuronal bungarotoxin binding sites on autonomic neurons in the frog cardiac ganglion.

    PubMed

    Sargent, P B; Bryan, G K; Streichert, L C; Garrett, E N

    1991-11-01

    The binding of neuronal bungarotoxin (n-BuTX; also known as bungarotoxin 3.1, kappa-bungarotoxin, and toxin F) was analyzed in normal and denervated parasympathetic cardiac ganglia of the frog Rana pipiens, n-BuTX blocks both EPSPs and ACh potentials at 5-20 nM, as determined by intracellular recording techniques. Scatchard analysis on homogenates indicates that cardiac ganglia have two classes of binding sites for 125I-n-BuTX: a high-affinity site with an apparent dissociation constant (Kd,app) of 1.7 nM and a Bmax (number of binding sites) of 3.8 fmol/ganglion and a low-affinity site with a Kd,app of 12 microM and a Bmax of 14 pmol/ganglion. alpha-Bungarotoxin does not appear to interfere with the binding of 125I-n-BuTX to either site. The high-affinity binding site is likely to be the functional nicotinic ACh receptor (AChR), given the similarity between its affinity for 125I-n-BuTX and the concentration of n-BuTX required to block AChR function. Light microscopic autoradiographic analysis of 125I-n-BuTX binding to the ganglion cell surface reveals that toxin binding is concentrated at synaptic sites, which were identified using a synaptic vesicle-specific antibody. Scatchard analysis of autoradiographic data reveals that 125I-n-BuTX binding to the neuronal surface is saturable and has a Kd,app similar to that of the high-affinity binding site characterized in homogenates. Surface binding of 125I-n-BuTX is blocked by nicotine, carbachol, and d-tubocurarine (IC50 less than 20 microM), but not by atropine (IC50 greater than 10 mM). Denervation of the heart increases the ACh sensitivity of cardiac ganglion cells but has no effect upon the number of high-affinity binding sites for 125I-n-BuTX in tissue homogenates. Moreover, autoradiographic analysis indicates that denervation does not alter the number of 125I-n-BuTX binding sites on the ganglion cell surface. n-BuTX is as effective in reducing ganglion cell responses to ACh in denervated ganglia as it is in normally innervated ganglia. These results suggest that denervation alters neither the total number of nicotinic AChRs in the cardiac ganglion nor the number found on the surface of ganglion cells. These autonomic neurons thus respond differently to denervation than do skeletal myofibers. The increase in ACh sensitivity displayed by cardiac ganglion cells upon denervation cannot be explained by changes in AChR number.

  16. Activation of erythropoietin receptor in the absence of hormone by a peptide that binds to a domain different from the hormone binding site

    PubMed Central

    Naranda, Tatjana; Wong, Kenneth; Kaufman, R. Ilene; Goldstein, Avram; Olsson, Lennart

    1999-01-01

    Applying a homology search method previously described, we identified a sequence in the extracellular dimerization site of the erythropoietin receptor, distant from the hormone binding site. A peptide identical to that sequence was synthesized. Remarkably, it activated receptor signaling in the absence of erythropoietin. Neither the peptide nor the hormone altered the affinity of the other for the receptor; thus, the peptide does not bind to the hormone binding site. The combined activation of signal transduction by hormone and peptide was strongly synergistic. In mice, the peptide acted like the hormone, protecting against the decrease in hematocrit caused by carboplatin. PMID:10377456

  17. Sulfated Low Molecular Weight Lignins, Allosteric Inhibitors of Coagulation Proteinases via the Heparin Binding Site, Significantly Alter the Active Site of Thrombin and Factor Xa Compared to Heparin

    PubMed Central

    Henry, Brian L.; Desai, Umesh R.

    2014-01-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  18. Sulfated low molecular weight lignins, allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor xa compared to heparin.

    PubMed

    Henry, Brian L; Desai, Umesh R

    2014-11-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Engineering Nucleotide Specificity of Succinyl-CoA Synthetase in Blastocystis: The Emerging Role of Gatekeeper Residues.

    PubMed

    Vashisht, Kapil; Verma, Sonia; Gupta, Sunita; Lynn, Andrew M; Dixit, Rajnikant; Mishra, Neelima; Valecha, Neena; Hamblin, Karleigh A; Maytum, Robin; Pandey, Kailash C; van der Giezen, Mark

    2017-01-24

    Charged, solvent-exposed residues at the entrance to the substrate binding site (gatekeeper residues) produce electrostatic dipole interactions with approaching substrates, and control their access by a novel mechanism called "electrostatic gatekeeper effect". This proof-of-concept study demonstrates that the nucleotide specificity can be engineered by altering the electrostatic properties of the gatekeeper residues outside the binding site. Using Blastocystis succinyl-CoA synthetase (SCS, EC 6.2.1.5), we demonstrated that the gatekeeper mutant (ED) resulted in ATP-specific SCS to show high GTP specificity. Moreover, nucleotide binding site mutant (LF) had no effect on GTP specificity and remained ATP-specific. However, via combination of the gatekeeper mutant with the nucleotide binding site mutant (ED+LF), a complete reversal of nucleotide specificity was obtained with GTP, but no detectable activity was obtained with ATP. This striking result of the combined mutant (ED+LF) was due to two changes; negatively charged gatekeeper residues (ED) favored GTP access, and nucleotide binding site residues (LF) altered ATP binding, which was consistent with the hypothesis of the "electrostatic gatekeeper effect". These results were further supported by molecular modeling and simulation studies. Hence, it is imperative to extend the strategy of the gatekeeper effect in a different range of crucial enzymes (synthetases, kinases, and transferases) to engineer substrate specificity for various industrial applications and substrate-based drug design.

  20. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Fukuda, H.

    1985-07-22

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with /sup 3/H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum ormore » the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with /sup 3/H-muscimol and /sup 3/H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables.« less

  1. CD4-binding site alterations in CCR5-using HIV-1 envelopes influencing gp120-CD4 interactions and fusogenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterjovski, Jasminka; Churchill, Melissa J.; Roche, Michael

    2011-02-20

    CD4-binding site (CD4bs) alterations in gp120 contribute to different pathophysiological phenotypes of CCR5-using (R5) HIV-1 strains, but the potential structural basis is unknown. Here, we characterized functionally diverse R5 envelope (Env) clones (n = 16) to elucidate potential structural alterations within the gp120 CD4bs that influence Env function. Initially, we showed that the magnitude of gp120-CD4-binding correlates with increased fusogenicity and reduced CD4 dependence. Analysis of three-dimensional gp120 structural models revealed two CD4bs variants, D279 and N362, that were associated with reduced CD4 dependence. Further structural analysis showed that a wider aperture of the predicted CD4bs cavity, as constrained bymore » the inner-most atoms at the gp120 V1V2 stem and the V5 loop, was associated with amino acid alterations within V5 and correlated with increased gp120-CD4 binding and increased fusogenicity. Our results provide evidence that the gp120 V5 loop may alter CD4bs conformation and contribute to increased gp120-CD4 interactions and Env fusogenicity.« less

  2. Binding mode of cytochalasin B to F-actin is altered by lateral binding of regulatory proteins.

    PubMed

    Suzuki, N; Mihashi, K

    1991-01-01

    The binding of cytochalasin B (CB) to F-actin was studied using a trace amount of [3H]-cytochalasin B. F-Actin-bound CB was separated from free CB by ultracentrifugation and the amount of F-actin-bound CB was determined by comparing the radioactivity both in the supernatant and in the precipitate. A filament of pure F-actin possessed one high-affinity binding site for CB (Kd = 5.0 nM) at the B-end. When the filament was bound to native tropomyosin (complex of tropomyosin and troponin), two low-affinity binding sites for CB (Kd = 230 nM) were created, while the high-affinity binding site was reserved (Kd = 3.4 nM). It was concluded that the creation of low-affinity binding sites was primarily due to binding of tropomyosin to F-actin, as judged from the following two observations: (1) a filament of F-actin/tropomyosin complex possessed one high-affinity binding site (Kd = 3.9 nM) plus two low-affinity binding sites (Kd = 550 nM); (2) the Ca2(+)-receptive state of troponin C in F-actin/native tropomyosin complex did not affect CB binding.

  3. Structural basis of DNA bending and oriented heterodimer binding by the basic leucine zipper domains of Fos and Jun.

    PubMed

    Leonard, D A; Rajaram, N; Kerppola, T K

    1997-05-13

    Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos-Jun-AP-1 complex may contribute to its functional versatility at different promoters.

  4. "In situ" observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy.

    PubMed

    Katayama, Kota; Furutani, Yuji; Iwaki, Masayo; Fukuda, Tetsuya; Imai, Hiroo; Kandori, Hideki

    2018-01-31

    Long-wavelength-sensitive (LWS) pigment possesses a chloride binding site in its protein moiety. The binding of chloride alters the absorption spectra of LWS; this is known as the chloride effect. Although the two amino acid substitutions of His197 and Lys200 influence the chloride effect, the molecular mechanism of chloride binding, which underlies the spectral tuning, has yet to be clarified. In this study, we applied ATR-FTIR spectroscopy to monkey green (MG) pigment to gain structural information of the chloride binding site. The results suggest that chloride binding stabilizes the β-sheet structure on the extracellular side loop with perturbation of the retinal polyene chain, promotes a hydrogen bonding exchange with the hydroxyl group of Tyr, and alters the protonation state of carboxylate. Combining with the results of the binding analyses of various anions (Br - , I - and NO 3 - ), our findings suggest that the anion binding pocket is organized for only Cl - (or Br - ) to stabilize conformation around the retinal chromophore, which is functionally relevant with absorbing long wavelength light.

  5. The Antibiotic Novobiocin Binds and Activates the ATPase That Powers Lipopolysaccharide Transport.

    PubMed

    May, Janine M; Owens, Tristan W; Mandler, Michael D; Simpson, Brent W; Lazarus, Michael B; Sherman, David J; Davis, Rebecca M; Okuda, Suguru; Massefski, Walter; Ruiz, Natividad; Kahne, Daniel

    2017-12-06

    Novobiocin is an orally active antibiotic that inhibits DNA gyrase by binding the ATP-binding site in the ATPase subunit. Although effective against Gram-positive pathogens, novobiocin has limited activity against Gram-negative organisms due to the presence of the lipopolysaccharide-containing outer membrane, which acts as a permeability barrier. Using a novobiocin-sensitive Escherichia coli strain with a leaky outer membrane, we identified a mutant with increased resistance to novobiocin. Unexpectedly, the mutation that increases novobiocin resistance was not found to alter gyrase, but the ATPase that powers lipopolysaccharide (LPS) transport. Co-crystal structures, biochemical, and genetic evidence show novobiocin directly binds this ATPase. Novobiocin does not bind the ATP binding site but rather the interface between the ATPase subunits and the transmembrane subunits of the LPS transporter. This interaction increases the activity of the LPS transporter, which in turn alters the permeability of the outer membrane. We propose that novobiocin will be a useful tool for understanding how ATP hydrolysis is coupled to LPS transport.

  6. Alteration of methotrexate binding to human serum albumin induced by oxidative stress. Spectroscopic comparative study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.

    2016-01-01

    Changes of oxidative modified albumin conformation by comparison of non-modified (HSA) and modified (oHSA) human serum albumin absorption spectra, Red Edge Excitation Shift (REES) effect and fluorescence synchronous spectra were investigated. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region from 200 to 250 nm involve structural alterations related to variations in peptide backbone conformation. Analysis of the REES effect allowed for the observation of changes caused by oxidation in the region of the hydrophobic pocket containing the tryptophanyl residue. Synchronous fluorescence spectroscopy confirmed changes of the position of the tryptophanyl and tyrosil residues fluorescent band. Effect of oxidative stress on binding of methotrexate (MTX) was investigated by spectrofluorescence, UV-VIS and 1HNMR spectroscopy. MTX caused the fluorescence quenching of non-modified (HSA) and modified (oHSA) human serum albumin molecule. The values of binding constants, Hill's coefficients and a number of binding sites in the protein molecule in the high affinity binding site were calculated for the binary MTX-HSA and MTX-oHSA systems. For these systems, qualitative analysis in the low affinity binding sites was performed with the use of the 1HNMR technique.

  7. Sequence Discrimination by Alternatively Spliced Isoforms of a DNA Binding Zinc Finger Domain

    NASA Astrophysics Data System (ADS)

    Gogos, Joseph A.; Hsu, Tien; Bolton, Jesse; Kafatos, Fotis C.

    1992-09-01

    Two major developmentally regulated isoforms of the Drosophila chorion transcription factor CF2 differ by an extra zinc finger within the DNA binding domain. The preferred DNA binding sites were determined and are distinguished by an internal duplication of TAT in the site recognized by the isoform with the extra finger. The results are consistent with modular interactions between zinc fingers and trinucleotides and also suggest rules for recognition of AT-rich DNA sites by zinc finger proteins. The results show how modular finger interactions with trinucleotides can be used, in conjunction with alternative splicing, to alter the binding specificity and increase the spectrum of sites recognized by a DNA binding domain. Thus, CF2 may potentially regulate distinct sets of target genes during development.

  8. Mutations in Human Tubulin Proximal to the Kinesin-Binding Site Alter Dynamic Instability at Microtubule Plus- and Minus-Ends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ti, Shih-Chieh; Pamula, Melissa C.; Howes, Stuart C.

    The assembly of microtubule-based cellular structures depends on regulated tubulin polymerization and directional transport. In this research, we have purified and characterized tubulin heterodimers that have human β-tubulin isotype III (TUBB3), as well as heterodimers with one of two β-tubulin mutations (D417H or R262H). Both point mutations are proximal to the kinesin-binding site and have been linked to an ocular motility disorder in humans. Compared to wild-type, microtubules with these mutations have decreased catastrophe frequencies and increased average lifetimes of plus- and minus-end-stabilizing caps. Importantly, the D417H mutation does not alter microtubule lattice structure or Mal3 binding to growing filaments.more » Instead, this mutation reduces the affinity of tubulin for TOG domains and colchicine, suggesting that the distribution of tubulin heterodimer conformations is changed. Together, our findings reveal how residues on the surface of microtubules, distal from the GTP-hydrolysis site and inter-subunit contacts, can alter polymerization dynamics at the plus- and minus-ends of microtubules.« less

  9. Mechanisms and consequences of alternative polyadenylation

    PubMed Central

    Di Giammartino, Dafne Campigli; Nishida, Kensei; Manley, James L.

    2011-01-01

    Summary Alternative polyadenylation (APA) is emerging as a widespread mechanism used to control gene expression. Like alternative splicing, usage of alternative poly(A) sites allows a single gene to encode multiple mRNA transcripts. In some cases, this changes the mRNA coding potential; in other cases, the code remains unchanged but the 3’UTR length is altered, influencing the fate of mRNAs in several ways, for example, by altering the availability of RNA binding protein sites and microRNA binding sites. The mechansims governing both global and gene-specific APA are only starting to be deciphered. Here we review what is known about these mechanisms and the functional consequences of alternative polyadenlyation. PMID:21925375

  10. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    PubMed

    Forsell, Mattias N E; Dey, Barna; Mörner, Andreas; Svehla, Krisha; O'dell, Sijy; Högerkorp, Carl-Magnus; Voss, Gerald; Thorstensson, Rigmor; Shaw, George M; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2008-10-03

    The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  11. Mutants of Cre recombinase with improved accuracy

    PubMed Central

    Eroshenko, Nikolai; Church, George M.

    2013-01-01

    Despite rapid advances in genome engineering technologies, inserting genes into precise locations in the human genome remains an outstanding problem. It has been suggested that site-specific recombinases can be adapted towards use as transgene delivery vectors. The specificity of recombinases can be altered either with directed evolution or via fusions to modular DNA-binding domains. Unfortunately, both wildtype and altered variants often have detectable activities at off-target sites. Here we use bacterial selections to identify mutations in the dimerization surface of Cre recombinase (R32V, R32M, and 303GVSdup) that improve the accuracy of recombination. The mutants are functional in bacteria, in human cells, and in vitro (except for 303GVSdup, which we did not purify), and have improved selectivity against both model off-target sites and the entire E. coli genome. We propose that destabilizing binding cooperativity may be a general strategy for improving the accuracy of dimeric DNA-binding proteins. PMID:24056590

  12. Polymorphisms A387P in thrombospondin-4 and N700S in thrombospondin-1 perturb calcium binding sites.

    PubMed

    Stenina, Olga I; Ustinov, Valentin; Krukovets, Irene; Marinic, Tina; Topol, Eric J; Plow, Edward F

    2005-11-01

    Recent genetic studies have associated members of the thrombospondin (TSP) gene family with premature cardiovascular disease. The disease-associated polymorphisms lead to single amino acid changes in TSP-4 (A387P) and TSP-1 (N700S). These substitutions reside in adjacent domains of these highly homologous proteins. Secondary structural predictive programs and the homology of the domains harboring these amino acid substitutions to those in other proteins pointed to potential alterations of putative Ca2+ binding sites that reside in close proximity to the polymorphic amino acids. Since Ca2+ binding is critical for the structure and function of TSP family members, direct evidence for differences in Ca2+ binding by the polymorphic forms was sought. Using synthetic peptides and purified recombinant variant fragments bearing the amino acid substitutions, we measured differences in Tb3+ luminescence as an index of Ca2+ binding. The Tb3+ binding constants placed the TSP-1 region affected by N700S polymorphism among other high-affinity Ca2+ binding sites. The affinity of Ca2+ binding was lower for peptides (3.5-fold) and recombinant fragments (10-fold) containing the S700 vs. the N700 form. In TSP-4, the P387 form acquired an additional Ca2+ binding site absent in the A387 form. The results of our study suggest that both substitutions (A387P in TSP-4 and N700S in TSP-1) alter Ca2+ binding properties. Since these substitutions exert the opposite effects on Ca2+ binding, a decrease in TSP-1 and an increase in TSP-4, the two TSP variants are likely to influence cardiovascular functions in distinct but yet pathogenic ways.

  13. Pyrethroid receptor in the insect Na sup + channel: Alteration of its properties in pyrethroid-resistant flies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauron, D.; Barhanin, J.; Amichot, M.

    1989-02-21

    Resistance to insecticides is a major problem in agriculture. ({sup 3}H)Saxitoxin binding experiments have shown that pyrethroid-sensitive and pyrethroid-resistant flies have the same amount of Na{sup +} channel protein in their brain membranes. Also, although flies are resistant to pyrethroids, they remain as sensitive to batrachotoxin, which is another type of Na{sup +} channel activators, as pyrethroid-sensitive flies. Pyrethroid binding sites have been characterized by use of the properties of pyrethroids to increase the specific ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate binding component. K{sub 0.5} values for association of pyrethroids at the Na{sup +} channel of pyrethroid-sensitive flies are in the rangemore » of 0.15-0.25 {mu}M. Conversely, pyrethroids do not produce a significant increase of ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate binding in pyrethroid-resistant flies even at high concentrations of the insecticide. It is concluded that linkage between pyrethroid and batrachotoxin binding sites is altered in the pyrethroid-resistant fly strains. This alteration is probably due to a drastically decreased affinity of the Na{sup +} channel for pyrethroids.« less

  14. Characterization of nicotine binding to the rat brain P/sub 2/ preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan, J.W.

    1984-01-01

    These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) havemore » been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.« less

  15. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    PubMed

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  16. Allosteric Signaling Is Bidirectional in an Outer-Membrane Transport Protein.

    PubMed

    Sikora, Arthur; Joseph, Benesh; Matson, Morgan; Staley, Jacob R; Cafiso, David S

    2016-11-01

    In BtuB, the Escherichia coli TonB-dependent transporter for vitamin B 12 , substrate binding to the extracellular surface unfolds a conserved energy coupling motif termed the Ton box into the periplasm. This transmembrane signaling event facilitates an interaction between BtuB and the inner-membrane protein TonB. In this study, continuous-wave and pulse electron paramagnetic resonance in a native outer-membrane preparation demonstrate that signaling also occurs from the periplasmic to the extracellular surface in BtuB. The binding of a TonB fragment to the periplasmic interface alters the configuration of the second extracellular loop and partially dissociates a spin-labeled substrate analog. Moreover, mutants in the periplasmic Ton box that are transport-defective alter the binding site for vitamin B 12 in BtuB. This work demonstrates that the Ton box and the extracellular substrate binding site are allosterically coupled in BtuB, and that TonB binding may initiate a partial round of transport. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Mutation Induced Conformational Change In CaMKII Peptide Alters Binding Affinity to CaM Through Alternate Binding Site

    NASA Astrophysics Data System (ADS)

    Ezerski, Jacob; Cheung, Margaret

    CaM forms distinct conformation states through modifications in its charge distribution upon binding to Ca2+ ions. The occurrence of protein structural change resulting from an altered charge distribution is paramount in the scheme of cellular signaling. Not only is charge induced structural change observed in CaM, it is also seen in an essential binding target: calmodulin-depended protein kinase II (CaMKII). In order to investigate the mechanism of selectivity in relation to changes in secondary structure, the CaM binding domain of CaMKII is isolated. Experimentally, charged residues of the CaMKII peptide are systematically mutated to alanine, resulting in altered binding kinetics between the peptide and the Ca2+ saturated state of CaM. We perform an all atom simulation of the wildtype (RRK) and mutated (AAA) CaMKII peptides and generate structures from the trajectory. We analyze RRK and AAA using DSSP and find significant structural differences due to the mutation. Structures from the RRK and AAA ensembles are then selected and docked onto the crystal structure of Ca2+ saturated CaM. We observe that RRK binds to CaM at the C-terminus, whereas the 3-residue mutation, AAA, shows increased patterns of binding to the N-terminus and linker regions of CaM. Due to the conformational change of the peptide ensemble from charged residue mutation, a distinct change in the binding site can be seen, which offers an explanation to experimentally observed changes in kinetic binding rates

  18. Alteration of human serum albumin binding properties induced by modifications: A review

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, Małgorzata; Szkudlarek, Agnieszka; Chudzik, Mariola; Pożycka, Jadwiga; Sułkowska, Anna

    2018-01-01

    Albumin, a major transporting protein in the blood, is the main target of modification that affects the binding of drugs to Sudlow's site I and II. These modification of serum protein moderates its physiological function, and works as a biomarker of some diseases. The main goal of the paper was to explain the possible alteration of human serum albumin binding properties induced by modifications such as glycation, oxidation and ageing, their origin, methods of evaluation and positive and negative meaning described by significant researchers.

  19. High precision and high yield fabrication of dense nanoparticle arrays onto DNA origami at statistically independent binding sites

    NASA Astrophysics Data System (ADS)

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.

    2014-10-01

    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03069a

  20. A possible molecular mechanism of the action of digitalis: ouabain action on calcium binding to sites associated with a purified sodium-potassium-activated adenosine triphosphatase from kidney.

    PubMed

    Gervais, A; Lane, L K; Anner, B M; Lindenmayer, G E; Schwartz, A

    1977-01-01

    Calcium binding at 0 degrees C to a purified sheep kidney Na+,K+-ATPase was described by linear Scatchard plots. Binding at saturating free calcium was 65-80 nmol/mg of protein, or 30-40 mol of calcium/mol of enzyme. Aqueous emulsions of lipids extracted from Na+,K+-ATPase yielded dissociation constants and maximum calcium-binding values that were similar to those for native Na+,K+-ATPase. Phospholipase A treatment markedly reduced calcium binding. Pretreatment of native Na+,K+-ATPase with ouabain increased the dissociation constant for calcium binding from 131 +/- 7 to 192 +/- 7 muM without altering maximum calcium binding. Ouabain pretreatment did not affect calcium binding to extracted phospholipids, ouabain-insensitive ATPases, or heat denatured Na+,K+-ATPase, Na+ and K+ (5-20 mM) increased the dissociation constants for calcium, which suggests competition between the monovalent cations and calcium for the binding sites. At higher concentrations of monovalent cations, ouabain increased the apparent affinity of binding sites for calcium. Extrapolation to physiological cation concentrations revealed that the ouabain-induced increase in apparent affinity for calcium may be as much as 2- to 3-fold. These results suggest: (1) calcium binds to phospholipids associated with Na+,K+-ATPase; (2) ouabain interaction with Na+,K+-ATPase induces a perturbation that is transmitted to adjacent phospholipids, altering their affinity for calcium; and (3) at physiological concentrations of Na+ or K+, or both, ouabain interaction with Na+,K+-ATPase may lead to an increased pool of membrane-bound calcium.

  1. Molecular investigation of active binding site of isoniazid (INH) and insight into resistance mechanism of S315T-MtKatG in Mycobacterium tuberculosis.

    PubMed

    Srivastava, Gaurava; Tripathi, Shubhandra; Kumar, Akhil; Sharma, Ashok

    2017-07-01

    Multi drug resistant tuberculosis is a major threat for mankind. Resistance against Isoniazid (INH), targeting MtKatG protein, is one of the most commonly occurring resistances in MDR TB strains. S315T-MtKatG mutation is widely reported for INH resistance. Despite having knowledge about the mechanism of INH, exact binding site of INH to MtKatG is still uncertain and proposed to have three presumable binding sites (site-1, site-2, and site-3). In the current study docking, molecular dynamics simulation, binding free energy estimation, principal component analysis and free energy landscape analysis were performed to get molecular level details of INH binding site on MtKatG, and to probe the effect of S315T mutation on INH binding. Molecular docking and MD analysis suggested site-1 as active binding site of INH, where the effects of S315T mutation were observed on both access tunnel as well as molecular interaction between INH and its neighboring residues. MMPBSA also supported site-1 as potential binding site with lowest binding energy of -44.201 kJ/mol. Moreover, PCA and FEL revealed that S315T mutation not only reduces the dimension of heme access tunnel but also showed that extra methyl group at 315 position altered heme cavity, enforcing heme group distantly from INH, and thus preventing INH activation. The present study not only investigated the active binding site of INH but also provides a new insight about the conformational changes in the binding site of S315T-MtKatG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckel, M.E.; Freund-Mercier, M.J.

    1989-08-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experimentsmore » showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.« less

  3. Heat Capacity Changes and Disorder-to-Order Transitions in Allosteric Activation.

    PubMed

    Cressman, William J; Beckett, Dorothy

    2016-01-19

    Allosteric coupling in proteins is ubiquitous but incompletely understood, particularly in systems characterized by coupling over large distances. Binding of the allosteric effector, bio-5'-AMP, to the Escherichia coli biotin protein ligase, BirA, enhances the protein's dimerization free energy by -4 kcal/mol. Previous studies revealed that disorder-to-order transitions at the effector binding and dimerization sites, which are separated by 33 Å, are integral to functional coupling. Perturbations to the transition at the ligand binding site alter both ligand binding and coupled dimerization. Alanine substitutions in four loops on the dimerization surface yield a range of energetic effects on dimerization. A glycine to alanine substitution at position 142 in one of these loops results in a complete loss of allosteric coupling, disruption of the disorder-to-order transitions at both functional sites, and a decreased affinity for the effector. In this work, allosteric communication between the effector binding and dimerization surfaces in BirA was further investigated by performing isothermal titration calorimetry measurements on nine proteins with alanine substitutions in three dimerization surface loops. In contrast to BirAG142A, at 20 °C all variants bind to bio-5'-AMP with free energies indistinguishable from that measured for wild-type BirA. However, the majority of the variants exhibit altered heat capacity changes for effector binding. Moreover, the ΔCp values correlate with the dimerization free energies of the effector-bound proteins. These thermodynamic results, combined with structural information, indicate that allosteric activation of the BirA monomer involves formation of a network of intramolecular interactions on the dimerization surface in response to bio-5'-AMP binding at the distant effector binding site.

  4. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    PubMed

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-09-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere apparently shifts the allosteric equilibrium toward the low affinity state, it greatly diminishes the cofactor effects by anions. The oxygen affinity of the patient's erythrocytes is substantially lowered by the presence of bezafibrate, which combines with sites different from those of 2,3-diphosphoglycerate in either hemoglobin Rahere or hemoglobin A.

  5. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    PubMed Central

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-01-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere apparently shifts the allosteric equilibrium toward the low affinity state, it greatly diminishes the cofactor effects by anions. The oxygen affinity of the patient's erythrocytes is substantially lowered by the presence of bezafibrate, which combines with sites different from those of 2,3-diphosphoglycerate in either hemoglobin Rahere or hemoglobin A. PMID:3930571

  6. Characterization of Protein Tyrosine Phosphatase 1B Inhibition by Chlorogenic Acid and Cichoric Acid.

    PubMed

    Lipchock, James M; Hendrickson, Heidi P; Douglas, Bonnie B; Bird, Kelly E; Ginther, Patrick S; Rivalta, Ivan; Ten, Nicholas S; Batista, Victor S; Loria, J Patrick

    2017-01-10

    Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of the insulin and leptin signaling pathways and is an active target for the design of inhibitors for the treatment of type II diabetes and obesity. Recently, cichoric acid (CHA) and chlorogenic acid (CGA) were predicted by docking methods to be allosteric inhibitors that bind distal to the active site. However, using a combination of steady-state inhibition kinetics, solution nuclear magnetic resonance experiments, and molecular dynamics simulations, we show that CHA is a competitive inhibitor that binds in the active site of PTP1B. CGA, while a noncompetitive inhibitor, binds in the second aryl phosphate binding site, rather than the predicted benzfuran binding pocket. The molecular dynamics simulations of the apo enzyme and cysteine-phosphoryl intermediate states with and without bound CGA suggest CGA binding inhibits PTP1B by altering hydrogen bonding patterns at the active site. This study provides a mechanistic understanding of the allosteric inhibition of PTP1B.

  7. CCCTC-Binding Factor Acts as a Heterochromatin Barrier on Herpes Simplex Viral Latent Chromatin and Contributes to Poised Latent Infection

    PubMed Central

    2018-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) establishes latent infection in neurons via a variety of epigenetic mechanisms that silence its genome. The cellular CCCTC-binding factor (CTCF) functions as a mediator of transcriptional control and chromatin organization and has binding sites in the HSV-1 genome. We constructed an HSV-1 deletion mutant that lacked a pair of CTCF-binding sites (CTRL2) within the latency-associated transcript (LAT) coding sequences and found that loss of these CTCF-binding sites did not alter lytic replication or levels of establishment of latent infection, but their deletion reduced the ability of the virus to reactivate from latent infection. We also observed increased heterochromatin modifications on viral chromatin over the LAT promoter and intron. We therefore propose that CTCF binding at the CTRL2 sites acts as a chromatin insulator to keep viral chromatin in a form that is poised for reactivation, a state which we call poised latency. PMID:29437926

  8. Rapid evolution of cis-regulatory sequences via local point mutations

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Wray, G. A.

    2001-01-01

    Although the evolution of protein-coding sequences within genomes is well understood, the same cannot be said of the cis-regulatory regions that control transcription. Yet, changes in gene expression are likely to constitute an important component of phenotypic evolution. We simulated the evolution of new transcription factor binding sites via local point mutations. The results indicate that new binding sites appear and become fixed within populations on microevolutionary timescales under an assumption of neutral evolution. Even combinations of two new binding sites evolve very quickly. We predict that local point mutations continually generate considerable genetic variation that is capable of altering gene expression.

  9. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalmers, D.T.; Dewar, D.; Graham, D.I.

    1990-02-01

    Involvement of cortical glutamatergic mechanisms in senile dementia of the Alzheimer type (SDAT) has been investigated with quantitative ligand-binding autoradiography. The distribution and density of Na(+)-dependent glutamate uptake sites and glutamate receptor subtypes--kainate, quisqualate, and N-methyl-D-aspartate--were measured in adjacent sections of frontal cortex obtained postmortem from six patients with SDAT and six age-matched controls. The number of senile plaques was determined in the same brain region. Binding of D-(3H)aspartate to Na(+)-dependent uptake sites was reduced by approximately 40% throughout SDAT frontal cortex relative to controls, indicating a general loss of glutamatergic presynaptic terminals. (3H)Kainate receptor binding was significantly increased bymore » approximately 70% in deep layers of SDAT frontal cortex compared with controls, whereas this binding was unaltered in superficial laminae. There was a positive correlation (r = 0.914) between kainate binding and senile plaque number in deep cortical layers. Quisqualate receptors, as assessed by 2-amino-3-hydroxy-5-(3H)methylisoxazole-4-propionic acid binding, were unaltered in SDAT frontal cortex compared with controls. There was a small reduction (25%) in N-methyl-D-aspartate-sensitive (3H)glutamate binding only in superficial cortical layers of SDAT brains relative to control subjects. (3H)Glutamate binding in SDAT subjects was unrelated to senile plaque number in superficial cortical layers (r = 0.104). These results indicate that in the presence of cortical glutamatergic terminal loss in SDAT plastic alterations occur in some glutamate receptor subtypes but not in others.« less

  10. Regulation of uterine progesterone receptors by the nonsteroidal anti-androgen hydroxyflutamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrasekhar, Y.; Armstrong, D.T.

    1991-07-01

    The authors have recently reported that the anti-androgen hydroxyflutamide causes delayed implantation and exhibits antideciduogenic activity in the rat. The present experiments were conducted to examine whether hydroxyflutamide binds to the uterine progesterone receptors and/or alters the progesterone binding sites in the uterus. Cytosol and nuclear fractions from decidualized rat uterus were incubated with (3H)-R5020 without or with increasing concentrations of radioinert R5020, RU486, dihydrotestosterone, or hydroxyflutamide. From the log-dose inhibition curves, the relative binding affinity of both hydroxyflutamide and dihydrotestosterone was less than 0.1% and 2%, compared with R5020 (100%) for displacing (3H)-R5020 bound to uterine cytosol and nuclearmore » fractions, respectively. Injection of estradiol-17 beta (1 microgram/rat) to ovariectomized prepubertal rats induced a 1.85-fold increase in uterine weight by 24 h. Hydroxyflutamide at 2.5 or 5.0 mg did not significantly alter the estrogen-induced increase in uterine weight. Compared to vehicle alone, estrogen induced an approximately 5-fold increase in uterine cytosolic progesterone binding sites. Hydroxyflutamide at both 2.5- and 5.0-mg doses significantly attenuated the estrogen-induced elevation in uterine progesterone binding sites. These studies demonstrate that hydroxyflutamide does not bind with high affinity to progesterone receptors, but suppresses the estrogen-induced elevation in progesterone receptor levels in the uterus.« less

  11. Childhood maltreatment and methylation of FK506 binding protein 5 gene (FKBP5).

    PubMed

    Tyrka, Audrey R; Ridout, Kathryn K; Parade, Stephanie H; Paquette, Alison; Marsit, Carmen J; Seifer, Ronald

    2015-11-01

    A growing body of evidence suggests that alterations of the stress response system may be a mechanism by which childhood maltreatment alters risk for psychopathology. FK506 binding protein 51 (FKBP5) binds to the glucocorticoid receptor and alters its ability to respond to stress signaling. The aim of the present study was to examine methylation of the FKBP5 gene (FKBP5), and the role of an FKBP5 genetic variant, in relation to childhood maltreatment in a sample of impoverished preschool-aged children. One hundred seventy-four families participated in this study, including 69 with child welfare documentation of moderate to severe maltreatment in the past 6 months. The children, who ranged in age from 3 to 5 years, were racially and ethnically diverse. Structured record review and interviews in the home were used to assess a history of maltreatment, other traumas, and contextual life stressors; and a composite variable assessed the number exposures to these adversities. Methylation of two sites in intron 7 of FKBP5 was measured via sodium bisulfite pyrosequencing. Maltreated children had significantly lower levels of methylation at both CpG sites (p < .05). Lifetime contextual stress exposure showed a trend for lower levels of methylation at one of the sites, and a trend for an interaction with the FKBP5 polymorphism. A composite adversity variable was associated with lower levels of methylation at one of the sites as well (p < .05). FKBP5 alters glucocorticoid receptor responsiveness, and FKBP5 gene methylation may be a mechanism of the biobehavioral effects of adverse exposures in young children.

  12. One Crystal, Two Temperatures: Cryocooling Penalties Alter Ligand Binding to Transient Protein Sites

    DOE PAGES

    Fischer, Marcus; Shoichet, Brian K.; Fraser, James S.

    2015-05-28

    Interrogating fragment libraries by X-ray crystallography is a powerful strategy for discovering allosteric ligands for protein targets. Cryocooling of crystals should theoretically increase the fraction of occupied binding sites and decrease radiation damage. However, it might also perturb protein conformations that can be accessed at room temperature. Using data from crystals measured consecutively at room temperature and at cryogenic temperature, we found that transient binding sites could be abolished at the cryogenic temperatures employed by standard approaches. Finally, changing the temperature at which the crystallographic data was collected could provide a deliberate perturbation to the equilibrium of protein conformations andmore » help to visualize hidden sites with great potential to allosterically modulate protein function.« less

  13. In Vivo Chromatin Targets of the Transcription Factor Yin Yang 2 in Trophoblast Stem Cells

    PubMed Central

    Pérez-Palacios, Raquel; Macías-Redondo, Sofía; Climent, María; Contreras-Moreira, Bruno; Muniesa, Pedro; Schoorlemmer, Jon

    2016-01-01

    Background Yin Yang 2 (YY2) is a zinc finger protein closely related to the well-characterized Yin Yang 1 (YY1). YY1 is a DNA-binding transcription factor, with defined functions in multiple developmental processes, such as implantation, cell differentiation, X inactivation, imprinting and organogenesis. Yy2 has been treated as a largely immaterial duplication of Yy1, as they share high homology in the Zinc Finger-region and similar if not identical in vitro binding sites. In contrast to these similarities, gene expression alterations in HeLa cells with attenuated levels of either Yy1 or Yy2 were to some extent gene-specific. Moreover, the chromatin binding sites for YY2, except for its association with transposable retroviral elements (RE) and Endogenous Retroviral Elements (ERVs), remain to be identified. As a first step towards defining potential Yy2 functions matching or complementary to Yy1, we considered in vivo DNA binding sites of YY2 in trophoblast stem (TS) cells. Results We report the presence of YY2 protein in mouse-derived embryonic stem (ES) and TS cell lines. Following up on our previous report on ERV binding by YY2 in TS cells, we investigated the tissue-specificity of REX1 and YY2 binding and confirm binding to RE/ERV targets in both ES cells and TS cells. Because of the higher levels of expression, we chose TS cells to understand the role of Yy2 in gene and chromatin regulation. We used in vivo YY2 association as a measure to identify potential target genes. Sequencing of chromatin obtained in chromatin-immunoprecipitation (ChIP) assays carried out with αYY2 serum allowed us to identify a limited number of chromatin targets for YY2. Some putative binding sites were validated in regular ChIP assays and gene expression of genes nearby was altered in the absence of Yy2. Conclusions YY2 binding to ERVs is not confined to TS cells. In vivo binding sites share the presence of a consensus binding motif. Selected sites were uniquely bound by YY2 as opposed to YY1, suggesting that YY2 exerts unique contributions to gene regulation. YY2 binding was not generally associated with gene promoters. However, several YY2 binding sites are linked to long noncoding RNA (lncRNA) genes and we show that the expression levels of a few of those are Yy2-dependent. PMID:27191592

  14. Role of Altered Sialylation of the I-Like Domain of β1 Integrin in the Binding of Fibronectin to β1 Integrin: Thermodynamics and Conformational Analyses

    PubMed Central

    Pan, Di; Song, Yuhua

    2010-01-01

    Abstract N-glycosylation of the I-like domain of β1 integrin plays an essential role in integrin structure and function, and the altered sialylation of β1 integrin regulates β1 integrin binding to fibronectin. However, the structural basis underlying the effect of altered sialylation of the β1 I-like domain on β1 integrin binding to fibronectin remains largely unknown. In this study, we used a combination of molecular dynamics simulations and binding free energy analyses to investigate changes in binding thermodynamics and in conformation of the glycosylated β1 I-like domain-FN-III9-10 complex caused by altered sialylation of the β1 I-like domain. Binding free energy analyses showed that desialylation of β1 I-like domain increased β1 integrin binding to fibronectin, consistent with experimental results. Interaction analyses showed that altered sialylation of the β1 I-like domain resulted in significant changes in the interaction of the N-glycans of the I-like domain with both the I-like domain and fibronectin, and these changes could directly affect the allosteric regulation of the interaction between the I-like domain and fibronectin. Altered sialylation of the β1 I-like domain caused significant conformational changes in key functional sites of both the β1 I-like domain and fibronectin. In addition, altered sialylation of the β1 I-like domain resulted in changes in the degree of correlated motions between residues in the I-like domain and residues in fibronectin, and in the degree of motion changes in fibronectin, which could affect β1 integrin binding to fibronectin. We believe results from this study provide thermodynamic and structural evidence for a role of altered sialylation of β1 integrin in regulating β1 integrin binding to fibronectin and it's induced cellular activities. PMID:20655849

  15. Insight into the binding mechanism of imipenem to human serum albumin by spectroscopic and computational approaches.

    PubMed

    Rehman, Md Tabish; Shamsi, Hira; Khan, Asad U

    2014-06-02

    The mechanism of interaction between imipenem and HSA was investigated by various techniques like fluorescence, UV.vis absorbance, FRET, circular dichroism, urea denaturation, enzyme kinetics, ITC, and molecular docking. We found that imipenem binds to HSA at a high affinity site located in subdomain IIIA (Sudlow's site I) and a low affinity site located in subdomain IIA.IIB. Electrostatic interactions played a vital role along with hydrogen bonding and hydrophobic interactions in stabilizing the imipenem.HSA complex at subdomain IIIA, while only electrostatic and hydrophobic interactions were present at subdomain IIA.IIB. The binding and thermodynamic parameters obtained by ITC showed that the binding of imipenem to HSA was a spontaneous process (ΔGD⁰(D)= -32.31 kJ mol(-1) for high affinity site and ΔGD⁰(D) = -23.02 kJ mol(-1) for low affinity site) with binding constants in the range of 10(4)-10(5) M(-1). Spectroscopic investigation revealed only one binding site of imipenem on HSA (Ka∼10(4) M(-1)). FRET analysis showed that the binding distance between imipenem and HSA (Trp-214) was optimal (r = 4.32 nm) for quenching to occur. Decrease in esterase-like activity of HSA in the presence of imipenem showed that Arg-410 and Tyr-411 of subdomain IIIA (Sudlow's site II) were directly involved in the binding process. CD spectral analysis showed altered conformation of HSA upon imipenem binding. Moreover, the binding of imipenem to subdomain IIIA (Sudlow's site II) of HSA also affected its folding pathway as clear from urea-induced denaturation studies.

  16. Zampanolide Binding to Tubulin Indicates Cross-Talk of Taxane Site with Colchicine and Nucleotide Sites.

    PubMed

    Field, Jessica J; Pera, Benet; Gallego, Juan Estévez; Calvo, Enrique; Rodríguez-Salarichs, Javier; Sáez-Calvo, Gonzalo; Zuwerra, Didier; Jordi, Michel; Andreu, José M; Prota, Andrea E; Ménchon, Grégory; Miller, John H; Altmann, Karl-Heinz; Díaz, J Fernando

    2018-03-23

    The marine natural product zampanolide and analogues thereof constitute a new chemotype of taxoid site microtubule-stabilizing agents with a covalent mechanism of action. Zampanolide-ligated tubulin has the switch-activation loop (M-loop) in the assembly prone form and, thus, represents an assembly activated state of the protein. In this study, we have characterized the biochemical properties of the covalently modified, activated tubulin dimer, and we have determined the effect of zampanolide on tubulin association and the binding of tubulin ligands at other binding sites. Tubulin activation by zampanolide does not affect its longitudinal oligomerization but does alter its lateral association properties. The covalent binding of zampanolide to β-tubulin affects both the colchicine site, causing a change of the quantum yield of the bound ligand, and the exchangeable nucleotide binding site, reducing the affinity for the nucleotide. While these global effects do not change the binding affinity of 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC) (a reversible binder of the colchicine site), the binding affinity of a fluorescent analogue of GTP (Mant-GTP) at the nucleotide E-site is reduced from 12 ± 2 × 10 5 M -1 in the case of unmodified tubulin to 1.4 ± 0.3 × 10 5 M -1 in the case of the zampanolide tubulin adduct, indicating signal transmission between the taxane site and the colchicine and nucleotide sites of β-tubulin.

  17. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sollome, James; Martin, Elizabeth

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database,more » genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, T.; Adachi, H.; Noguchi, M.

    The authors have examined the effect of carbamylcholine on the binding of cholecystokinin (CCK) to dispersed acini from rat pancreas. The CCK receptor on pancreatic acini possesses two classes of binding sites. Simultaneous addition of carbamylcholine inhibited binding of CCK binding sites. Atropine prevented the inhibitory effect of carbamylcholine, whereas calcium ionophore A23187 did not alter binding of CCK. 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited binding of CCK in the same manner as carbamylcholine. Inhibition by carbamylcholine was reversible and the recovery was time dependent. By contrast, inhibition of binding of CCK by TPA did not reverse after a 60-min incubation without themore » agent. These findings, at least in part, account for the inhibition of the CCK-induced stimulation of amylase secretion by carbamylcholine. The action of TPA on binding of CCK suggests the possible involvement of the activation of protein kinase C in the inhibition of binding.« less

  19. Mutational analysis of the antigenomic trans-acting delta ribozyme: the alterations of the middle nucleotides located on the P1 stem.

    PubMed Central

    Ananvoranich, S; Lafontaine, D A; Perreault, J P

    1999-01-01

    Our previous report on delta ribozyme cleavage using a trans -acting antigenomic delta ribozyme and a collection of short substrates showed that the middle nucleotides of the P1 stem, the substrate binding site, are essential for the cleavage activity. Here we have further investigated the effect of alterations in the P1 stem on the kinetic and thermodynamic parameters of delta ribozyme cleavage using various ribozyme variants carrying single base mutations at putative positions reported. The kinetic and thermodynamic values obtained in mutational studies of the two middle nucleotides of the P1 stem suggest that the binding and active sites of the delta ribozyme are uniquely formed. Firstly, the substrate and the ribozyme are engaged in the formation of a helix, known as the P1 stem, which may contain a weak hydrogen bond(s) or a bulge. Secondly, a tertiary interaction involving the base moieties in the middle of the P1 stem likely plays a role in defining the chemical environment. As a con-sequence, the active site might form simultaneously or subsequently to the binding site during later steps of the pathway. PMID:10037808

  20. Modification of opiate agonist binding by pertussis toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-03-05

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin.more » This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.« less

  1. Alterations in Hemagglutinin Receptor-Binding Specificity Accompany the Emergence of Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Mochalova, Larisa; Harder, Timm; Tuzikov, Alexander; Bovin, Nicolai; Wolff, Thorsten; Matrosovich, Mikhail; Schweiger, Brunhilde

    2015-01-01

    ABSTRACT Highly pathogenic avian influenza viruses (HPAIVs) of hemagglutinin H5 and H7 subtypes emerge after introduction of low-pathogenic avian influenza viruses (LPAIVs) from wild birds into poultry flocks, followed by subsequent circulation and evolution. The acquisition of multiple basic amino acids at the endoproteolytical cleavage site of the hemagglutinin (HA) is a molecular indicator for high pathogenicity, at least for infections of gallinaceous poultry. Apart from the well-studied significance of the multibasic HA cleavage site, there is only limited knowledge on other alterations in the HA and neuraminidase (NA) molecules associated with changes in tropism during the emergence of HPAIVs from LPAIVs. We hypothesized that changes in tropism may require alterations of the sialyloligosaccharide specificities of HA and NA. To test this hypothesis, we compared a number of LPAIVs and HPAIVs for their HA-mediated binding and NA-mediated desialylation of a set of synthetic receptor analogs, namely, α2-3-sialylated oligosaccharides. NA substrate specificity correlated with structural groups of NAs and did not correlate with pathogenic potential of the virus. In contrast, all HPAIVs differed from LPAIVs by a higher HA receptor-binding affinity toward the trisaccharides Neu5Acα2-3Galβ1-4GlcNAcβ (3′SLN) and Neu5Acα2-3Galβ1-3GlcNAcβ (SiaLec) and by the ability to discriminate between the nonfucosylated and fucosylated sialyloligosaccharides 3′SLN and Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ (SiaLex), respectively. These results suggest that alteration of the receptor-binding specificity accompanies emergence of the HPAIVs from their low-pathogenic precursors. IMPORTANCE Here, we have found for the first time correlations of receptor-binding properties of the HA with a highly pathogenic phenotype of poultry viruses. Our study suggests that enhanced receptor-binding affinity of HPAIVs for a typical “poultry-like” receptor, 3′SLN, is provided by substitutions in the receptor-binding site of HA which appeared in HA of LPAIVs in the course of transmission of LPAIVs from wild waterfowl into poultry flocks, with subsequent adaptation in poultry. The identification of LPAIVs with receptor characteristics of HPAIVs argues that the sialic acid-binding specificity of the HA may be used as a novel phenotypic marker of HPAIVs. PMID:25741006

  2. Inhibition of ferric ion to oxalate oxidase shed light on the substrate binding site.

    PubMed

    Pang, Yu; Lan, Wanjun; Huang, Xuelei; Zuo, Guanke; Liu, Hui; Zhang, Jingyan

    2015-10-01

    Oxalate oxidase (OxOx), a well known enzyme catalyzes the cleavage of oxalate to carbon dioxide with reduction of dioxygen to hydrogen peroxide, however its catalytic process is not well understood. To define the substrate binding site, interaction of Fe(3+) ions with OxOx was systemically investigated using biochemical method, circular dichrosim spectroscopy, microscale thermophoresis, and computer modeling. We demonstrated that Fe(3+) is a non-competitive inhibitor with a milder binding affinity to OxOx, and the secondary structure of the OxOx was slightly altered upon its binding. On the basis of the structural properties of the OxOx and its interaction with Fe(3+) ions, two residue clusters of OxOx were assigned as potential Fe(3+) binding sites, the mechanism of the inhibition of Fe(3+) was delineated. Importantly, the residues that interact with Fe(3+) ions are involved in the substrate orienting based on computer docking. Consequently, the interaction of OxOx with Fe(3+) highlights insight into substrate binding site in OxOx.

  3. Selective labeling of serotonin uptake sites in rat brain by (/sup 3/H)citalopram contrasted to labeling of multiple sites by (/sup 3/H)imipramine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Amato, R.J.; Largent, B.L.; Snowman, A.M.

    1987-07-01

    Citalopram is a potent and selective inhibitor of neuronal serotonin uptake. In rat brain membranes (/sup 3/H)citalopram demonstrates saturable and reversible binding with a KD of 0.8 nM and a maximal number of binding sites (Bmax) of 570 fmol/mg of protein. The drug specificity for (/sup 3/H)citalopram binding and synaptosomal serotonin uptake are closely correlated. Inhibition of (/sup 3/H)citalopram binding by both serotonin and imipramine is consistent with a competitive interaction in both equilibrium and kinetic analyses. The autoradiographic pattern of (/sup 3/H)citalopram binding sites closely resembles the distribution of serotonin. By contrast, detailed equilibrium-saturation analysis of (/sup 3/H)imipramine bindingmore » reveals two binding components, i.e., high affinity (KD = 9 nM, Bmax = 420 fmol/mg of protein) and low affinity (KD = 553 nM, Bmax = 8560 fmol/mg of protein) sites. Specific (/sup 3/H)imipramine binding, defined as the binding inhibited by 100 microM desipramine, is displaced only partially by serotonin. Various studies reveal that the serotonin-sensitive portion of binding corresponds to the high affinity sites of (/sup 3/H)imipramine binding whereas the serotonin-insensitive binding corresponds to the low affinity sites. Lesioning of serotonin neurons with p-chloroamphetamine causes a large decrease in (/sup 3/H)citalopram and serotonin-sensitive (/sup 3/H)imipramine binding with only a small effect on serotonin-insensitive (/sup 3/H)imipramine binding. The dissociation rate of (/sup 3/H)imipramine or (/sup 3/H)citalopram is not altered by citalopram, imipramine or serotonin up to concentrations of 10 microM. The regional distribution of serotonin sensitive (/sup 3/H)imipramine high affinity binding sites closely resembles that of (/sup 3/H)citalopram binding.« less

  4. [3H]MK-801 binding sites in post-mortem human frontal cortex.

    PubMed

    Kornhuber, J; Mack-Burkhardt, F; Kornhuber, M E; Riederer, P

    1989-03-29

    The binding of [3H]MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate) was investigated in extensively washed homogenates of post-mortem human frontal cortex. The association of [3H]MK-801 proceeded slowly (t1/2 = 553 min) and reached equilibrium only after a prolonged incubation (greater than 24 h). The dissociation of [3H]MK-801 from the binding site was also slow (t1/2 = 244 min). Glutamate, glycine and magnesium markedly increased the rate of association (t1/2 = 14.8 min) and dissociation (t1/2 = 36.5 min). At equilibrium, the binding was not altered by these substances. Specific binding was linear with protein concentration, was saturable, reversible, stereoselective, heat-labile and was nearly absent in the white matter. Scatchard analysis of the saturation curves obtained at equilibrium indicated that there was a high-affinity (Kd1 1.39 +/- 0.21 nM, Bmax1 0.483 +/- 0.084 pmol/mg protein) and a low-affinity (Kd2 116.25 +/- 50.79 nM, Bmax2 3.251 +/- 0.991 pmol/mg protein) binding site. All competition curves obtained with (+)-MK-801, (-)-MK-801, phencyclidine and ketamine had Hill coefficients of less than unity and were best explained by a two-site model. Thus, our results demonstrate the presence of binding sites for MK-801 in post-mortem human brains and provide evidence for binding site heterogeneity. Furthermore, glutamate, glycine and magnesium accelerate the association and dissociation of [3H]MK-801 to and from its binding sites. The results add support to the hypothesis that MK-801, glutamate, glycine and magnesium all bind to different sites on the NMDA receptor-ion channel complex.

  5. Anesthetic Binding in a Pentameric Ligand-Gated Ion Channel: GLIC

    PubMed Central

    Chen, Qiang; Cheng, Mary Hongying; Xu, Yan; Tang, Pei

    2010-01-01

    Cys-loop receptors are molecular targets of general anesthetics, but the knowledge of anesthetic binding to these proteins remains limited. Here we investigate anesthetic binding to the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), a structural homolog of cys-loop receptors, using an experimental and computational hybrid approach. Tryptophan fluorescence quenching experiments showed halothane and thiopental binding at three tryptophan-associated sites in the extracellular (EC) domain, transmembrane (TM) domain, and EC-TM interface of GLIC. An additional binding site at the EC-TM interface was predicted by docking analysis and validated by quenching experiments on the N200W GLIC mutant. The binding affinities (KD) of 2.3 ± 0.1 mM and 0.10 ± 0.01 mM were derived from the fluorescence quenching data of halothane and thiopental, respectively. Docking these anesthetics to the original GLIC crystal structure and the structures relaxed by molecular dynamics simulations revealed intrasubunit sites for most halothane binding and intersubunit sites for thiopental binding. Tryptophans were within reach of both intra- and intersubunit binding sites. Multiple molecular dynamics simulations on GLIC in the presence of halothane at different sites suggested that anesthetic binding at the EC-TM interface disrupted the critical interactions for channel gating, altered motion of the TM23 linker, and destabilized the open-channel conformation that can lead to inhibition of GLIC channel current. The study has not only provided insights into anesthetic binding in GLIC, but also demonstrated a successful fusion of experiments and computations for understanding anesthetic actions in complex proteins. PMID:20858424

  6. Modulation of ouabain binding and potassium pump fluxes by cellular sodium and potassium in human and sheep erythrocytes.

    PubMed Central

    Joiner, C H; Lauf, P K

    1978-01-01

    1. Erythrocytes were treated with nystatin to alter internal Na (Nai) and K (Ki) composition. Although the rates of K pumping and [3H]ouabain binding were altered dramatically, the relationship between glycoside binding and K pump inhibition was unaffected. 2. Human cells with high Nai and low Ki exhibited an increased rate of ouabain binding as compared to high Ki, low Nai cells; this paralleled the stimulated K pump activity of high Nai cells. 3. At constant Ki, increasing internal Na stimulated K pump and ouabain binding rates concomitantly. 4. At low Nai, increasing Ki inhibited both K pumping and ouabain binding. However, at high Nai, increasing Ki from 4 to 44 mM stimulated the rate of glycoside binding, parallel to its effect of increasing the rate of active K influx. 5. Anti-L, an isoantibody to low K (LK) sheep red cells, increased the rate of ouabain binding via its stimulation of K pump turnover. Since the latter effect is the result of affinity changes at the internal cation activation site(s) of the pump (Lauf, Rasmusen, Hoffman, Dunham, Cook, Parmelee & Tosteson, 1970), the antibody's effect on ouabain binding reflected the positive correlation between the rates of K pump turnover and glycoside binding. 6. These data provide the first evidence in intact cells for the occurrence of a Nai-induced conformational change in the Na/K pump during its normal operational cycle. PMID:722574

  7. Interaction of flavonols with human serum albumin: a biophysical study showing structure-activity relationship and enhancement when coated on silver nanoparticles.

    PubMed

    Das, Pratyusa; Chaudhari, Sunil Kumar; Das, Asmita; Kundu, Somashree; Saha, Chabita

    2018-04-24

    Binding affinities of flavonols namely quercetin, myricetin, and kaempferol to human serum albumin (HSA) were determined fluorimetrically and the order was observed to be myricetin > quercetin > kaempferol demonstrating structure-activity relationship. Quercetin-coated silver nanoparticles (AgNPs) show higher binding affinity to HSA compared to free quercetin with binding constants 6.04 × 10 7  M -1 and 4.2 × 10 6  M -1 , respectively. Using site-specific markers it is concluded that free quercetin and that coated on AgNPs bind at different sites. Significant structural changes in circular dichroism (CD) spectra of HSA were recorded with quercetin-coated AgNPs compared to free quercetin. These results were further substantiated by time-resolved fluorescence spectroscopy where fluorescence life time of the tryptophan residue in HSA-quercetin-coated AgNPs complex decreased to 3.63 ns from 4.22 ns in HSA-quercetin complex. Isothermal calorimetric studies reveal two binding modes for quercetin-coated AgNPs and also higher binding constants compared to free quercetin. These higher binding affinities are attributed to altered properties of quercetin when coated on AgNPs enabling it to reach the binding sites other than site II where free quercetin mainly binds.

  8. Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys

    DOE PAGES

    Celik, Fuat E.; Mavrikakis, Manos

    2015-01-12

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less

  9. Stability of Surface and Subsurface Hydrogen on and in Au/Ni Near-Surface Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less

  10. Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys

    NASA Astrophysics Data System (ADS)

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While the metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.

  11. Stability and Sugar Recognition Ability of Ricin-Like Carbohydrate Binding Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jianzhuang; Nellas, Ricky B; Glover, Mary M

    2011-01-01

    Lectins are a class of proteins known for their novel binding to saccharides. Understanding this sugar recognition process can be crucial in creating structure-based designs of proteins with various biological roles. We focus on the sugar binding of a particular lectin, ricin, which has two -trefoil carbohydrate-binding domains (CRDs) found in several plant protein toxins. The binding ability of possible sites of ricin-like CRD has been puzzling. The apo and various (multiple) ligand-bound forms of the sugar-binding domains of ricin were studied by molecular dynamics simulations. By evaluating structural stability, hydrogen bond dynamics, flexibility, and binding energy, we obtained amore » detailed picture of the sugar recognition of the ricin-like CRD. Unlike what was previously believed, we found that the binding abilities of the two known sites are not independent of each other. The binding ability of one site is positively affected by the other site. While the mean positions of different binding scenarios are not altered significantly, the flexibility of the binding pockets visibly decreases upon multiple ligand binding. This change in flexibility seems to be the origin of the binding cooperativity. All the hydrogen bonds that are strong in the monoligand state are also strong in the double-ligand complex, although the stability is much higher in the latter form due to cooperativity. These strong hydrogen bonds in a monoligand state are deemed to be the essential hydrogen bonds. Furthermore, by examining the structural correlation matrix, the two domains are structurally one entity. Galactose hydroxyl groups, OH4 and OH3, are the most critical parts in both site 1 and site 2 recognition.« less

  12. Spectroscopic detection of etoposide binding to chromatin components: The role of histone proteins

    NASA Astrophysics Data System (ADS)

    Chamani, Elham; Rabbani-Chadegani, Azra; Zahraei, Zohreh

    2014-12-01

    Chromatin has been introduced as a main target for most anticancer drugs. Etoposide is known as a topoisomerase II inhibitor, but its effect on chromatin components is unknown. This report, for the first time, describes the effect of etoposide on DNA, histones and DNA-histones complex in the structure of nucleosomes employing thermal denaturation, fluorescence, UV absorbance and circular dichroism spectroscopy techniques. The results showed that the binding of etoposide decreased UV absorbance and fluorescence emission intensity, altered secondary structure of chromatin and hypochromicity was occurred in thermal denaturation profiles. The drug exhibited higher affinity to chromatin compared to DNA. Quenching of drug chromophores with tyrosine residues of histones indicated that globular domain of histones is the site of etoposide binding. Moreover, the binding of etoposide to histones altered their secondary structure accompanied with hypochromicity revealing compaction of histones in the presence of the drug. From the results it is concludes that apart from topoisomerase II, chromatin components especially its protein moiety can be introduced as a new site of etoposide binding and histone proteins especially H1 play a fundamental role in this process and anticancer activity of etoposide.

  13. A SNP in the HTT promoter alters NF-κB binding and is a bidirectional genetic modifier of Huntington disease.

    PubMed

    Bečanović, Kristina; Nørremølle, Anne; Neal, Scott J; Kay, Chris; Collins, Jennifer A; Arenillas, David; Lilja, Tobias; Gaudenzi, Giulia; Manoharan, Shiana; Doty, Crystal N; Beck, Jessalyn; Lahiri, Nayana; Portales-Casamar, Elodie; Warby, Simon C; Connolly, Colúm; De Souza, Rebecca A G; Tabrizi, Sarah J; Hermanson, Ola; Langbehn, Douglas R; Hayden, Michael R; Wasserman, Wyeth W; Leavitt, Blair R

    2015-06-01

    Cis-regulatory variants that alter gene expression can modify disease expressivity, but none have previously been identified in Huntington disease (HD). Here we provide in vivo evidence in HD patients that cis-regulatory variants in the HTT promoter are bidirectional modifiers of HD age of onset. HTT promoter analysis identified a NF-κB binding site that regulates HTT promoter transcriptional activity. A non-coding SNP, rs13102260:G > A, in this binding site impaired NF-κB binding and reduced HTT transcriptional activity and HTT protein expression. The presence of the rs13102260 minor (A) variant on the HD disease allele was associated with delayed age of onset in familial cases, whereas the presence of the rs13102260 (A) variant on the wild-type HTT allele was associated with earlier age of onset in HD patients in an extreme case-based cohort. Our findings suggest a previously unknown mechanism linking allele-specific effects of rs13102260 on HTT expression to HD age of onset and have implications for HTT silencing treatments that are currently in development.

  14. Binding of nucleotides by T4 DNA ligase and T4 RNA ligase: optical absorbance and fluorescence studies.

    PubMed Central

    Cherepanov, A V; de Vries, S

    2001-01-01

    The interaction of nucleotides with T4 DNA and RNA ligases has been characterized using ultraviolet visible (UV-VIS) absorbance and fluorescence spectroscopy. Both enzymes bind nucleotides with the K(d) between 0.1 and 20 microM. Nucleotide binding results in a decrease of absorbance at 260 nm due to pi-stacking with an aromatic residue, possibly phenylalanine, and causes red-shifting of the absorbance maximum due to hydrogen bonding with the exocyclic amino group. T4 DNA ligase is shown to have, besides the catalytic ATP binding site, another noncovalent nucleotide binding site. ATP bound there alters the pi-stacking of the nucleotide in the catalytic site, increasing its optical extinction. The K(d) for the noncovalent site is approximately 1000-fold higher than for the catalytic site. Nucleotides quench the protein fluorescence showing that a tryptophan residue is located in the active site of the ligase. The decrease of absorbance around 298 nm suggests that the hydrogen bonding interactions of this tryptophan residue are weakened in the ligase-nucleotide complex. The excitation/emission properties of T4 RNA ligase indicate that its ATP binding pocket is in contact with solvent, which is excluded upon binding of the nucleotide. Overall, the spectroscopic analysis reveals important similarities between T4 ligases and related nucleotidyltransferases, despite the low sequence similarity. PMID:11721015

  15. Identification of cation-binding sites on actin that drive polymerization and modulate bending stiffness

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; McCullough, Brannon R.; Pierre, Anaëlle; Grintsevich, Elena E.; Reisler, Emil; De La Cruz, Enrique M.

    2012-01-01

    The assembly of actin monomers into filaments and networks plays vital roles throughout eukaryotic biology, including intracellular transport, cell motility, cell division, determining cellular shape, and providing cells with mechanical strength. The regulation of actin assembly and modulation of filament mechanical properties are critical for proper actin function. It is well established that physiological salt concentrations promote actin assembly and alter the overall bending mechanics of assembled filaments and networks. However, the molecular origins of these salt-dependent effects, particularly if they involve nonspecific ionic strength effects or specific ion-binding interactions, are unknown. Here, we demonstrate that specific cation binding at two discrete sites situated between adjacent subunits along the long-pitch helix drive actin polymerization and determine the filament bending rigidity. We classify the two sites as “polymerization” and “stiffness” sites based on the effects that mutations at the sites have on salt-dependent filament assembly and bending mechanics, respectively. These results establish the existence and location of the cation-binding sites that confer salt dependence to the assembly and mechanics of actin filaments. PMID:23027950

  16. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state

    PubMed Central

    Warfield, Becka M.

    2017-01-01

    RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are present the population of binding-competent aptamer states increases more than twofold. This population change, rather than direct interactions between Mg2+ and theophylline, accounts for altered theophylline binding kinetics. PMID:28437473

  17. Glomerular anionic site distribution in nonproteinuric rats. A computer-assisted morphometric analysis.

    PubMed

    Pilia, P A; Swain, R P; Williams, A V; Loadholt, C B; Ainsworth, S K

    1985-12-01

    The cationic ultrastructural tracer polyethyleneimine (PEI: pI approximately equal to 11.0), binds electrophysically to uniformly spaced discrete electron-dense anionic sites present in the laminae rarae of the rat glomerular basement membrane (GBM), mesangial reflections of the GBM, Bowman's capsule, and tubular basement membranes when administered intravenously. Computer-assisted morphometric analysis of glomerular anionic sites reveals that the maximum concentration of stainable lamina rara externa (lre) sites (21/10,000 A GBM) occurs 60 minutes after PEI injection with a site-site interspacing of 460 A. Lamina rara interna (lri) sites similarly demonstrate a maximum concentration (20/10,000 A GBM) at 60 minutes with a periodicity of 497 A. The concentration and distribution of anionic sites within the lri was irregular in pattern and markedly decreased in number, while the lre possesses an electrical field that is highly regular at all time intervals analyzed (15, 30, 60, 120, 180, 240, and 300 minutes). Immersion and perfusion of renal tissue with PEI reveals additional heavy staining of the epithelial and endothelial cell sialoprotein coatings. PEI appears to bind to glomerular anionic sites reversibly: ie, between 60 and 180 minutes the concentration of stained sites decreases. At 300 minutes, the interspacing once again approaches the 60-minute concentration. This suggests a dynamic turnover or dissociation followed by a reassociation of glomerular negatively charged PEI binding sites. In contrast, morphometric analysis of anionic sites stained with lysozyme and protamine sulfate reveals interspacings of 642 A and 585 A, respectively; in addition, these tracers produce major glomerular ultrastructural alterations and induce transient proteinuria. PEI does not induce proteinuria in rats, nor does it produce glomerular morphologic alterations when ten times the tracer dosage is administered intravenously. These findings indicate that the choice of ultrastructural charge tracer, the method of administering the tracer, and the time selected for analysis of tissue after administration of tracer significantly influences results. Morphometric analysis of the distribution of glomerular anionic sites in nonproteinuric rats provides a method of evaluating quantitative alterations of the glomerular charge barrier in renal disease models.

  18. Alterations in L-Glutamate Binding in Alzheimer's and Huntington's Diseases

    NASA Astrophysics Data System (ADS)

    Greenamyre, J. Timothy; Penney, John B.; Young, Anne B.; D'Amato, Constance J.; Hicks, Samuel P.; Shoulson, Ira

    1985-03-01

    Brain sections from patients who had died with senile dementia of the Alzheimer's type (SDAT), Huntington's disease (HD), or no neurologic disease were studied by autoradiography to measure sodium-independent L-[3H]glutamate binding. In brain sections from SDAT patients, glutamate binding was normal in the caudate, putamen, and claustrum but was lower than normal in the cortex. The decreased cortical binding represented a reduction in numbers of binding sites, not a change in binding affinity, and appeared to be the result of a specific decrease in numbers of the low-affinity quisqualate binding site. No significant changes in cortical binding of other ligands were observed. In brains from Huntington's disease patients, glutamate binding was lower in the caudate and putamen than in the same regions of brains from control and SDAT patients but was normal in the cortex. It is possible that development of positron-emitting probes for glutamate receptors may permit diagnosis of SDAT in vivo by means of positron emission tomographic scanning.

  19. Two classes of binding sites for [3H]substance P in rat cerebral cortex.

    PubMed

    Geraghty, D P; Burcher, E

    1993-01-22

    The binding characteristics of [3H]substance P ([3H]SP) were investigated in membranes prepared from rat cerebral cortex. Binding of [3H]SP reached equilibrium after 50 min at 25 degrees C and was saturable at 8 nM. Saturation data could be resolved into high affinity (equilibrium dissociation constant, Kd, 0.22 nM) and low affinity sites (Kd, 2.65 nM). The low affinity sites were more numerous than the high affinity sites, with a ratio of 4:1. The non-hydrolyzable GTP analogue GppNHp had no effect on binding, indicating that the high and low affinity sites are not guanine nucleotide-regulated states of the same (NK-1) receptor. The low affinity sites are unlikely to represent NK-3 receptors since coincubation with the selective NK-3 receptor agonist senktide did not alter the biphasic nature of [3H]SP binding. The rank order of potency for inhibition of [3H]SP (2 nM) binding was SP > or = [Sar9, Met(O2)11]-SP > or = physalaemin > SP(3-11) > NP gamma = [Ala3]-SP > or = SP(4-11) > or = NPK > or = SP(5-11) > or = NKB approximately NKA > SP(1-9), compatible with binding to an NK-1 site. N-terminal fragments and non-amidated analogues were ineffective competitors for [3H]SP binding. However, competition data for several peptides including substance P (SP) and the NK-1 selective agonist [Sar9, Met(O2)11]-SP could be resolved into two components.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. The correlation between ouabain binding and potassium pump inhibition in human and sheep erythrocytes.

    PubMed Central

    Joiner, C H; Lauf, P K

    1978-01-01

    1. [3H]Ouabain binding to human and sheep red blood cells was shown to be specific for receptors associated with Na/K transport. Virtually all tritium binding was abolished by dilution with unlabelled drug. Saturation levels of binding were independent of glycoside concentration and were identical to those associated with 100% inhibition of K pumping. 2. [3H]Ouabain binding and 42K influx were measured simultaneously in order to correlate the degree of K pump inhibition with the amount of glycoside bound. Results by this method agreed exactly with those obtained by pre-exposing cells to drug, followed by washing and then measuring K influx. 3. Plots of [3H]oubain binding vs. K pump inhibition were rectilinear for human and low K (LK) sheep red cells, indicating one glycoside receptor per K pump site and functional homogeneity of pump sites. High K (HK) sheep red cells exhibited curved plots of binding versus inhibition, which were best explained in terms of one receptor per pump, but a heterogeneous population of pump sites. 4. External K reduced the rate of glycoside binding, but did not alter the relationship between binding and inhibition. 5. The number of K pump sites was estimated as 450--500 per human cell and 30--50 per LK sheep cell. HK sheep cells had 90--130 sites per cell, of which eighty to ninety were functionally dominant. The number of K pump sites on LK sheep cells was not changed by anti-L, although the maximum velocity of pump turnover was increased. PMID:722573

  1. Identification and Characterization of a Secondary Sodium-Binding Site and the Main Selectivity Determinants in the Human Concentrative Nucleoside Transporter 3.

    PubMed

    Arimany-Nardi, C; Claudio-Montero, A; Viel-Oliva, A; Schmidtke, P; Estarellas, C; Barril, X; Bidon-Chanal, A; Pastor-Anglada, M

    2017-06-05

    The family of concentrative Na + /nucleoside cotransporters in humans is constituted by three subtypes, namely, hCNT1, hCNT2, and hCNT3. Besides their different nucleoside selectivity, hCNT1 and hCNT2 have a Na + /nucleoside stoichiometry of 1:1, while for hCNT3 it is 2:1. This distinct stoichiometry of subtype 3 might hint the existence of a secondary sodium-binding site that is not present in the other two subtypes, but to date their three-dimensional structures remain unknown and the residues implicated in Na + binding are unclear. In this work, we have identified and characterized the Na + binding sites of hCNT3 by combining molecular modeling and mutagenesis studies. A model of the transporter was obtained by homology modeling, and key residues of two sodium-binding sites were identified and verified with a mutagenesis strategy. The structural model explains the altered sodium-binding properties of the hCNT3C602R polymorphic variant and supports previously generated data identifying the determinant residues of nucleoside selectivity, paving the way to understand how drugs can target this plasma membrane transporter.

  2. Crystallographic Location and Mutational Analysis of Zn and Cd Inhibitory Sites and Role of Lipidic Carboxylates in Rescuing Proton Path Mutants in Cytochrome c Oxidase†

    PubMed Central

    Qin, Ling; Mills, Denise A.; Hiser, Carrie; Murphree, Anna; Garavito, R. Michael; Ferguson-Miller, Shelagh; Hosler, Jonathan

    2008-01-01

    Cytochrome c oxidase (CcO) transfers protons from the inner surface of the enzyme to the buried O2 reduction site through two different pathways, termed K and D, and from the outer surface via an undefined route. These proton paths can be inhibited by metals such as zinc or cadmium, but the sites of inhibition have not been established. Anomalous difference Fourier analyses of Rhodobacter sphaeroides CcO crystals, with cadmium added, reveal metal binding sites that include the proposed initial proton donor/acceptor of the K pathway, Glu-101 of subunit II. Mutant forms of CcO that lack Glu-101II (E101A and E101A/H96A) exhibit low activity and eliminate metal binding at this site. Significant activity is restored to E101A and E101A/H96A by adding the lipophilic carboxylic compounds, arachidonic acid and cholic acid, but not by their non-carboxylic analogues. These amphipathic acids likely provide their carboxylic groups as substitute proton donors/acceptors in the absence of Glu-101II, as previously observed for arachidonic acid in mutants that alter Asp-132I of the D pathway. The activity of E101A/H96A is still inhibited by zinc, but this remaining inhibition is nearly eliminated by removal of subunit III, which is known to alter the D pathway. The results identify the Glu-101/His-96 site of subunit II as the site of metal binding that inhibits the uptake of protons into the K pathway and indicate that subunit III contributes to zinc binding and/or inhibition of the D pathway. By removing subunit III from E101A/H96A, thereby eliminating zinc inhibition of the uptake of protons from the inner surface of CcO, we confirm that an external zinc binding site is involved in inhibiting the backflow of protons to the active site. PMID:17477548

  3. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine

    PubMed Central

    Zhang, Yan; Wang, Lei; Schultz, Peter G.; Wilson, Ian A.

    2005-01-01

    The Methanococcus jannaschii tRNATyr/TyrRS pair has been engineered to incorporate unnatural amino acids into proteins in E. coli. To reveal the structural basis for the altered specificity of mutant TyrRS for O-methyl-l-tyrosine (OMeTyr), the crystal structures for the apo wild-type and mutant M. jannaschii TyrRS were determined at 2.66 and 3.0 Å, respectively, for comparison with the published structure of TyrRS complexed with tRNATyr and substrate tyrosine. A large conformational change was found for the anticodon recognition loop 257–263 of wild-type TyrRS upon tRNA binding in order to facilitate recognition of G34 of the anticodon loop through π-stacking and hydrogen bonding interactions. Loop 133–143, which is close to the tRNA acceptor stem-binding site, also appears to be stabilized by interaction with the tRNATyr. Binding of the substrate tyrosine results in subtle and cooperative movements of the side chains within the tyrosine-binding pocket. In the OMeTyr-specific mutant synthetase structure, the signature motif KMSKS loop and acceptor stem-binding loop 133–143 were surprisingly ordered in the absence of bound ATP and tRNA. The active-site mutations result in altered hydrogen bonding and steric interactions which favor binding of OMeTyr over l-tyrosine. The structure of the mutant and wild-type TyrRS now provide a basis for generating new active-site libraries to evolve synthetases specific for other unnatural amino acids. PMID:15840835

  4. Alteration of lung atrial natriuretic peptide receptors in genetic cardiomyopathy.

    PubMed

    Mukaddam-Daher, S; Tremblay, J; Fujio, N; Koch, C; Jankowski, M; Quillen, E W; Gutkowska, J

    1996-07-01

    These studies were designed to characterize the atrial natriuretic peptide (ANF) receptor subtypes [guanylyl cyclase natriuretic peptide receptors (NPR-A, NPR-B) and NPR-C] in lungs of normal hamsters and to evaluate alterations in receptor kinetics in genetic cardiomyopathy (CMO), a model of human congestive heart failure. Lung membranes were obtained from normal and CMO 200-to 230-day-old hamsters. Cross-linking and competitive binding receptor assays using 125I-labeled human ANF showed that lung membranes exhibit NPR, mainly guanylyl cyclase NPR-A and clearance NPR-C receptors. Stimulation of guanylyl cyclase by ANF and C-type natriuretic peptide (CNP) confirmed the presence of NPR-A and NPR-B. The maximum binding capacity of total ANF binding sites (442 +/- 68 vs. 271 +/- 57 fmol/mg protein, P < 0.05) was reduced, but dissociation constant (0.26 +/- 0.04 vs. 0.41 +/- 0.08 nM) was not altered in CMO animals. Similar reductions were observed in the binding sites for brain natriuretic peptide (BNP; 438 +/- 83 vs. 236 +/- 53 fmol/mg protein) and CNP (321 +/- 80 vs. 165 +/- 56 fmol/mg protein, P < 0.05) which may reflect a decline in NPR-A and NPR-B and/or NPR-C. Acid wash improved binding of 125I-labeled rat ANF to lung membranes of both normal and CMO hamsters, but the tendency towards reduced binding in CMO hamsters did not reach statistical significance, implying that downregulation may not have been due only to prior occupancy of the receptors. Transcripts of NPR-A, NPR-B, and NPR-C receptors in hamster lungs were detected by quantitative polymerase chain reaction. Compared with normal controls, the CMO hamster lung NPR-A mRNA was reduced by 50%, but NPR-B mRNA and NPR-C mRNA were not altered. Moreover, CMO hamster lungs showed less activation of guanylyl cyclase by ANF. These studies demonstrate that lung NPR are downregulated in hamster CMO.

  5. Aging, estradiol and time of day differentially affect serotonin transporter binding in the central nervous system of female rats.

    PubMed

    Krajnak, Kristine; Rosewell, Katherine L; Duncan, Marilyn J; Wise, Phyllis M

    2003-11-14

    Estrogen-related changes in serotonergic neuronal transmission, including changes in the number of serotonin transporter (SERT) binding sites, have been cited as a possible cause for changes in mood, memory and sleep that occur during the menopausal transition. However, both aging and estradiol regulate SERT binding sites in the brain. The goal of this experiment was to determine how aging and estrogen interact to regulate SERT levels in the forebrain of young and reproductively senescent female Sprague-Dawley rats using [3H]paroxetine. The density of specific [3H]paroxetine binding in various brain regions was compared in young (2-4 months) and reproductively senescent (10-12 months) female rats at three times of day. In most brain regions examined, estrogen and aging independently increased the number of [3H]paroxetine binding sites. The only region that displayed a reduction in [3H]paroxetine binding with age was the suprachiasmatic nucleus (SCN). Time of day influenced [3H]paroxetine binding in the SCN and the paraventricular thalamus (PVT), two regions known to be involved in the regulation of circadian rhythms. Aging and/or estrogen also altered the pattern of binding in these regions. Thus, based on the results of this study, we conclude that aging and estrogen both act to regulate SERT binding sites in the forebrain of female rats, and that this regulation is region specific.

  6. Expression of simian virus 40 T antigen in Escherichia coli: localization of T-antigen origin DNA-binding domain to within 129 amino acids.

    PubMed Central

    Arthur, A K; Höss, A; Fanning, E

    1988-01-01

    The genomic coding sequence of the large T antigen of simian virus 40 (SV40) was cloned into an Escherichia coli expression vector by joining new restriction sites, BglII and BamHI, introduced at the intron boundaries of the gene. Full-length large T antigen, as well as deletion and amino acid substitution mutants, were inducibly expressed from the lac promoter of pUC9, albeit with different efficiencies and protein stabilities. Specific interaction with SV40 origin DNA was detected for full-length T antigen and certain mutants. Deletion mutants lacking T-antigen residues 1 to 130 and 260 to 708 retained specific origin-binding activity, demonstrating that the region between residues 131 and 259 must carry the essential binding domain for DNA-binding sites I and II. A sequence between residues 302 and 320 homologous to a metal-binding "finger" motif is therefore not required for origin-specific binding. However, substitution of serine for either of two cysteine residues in this motif caused a dramatic decrease in origin DNA-binding activity. This region, as well as other regions of the full-length protein, may thus be involved in stabilizing the DNA-binding domain and altering its preference for binding to site I or site II DNA. Images PMID:2835505

  7. Activity-dependent shedding of the NMDA receptor glycine binding site by matrix metalloproteinase 3: a PUTATIVE mechanism of postsynaptic plasticity.

    PubMed

    Pauly, Thorsten; Ratliff, Miriam; Pietrowski, Eweline; Neugebauer, Rainer; Schlicksupp, Andrea; Kirsch, Joachim; Kuhse, Jochen

    2008-07-16

    Functional and structural alterations of clustered postsynaptic ligand gated ion channels in neuronal cells are thought to contribute to synaptic plasticity and memory formation in the human brain. Here, we describe a novel molecular mechanism for structural alterations of NR1 subunits of the NMDA receptor. In cultured rat spinal cord neurons, chronic NMDA receptor stimulation induces disappearance of extracellular epitopes of NMDA receptor NR1 subunits, which was prevented by inhibiting matrix metalloproteinases (MMPs). Immunoblotting revealed the digestion of solubilized NR1 subunits by MMP-3 and identified a fragment of about 60 kDa as MMPs-activity-dependent cleavage product of the NR1 subunit in cultured neurons. The expression of MMP-3 in the spinal cord culture was shown by immunoblotting and immunofluorescence microscopy. Recombinant NR1 glycine binding protein was used to identify MMP-3 cleavage sites within the extracellular S1 and S2-domains. N-terminal sequencing and site-directed mutagenesis revealed S542 and L790 as two putative major MMP-3 cleavage sites of the NR1 subunit. In conclusion, our data indicate that MMPs, and in particular MMP-3, are involved in the activity dependent alteration of NMDA receptor structure at postsynaptic membrane specializations in the CNS.

  8. Activity-Dependent Shedding of the NMDA Receptor Glycine Binding Site by Matrix Metalloproteinase 3: A PUTATIVE Mechanism of Postsynaptic Plasticity

    PubMed Central

    Pietrowski, Eweline; Neugebauer, Rainer; Schlicksupp, Andrea; Kirsch, Joachim; Kuhse, Jochen

    2008-01-01

    Functional and structural alterations of clustered postsynaptic ligand gated ion channels in neuronal cells are thought to contribute to synaptic plasticity and memory formation in the human brain. Here, we describe a novel molecular mechanism for structural alterations of NR1 subunits of the NMDA receptor. In cultured rat spinal cord neurons, chronic NMDA receptor stimulation induces disappearance of extracellular epitopes of NMDA receptor NR1 subunits, which was prevented by inhibiting matrix metalloproteinases (MMPs). Immunoblotting revealed the digestion of solubilized NR1 subunits by MMP-3 and identified a fragment of about 60 kDa as MMPs-activity-dependent cleavage product of the NR1 subunit in cultured neurons. The expression of MMP-3 in the spinal cord culture was shown by immunoblotting and immunofluorescence microscopy. Recombinant NR1 glycine binding protein was used to identify MMP-3 cleavage sites within the extracellular S1 and S2-domains. N-terminal sequencing and site-directed mutagenesis revealed S542 and L790 as two putative major MMP-3 cleavage sites of the NR1 subunit. In conclusion, our data indicate that MMPs, and in particular MMP-3, are involved in the activity dependent alteration of NMDA receptor structure at postsynaptic membrane specializations in the CNS. PMID:18629001

  9. Vitamin E: A Role in Signal Transduction.

    PubMed

    Zingg, Jean-Marc

    2015-01-01

    Vitamin E modulates the activity of several signal transduction enzymes with consequent alterations of gene expression. At the molecular level, vitamin E may directly bind to these enzymes and compete with their substrates, or it may change their activity by redox regulation. The translocation of several of these enzymes to the plasma membrane is regulated by vitamin E, suggesting the modulation of protein-membrane interactions as a common mechanism for vitamin E action. Enzyme-membrane interactions can be affected by vitamin E by interference with binding to specific membrane lipids or by altering cellular structures such as membrane microdomains (lipid rafts). Moreover, competition by vitamin E for common binding sites within lipid transport proteins may alter the traffic of lipid mediators and thus affect their signaling and enzymatic conversion. In this review, the main effects of vitamin E on enzymes involved in signal transduction are summarized and possible molecular mechanisms leading to enzyme modulation are evaluated.

  10. Regulated expression of a repressor protein: FadR activates iclR.

    PubMed Central

    Gui, L; Sunnarborg, A; LaPorte, D C

    1996-01-01

    The control of the glyoxylate bypass operon (aceBAK) of Escherichia coli is mediated by two regulatory proteins, IclMR and FadR. IclMR is a repressor protein which has previously been shown to bind to a site which overlaps the aceBAK promoter. FAR is a repressor/activator protein which participates in control of the genes of fatty acid metabolism. A sequence just upstream of the iclR promoter bears a striking resemblance to FadR binding sites found in the fatty acid metabolic genes. The in vitro binding specificity of FadR, determined by oligonucleotide selection, was in good agreement with the sequences of these sites. The ability of FadR to bind to the site associated with iclR was demonstrated by gel shift and DNase I footprint analyses. Disruption of FadR or inactivation of the FadR binding site of iclR decreased the expression of an iclR::lacZ operon fusion, indicating that FadR activates the expression of iclR. It has been reported that disruption of fadR increases the expression of aceBAK. We observed a similar increase when we inactivated the FadR binding site of an iclR+ allele. This result suggests that FadR regulates aceBAK indirectly by altering the expression of IclR. PMID:8755903

  11. Enhancement of safety and immunogenicity of the Chinese Hu191 measles virus vaccine by alteration of the S-adenosylmethionine (SAM) binding site in the large polymerase protein.

    PubMed

    Wang, Yilong; Liu, Rongxian; Lu, Mijia; Yang, Yingzhi; Zhou, Duo; Hao, Xiaoqiang; Zhou, Dongming; Wang, Bin; Li, Jianrong; Huang, Yao-Wei; Zhao, Zhengyan

    2018-05-01

    The live-attenuated measles virus (MV) vaccine based on the Hu191 strain has played a significant role in controlling measles in China. However, it has considerable adverse effects that may cause public health burden. We hypothesize that the safety and efficacy of MV vaccine can be improved by altering the S-adenosylmethionine (SAM) binding site in the conserved region VI of the large polymerase protein. To test this hypothesis, we established an efficient reverse genetics system for the rMV-Hu191 strain and generated two recombinant MV-Hu191 carrying mutations in the SAM binding site. These two mutants grew to high titer in Vero cells, were genetically stable, and were significantly more attenuated in vitro and in vivo compared to the parental rMV-Hu191 vaccine strain. Importantly, both MV-Hu191 mutants triggered a higher neutralizing antibody than rMV-Hu191 vaccine and provided complete protection against MV challenge. These results demonstrate its potential for an improved MV vaccine candidate. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

    NASA Astrophysics Data System (ADS)

    Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.

    2013-11-01

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  13. Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins

    PubMed Central

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization. PMID:22574219

  14. Cofilin Changes the Twist of F-Actin: Implications for Actin Filament Dynamics and Cellular Function

    PubMed Central

    McGough, Amy; Pope, Brian; Chiu, Wah; Weeds, Alan

    1997-01-01

    Cofilin is an actin depolymerizing protein found widely distributed in animals and plants. We have used electron cryomicroscopy and helical reconstruction to identify its binding site on actin filaments. Cofilin binds filamentous (F)-actin cooperatively by bridging two longitudinally associated actin subunits. The binding site is centered axially at subdomain 2 of the lower actin subunit and radially at the cleft between subdomains 1 and 3 of the upper actin subunit. Our work has revealed a totally unexpected (and unique) property of cofilin, namely, its ability to change filament twist. As a consequence of this change in twist, filaments decorated with cofilin have much shorter ‘actin crossovers' (∼75% of those normally observed in F-actin structures). Although their binding sites are distinct, cofilin and phalloidin do not bind simultaneously to F-actin. This is the first demonstration of a protein that excludes another actin-binding molecule by changing filament twist. Alteration of F-actin structure by cofilin/ADF appears to be a novel mechanism through which the actin cytoskeleton may be regulated or remodeled. PMID:9265645

  15. Drug resistance conferred by mutations outside the active site through alterations in the dynamic and structural ensemble of HIV-1 protease.

    PubMed

    Ragland, Debra A; Nalivaika, Ellen A; Nalam, Madhavi N L; Prachanronarong, Kristina L; Cao, Hong; Bandaranayake, Rajintha M; Cai, Yufeng; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2014-08-27

    HIV-1 protease inhibitors are part of the highly active antiretroviral therapy effectively used in the treatment of HIV infection and AIDS. Darunavir (DRV) is the most potent of these inhibitors, soliciting drug resistance only when a complex combination of mutations occur both inside and outside the protease active site. With few exceptions, the role of mutations outside the active site in conferring resistance remains largely elusive. Through a series of DRV-protease complex crystal structures, inhibition assays, and molecular dynamics simulations, we find that single and double site mutations outside the active site often associated with DRV resistance alter the structure and dynamic ensemble of HIV-1 protease active site. These alterations correlate with the observed inhibitor binding affinities for the mutants, and suggest a network hypothesis on how the effect of distal mutations are propagated to pivotal residues at the active site and may contribute to conferring drug resistance.

  16. Effects of mutation at the D-JH junction on affinity, specificity, and idiotypy of anti-progesterone antibody DB3.

    PubMed

    He, Mingyue; Hamon, Maureen; Liu, Hong; Corper, Adam L; Taussig, Michael J

    2006-09-01

    The crystal structures of the Fab' fragment of the anti-progesterone monoclonal antibody DB3 and its complexes with steroid haptens have shown that the D-JH junctional residue TrpH100 is a key contributor to binding site interactions with ligands. The indole group of TrpH100 also undergoes a significant conformational change between the bound and unliganded states, effectively opening and closing the combining site pocket. In order to explore the effect of substitutions at this position on steroid recognition, we have carried out mutagenesis on a construct encoding a three-domain single-chain fragment (VH/K) of DB3 expressed in Escherichia coli. TrpH100 was replaced by 13 different amino acids or deleted, and the functional and antigenic properties of the mutated fragments were analyzed. Most substitutions, including small, hydrophobic, hydrophilic, neutral, and negatively charged side chains, were reduced or abolished binding to free progesterone, although binding to progesterone-BSA was partially retained. The reduction in antigen binding was paralleled by alteration of the idiotype associated with the DB3 combining site. In contrast, the replacement of TrpH100 by Arg produced a mutant that retained wild-type antibody affinity and idiotype, but with altered specificity. Significant changes in this mutant included increased relative affinities of 10(4)-fold for progesterone-3-carboxymethyloxime and 10-fold for aetiocholanolone. Our results demonstrate an essential role for the junctional residue H100 in determining steroid-binding specificity and combining site idiotype and show that these properties can be changed by a single amino acid substitution at this position.

  17. Binding interaction between rice glutelin and amylose: Hydrophobic interaction and conformational changes.

    PubMed

    Xu, Xingfeng; Liu, Wei; Zhong, Junzhen; Luo, Liping; Liu, Chengmei; Luo, Shunjing; Chen, Lin

    2015-11-01

    The interaction of rice glutelin (RG) with amylose was characterized by spectroscopic and molecular docking studies. The intrinsic fluorescence of RG increased upon the addition of amylose. The binding sites, binding constant and thermodynamic features indicated that binding process was spontaneous and the main driving force of the interaction was hydrophobic interaction. The surface hydrophobicity of RG decreased with increasing amount of amylose. Furthermore, synchronous fluorescence and circular dichroism (CD) spectra provided data concerning conformational and micro-environmental changes of RG. With the concentration of amylose increasing, the polarity around the tyrosine residues increased while the hydrophobicity decreased. Alteration of protein conformation was observed with increasing of α-helix and reducing of β-sheet. Finally, a visual representation of two binding sites located in the amorphous area of RG was presented by molecular modeling studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effects of sex steroids on muscarinic sties in the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Dahan, M.I.

    1986-03-01

    The level of binding sites for (/sup 3/H)scopolamine in the rat hypothalamus and amygdala (but not elsewhere in the brain) is modified by hormonal status. In females, there is an inverse relation between the level of sites and estrogen (E/sub 2/) and progesterone (P) concentration. Binding is high in metoestrous (Met) and in ovariectomized (Ovx) animals but low in proestrous (Pro). Hormone replacement in ovariectomized animals lowers the level of the sites. Castration (Cast) of males reduces the level of sites but subsequent testosterone (T) treatment restores normal levels. The results support a role of hormones in sexual behavior viamore » alteration in levels of muscarinic receptors: male hormone increases and female hormones decrease receptor levels.« less

  19. A spin transition mechanism for cooperative adsorption in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia; Mason, Jarad A.; Runčevski, Tomče; Xiao, Dianne J.; Darago, Lucy E.; Crocellà, Valentina; Bordiga, Silvia; Long, Jeffrey R.

    2017-10-01

    Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(II) sites. Functioning via a mechanism by which neighbouring iron(II) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.

  20. Structural insights into the specific binding of huntingtin proline-rich region with the SH3 and WW domains.

    PubMed

    Gao, Yong-Guang; Yan, Xian-Zhong; Song, Ai-Xin; Chang, Yong-Gang; Gao, Xue-Chao; Jiang, Nan; Zhang, Qi; Hu, Hong-Yu

    2006-12-01

    The interactions of huntingtin (Htt) with the SH3 domain- or WW domain-containing proteins have been implicated in the pathogenesis of Huntington's disease (HD). We report the specific interactions of Htt proline-rich region (PRR) with the SH3GL3-SH3 domain and HYPA-WW1-2 domain pair by NMR. The results show that Htt PRR binds with the SH3 domain through nearly its entire chain, and that the binding region on the domain includes the canonical PxxP-binding site and the specificity pocket. The C terminus of PRR orients to the specificity pocket, whereas the N terminus orients to the PxxP-binding site. Htt PRR can also specifically bind to WW1-2; the N-terminal portion preferentially binds to WW1, while the C-terminal portion binds to WW2. This study provides structural insights into the specific interactions between Htt PRR and its binding partners as well as the alteration of these interactions that involve PRR, which may have implications for the understanding of HD.

  1. Custom-Designed Molecular Scissors for Site-Specific Manipulation of the Plant and Mammalian Genomes

    NASA Astrophysics Data System (ADS)

    Kandavelou, Karthikeyan; Chandrasegaran, Srinivasan

    Zinc finger nucleases (ZFNs) are custom-designed molecular scissors, engineered to cut at specific DNA sequences. ZFNs combine the zinc finger proteins (ZFPs) with the nonspecific cleavage domain of the FokI restriction enzyme. The DNA-binding specificity of ZFNs can be easily altered experimentally. This easy manipulation of the ZFN recognition specificity enables one to deliver a targeted double-strand break (DSB) to a genome. The targeted DSB stimulates local gene targeting by several orders of magnitude at that specific cut site via homologous recombination (HR). Thus, ZFNs have become an important experimental tool to make site-specific and permanent alterations to genomes of not only plants and mammals but also of many other organisms. Engineering of custom ZFNs involves many steps. The first step is to identify a ZFN site at or near the chosen chromosomal target within the genome to which ZFNs will bind and cut. The second step is to design and/or select various ZFP combinations that will bind to the chosen target site with high specificity and affinity. The DNA coding sequence for the designed ZFPs are then assembled by polymerase chain reaction (PCR) using oligonucleotides. The third step is to fuse the ZFP constructs to the FokI cleavage domain. The ZFNs are then expressed as proteins by using the rabbit reticulocyte in vitro transcription/translation system and the protein products assayed for their DNA cleavage specificity.

  2. Influence of freeze-thawing on hyaluronic acid binding of human spermatozoa.

    PubMed

    Nijs, Martine; Creemers, Eva; Cox, Annemie; Janssen, Mia; Vanheusden, Elke; Castro-Sanchez, Yovanna; Thijs, Herbert; Ombelet, Willem

    2009-08-01

    Mature human spermatozoa have at least three specific hyaluronic acid (HA) binding proteins present on their sperm membrane. These receptors play a role in the acrosome reaction, hyaluronidase activity, hyaluronan-mediated motility and sperm-zona and sperm-oolemmal binding. Cryopreservation of spermatozoa can cause ultrastructural and even molecular damage. The aim of this study was to investigate if HA binding receptors of human spermatozoa remain functional after freeze-thawing. Forty patients were enrolled in the study. Semen samples were analysed before and after cryopreservation. Parameters analysed included concentration, motility, morphology and hyaluronan binding. Samples were frozen in CBS straws using a glycerol-glucose-based cryoprotectant. HA binding was studied using the sperm-hyaluronan binding assay. Freeze-thawing resulted in a significant decline in motility: the percentage of motile spermatozoa reduced from 50.6 to 30.3% (P < 0.001). HA binding properties of frozen-thawed spermatozoa remained unchanged after the freeze-thawing process: 68.5 +/- 17.1% spermatozoa of the neat sample were bound to HA, as were 71.3 +/- 20.4 of the frozen-thawed sample. This study indicates that freeze-thawing did not alter the functional hyaluronan binding sites of mature motile spermatozoa, and therefore will not alter their fertilizing potential.

  3. Allosteric Regulation of E-Cadherin Adhesion*

    PubMed Central

    Shashikanth, Nitesh; Petrova, Yuliya I.; Park, Seongjin; Chekan, Jillian; Maiden, Stephanie; Spano, Martha; Ha, Taekjip; Gumbiner, Barry M.; Leckband, Deborah E.

    2015-01-01

    Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120ctn, increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120ctn dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120ctn dephosphorylation. PMID:26175155

  4. In vitro selection of zinc fingers with altered DNA-binding specificity.

    PubMed

    Jamieson, A C; Kim, S H; Wells, J A

    1994-05-17

    We have used random mutagenesis and phage display to alter the DNA-binding specificity of Zif268, a transcription factor that contains three zinc finger domains. Four residues in the helix of finger 1 of Zif268 that potentially mediate DNA binding were identified from an X-ray structure of the Zif268-DNA complex. A library was constructed in which these residues were randomly mutated and the Zif268 variants were fused to a truncated version of the gene III coat protein on the surface of M13 filamentous phage particles. The phage displayed the mutant proteins in a monovalent fashion and were sorted by repeated binding and elution from affinity matrices containing different DNA sequences. When the matrix contained the natural nine base pair operator sequence 5'-GCG-TGG-GCG-3', native-like zinc fingers were isolated. New finger 1 variants were found by sorting with two different operators in which the singly modified triplets, GTG and TCG, replaced the native finger 1 triplet, GCG. Overall, the selected finger 1 variants contained a preponderance of polar residues at the four sites. Interestingly, the net charge of the four residues in any selected finger never derived more that one unit from neutrality despite the fact that about half the variants contained three or four charged residues over the four sites. Measurements of the dissociation constants for two of these purified finger 1 variants by gel-shift assay showed their specificities to vary over a 10-fold range, with the greatest affinity being for the DNA binding site for which they were sorted.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Nature and function of insulator protein binding sites in the Drosophila genome

    PubMed Central

    Schwartz, Yuri B.; Linder-Basso, Daniela; Kharchenko, Peter V.; Tolstorukov, Michael Y.; Kim, Maria; Li, Hua-Bing; Gorchakov, Andrey A.; Minoda, Aki; Shanower, Gregory; Alekseyenko, Artyom A.; Riddle, Nicole C.; Jung, Youngsook L.; Gu, Tingting; Plachetka, Annette; Elgin, Sarah C.R.; Kuroda, Mitzi I.; Park, Peter J.; Savitsky, Mikhail; Karpen, Gary H.; Pirrotta, Vincenzo

    2012-01-01

    Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes. PMID:22767387

  6. Defects in the calcium-binding region drastically affect the cadherin-like domains of RET tyrosine kinase.

    PubMed

    Gao, Chunxia; Grøtli, Morten; Eriksson, Leif A

    2016-03-28

    Mutations in the rearranged during transfection (RET) tyrosine kinase gene leading to gain or loss of function have been associated with the development of several human cancers and Hirschsprung's disease (HSCR). However, to what extent these mutations affect individual bio-molecular functions remains unclear. In this article, the functionally significant mutations in the RET CLD1-4 calcium-binding site which lead to HSCR, and depletion of calcium ions in the RET CLD1-4 calcium binding site, were investigated by molecular dynamics simulations--to understand the mechanistic action of the mutations or loss of calcium ions in altering the protein kinase structure, dynamics, and stability. The mutations or loss of calcium ions change the local conformation and change the free energy landscape. Specifically, the mutations and loss of calcium ions decrease the radius of gyration of the whole structure, leading to improper protein folding and GFL-GFRα contact site reduction. Furthermore, based on the most populated conformation in the wildtype MD simulations, a pharmacophore was generated by fragment docking to identify key features of the possible inhibitors targeting the calcium binding site. Overall, the findings may provide useful structural insights into the molecular mechanism underlying RET calcium-binding site mutations and assist in development of novel drugs targeting the extracellular ligand contact site of wildtype RET.

  7. Rational design of a conformation-switchable Ca2+- and Tb3+-binding protein without the use of multiple coupled metal-binding sites.

    PubMed

    Li, Shunyi; Yang, Wei; Maniccia, Anna W; Barrow, Doyle; Tjong, Harianto; Zhou, Huan-Xiang; Yang, Jenny J

    2008-10-01

    Ca2+, as a messenger of signal transduction, regulates numerous target molecules via Ca2+-induced conformational changes. Investigation into the determinants for Ca2+-induced conformational change is often impeded by cooperativity between multiple metal-binding sites or protein oligomerization in naturally occurring proteins. To dissect the relative contributions of key determinants for Ca2+-dependent conformational changes, we report the design of a single-site Ca2+-binding protein (CD2.trigger) created by altering charged residues at an electrostatically sensitive location on the surface of the host protein rat Cluster of Differentiation 2 (CD2).CD2.trigger binds to Tb3+ and Ca2+ with dissociation constants of 0.3 +/- 0.1 and 90 +/- 25 microM, respectively. This protein is largely unfolded in the absence of metal ions at physiological pH, but Tb3+ or Ca2+ binding results in folding of the native-like conformation. Neutralization of the charged coordination residues, either by mutation or protonation, similarly induces folding of the protein. The control of a major conformational change by a single Ca2+ ion, achieved on a protein designed without reliance on sequence similarity to known Ca2+-dependent proteins and coupled metal-binding sites, represents an important step in the design of trigger proteins.

  8. The effect of Berberine on the secondary structure of human serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Ying; He, WenYing; Tian, Jianniao; Tang, Jianghong; Hu, Zhide; Chen, Xingguo

    2005-05-01

    The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many drugs. This study is designed to examine the effect of Berberine (an ancient Chinese drug used for antimicrobial, antiplasmodial, antidiarrheal and cardiovascular) on the solution structure of HSA using fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopic methods. The fluorescence spectroscopic results show that the fluorescence intensity of HSA was significantly decreased in the presence of Berberine. The Scatchard's plots indicated that the binding of Berberine to HSA at 296, 303, 318 K is characterized by one binding site with the binding constant is 4.071(±0.128)×10 4, 3.741(±0.089)×10 4, 3.454(±0.110)×10 4 M -1, respectively. The protein conformation is altered (FT-IR and CD data) with reductions of α-helices from 54 to 47% for free HSA to 45-32% and with increases of turn structure5% for free HSA to 18% in the presence of Berberine. The binding process was exothermic, enthalpy driven and spontaneous, as indicated by the thermodynamic analyses, Berberine bound to HSA was mainly based on hydrophobic interaction and electrostatic interaction cannot be excluded from the binding. Furthermore, the displace experiments indicate that Berberine can bind to the subdomain IIA, that is, high affinity site (site II).

  9. Murine tissues exposed to cytotoxic drugs display altered patterns of Candida albicans adhesion.

    PubMed Central

    López-Ribot, J L; McVay, C S; Chaffin, W L

    1994-01-01

    An ex vivo adhesion assay was used to examine the binding of Candida albicans yeast cells to tissues from mice treated with cytotoxic drugs such as lipopolysaccharide and the clinically used anticancer drugs doxorubicin, cisplatin, and vincristine. No major differences were observed in binding of the fungal cells to liver and kidney tissues from treated or untreated animals. All drug-treated spleens displayed altered patterns of C. albicans adhesion compared with the control group, with yeast cells bound not only to the marginal zone but also to the white and red pulp. Immunostaining for macrophages, which are proposed as the site of normal adhesion, showed no apparent differences between the control and the experimental spleens that could account for the change in adhesion patterns. Scanning electron microscopy images suggested that yeast binding to the white pulp of treated tissue is mediated through fibers, perhaps extracellular matrix components exposed as result of the cytotoxic treatment. Exposure of new attachment sites for C. albicans in treated tissues may facilitate initiation of infection. Images PMID:7927678

  10. [Mechanism of action of neurotoxins acting on the inactivation of voltage-gated sodium channels].

    PubMed

    Benoit, E

    1998-01-01

    This review focuses on the mechanism(s) of action of neurotoxins acting on the inactivation of voltage-gated Na channels. Na channels are transmembrane proteins which are fundamental for cellular communication. These proteins form pores in the plasma membrane allowing passive ionic movements to occur. Their opening and closing are controlled by gating systems which depend on both membrane potential and time. Na channels have three functional properties, mainly studied using electrophysiological and biochemical techniques, to ensure their role in the generation and propagation of action potentials: 1) a highly selectivity for Na ions, 2) a rapid opening ("activation"), responsible for the depolarizing phase of the action potential, and 3) a late closing ("inactivation") involved in the repolarizing phase of the action potential. As an essential protein for membrane excitability, the Na channel is the specific target of a number of vegetal and animal toxins which, by binding to the channel, alter its activity by affecting one or more of its properties. At least six toxin receptor sites have been identified on the neuronal Na channel on the basis of binding studies. However, only toxins interacting with four of these sites (sites 2, 3, 5 et 6) produce alterations of channel inactivation. The maximal percentage of Na channels modified by the binding of neurotoxins to sites 2 (batrachotoxin and some alkaloids), 3 (alpha-scorpion and sea anemone toxins), 5 (brevetoxins and ciguatoxins) et 6 (delta-conotoxins) is different according to the site considered. However, in all cases, these channels do not inactivate. Moreover, Na channels modified by toxins which bind to sites 2, 5 and 6 activate at membrane potentials more negative than do unmodified channels. The physiological consequences of Na channel modifications, induced by the binding of neurotoxins to sites 2, 3, 5 and 6, are (i) an inhibition of cellular excitability due to an important membrane depolarization (site 2), (ii) a decrease of cellular excitability due to an important increase in the action potential duration (site 3) and (iii) an increase in cellular excitability which results in spontaneous and repetitive firing of action potentials (sites 5 and 6). The biochemical and electrophysiological studies performed with these toxins, as well as the determination of their molecular structure, have given basic information on the function and structure of the Na channel protein. Therefore, various models representing the different states of Na channels have been proposed to account for the neurotoxin-induced modifications of Na inactivation. Moreover, the localization of receptor binding sites 2, 3, 5 et 6 for these toxins on the neuronal Na channel has been deduced and the molecular identification of the recognition site(s) for some of them has been established on the alpha sub-unit forming the Na channel protein.

  11. Tb3+-cleavage assays reveal specific Mg2+ binding sites necessary to pre-fold the btuB riboswitch for AdoCbl binding

    NASA Astrophysics Data System (ADS)

    Choudhary, Pallavi K.; Gallo, Sofia; Sigel, Roland K. O.

    2017-03-01

    Riboswitches are RNA elements that bind specific metabolites in order to regulate the gene expression involved in controlling the cellular concentration of the respective molecule or ion. Ligand recognition is mostly facilitated by Mg2+ mediated pre-organization of the riboswitch to an active tertiary fold. To predict these specific Mg2+ induced tertiary interactions of the btuB riboswitch from E. coli, we here report Mg2+ binding pockets in its aptameric part in both, the ligand-free and the ligand-bound form. An ensemble of weak and strong metal ion binding sites distributed over the entire aptamer was detected by terbium(III) cleavage assays, Tb3+ being an established Mg2+ mimic. Interestingly many of the Mn+ (n = 2 or 3) binding sites involve conserved bases within the class of coenzyme B12-binding riboswitches. Comparison with the published crystal structure of the coenzyme B12 riboswitch of S. thermophilum aided in identifying a common set of Mn+ binding sites that might be crucial for tertiary interactions involved in the organization of the aptamer. Our results suggest that Mn+ binding at strategic locations of the btuB riboswitch indeed facilitates the assembly of the binding pocket needed for ligand recognition. Binding of the specific ligand, coenzyme B12 (AdoCbl), to the btuB aptamer does however not lead to drastic alterations of these Mn+ binding cores, indicating the lack of a major rearrangement within the three-dimensional structure of the RNA. This finding is strengthened by Tb3+ mediated footprints of the riboswitch's structure in its ligand-free and ligand-bound state indicating that AdoCbl indeed induces local changes rather than a global structural rearrangement.

  12. Locating the binding sites of folic acid with milk α- and β-caseins.

    PubMed

    Bourassa, P; Tajmir-Riahi, H A

    2012-01-12

    We located the binding sites of folic acid with milk α- and β-caseins at physiological conditions, using constant protein concentration and various folic acid contents. FTIR, UV-visible, and fluorescence spectroscopic methods as well as molecular modeling were used to analyze folic acid binding sites, the binding constant, and the effect of folic acid interaction on the stability and conformation of caseins. Structural analysis showed that folic acid binds caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(folic acid-α-caseins) = 4.8 (±0.6) × 10(4) M(-1) and K(folic acid-β-caseins) = 7.0 (±0.9) × 10(4) M(-1). The number of bound acid molecules per protein was 1.5 (±0.4) for α-casein and 1.4 (±0.3) for β-casein complexes. Molecular modeling showed different binding sites for folic acid on α- and β-caseins. The participation of several amino acids in folic acid-protein complexes was observed, which was stabilized by hydrogen bonding network and the free binding energy of -7.7 kcal/mol (acid-α-casein) and -8.1 kcal/mol (acid-β-casein). Folic acid complexation altered protein secondary structure by the reduction of α-helix from 35% (free α-casein) to 33% (acid-complex) and 32% (free β-casein) to 26% (acid-complex) indicating a partial protein destabilization. Caseins might act as carriers for transportation of folic acid to target molecules.

  13. Insights from spectroscopic and in-silico techniques for the exploitation of biomolecular interactions between Human serum albumin and Paromomycin.

    PubMed

    Raza, Muslim; Jiang, Yang; Wei, Yun; Ahmad, Aftab; Khan, Ajmal; Qipeng, Yuan

    2017-09-01

    The study of molecular interactions of drug-protein are extremely important from the biological aspect in all living organisms, and therefore such type of investigation hold a tremendous significance in rational drug design and discovery. In the present study, the molecular interactions between paromomycin (PAR) and human serum albumin (HSA) have been studied by different biophysical techniques and validated by in-silico approaches. The results obtained from Ultraviolet-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FT-IR) demonstrated a remarkable change upon the complexation of PAR with HSA. Circular Dichroism (CD), Dynamic Light Scattering (DLS) and Resonance Rayleigh scattering (RRS) results revealed a significant secondary structure alteration and reduction of hydrodynamic radii upon the conjugation of PAR with HSA. The fluorescence spectroscopy results also apparently revealed the static quenching mechanism. The number of binding sites, binding constants, and Gibbs free energy values were calculated to illustrate the nature of intermolecular interactions. Similarly, the in-silico docking and molecular dynamics simulation clearly explain the theoretical basis of the binding mechanism of PAR with HSA. The experimental and docking approaches suggested that PAR binds to the hydrophobic cavity site I of HSA. The finding of present investigation will provide binding insight of PAR and associated alterations in the stability and conformation of HSA. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The influence of hormonal and neuronal factors on rat heart adrenoceptors

    PubMed Central

    Kunos, George; Mucci, Lucia; O'Regan, Seana

    1980-01-01

    1 The influence of hormonal and neuronal factors on adrenoceptors mediating increased cardiac force and rate of contraction were studied in rat isolated atria. The pharmacological properties of these receptors were deduced from the relative potencies of agonists and from the effects of selective α- and β-adrenoceptor antagonists. The numbers and affinities of α- and β-adrenoceptors were also determined by radioligand binding to ventricular membrane fragments. 2 Hypophysectomy reduced the inotropic potency of isoprenaline and increased the potency of phenylephrine and methoxamine in left atria. The effect of phenylephrine was inhibited by propranolol less effectively and by phentolamine or phenoxybenzamine more effectively in hypophysectomized than in control rats. The difference in block was smaller at low than at high antagonist concentrations. Similar but smaller changes were observed for chronotropic responses of right atria. 3 The decreased β- and increased α-receptor response after hypophysectomy was similar to that observed earlier in thyroidectomized rats (Kunos, 1977). These changes developed slowly after hypophysectomy (>2 weeks), they were both reversed within 2 days of thyroxine treatment (0.2 mg/kg daily), but were not affected by cortisone treatment (50 mg/kg every 12 h for 4 days). 4 Treatment of hypophysectomized rats for 2 days with thyroxine increased the density of [3H]-dihydroalprenolol ([3H]-DHA) binding sites from 27.5 ± 2.7 to 45.5 ± 5.7 fmol/mg protein and decreased the density of [3H]-WB-4101 binding sites from 38.7 ± 3.1 to 18.7 ± 2.5 fmol/mg protein. The affinity of either type of binding site for agonists or antagonist was not significantly altered by thyroxine treatment and the sum total of α1- and β-receptors remained the same. 5 Sympathetic denervation of thyroidectomized rats by 6-hydroxydopamine increased the inotropic potency of isoprenaline and noradrenaline and the blocking effect of propranolol, and decreased the potency of phenylephrine and the blocking effect of phenoxybenzamine to or beyond values observed in euthyroid controls. The density of [3H]-DHA binding sites was higher and that of [3H]-WB-4101 binding sites was lower in the denervated than in the innervated hypothyroid myocardium. Depletion of endogenous noradrenaline stores by reserpine did not significantly alter the adrenoceptor response pattern of the hypothyroid preparations and did not influence the density or affinity of [3H]-DHA and [3H]-WB-4101 binding sites. 6 These results indicate that thyrotropin or steroids do not contribute to the reciprocal changes in the sensitivity of cardiac α1- and β-adrenoceptors in altered thyroid states. These thyroid hormone-dependent changes are probably due to a parallel, reciprocal change in the numbers but not the affinities of α1- and β-adrenoceptors. Reciprocal regulation of cardiac α1- and β-adrenoceptors by thyroid hormones requires intact sympathetic innervation but not the presence of normal stores of the neurotransmitter. PMID:7470752

  15. Functional non-coding polymorphism in an EPHA2 promoter PAX2 binding site modifies expression and alters the MAPK and AKT pathways.

    PubMed

    Ma, Xiaoyin; Ma, Zhiwei; Jiao, Xiaodong; Hejtmancik, J Fielding

    2017-08-30

    To identify possible genetic variants influencing expression of EPHA2 (Ephrin-receptor Type-A2), a tyrosine kinase receptor that has been shown to be important for lens development and to contribute to both congenital and age related cataract when mutated, the extended promoter region of EPHA2 was screened for variants. SNP rs6603883 lies in a PAX2 binding site in the EPHA2 promoter region. The C (minor) allele decreased EPHA2 transcriptional activity relative to the T allele by reducing the binding affinity of PAX2. Knockdown of PAX2 in human lens epithelial (HLE) cells decreased endogenous expression of EPHA2. Whole RNA sequencing showed that extracellular matrix (ECM), MAPK-AKT signaling pathways and cytoskeleton related genes were dysregulated in EPHA2 knockdown HLE cells. Taken together, these results indicate a functional non-coding SNP in EPHA2 promoter affects PAX2 binding and reduces EPHA2 expression. They further suggest that decreasing EPHA2 levels alters MAPK, AKT signaling pathways and ECM and cytoskeletal genes in lens cells that could contribute to cataract. These results demonstrate a direct role for PAX2 in EPHA2 expression and help delineate the role of EPHA2 in development and homeostasis required for lens transparency.

  16. Autoradiographic analysis of binding sites for sup 125 I-Bolton-Hunter-substance P in the human eye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieselbach, G.F.; Ragaut, R.; Knaus, H.G.

    1990-07-01

    Substance P is known to exert potent effects in peripheral tissues, and is thought to be important for ocular function. The mechanism of action of substance P in the human eye is not known. As a basis for biochemical characterization specific binding of {sup 125}I-Bolton-Hunter-substance P was demonstrated in the human eye using autoradiographic methods. Biochemical characterization on slide-mounted tissue preparations showed that binding was saturable with a KD of 0.27 +/- 0.1 nmol/l. Specific binding occurred at comparable autoradiographic densities to both human retina and choroid. Substance P and its carboxyterminal fragment, substance P(3-11), were shown to be highlymore » potent in binding competition experiments against {sup 125}I-Bolton-Hunter-substance P. Similar concentrations of substance P(1-9), neurokinin A and neurokinin B failed to significantly alter specific binding of {sup 125}I-Bolton-Hunter-substance P. The results indicate expression of high affinity substance P binding sites in human retina and choroid.« less

  17. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone.

    PubMed

    Marcu, M G; Chadli, A; Bouhouche, I; Catelli, M; Neckers, L M

    2000-11-24

    Heat shock protein 90 (Hsp90), one of the most abundant chaperones in eukaryotes, participates in folding and stabilization of signal-transducing molecules including steroid hormone receptors and protein kinases. The amino terminus of Hsp90 contains a non-conventional nucleotide-binding site, related to the ATP-binding motif of bacterial DNA gyrase. The anti-tumor agents geldanamycin and radicicol bind specifically at this site and induce destabilization of Hsp90-dependent client proteins. We recently demonstrated that the gyrase inhibitor novobiocin also interacts with Hsp90, altering the affinity of the chaperone for geldanamycin and radicicol and causing in vitro and in vivo depletion of key regulatory Hsp90-dependent kinases including v-Src, Raf-1, and p185(ErbB2). In the present study we used deletion/mutation analysis to identify the site of interaction of novobiocin with Hsp90, and we demonstrate that the novobiocin-binding site resides in the carboxyl terminus of the chaperone. Surprisingly, this motif also recognizes ATP, and ATP and novobiocin efficiently compete with each other for binding to this region of Hsp90. Novobiocin interferes with association of the co-chaperones Hsc70 and p23 with Hsp90. These results identify a second site on Hsp90 where the binding of small molecule inhibitors can significantly impact the function of this chaperone, and they support the hypothesis that both amino- and carboxyl-terminal domains of Hsp90 interact to modulate chaperone activity.

  18. Genotype and phenotype correlation in von Hippel-Lindau disease based on alteration of the HIF-α binding site in VHL protein.

    PubMed

    Liu, Sheng-Jie; Wang, Jiang-Yi; Peng, Shuang-He; Li, Teng; Ning, Xiang-Hui; Hong, Bao-An; Liu, Jia-Yuan; Wu, Peng-Jie; Zhou, Bo-Wen; Zhou, Jing-Cheng; Qi, Nie-Nie; Peng, Xiang; Zhang, Jiu-Feng; Ma, Kai-Fang; Cai, Lin; Gong, Kan

    2018-03-29

    PurposeVon Hippel-Lindau (VHL) disease is a rare hereditary cancer syndrome that reduces life expectancy. We aimed to construct a more valuable genotype-phenotype correlation based on alterations in VHL protein (pVHL).MethodsVHL patients (n = 339) were recruited and grouped based on mutation types: HIF-α binding site missense (HM) mutations, non-HIF-α binding site missense (nHM) mutations, and truncating (TR) mutations. Age-related risks of VHL-associated tumors and patient survival were compared.ResultsMissense mutations conferred an increased risk of pheochromocytoma (HR = 1.854, p = 0.047) compared with truncating mutations. The risk of pheochromocytoma was lower in the HM group than in the nHM group (HR = 0.298, p = 0.003) but was similar between HM and TR groups (HR = 0.901, p = 0.810). Patients in the nHM group had a higher risk of pheochromocytoma (HR = 3.447, p < 0.001) and lower risks of central nervous system hemangioblastoma (CHB) (HR = 0.700, p = 0.045), renal cell carcinoma (HR = 0.610, p = 0.024), and pancreatic tumor (HR = 0.382, p < 0.001) than those in the combined HM and TR (HMTR) group. Moreover, nHM mutations were independently associated with better overall survival (HR = 0.345, p = 0.005) and CHB-specific survival (HR = 0.129, p = 0.005) than HMTR mutations.ConclusionThe modified genotype-phenotype correlation links VHL gene mutation, substrate binding site, and phenotypic diversity (penetrance and survival), and provides more accurate information for genetic counseling and pathogenesis studies.Genetics in Medicine advance online publication, 29 March 2018; doi:10.1038/gim.2017.261.

  19. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    DOE PAGES

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun; ...

    2015-07-13

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less

  20. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less

  1. Investigation of the mechanism of meiotic DNA cleavage by VMA1-derived endonuclease uncovers a meiotic alteration in chromatin structure around the target site.

    PubMed

    Fukuda, Tomoyuki; Ohta, Kunihiro; Ohya, Yoshikazu

    2006-06-01

    VMA1-derived endonuclease (VDE), a homing endonuclease in Saccharomyces cerevisiae, is encoded by the mobile intein-coding sequence within the nuclear VMA1 gene. VDE recognizes and cleaves DNA at the 31-bp VDE recognition sequence (VRS) in the VMA1 gene lacking the intein-coding sequence during meiosis to insert a copy of the intein-coding sequence at the cleaved site. The mechanism underlying the meiosis specificity of VMA1 intein-coding sequence homing remains unclear. We studied various factors that might influence the cleavage activity in vivo and found that VDE binding to the VRS can be detected only when DNA cleavage by VDE takes place, implying that meiosis-specific DNA cleavage is regulated by the accessibility of VDE to its target site. As a possible candidate for the determinant of this accessibility, we analyzed chromatin structure around the VRS and revealed that local chromatin structure near the VRS is altered during meiosis. Although the meiotic chromatin alteration exhibits correlations with DNA binding and cleavage by VDE at the VMA1 locus, such a chromatin alteration is not necessarily observed when the VRS is embedded in ectopic gene loci. This suggests that nucleosome positioning or occupancy around the VRS by itself is not the sole mechanism for the regulation of meiosis-specific DNA cleavage by VDE and that other mechanisms are involved in the regulation.

  2. Investigation of the Mechanism of Meiotic DNA Cleavage by VMA1-Derived Endonuclease Uncovers a Meiotic Alteration in Chromatin Structure around the Target Site

    PubMed Central

    Fukuda, Tomoyuki; Ohta, Kunihiro; Ohya, Yoshikazu

    2006-01-01

    VMA1-derived endonuclease (VDE), a homing endonuclease in Saccharomyces cerevisiae, is encoded by the mobile intein-coding sequence within the nuclear VMA1 gene. VDE recognizes and cleaves DNA at the 31-bp VDE recognition sequence (VRS) in the VMA1 gene lacking the intein-coding sequence during meiosis to insert a copy of the intein-coding sequence at the cleaved site. The mechanism underlying the meiosis specificity of VMA1 intein-coding sequence homing remains unclear. We studied various factors that might influence the cleavage activity in vivo and found that VDE binding to the VRS can be detected only when DNA cleavage by VDE takes place, implying that meiosis-specific DNA cleavage is regulated by the accessibility of VDE to its target site. As a possible candidate for the determinant of this accessibility, we analyzed chromatin structure around the VRS and revealed that local chromatin structure near the VRS is altered during meiosis. Although the meiotic chromatin alteration exhibits correlations with DNA binding and cleavage by VDE at the VMA1 locus, such a chromatin alteration is not necessarily observed when the VRS is embedded in ectopic gene loci. This suggests that nucleosome positioning or occupancy around the VRS by itself is not the sole mechanism for the regulation of meiosis-specific DNA cleavage by VDE and that other mechanisms are involved in the regulation. PMID:16757746

  3. Fibronectin tetrapeptide is target for syphilis spirochete cytadherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.D.; Baseman, J.B.; Alderete, J.F.

    1985-11-01

    The syphilis bacterium, Treponema pallidum, parasitizes host cells through recognition of fibronectin (Fn) on cell surfaces. The active site of the Fn molecule has been identified as a four-amino acid sequence, arg-gly-asp-ser (RGDS), located on each monomer of the cell-binding domain. The synthetic heptapeptide gly-arg-gly-asp-ser-pro-cys (GRGDSPC), with the active site sequence RGDS, specifically competed with SVI-labeled cell-binding domain acquisition by T. pallidum. Additionally, the same heptapeptide with the RGDS sequence diminished treponemal attachment to HEp-2 and HT1080 cell monolayers. Related heptapeptides altered in one key amino acid within the RGDS sequence failed to inhibit Fn cell-binding domain acquisition or parasitismmore » of host cells by T. pallidum. The data support the view that T. pallidum cytadherence of host cells is through recognition of the RGDS sequence also important for eukaryotic cell-Fn binding.« less

  4. Specific minor groove solvation is a crucial determinant of DNA binding site recognition

    PubMed Central

    Harris, Lydia-Ann; Williams, Loren Dean; Koudelka, Gerald B.

    2014-01-01

    The DNA sequence preferences of nearly all sequence specific DNA binding proteins are influenced by the identities of bases that are not directly contacted by protein. Discrimination between non-contacted base sequences is commonly based on the differential abilities of DNA sequences to allow narrowing of the DNA minor groove. However, the factors that govern the propensity of minor groove narrowing are not completely understood. Here we show that the differential abilities of various DNA sequences to support formation of a highly ordered and stable minor groove solvation network are a key determinant of non-contacted base recognition by a sequence-specific binding protein. In addition, disrupting the solvent network in the non-contacted region of the binding site alters the protein's ability to recognize contacted base sequences at positions 5–6 bases away. This observation suggests that DNA solvent interactions link contacted and non-contacted base recognition by the protein. PMID:25429976

  5. X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability

    DOE PAGES

    Gres, Anna T.; Kirby, Karen A.; KewalRamani, Vineet N.; ...

    2015-06-04

    The detailed molecular interactions between native HIV-1 capsid protein (CA) hexamers that shield the viral genome and proteins have been elusive. In this paper, we report crystal structures describing interactions between CA monomers related by sixfold symmetry within hexamers (intrahexamer) and threefold and twofold symmetry between neighboring hexamers (interhexamer). The structures describe how CA builds hexagonal lattices, the foundation of mature capsids. Lattice structure depends on an adaptable hydration layer modulating interactions among CA molecules. Disruption of this layer alters interhexamer interfaces, highlighting an inherent structural variability. A CA-targeting antiviral affects capsid stability by binding across CA molecules and subtlymore » altering interhexamer interfaces remote to the ligand-binding site. Finally, inherent structural plasticity, hydration layer rearrangement, and effector binding affect capsid stability and have functional implications for the retroviral life cycle.« less

  6. Analysis of flavin oxidation and electron-transfer inhibition in Plasmodium falciparum dihydroorotate dehydrogenase.

    PubMed

    Malmquist, Nicholas A; Gujjar, Ramesh; Rathod, Pradipsinh K; Phillips, Margaret A

    2008-02-26

    Plasmodium falciparum dihydroorotate dehydrogenase (pfDHODH) is a flavin-dependent mitochondrial enzyme that provides the only route to pyrimidine biosynthesis in the parasite. Clinically significant inhibitors of human DHODH (e.g., A77 1726) bind to a pocket on the opposite face of the flavin cofactor from dihydroorotate (DHO). This pocket demonstrates considerable sequence variability, which has allowed species-specific inhibitors of the malarial enzyme to be identified. Ubiquinone (CoQ), the physiological oxidant in the reaction, has been postulated to bind this site despite a lack of structural evidence. To more clearly define the residues involved in CoQ binding and catalysis, we undertook site-directed mutagenesis of seven residues in the structurally defined A77 1726 binding site, which we term the species-selective inhibitor site. Mutation of several of these residues (H185, F188, and F227) to Ala substantially decreased the affinity of pfDHODH-specific inhibitors (40-240-fold). In contrast, only a modest increase in the Kmapp for CoQ was observed, although mutation of Y528 in particular caused a substantial reduction in kcat (40-100-fold decrease). Pre-steady-state kinetic analysis by single wavelength stopped-flow spectroscopy showed that the mutations had no effect on the rate of the DHO-dependent reductive half-reaction, but most reduced the rate of the CoQ-dependent flavin oxidation step (3-20-fold decrease), while not significantly altering the Kdox for CoQ. As with the mutants, inhibitors that bind this site block the CoQ-dependent oxidative half-reaction without affecting the DHO-dependent step. These results identify residues involved in inhibitor binding and electron transfer to CoQ. Importantly, the data provide compelling evidence that the binding sites for CoQ and species-selective site inhibitors do not overlap, and they suggest instead that inhibitors act either by blocking the electron path between flavin and CoQ or by stabilizing a conformation that excludes CoQ binding.

  7. Marked reduction in the number of platelet-tritiated imipramine binding sites in geriatric depression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemeroff, C.B.; Knight, D.L.; Krishnan, R.R.

    The number (Bmax) and affinity (Kd) of platelet-tritiated imipramine binding sites was determined in young and middle-aged controls 50 years of age and younger (n = 25), elderly normal controls over 60 years of age (n = 18), patients who fulfilled DSM-III criteria for major depression who were under 50 years of age (n = 29), patients who fulfilled DSM-III criteria for major depression who were 60 years of age and older (n = 19), and patients who fulfilled both DSM-III criteria for primary degenerative dementia and National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disordersmore » Association criteria for probable Alzheimer's disease (n = 13). Both groups of depressed patients (under 50 and over 60 years of age) exhibited significant reductions (decreases 42%) in the number of platelet-tritiated imipramine binding sites with no change in affinity, when compared with their age-matched controls. There was little overlap in Bmax values between the elderly depressed patients and their controls. The patients with probable Alzheimer's disease showed no alteration in platelet-tritiated imipramine binding. There was no statistically significant relationship between postdexamethasone plasma cortisol concentrations and tritiated imipramine binding. These results indicate that platelet-tritiated imipramine binding may have potential utility as a diagnostic adjunct in geriatric depression, and moreover that the reduction in the number of platelet-tritiated imipramine binding sites is not due to hypercortisolemia.« less

  8. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  9. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    PubMed

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Characterization of (/sup 3/H)pirenzepine binding to muscarinic cholinergic receptors solubilized from rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthin, G.R.; Wolfe, B.B.

    Membranes prepared from rat cerebral cortex were solubilized in buffer containing 1% digitonin. Material present in the supernatant after centrifugation at 147,000 X g was shown to contain binding sites for both (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) and (/sup 3/H)pirenzepine ((/sup 3/H)PZ). Recovery of binding sites was approximately 25% of the initial membrane-bound (/sup 3/H)QNB binding sites. The Kd values for (/sup 3/H)QNB and (/sup 3/H)PZ binding to solubilized receptors were 0.3 nM and 0.1 microM, respectively. As has been observed previously in membrane preparations, (/sup 3/H)PZ appeared to label fewer solubilized binding sites than did (/sup 3/H)QNB. Maximum bindingmore » values for (/sup 3/H)PZ and (/sup 3/H)QNB binding to solubilized receptors were approximately 400 and 950 fmol/mg of protein, respectively. Competition curves for PZ inhibiting the binding of (/sup 3/H)QNB, however, had Hill slopes of 1, with a Ki value of 0.24 microM. The k1 and k-1 for (/sup 3/H)PZ binding were 3.5 X 10(6) M-1 min-1 and 0.13 min-1, respectively. The muscarinic receptor antagonists atropine, scopolamine and PZ inhibited the binding of (/sup 3/H)QNB and (/sup 3/H)PZ to solubilized receptors with Hill slopes of 1, as did the muscarinic receptor agonist oxotremorine. The muscarinic receptor agonist carbachol competed for (/sup 3/H)QNB and (/sup 3/H)PZ binding with a Hill slope of less than 1 in cerebral cortex, but not in cerebellum. GTP did not alter the interactions of carbachol or oxotremorine with the solubilized receptor. Together, these data suggest that muscarinic receptor sites solubilized from rat brain retain their abilities to interact selectively with muscarinic receptor agonists and antagonists.« less

  11. Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method.

    PubMed

    Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua

    2014-08-01

    Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.

  12. Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method

    NASA Astrophysics Data System (ADS)

    Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua

    2014-08-01

    Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.

  13. pH-insensitive electrostatic interaction of carmoisine with two serum proteins: a possible caution on its uses in food and pharmaceutical industry.

    PubMed

    Datta, Shubhashis; Mahapatra, Niharendu; Halder, Mintu

    2013-07-05

    Here we have investigated the binding of carmoisine, a water-soluble azo food colorant, with serum proteins (HSA and BSA) by fluorescence and UV-VIS spectroscopy, circular dichroism and molecular docking studies. Results indicate that fluorescence quenching of protein has been due to site-specific binding of the dye with biomacromolecules. Site marker competitive binding and molecular docking explorations show that interaction occurs in the sub-domain ІІA of HSA and the sub-domains ІІA and ІB in the case of BSA. Conformational investigation indicates that dye binding modifies the secondary structure of proteins and this also alters the microenvironment of the tryptophan(s). The interaction is found to be pH-insensitive which can have relevance to the toxicological profiles of the dye, and ionic strength dependence of binding can be exploited in protein purification mediated by such food colorants. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Calmodulin binds to inv protein: implication for the regulation of inv function.

    PubMed

    Yasuhiko, Y; Imai, F; Ookubo, K; Takakuwa, Y; Shiokawa, K; Yokoyama, T

    2001-12-01

    Establishment of the left-right asymmetry of internal organs is essential for the normal development of vertebrates. The inv mutant in mice shows a constant reversal of left-right asymmetry and although the inv gene has been cloned, its biochemical and cell biological functions have not been defined. Here, we show that calmodulin binds to mouse inv protein at two sites (IQ1 and IQ2). The binding of calmodulin to the IQ2 site occurs in the absence of Ca(2+) and is not observed in the presence of Ca(2+). Injection of mouse inv mRNA into the right blastomere of Xenopus embryos at the two-cell stage randomized the left-right asymmetry of the embryo and altered the patterns of Xnr-1 and Pitx2 expression. Importantly, inv mRNA that lacked the region encoding the IQ2 site was unable to randomize left-right asymmetry in Xenopus embryos, implying that the IQ2 site is essential for inv to randomize left-right asymmetry in Xenopus. These results suggest that calmodulin binding may regulate inv function. Based on our findings, we propose a model for the regulation of inv function by calcium-calmodulin and discuss its implications.

  15. Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera.

    PubMed

    Ngwuta, Joan O; Chen, Man; Modjarrad, Kayvon; Joyce, M Gordon; Kanekiyo, Masaru; Kumar, Azad; Yassine, Hadi M; Moin, Syed M; Killikelly, April M; Chuang, Gwo-Yu; Druz, Aliaksandr; Georgiev, Ivelin S; Rundlet, Emily J; Sastry, Mallika; Stewart-Jones, Guillaume B E; Yang, Yongping; Zhang, Baoshan; Nason, Martha C; Capella, Cristina; Peeples, Mark E; Ledgerwood, Julie E; McLellan, Jason S; Kwong, Peter D; Graham, Barney S

    2015-10-14

    Respiratory syncytial virus (RSV) is estimated to claim more lives among infants <1 year old than any other single pathogen, except malaria, and poses a substantial global health burden. Viral entry is mediated by a type I fusion glycoprotein (F) that transitions from a metastable prefusion (pre-F) to a stable postfusion (post-F) trimer. A highly neutralization-sensitive epitope, antigenic site Ø, is found only on pre-F. We determined what fraction of neutralizing (NT) activity in human sera is dependent on antibodies specific for antigenic site Ø or other antigenic sites on F in healthy subjects from ages 7 to 93 years. Adsorption of individual sera with stabilized pre-F protein removed >90% of NT activity and depleted binding antibodies to both F conformations. In contrast, adsorption with post-F removed ~30% of NT activity, and binding antibodies to pre-F were retained. These findings were consistent across all age groups. Protein competition neutralization assays with pre-F mutants in which sites Ø or II were altered to knock out binding of antibodies to the corresponding sites showed that these sites accounted for ~35 and <10% of NT activity, respectively. Binding competition assays with monoclonal antibodies (mAbs) indicated that the amount of site Ø-specific antibodies correlated with NT activity, whereas the magnitude of binding competed by site II mAbs did not correlate with neutralization. Our results indicate that RSV NT activity in human sera is primarily derived from pre-F-specific antibodies, and therefore, inducing or boosting NT activity by vaccination will be facilitated by using pre-F antigens that preserve site Ø. Copyright © 2015, American Association for the Advancement of Science.

  16. Allosteric Regulation of E-Cadherin Adhesion.

    PubMed

    Shashikanth, Nitesh; Petrova, Yuliya I; Park, Seongjin; Chekan, Jillian; Maiden, Stephanie; Spano, Martha; Ha, Taekjip; Gumbiner, Barry M; Leckband, Deborah E

    2015-08-28

    Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120(ctn), increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120(ctn) dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120(ctn) dephosphorylation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Temperature-sensitive high affinity (/sup 3/H)serotonin binding: characterization and effects of antidepressant treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmeste, D.M.; Tang, S.W.

    1984-08-13

    Characterization of temperature-sensitive (/sup 3/H)serotonin (5-HT) binding sites (1 and 4 nM Kd sites) revealed complex inhibition by neuroleptics and serotonin antagonists. There was no simple correlation with affinities for S/sub 1/ and S/sub 2/ receptors. In vivo pretreatment (48 h before) with mianserin did not alter B/sub max/ or Kd for the 1 nM Kd (/sup 3/H)5-HT site, although (/sup 3/H)ketanserin (S/sub 2/) densities were decreased by 50%. This suggested that possible S/sub 2/ components of (/sup 3/H)5-HT binding must be negligible, even though ketanserin competed with high affinity (IC/sub 50/ = 3 nM) for a portion of themore » 1 nM Kd (/sup 3/H)5-HT site. Low concentrations of mianserin inhibited the 1 nM Kd (/sup 3/H)5-HT site in a non-competitive manner, as shown by a decrease in B/sub max/ with no change in Kd after in vitro incubation. The complex inhibition data may therefore represent indirect interactions through another site.« less

  18. Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and alters HagB-induced chemokine responses

    NASA Astrophysics Data System (ADS)

    Borgwardt, Derek S.; Martin, Aaron D.; van Hemert, Jonathan R.; Yang, Jianyi; Fischer, Carol L.; Recker, Erica N.; Nair, Prashant R.; Vidva, Robinson; Chandrashekaraiah, Shwetha; Progulske-Fox, Ann; Drake, David; Cavanaugh, Joseph E.; Vali, Shireen; Zhang, Yang; Brogden, Kim A.

    2014-01-01

    Histatins are human salivary gland peptides with anti-microbial and anti-inflammatory activities. In this study, we hypothesized that histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and attenuates HagB-induced chemokine responses in human myeloid dendritic cells. Histatin 5 bound to immobilized HagB in a surface plasmon resonance (SPR) spectroscopy-based biosensor system. SPR spectroscopy kinetic and equilibrium analyses, protein microarray studies, and I-TASSER structural modeling studies all demonstrated two histatin 5 binding sites on HagB. One site had a stronger affinity with a KD1 of 1.9 μM and one site had a weaker affinity with a KD2 of 60.0 μM. Binding has biological implications and predictive modeling studies and exposure of dendritic cells both demonstrated that 20.0 μM histatin 5 attenuated (p < 0.05) 0.02 μM HagB-induced CCL3/MIP-1α, CCL4/MIP-1β, and TNFα responses. Thus histatin 5 is capable of attenuating chemokine responses, which may help control oral inflammation.

  19. The investigation of the binding of 6-mercaptopurine to site I on human serum albumin.

    PubMed

    Sochacka, Jolanta; Baran, Wojciech

    2012-12-01

    6-Mercaptopurine (6-MP) is one of a large series of purine analogues which has been found active against human leukemias. The equilibrium dialysis, circular dichroism (CD) and molecular docking were employed to study the binding of 6-MP to human serum albumin (HSA). The binding of 6-MP to HSA in the equilibrium dialysis experiment was detected by measuring the displacement of 6-MP by specific markers for site I on HSA, warfarin (RWF), phenylbutazone (PhB) and n-butyl p-aminobenzoate (ABE). It was shown, according to CD data, that binding of 6-MP to HSA leads to alteration of HSA secondary structure. Based on the findings from displacement experiment and molecular docking simulation it was found that 6-MP was located within binding cavity of subdomain IIA and the space occupied by site markers overlapped with that of 6-MP. Displacement of 6-MP by the RWF or PhB was not up the level expected for a competitive mechanism, therefore displacement of 6-MP was rather by non-cooperative than that the direct competition. Instead, in case of the interaction between ABE and 6-MP, when the little enhancement of the binding of ABE by 6-MP was found, the interaction could be via a positively cooperative mechanism.

  20. Structural Basis for High Affinity Volatile Anesthetic Binding in a Natural 4-helix Bundle Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu,R.; Loll, P.; Eckenhoff, R.

    2005-01-01

    Physiologic sites for inhaled anesthetics are presumed to be cavities within transmembrane 4-{alpha}-helix bundles of neurotransmitter receptors, but confirmation of binding and structural detail of such sites remains elusive. To provide such detail, we screened soluble proteins containing this structural motif, and found only one that exhibited evidence of strong anesthetic binding. Ferritin is a 24-mer of 4-{alpha}-helix bundles; both halothane and isoflurane bind with K{sub A} values of {approx}10{sup 5} M{sup -1, } higher than any previously reported inhaled anesthetic-protein interaction. The crystal structures of the halothane/apoferritin and isoflurane/apoferritin complexes were determined at 1.75 Angstroms resolution, revealing a commonmore » anesthetic binding pocket within an interhelical dimerization interface. The high affinity is explained by several weak polar contacts and an optimal host/guest packing relationship. Neither the acidic protons nor ether oxygen of the anesthetics contribute to the binding interaction. Compared with unliganded apoferritin, the anesthetic produced no detectable alteration of structure or B factors. The remarkably high affinity of the anesthetic/apoferritin complex implies greater selectivity of protein sites than previously thought, and suggests that direct protein actions may underlie effects at lower than surgical levels of anesthetic, including loss of awareness.« less

  1. Competitive binding of (-)-epigallocatechin-3-gallate and 5-fluorouracil to human serum albumin: A fluorescence and circular dichroism study

    NASA Astrophysics Data System (ADS)

    Yuan, Lixia; Liu, Min; Liu, Guiqin; Li, Dacheng; Wang, Zhengping; Wang, Bingquan; Han, Jun; Zhang, Min

    2017-02-01

    Combination therapy with more than one therapeutic agent can improve therapeutic efficiency and decrease drug resistance. In this study, the interactions of human serum albumin (HSA) with individual or combined anticancer drugs, (-)-epigallocatechin-3-gallate (EGCG) and 5-fluorouracil (FU), were investigated by fluorescence and circular dichroism (CD) spectroscopy. The results demonstrated that the interaction of EGCG or FU with HSA is a process of static quenching and EGCG formed a more stable complex. The competitive experiments of site markers suggested that both anti-carcinogens mainly bound to site I (subdomain IIA). The interaction forces which play important roles in the binding process were discussed based on enthalpy and entropy changes. Moreover, the competition binding model for a ternary system was proposed so as to precisely calculate the binding parameters. The results demonstrated that one drug decreased the binding affinity of another drug with HSA, resulting in the increasing free drug concentration at the action sites. CD studies indicated that there was an alteration in HSA secondary structure due to the binding of EGCG and FU. It can be concluded that the combination of EGCG with FU may enhance anticancer efficacy. This finding may provide a theoretical basis for clinical treatments.

  2. Changes in solvation during DNA binding and cleavage are critical to altered specificity of the EcoRI endonuclease

    PubMed Central

    Robinson, Clifford R.; Sligar, Stephen G.

    1998-01-01

    Restriction endonucleases such as EcoRI bind and cleave DNA with great specificity and represent a paradigm for protein–DNA interactions and molecular recognition. Using osmotic pressure to induce water release, we demonstrate the participation of bound waters in the sequence discrimination of substrate DNA by EcoRI. Changes in solvation can play a critical role in directing sequence-specific DNA binding by EcoRI and are also crucial in assisting site discrimination during catalysis. By measuring the volume change for complex formation, we show that at the cognate sequence (GAATTC) EcoRI binding releases about 70 fewer water molecules than binding at an alternate DNA sequence (TAATTC), which differs by a single base pair. EcoRI complexation with nonspecific DNA releases substantially less water than either of these specific complexes. In cognate substrates (GAATTC) kcat decreases as osmotic pressure is increased, indicating the binding of about 30 water molecules accompanies the cleavage reaction. For the alternate substrate (TAATTC), release of about 40 water molecules accompanies the reaction, indicated by a dramatic acceleration of the rate when osmotic pressure is raised. These large differences in solvation effects demonstrate that water molecules can be key players in the molecular recognition process during both association and catalytic phases of the EcoRI reaction, acting to change the specificity of the enzyme. For both the protein–DNA complex and the transition state, there may be substantial conformational differences between cognate and alternate sites, accompanied by significant alterations in hydration and solvent accessibility. PMID:9482860

  3. Interaction between holo transferrin and HSA-PPIX complex in the presence of lomefloxacin: An evaluation of PPIX aggregation in protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Sattar, Zohreh; Iranfar, Hediye; Asoodeh, Ahmad; Saberi, Mohammad Reza; Mazhari, Mahboobeh; Chamani, Jamshidkhan

    2012-11-01

    Human serum albumin (HSA) and holo transferrin (TF) are two serum carrier proteins that are able to interact with each other, thereby altering their binding behavior toward their ligands. During the course of this study, the interaction between HSA-PPIX and TF, in the presence and absence of lomefloxacin (LMF), was for the first time investigated using different spectroscopic and molecular modeling techniques. Fluorescence spectroscopy experiments were performed in order to study conformational changes of proteins. The RLS technique was utilized to investigate the effect of LMF on J-aggregation of PPIX, which is the first report of its kind. Our findings present clear-cut evidence for the alteration of interactions between HSA and TF in the presence of PPIX and changes in drug-binding to HSA and HSA-PPIX complex upon interaction with TF. Moreover, molecular modeling studies suggested that the binding site for LMF became switched in the presence of PPIX, and that LMF bound to the site IIA of HSA. The obtained results should give new insight into research in this field and may cast some light on the dynamics of drugs in biological systems.

  4. L1198F Mutation Resensitizes Crizotinib to ALK by Altering the Conformation of Inhibitor and ATP Binding Sites

    PubMed Central

    Li, Jian; Sun, Rong; Wu, Yuehong; Song, Mingzhu; Li, Jia; Yang, Qianye; Chen, Xiaoyi; Bao, Jinku; Zhao, Qi

    2017-01-01

    The efficacy of anaplastic lymphoma kinase (ALK) positive non-small-cell lung cancer (NSCLC) treatment with small molecule inhibitors is greatly challenged by acquired resistance. A recent study reported the newest generation inhibitor resistant mutation L1198F led to the resensitization to crizotinib, which is the first Food and Drug Administration (FDA) approved drug for the treatment of ALK-positive NSCLC. It is of great importance to understand how this extremely rare event occurred for the purpose of overcoming the acquired resistance of such inhibitors. In this study, we exploited molecular dynamics (MD) simulation to dissect the molecular mechanisms. Our MD results revealed that L1198F mutation of ALK resulted in the conformational change at the inhibitor site and altered the binding affinity of ALK to crizotinib and lorlatinib. L1198F mutation also affected the autoactivation of ALK as supported by the identification of His1124 and Tyr1278 as critical amino acids involved in ATP binding and phosphorylation. Our findings are valuable for designing more specific and potent inhibitors for the treatment of ALK-positive NSCLC and other types of cancer. PMID:28245558

  5. Structure of Simian Immunodeficiency Virus Envelope Spikes Bound with CD4 and Monoclonal Antibody 36D5.

    PubMed

    Hu, Guiqing; Liu, Jun; Roux, Kenneth H; Taylor, Kenneth A

    2017-08-15

    The human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) envelope spike (Env) mediates viral entry into host cells. The V3 loop of the gp120 component of the Env trimer contributes to the coreceptor binding site and is a target for neutralizing antibodies. We used cryo-electron tomography to visualize the binding of CD4 and the V3 loop monoclonal antibody (MAb) 36D5 to gp120 of the SIV Env trimer. Our results show that 36D5 binds gp120 at the base of the V3 loop and suggest that the antibody exerts its neutralization effect by blocking the coreceptor binding site. The antibody does this without altering the dynamics of the spike motion between closed and open states when CD4 is bound. The interaction between 36D5 and SIV gp120 is similar to the interaction between some broadly neutralizing anti-V3 loop antibodies and HIV-1 gp120. Two conformations of gp120 bound with CD4 are revealed, suggesting an intrinsic dynamic nature of the liganded Env trimer. CD4 binding substantially increases the binding of 36D5 to gp120 in the intact Env trimer, consistent with CD4-induced changes in the conformation of gp120 and the antibody binding site. Binding by MAb 36D5 does not substantially alter the proportions of the two CD4-bound conformations. The position of MAb 36D5 at the V3 base changes little between conformations, indicating that the V3 base serves as a pivot point during the transition between these two states. IMPORTANCE Glycoprotein spikes on the surfaces of SIV and HIV are the sole targets available to the immune system for antibody neutralization. Spikes evade the immune system by a combination of a thick layer of polysaccharide on the surface (the glycan shield) and movement between spike domains that masks the epitope conformation. Using SIV virions whose spikes were "decorated" with the primary cellular receptor (CD4) and an antibody (36D5) at part of the coreceptor binding site, we visualized multiple conformations trapped by the rapid freezing step, which were separated using statistical analysis. Our results show that the CD4-induced conformational dynamics of the spike enhances binding of the antibody. Copyright © 2017 American Society for Microbiology.

  6. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies.

    PubMed

    Signorelli, Sara; Santini, Simona; Yamada, Tohru; Bizzarri, Anna Rita; Beattie, Craig W; Cannistraro, Salvatore

    2017-04-01

    Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Conformational changes in the M2 muscarinic receptor induced by membrane voltage and agonist binding

    PubMed Central

    Navarro-Polanco, Ricardo A; Galindo, Eloy G Moreno; Ferrer-Villada, Tania; Arias, Marcelo; Rigby, J Ryan; Sánchez-Chapula, José A; Tristani-Firouzi, Martin

    2011-01-01

    Abstract The ability to sense transmembrane voltage is a central feature of many membrane proteins, most notably voltage-gated ion channels. Gating current measurements provide valuable information on protein conformational changes induced by voltage. The recent observation that muscarinic G-protein-coupled receptors (GPCRs) generate gating currents confirms their intrinsic capacity to sense the membrane electrical field. Here, we studied the effect of voltage on agonist activation of M2 muscarinic receptors (M2R) in atrial myocytes and how agonist binding alters M2R gating currents. Membrane depolarization decreased the potency of acetylcholine (ACh), but increased the potency and efficacy of pilocarpine (Pilo), as measured by ACh-activated K+ current, IKACh. Voltage-induced conformational changes in M2R were modified in a ligand-selective manner: ACh reduced gating charge displacement while Pilo increased the amount of charge displaced. Thus, these ligands manifest opposite voltage-dependent IKACh modulation and exert opposite effects on M2R gating charge displacement. Finally, mutations in the putative ligand binding site perturbed the movement of the M2R voltage sensor. Our data suggest that changes in voltage induce conformational changes in the ligand binding site that alter the agonist–receptor interaction in a ligand-dependent manner. Voltage-dependent GPCR modulation has important implications for cellular signalling in excitable tissues. Gating current measurement allows for the tracking of subtle conformational changes in the receptor that accompany agonist binding and changes in membrane voltage. PMID:21282291

  8. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein.

    PubMed

    Velmurugu, Yogambigai; Vivas, Paula; Connolly, Mitchell; Kuznetsov, Serguei V; Rice, Phoebe A; Ansari, Anjum

    2018-02-28

    The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1-10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.

  9. Investigation into the interaction of losartan with human serum albumin and glycated human serum albumin by spectroscopic and molecular dynamics simulation techniques: A comparison study.

    PubMed

    Moeinpour, Farid; Mohseni-Shahri, Fatemeh S; Malaekeh-Nikouei, Bizhan; Nassirli, Hooriyeh

    2016-09-25

    The interaction between losartan and human serum albumin (HSA), as well as its glycated form (gHSA) was studied by multiple spectroscopic techniques and molecular dynamics simulation under physiological conditions. The binding information, including the binding constants, effective quenching constant and number of binding sites showed that the binding partiality of losartan to HSA was higher than to gHSA. The findings of three-dimensional fluorescence spectra demonstrated that the binding of losartan to HSA and gHSA would alter the protein conformation. The distances between Trp residue and the binding sites of the drug were evaluated on the basis of the Förster theory, and it was indicated that non-radiative energy transfer from HSA and gHSA to the losartan happened with a high possibility. According to molecular dynamics simulation, the protein secondary and tertiary structure changes were compared in HSA and gHSA for clarifying the obtained results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Nuclear proteins that bind the human gamma-globin gene promoter: alterations in binding produced by point mutations associated with hereditary persistence of fetal hemoglobin.

    PubMed Central

    Gumucio, D L; Rood, K L; Gray, T A; Riordan, M F; Sartor, C I; Collins, F S

    1988-01-01

    The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation. Images PMID:2468996

  11. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing.

    PubMed

    Patil, Rohan; Das, Suranjana; Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K

    2010-08-16

    Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy.

  12. Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing

    PubMed Central

    Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K.

    2010-01-01

    Background Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. Methodology In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. Conclusions The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy. PMID:20808434

  13. Muscarinic and alpha 1-adrenergic receptor binding characteristics of saw palmetto extract in rat lower urinary tract.

    PubMed

    Suzuki, Mayumi; Oki, Tomomi; Sugiyama, Tomomi; Umegaki, Keizo; Uchida, Shinya; Yamada, Shizuo

    2007-06-01

    To elucidate the in vitro and ex vivo effects of saw palmetto extract (SPE) on autonomic receptors in the rat lower urinary tract. The in vitro binding affinities for alpha 1-adrenergic, muscarinic, and purinergic receptors in the rat prostate and bladder were measured by radioligand binding assays. Rats received vehicle or SPE (0.6 to 60 mg/kg/day) orally for 4 weeks, and alpha 1-adrenergic and muscarinic receptor binding in tissues of these rats were measured. Saw palmetto extract inhibited specific binding of [3H]prazosin and [N-methyl-3H]scopolamine methyl chloride (NMS) but not alpha, beta-methylene adenosine triphosphate [2,8-(3)H]tetrasodium salt in the rat prostate and bladder. The binding activity of SPE for muscarinic receptors was four times greater than that for alpha 1-adrenergic receptors. Scatchard analysis revealed that SPE significantly reduced the maximal number of binding sites (Bmax) for each radioligand in the prostate and bladder under in vitro condition. Repeated oral administration of SPE to rats brought about significant alteration in Bmax for prostatic [3H]prazosin binding and for bladder [3H]NMS binding. Such alteration by SPE was selective to the receptors in the lower urinary tract. Saw palmetto extract exerts significant binding activity on autonomic receptors in the lower urinary tract under in vitro and in vivo conditions.

  14. CsrA Represses Translation of sdiA, Which Encodes the N-Acylhomoserine-l-Lactone Receptor of Escherichia coli, by Binding Exclusively within the Coding Region of sdiA mRNA ▿ †

    PubMed Central

    Yakhnin, Helen; Baker, Carol S.; Berezin, Igor; Evangelista, Michael A.; Rassin, Alisa; Romeo, Tony; Babitzke, Paul

    2011-01-01

    The RNA binding protein CsrA is the central component of a conserved global regulatory system that activates or represses gene expression posttranscriptionally. In every known example of CsrA-mediated translational control, CsrA binds to the 5′ untranslated region of target transcripts, thereby repressing translation initiation and/or altering the stability of the RNA. Furthermore, with few exceptions, repression by CsrA involves binding directly to the Shine-Dalgarno sequence and blocking ribosome binding. sdiA encodes the quorum-sensing receptor for N-acyl-l-homoserine lactone in Escherichia coli. Because sdiA indirectly stimulates transcription of csrB, which encodes a small RNA (sRNA) antagonist of CsrA, we further explored the relationship between sdiA and the Csr system. Primer extension analysis revealed four putative transcription start sites within 85 nucleotides of the sdiA initiation codon. Potential σ70-dependent promoters were identified for each of these primer extension products. In addition, two CsrA binding sites were predicted in the initially translated region of sdiA. Expression of chromosomally integrated sdiA′-′lacZ translational fusions containing the entire promoter and CsrA binding site regions indicates that CsrA represses sdiA expression. The results from gel shift and footprint studies demonstrate that tight binding of CsrA requires both of these sites. Furthermore, the results from toeprint and in vitro translation experiments indicate that CsrA represses translation of sdiA by directly competing with 30S ribosomal subunit binding. Thus, this represents the first example of CsrA preventing translation by interacting solely within the coding region of an mRNA target. PMID:21908661

  15. Differential Effects of Structural Modifications on the Competition of Chalcones for the PIB Amyloid Imaging Ligand-Binding Site in Alzheimer's Disease Brain and Synthetic Aβ Fibrils.

    PubMed

    Fosso, Marina Y; McCarty, Katie; Head, Elizabeth; Garneau-Tsodikova, Sylvie; LeVine, Harry

    2016-02-17

    Alzheimer's disease (AD) is a complex brain disorder that still remains ill defined. In order to understand the significance of binding of different clinical in vivo imaging ligands to the polymorphic pathological features of AD brain, the molecular characteristics of the ligand interacting with its specific binding site need to be defined. Herein, we observed that tritiated Pittsburgh Compound B ((3)H-PIB) can be displaced from synthetic Aβ(1-40) and Aβ(1-42) fibrils and from the PIB binding complex purified from human AD brain (ADPBC) by molecules containing a chalcone structural scaffold. We evaluated how substitution on the chalcone scaffold alters its ability to displace (3)H-PIB from the synthetic fibrils and ADPBC. By comparing unsubstituted core chalcone scaffolds along with the effects of bromine and methyl substitution at various positions, we found that attaching a hydroxyl group on the ring adjacent to the carbonyl group (ring I) of the parent member of the chalcone family generally improved the binding affinity of chalcones toward ADPBC and synthetic fibrils F40 and F42. Furthermore, any substitution on ring I at the ortho-position of the carbonyl group greatly decreases the binding affinity of the chalcones, potentially as a result of steric hindrance. Together with the finding that neither our chalcones nor PIB interact with the Congo Red/X-34 binding site, these molecules provide new tools to selectively probe the PIB binding site that is found in human AD brain, but not in brains of AD pathology animal models. Our chalcone derivatives also provide important information on the effects of fibril polymorphism on ligand binding.

  16. Binding of vitamin A with milk α- and β-caseins.

    PubMed

    Bourassa, P; N'soukpoé-Kossi, C N; Tajmir-Riahi, H A

    2013-05-01

    The binding sites of retinol and retinoic acid with milk α- and β-caseins were determined, using constant protein concentration and various retinoid contents. FTIR, UV-visible and fluorescence spectroscopic methods as well as molecular modelling were used to analyse retinol and retinoic acid binding sites, the binding constant and the effect of retinoid complexation on the stability and conformation of caseins. Structural analysis showed that retinoids bind caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(retinol-)(α)(-caseins)=1.21 (±0.4)×10(5) M(-1) and K(retinol-)(β)(-caseins)=1.11 (±0.5)×10(5) M(-1) and K(retinoic acid-)(α)(-caseins)=6.2 (±0.6)×10(4) M(-1) and K(retinoic acid-)(β)(-caseins)=6.3 (±0.6)×10(4) M(-1). The number of bound retinol molecules per protein (n) was 1.5 (±0.1) for α-casein and 1.0 (±0.1) for β-casein, while 1 molecule of retinoic acid was bound in the α- and β-casein complexes. Molecular modelling showed different binding sites for retinol and retinoic acid on α- and β-caseins with more stable complexes formed with α-casein. Retinoid-casein complexation induced minor alterations of protein conformation. Caseins might act as carriers for transportation of retinoids to target molecules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. NF-Y, a CCAAT box-binding protein, is one of the trans-acting factors necessary for the response of the murine ERp72 gene to protein traffic.

    PubMed

    Marcus, N; Green, M

    1997-09-01

    The accumulation of incompletely assembled immunoglobulin mu heavy chain in transfected COS cells stimulates the cellular response to protein traffic that results in the increased transcription and elevated synthesis of several ER chaperones, including ERP72, a member of the protein disulfide isomerase family of molecular chaperones. The ERp72 promoter contains an 82 bp ER protein traffic response element (ERPTRE) that is sufficient to mediate this response. Previously, it had been shown that the alteration of a putative AP-2 site and a CCAAT and inverted CCAAT site within the ERPTRE significantly decreased the response of ERp72 promoter to mu chain accumulation. We have extended these findings by demonstrating a role for NF-Y and a potentially novel DNA-binding protein in the regulation of transcription from the ERp72 promoter. The fact that NF-Y binding to the ERPTRE is observed in extracts from both control cells and cells in which the response to protein traffic has been activated indicates that the binding of NF-Y, while necessary, is not sufficient to account for the response. Each of the two CCAAT sites in the ERPTRE can bind NF-Y independently, but both sites must be intact for full ERPTRE function. A second protein can bind to the ERPTRE independently of NF-Y and at a site overlapping or close to the 3' end of the reverse CCAAT site. It is possible that interactions between NF-Y, this protein and perhaps other factors are responsible for the regulation of the protein traffic response.

  18. Transition States and transition state analogue interactions with enzymes.

    PubMed

    Schramm, Vern L

    2015-04-21

    Enzymatic transition states have lifetimes of a few femtoseconds (fs). Computational analysis of enzyme motions leading to transition state formation suggests that local catalytic site motions on the fs time scale provide the mechanism to locate transition states. An experimental test of protein fs motion and its relation to transition state formation can be provided by isotopically heavy proteins. Heavy enzymes have predictable mass-altered bond vibration states without altered electrostatic properties, according to the Born-Oppenheimer approximation. On-enzyme chemistry is slowed in most heavy proteins, consistent with altered protein bond frequencies slowing the search for the transition state. In other heavy enzymes, structural changes involved in reactant binding and release are also influenced. Slow protein motions associated with substrate binding and catalytic site preorganization are essential to allow the subsequent fs motions to locate the transition state and to facilitate the efficient release of products. In the catalytically competent geometry, local groups move in stochastic atomic motion on the fs time scale, within transition state-accessible conformations created by slower protein motions. The fs time scale for the transition state motions does not permit thermodynamic equilibrium between the transition state and stable enzyme states. Isotopically heavy enzymes provide a diagnostic tool for fast coupled protein motions to transition state formation and mass-dependent conformational changes. The binding of transition state analogue inhibitors is the opposite in catalytic time scale to formation of the transition state but is related by similar geometries of the enzyme-transition state and enzyme-inhibitor interactions. While enzymatic transition states have lifetimes as short as 10(-15) s, transition state analogues can bind tightly to enzymes with release rates greater than 10(3) s. Tight-binding transition state analogues stabilize the rare but evolved enzymatic geometry to form the transition state. Evolution to efficient catalysis optimized this geometry and its stabilization by a transition state mimic results in tight binding. Release rates of transition state analogues are orders of magnitude slower than product release in normal catalytic function. During catalysis, product release is facilitated by altered chemistry. Compared to the weak associations found in Michaelis complexes, transition state analogues involve strong interactions related to those in the transition state. Optimum binding of transition state analogues occurs when the complex retains the system motions intrinsic to transition state formation. Conserved dynamic motion retains the entropic components of inhibitor complexes, improving the thermodynamics of analogue binding.

  19. Studies on the cellular localization of spinal cord substance P receptors.

    PubMed

    Helke, C J; Charlton, C G; Wiley, R G

    1986-10-01

    Substance P-immunoreactivity and specific substance P binding sites are present in the spinal cord. Receptor autoradiography showed the discrete localization of substance P binding sites in both sensory and motor regions of the spinal cord and functional studies suggested an important role for substance P receptor activation in autonomic outflow, nociception, respiration and somatic motor function. In the current studies, we investigated the cellular localization of substance P binding sites in rat spinal cord using light microscopic autoradiography combined with several lesioning techniques. Unilateral injections of the suicide transport agent, ricin, into the superior cervical ganglion reduced substance P binding and cholinesterase-stained preganglionic sympathetic neurons in the intermediolateral cell column. However, unilateral electrolytic lesions of ventral medullary substance P neurons which project to the intermediolateral cell column did not alter the density of substance P binding in the intermediolateral cell column. Likewise, 6-hydroxydopamine and 5,7-dihydroxytryptamine, which destroy noradrenergic and serotonergic nerve terminals, did not reduce the substance P binding in the intermediolateral cell column. It appears, therefore, that the substance P binding sites are located postsynaptically on preganglionic sympathetic neurons rather than presynaptically on substance P-immunoreactive processes (i.e. as autoreceptors) or on monoamine nerve terminals. Unilateral injections of ricin into the phrenic nerve resulted in the unilateral destruction of phrenic motor neurons in the cervical spinal cord and caused a marked reduction in the substance P binding in the nucleus. Likewise, sciatic nerve injections of ricin caused a loss of associated motor neurons in the lateral portion of the ventral horn of the lumbar spinal cord and a reduction in the substance P binding. Sciatic nerve injections of ricin also destroyed afferent nerves of the associated dorsal root ganglia and increased the density of substance P binding in the dorsal horn. Capsaicin, which destroys small diameter primary sensory neurons, similarly increased the substance P binding in the dorsal horn. These studies show that the cellular localization of substance P binding sites can be determined by analysis of changes in substance P binding to discrete regions of spinal cord after selective lesions of specific groups of neurons. The data show the presence of substance P binding sites on preganglionic sympathetic neurons in the intermediolateral cell column and on somatic motor neurons in the ventral horn, including the phrenic motor nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)

  20. Drugs That Target Dynamic Microtubules: A New Molecular Perspective

    PubMed Central

    Stanton, Richard A.; Gernert, Kim M.; Nettles, James H.; Aneja, Ritu

    2011-01-01

    Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research. In this study, we review the effects of microtubule-binding chemotherapeutic agents from a new perspective, considering how their mode of binding induces conformational changes and alters biological function relative to the molecular vectors of microtubule assembly or disassembly. These “biological vectors” can thus be used as a spatiotemporal context to describe molecular mechanisms by which microtubule-targeting drugs work. PMID:21381049

  1. Multiple opioid receptors in endotoxic shock: evidence for delta involvement and mu-delta interactions in vivo.

    PubMed Central

    D'Amato, R; Holaday, J W

    1984-01-01

    The use of selective delta and mu opioid antagonists has provided evidence that delta opioid receptors within the brain mediate the endogenous opioid component of endotoxic shock hypotension. The selectivity of these delta and mu antagonists was demonstrated by their differing effects upon morphine analgesia and endotoxic hypotension. The mu antagonist beta-funaltrexamine, at doses that antagonized morphine analgesia, failed to alter shock, whereas the delta antagonist M 154,129: [N,N-bisallyl-Tyr-Gly-Gly-psi-(CH2S)-Phe-Leu-OH] (ICI) reversed shock at doses that failed to block morphine analgesia. Therefore, selective delta antagonists may have therapeutic value in reversing circulatory shock without altering the analgesic actions of endogenous or exogenous opioids. Additional data revealed that prior occupancy of mu binding sites by irreversible opioid antagonists may allosterically attenuate the actions of antagonists with selectivity for delta binding sites. For endogenous opioid systems, this observation provides an opportunity to link in vivo physiological responses with receptor-level biochemical interactions. PMID:6326151

  2. Interaction of anti-cancer drug-cisplatin with major proteinase inhibitor-alpha-2-macroglobulin: Biophysical and thermodynamic analysis.

    PubMed

    Zia, Mohammad Khalid; Siddiqui, Tooba; Ali, Syed Saqib; Ahsan, Haseeb; Khan, Fahim Halim

    2018-05-09

    Alpha-2-macroglobulin is a multifunctional, highly abundant, plasma protein which reacts with a wide variety of molecules and drugs including cisplatin. Cisplatin is commonly used anticancer drug widely used for treatment of testicular, bladder, ovarian, head and neck, lung and cervical cancers. This study is designed to examine the interaction of cisplatin with human alpha-2-macroglobulin through various biophysical techniques and drug binding through molecular modeling. Cisplatin alters the function of alpha-2-macroglobulin and the thiolesters are most likely the reactive sites for cisplatin. Our result suggests that cisplatin decreases the antiproteolytic potential and causes structural and functional change in human alpha-2-macroglobulin as evident by absorption and fluorescence spectroscopy. Change in secondary structure of alpha-2-macroglobulin was confirmed by CD and FTIR. Thermodynamics parameters such as entropy (ΔS), enthalpy (ΔH) and Gibb's free energy changes (ΔG) along with number of binding sites (N) of alpha-2-macroglobulin-cisplatin binding in solutions were determined by isothermal titration calorimetry (ITC). It was found that binding of cisplatin with alpha-2-macroglobulin was exothermic in nature. The interaction of drug with alpha-2-macroglobulin in the plasma could lead to structural alterations in the conformational status of alpha-2-macroglobulin resulting in its functional inactivation. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes.

    PubMed

    Ali, Ramez M; Al Kury, Lina T; Yang, Keun-Hang Susan; Qureshi, Anwar; Rajesh, Mohanraj; Galadari, Sehamuddin; Shuba, Yaroslav M; Howarth, Frank Christopher; Oz, Murat

    2015-04-01

    Cannabidiol (CBD), a major nonpsychotropic cannabinoid found in Cannabis plant, has been shown to influence cardiovascular functions under various physiological and pathological conditions. In the present study, the effects of CBD on contractility and electrophysiological properties of rat ventricular myocytes were investigated. Video edge detection was used to measure myocyte shortening. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator fura-2 AM. Whole-cell patch clamp was used to measure action potential and Ca(2+) currents. Radioligand binding was employed to study pharmacological characteristics of CBD binding. CBD (1μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca(2+) transients. However, the amplitudes of caffeine-evoked Ca(2+) transients and the rate of recovery of electrically evoked Ca(2+) transients following caffeine application were not altered. CBD (1μM) significantly decreased the duration of APs. Further studies on L-type Ca(2+) channels indicated that CBD inhibits these channels with IC50 of 0.1μM in a voltage-independent manner. Radioligand studies indicated that the specific binding of [(3)H]Isradipine, was not altered significantly by CBD. The results suggest that CBD depresses myocyte contractility by suppressing L-type Ca(2+) channels at a site different than dihydropyridine binding site and inhibits excitation-contraction coupling in cardiomyocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew, E.; Parfitt, A.G.; Sugden, D.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects ofmore » diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.« less

  5. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avianmore » receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.« less

  6. Characterization of the ligand-binding site of the transferrin receptor in Trypanosoma brucei demonstrates a structural relationship with the N-terminal domain of the variant surface glycoprotein.

    PubMed

    Salmon, D; Hanocq-Quertier, J; Paturiaux-Hanocq, F; Pays, A; Tebabi, P; Nolan, D P; Michel, A; Pays, E

    1997-12-15

    The Trypanosoma brucei transferrin (Tf) receptor is a heterodimer encoded by ESAG7 and ESAG6, two genes contained in the different polycistronic transcription units of the variant surface glycoprotein (VSG) gene. The sequence of ESAG7/6 differs slightly between different units, so that receptors with different affinities for Tf are expressed alternatively following transcriptional switching of VSG expression sites during antigenic variation of the parasite. Based on the sequence homology between pESAG7/6 and the N-terminal domain of VSGs, it can be predicted that the four blocks containing the major sequence differences between pESAG7 and pESAG6 form surface-exposed loops and generate the ligand-binding site. The exchange of a few amino acids in this region between pESAG6s encoded by different VSG units greatly increased the affinity for bovine Tf. Similar changes in other regions were ineffective, while mutations predicted to alter the VSG-like structure abolished the binding. Chimeric proteins containing the N-terminal dimerization domain of VSG and the C-terminal half of either pESAG7 or pESAG6, which contains the ligand-binding domain, can form heterodimers that bind Tf. Taken together, these data provided evidence that the T.brucei Tf receptor is structurally related to the N-terminal domain of the VSG and that the ligand-binding site corresponds to the exposed surface loops of the protein.

  7. Point mutation increases a form of the NK1 receptor with high affinity for neurokinin A and B and septide

    PubMed Central

    Ciucci, Alessandra; Palma, Carla; Manzini, Stefano; Werge, Thomas M

    1998-01-01

    The binding modalities of substance P and neurokinin A on the wild type and Gly166 to-Cys mutant NK1 receptors expressed on CHO cells were investigated in homologous and heterologous binding experiments using both radiolabelled substance P and neurokinin A.On the wild type NK1 receptor NKA displaces radiolabelled substance P with very low apparent affinity, despite its high-affinity binding constant (determined in homologous binding experiments). The Gly166 to-Cys substitution in the NK1 tachykinin receptor greatly enhances the apparent affinity of neurokinin A in competition for radiolabelled substance P, but it does not change the binding constant of neurokinin A. The mutation, thereby, eliminates the discrepancy between the low apparent affinity and the high binding constant of neurokinin A.On the wild type receptor the binding capacity of neurokinin A is significantly smaller than that of substance P. In contrast, the two tachykinins bind to approximately the same number of sites on the mutant receptor.Simultaneous mass action law analysis of binding data in which multiple radioligands were employed in parallel demonstrated that a one-site model was unable to accommodate all the experimental data, whereas a two-site model provided a dramatically better description.These two receptor-sites display equally high affinity for substance P, while neurokinin A strongly discriminates between a high and a low affinity component. The binding affinities of neurokinin A are not affected by the mutation, which instead specifically alters the distribution between receptor sites in favour of a high affinity neurokinin A binding form.The low apparent affinity and binding capacity of neurokinin A on the wild type receptor results from neurokinin A binding with high affinity only to a fraction of the sites labelled by substance P. The mutation increases the proportion of this site, and consequently enhances the apparent affinity and binding capacity of neurokinin A.The binding modalities of septide-like ligands (i.e. neurokinin B, SP(6-11), SP-methyl ester) are affected similarly to neurokinin A and are better resolved into two sites. The mutation leaves the affinity of these ligands for the two receptor forms unchanged, but increases the fraction of high-affinity sites. On the other hand, the binding of non-peptide and peptide antagonists (SR140.333 and FK888) behaved similarly to substance P with a single high affinity site that is unaffected by the mutation.These findings may suggest that the NK1 receptor exists in two different forms with similar affinity for substance P and NK1 antagonists, but with a high and a low affinity for neurokinin A and septide-like ligands. Hence, the Gly166 in the NK1 receptor would seem to control the distribution between a pan-reactive form and a substance P-selective form of the receptor. PMID:9786514

  8. Residues in the H+ Translocation Site Define the pKa for Sugar Binding to LacY†

    PubMed Central

    Smirnova, Irina; Kasho, Vladimir; Sugihara, Junichi; Choe, Jun-Yong; Kaback, H. Ronald

    2009-01-01

    A remarkably high pKa of approximately 10.5 has been determined for sugar-binding affinity to the lactose permease of Escherichia coli (LacY), indicating that, under physiological conditions, substrate binds to fully protonated LacY. We have now systematically tested site-directed replacements for the residues involved in sugar binding, as well as H+ translocation and coupling, in order to determine which residues may be responsible for this alkaline pKa. Mutations in the sugar-binding site (Glu126, Trp151, Glu269) markedly decrease affinity for sugar but do not alter the pKa for binding. In contrast, replacements for residues involved in H+ translocation (Arg302, Tyr236, His322, Asp240, Glu325, Lys319) exhibit pKa values for sugar binding that are either shifted toward neutral pH or independent of pH. Values for the apparent dissociation constant for sugar binding (Kdapp) increase greatly for all mutants except neutral replacements for Glu325 or Lys319, which are characterized by remarkably high affinity sugar binding (i.e., low Kdapp) from pH 5.5 to pH 11. The pH dependence of the on- and off-rate constants for sugar binding measured directly by stopped-flow fluorometry implicates koff as a major factor for the affinity change at alkaline pH and confirms the effects of pH on Kdapp inferred from steady-state fluorometry. These results indicate that the high pKa for sugar binding by wild-type LacY cannot be ascribed to any single amino acid residue but appears to reside within a complex of residues involved in H+ translocation. There is structural evidence for water bound in this complex, and the water could be the site of protonation responsible for the pH dependence of sugar binding. PMID:19689129

  9. The “gating” residues Ile199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition

    PubMed Central

    Milczek, Erika M.; Binda, Claudia; Rovida, Stefano; Mattevi, Andrea; Edmondson, Dale E.

    2011-01-01

    Summary The major structural difference between human monoamine oxidases A (MAO A) and B (MAO B) is that MAO A has a monopartite substrate cavity of ~550 Å3 volume and MAO B contains a dipartite cavity structure with volumes of ~290 Å3 (entrance cavity) and ~400 Å3 (substrate cavity). Ile199 and Tyr326 side chains separate these two cavities in MAO B. To probe the function of these gating residues, Ile199Ala and Ile199Ala Tyr326Ala mutant forms of MAO B were investigated. Structural data on the Ile199Ala MAO B mutant show no alterations in active site geometries compared to WT enzyme while the Ile199Ala-Tyr326Ala MAO B mutant exhibits alterations in residues 100–103 which are part of the loop gating the entrance to the active site. Both mutant enzymes exhibit catalytic properties with increased amine KM but unaltered kcat values. The altered KM values on mutation are attributed to the influence of the cavity structure in the binding and subsequent deprotonation of the amine substrate. Both mutant enzymes exhibit weaker binding affinities relative to WT enzyme for small reversible inhibitors. Ile199Ala MAO B exhibits an increase in binding affinity for reversible MAO B specific inhibitors which bridge both cavities. The Ile199Ala-Tyr326Ala double mutant exhibits inhibitor binding properties more similar to those of MAO A than to MAO B. These results demonstrate the bipartite cavity structure in MAO B plays an important role in substrate and inhibitor recognition to distinguish its specificities from those of MAO A and provides insights into specific reversible inhibitor design for these membrane-bound enzymes. PMID:21978362

  10. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction.

    PubMed

    Bond, C; LaForge, K S; Tian, M; Melia, D; Zhang, S; Borg, L; Gong, J; Schluger, J; Strong, J A; Leal, S M; Tischfield, J A; Kreek, M J; Yu, L

    1998-08-04

    Opioid drugs play important roles in the clinical management of pain, as well as in the development and treatment of drug abuse. The mu opioid receptor is the primary site of action for the most commonly used opioids, including morphine, heroin, fentanyl, and methadone. By sequencing DNA from 113 former heroin addicts in methadone maintenance and 39 individuals with no history of drug or alcohol abuse or dependence, we have identified five different single-nucleotide polymorphisms (SNPs) in the coding region of the mu opioid receptor gene. The most prevalent SNP is a nucleotide substitution at position 118 (A118G), predicting an amino acid change at a putative N-glycosylation site. This SNP displays an allelic frequency of approximately 10% in our study population. Significant differences in allele distribution were observed among ethnic groups studied. The variant receptor resulting from the A118G SNP did not show altered binding affinities for most opioid peptides and alkaloids tested. However, the A118G variant receptor binds beta-endorphin, an endogenous opioid that activates the mu opioid receptor, approximately three times more tightly than the most common allelic form of the receptor. Furthermore, beta-endorphin is approximately three times more potent at the A118G variant receptor than at the most common allelic form in agonist-induced activation of G protein-coupled potassium channels. These results show that SNPs in the mu opioid receptor gene can alter binding and signal transduction in the resulting receptor and may have implications for normal physiology, therapeutics, and vulnerability to develop or protection from diverse diseases including the addictive diseases.

  11. Computational investigation of cholesterol binding sites on mitochondrial VDAC.

    PubMed

    Weiser, Brian P; Salari, Reza; Eckenhoff, Roderic G; Brannigan, Grace

    2014-08-21

    The mitochondrial voltage-dependent anion channel (VDAC) allows passage of ions and metabolites across the mitochondrial outer membrane. Cholesterol binds mammalian VDAC, and we investigated the effects of binding to human VDAC1 with atomistic molecular dynamics simulations that totaled 1.4 μs. We docked cholesterol to specific sites on VDAC that were previously identified with NMR, and we tested the reliability of multiple docking results in each site with simulations. The most favorable binding modes were used to build a VDAC model with cholesterol occupying five unique sites, and during multiple 100 ns simulations, cholesterol stably and reproducibly remained bound to the protein. For comparison, VDAC was simulated in systems with identical components but with cholesterol initially unbound. The dynamics of loops that connect adjacent β-strands were most affected by bound cholesterol, with the averaged root-mean-square fluctuation (RMSF) of multiple residues altered by 20-30%. Cholesterol binding also stabilized charged residues inside the channel and localized the surrounding electrostatic potentials. Despite this, ion diffusion through the channel was not significantly affected by bound cholesterol, as evidenced by multi-ion potential of mean force measurements. Although we observed modest effects of cholesterol on the open channel, our model will be particularly useful in experiments that investigate how cholesterol affects VDAC function under applied electrochemical forces and also how other ligands and proteins interact with the channel.

  12. Computational Investigation of Cholesterol Binding Sites on Mitochondrial VDAC

    PubMed Central

    2015-01-01

    The mitochondrial voltage-dependent anion channel (VDAC) allows passage of ions and metabolites across the mitochondrial outer membrane. Cholesterol binds mammalian VDAC, and we investigated the effects of binding to human VDAC1 with atomistic molecular dynamics simulations that totaled 1.4 μs. We docked cholesterol to specific sites on VDAC that were previously identified with NMR, and we tested the reliability of multiple docking results in each site with simulations. The most favorable binding modes were used to build a VDAC model with cholesterol occupying five unique sites, and during multiple 100 ns simulations, cholesterol stably and reproducibly remained bound to the protein. For comparison, VDAC was simulated in systems with identical components but with cholesterol initially unbound. The dynamics of loops that connect adjacent β-strands were most affected by bound cholesterol, with the averaged root-mean-square fluctuation (RMSF) of multiple residues altered by 20–30%. Cholesterol binding also stabilized charged residues inside the channel and localized the surrounding electrostatic potentials. Despite this, ion diffusion through the channel was not significantly affected by bound cholesterol, as evidenced by multi-ion potential of mean force measurements. Although we observed modest effects of cholesterol on the open channel, our model will be particularly useful in experiments that investigate how cholesterol affects VDAC function under applied electrochemical forces and also how other ligands and proteins interact with the channel. PMID:25080204

  13. Receptor Binding Sites for Substance P, but not Substance K or Neuromedin K, are Expressed in High Concentrations by Arterioles, Venules, and Lymph Nodules in Surgical Specimens Obtained from Patients with Ulcerative Colitis and Crohn Disease

    NASA Astrophysics Data System (ADS)

    Mantyh, Christopher R.; Gates, Troy S.; Zimmerman, Robert P.; Welton, Mark L.; Passaro, Edward P.; Vigna, Steven R.; Maggio, John E.; Kruger, Lawrence; Mantyh, Patrick W.

    1988-05-01

    Several lines of evidence indicate that tachykinin neuropeptides [substance P (SP), substance K (SK), and neuromedin K (NK)] play a role in regulating the inflammatory and immune responses. To test this hypothesis in a human inflammatory disease, quantitative receptor autoradiography was used to examine possible abnormalities in tachykinin binding sites in surgical specimens from patients with inflammatory bowel disease. Surgical specimens of colon were obtained from patients with ulcerative colitis (n = 4) and Crohn disease (n = 4). Normal tissue was obtained from uninvolved areas of extensive resections for carcinoma (n = 6). In all cases, specimens were obtained <5 min after removal to minimize influences associated with degradation artifacts and were processed for quantitative receptor autoradiography by using 125I-labeled Bolton--Hunter conjugates of NK, SK, and SP. In the normal colon a low concentration of SP receptor binding sites is expressed by submucosal arterioles and venules and a moderate concentration is expressed by the external circular muscle, whereas SK receptor binding sites are expressed in low concentrations by the external circular and longitudinal muscle. In contrast, specific NK binding sites were not observed in any area of the human colon. In colon tissue obtained from ulcerative colitis and Crohn disease patients, however, very high concentrations of SP receptor binding sites are expressed by arterioles and venules located in the submucosa, muscularis mucosa, external circular muscle, external longitudinal muscle, and serosa. In addition, very high concentrations of SP receptor binding sites are expressed within the germinal center of lymph nodules, whereas the concentrations of SP and SK binding sites expressed by the external muscle layers are not altered significantly. These results demonstrate that receptor binding sites for SP, but not SK or NK, are ectopically expressed in high concentrations (1000-2000 times normal) by cells involved in mediating inflammatory and immune responses. These data suggest that SP may be involved in the pathophysiology of inflammatory bowel disease and might provide some insight into the interaction between the nervous system and the regulation of inflammation and the immune response in human inflammatory disease.

  14. The elusive permeability barriers and binding sites for proflavine in Escherichia coli.

    PubMed

    Gravelle, M J; Mehta, B M; Kushner, D J

    1972-06-01

    Cells of proflavine-sensitive and -resistant Escherichia coli strains were altered in different ways, and the proflavine binding of the changed material was studied. Spheroplasts prepared from sensitive and resistant cells bound similar amounts of proflavine at saturation, whether or not they were osmotically protected by 10% sucrose. Intact cells bound approximately the same amounts of proflavine as spheroplasts. On addition of glucose, osmotically protected resistant but not sensitive spheroplasts released proflavine; unprotected spheroplasts did not release bound proflavine. Thus, osmotically protected membranes are not required for proflavine binding (a passive process) but are required for proflavine release (an active process). The presence of sucrose reduced proflavine binding by resistant cells. Adding glucose to cells in 20% sucrose did not cause a release of residual proflavine, though glucose caused a release of proflavine from cells suspended in 0 or 10% sucrose. On treatment of heated cells or ruptured spheroplasts with nucleases and Pronase, practically all nucleic acids were removed. Proflavine-binding ability of such preparations fell by only 30 to 50%. Washing heated cells with ethanol did not reduce their proflavine-binding ability. There appear to be important binding sites in cells aside from nucleic acids.

  15. The Elusive Permeability Barriers and Binding Sites for Proflavine in Escherichia coli

    PubMed Central

    Gravelle, M. Joan; Mehta, B. M.; Kushner, D. J.

    1972-01-01

    Cells of proflavine-sensitive and -resistant Escherichia coli strains were altered in different ways, and the proflavine binding of the changed material was studied. Spheroplasts prepared from sensitive and resistant cells bound similar amounts of proflavine at saturation, whether or not they were osmotically protected by 10% sucrose. Intact cells bound approximately the same amounts of proflavine as spheroplasts. On addition of glucose, osmotically protected resistant but not sensitive spheroplasts released proflavine; unprotected spheroplasts did not release bound proflavine. Thus, osmotically protected membranes are not required for proflavine binding (a passive process) but are required for proflavine release (an active process). The presence of sucrose reduced proflavine binding by resistant cells. Adding glucose to cells in 20% sucrose did not cause a release of residual proflavine, though glucose caused a release of proflavine from cells suspended in 0 or 10% sucrose. On treatment of heated cells or ruptured spheroplasts with nucleases and Pronase, practically all nucleic acids were removed. Proflavine-binding ability of such preparations fell by only 30 to 50%. Washing heated cells with ethanol did not reduce their proflavine-binding ability. There appear to be important binding sites in cells aside from nucleic acids. PMID:4618456

  16. The 1.3 A resolution structure of the RNA tridecamer r(GCGUUUGAAACGC): metal ion binding correlates with base unstacking and groove contraction.

    PubMed

    Timsit, Youri; Bombard, Sophie

    2007-12-01

    Metal ions play a key role in RNA folding and activity. Elucidating the rules that govern the binding of metal ions is therefore an essential step for better understanding the RNA functions. High-resolution data are a prerequisite for a detailed structural analysis of ion binding on RNA and, in particular, the observation of monovalent cations. Here, the high-resolution crystal structures of the tridecamer duplex r(GCGUUUGAAACGC) crystallized under different conditions provides new structural insights on ion binding on GAAA/UUU sequences that exhibit both unusual structural and functional properties in RNA. The present study extends the repertory of RNA ion binding sites in showing that the two first bases of UUU triplets constitute a specific site for sodium ions. A striking asymmetric pattern of metal ion binding in the two equivalent halves of the palindromic sequence demonstrates that sequence and its environment act together to bind metal ions. A highly ionophilic half that binds six metal ions allows, for the first time, the observation of a disodium cluster in RNA. The comparison of the equivalent halves of the duplex provides experimental evidences that ion binding correlates with structural alterations and groove contraction.

  17. High-resolution physical and functional mapping of the template adjacent DNA binding site in catalytically active telomerase.

    PubMed

    Romi, Erez; Baran, Nava; Gantman, Marina; Shmoish, Michael; Min, Bosun; Collins, Kathleen; Manor, Haim

    2007-05-22

    Telomerase is a cellular reverse transcriptase, which utilizes an integral RNA template to extend single-stranded telomeric DNA. We used site-specific photocrosslinking to map interactions between DNA primers and the catalytic protein subunit (tTERT) of Tetrahymena thermophila telomerase in functional enzyme complexes. Our assays reveal contact of the single-stranded DNA adjacent to the primer-template hybrid and tTERT residue W187 at the periphery of the N-terminal domain. This contact was detected in complexes with three different registers of template in the active site, suggesting that it is maintained throughout synthesis of a complete telomeric repeat. Substitution of nearby residue Q168, but not W187, alters the K(m) for primer elongation, implying that it plays a role in the DNA recognition. These findings are the first to directly demonstrate the physical location of TERT-DNA contacts in catalytically active telomerase and to identify amino acid determinants of DNA binding affinity. Our data also suggest a movement of the TERT active site relative to the template-adjacent single-stranded DNA binding site within a cycle of repeat synthesis.

  18. Regulation by divalent cations of /sup 3/H-baclofen binding to GABA/sub B/ sites in rat cerebellar membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Goto, M.; Fukuda, H.

    1983-02-21

    When investigating the effects of divalent cations (Mg/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, Ba/sup 2 +/, Mn/sup 2 +/ and Ni/sup 2 +/) on /sup 3/H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of /sup 3/H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn/sup 2 +/ approx. = Ni/sup 2 +/ > Mg/sup 2 +/ > Ca/sup 2 +/ > Sr/sup 2 +/ > Ba/sup 2 +/. Scatchard analysis of the binding datamore » revealed a single component of the binding sites in the presence of 2.5 mM MgCl/sub 2/, 2.5 mM CaCl/sub 2/ or 0.3 mM MnCl/sub 2/ whereas two components appeared in the presence of 2.5 mM MnCl/sub 2/ or 1 mM NiCl/sub 2/. In the former, divalent cations altered the apparent affinity (K/sub d/) without affecting density of the binding sites (B/sub max/). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg/sup 2 +/, Ca/sup 2 +/, Mn/sup 2 +/, and Ni/sup 2 +/) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABA/sub B/ sites, the affinity for (-), (+) and (+/-)baclofen, GABA and ..beta..-phenyl GABA increased 2 - 6 fold in the presence of 2.5 mM MnCl/sub 2/, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl/sub 2/ and 1.2 mM MgSO/sub 4/), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABA/sub B/ sites for its ligands is probably regulated by divalent cations, through common sites of action.« less

  19. Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses.

    PubMed

    Sun, Shisheng; Wang, Qinzhe; Zhao, Fei; Chen, Wentian; Li, Zheng

    2012-01-01

    Protein glycosylation alteration is typically employed by various viruses for escaping immune pressures from their hosts. Our previous work had shown that not only the increase of glycosylation sites (glycosites) numbers, but also glycosite migration might be involved in the evolution of human seasonal influenza H1N1 viruses. More importantly, glycosite migration was likely a more effectively alteration way for the host adaption of human influenza H1N1 viruses. In this study, we provided more bioinformatics and statistic evidences for further predicting the significant biological functions of glycosite migration in the host adaptation of human influenza H1N1 viruses, by employing homology modeling and in silico protein glycosylation of representative HA and NA proteins as well as amino acid variability analysis at antigenic sites of HA and NA. The results showed that glycosite migrations in human influenza viruses have at least five possible functions: to more effectively mask the antigenic sites, to more effectively protect the enzymatic cleavage sites of neuraminidase (NA), to stabilize the polymeric structures, to regulate the receptor binding and catalytic activities and to balance the binding activity of hemagglutinin (HA) with the release activity of NA. The information here can provide some constructive suggestions for the function research related to protein glycosylation of influenza viruses, although these predictions still need to be supported by experimental data.

  20. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation

    PubMed Central

    Varela Chavez, Carolina; Haustant, Georges Michel; Baron, Bruno; England, Patrick; Chenal, Alexandre; Pauillac, Serge; Blondel, Arnaud; Popoff, Michel-Robert

    2016-01-01

    Clostridium sordellii lethal toxin (TcsL) is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT) family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP)-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability. TcsL enters cells via receptor-mediated endocytosis and delivers the N-terminal glucosylating domain (TcsL-cat) into the cytosol. TcsL-cat was found to preferentially bind to phosphatidylserine (PS)-containing membranes and to increase the glucosylation of Rac anchored to the lipid membrane. We have previously reported that the N-terminal four helical bundle structure (1–93 domain) recognizes a broad range of lipids, but that TcsL-cat specifically binds to PS and phosphatidic acid. Here, we show using mutagenesis that the PS binding site is localized on the tip of the four-helix bundle which is rich in positively-charged amino acids. Residues Y14, V15, F17, and R18 on loop 1, between helices 1 and 2, in coordination with R68 from loop 3, between helices 3 and 4, form a pocket which accommodates L-serine. The functional PS-binding site is required for TcsL-cat binding to the plasma membrane and subsequent cytotoxicity. TcsL-cat binding to PS facilitates a high enzymatic activity towards membrane-anchored Ras by about three orders of magnitude as compared to Ras in solution. The PS-binding site is conserved in LCGTs, which likely retain a common mechanism of binding to the membrane for their full activity towards membrane-bound GTPases. PMID:27023605

  1. Designing Hydrolytic Zinc Metalloenzymes

    PubMed Central

    2015-01-01

    Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up. PMID:24506795

  2. p53 targets chromatin structure alteration to repress alpha-fetoprotein gene expression.

    PubMed

    Ogden, S K; Lee, K C; Wernke-Dollries, K; Stratton, S A; Aronow, B; Barton, M C

    2001-11-09

    Many of the functions ascribed to p53 tumor suppressor protein are mediated through transcription regulation. We have shown that p53 represses hepatic-specific alpha-fetoprotein (AFP) gene expression by direct interaction with a composite HNF-3/p53 DNA binding element. Using solid-phase, chromatin-assembled AFP DNA templates and analysis of chromatin structure and transcription in vitro, we find that p53 binds DNA and alters chromatin structure at the AFP core promoter to regulate transcription. Chromatin assembled in the presence of hepatoma extracts is activated for AFP transcription with an open, accessible core promoter structure. Distal (-850) binding of p53 during chromatin assembly, but not post-assembly, reverses transcription activation concomitant with promoter inaccessibility to restriction enzyme digestion. Inhibition of histone deacetylase activity by trichostatin-A (TSA) addition, prior to and during chromatin assembly, activated chromatin transcription in parallel with increased core promoter accessibility. Chromatin immunoprecipitation analyses showed increased H3 and H4 acetylated histones at the core promoter in the presence of TSA, while histone acetylation remained unchanged at the site of distal p53 binding. Our data reveal that p53 targets chromatin structure alteration at the core promoter, independently of effects on histone acetylation, to establish repressed AFP gene expression.

  3. Active Site and Remote Contributions to Catalysis in Methylthioadenosine Nucleosidases

    DOE PAGES

    Thomas, Keisha; Cameron, Scott A.; Almo, Steven C.; ...

    2015-03-25

    5'-Methylthioadenosine/S-adenosyl-l-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5'-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar. However, binding of transition-state analogues is dominated by favorable entropy in VcMTAN and by enthalpy in EcMTAN. Catalytic sites of VcMTAN and EcMTAN in contact with reactants differ by two residues; Ala113 and Val153 in VcMTAN are Pro113 and Ile152, respectively, in EcMTAN. Here, we mutated the VcMTAN catalytic site residues to match those of EcMTAN in anticipation ofmore » altering its properties toward EcMTAN. Inhibition of VcMTAN by transition-state analogues required filling both active sites of the homodimer. However, in the Val153Ile mutant or double mutants, transition-state analogue binding at one site caused complete inhibition. Therefore, a single amino acid, Val153, alters the catalytic site cooperativity in VcMTAN. The transition-state analogue affinity and thermodynamics in mutant VcMTAN became even more unlike those of EcMTAN, the opposite of expectations from catalytic site similarity; thus, catalytic site contacts in VcMTAN are unable to recapitulate the properties of EcMTAN. X-ray crystal structures of EcMTAN, VcMTAN, and a multiple-site mutant of VcMTAN most closely resembling EcMTAN in catalytic site contacts show no major protein conformational differences. In conclusion, the overall protein architectures of these closely related proteins are implicated in contributing to the catalytic site differences.« less

  4. Active Site and Remote Contributions to Catalysis in Methylthioadenosine Nucleosidases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Keisha; Cameron, Scott A.; Almo, Steven C.

    5'-Methylthioadenosine/S-adenosyl-l-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5'-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar. However, binding of transition-state analogues is dominated by favorable entropy in VcMTAN and by enthalpy in EcMTAN. Catalytic sites of VcMTAN and EcMTAN in contact with reactants differ by two residues; Ala113 and Val153 in VcMTAN are Pro113 and Ile152, respectively, in EcMTAN. Here, we mutated the VcMTAN catalytic site residues to match those of EcMTAN in anticipation ofmore » altering its properties toward EcMTAN. Inhibition of VcMTAN by transition-state analogues required filling both active sites of the homodimer. However, in the Val153Ile mutant or double mutants, transition-state analogue binding at one site caused complete inhibition. Therefore, a single amino acid, Val153, alters the catalytic site cooperativity in VcMTAN. The transition-state analogue affinity and thermodynamics in mutant VcMTAN became even more unlike those of EcMTAN, the opposite of expectations from catalytic site similarity; thus, catalytic site contacts in VcMTAN are unable to recapitulate the properties of EcMTAN. X-ray crystal structures of EcMTAN, VcMTAN, and a multiple-site mutant of VcMTAN most closely resembling EcMTAN in catalytic site contacts show no major protein conformational differences. In conclusion, the overall protein architectures of these closely related proteins are implicated in contributing to the catalytic site differences.« less

  5. Regeneration of Cation-Transport Capacity in HeLa Cell Membranes After Specific Blockade by Ouabain

    PubMed Central

    Vaughan, Gerald L.; Cook, John S.

    1972-01-01

    The cardiac glycoside, ouabain, inhibits alkali-cation transport in HeLa cells. It binds to 0.75 × 106 sites per cell, and the half-time for its dissociation is 16 hr. After partial blockade by ouabain, the cell generates new ouabain-binding sites, with total restoration of transport in 10% of a cell cycle(∼3 hr). This recovery requires protein synthesis and appears to be a response to altered cell-electrolyte content, since growth of cells in media with low K+ concentration enhances the titer of the transport enzyme in a fashion similar to the effect of ouabain. Totally blocked cells do not recover. PMID:4506784

  6. NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region.

    PubMed Central

    Stamatoyannopoulos, J A; Goodwin, A; Joyce, T; Lowrey, C H

    1995-01-01

    The beta-like globin genes require the upstream locus control region (LCR) for proper expression. The active elements of the LCR coincide with strong erythroid-specific DNase I-hypersensitive sites (HSs). We have used 5' HS4 as a model to study the formation of these HSs. Previously, we identified a 101 bp element that is required for the formation of this HS. This element binds six proteins in vitro. We now report a mutational analysis of the HS4 HS-forming element (HSFE). This analysis indicates that binding sites for the hematopoietic transcription factors NF-E2 and GATA-1 are required for the formation of the characteristic chromatin structure of the HS following stable transfection into murine erythroleukemia cells. Similarly arranged NF-E2 and GATA binding sites are present in the other HSs of the human LCR, as well as in the homologous mouse and goat sequences and the chicken beta-globin enhancer. A combination of DNase I and micrococcal nuclease sensitivity assays indicates that the characteristic erythroid-specific hypersensitivity of HS4 to DNase I is the result of tissue-specific alterations in both nucleosome positioning and tertiary DNA structure. Images PMID:7828582

  7. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  8. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics

    PubMed Central

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-01-01

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression. PMID:27628341

  9. A single amino-acid substitution in the Ets domain alters core DNA binding specificity of Ets1 to that of the related transcription factors Elf1 and E74.

    PubMed

    Bosselut, R; Levin, J; Adjadj, E; Ghysdael, J

    1993-11-11

    Ets proteins form a family of sequence specific DNA binding proteins which bind DNA through a 85 aminoacids conserved domain, the Ets domain, whose sequence is unrelated to any other characterized DNA binding domain. Unlike all other known Ets proteins, which bind specific DNA sequences centered over either GGAA or GGAT core motifs, E74 and Elf1 selectively bind to GGAA corecontaining sites. Elf1 and E74 differ from other Ets proteins in three residues located in an otherwise highly conserved region of the Ets domain, referred to as conserved region III (CRIII). We show that a restricted selectivity for GGAA core-containing sites could be conferred to Ets1 upon changing a single lysine residue within CRIII to the threonine found in Elf1 and E74 at this position. Conversely, the reciprocal mutation in Elf1 confers to this protein the ability to bind to GGAT core containing EBS. This, together with the fact that mutation of two invariant arginine residues in CRIII abolishes DNA binding, indicates that CRIII plays a key role in Ets domain recognition of the GGAA/T core motif and lead us to discuss a model of Ets proteins--core motif interaction.

  10. Site-Specific Phosphorylation of VEGFR2 Is Mediated by Receptor Trafficking: Insights from a Computational Model

    PubMed Central

    Clegg, Lindsay Wendel; Mac Gabhann, Feilim

    2015-01-01

    Matrix-binding isoforms and non-matrix-binding isoforms of vascular endothelial growth factor (VEGF) are both capable of stimulating vascular remodeling, but the resulting blood vessel networks are structurally and functionally different. Here, we develop and validate a computational model of the binding of soluble and immobilized ligands to VEGF receptor 2 (VEGFR2), the endosomal trafficking of VEGFR2, and site-specific VEGFR2 tyrosine phosphorylation to study differences in induced signaling between these VEGF isoforms. In capturing essential features of VEGFR2 signaling and trafficking, our model suggests that VEGFR2 trafficking parameters are largely consistent across multiple endothelial cell lines. Simulations demonstrate distinct localization of VEGFR2 phosphorylated on Y1175 and Y1214. This is the first model to clearly show that differences in site-specific VEGFR2 activation when stimulated with immobilized VEGF compared to soluble VEGF can be accounted for by altered trafficking of VEGFR2 without an intrinsic difference in receptor activation. The model predicts that Neuropilin-1 can induce differences in the surface-to-internal distribution of VEGFR2. Simulations also show that ligated VEGFR2 and phosphorylated VEGFR2 levels diverge over time following stimulation. Using this model, we identify multiple key levers that alter how VEGF binding to VEGFR2 results in different coordinated patterns of multiple downstream signaling pathways. Specifically, simulations predict that VEGF immobilization, interactions with Neuropilin-1, perturbations of VEGFR2 trafficking, and changes in expression or activity of phosphatases acting on VEGFR2 all affect the magnitude, duration, and relative strength of VEGFR2 phosphorylation on tyrosines 1175 and 1214, and they do so predictably within our single consistent model framework. PMID:26067165

  11. Cortactin binding to F-actin revealed by electron microscopy and 3D reconstruction.

    PubMed

    Pant, Kiran; Chereau, David; Hatch, Victoria; Dominguez, Roberto; Lehman, William

    2006-06-16

    Cortactin and WASP activate Arp2/3-mediated actin filament nucleation and branching. However, different mechanisms underlie activation by the two proteins, which rely on distinct actin-binding modules and modes of binding to actin filaments. It is generally thought that cortactin binds to "mother" actin filaments, while WASP donates actin monomers to Arp2/3-generated "daughter" filament branches. Interestingly, cortactin also binds WASP in addition to F-actin and the Arp2/3 complex. However, the structural basis for the role of cortactin in filament branching remains unknown, making interpretation difficult. Here, electron microscopy and 3D reconstruction were carried out on F-actin decorated with the actin-binding repeating domain of cortactin, revealing conspicuous density on F-actin attributable to cortactin that is located on a consensus-binding site on subdomain-1 of actin subunits. Strikingly, the binding of cortactin widens the gap between the two long-pitch filament strands. Although other proteins have been found to alter the structure of the filament, the cortactin-induced conformational change appears unique. The results are consistent with a mechanism whereby alterations of the F-actin structure may facilitate recruitment of the Arp2/3 complex to the "mother" filament in the cortex of cells. In addition, cortactin may act as a structural adapter protein, stabilizing nascent filament branches while mediating the simultaneous recruitment of Arp2/3 and WASP.

  12. Arginine residues on the opposite side of the active site stimulate the catalysis of ribosome depurination by ricin A chain by interacting with the P-protein stalk.

    PubMed

    Li, Xiao-Ping; Kahn, Peter C; Kahn, Jennifer Nielsen; Grela, Przemyslaw; Tumer, Nilgun E

    2013-10-18

    Ricin inhibits protein synthesis by depurinating the α-sarcin/ricin loop (SRL). Ricin holotoxin does not inhibit translation unless the disulfide bond between the A (RTA) and B (RTB) subunits is reduced. Ricin holotoxin did not bind ribosomes or depurinate them but could depurinate free RNA. When RTA is separated from RTB, arginine residues located at the interface are exposed to the solvent. Because this positively charged region, but not the active site, is blocked by RTB, we mutated arginine residues at or near the interface of RTB to determine if they are critical for ribosome binding. These variants were structurally similar to wild type RTA but could not bind ribosomes. Their K(m) values and catalytic rates (k(cat)) for an SRL mimic RNA were similar to those of wild type, indicating that their activity was not altered. However, they showed an up to 5-fold increase in K(m) and up to 38-fold decrease in kcat toward ribosomes. These results suggest that the stalk binding stimulates the catalysis of ribosome depurination by RTA. The mutated arginines have side chains behind the active site cleft, indicating that the ribosome binding surface of RTA is on the opposite side of the surface that interacts with the SRL. We propose that stalk binding stimulates the catalysis of ribosome depurination by orienting the active site of RTA toward the SRL and thereby allows docking of the target adenine into the active site. This model may apply to the translation factors that interact with the stalk.

  13. Highly accessible AU-rich regions in 3' untranslated regions are hotspots for binding of regulatory factors.

    PubMed

    Plass, Mireya; Rasmussen, Simon H; Krogh, Anders

    2017-04-01

    Post-transcriptional regulation is regarded as one of the major processes involved in the regulation of gene expression. It is mainly performed by RNA binding proteins and microRNAs, which target RNAs and typically affect their stability. Recent efforts from the scientific community have aimed at understanding post-transcriptional regulation at a global scale by using high-throughput sequencing techniques such as cross-linking and immunoprecipitation (CLIP), which facilitates identification of binding sites of these regulatory factors. However, the diversity in the experimental procedures and bioinformatics analyses has hindered the integration of multiple datasets and thus limited the development of an integrated view of post-transcriptional regulation. In this work, we have performed a comprehensive analysis of 107 CLIP datasets from 49 different RBPs in HEK293 cells to shed light on the complex interactions that govern post-transcriptional regulation. By developing a more stringent CLIP analysis pipeline we have discovered the existence of conserved regulatory AU-rich regions in the 3'UTRs where miRNAs and RBPs that regulate several processes such as polyadenylation or mRNA stability bind. Analogous to promoters, many factors have binding sites overlapping or in close proximity in these hotspots and hence the regulation of the mRNA may depend on their relative concentrations. This hypothesis is supported by RBP knockdown experiments that alter the relative concentration of RBPs in the cell. Upon AGO2 knockdown (KD), transcripts containing "free" target sites show increased expression levels compared to those containing target sites in hotspots, which suggests that target sites within hotspots are less available for miRNAs to bind. Interestingly, these hotspots appear enriched in genes with regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest that hotspots are functional regulatory elements that define an extra layer of regulation of post-transcriptional regulatory networks.

  14. Highly accessible AU-rich regions in 3’ untranslated regions are hotspots for binding of regulatory factors

    PubMed Central

    2017-01-01

    Post-transcriptional regulation is regarded as one of the major processes involved in the regulation of gene expression. It is mainly performed by RNA binding proteins and microRNAs, which target RNAs and typically affect their stability. Recent efforts from the scientific community have aimed at understanding post-transcriptional regulation at a global scale by using high-throughput sequencing techniques such as cross-linking and immunoprecipitation (CLIP), which facilitates identification of binding sites of these regulatory factors. However, the diversity in the experimental procedures and bioinformatics analyses has hindered the integration of multiple datasets and thus limited the development of an integrated view of post-transcriptional regulation. In this work, we have performed a comprehensive analysis of 107 CLIP datasets from 49 different RBPs in HEK293 cells to shed light on the complex interactions that govern post-transcriptional regulation. By developing a more stringent CLIP analysis pipeline we have discovered the existence of conserved regulatory AU-rich regions in the 3’UTRs where miRNAs and RBPs that regulate several processes such as polyadenylation or mRNA stability bind. Analogous to promoters, many factors have binding sites overlapping or in close proximity in these hotspots and hence the regulation of the mRNA may depend on their relative concentrations. This hypothesis is supported by RBP knockdown experiments that alter the relative concentration of RBPs in the cell. Upon AGO2 knockdown (KD), transcripts containing “free” target sites show increased expression levels compared to those containing target sites in hotspots, which suggests that target sites within hotspots are less available for miRNAs to bind. Interestingly, these hotspots appear enriched in genes with regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest that hotspots are functional regulatory elements that define an extra layer of regulation of post-transcriptional regulatory networks. PMID:28410363

  15. An A257V Mutation in the Bacillus subtilis Response Regulator Spo0A Prevents Regulated Expression of Promoters with Low-Consensus Binding Sites▿

    PubMed Central

    Seredick, Steve D.; Seredick, Barbara M.; Baker, David; Spiegelman, George B.

    2009-01-01

    In Bacillus species, the master regulator of sporulation is Spo0A. Spo0A functions by both activating and repressing transcription initiation from target promoters that contain 0A boxes, the binding sites for Spo0A. Several classes of spo0A mutants have been isolated, and the molecular basis for their phenotypes has been determined. However, the molecular basis of the Spo0A(A257V) substitution, representative of an unusual phenotypic class, is not understood. Spo0A(A257V) is unusual in that it abolishes sporulation; in vivo, it fails to activate transcription from key stage II promoters yet retains the ability to repress the abrB promoter. To determine how Spo0A(A257V) retains the ability to repress but not stimulate transcription, we performed a series of in vitro and in vivo assays. We found unexpectedly that the mutant protein both stimulated transcription from the spoIIG promoter and repressed transcription from the abrB promoter, albeit twofold less than the wild type. A DNA binding analysis of Spo0A(A257V) showed that the mutant protein was less able to tolerate alterations in the sequence and arrangement of its DNA binding sites than the wild-type protein. In addition, we found that Spo0A(A257V) could stimulate transcription of a mutant spoIIG promoter in vivo in which low-consensus binding sites were replaced by high-consensus binding sites. We conclude that Spo0A(A257V) is able to bind to and regulate the expression of only genes whose promoters contain high-consensus binding sites and that this effect is sufficient to explain the observed sporulation defect. PMID:19581368

  16. In Silico Detection of Sequence Variations Modifying Transcriptional Regulation

    PubMed Central

    Andersen, Malin C; Engström, Pär G; Lithwick, Stuart; Arenillas, David; Eriksson, Per; Lenhard, Boris; Wasserman, Wyeth W; Odeberg, Jacob

    2008-01-01

    Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers). The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation. PMID:18208319

  17. Calcium binding to calmodulin mutants monitored by domain-specific intrinsic phenylalanine and tyrosine fluorescence.

    PubMed Central

    VanScyoc, Wendy S; Sorensen, Brenda R; Rusinova, Elena; Laws, William R; Ross, J B Alexander; Shea, Madeline A

    2002-01-01

    Cooperative calcium binding to the two homologous domains of calmodulin (CaM) induces conformational changes that regulate its association with and activation of numerous cellular target proteins. Calcium binding to the pair of high-affinity sites (III and IV in the C-domain) can be monitored by observing calcium-dependent changes in intrinsic tyrosine fluorescence intensity (lambda(ex)/lambda(em) of 277/320 nm). However, calcium binding to the low-affinity sites (I and II in the N-domain) is more difficult to measure with optical spectroscopy because that domain of CaM does not contain tryptophan or tyrosine. We recently demonstrated that calcium-dependent changes in intrinsic phenylalanine fluorescence (lambda(ex)/lambda(em) of 250/280 nm) of an N-domain fragment of CaM reflect occupancy of sites I and II (VanScyoc, W. S., and M. A. Shea, 2001, Protein Sci. 10:1758-1768). Using steady-state and time-resolved fluorescence methods, we now show that these excitation and emission wavelength pairs for phenylalanine and tyrosine fluorescence can be used to monitor equilibrium calcium titrations of the individual domains in full-length CaM. Calcium-dependent changes in phenylalanine fluorescence specifically indicate ion occupancy of sites I and II in the N-domain because phenylalanine residues in the C-domain are nonemissive. Tyrosine emission from the C-domain does not interfere with phenylalanine fluorescence signals from the N-domain. This is the first demonstration that intrinsic fluorescence may be used to monitor calcium binding to each domain of CaM. In this way, we also evaluated how mutations of two residues (Arg74 and Arg90) located between sites II and III can alter the calcium-binding properties of each of the domains. The mutation R74A caused an increase in the calcium affinity of sites I and II in the N-domain. The mutation R90A caused an increase in calcium affinity of sites III and IV in the C-domain whereas R90G caused an increase in calcium affinity of sites in both domains. This approach holds promise for exploring the linked energetics of calcium binding and target recognition. PMID:12414709

  18. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    PubMed

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of microsomal binding sites extracted. These observations suggest three possible roles for the microsomal receptor-like proteins: (a) modulation of estrogen access to nuclear binding sites; (b) formation of functional complexes which diffuse to other extranuclear sites to alter non-genomic cellular processes; (c) regulation of nuclear concentration of estrogen-receptor complexes by virtue of producing microsomal acceptor sites for uptake of free or loosely associated nuclear complexes, previously thought to exist in the cytoplasm.

  19. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes

    PubMed Central

    1980-01-01

    The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812

  20. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R.

    PubMed

    Shields, R L; Namenuk, A K; Hong, K; Meng, Y G; Rae, J; Briggs, J; Xie, D; Lai, J; Stadlen, A; Li, B; Fox, J A; Presta, L G

    2001-03-02

    Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.

  1. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oilmore » than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.« less

  2. Erythroblast transferrin receptors and transferrin kinetics in iron deficiency and various anemias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muta, K.; Nishimura, J.; Ideguchi, H.

    1987-06-01

    To clarify the role of transferrin receptors in cases of altered iron metabolism in clinical pathological conditions, we studied: number of binding sites; affinity; and recycling kinetics of transferrin receptors on human erythroblasts. Since transferrin receptors are mainly present on erythroblasts, the number of surface transferrin receptors was determined by assay of binding of /sup 125/I-transferrin and the percentage of erythroblasts in bone marrow mononuclear cells. The number of binding sites on erythroblasts from patients with an iron deficiency anemia was significantly greater than in normal subjects. Among those with an aplastic anemia, hemolytic anemia, myelodysplastic syndrome, and polycythemia veramore » compared to normal subjects, there were no considerable differences in the numbers of binding sites. The dissociation constants (Kd) were measured using Scatchard analysis. The apparent Kd was unchanged (about 10 nmol/L) in patients and normal subjects. The kinetics of endocytosis and exocytosis of /sup 125/I-transferrin, examined by acid treatment, revealed no variations in recycling kinetics among the patients and normal subjects. These data suggest that iron uptake is regulated by modulation of the number of surface transferrin receptors, thereby reflecting the iron demand of the erythroblast.« less

  3. Molecular mechanisms underlying deoxy‐ADP.Pi activation of pre‐powerstroke myosin

    PubMed Central

    Nowakowski, Sarah G.

    2017-01-01

    Abstract Myosin activation is a viable approach to treat systolic heart failure. We previously demonstrated that striated muscle myosin is a promiscuous ATPase that can use most nucleoside triphosphates as energy substrates for contraction. When 2‐deoxy ATP (dATP) is used, it acts as a myosin activator, enhancing cross‐bridge binding and cycling. In vivo, we have demonstrated that elevated dATP levels increase basal cardiac function and rescues function of infarcted rodent and pig hearts. Here we investigate the molecular mechanism underlying this physiological effect. We show with molecular dynamics simulations that the binding of dADP.Pi (dATP hydrolysis products) to myosin alters the structure and dynamics of the nucleotide binding pocket, myosin cleft conformation, and actin binding sites, which collectively yield a myosin conformation that we predict favors weak, electrostatic binding to actin. In vitro motility assays at high ionic strength were conducted to test this prediction and we found that dATP increased motility. These results highlight alterations to myosin that enhance cross‐bridge formation and reveal a potential mechanism that may underlie dATP‐induced improvements in cardiac function. PMID:28097776

  4. Human Blue Cone Opsin Regeneration Involves Secondary Retinal Binding with Analog Specificity.

    PubMed

    Srinivasan, Sundaramoorthy; Fernández-Sampedro, Miguel A; Morillo, Margarita; Ramon, Eva; Jiménez-Rosés, Mireia; Cordomí, Arnau; Garriga, Pere

    2018-03-27

    Human color vision is mediated by the red, green, and blue cone visual pigments. Cone opsins are G-protein-coupled receptors consisting of an opsin apoprotein covalently linked to the 11-cis-retinal chromophore. All visual pigments share a common evolutionary origin, and red and green cone opsins exhibit a higher homology, whereas blue cone opsin shows more resemblance to the dim light receptor rhodopsin. Here we show that chromophore regeneration in photoactivated blue cone opsin exhibits intermediate transient conformations and a secondary retinoid binding event with slower binding kinetics. We also detected a fine-tuning of the conformational change in the photoactivated blue cone opsin binding site that alters the retinal isomer binding specificity. Furthermore, the molecular models of active and inactive blue cone opsins show specific molecular interactions in the retinal binding site that are not present in other opsins. These findings highlight the differential conformational versatility of human cone opsin pigments in the chromophore regeneration process, particularly compared to rhodopsin, and point to relevant functional, unexpected roles other than spectral tuning for the cone visual pigments. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Increased precursor microRNA-21 following status epilepticus can compete with mature microRNA-21 to alter translation

    PubMed Central

    Chak, Kayam; Roy-Chaudhuri, Biswajoy; Kim, Hak Kyun; Kemp, Kayla C; Kay, Mark A

    2016-01-01

    MicroRNA-21 (miR-21) is consistently up-regulated in various neurological disorders, including epilepsy. Here, we show that the biogenesis of miR-21 is altered following pilocarpine status epilepticus (SE) with an increase in precursor miR-21 (pre-miR-21) in rats. We demonstrate that pre-miR-21 has an energetically favorable site overlapping with the miR-21 binding site and competes with mature miR-21 for binding in the 3′UTR of TGFBR2 mRNA, but not NT-3 mRNA in vitro. This binding competition influences miR-21-mediated repression in vitro and correlates with the increase in TGFBR2 and decrease in NT-3 following SE. Polysome profiling reveals co-localization of pre-miR-21 in the ribosome fraction with translating mRNAs in U-87 cells. The current work suggests that pre-miR-21 may post-transcriptionally counteract miR-21-mediated suppression following SE and could potentially lead to prolonged TGF-β receptor expression impacting epileptogenesis. The study further supports that the ratio of the pre to mature miRNA may be important in determining the regulatory effects of a miRNA gene. PMID:27725160

  6. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2016-05-20

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site*

    PubMed Central

    Kadamur, Ganesh

    2016-01-01

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. PMID:27002154

  8. Release of specific proteins from nuclei of HL-60 and MOLT-4 cells by antitumor drugs having affinity to nucleic acids.

    PubMed

    Lassota, P; Melamed, M R; Darzynkiewicz, Z

    The binding sites for mitoxantrone (MIT), Ametantrone (AMT), doxorubicin (DOX), actinomycin D (AMD) and ethidium bromide (EB) in nuclei from exponentially growing and differentiating human promyelocytic HL-60 and lymphocytic leukemic MOLT-4 cells were studied by gel electrophoresis of proteins selectively released during titration of these nuclei with the drugs. Each drug at different drug: DNA binding ratios resulted in a characteristic pattern of protein elution and/or retention. For example, in nuclei from exponentially growing HL-60 cells, MIT affected 44 nuclear proteins that were different from those affected by EB; of these 29 were progressively released at increasing MIT:DNA ratios, 11 were transiently released (i.e. only at a low MIT:DNA ratio) and 4 entrapped. Patterns of proteins displaced from nuclei of exponentially growing HL-60 cells differed from those of cells undergoing myeloid differentiation as well as from those of exponentially growing MOLT-4 cells. The first effects were seen at a binding density of approximately one drug molecule per 10-50 base pairs of DNA. The observed selective displacement of proteins may reflect drug-altered affinity of the binding sites for those proteins, for example due to a change of nucleic acid or protein conformation upon binding the ligand. The data show that the binding site(s) for each of the ligands studied is different and the differences correlate with variability in chemical structure between the ligands. The nature of the drug-affected proteins may provide clues regarding antitumor or cytotoxic mechanisms of drug action.

  9. pH-dependent Photodamage of β-lactoglobulin Mediated by Hydrophobic and Hydrophilic Porphyrins

    NASA Astrophysics Data System (ADS)

    Fernandez, Nick; Tian, Fang; Brancaleon, Lorenzo

    2006-03-01

    Dyes like the hydrophobic Protoporphyrin IX (PPIX) and hydrophilic m-Tetraphenylporphine sulfonato (TSPP) bind proteins via non-covalent interactions. The dyes' binding to β-lactoglobulin (β-lg) is pH dependent and their irradiation can generate photochemical events that alter the conformation of the protein. We investigated how the irradiation of the non-covalent complexes, at different pH, contributed to altering the structure of the protein. Our investigation used a combination of optical spectroscopic techniques that probe changes in the conformation of polypeptides. Irradiation of the dyes produces measurable changes in the fluorescence intensity and lifetime of the protein, that could be correlated with conformational of the protein. These changes were most significant above pH 7 where β-lg undergoes a conformational change that makes the binding site more accessible. Above pH 7, irradiation of both PPIX and TSPP produces a 1-2 nm shift in the emission maximum of the protein which does not occur at lower pH values. The effect of irradiation on the emission lifetime of β-lactoglobulin is even more dramatic as it lengthened the average lifetime of the protein's fluorescence from 1.68 to 1.95ns (for PPIX), from 1.53 to 1.98ns (for TSPP). The data suggest that at pH where they have access to the binding site of the protein, PPIX and TSPP have the chance of producing a photochemical reaction that modifies the conformation and damage β-lg.

  10. Mutations in Elongation Factor Ef-1α Affect the Frequency of Frameshifting and Amino Acid Misincorporation in Saccharomyces Cerevisiae

    PubMed Central

    Sandbaken, M. G.; Culbertson, M. R.

    1988-01-01

    A mutational analysis of the eukaryotic elongation factor EF-1α indicates that this protein functions to limit the frequency of errors during genetic code translation. We found that both amino acid misincorporation and reading frame errors are controlled by EF-1α. In order to examine the function of this protein, the TEF2 gene, which encodes EF-1α in Saccharomyces cerevisiae, was mutagenized in vitro with hydroxylamine. Sixteen independent TEF2 alleles were isolated by their ability to suppress frameshift mutations. DNA sequence analysis identified eight different sites in the EF-1α protein that elevate the frequency of mistranslation when mutated. These sites are located in two different regions of the protein. Amino acid substitutions located in or near the GTP-binding and hydrolysis domain of the protein cause suppression of frameshift and nonsense mutations. These mutations may effect mistranslation by altering the binding or hydrolysis of GTP. Amino acid substitutions located adjacent to a putative aminoacyl-tRNA binding region also suppress frameshift and nonsense mutations. These mutations may alter the binding of aminoacyl-tRNA by EF-1α. The identification of frameshift and nonsense suppressor mutations in EF-1α indicates a role for this protein in limiting amino acid misincorporation and reading frame errors. We suggest that these types of errors are controlled by a common mechanism or closely related mechanisms. PMID:3066688

  11. On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids

    PubMed Central

    Palade, PT; Barchi, RL

    1977-01-01

    25 aromatic carboxylic acids which are analogs of benzoic acid were tested in the rat diaphragm preparation for effects on chloride conductance (G(Cl)). Of the 25, 19 were shown to reduce membrane G(Cl) with little effect on other membrane parameters, although their apparent K(i) varied widely. This inhibition was reversible if exposure times were not prolonged. The most effective analog studied was anthracene-9-COOH (9-AC; K(i) = 1.1 x 10(-5) M). Active analogs produced concentration-dependent inhibition of a type consistent with interaction at a single site or group of sites having similar binding affinities, although a correlation could also be shown between lipophilicity and K(i). Structure-activity analysis indicated that hydrophobic ring substitution usually increased inhibitory activity while para polar substitutions reduced effectiveness. These compounds do not appear to inhibit G(Cl) by altering membrane surface charge and the inhibition produced is not voltage dependent. Qualitative characteristics of the I-V relationship for Cl(-) current are not altered. Conductance to all anions is not uniformly altered by these acids as would be expected from steric occlusion of a common channel. Concentrations of 9-AC reducing G(Cl) by more than 90 percent resulted in slight augmentation of G(I). The complete conductance sequence obtained at high levels of 9-AC was the reverse of that obtained under control conditions. Permeability sequences underwent progressive changes with increasing 9-AC concentration and ultimately inverted at high levels of the analog. Aromatic carboxylic acids appear to inhibit G(Cl) by binding to a specific intramembrane site and altering the selectivity sequence of the membrane anion channel. PMID:894246

  12. In Vivo [11C]Dihydrotetrabenazine ([11C]DTBZ) Binding in Rat Striatum: Sensitivity to Dopamine Concentrations

    PubMed Central

    Kilbourn, Michael R.; Butch, Elizabeth R.; Desmond, Timothy; Sherman, Phillip; Harris, Paul E.; Frey, Kirk A.

    2009-01-01

    Introduction The sensitivity of the in vivo binding of [11C]dihydrotetrabenazine ([11C]DTBZ) and [11C]methylphenidate ([11C]MPH) to their respective targets, the vesicular monoamine transporter (VMAT2) and the neuronal membrane dopamine transporter (DAT), after alterations of endogenous levels of dopamine were examined in the rat brain. Methods In vivo binding of [11C]DTBZ and [11C]MPH were determined using a bolus+infusion protocol. In vitro numbers of VMAT2 binding sites were determined by autoradiography. Results Repeated dosing with α-methyl-p-tyrosine (AMPT) at doses that significantly (−75%) depleted brain tissue dopamine levels resulted in increased (+36%) in vivo [11C]DTBZ binding to VMAT2 in the striatum. The increase in binding could be completely reversed by treatment with L-DOPA/benserazide to restore dopamine levels. There were no changes in total numbers of VMAT2 binding sites as measured using in vitro autoradiography. No changes were observed for in vivo [11C]MPH binding to the DAT in the striatum following AMPT pretreatment. Conclusion These results indicate that large reductions of dopamine concentrations in the rat brain can produce modest but significant changes in binding of radioligands to the VMAT2, which can be reversed by repleneshment of dopamine using exogenous L-DOPA. PMID:20122661

  13. CsrA Participates in a PNPase Autoregulatory Mechanism by Selectively Repressing Translation of pnp Transcripts That Have Been Previously Processed by RNase III and PNPase

    PubMed Central

    Park, Hongmarn; Yakhnin, Helen; Connolly, Michael; Romeo, Tony

    2015-01-01

    ABSTRACT Csr is a conserved global regulatory system that represses or activates gene expression posttranscriptionally. CsrA of Escherichia coli is a homodimeric RNA binding protein that regulates transcription elongation, translation initiation, and mRNA stability by binding to the 5′ untranslated leader or initial coding sequence of target transcripts. pnp mRNA, encoding the 3′ to 5′ exoribonuclease polynucleotide phosphorylase (PNPase), was previously identified as a CsrA target by transcriptome sequencing (RNA-seq). Previous studies also showed that RNase III and PNPase participate in a pnp autoregulatory mechanism in which RNase III cleavage of the untranslated leader, followed by PNPase degradation of the resulting 5′ fragment, leads to pnp repression by an undefined translational repression mechanism. Here we demonstrate that CsrA binds to two sites in pnp leader RNA but only after the transcript is fully processed by RNase III and PNPase. In the absence of processing, both of the binding sites are sequestered in an RNA secondary structure, which prevents CsrA binding. The CsrA dimer bridges the upstream high-affinity site to the downstream site that overlaps the pnp Shine-Dalgarno sequence such that bound CsrA causes strong repression of pnp translation. CsrA-mediated translational repression also leads to a small increase in the pnp mRNA decay rate. Although CsrA has been shown to regulate translation and mRNA stability of numerous genes in a variety of organisms, this is the first example in which prior mRNA processing is required for CsrA-mediated regulation. IMPORTANCE CsrA protein represses translation of numerous mRNA targets, typically by binding to multiple sites in the untranslated leader region preceding the coding sequence. We found that CsrA represses translation of pnp by binding to two sites in the pnp leader transcript but only after it is processed by RNase III and PNPase. Processing by these two ribonucleases alters the mRNA secondary structure such that it becomes accessible to the ribosome for translation as well as to CsrA. As one of the CsrA binding sites overlaps the pnp ribosome binding site, bound CsrA prevents ribosome binding. This is the first example in which regulation by CsrA requires prior mRNA processing and should link pnp expression to conditions affecting CsrA activity. PMID:26438818

  14. Free-Energy-Based Protein Design: Re-Engineering Cellular Retinoic Acid Binding Protein II Assisted by the Moveable-Type Approach.

    PubMed

    Zhong, Haizhen A; Santos, Elizabeth M; Vasileiou, Chrysoula; Zheng, Zheng; Geiger, James H; Borhan, Babak; Merz, Kenneth M

    2018-03-14

    How to fine-tune the binding free energy of a small-molecule to a receptor site by altering the amino acid residue composition is a key question in protein engineering. Indeed, the ultimate solution to this problem, to chemical accuracy (±1 kcal/mol), will result in profound and wide-ranging applications in protein design. Numerous tools have been developed to address this question using knowledge-based models to more computationally intensive molecular dynamics simulations-based free energy calculations, but while some success has been achieved there remains room for improvement in terms of overall accuracy and in the speed of the methodology. Here we report a fast, knowledge-based movable-type (MT)-based approach to estimate the absolute and relative free energy of binding as influenced by mutations in a small-molecule binding site in a protein. We retrospectively validate our approach using mutagenesis data for retinoic acid binding to the Cellular Retinoic Acid Binding Protein II (CRABPII) system and then make prospective predictions that are borne out experimentally. The overall performance of our approach is supported by its success in identifying mutants that show high or even sub-nano-molar binding affinities of retinoic acid to the CRABPII system.

  15. Binding sites of resveratrol, genistein, and curcumin with milk α- and β-caseins.

    PubMed

    Bourassa, P; Bariyanga, J; Tajmir-Riahi, H A

    2013-02-07

    The binding sites of antioxidant polyphenols resveratrol, genistein, and curcumin are located with milk α- and β-caseins in aqueous solution. FTIR, CD, and fluorescence spectroscopic methods and molecular modeling were used to analyze polyphenol binding sites, the binding constant, and the effects of complexation on casein stability and conformation. Structural analysis showed that polyphenols bind casein via hydrophilic and hydrophobic interactions with the number of bound polyphenol molecules (n) 1.20 for resveratrol, 1.42 for genistein, and 1.43 for curcumin with α-casein and 1.14 for resveratrol, 1.27 for genistein, and 1.27 for curcumin with β-casein. The overall binding constants of the complexes formed are K(res-α-casein) = 1.9 (±0.6) × 10(4) M(-1), K(gen-α-casein) = 1.8 (±0.4) × 10(4) M(-1), and K(cur-α-casein) = 2.8 (±0.8) × 10(4) M(-1) with α-casein and K(res-β-casein) = 2.3 (±0.3) × 10(4) M(-1), K(gen-β-casein) = 3.0 (±0.5) × 10(4) M(-1), and K(cur-β-casein) = 3.1 (±0.5) × 10(4) M(-1) for β-casein. Molecular modeling showed the participation of several amino acids in polyphenol-protein complexes, which were stabilized by the hydrogen bonding network with the free binding energy of -11.56 (resveratrol-α-casein), -12.35 (resveratrol-β-casein), -9.68 (genistein-α-casein), -9.97 (genistein-β-casein), -8.89 (curcumin-α-casein), and -10.70 kcal/mol (curcumin-β-casein). The binding sites of polyphenols are different with α- and β-caseins. Polyphenol binding altered casein conformation with reduction of α-helix, indicating a partial protein destabilization. Caseins might act as carriers to transport polyphenol in vitro.

  16. αCP Poly(C) Binding Proteins Act as Global Regulators of Alternative Polyadenylation

    PubMed Central

    Ji, Xinjun; Wan, Ji; Vishnu, Melanie

    2013-01-01

    We have previously demonstrated that the KH-domain protein αCP binds to a 3′ untranslated region (3′UTR) C-rich motif of the nascent human alpha-globin (hα-globin) transcript and enhances the efficiency of 3′ processing. Here we assess the genome-wide impact of αCP RNA-protein (RNP) complexes on 3′ processing with a specific focus on its role in alternative polyadenylation (APA) site utilization. The major isoforms of αCP were acutely depleted from a human hematopoietic cell line, and the impact on mRNA representation and poly(A) site utilization was determined by direct RNA sequencing (DRS). Bioinformatic analysis revealed 357 significant alterations in poly(A) site utilization that could be specifically linked to the αCP depletion. These APA events correlated strongly with the presence of C-rich sequences in close proximity to the impacted poly(A) addition sites. The most significant linkage was the presence of a C-rich motif within a window 30 to 40 bases 5′ to poly(A) signals (AAUAAA) that were repressed upon αCP depletion. This linkage is consistent with a general role for αCPs as enhancers of 3′ processing. These findings predict a role for αCPs in posttranscriptional control pathways that can alter the coding potential and/or levels of expression of subsets of mRNAs in the mammalian transcriptome. PMID:23629627

  17. Identification of natural and artificial DNA substrates for the light-activated LOV-HTH transcription factor EL222

    PubMed Central

    Rivera-Cancel, Giomar; Motta-Mena, Laura B.; Gardner, Kevin H.

    2012-01-01

    Light-oxygen-voltage (LOV) domains serve as the photosensory modules for a wide range of plant and bacterial proteins, conferring blue light dependent regulation to effector activities as diverse as enzymes and DNA binding. LOV domains can also be engineered into a variety of exogenous targets, enabling similar regulation for new protein-based reagents. Common to these proteins is the ability for LOV domains to reversibly form a photochemical adduct between an internal flavin chromophore and the surrounding protein, using this to trigger conformational changes that affect output activity. Using the Erythrobacter litoralis protein EL222 model system which links LOV regulation to a helix-turn-helix (HTH) DNA binding domain, we demonstrated that the LOV domain binds and inhibits the HTH domain in the dark, releasing these interactions upon illumination [Nash et al. (2011) Proc. Natl. Acad. Sci. USA 108, 9449–9454]. Here we combine genomic and in vitro selection approaches to identify optimal DNA binding sites for EL222. Within the bacterial host, we observe binding several genomic sites using a 12 bp sequence consensus that is also found by in vitro selection methods. Sequence-specific alterations in the DNA consensus reduce EL222-binding affinity in a manner consistent with the expected binding mode: a protein dimer binding to two repeats. Finally, we demonstrate the light-dependent activation of transcription of two genes adjacent to an EL222 binding site. Taken together, these results shed light on the native function of EL222 and provide useful reagents for further basic and applications research of this versatile protein. PMID:23205774

  18. Channel architecture in maltoporin: dominance studies with lamB mutations influencing maltodextrin binding provide evidence for independent selectivity filters in each subunit.

    PubMed Central

    Ferenci, T; Lee, K S

    1989-01-01

    Maltoporin trimers constitute maltodextrin-selective channels in the outer membrane of Escherichia coli. To study the organization of the maltodextrin-binding site within trimers, dominance studies were undertaken with maltoporin variants of altered binding affinity. It has been established that amino acid substitutions at three dispersed regions of the maltoporin sequence (at residues 8, 82, and 360) resulted specifically in maltodextrin-binding defects and loss of maltodextrin channel selectivity; a substitution at residue 118 increased both binding affinity and maltodextrin transport. Strains heterodiploid for lamB were constructed in which these substitutions were encoded by chromosomal and plasmid-borne genes, and the relative level of maltoporin expression from these genes was estimated. Binding assays with bacteria forming maltoporin heterotrimers were performed in order to test for complementation between binding-negative alleles, negative dominance of negative over wild-type alleles, and possible dominance of negatives over the high-affinity allele. Double mutants with mutations affecting residues 8 and 118, 82 and 118, and 118 and 360 were constructed in vitro, and the dominance properties of the mutations in cis were also tested. There was no complementation between negatives and no negative dominance in heterotrimers. The high-affinity mutation was dominant over negatives in trans but not in cis. The affinity of binding sites in heterotrimer populations was characteristic of the high-affinity allele present and uninfluenced by the negative allele. These results are consistent with the presence of three discrete binding sites in a maltoporin trimer and suggest that the selectivity filter for maltodextrins is not at the interface between the three subunits. PMID:2521623

  19. An ensemble model of competitive multi-factor binding of the genome

    PubMed Central

    Wasson, Todd; Hartemink, Alexander J.

    2009-01-01

    Hundreds of different factors adorn the eukaryotic genome, binding to it in large number. These DNA binding factors (DBFs) include nucleosomes, transcription factors (TFs), and other proteins and protein complexes, such as the origin recognition complex (ORC). DBFs compete with one another for binding along the genome, yet many current models of genome binding do not consider different types of DBFs together simultaneously. Additionally, binding is a stochastic process that results in a continuum of binding probabilities at any position along the genome, but many current models tend to consider positions as being either binding sites or not. Here, we present a model that allows a multitude of DBFs, each at different concentrations, to compete with one another for binding sites along the genome. The result is an “occupancy profile,” a probabilistic description of the DNA occupancy of each factor at each position. We implement our model efficiently as the software package COMPETE. We demonstrate genome-wide and at specific loci how modeling nucleosome binding alters TF binding, and vice versa, and illustrate how factor concentration influences binding occupancy. Binding cooperativity between nearby TFs arises implicitly via mutual competition with nucleosomes. Our method applies not only to TFs, but also recapitulates known occupancy profiles of a well-studied replication origin with and without ORC binding. Importantly, the sequence preferences our model takes as input are derived from in vitro experiments. This ensures that the calculated occupancy profiles are the result of the forces of competition represented explicitly in our model and the inherent sequence affinities of the constituent DBFs. PMID:19720867

  20. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity

    PubMed Central

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-01-01

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701

  1. Computational Modeling Approach in Probing the Effects of Cytosine Methylation on the Transcription Factor Binding to DNA.

    PubMed

    Tenayuca, John; Cousins, Kimberley; Yang, Shumei; Zhang, Lubo

    2017-01-01

    Cytosine methylation at CpG dinucleotides is a chief mechanism in epigenetic modification of gene expression patterns. Previous studies demonstrated that increased CpG methylation of Sp1 sites at -268 and -346 of protein kinase C ε promoter repressed the gene expression. The present study investigated the impact of CpG methylation on the Sp1 binding via molecular modeling and electrophoretic mobility shift assay. Each of the Sp1 sites contain two CpGs. Methylation of either CpG lowered the binding affinity of Sp1, whereas methylation of both CpGs produced a greater decrease in the binding affinity. Computation of van der Waals (VDW) energy of Sp1 in complex with the Sp1 sites demonstrated increased VDW values from one to two sites of CpG methylation. Molecular modeling indicated that single CpG methylation caused underwinding of the DNA fragment, with the phosphate groups at C1, C4 and C5 reoriented from their original positions. Methylation of both CpGs pinched the minor groove and increased the helical twist concomitant with a shallow, hydrophobic major groove. Additionally, double methylation eliminated hydrogen bonds on recognition helix residues located at positions -1 and 1, which were essential for interaction with O6/N7 of G-bases. Bonding from linker residues Arg565, Lys595 and Lys596 were also reduced. Methylation of single or both CpGs significantly affected hydrogen bonding from all three Sp1 DNA binding domains, demonstrating that the consequences of cytosine modification extend beyond the neighboring nucleotides. The results indicate that cytosine methylation causes subtle structural alterations in Sp1 binding sites consequently resulting in inhibition of side chain interactions critical for specific base recognition and reduction of the binding affinity of Sp1. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Identification of protein–protein interfaces by decreased amide proton solvent accessibility

    PubMed Central

    Mandell, Jeffrey G.; Falick, Arnold M.; Komives, Elizabeth A.

    1998-01-01

    Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibility changes and not conformational changes were detected. A single mass spectrum of the peptic digest mixture was analyzed to determine the deuterium content of all proteolytic fragments of the protein. The protein–protein interface was reliably indicated by those peptides that retained more deuterons in the complex compared with control experiments in which only one protein was present. The method was used to identify the kinase inhibitor [PKI(5–24)] and ATP-binding sites in the cyclic-AMP-dependent protein kinase. Three overlapping peptides identified the ATP-binding site, three overlapping peptides identified the glycine-rich loop, and two peptides identified the PKI(5–24)-binding site. A complex of unknown structure also was analyzed, human α-thrombin bound to an 83-aa fragment of human thrombomodulin [TMEGF(4–5)]. Five peptides from thrombin showed significantly decreased solvent accessibility in the complex. Three peptides identified the anion-binding exosite I, confirming ligand competition experiments. Two peptides identified a new region of thrombin near the active site providing a potential mechanism of how thrombomodulin alters thrombin substrate specificity. PMID:9843953

  3. Effects of hexamethonium, phenothiazines, propranolol and ephedrine on acetylcholinesterase carbamylation by physostigmine, aldicarb and carbaryl: interaction between the active site and the functionally distinct peripheral sites in acetylcholinesterase.

    PubMed

    Singh, A K; Spassova, D

    1998-01-01

    Physostigmine, aldicarb and carbaryl were potent inhibitors of acetylcholinesterase (AChE). The physostigmine-inhibited AChE fluoresced at 300 nm excitation and 500 nm emission wavelengths, but the aldicarb and carbaryl inhibited enzyme did not. This suggests that the carbamylated active center is not the fluorescing site in AChE. The fluorescence intensity of physostigmine-inhibited AChE decreased with increasing the substrate (acetylthiocholine) concentration, thus indicating that physostigmine binding to the active site is essential for the development of fluorescence. Thus, the physostigmine-inhibited AChE fluoresces due to the binding of trimethylpyrrolo[2,3-b]indol (TMPI) moiety, formed by the hydrolysis of physostigmine, to a peripheral site in AChE. The fluorescence intensity of the physostigmine-inhibited enzyme decreased when the inhibited-enzyme was dialyzed for either 30 min that poorly reactivated the enzyme or 180 min that fully reactivated the enzyme. This suggests that dialysis dissociates the AChE-TMPI complex much faster than it reactivates the carbamylated AChE. Ephedrine, propranolol and phenothiazines including trifluoparazine (TPZ) caused non-competitive inhibition, while hexamethonium caused an uncompetitive inhibition of AChE activity. TPZ, upon binding with AChE, formed a fluorescent TPZ-enzyme complex. The fluorescence intensity of TPZ-AChE complex was effectively decreased by ephedrine, but not by propranolol or hexamethonium. This indicates that TPZ and ephedrine bind to the same site in AChE which is different from the site/or sites to which propranolol or hexamethonium bind. Hexamethonium protected AChE from inhibition by carbamates and decreased the fluorescence intensity of the physostigmine-inhibited AChE. Phenothiazines and ephedrine did not modulate the enzyme inhibition or the fluorescence intensity of the physostigmine-inhibited AChE. Propranolol and TPZ potentiated the enzyme inhibition and increased the fluorescence intensity in the presence of physostigmine. These compounds, however, did not affect the inhibition of AChE by carbaryl or aldicarb. Ephedrine blocked the effects of TPZ, but did not alter the effects of propranolol on physostigmine-inhibited AChE. AChE, therefore, contains multiple peripheral binding sites which, upon binding to specific ligands, transduce differential signals to the active center.

  4. Altered Enthalpy-Entropy Compensation in Picomolar Transition State Analogues of Human Purine Nucleoside Phosphorylase†

    PubMed Central

    Edwards, Achelle A.; Mason, Jennifer M.; Clinch, Keith; Tyler, Peter C.; Evans, Gary B.; Schramm, Vern L.

    2009-01-01

    Human purine nucleoside phosphorylase (PNP) belongs to the trimeric class of PNPs and is essential for catabolism of deoxyguanosine. Genetic deficiency of PNP in humans causes a specific T-cell immune deficiency and transition state analogue inhibitors of PNP are in development for treatment of T-cell cancers and autoimmune disorders. Four generations of Immucillins have been developed, each of which contains inhibitors binding with picomolar affinity to human PNP. Full inhibition of PNP occurs upon binding to the first of three subunits and binding to subsequent sites occurs with negative cooperativity. In contrast, substrate analogue and product bind without cooperativity. Titrations of human PNP using isothermal calorimetery indicate that binding of a structurally rigid first-generation Immucillin (K d = 56 pM) is driven by large negative enthalpy values (ΔH = −21.2 kcal/mol) with a substantial entropic (-TΔS) penalty. The tightest-binding inhibitors (K d = 5 to 9 pM) have increased conformational flexibility. Despite their conformational freedom in solution, flexible inhibitors bind with high affinity because of reduced entropic penalties. Entropic penalties are proposed to arise from conformational freezing of the PNP·inhibitor complex with the entropy term dominated by protein dynamics. The conformationally flexible Immucillins reduce the system entropic penalty. Disrupting the ribosyl 5’-hydroxyl interaction of transition state analogues with PNP causes favorable entropy of binding. Tight binding of the seventeen Immucillins is characterized by large enthalpic contributions, emphasizing their similarity to the transition state. By introducing flexibility into the inhibitor structure, the enthalpy-entropy compensation pattern is altered to permit tighter binding. PMID:19425594

  5. Cell Shape Change by Drebrin.

    PubMed

    Hayashi, Kensuke

    2017-01-01

    Drebrin is localized in actin-rich regions of neuronal and non-neuronal cells. In mature neurons, its localization is strictly restricted to the postsynaptic sites. In order to understand the function of drebrin in cells, many studies have been performed to examine the effect of overexpression or knocking down of drebrin in various cell types, including neurons, myoblasts, kidney cells, and intestinal epithelial cells. In most cases alteration of cell shape and impairment or facilitation of actin-based activities of these cells were observed. Interestingly, overexpression of drebrin in matured neurons results in the alteration in dendritic spine morphology. Further studies have shown alteration in the localization of postsynaptic receptors and even changes in synaptic transmission caused by drebrin overexpression or depletion in neurons. These drebrin's effects are thought to come from drebrin's actin-cross-linking activity or competitive binding to actin against tropomyosin, fascin, and α-actinin. Furthermore, drebrin binds to various molecules, such as homer, EB3, and cell-cell junctional proteins, indicating that drebrin is a multifunctional cytoskeletal regulator.

  6. X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel.

    PubMed

    Nury, Hugues; Van Renterghem, Catherine; Weng, Yun; Tran, Alphonso; Baaden, Marc; Dufresne, Virginie; Changeux, Jean-Pierre; Sonner, James M; Delarue, Marc; Corringer, Pierre-Jean

    2011-01-20

    General anaesthetics have enjoyed long and widespread use but their molecular mechanism of action remains poorly understood. There is good evidence that their principal targets are pentameric ligand-gated ion channels (pLGICs) such as inhibitory GABA(A) (γ-aminobutyric acid) receptors and excitatory nicotinic acetylcholine receptors, which are respectively potentiated and inhibited by general anaesthetics. The bacterial homologue from Gloeobacter violaceus (GLIC), whose X-ray structure was recently solved, is also sensitive to clinical concentrations of general anaesthetics. Here we describe the crystal structures of the complexes propofol/GLIC and desflurane/GLIC. These reveal a common general-anaesthetic binding site, which pre-exists in the apo-structure in the upper part of the transmembrane domain of each protomer. Both molecules establish van der Waals interactions with the protein; propofol binds at the entrance of the cavity whereas the smaller, more flexible, desflurane binds deeper inside. Mutations of some amino acids lining the binding site profoundly alter the ionic response of GLIC to protons, and affect its general-anaesthetic pharmacology. Molecular dynamics simulations, performed on the wild type (WT) and two GLIC mutants, highlight differences in mobility of propofol in its binding site and help to explain these effects. These data provide a novel structural framework for the design of general anaesthetics and of allosteric modulators of brain pLGICs.

  7. Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice.

    PubMed

    Davies, Benjamin; Hatton, Edouard; Altemose, Nicolas; Hussin, Julie G; Pratto, Florencia; Zhang, Gang; Hinch, Anjali Gupta; Moralli, Daniela; Biggs, Daniel; Diaz, Rebeca; Preece, Chris; Li, Ran; Bitoun, Emmanuelle; Brick, Kevin; Green, Catherine M; Camerini-Otero, R Daniel; Myers, Simon R; Donnelly, Peter

    2016-02-11

    The DNA-binding protein PRDM9 directs positioning of the double-strand breaks (DSBs) that initiate meiotic recombination in mice and humans. Prdm9 is the only mammalian speciation gene yet identified and is responsible for sterility phenotypes in male hybrids of certain mouse subspecies. To investigate PRDM9 binding and its role in fertility and meiotic recombination, we humanized the DNA-binding domain of PRDM9 in C57BL/6 mice. This change repositions DSB hotspots and completely restores fertility in male hybrids. Here we show that alteration of one Prdm9 allele impacts the behaviour of DSBs controlled by the other allele at chromosome-wide scales. These effects correlate strongly with the degree to which each PRDM9 variant binds both homologues at the DSB sites it controls. Furthermore, higher genome-wide levels of such 'symmetric' PRDM9 binding associate with increasing fertility measures, and comparisons of individual hotspots suggest binding symmetry plays a downstream role in the recombination process. These findings reveal that subspecies-specific degradation of PRDM9 binding sites by meiotic drive, which steadily increases asymmetric PRDM9 binding, has impacts beyond simply changing hotspot positions, and strongly support a direct involvement in hybrid infertility. Because such meiotic drive occurs across mammals, PRDM9 may play a wider, yet transient, role in the early stages of speciation.

  8. Determination of the molecular basis for a limited dimorphism, N417K, in the Plasmodium vivax Duffy-binding protein.

    PubMed

    McHenry, Amy M; Barnes, Samantha J; Ntumngia, Francis B; King, Christopher L; Adams, John H

    2011-01-01

    Invasion of human red blood cells by Plasmodium merozoites is vital for replication and survival of the parasite and, as such, is an attractive target for therapeutic intervention. Merozoite invasion is mediated by specific interactions between parasite ligands and host erythrocyte receptors. The P. vivax Duffy-binding protein (PvDBP) is heavily dependent on the interaction with the human Duffy blood group antigen/receptor for chemokines (DARC) for invasion. Region II of PvDBP contains many allelic polymorphisms likely to have arisen by host immune selection. Successful vaccine development necessitates a deeper understanding of the role of these polymorphisms in both parasite function and evasion of host immunity. A 3D structure of the homologous P. knowlesi DBP predicts that most variant residues are surface-exposed, including N417K, which is a dimorphic residue change that has previously been shown to be part of a linked haplotype that alters DBP sensitivity to inhibitory antibody. In natural isolates only two residues are found at this site, asparagine (N) and lysine (K). Site-directed mutagenesis of residue 417 was used to create a panel of 20 amino acid variants that were then examined for their binding phenotype and response to immune sera. Our results suggest that the observed dimorphism likely arose due to both structural requirements and immune selection pressure. To our knowledge, this is the first exhaustive examination of this kind of the role of a single amino acid residue in antigenic character and binding ability. Our results demonstrate that a single amino acid substitution can dramatically alter both the ability of the PvDBP to bind to human erythrocytes and its antigenic character.

  9. Glu-311 in External Loop 4 of the Sodium/Proline Transporter PutP Is Crucial for External Gate Closure.

    PubMed

    Bracher, Susanne; Guérin, Kamila; Polyhach, Yevhen; Jeschke, Gunnar; Dittmer, Sophie; Frey, Sabine; Böhm, Maret; Jung, Heinrich

    2016-03-04

    The available structural information on LeuT and structurally related transporters suggests that external loop 4 (eL4) and the outer end of transmembrane domain (TM) 10' participate in the reversible occlusion of the outer pathway to the solute binding sites. Here, the functional significance of eL4 and the outer region of TM10' are explored using the sodium/proline symporter PutP as a model. Glu-311 at the tip of eL4, and various amino acids around the outer end of TM10' are identified as particularly crucial for function. Substitutions at these sites inhibit the transport cycle, and affect in part ligand binding. In addition, changes at selected sites induce a global structural alteration in the direction of an outward-open conformation. It is suggested that interactions between the tip of eL4 and the peptide backbone at the end of TM10' participate in coordinating conformational alterations underlying the alternating access mechanism of transport. Together with the structural information on LeuT-like transporters, the results further specify the idea that common design and functional principles are maintained across different transport families. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Glu-311 in External Loop 4 of the Sodium/Proline Transporter PutP Is Crucial for External Gate Closure*

    PubMed Central

    Bracher, Susanne; Guérin, Kamila; Polyhach, Yevhen; Jeschke, Gunnar; Dittmer, Sophie; Frey, Sabine; Böhm, Maret; Jung, Heinrich

    2016-01-01

    The available structural information on LeuT and structurally related transporters suggests that external loop 4 (eL4) and the outer end of transmembrane domain (TM) 10′ participate in the reversible occlusion of the outer pathway to the solute binding sites. Here, the functional significance of eL4 and the outer region of TM10′ are explored using the sodium/proline symporter PutP as a model. Glu-311 at the tip of eL4, and various amino acids around the outer end of TM10′ are identified as particularly crucial for function. Substitutions at these sites inhibit the transport cycle, and affect in part ligand binding. In addition, changes at selected sites induce a global structural alteration in the direction of an outward-open conformation. It is suggested that interactions between the tip of eL4 and the peptide backbone at the end of TM10′ participate in coordinating conformational alterations underlying the alternating access mechanism of transport. Together with the structural information on LeuT-like transporters, the results further specify the idea that common design and functional principles are maintained across different transport families. PMID:26728461

  11. Identification of second arginine-glycine-aspartic acid motif of ovine vitronectin as the complement C9 binding site and its implication in bacterial infection.

    PubMed

    Prasada, Rao T; Lakshmi, Prasanth T; Parvathy, R; Murugavel, S; Karuna, Devi; Paritosh, Joshi

    2017-02-01

    Vitronectin (Vn), a multifunctional protein of blood and extracellular matrix, interacts with complement C9. This interaction may modulate innate immunity. Details of Vn-C9 interactions are limited. Vn-C9 interactions were assessed by employing a goat homologous system and observing Vn binding to C9 in three different assays. Using recombinant fragments, C9 binding was mapped to the N-terminus of Vn. Site directed mutagenesis was performed to alter the second arginine glycine aspartic acid (RGD) sequence (RGD-2) of Vn. Changing R to G or D to A in RGD-2 caused significant decrease in Vn binding to C9 whereas changing of R to G in the first RGD motif (RGD-1) had no effect on Vn binding to C9. These results imply that the RGD-2 of goat Vn is involved in C9 binding. In a competitive binding assay, the presence of soluble RGD peptide inhibited Vn binding to C9 whereas heparin had no effect. Vn binding to C9 was also evaluated in terms of bacterial pathogenesis. Serum dependent inhibition of Escherichia coli growth was significantly reverted when Vn or its N-fragment were included in the assay. The C-fragment, which did not support C9 binding, also partly nullified serum-dependent inhibition of bacterial growth, probably through other serum component(s). © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  12. Structural Studies of a Rationally Selected Multi-Drug Resistant HIV-1 Protease Reveal Synergistic Effect of Distal Mutations on Flap Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agniswamy, Johnson; Louis, John M.; Roche, Julien

    We report structural analysis of HIV protease variant PRS17 which was rationally selected by machine learning to represent wide classes of highly drug-resistant variants. Crystal structures were solved of PRS17 in the inhibitor-free form and in complex with antiviral inhibitor, darunavir. Despite its 17 mutations, PRS17 has only one mutation (V82S) in the inhibitor/substrate binding cavity, yet exhibits high resistance to all clinical inhibitors. PRS17 has none of the major mutations (I47V, I50V, I54ML, L76V and I84V) associated with darunavir resistance, but has 10,000-fold weaker binding affinity relative to the wild type PR. Comparable binding affinity of 8000-fold weaker thanmore » PR is seen for drug resistant mutant PR20, which bears 3 mutations associated with major resistance to darunavir (I47V, I54L and I84V). Inhibitor-free PRS17 shows an open flap conformation with a curled tip correlating with G48V flap mutation. NMR studies on inactive PRS17 D25N unambiguously confirm that the flaps adopt mainly an open conformation in solution very similar to that in the inhibitor-free crystal structure. In PRS17, the hinge loop cluster of mutations, E35D, M36I and S37D, contributes to the altered flap dynamics by a mechanism similar to that of PR20. An additional K20R mutation anchors an altered conformation of the hinge loop. Flap mutations M46L and G48V in PRS17/DRV complex alter the Phe53 conformation by steric hindrance between the side chains. Unlike the L10F mutation in PR20, L10I in PRS17 does not break the inter-subunit ion pair or diminish the dimer stability, consistent with a very low dimer dissociation constant comparable to that of wild type PR. Distal mutations A71V, L90M and I93L propagate alterations to the catalytic site of PRS17. PRS17 exhibits a molecular mechanism whereby mutations act synergistically to alter the flap dynamics resulting in significantly weaker binding yet maintaining active site contacts with darunavir.« less

  13. An imidazopyridine anxiolytic alters glucose tolerance in patients: a pilot investigation.

    PubMed

    Bottaï, T; Cartault, F; Pouget, R; Blayac, J P; Petit, P

    1995-02-01

    We have recently shown that compounds with high affinity for peripheral-type benzodiazepine receptors inhibited glucose-induced insulin secretion in vitro. We therefore performed an oral glucose tolerance test in anxious inpatients treated with the imidazopyridine derivative alpidem, which has been shown to display high affinity for these binding sites. The test was performed before and after 1 week of daily administration of the drug. As compared with pretreatment values, a significant alteration of the insulin response to glucose was observed. It is suggested that daily administration of alpidem, at therapeutically effective doses for the treatment of anxiety, may alter glucose tolerance.

  14. Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin

    PubMed Central

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs. PMID:25861047

  15. Luteinizing hormone-releasing hormone inactivation by purified pituitary plasma membranes: effects of receptor-binding studies.

    PubMed

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C

    1979-05-01

    Inactivation of LHRH by purified bovine pituitary plasma membranes was studied in vitro. After incubation of [125I]iodo-LHRH with plasma membranes, the amount of tracer bound to the pellet was measured, and the integrity of the unbound tracer in the supernatant was assessed. Reduction in ability to bind to anti-LHRH serum and to rebind to plasma membranes together with altered electrophoretic mobility on polyacrylamide gels showed that the unbound [125I]iodo-LHRH was inactivated. LHRH inactivation occurred rapidly and was dependent upon membrane concentration and incubation temperature. These results indicate that hormone inactivation must be taken into account in the interpretation of LHRH-receptor interactions. During 37 C incubations, the apparent absence of specific LHRH binding can be explained by inactivation of tracer hormone. Significant LHRH inactivation also occurred at 0 C, which in part explains the insensitivity of LHRH receptor assays. Assessment of LHRH inactivation by different particulate subcellular fractions of pituitary tissue showed that the inactivating enzyme was associated with the plasma membranes; other organelles did not alter LHRH. The enzyme appeared to be an integral part of the plasma membrane structure, since enzymic activity could not be removed by washing without reducing specific LHRH binding. Additionally, reduction of LHRH inactivation by the inhibitors Bacitracin and Trasylol and by magnesium was also accompanied by reduced LHRH binding. Previous studies have shown that the majority of LHRH binding to pituitary plasma membranes is to the low affinity site (approximately 10(-6) M), but the significance of this binding has been uncertain. Our findings indicate that low affinity binding probably represents binding of LHRH to the inactivating enzyme. The LHRH analog, D-Ser6(TBu), des Gly10, ethylamide, has greater biological activity than LHRH and is not inactivated to a significant extent by pituitary plasma membranes. The enhanced biological activity of the analog, therefore, may be due to its resistance to inactivation by enzymes on the pituitary cell surface. The membrane-associated inactivating enzyme could play an important role in vivo in determining the concentration of intact LHRH available at the receptor site which initiates gonadotropin release.

  16. Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding.

    PubMed

    Gandhiraman, R P; Gubala, V; Le, N C H; Nam, Le Cao Hoai; Volcke, C; Doyle, C; James, B; Daniels, S; Williams, D E

    2010-08-01

    The performances of new polymeric materials with excellent optical properties and good machinability have led the biomedical diagnostics industry to develop cheap disposable biosensor platforms appropriate for point of care applications. Zeonor, a type of cycloolefin polymer (COP), is one such polymer that presents an excellent platform for biosensor chips. These polymer substrates have to be modified to have suitable physico-chemical properties for immobilizing proteins. In this work, we have demonstrated the amine functionalization of COP substrates, by plasma enhanced chemical vapour deposition (PECVD), through codeposition of ethylene diamine and 3-aminopropyltriethoxysilane precursors, for building chemistries on the plastic chip. The elemental composition, adhesion, ageing and reactivity of the plasma polymerized film were examined. The Si-O functionality present in amino silane contributed for a good interfacial adhesion of the coating to COP substrates and also acted as a network building layer for plasma polymerization. Wet chemical modification was then carried out on the amine functionalized chips to create chemically reactive isothiocyanate sites and protein repellent fluorinated sites on the same chip. The density of the reactive and repellent sites was altered by choosing appropriate mixtures of homofunctional phenyldiisothiocyanate (PDITC), pentafluoroisothiocyanate (5FITC) and phenylisothiocyanate (PITC) compounds. By tailoring the density of reactive binding sites and protein repellent sites, the non-specific binding of ssDNA has been decreased to a significant extent. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Modeling the Interaction between Quinolinate and the Receptor for Advanced Glycation End Products (RAGE): Relevance for Early Neuropathological Processes

    PubMed Central

    Serratos, Iris N.; Castellanos, Pilar; Pastor, Nina; Millán-Pacheco, César; Rembao, Daniel; Pérez-Montfort, Ruy; Cabrera, Nallely; Reyes-Espinosa, Francisco; Díaz-Garrido, Paulina; López-Macay, Ambar; Martínez-Flores, Karina; López-Reyes, Alberto; Sánchez-García, Aurora; Cuevas, Elvis; Santamaria, Abel

    2015-01-01

    The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor involved in neurodegenerative and inflammatory disorders. RAGE induces cellular signaling upon binding to a variety of ligands. Evidence suggests that RAGE up-regulation is involved in quinolinate (QUIN)-induced toxicity. We investigated the QUIN-induced toxic events associated with early noxious responses, which might be linked to signaling cascades leading to cell death. The extent of early cellular damage caused by this receptor in the rat striatum was characterized by image processing methods. To document the direct interaction between QUIN and RAGE, we determined the binding constant (Kb) of RAGE (VC1 domain) with QUIN through a fluorescence assay. We modeled possible binding sites of QUIN to the VC1 domain for both rat and human RAGE. QUIN was found to bind at multiple sites to the VC1 dimer, each leading to particular mechanistic scenarios for the signaling evoked by QUIN binding, some of which directly alter RAGE oligomerization. This work contributes to the understanding of the phenomenon of RAGE-QUIN recognition, leading to the modulation of RAGE function. PMID:25757085

  18. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  19. Nicotine Induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    PubMed Central

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-01-01

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt −377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. PMID:21971485

  20. Berberine Induces Toxicity in HeLa Cells through Perturbation of Microtubule Polymerization by Binding to Tubulin at a Unique Site.

    PubMed

    Raghav, Darpan; Ashraf, Shabeeba M; Mohan, Lakshmi; Rathinasamy, Krishnan

    2017-05-23

    Berberine has been used traditionally for its diverse pharmacological actions. It exhibits remarkable anticancer activities and is currently under clinical trials. In this study, we report that the anticancer activity of berberine could be partly due to its inhibitory actions on tubulin and microtubule assembly. Berberine inhibited the proliferation of HeLa cells with an IC 50 of 18 μM and induced significant depolymerization of interphase and mitotic microtubules. At its IC 50 , berberine exerted a moderate G2/M arrest and mitotic block as detected by fluorescence-activated cell sorting analysis and fluorescence microscopy, respectively. In a wound closure assay, berberine inhibited the migration of HeLa cells at concentrations lower than its IC 50 , indicating its excellent potential as an anticancer agent. In vitro studies with tubulin isolated from goat brain indicated that berberine binds to tubulin at a single site with a K d of 11 μM. Berberine inhibited the assembly of tubulin into microtubules and also disrupted the preformed microtubules polymerized in the presence of glutamate and paclitaxel. Competition experiments indicated that berberine could partially displace colchicine from its binding site. Results from fluorescence resonance energy transfer, computational docking, and molecular dynamics simulations suggest that berberine forms a stable complex with tubulin and binds at a novel site 24 Å from the colchicine site on the β-tubulin. Data obtained from synchronous fluorescence analysis of the tryptophan residues of tubulin and from the Fourier transform infrared spectroscopy studies revealed that binding of berberine alters the conformation of the tubulin heterodimer, which could be the molecular mechanism behind the depolymerizing effects on tubulin assembly.

  1. Association of lipids with milk α- and β-caseins.

    PubMed

    Bourassa, P; Bekale, L; Tajmir-Riahi, H A

    2014-09-01

    We report the molecular interaction and the binding sites of cholesterol (CHOL), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethyl-ammoniumbromide (DDAB), and dioleoylphosphatidylethanolamine (DOPE) with milk α- and β-caseins in aquous solution at physiological conditions. Fourier transform infrared (FTIR), fluorescence spectroscopic methods and molecular modeling were used to determine the binding sites of lipid-protein complexes and the effect of lipid interaction on the stability and conformation of α- and β-caseins. Structural analysis showed that lipids bind casein via mainly hydrophobic contact with association constants of KCHOL-α-casein=1.0 (±0.1)×10(4) M(-1), KDOPE-α-casein=5.0 (±0.07)×10(3) M(-1), KDDAB-α-casein=2.0 (±0.06)×10(4) M(-1), KDOTAP-α-casein=1.5 (±0.6)×10(4) M(-1), KCHOL-β-casein=1.0 (±0.3)×10(4) M(-1), KDOPE-β-casein=1.5 (±0.06)×10(3) M(-1), KDDAB-β-casein=1.7 (±0.3)×10(4) M(-1) and KDOTAP-β-casein=2.1 (±0.5)×10(4) M(-1). The average number of binding sites occupied by lipid molecules on protein (n) were from 0.7 to 1.1. Docking showed different binding sites for α- and β-caseins toward lipid complexation with the free binding energies from -10 to -13 kcal/mol. Casein conformation was altered by lipid interaction with a reduction of α-helix and β-sheet and an increase of random coil and turn structure suggesting a partial protein unfolding. Cascasein; CHOLcholesterol; DOTAP1,2-dioleoyl-3-trimethylammonium-propane; DDABdioctadecyldimethylammonium bromide; DOPEdioleoylphosphatidylethanolamine; FTIRFourier transform infrared spectroscopy; CDcircular dichroism. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein–DNA Complex

    PubMed Central

    2016-01-01

    Metal ion cofactors can alter the energetics and specificity of sequence specific protein–DNA interactions, but it is unknown if the underlying effects on structure and dynamics are local or dispersed throughout the protein–DNA complex. This work uses EcoRV endonuclease as a model, and catalytically inactive lanthanide ions, which replace the Mg2+ cofactor. Nuclear magnetic resonance (NMR) titrations indicate that four Lu3+ or two La3+ cations bind, and two new crystal structures confirm that Lu3+ binding is confined to the active sites. NMR spectra show that the metal-free EcoRV complex with cognate (GATATC) DNA is structurally distinct from the nonspecific complex, and that metal ion binding sites are not assembled in the nonspecific complex. NMR chemical shift perturbations were determined for 1H–15N amide resonances, for 1H–13C Ile-δ-CH3 resonances, and for stereospecifically assigned Leu-δ-CH3 and Val-γ-CH3 resonances. Many chemical shifts throughout the cognate complex are unperturbed, so metal binding does not induce major conformational changes. However, some large perturbations of amide and side chain methyl resonances occur as far as 34 Å from the metal ions. Concerted changes in specific residues imply that local effects of metal binding are propagated via a β-sheet and an α-helix. Both amide and methyl resonance perturbations indicate changes in the interface between subunits of the EcoRV homodimer. Bound metal ions also affect amide hydrogen exchange rates for distant residues, including a distant subdomain that contacts DNA phosphates and promotes DNA bending, showing that metal ions in the active sites, which relieve electrostatic repulsion between protein and DNA, cause changes in slow dynamics throughout the complex. PMID:27786446

  3. Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties.

    PubMed

    Fedele, Laura; Newcombe, Joseph; Topf, Maya; Gibb, Alasdair; Harvey, Robert J; Smart, Trevor G

    2018-03-06

    Genetic and bioinformatic analyses have identified missense mutations in GRIN2B encoding the NMDA receptor GluN2B subunit in autism, intellectual disability, Lennox Gastaut and West Syndromes. Here, we investigated several such mutations using a near-complete, hybrid 3D model of the human NMDAR and studied their consequences with kinetic modelling and electrophysiology. The mutants revealed reductions in glutamate potency; increased receptor desensitisation; and ablation of voltage-dependent Mg 2+ block. In addition, we provide new views on Mg 2+ and NMDA channel blocker binding sites. We demonstrate that these mutants have significant impact on excitatory transmission in developing neurons, revealing profound changes that could underlie their associated neurological disorders. Of note, the NMDAR channel mutant GluN2B V618G unusually allowed Mg 2+ permeation, whereas nearby N615I reduced Ca 2+ permeability. By identifying the binding site for an NMDAR antagonist that is used in the clinic to rescue gain-of-function phenotypes, we show that drug binding may be modified by some GluN2B disease-causing mutations.

  4. Construction and properties of a temperature-sensitive mutation in the gene for the bacteriophage SPO1 DNA-binding protein TF1.

    PubMed

    Sayre, M H; Geiduschek, E P

    1990-08-01

    The Bacillus subtilis bacteriophage SPO1 encodes the DNA-binding protein TF1, a homolog of the ubiquitous type II DNA-binding proteins that are components of bacterial chromatin. The known three-dimensional structure of a related protein was used in devising a scheme of site-directed mutagenesis that led to the creation of a temperature-sensitive mutation in the TF1 gene. At the nonpermissive temperature, this mutation disrupted the temporal regulation of viral protein synthesis and processing, altered the kinetics of accumulation of at least one viral transcript, and prohibited the production of infective progeny phage. We suggest that TF1 function is required to shut off the expression of several early-middle and middle viral genes and that TF1 plays a role in phage head morphogenesis. Spontaneous second-site mutations of the temperature-sensitive mutant TF1 allele that suppressed its associated phenotypes were analyzed. These suppressor mutations conferred greater amino acid sequence homology with the type II DNA-binding protein from the thermophile Bacillus stearothermophilus.

  5. 3H[2-(2-benzofuranyl)-2-imidazoline] (BFI) binding in human platelets: modulation by tranylcypromine.

    PubMed

    Wiest, S A; Steinberg, M I

    1999-08-01

    2-(2-Benzofuranyl)-2-imidazoline (BFI) is a highly selective ligand for imidazoline-type 2 (I2) binding sites that are known to be associated with monoamine oxidase (MAO). Recently we demonstrated a potentiation of 3H-BFI binding in human but not in rat brain by the nonselective MAO inhibitor tranylcypromine. In the present studies, we evaluated the effect of tranylcypromine on the binding of 3H-BFI to human platelet inner membranes. Membranes were incubated with 3H-BFI at 22 degrees C in 50 mM Tris, 1.5 mM EDTA, pH 7.5. Saturation experiments with 3H-BFI (0.5-80 nM) were analyzed using non-linear curve fitting. Addition of tranylcypromine (0.1 mM) increased the number of 3H-BFI binding sites (Bmax=0.35+/-0.06 vs. 1.87+/-0.15 pmol/mg protein for vehicle and tranylcypromine, respectively) and increased 3H-BFI affinity slightly (KD =16.0+/-4.1 vs. 6.5+/-0.3 nM for vehicle and tranylcypromine, respectively). In competitive binding experiments using the less selective I2 ligand, 3H-idazoxan, tranylcypromine only weakly inhibited binding. Preincubation of platelet membranes with tranylcypromine (1 nM-10 microM) enhanced the Bmax of 3H-BFI binding in a concentration-dependent manner peaking at 1 microM (13 x control) and returning to near baseline at 100 microM. 3H-BFI binding was displaced monophasically (in order of decreasing potency) by BFI > or = 2-(4,5-dihydroimidazol-2-yl)quinoline (BU224) > or = cirazoline >idazoxan >(1,4-benzodioxan-2-methoxy-2-yl)-2-imidazoline (RX821002)= moxonidine. Amiloride, clorgyline, guanabenz and clonidine displayed biphasic curves with nanomolar high affinity components. Tranylcypromine altered the competition curves for all ligands (except BFI) by increasing the affinities for clonidine and RX821002 and decreasing affinities for BU224, cirazoline, guanabenz, idazoxan, clorgyline, moxonidine, and amiloride. Thus, in human platelets tranylcypromine exposes a high capacity 3H-BFI binding site distinct from previously described I2 sites that retains high affintiy for BFI but not other I2 ligands. Our results suggest that 3H-BFI and 3H-idazoxan may not be considered as interchangeable probes for the I2 binding site.

  6. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging.

    PubMed

    Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo

    2013-08-01

    γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.

  7. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    DOE PAGES

    Paugh, Steven W.; Coss, David R.; Bao, Ju; ...

    2016-02-04

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10 -16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less

  8. Removal of either N-glycan site from the envelope receptor binding domain of Moloney and Friend but not AKV mouse ecotropic gammaretroviruses alters receptor usage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoper, Ryan C.; Ferrarone, John; Yan Yuhe

    2009-09-01

    Three N-linked glycosylation sites were removed from the envelope glycoproteins of Friend, Moloney, and AKV mouse ecotropic gammaretroviruses: gs1 and gs2, in the receptor binding domain; and gs8, in a region implicated in post-binding cell fusion. Mutants were tested for their ability to infect rodent cells expressing 4 CAT-1 receptor variants. Three mutants (Mo-gs1, Mo-gs2, and Fr-gs1) infect NIH 3T3 and rat XC cells, but are severely restricted in Mus dunni cells and Lec8, a Chinese hamster cell line susceptible to ecotropic virus. This restriction is reproduced in ferret cells expressing M. dunni dCAT-1, but not in cells expressing NIHmore » 3T3 mCAT-1. Virus binding assays, pseudotype assays, and the use of glycosylation inhibitors further suggest that restriction is primarily due to receptor polymorphism and, in M. dunni cells, to glycosylation of cellular proteins. Virus envelope glycan size or type does not affect infectivity. Thus, host range variation due to N-glycan deletion is receptor variant-specific, cell-specific, virus type-specific, and glycan site-specific.« less

  9. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paugh, Steven W.; Coss, David R.; Bao, Ju

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10 -16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less

  10. Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding.

    PubMed

    Shi, Jiye; Anderson, Dina; Lynch, Berkley A; Castaigne, Jean-Gabriel; Foerch, Patrik; Lebon, Florence

    2011-10-01

    LEV (levetiracetam), an antiepileptic drug which possesses a unique profile in animal models of seizure and epilepsy, has as its unique binding site in brain, SV2A (synaptic vesicle protein 2A). Previous studies have used a chimaeric and site-specific mutagenesis approach to identify three residues in the putative tenth transmembrane helix of SV2A that, when mutated, alter binding of LEV and related racetam derivatives to SV2A. In the present paper, we report a combined modelling and mutagenesis study that successfully identifies another 11 residues in SV2A that appear to be involved in ligand binding. Sequence analysis and modelling of SV2A suggested residues equivalent to critical functional residues of other MFS (major facilitator superfamily) transporters. Alanine scanning of these and other SV2A residues resulted in the identification of residues affecting racetam binding, including Ile273 which differentiated between racetam analogues, when mutated to alanine. Integrating mutagenesis results with docking analysis led to the construction of a mutant in which six SV2A residues were replaced with corresponding SV2B residues. This mutant showed racetam ligand-binding affinity intermediate to the affinities observed for SV2A and SV2B.

  11. EFFECTS OF DIOXIN-LIKE COMPOUND CONTAMINATION ON AN ESTUARINE FISH SPECIES: ADAPTIVE CHANGES AT SPECIFIC GENETIC LOCI

    EPA Science Inventory

    Fish from a highly PCB-contaminated Superfund site (New Bedford, Massachusetts, USA) that show genetically-based tolerance to DLCs (Nacci, D. et al. 1999. Mar.Biol.134: 9-17) also have altered MHC Class II antigen-binding receptor profiles compared to a population of fish from a ...

  12. Insight into the interaction of antitubercular and anticancer compound clofazimine with human serum albumin: spectroscopy and molecular modelling.

    PubMed

    Ajmal, Mohammad Rehan; Zaidi, Nida; Alam, Parvez; Nusrat, Saima; Siddiqi, Mohd Khursheed; Badr, Gamal; Mahmoud, Mohamed H; Khan, Rizwan Hasan

    2017-01-01

    The binding of clofazimine to human serum albumin (HSA) was investigated by applying optical spectroscopy and molecular docking methods. Fluorescence quenching data revealed that clofazimine binds to protein with binding constant in the order of 10 4  M -1 , and with the increase in temperature, Stern-Volmer quenching constants gradually decreased indicating quenching mode to be static. The UV-visible spectra showed increase in absorbance upon interaction of HSA with clofazimine which further reveals formation of the drug-albumin complex. Thermodynamic parameters obtained from fluorescence data indicate that the process is exothermic and spontaneous. Forster distance (R o ) obtained from fluorescence resonance energy transfer is found to be 2.05 nm. Clofazimine impelled rise in α-helical structure in HSA as observed from far-UV CD spectra while there are minor alterations in tertiary structure of the protein. Clofazimine interacts strongly with HSA inducing secondary structure in the protein and slight alterations in protein topology as suggested by dynamic light scattering results. Moreover, docking results indicate that clofazimine binds to hydrophobic pocket near to the drug site II in HSA.

  13. Anesthetic sites and allosteric mechanisms of action on Cys-loop ligand-gated ion channels.

    PubMed

    Forman, Stuart A; Miller, Keith W

    2011-02-01

    The Cys-loop ligand-gated ion channel superfamily is a major group of neurotransmitter-activated receptors in the central and peripheral nervous system. The superfamily includes inhibitory receptors stimulated by γ-aminobutyric acid (GABA) and glycine and excitatory receptors stimulated by acetylcholine and serotonin. The first part of this review presents current evidence on the location of the anesthetic binding sites on these channels and the mechanism by which binding to these sites alters their function. The second part of the review addresses the basis for this selectivity, and the third part describes the predictive power of a quantitative allosteric model showing the actions of etomidate on γ-aminobutyric acid type A receptors (GABA(A)Rs). General anesthetics at clinical concentrations inhibit the excitatory receptors and enhance the inhibitory receptors. The location of general anesthetic binding sites on these receptors is being defined by photoactivable analogues of general anesthetics. The receptor studied most extensively is the muscle-type nicotinic acetylcholine receptor (nAChR), and progress is now being made with GABA(A)Rs. There are three categories of sites that are all in the transmembrane domain: 1) within a single subunit's four-helix bundle (intrasubunit site; halothane and etomidate on the δ subunit of AChRs); 2) between five subunits in the transmembrane conduction pore (channel lumen sites; etomidate and alcohols on nAChR); and 3) between two subunits (subunit interface sites; etomidate between the α1 and β2/3 subunits of the GABA(A)R). These binding sites function allosterically. Certain conformations of a receptor bind the anesthetic with greater affinity than others. Time-resolved photolabelling of some sites occurs within milliseconds of channel opening on the nAChR but not before. In GABA(A)Rs, electrophysiological data fit an allosteric model in which etomidate binds to and stabilizes the open state, increasing both the fraction of open channels and their lifetime. As predicted by the model, the channel-stabilizing action of etomidate is so strong that higher concentrations open the channel in the absence of agonist. The formal functional paradigm presented for etomidate may apply to other potent general anesthetic drugs. Combining photolabelling with structure-function mutational studies in the context of allosteric mechanisms should lead us to a more detailed understanding of how and where these important drugs act.

  14. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crichlow, G.; Lubetsky, J; Leng, L

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic datamore » indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.« less

  15. The genetic and functional basis of isolated 17,20-lyase deficiency.

    PubMed

    Geller, D H; Auchus, R J; Mendonça, B B; Miller, W L

    1997-10-01

    Human male sexual differentiation requires production of fetal testicular testosterone, whose biosynthesis requires steroid 17,20-lyase activity. Patients with putative isolated 17,20-lyase deficiency have been reported. The existence of true isolated 17,20-lyase deficiency, however, has been questioned because 17 alpha-hydroxylase and 17,20-lyase activities are catalyzed by a single enzyme, microsomal cytochrome P450c17, and because the index case of apparent isolated 17,20-lyase deficiency had combined deficiencies of both activities. We studied two patients with clinical and hormonal findings suggestive of isolated 17,20-lyase deficiency. We found two patients homozygous for substitution mutations in CYP17, the gene encoding P450c17. When expressed in COS-1 cells, the mutants retained 17 alpha-hydroxylase activity but had minimal 17,20-lyase activity. Substrate competition experiments suggested that the mutations did not alter the enzyme's substrate-binding capacity, but co-transfection of cells with P450 oxidoreductase, the electron donor used by P450c17, indicated that the mutants had a diminished ability to interact with redox partners. Computer-graphic modelling of P450c17 suggests that both mutations lie in or near the redox-partner binding site, on the opposite side of the haem from the substrate-binding pocket. These mutations alter electrostatic charge distribution in the redox-partner binding site, so that electron transfer for the 17,20-lyase reaction is selectively lost or diverted to uncoupling reactions. These are the first proven cases of isolated 17,20-lyase deficiency, and they demonstrate a novel mechanism for loss of enzymatic activity.

  16. Interaction between Pin1 and its natural product inhibitor epigallocatechin-3-gallate by spectroscopy and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Wang, Yu; He, Qing; Zhang, Qingyan; Du, Linfang

    2016-12-01

    The binding of epigallocatechin-3-gallate (EGCG) to wild type Pin1 in solution was studied by spectroscopic methods and molecular dynamics simulations in this research to explore the binding mode and inhibition mechanism. The binding constants and number of binding sites per Pin1 for EGCG were calculated through the Stern-Volmer equation. The values of binding free energy and thermodynamic parameters were calculated and indicated that hydrogen bonds, electrostatic interaction and Van der Waals interaction played the major role in the binding process. The alterations of Pin1 secondary structure in the presence of EGCG were confirmed by far-UV circular dichroism spectra. The binding model at atomic-level revealed that EGCG was bound to the Glu12, Lys13, Arg14, Met15 and Arg17 in WW domain. Furthermore, EGCG could also interact with Arg69, Asp112, Cys113 and Ser114 in PPIase domain.

  17. Experimental identification of specificity determinants in the domain linker of a LacI/GalR protein: bioinformatics-based predictions generate true positives and false negatives.

    PubMed

    Meinhardt, Sarah; Swint-Kruse, Liskin

    2008-12-01

    In protein families, conserved residues often contribute to a common general function, such as DNA-binding. However, unique attributes for each homolog (e.g. recognition of alternative DNA sequences) must arise from variation in other functionally-important positions. The locations of these "specificity determinant" positions are obscured amongst the background of varied residues that do not make significant contributions to either structure or function. To isolate specificity determinants, a number of bioinformatics algorithms have been developed. When applied to the LacI/GalR family of transcription regulators, several specificity determinants are predicted in the 18 amino acids that link the DNA-binding and regulatory domains. However, results from alternative algorithms are only in partial agreement with each other. Here, we experimentally evaluate these predictions using an engineered repressor comprising the LacI DNA-binding domain, the LacI linker, and the GalR regulatory domain (LLhG). "Wild-type" LLhG has altered DNA specificity and weaker lacO(1) repression compared to LacI or a similar LacI:PurR chimera. Next, predictions of linker specificity determinants were tested, using amino acid substitution and in vivo repression assays to assess functional change. In LLhG, all predicted sites are specificity determinants, as well as three sites not predicted by any algorithm. Strategies are suggested for diminishing the number of false negative predictions. Finally, individual substitutions at LLhG specificity determinants exhibited a broad range of functional changes that are not predicted by bioinformatics algorithms. Results suggest that some variants have altered affinity for DNA, some have altered allosteric response, and some appear to have changed specificity for alternative DNA ligands.

  18. Fatty acid modulated human serum albumin binding of the β-carboline alkaloids norharmane and harmane.

    PubMed

    Domonkos, Celesztina; Fitos, Ilona; Visy, Júlia; Zsila, Ferenc

    2013-12-02

    Harmane and norharmane are representative members of the large group of natural β-carboline alkaloids featured with diverse pharmacological activities. In blood, these agents are transported by human serum albumin (HSA) which has a profound impact on the pharmacokinetic and pharmacodynamic properties of many therapeutic drugs and xenobiotics. By combination of various spectroscopic methods, the present contribution is aimed to elucidate how nonesterified fatty acids (FAs), the primary endogenous ligands of HSA, affect the binding properties of harmane and norharmane. Analysis of induced circular dichroism (CD) and fluorescence spectroscopic data indicates the inclusion of the neutral form of both molecules into the binding pocket of subdomain IIIA, which hosts two FA binding sites, too. The induced CD and UV absorption spectra of harmane and norharmane exhibit peculiar changes upon addition of FAs, suggesting the formation of ternary complexes in which the lipid ligands significantly alter the binding mode of the alkaloids via cooperative allosteric mechanism. To our knowledge, it is the first instance of the demonstration of drug-FA cobinding at site IIIA. In line with these results, molecular docking calculations showed two distinct binding positions of norharmane within subdomain IIIA. The profound increase in the affinity constants of β-carbolines estimated in the presence of FAs predicts that the unbound, pharmacologically active serum fraction of these compounds strongly depends on the actual lipid binding profile of HSA.

  19. Switch II Mutants Reveal Coupling between the Nucleotide- and Actin-Binding Regions in Myosin V

    PubMed Central

    Trivedi, Darshan V.; David, Charles; Jacobs, Donald J.; Yengo, Christopher M.

    2012-01-01

    Conserved active-site elements in myosins and other P-loop NTPases play critical roles in nucleotide binding and hydrolysis; however, the mechanisms of allosteric communication among these mechanoenzymes remain unresolved. In this work we introduced the E442A mutation, which abrogates a salt-bridge between switch I and switch II, and the G440A mutation, which abolishes a main-chain hydrogen bond associated with the interaction of switch II with the γ phosphate of ATP, into myosin V. We used fluorescence resonance energy transfer between mant-labeled nucleotides or IAEDANS-labeled actin and FlAsH-labeled myosin V to examine the conformation of the nucleotide- and actin-binding regions, respectively. We demonstrate that in the absence of actin, both the G440A and E442A mutants bind ATP with similar affinity and result in only minor alterations in the conformation of the nucleotide-binding pocket (NBP). In the presence of ADP and actin, both switch II mutants disrupt the formation of a closed NBP actomyosin.ADP state. The G440A mutant also prevents ATP-induced opening of the actin-binding cleft. Our results indicate that the switch II region is critical for stabilizing the closed NBP conformation in the presence of actin, and is essential for communication between the active site and actin-binding region. PMID:22713570

  20. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.

    PubMed

    Ollikainen, Noah; de Jong, René M; Kortemme, Tanja

    2015-01-01

    Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein-ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art "fixed backbone" design methods perform poorly on these tests, we develop a new "coupled moves" design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein-ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.

  1. Lectin-mediated binding and sialoglycans of porcine surfactant protein D synergistically neutralize influenza A virus.

    PubMed

    van Eijk, Martin; Rynkiewicz, Michael J; Khatri, Kshitij; Leymarie, Nancy; Zaia, Joseph; White, Mitchell R; Hartshorn, Kevan L; Cafarella, Tanya R; Van Die, Irma; Hessing, Martin; Seaton, Barbara A; Haagsman, Henk P

    2018-05-16

    Innate immunity is critical in the early containment of influenza A virus (IAV) infection, and surfactant protein D (SP-D) plays a crucial role in the pulmonary defense against IAV. In pigs, which are important intermediate hosts during the generation of pandemic IAVs, SP-D uses its unique carbohydrate recognition domain (CRD) to interact with IAV. An N-linked CRD-glycosylation provides interactions with the sialic acid binding site of IAV, and a tripeptide loop at the lectin binding site facilitates enhanced interactions with IAV glycans. Here, to investigate both mechanisms of IAV neutralization in greater detail, we produced an N-glycosylated neckCRD fragment of porcine SP-D (RpNCRD) in HEK293 cells. X-ray crystallography disclosed that the N-glycan did not alter the CRD backbone structure including the lectin site conformation, but revealed a potential second non-lectin binding site for glycans. IAV hemagglutination inhibition, IAV aggregation and neutralization of IAV infection studies showed that RpNCRD, unlike the human analogue RhNCRD, exhibits potent neutralizing activity against pandemic A/Aichi/68 (H3N2), enabled by both porcine-specific structural features of its CRD. MS analysis revealed an N-glycan site-occupancy of >98% at Asn303 of RpNCRD with complex-type, heterogeneously branched and predominantly α(2,3) sialylated oligosaccharides. Glycan binding array data characterized both RpNCRD and RhNCRD as mannose-type lectins. RpNCRD also bound LewisY structures whereas RhNCRD bound polylactosamine-containing glycans. Presence of the N-glycan in the CRD increases the glycan binding specificity of RpNCRD. These insights increase our understanding of porcine-specific innate defense against pandemic IAV and may inform  the design of  recombinant SP-D-based antiviral drugs. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Structure-based design, synthesis and crystallization of 2-arylquinazolines as lipid pocket ligands of p38α MAPK

    PubMed Central

    Bührmann, Mike; Wiedemann, Bianca M.; Müller, Matthias P.; Hardick, Julia; Ecke, Maria

    2017-01-01

    In protein kinase research, identifying and addressing small molecule binding sites other than the highly conserved ATP-pocket are of intense interest because this line of investigation extends our understanding of kinase function beyond the catalytic phosphotransfer. Such alternative binding sites may be involved in altering the activation state through subtle conformational changes, control cellular enzyme localization, or in mediating and disrupting protein-protein interactions. Small organic molecules that target these less conserved regions might serve as tools for chemical biology research and to probe alternative strategies in targeting protein kinases in disease settings. Here, we present the structure-based design and synthesis of a focused library of 2-arylquinazoline derivatives to target the lipophilic C-terminal binding pocket in p38α MAPK, for which a clear biological function has yet to be identified. The interactions of the ligands with p38α MAPK was analyzed by SPR measurements and validated by protein X-ray crystallography. PMID:28892510

  3. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    DOE PAGES

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; ...

    2015-09-14

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less

  4. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less

  5. Glutamate Ligation in the Ni(II)- and Co(II)-Responsive Escherichia coli Transcriptional Regulator, RcnR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Carolyn E.; Musiani, Francesco; Huang, Hsin-Ting

    Escherichia coli RcnR (resistance to cobalt and nickel regulator, EcRcnR) is a metal-responsive repressor of the genes encoding the Ni(II) and Co(II) exporter proteins RcnAB by binding to PRcnAB. The DNA binding affinity is weakened when the cognate ions Ni(II) and Co(II) bind to EcRcnR in a six-coordinate site that features a (N/O)5S ligand donor-atom set in distinct sites: while both metal ions are bound by the N terminus, Cys35, and His64, Co(II) is additionally bound by His3. On the other hand, the noncognate Zn(II) and Cu(I) ions feature a lower coordination number, have a solvent-accessible binding site, and coordinatemore » protein ligands that do not include the N-terminal amine. A molecular model of apo-EcRcnR suggested potential roles for Glu34 and Glu63 in binding Ni(II) and Co(II) to EcRcnR. The roles of Glu34 and Glu63 in metal binding, metal selectivity, and function were therefore investigated using a structure/function approach. X-ray absorption spectroscopy was used to assess the structural changes in the Ni(II), Co(II), and Zn(II) binding sites of Glu → Ala and Glu → Cys variants at both positions. The effect of these structural alterations on the regulation of PrcnA by EcRcnR in response to metal binding was explored using LacZ reporter assays. These combined studies indicate that while Glu63 is a ligand for both metal ions, Glu34 is a ligand for Co(II) but possibly not for Ni(II). The Glu34 variants affect the structure of the cognate metal sites, but they have no effect on the transcriptional response. In contrast, the Glu63 variants affect both the structure and transcriptional response, although they do not completely abolish the function of EcRcnR. The structure of the Zn(II) site is not significantly perturbed by any of the glutamic acid variations. The spectroscopic and functional data obtained on the mutants were used to calculate models of the metal-site structures of EcRcnR bound to Ni(II), Co(II), and Zn(II). The results are interpreted in terms of a switch mechanism, in which a subset of the metal-binding ligands is responsible for the allosteric response required for DNA release.« less

  6. Naturally occurring deletions of hunchback binding sites in the even-skipped stripe 3+7 enhancer.

    PubMed

    Palsson, Arnar; Wesolowska, Natalia; Reynisdóttir, Sigrún; Ludwig, Michael Z; Kreitman, Martin

    2014-01-01

    Changes in regulatory DNA contribute to phenotypic differences within and between taxa. Comparative studies show that many transcription factor binding sites (TFBS) are conserved between species whereas functional studies reveal that some mutations segregating within species alter TFBS function. Consistently, in this analysis of 13 regulatory elements in Drosophila melanogaster populations, single base and insertion/deletion polymorphism are rare in characterized regulatory elements. Experimentally defined TFBS are nearly devoid of segregating mutations and, as has been shown before, are quite conserved. For instance 8 of 11 Hunchback binding sites in the stripe 3+7 enhancer of even-skipped are conserved between D. melanogaster and Drosophila virilis. Oddly, we found a 72 bp deletion that removes one of these binding sites (Hb8), segregating within D. melanogaster. Furthermore, a 45 bp deletion polymorphism in the spacer between the stripe 3+7 and stripe 2 enhancers, removes another predicted Hunchback site. These two deletions are separated by ∼250 bp, sit on distinct haplotypes, and segregate at appreciable frequency. The Hb8Δ is at 5 to 35% frequency in the new world, but also shows cosmopolitan distribution. There is depletion of sequence variation on the Hb8Δ-carrying haplotype. Quantitative genetic tests indicate that Hb8Δ affects developmental time, but not viability of offspring. The Eve expression pattern differs between inbred lines, but the stripe 3 and 7 boundaries seem unaffected by Hb8Δ. The data reveal segregating variation in regulatory elements, which may reflect evolutionary turnover of characterized TFBS due to drift or co-evolution.

  7. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca- and Fe-doped MgO(001) surface basic sites.

    PubMed

    Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto

    2012-08-02

    The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.

  8. Flexibility and mutagenic resiliency of glycosyltransferases.

    PubMed

    Bay, Marie Lund; Cuesta-Seijo, Jose A; Weadge, Joel T; Persson, Mattias; Palcic, Monica M

    2014-10-01

    The human blood group A and B antigens are synthesized by two highly homologous enzymes, glycosyltransferase A (GTA) and glycosyltransferase B (GTB), respectively. These enzymes catalyze the transfer of either GalNAc or Gal from their corresponding UDP-donors to αFuc1-2βGal-R terminating acceptors. GTA and GTB differ at only four of 354 amino acids (R176G, G235S, L266M, G268A), which alter the donor specificity from UDP-GalNAc to UDP-Gal. Blood type O individuals synthesize truncated or non-functional enzymes. The cloning, crystallization and X-ray structure elucidations for GTA and GTB have revealed key residues responsible for donor discrimination and acceptor binding. Structural studies suggest that numerous conformational changes occur during the catalytic cycle. Over 300 ABO alleles are tabulated in the blood group antigen mutation database (BGMUT) that provides a framework for structure-function studies. Natural mutations are found in all regions of GTA and GTB from the active site, flexible loops, stem region and surfaces remote from the active site. Our characterizations of natural mutants near a flexible loop (V175M), on a remote surface site (P156L), in the metal binding motif (M212V) and near the acceptor binding site (L232P) demonstrate the resiliency of GTA and GTB to mutagenesis.

  9. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca and Fe doped MgO (001) surface basic sites

    PubMed Central

    Hatch, Courtney; Orlando, Roberto

    2012-01-01

    The electronic properties of undoped and Ca or Fe doped MgO (001) surfaces, as well as their propensity towards atmospheric acidic gas (CO2, SO2 and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, Osurf, using periodic Density Functional Theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the Osurf sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe doped MgO (001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca doped MgO (001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces. PMID:22775293

  10. Human 15-LOX-1 active site mutations alter inhibitor binding and decrease potency.

    PubMed

    Armstrong, Michelle; van Hoorebeke, Christopher; Horn, Thomas; Deschamps, Joshua; Freedman, J Cody; Kalyanaraman, Chakrapani; Jacobson, Matthew P; Holman, Theodore

    2016-11-01

    Human 15-lipoxygenase-1 (h15-LOX-1 or h12/15-LOX) reacts with polyunsaturated fatty acids and produces bioactive lipid derivatives that are implicated in many important human diseases. One such disease is stroke, which is the fifth leading cause of death and the first leading cause of disability in America. The discovery of h15-LOX-1 inhibitors could potentially lead to novel therapeutics in the treatment of stroke, however, little is known about the inhibitor/active site interaction. This study utilizes site-directed mutagenesis, guided in part by molecular modeling, to gain a better structural understanding of inhibitor interactions within the active site. We have generated eight mutants (R402L, R404L, F414I, F414W, E356Q, Q547L, L407A, I417A) of h15-LOX-1 to determine whether these active site residues interact with two h15-LOX-1 inhibitors, ML351 and an ML094 derivative, compound 18. IC 50 values and steady-state inhibition kinetics were determined for the eight mutants, with four of the mutants affecting inhibitor potency relative to wild type h15-LOX-1 (F414I, F414W, E356Q and L407A). The data indicate that ML351 and compound 18, bind in a similar manner in the active site to an aromatic pocket close to F414 but have subtle differences in their specific binding modes. This information establishes the binding mode for ML094 and ML351 and will be leveraged to develop next-generation inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Structural Aspects for Evolution of [beta]-Lactamases from Penicillin-Binding Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meroueh, Samy O.; Minasov, George; Lee, Wenlin

    Penicillin-binding proteins (PBPs), biosynthetic enzymes of bacterial cell wall assembly, and {beta}-lactamases, resistance enzymes to {beta}-lactam antibiotics, are related to each other from an evolutionary point of view. Massova and Mobashery (Antimicrob. Agents Chemother. 1998, 42, 1-17) have proposed that for {beta}-lactamases to have become effective at their function as antibiotic resistance enzymes, they would have had to undergo structure alterations such that they would not interact with the peptidoglycan, which is the substrate for PBPs. A cephalosporin analogue, 7{beta}-[N-Acetyl-L-alanyl-{gamma}-D-glutamyl-L-lysine]-3-acetoxymethyl-3-cephem-carboxylic acid (compound 6), was conceived and synthesized to test this notion. The X-ray structure of the complex of this cephalosporinmore » bound to the active site of the deacylation-deficient Q120L/Y150E variant of the class C AmpC {beta}-lactamase from Escherichia coli was solved at 1.71 {angstrom} resolution. This complex revealed that the surface for interaction with the strand of peptidoglycan that acylates the active site, which is present in PBPs, is absent in the {beta}-lactamase active site. Furthermore, insertion of a peptide in the {beta}-lactamase active site at a location where the second strand of peptidoglycan in some PBPs binds has effectively abolished the possibility for such interaction with the {beta}-lactamase. A 2.6 ns dynamics simulation was carried out for the complex, which revealed that the peptidoglycan surrogate (i.e., the active-site-bound ligand) undergoes substantial motion and is not stabilized for binding within the active site. These factors taken together disclose the set of structure modifications in the antibiotic resistance enzyme that prevent it from interacting with the peptidoglycan, en route to achieving catalytic proficiency for their intended function.« less

  12. Zinc-induced modulation of SRSF6 activity alters Bim splicing to promote generation of the most potent apoptotic isoform BimS.

    PubMed

    Hara, Hirokazu; Takeda, Tatsuya; Yamamoto, Nozomi; Furuya, Keisuke; Hirose, Kazuya; Kamiya, Tetsuro; Adachi, Tetsuo

    2013-07-01

    Bim is a member of the pro-apoptotic BH3-only Bcl-2 family of proteins. Bim gene undergoes alternative splicing to produce three predominant splicing variants (BimEL, BimL and BimS). The smallest variant BimS is the most potent inducer of apoptosis. Zinc (Zn(2+)) has been reported to stimulate apoptosis in various cell types. In this study, we examined whether Zn(2+) affects the expression of Bim in human neuroblastoma SH-SY5Y cells. Zn(2+) triggered alterations in Bim splicing and induced preferential generation of BimS, but not BimEL and BimL, in a dose- and time-dependent manner. Other metals (cadmium, cobalt and copper) and stresses (oxidative, endoplasmic reticulum and genotoxic stresses) had little or no effect on the expression of BimS. To address the mechanism of Zn(2+)-induced preferential generation of BimS, which lacks exon 4, we developed a Bim mini-gene construct. Deletion analysis using the Bim mini-gene revealed that predicted binding sites of the SR protein SRSF6, also known as SRp55, are located in the intronic region adjacent to exon 4. We also found that mutations in the predicted SRSF6-binding sites abolished generation of BimS mRNA from the mutated Bim mini-gene. In addition, a UV cross-linking assay followed by Western blotting showed that SRSF6 directly bound to the predicted binding site and Zn(2+) suppressed this binding. Moreover, Zn(2+) stimulated SRSF6 hyper-phosphorylation. TG003, a cdc2-like kinase inhibitor, partially prevented Zn(2+)-induced generation of BimS and SRSF6 hyper-phosphorylation. Taken together, our findings suggest that Zn(2+) inhibits the activity of SRSF6 and promotes elimination of exon 4, leading to preferential generation of BimS. © 2013 FEBS.

  13. HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor.

    PubMed

    Wang, Hao; Jurado, Kellie A; Wu, Xiaolin; Shun, Ming-Chieh; Li, Xiang; Ferris, Andrea L; Smith, Steven J; Patel, Pratiq A; Fuchs, James R; Cherepanov, Peter; Kvaratskhelia, Mamuka; Hughes, Stephen H; Engelman, Alan

    2012-12-01

    The binding of integrase (IN) to lens epithelium-derived growth factor (LEDGF)/p75 in large part determines the efficiency and specificity of HIV-1 integration. However, a significant residual preference for integration into active genes persists in Psip1 (the gene that encodes for LEDGF/p75) knockout (KO) cells. One other cellular protein, HRP2, harbors both the PWWP and IN-binding domains that are important for LEDGF/p75 co-factor function. To assess the role of HRP2 in HIV-1 integration, cells generated from Hdgfrp2 (the gene that encodes for HRP2) and Psip1/Hdgfrp2 KO mice were infected alongside matched control cells. HRP2 depleted cells supported normal infection, while disruption of Hdgfrp2 in Psip1 KO cells yielded additional defects in the efficiency and specificity of integration. These deficits were largely restored by ectopic expression of either LEDGF/p75 or HRP2. The double-KO cells nevertheless supported residual integration into genes, indicating that IN and/or other host factors contribute to integration specificity in the absence of LEDGF/p75 and HRP2. Psip1 KO significantly increased the potency of an allosteric inhibitor that binds the LEDGF/p75 binding site on IN, a result that was not significantly altered by Hdgfrp2 disruption. These findings help to rule out the host factor-IN interactions as the primary antiviral targets of LEDGF/p75-binding site IN inhibitors.

  14. Contributions of Torpedo nicotinic acetylcholine receptor gamma Trp-55 and delta Trp-57 to agonist and competitive antagonist function.

    PubMed

    Xie, Y; Cohen, J B

    2001-01-26

    Results of affinity-labeling studies and mutational analyses provide evidence that the agonist binding sites of the nicotinic acetylcholine receptor (nAChR) are located at the alpha-gamma and alpha-delta subunit interfaces. For Torpedo nAChR, photoaffinity-labeling studies with the competitive antagonist d-[(3)H]tubocurarine (dTC) identified two tryptophans, gammaTrp-55 and deltaTrp-57, as the primary sites of photolabeling in the non-alpha subunits. To characterize the importance of gammaTrp-55 and deltaTrp-57 to the interactions of agonists and antagonists, Torpedo nAChRs were expressed in Xenopus oocytes, and equilibrium binding assays and electrophysiological recordings were used to examine the functional consequences when either or both tryptophans were mutated to leucine. Neither substitution altered the equilibrium binding of dTC. However, the deltaW57L and gammaW55L mutations decreased acetylcholine (ACh) binding affinity by 20- and 7,000-fold respectively. For the wild-type, gammaW55L, and deltaW57L nAChRs, the concentration dependence of channel activation was characterized by Hill coefficients of 1.8, 1.1, and 1.7. For the gammaW55L mutant, dTC binding at the alpha-gamma site acts not as a competitive antagonist but as a coactivator or partial agonist. These results establish that interactions with gamma Trp-55 of the Torpedo nAChR play a crucial role in agonist binding and in the agonist-induced conformational changes that lead to channel opening.

  15. A method for predicting individual residue contributions to enzyme specificity and binding-site energies, and its application to MTH1.

    PubMed

    Stewart, James J P

    2016-11-01

    A new method for predicting the energy contributions to substrate binding and to specificity has been developed. Conventional global optimization methods do not permit the subtle effects responsible for these properties to be modeled with sufficient precision to allow confidence to be placed in the results, but by making simple alterations to the model, the precisions of the various energies involved can be improved from about ±2 kcal mol -1 to ±0.1 kcal mol -1 . This technique was applied to the oxidized nucleotide pyrophosphohydrolase enzyme MTH1. MTH1 is unusual in that the binding and reaction sites are well separated-an advantage from a computational chemistry perspective, as it allows the energetics involved in docking to be modeled without the need to consider any issues relating to reaction mechanisms. In this study, two types of energy terms were investigated: the noncovalent interactions between the binding site and the substrate, and those responsible for discriminating between the oxidized nucleotide 8-oxo-dGTP and the normal dGTP. Both of these were investigated using the semiempirical method PM7 in the program MOPAC. The contributions of the individual residues to both the binding energy and the specificity of MTH1 were calculated by simulating the effect of mutations. Where comparisons were possible, all calculated results were in agreement with experimental observations. This technique provides fresh insight into the binding mechanism that enzymes use for discriminating between possible substrates.

  16. Alteration of the C-terminal ligand specificity of the erbin PDZ domain by allosteric mutational effects.

    PubMed

    Murciano-Calles, Javier; McLaughlin, Megan E; Erijman, Ariel; Hooda, Yogesh; Chakravorty, Nishant; Martinez, Jose C; Shifman, Julia M; Sidhu, Sachdev S

    2014-10-23

    Modulation of protein binding specificity is important for basic biology and for applied science. Here we explore how binding specificity is conveyed in PDZ (postsynaptic density protein-95/discs large/zonula occludens-1) domains, small interaction modules that recognize various proteins by binding to an extended C terminus. Our goal was to engineer variants of the Erbin PDZ domain with altered specificity for the most C-terminal position (position 0) where a Val is strongly preferred by the wild-type domain. We constructed a library of PDZ domains by randomizing residues in direct contact with position 0 and in a loop that is close to but does not contact position 0. We used phage display to select for PDZ variants that bind to 19 peptide ligands differing only at position 0. To verify that each obtained PDZ domain exhibited the correct binding specificity, we selected peptide ligands for each domain. Despite intensive efforts, we were only able to evolve Erbin PDZ domain variants with selectivity for the aliphatic C-terminal side chains Val, Ile and Leu. Interestingly, many PDZ domains with these three distinct specificities contained identical amino acids at positions that directly contact position 0 but differed in the loop that does not contact position 0. Computational modeling of the selected PDZ domains shows how slight conformational changes in the loop region propagate to the binding site and result in different binding specificities. Our results demonstrate that second-sphere residues could be crucial in determining protein binding specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Sugar-binding and crystallographic studies of an arabinose-binding protein mutant (Met108Leu) that exhibits enhanced affinity and altered specificity.

    PubMed

    Vermersch, P S; Lemon, D D; Tesmer, J J; Quiocho, F A

    1991-07-16

    In addition to hydrogen bonds, van der Waals forces contribute to the affinity of protein-carbohydrate interactions. Nonpolar van der Waals contacts in the complexes of the L-arabinose-binding protein (ABP) with monosaccharides have been studied by means of site-directed mutagenesis, equilibrium and rapid kinetic binding techniques, and X-ray crystallography. ABP, a periplasmic transport receptor of Escherichia coli, binds L-arabinose, D-galactose, and D-fucose with preferential affinity in the order of Ara greater than Gal much greater than Fuc. Well-refined, high-resolution structures of ABP complexed with the three sugars revealed that the structural differences in the ABP-sugar complexes are localized around C5 of the sugars, where the equatorial H of Ara has been substituted for CH3 (Fuc) or CH2OH (Gal). The side chain of Met108 undergoes a sterically dictated, ligand-specific, conformational change to optimize nonpolar interactions between its methyl group and the sugar. We found that the Met108Leu ABP binds Gal tighter than wild-type ABP binds Ara and exhibits a preference for ligand in the order of Gal much greater than Fuc greater than Ara. The differences in affinity can be attributed to differences in the dissociation rates of the ABP-sugar complexes. We have refined at better than 1.7-A resolution the crystal structures of the Met108Leu ABP complexed with each of the sugars and offer a molecular explanation for the altered binding properties.

  18. A flexible docking scheme to explore the binding selectivity of PDZ domains.

    PubMed

    Gerek, Z Nevin; Ozkan, S Banu

    2010-05-01

    Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using ROSETTALIGAND, we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density-95/Dlg/ZO-1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 A. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately.

  19. A flexible docking scheme to explore the binding selectivity of PDZ domains

    PubMed Central

    Gerek, Z Nevin; Ozkan, S Banu

    2010-01-01

    Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using RosettaLigand, we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density-95/Dlg/ZO-1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 Å. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately. PMID:20196074

  20. A Single Amino Acid Substitution in the Active Site of Escherichia coli Aspartate Transcarbamoylase Prevents the Allosteric Transition

    PubMed Central

    Stieglitz, Kimberly A.; Pastra-Landis, Styliani C.; Xia, Jiarong; Tsuruta, Hiro; Kantrowitz, Evan R.

    2005-01-01

    Modeling of the tetrahedral intermediate within the active site of Escherichia coli aspartate transcarbamoylase revealed a specific interaction with the side chain of Gln137, an interaction not previously observed in the structure of the X-ray enzyme in the presence of N-phosphonacetyl-L-aspartate (PALA). Previous site-specific mutagenesis experiments showed that when Gln137 was replaced by alanine, the resulting mutant enzyme (Q137A) exhibited approximately 50-fold less activity than the wild-type enzyme, exhibited no homotropic cooperativity, and the binding of both carbamoyl phosphate and aspartate were extremely compromised. To elucidate the structural alterations in the mutant enzyme that might lead to such pronounced changes in kinetic and binding properties, the Q137A enzyme was studied by time-resolved small-angle X-ray scattering and its structure was determined in the presence of PALA to 2.7Å resolution. Time-resolved small-angle X-ray scattering established that the natural substrates, carbamoyl phosphate and L-aspartate, do not induce in the Q137A enzyme the same conformational changes as observed for the wild-type enzyme, although the scattering pattern of the Q137A and wild-type enzymes in the presence of PALA were identical. The overall structure of the Q137A enzyme is similar to that of the R-state structure of wild-type enzyme with PALA bound. However, there are differences in the manner by which the Q137A enzyme coordinates PALA, especially in the side chain positions of Arg105 and His134. The replacement of Gln137 by Ala also has a dramatic effect on the electrostatics of the active site. These data taken together suggest that the side chain of Gln137 in the wild-type enzyme is required for the binding of carbamoyl phosphate in the proper orientation so as to induce conformational changes required for the creation of the high-affinity aspartate binding site. The inability of carbamoyl phosphate to create the high-affinity binding site in the Q137A enzyme results in an enzyme locked in the low activity low affinity T state. These results emphasize the absolute requirement of the binding of carbamoyl phosphate for the creation of the high-affinity aspartate binding site and for inducing the homotropic cooperativity in aspartate transcarbamoylase. PMID:15890205

  1. Inhalational anaesthetics and n-alcohols share a site of action in the neuronal Shaw2 Kv channel

    PubMed Central

    Bhattacharji, Aditya; Klett, Nathan; Go, Ramon Christopher V; Covarrubias, Manuel

    2010-01-01

    Background and purpose: Neuronal ion channels are key targets of general anaesthetics and alcohol, and binding of these drugs to pre-existing and relatively specific sites is thought to alter channel gating. However, the underlying molecular mechanisms of this action are still poorly understood. Here, we investigated the neuronal Shaw2 voltage-gated K+ (Kv) channel to ask whether the inhalational anaesthetic halothane and n-alcohols share a binding site near the activation gate of the channel. Experimental approach: Focusing on activation gate mutations that affect channel modulation by n-alcohols, we investigated n-alcohol-sensitive and n-alcohol-resistant Kv channels heterologously expressed in Xenopus oocytes to probe the functional modulation by externally applied halothane using two-electrode voltage clamping and a gas-tight perfusion system. Key results: Shaw2 Kv channels are reversibly inhibited by halothane in a dose-dependent and saturable manner (K0.5= 400 µM; nH= 1.2). Also, discrete mutations in the channel's S4S5 linker are sufficient to reduce or confer inhibition by halothane (Shaw2-T330L and Kv3.4-G371I/T378A respectively). Furthermore, a point mutation in the S6 segment of Shaw2 (P410A) converted the halothane-induced inhibition into halothane-induced potentiation. Lastly, the inhibition resulting from the co-application of n-butanol and halothane is consistent with the presence of overlapping binding sites for these drugs and weak binding cooperativity. Conclusions and implications: These observations strongly support a molecular model of a general anaesthetic binding site in the Shaw2 Kv channel. This site may involve the amphiphilic interface between the S4S5 linker and the S6 segment, which plays a pivotal role in Kv channel activation. PMID:20136839

  2. Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Casey L.; Kaiser, Stephen E.; Bolaños, Ben

    S-Adenosyl-L-methionine (SAM) is an enzyme cofactor used in methyl transfer reactions and polyamine biosynthesis. The biosynthesis of SAM from ATP and L-methionine is performed by the methionine adenosyltransferase enzyme family (Mat; EC 2.5.1.6). Human methionine adenosyltransferase 2A (Mat2A), the extrahepatic isoform, is often deregulated in cancer. We identified a Mat2A inhibitor, PF-9366, that binds an allosteric site on Mat2A that overlaps with the binding site for the Mat2A regulator, Mat2B. Studies exploiting PF-9366 suggested a general mode of Mat2A allosteric regulation. Allosteric binding of PF-9366 or Mat2B altered the Mat2A active site, resulting in increased substrate affinity and decreased enzymemore » turnover. These data support a model whereby Mat2B functions as an inhibitor of Mat2A activity when methionine or SAM levels are high, yet functions as an activator of Mat2A when methionine or SAM levels are low. The ramification of Mat2A activity modulation in cancer cells is also described.« less

  3. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  4. Probing structurally altered and aggregated states of therapeutically relevant proteins using GroEL coupled to bio-layer interferometry.

    PubMed

    Naik, Subhashchandra; Kumru, Ozan S; Cullom, Melissa; Telikepalli, Srivalli N; Lindboe, Elizabeth; Roop, Taylor L; Joshi, Sangeeta B; Amin, Divya; Gao, Phillip; Middaugh, C Russell; Volkin, David B; Fisher, Mark T

    2014-10-01

    The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6-8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay's experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates. © 2014 The Protein Society.

  5. Probing structurally altered and aggregated states of therapeutically relevant proteins using GroEL coupled to bio-layer interferometry

    PubMed Central

    Naik, Subhashchandra; Kumru, Ozan S; Cullom, Melissa; Telikepalli, Srivalli N; Lindboe, Elizabeth; Roop, Taylor L; Joshi, Sangeeta B; Amin, Divya; Gao, Phillip; Middaugh, C Russell; Volkin, David B; Fisher, Mark T

    2014-01-01

    The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6–8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay’s experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates. PMID:25043635

  6. Reasons of carcinogenesis indicate a big-bang inside: a hypothesis for the aberration of DNA methylation.

    PubMed

    Roy, A; Roy Chattopadhyay, N

    2013-07-01

    Cancer involves various sets of altered gene functions which embrace all the three basic mechanisms of regulation of gene expression. However, no common mechanism is inferred till date for this versatile disease and thus no full proof remedy can be offered. Here we show that the basic mechanisms are interlinked and indicate towards one of those mechanisms as being the superior one; the methylation of cytosines in specific DNA sequences, for the initiation and maintenance of carcinogenesis. The analyses of the previous reports and the nucleotide sequences of the DNA methyltransferases strongly support the assumption that the mutation(s) in the DNA-binding site(s) of DNA-methyltransferases acts as a master regulator; though it continues the cycle from mutation to repair to methylation. We anticipate that our hypothesis will start a line of study for the proposal of a treatment regime for cancers by introducing wild type methyltransferases in the diseased cells and/or germ cells, and/or by targeting ligands to the altered binding domain(s) where a mutation in the concerned enzyme(s) is seen. Copyright © 2013. Published by Elsevier Ltd.

  7. Omega-oxidation impairs oxidizability of polyenoic fatty acids by 15-lipoxygenases: consequences for substrate orientation at the active site.

    PubMed Central

    Ivanov, I; Schwarz, K; Holzhütter, H G; Myagkova, G; Kühn, H

    1998-01-01

    During oxygenation by 15-lipoxygenases, polyenoic fatty acids are bound at the active site in such a way that the omega-terminus of the fatty acids penetrates into the substrate binding pocket. In contrast, for arachidonic acid 5-lipoxygenation, an inverse head to tail orientation has been suggested. However, an inverse orientation may be hindered by the large energy barrier associated with burying the charged carboxylate group in the hydrophobic environment of the substrate binding cleft. We studied the oxygenation kinetics of omega-modified fatty acids by 15-lipoxygenases and found that omega-hydroxylation strongly impaired substrate affinity (higher Km), but only moderately altered Vmax. In contrast, omega-carboxylation completely prevented the lipoxygenase reaction; however, methylation of the additional carboxylate group restored the activity. Arg403 of the human 15-lipoxygenase has been implicated in fatty acid binding by forming a salt bridge with the carboxylate group, and thus mutation of this amino acid to an uncharged residue was supposed to favour an inverse substrate orientation. The prepared Arg403-->Leu mutant of the rabbit 15-lipoxygenase was found to be a less effective catalyst of linoleic acid oxygenation. However, the oxygenation rate of omega-hydroxyarachidonic acid was similar when the wild-type and mutant enzyme were compared, and the patterns of oxygenation products were identical for both enzyme species. These data suggest that introduction of a polar, or even charged residue, at the omega-terminus of substrate fatty acids in connection with mutation of Arg403 may not alter substrate alignment at the active site of 15-lipoxygenases. PMID:9820810

  8. Agmatine, an endogenous ligand at imidazoline binding sites, does not antagonize the clonidine-mediated blood pressure reaction

    PubMed Central

    Raasch, Walter; Schäfer, Ulrich; Qadri, Fatimunnisa; Dominiak, Peter

    2002-01-01

    Since agmatine has been identified as a clonidine displacing substance (CDS), the aim of this study was to investigate whether agmatine can mimic CDS-induced cardiovascular reactions in organ bath experiments, pithed spontaneously hypertensive rats (SHR) and anaesthetized SHR.Intravenously-administered agmatine significantly reduced the blood pressure and heart rate of anaesthetized SHR at doses higher than 1 and 3 mg kg−1, respectively. These effects are probably mediated via central mechanisms, since there was an approximate 8 fold rightward shift of the dose-response curve in the pithed SHR (indicating a weakened cardiovascular effect). Moreover, in organ bath experiments, agmatine failed to alter the contractility of intact or endothelium-denuded aortal rings. When agmatine was administered i.c.v. to anaesthetized SHR, blood pressure was increased without any alteration of heart rate, whereas blood pressure was unchanged and heart rate was increased after injection into the 4th brain ventricle. This suggests that haemodynamic reaction patterns after central application are related to distinct influences on central cardiovascular mechanisms.Agmatine reduces noradrenaline release in pithed SHR while α2-adrenoceptors are irreversibly blocked with phenoxybenzamine, but not while I1-binding sites are selectively blocked with AGN192403. This suggests that agmatine may modulate noradrenaline release in the same way that clonidine does, i.e. via imidazoline binding sites; this involves a reduction in sympathetic tone which in turn reduces blood pressure and heart rate.Finally, CDS-like cardiovascular activity appears not to be due to agmatine, since (i) blood pressure in anaesthetized SHR is decreased by agmatine and clonidine, and (ii) agmatine did not antagonize the blood pressure reaction to clonidine in pithed or anaesthetized SHR. PMID:11834614

  9. Crystal Structures of Penicillin-Binding Protein 2 From Penicillin-Susceptible And -Resistant Strains of Neisseria Gonorrhoeae Reveal An Unexpectedly Subtle Mechanism for Antibiotic Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, A.J.; Tomberg, J.; Deacon, A.M.

    Penicillin-binding protein 2 (PBP2) from N. gonorrhoeae is the major molecular target for {beta}-lactam antibiotics used to treat gonococcal infections. PBP2 from penicillin-resistant strains of N. gonorrhoeae harbors an aspartate insertion after position 345 (Asp-345a) and 4-8 additional mutations, but how these alter the architecture of the protein is unknown. We have determined the crystal structure of PBP2 derived from the penicillin-susceptible strain FA19, which shows that the likely effect of Asp-345a is to alter a hydrogen-bonding network involving Asp-346 and the SXN triad at the active site. We have also solved the crystal structure of PBP2 derived from themore » penicillin-resistant strain FA6140 that contains four mutations near the C terminus of the protein. Although these mutations lower the second order rate of acylation for penicillin by 5-fold relative to wild type, comparison of the two structures shows only minor structural differences, with the positions of the conserved residues in the active site essentially the same in both. Kinetic analyses indicate that two mutations, P551S and F504L, are mainly responsible for the decrease in acylation rate. Melting curves show that the four mutations lower the thermal stability of the enzyme. Overall, these data suggest that the molecular mechanism underlying antibiotic resistance contributed by the four mutations is subtle and involves a small but measurable disordering of residues in the active site region that either restricts the binding of antibiotic or impedes conformational changes that are required for acylation by {beta}-lactam antibiotics.« less

  10. Analysis of the microRNA signature in left atrium from patients with valvular heart disease reveals their implications in atrial fibrillation.

    PubMed

    Doñate Puertas, Rosa; Jalabert, Audrey; Meugnier, Emmanuelle; Euthine, Vanessa; Chevalier, Philippe; Rome, Sophie

    2018-01-01

    Among the potential factors which may contribute to the development and perpetuation of atrial fibrillation, dysregulation of miRNAs has been suggested. Thus in this study, we have quantified the basal expressions of 662 mature human miRNAs in left atrium (LA) from patients undergoing cardiac surgery for valve repair, suffering or not from atrial fibrillation (AF) by using TaqMan® Low Density arrays (v2.0). Among the 299 miRNAs expressed in all patients, 42 miRNAs had altered basal expressions in patients with AF. Binding-site predictions with Targetscan (conserved sites among species) indicated that the up- and down-regulated miRNAs controlled respectively 3,310 and 5,868 genes. To identify the most relevant cellular functions under the control of the altered miRNAs, we focused on the 100 most targeted genes of each list and identified 5 functional protein-protein networks among these genes. Up-regulated networks were involved in synchronisation of circadian rythmicity and in the control of the AKT/PKC signaling pathway (i.e., proliferation/adhesion). Down-regulated networks were the IGF-1 pathway and TGF-beta signaling pathway and a network involved in RNA-mediated gene silencing, suggesting for the first time that alteration of miRNAs in AF would also perturbate the whole miRNA machinery. Then we crossed the list of miRNA predicted genes, and the list of mRNAs altered in similar patients suffering from AF and we found that respectively 44.5% and 55% of the up- and down-regulated mRNA are predicted to be conserved targets of the altered miRNAs (at least one binding site in 3'-UTR). As they were involved in the same biological processes mentioned above, these data demonstrated that a great part of the transcriptional defects previously published in LA from AF patients are likely due to defects at the post-transcriptional level and involved the miRNAs. Our stringent analysis permitted us to identify highly targeted protein-protein networks under the control of miRNAs in LA and, among them, to highlight those specifically affected in AF patients with altered miRNA signature. Further studies are now required to determine whether alterations of miRNA levels in AF pathology are causal or represent an adaptation to prevent cardiac electrical and structural remodeling.

  11. Shared Midgut Binding Sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa Proteins from Bacillus thuringiensis in Two Important Corn Pests, Ostrinia nubilalis and Spodoptera frugiperda

    PubMed Central

    Hernández-Rodríguez, Carmen Sara; Hernández-Martínez, Patricia; Van Rie, Jeroen; Escriche, Baltasar; Ferré, Juan

    2013-01-01

    First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the chimeric Cry1A.105 has shared binding sites either with Cry1A proteins, with Cry1Fa, or with both, in O. nubilalis and in S. frugiperda. Brush-border membrane vesicles (BBMV) from last instar larval midguts were used in competition binding assays with 125I-labeled Cry1A.105, Cry1Ab, and Cry1Fa, and unlabeled Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab and Cry2Ae. The results showed that Cry1A.105, Cry1Ab, Cry1Ac and Cry1Fa competed with high affinity for the same binding sites in both insect species. However, Cry2Ab and Cry2Ae did not compete for the binding sites of Cry1 proteins. Therefore, according to our results, the development of cross-resistance among Cry1Ab/Ac, Cry1A.105, and Cry1Fa proteins is possible in these two insect species if the alteration of shared binding sites occurs. Conversely, cross-resistance between these proteins and Cry2A proteins is very unlikely in such case. PMID:23861865

  12. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tingting; Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Chen, Man

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a singlemore » site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination. Black-Right-Pointing-Pointer Single CpG methylation located at Pax6 binding motif regulates StAR expression.« less

  13. Molecular analysis of the differential hepatic expression of rat kininogen family genes.

    PubMed Central

    Chen, H M; Liao, W S

    1993-01-01

    Serum concentration of rat T1 kininogen increases 20- to 30-fold in response to acute inflammation, an induced hepatic synthesis regulated primarily at the transcriptional level. We have demonstrated by transient transfection analyses that rat T1 kininogen gene/chloramphenicol acetyltransferase (T1K/CAT) constructs are highly responsive to interleukin-6 and dexamethasone. In these studies we examined the regulation of a highly homologous K kininogen gene promoter and showed that it is minimally induced under identical conditions. The basal expression of the KK/CAT construct was, however, five- to sevenfold higher than that of the analogous T1K/CAT construct. Promoter-swapping experiments to examine the molecular basis of this differentially regulated basal expression showed that at least two K kininogen promoter regions are important for conferring its high basal expression: a distal 19-bp region (C box) constituted a binding site for C/EBP family proteins, and a proximal 66-bp region contained two adjacent binding sites for hepatocyte nuclear factor 3 (HNF-3). While the C box in the K kininogen promoter was able to interact with C/EBP transcription factors, the T1 kininogen promoter C box could not. In addition, HNF-3 binding sites of the K kininogen promoter demonstrated stronger affinities than those of the T1 kininogen promoter. Since C/EBP and HNF-3 are highly enriched in the liver and are known to enhance transcription of liver-specific genes, these differences in their binding activities thus accounted for the K kininogen gene's higher basal expression. Our studies demonstrated that evolutionary divergence of a few critical nucleotides may lead to subtle changes in the binding affinities of a transcription factor to its recognition site, profoundly altering expression of the downstream gene. Images PMID:8413271

  14. γ-Secretase binding sites in aged and Alzheimer’s disease human cerebrum: The choroid plexus as a putative origin of CSF Aβ

    PubMed Central

    Liu, Fei; Xue, Zhi-Qin; Deng, Si-Hao; Kun, Xiong; Luo, Xue-Gang; Patrylo, Peter R.; Rose, Gregory M.; Cai, Huaibin; Struble, Robert G.; Cai, Yan; Yan, Xiao-Xin

    2013-01-01

    Deposition of β-amyloid (Aβ) peptides, cleavage products of β-amyloid precursor protein (APP) by β-secretase-1 (BACE1) and γ-secretase, is a neuropathological hallmark of Alzheimer’s disease (AD). γ-Secretase inhibition is a therapeutical anti-Aβ approach, although less is clear about the change of the enzyme’s activity in AD brain. Cerebrospinal fluid (CSF) Aβ peptides are considered to derive from brain parenchyma, thus may serve as biomarkers for assessing cerebral amyloidosis and anti-Aβ efficacy. The present study compared active γ-secretase binding sites with Aβ deposition in aged and AD human cerebrum, and explored a possibility of Aβ production and secretion by the choroid plexus (CP). Specific binding density of [3H]-L-685,458, a radiolabeled high affinity γ-secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with comparable ages and postmortem delays. The CP in postmortem samples exhibited exceptionally high [3H]-L-685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin-1 immunoreactivity, and β-site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins but released Aβ40 and Aβ42 into the medium. These results suggest that γ-secretase activity appears not altered in the cerebrum in AD related to aged control, nor correlated with regional amyloid plaque pathology. The choroid plexus appears to represent a novel non-neuronal source in the brain that may contribute Aβ into cerebrospinal fluid, probably at reduced levels in AD. PMID:23432732

  15. Terminating DNA Tile Assembly with Nanostructured Caps.

    PubMed

    Agrawal, Deepak K; Jiang, Ruoyu; Reinhart, Seth; Mohammed, Abdul M; Jorgenson, Tyler D; Schulman, Rebecca

    2017-10-24

    Precise control over the nucleation, growth, and termination of self-assembly processes is a fundamental tool for controlling product yield and assembly dynamics. Mechanisms for altering these processes programmatically could allow the use of simple components to self-assemble complex final products or to design processes allowing for dynamic assembly or reconfiguration. Here we use DNA tile self-assembly to develop general design principles for building complexes that can bind to a growing biomolecular assembly and terminate its growth by systematically characterizing how different DNA origami nanostructures interact with the growing ends of DNA tile nanotubes. We find that nanostructures that present binding interfaces for all of the binding sites on a growing facet can bind selectively to growing ends and stop growth when these interfaces are presented on either a rigid or floppy scaffold. In contrast, nucleation of nanotubes requires the presentation of binding sites in an arrangement that matches the shape of the structure's facet. As a result, it is possible to build nanostructures that can terminate the growth of existing nanotubes but cannot nucleate a new structure. The resulting design principles for constructing structures that direct nucleation and termination of the growth of one-dimensional nanostructures can also serve as a starting point for programmatically directing two- and three-dimensional crystallization processes using nanostructure design.

  16. Allosteric regulation by oleamide of the binding properties of 5-hydroxytryptamine7 receptors.

    PubMed

    Hedlund, P B; Carson, M J; Sutcliffe, J G; Thomas, E A

    1999-12-01

    Oleamide belongs to a family of amidated lipids with diverse biological activities, including sleep induction and signaling modulation of several 5-hydroxytryptamine (5-HT) receptor subtypes, including 5-HT1A, 5-HT2A/2C, and 5-HT7. The 5-HT7 receptor, predominantly localized in the hypothalamus, hippocampus, and frontal cortex, stimulates cyclic AMP formation and is thought to be involved in the regulation of sleep-wake cycles. Recently, it was proposed that oleamide acts at an allosteric site on the 5-HT7 receptor to regulate cyclic AMP formation. We have further investigated the interaction between oleamide and 5-HT7 receptors by performing radioligand binding assays with HeLa cells transfected with the 5-HT7 receptor. Methiothepin, clozapine, and 5-HT all displaced specific [3H]5-HT (100 nM) binding, with pK(D) values of 7.55, 7.85, and 8.39, respectively. Oleamide also displaced [3H]5-HT binding, but the maximum inhibition was only 40% of the binding. Taking allosteric (see below) cooperativity into account, a K(D) of 2.69 nM was calculated for oleamide. In saturation binding experiments, oleamide caused a 3-fold decrease in the affinity of [3H]5-HT for the 5-HT7 receptor, without affecting the number of binding sites. A Schild analysis showed that the induced shift in affinity of [3H]5-HT reached a plateau, unlike that of a competitive inhibitor, illustrating the allosteric nature of the interaction between oleamide and the 5-HT7 receptor. Oleic acid, the product of oleamide hydrolysis, had a similar effect on [3H]5-HT binding, whereas structural analogs of oleamide, trans-9,10-octadecenamide, cis-8,9-octadecenamide, and erucamide, did not alter [3H]5-HT binding significantly. The findings support the hypothesis that oleamide acts via an allosteric site on the 5-HT7 receptor regulating receptor affinity.

  17. Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis.

    PubMed Central

    Arakawa, H; Neault, J F; Tajmir-Riahi, H A

    2001-01-01

    Ag(I) is a strong nucleic acids binder and forms several complexes with DNA such as types I, II, and III. However, the details of the binding mode of silver(I) in the Ag-polynucleotides remains unknown. Therefore, it was of interest to examine the binding of Ag(I) with calf-thymus DNA and bakers yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentration of DNA or RNA and various concentrations of Ag(I). Fourier transform infrared spectroscopy and capillary electrophoresis were used to analyze the Ag(I) binding mode, the binding constant, and the polynucleotides' structural changes in the Ag-DNA and Ag-RNA complexes. The spectroscopic results showed that in the type I complex formed with DNA, Ag(I) binds to guanine N7 at low cation concentration (r = 1/80) and adenine N7 site at higher concentrations (r = 1/20 to 1/10), but not to the backbone phosphate group. At r = 1/2, type II complexes formed with DNA in which Ag(I) binds to the G-C and A-T base pairs. On the other hand, Ag(I) binds to the guanine N7 atom but not to the adenine and the backbone phosphate group in the Ag-RNA complexes. Although a minor alteration of the sugar-phosphate geometry was observed, DNA remained in the B-family structure, whereas RNA retained its A conformation. Scatchard analysis following capillary electrophoresis showed two binding sites for the Ag-DNA complexes with K(1) = 8.3 x 10(4) M(-1) for the guanine and K(2) = 1.5 x 10(4) M(-1) for the adenine bases. On the other hand, Ag-RNA adducts showed one binding site with K = 1.5 x 10(5) M(-1) for the guanine bases. PMID:11509371

  18. Molecular modeling and structural analysis of nAChR variants uncovers the mechanism of resistance to snake toxins.

    PubMed

    Gunasekaran, D; Sridhar, J; Suryanarayanan, V; Manimaran, N C; Singh, Sanjeev Kumar

    2017-06-01

    Nicotinic acetylcholine receptors (nAChRs) are neuromuscular proteins responsible for muscle contraction upon binding with chemical stimulant acetylcholine (ACh). The α-neurotoxins of snake mimic the structure of ACh and attacks nAChRs, which block the flow of ACh and leads to numbness and paralysis. The toxin-binding site of alpha subunit in the nAChRs is highly conserved throughout chordate lineages with few exceptions in resistance organisms. In this study, we have analyzed the sequence and structures of toxin-binding/resistant nAChRs and their interaction stability with toxins through molecular docking and molecular dynamics simulation (MDS). We have reported the potential glycosylation residues within the toxin-binding cleft adding sugar moieties through N-linked glycosylation in resistant organisms. Residue variations at key positions alter the secondary structure of binding cleft, which might interfere with toxin binding and it could be one of the possible explanations for the resistance to snake venoms. Analysis of nAChR-α-neurotoxin complexes has confirmed the key interacting residues. In addition, drastic variation in the binding stability of Mongoose nAChR-α-Bungarotoxin (α-BTX) and human nAChR-α-BTX complexes were found at specific phase of MDS. Our findings suggest that specific mutations in the binding site of toxin are potentially preventing the formation of stable complex of receptor-toxin, which might lead to mechanism of resistance. This in silico study on the binding cleft of nAChR and the findings of interacting residues will assist in designing potential inhibitors as therapeutic targets.

  19. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression

    PubMed Central

    Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F.; Panetta, John C.; Wilkinson, Mark R.; Pui, Ching-Hon; Naeve, Clayton W.; Uberbacher, Edward C.; Bonten, Erik J.; Evans, William E.

    2016-01-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769

  20. The impact of active site mutations of South African HIV PR on drug resistance: Insight from molecular dynamics simulations, binding free energy and per-residue footprints.

    PubMed

    Ahmed, Shaimaa M; Maguire, Glenn E M; Kruger, Hendrik G; Govender, Thirumala

    2014-04-01

    Molecular dynamics simulations and binding free energy calculations were used to provide an understanding of the impact of active site drug-resistant mutations of the South African HIV protease subtype C (C-SA HIV PR), V82A and V82F/I84V on drug resistance. Unique per-residue interaction energy 'footprints' were developed to map the overall drug-binding profiles for the wild type and mutants. Results confirmed that these mutations altered the overall binding landscape of the amino acid residues not only in the active site region but also in the flaps as well. Four FDA-approved drugs were investigated in this study; these include ritonavir (RTV), saquinavir (SQV), indinavir (IDV), and nelfinavir (NFV). Computational results compared against experimental findings were found to be complementary. Against the V82F/I84V variant, saquinavir, indinavir, and nelfinavir lose remarkable entropic contributions relative to both wild-type and V82A C-SA HIV PRs. The per-residue energy 'footprints' and the analysis of ligand-receptor interactions for the drug complexes with the wild type and mutants have also highlighted the nature of drug interactions. The data presented in this study will prove useful in the design of more potent inhibitors effective against drug-resistant HIV strains. © 2013 John Wiley & Sons A/S.

  1. A calorimetric investigation of the interaction of the lac repressor with inducer.

    PubMed

    Donnér, J; Caruthers, M H; Gill, S J

    1982-12-25

    A calorimetric study has been made of the interaction between the lac repressor and isopropyl-1-thio-beta-D-galactopyranoside (IPTG). The buffer-corrected enthalpy of reaction at 25 degrees C was found to be -15.6, -24.7, -4.6 kJ/mol of bound IPTG at pH 7.0, pH 8.1, and pH 9.0, respectively. This large range of enthalpy values is in contrast to a maximum difference in the free energy of the reaction of only 1.5 kJ/mol of bound IPTG between these pH values. The reaction was found by calorimetric measurements in different buffers to be accompanied by an uptake of 0.29 mol of protons/mol of bound IPTG at pH 8.1. The pH dependency of the reaction enthalpy suggests differences in the extent of protonation of the binding site and the involvement of H bonding with IPTG. The lack of strong hydrophobic contributions in the IPTG binding process is revealed by the absence of any determinable heat capacity change for the reaction at pH 7.0. The presence of phosphate buffer significantly alters the enthalpy of IPTG binding at higher pH values, but has little effect upon the binding constant. This implies that highly negative phosphate species change the nature of the IPTG binding site without any displacement of phosphate upon IPTG binding.

  2. Decarboxylation of bovine prothrombin fragment 1 and prothrombin.

    PubMed

    Tuhy, P M; Bloom, J W; Mann, K G

    1979-12-25

    Bovine prothrombin fragment 1 and prothrombin undergo decarboxylation of their gamma-carboxyglutamic acid residues when the lyophilized proteins are heated in vacuo at 110 degrees C for several hours. The fully decarboxylated fragment 1 product has lost its barium-binding ability as well as the calcium-binding function which causes fluorescence quenching in the presence of 2 mM Ca2+. There is no sign of secondary structure alteration in solution upon analysis by fluorescence emission and circular dichroic spectroscopy. A family of partially decarboxylated fragment 1 species generated by heating for shorter periods shows that the initial decrease in calcium-binding ability occurs almost twice as rapidly as the loss of gamma-carboxyglutamic acid. This is consistent with the idea that differential functions can be ascribed to the 10 gamma-carboxyglutamic acid residues in fragment 1, including both high- and low-affinity metal ion binding sites. Prothrombin itself also undergoes total decarboxylation without any apparent alteration in secondary structure. However, in this case the latent thrombin activity is progressively diminished during the heating process in terms of both clotting activity and hydrolysis of the amide substrate H-D-Phe-Pip-Arg-pNA. The present results indicate that in vitro decarboxylation of gamma-carboxyglutamic acid in dried proteins is useful for analyzing the detailed calcium-binding proteins of vitamin K dependent coagulation factors.

  3. The allosteric switching mechanism in bacteriophage MS2

    NASA Astrophysics Data System (ADS)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F.

    2016-07-01

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  4. An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauly, J.R.; Marks, M.J.; Gross, S.D.

    1991-09-01

    Quantitative autoradiographic procedures were used to examine the effects of chronic nicotine infusion on the number of central nervous system nicotinic cholinergic receptors. Female DBA mice were implanted with jugular cannulas and infused with saline or various doses of nicotine (0.25, 0.5, 1.0 or 2.0 mg/kg/hr) for 10 days. The animals were then sacrificed and the brains were removed and frozen in isopentane. Cryostat sections were collected and prepared for autoradiographic procedures as previously described. Nicotinic cholinergic receptors were labeled with L-(3H)nicotine or alpha-(125I)bungarotoxin; (3H)quinuclidinyl benzilate was used to measure muscarinic cholinergic receptor binding. Chronic nicotine infusion increased the numbermore » of sites labeled by (3H)nicotine in most brain areas. However, the extent of the increase in binding as well as the dose-response curves for the increase were widely different among brain regions. After the highest treatment dose, binding was increased in 67 of 86 regions measured. Septal and thalamic regions were most resistant to change. Nicotinic binding measured by alpha-(125I)bungarotoxin also increased after chronic treatment, but in a less robust fashion. At the highest treatment dose, only 26 of 80 regions were significantly changes. Muscarinic binding was not altered after chronic nicotine treatment. These data suggest that brain regions are not equivalent in the mechanisms that regulate alterations in nicotinic cholinergic receptor binding after chronic nicotine treatment.« less

  5. The allosteric switching mechanism in bacteriophage MS2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu

    2016-07-21

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we usemore » all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.« less

  6. The allosteric switching mechanism in bacteriophage MS2

    PubMed Central

    Perkett, Matthew R.; Mirijanian, Dina T.

    2016-01-01

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates. PMID:27448905

  7. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli

    PubMed Central

    Zimanyi, Christina M; Chen, Percival Yang-Ting; Kang, Gyunghoon; Funk, Michael A; Drennan, Catherine L

    2016-01-01

    Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively. Here, we have determined structures of Escherichia coli class Ia RNR with all four substrate/specificity effector-pairs bound (CDP/dATP, UDP/dATP, ADP/dGTP, GDP/TTP) that reveal the conformational rearrangements responsible for this remarkable allostery. These structures delineate how RNR ‘reads’ the base of each effector and communicates substrate preference to the active site by forming differential hydrogen bonds, thereby maintaining the proper balance of deoxynucleotides in the cell. DOI: http://dx.doi.org/10.7554/eLife.07141.001 PMID:26754917

  8. Macrolide antibiotic interaction and resistance on the bacterial ribosome.

    PubMed

    Poehlsgaard, Jacob; Douthwaite, Stephen

    2003-02-01

    Our understanding of the fine structure of many antibiotic target sites has reached a new level of enlightenment in the last couple of years due to the advent, by X-ray crystallography, of high-resolution structures of the bacterial ribosome. Many classes of clinically useful antibiotics bind to the ribosome to inhibit bacterial protein synthesis. Macrolide, lincosamide and streptogramin B (MLSB) antibiotics form one of the largest groups, and bind to the same site on the 50S ribosomal subunit. Here, we review the molecular details of the ribosomal MLSB site to put into perspective the main points from a wealth of biochemical and genetic data that have been collected over several decades. The information is now available to understand, at atomic resolution, how macrolide antibiotics interact with their ribosomal target, how the target is altered to confer resistance, and in which directions we need to look if we are to rationally design better drugs to overcome the extant resistance mechanisms.

  9. Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase.

    PubMed

    Aboalroub, Adam A; Bachman, Ashleigh B; Zhang, Ziming; Keramisanou, Dimitra; Merkler, David J; Gelis, Ioannis

    2017-01-01

    The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle.

  10. Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase

    PubMed Central

    Aboalroub, Adam A.; Bachman, Ashleigh B.; Zhang, Ziming; Keramisanou, Dimitra; Merkler, David J.

    2017-01-01

    The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle. PMID:28486510

  11. Comparing anterior and posterior Hox complex formation reveals guidelines for predicting cis-regulatory elements

    PubMed Central

    Uhl, Juli D.; Cook, Tiffany A.; Gebelein, Brian

    2010-01-01

    Hox transcription factors specify numerous cell fates along the anterior-posterior axis by regulating the expression of downstream target genes. While expression analysis has uncovered large numbers of de-regulated genes in cells with altered Hox activity, determining which are direct versus indirect targets has remained a significant challenge. Here, we characterize the DNA binding activity of Hox transcription factor complexes on eight experimentally verified cis-regulatory elements. Hox factors regulate the activity of each element by forming protein complexes with two cofactor proteins, Extradenticle (Exd) and Homothorax (Hth). Using comparative DNA binding assays, we found that a number of flexible arrangements of Hox, Exd, and Hth binding sites mediate cooperative transcription factor complexes. Moreover, analysis of a Distal-less regulatory element (DMXR) that is repressed by abdominal Hox factors revealed that suboptimal binding sites can be combined to form high affinity transcription complexes. Lastly, we determined that the anterior Hox factors are more dependent upon Exd and Hth for complex formation than posterior Hox factors. Based upon these findings, we suggest a general set of guidelines to serve as a basis for designing bioinformatics algorithms aimed at identifying Hox regulatory elements using the wealth of recently sequenced genomes. PMID:20398649

  12. Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270

    PubMed Central

    Navarro, Claudio A.; von Bernath, Diego; Martínez-Bussenius, Cristóbal; Castillo, Rodrigo A.

    2015-01-01

    Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. PMID:26637599

  13. Investigation of the interaction between naringin and human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Yaheng; Li, Ying; Dong, Lijun; Li, Jiazhong; He, Wenying; Chen, Xingguo; Hu, Zhide

    2008-03-01

    The interaction between naringin and human serum albumin (HSA) has been thoroughly studied by fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling method. Under the simulative physiological conditions, fluorescence data revealed the presence of the binding site on HSA and its binding constants ( K) are 1.62 × 10 4, 1.68 × 10 4, 1.72 × 10 4, and 1.79 × 10 4 M -1 at 289, 296, 303, and 310 K, respectively. The alterations of protein secondary structure in the presence of naringin aqueous solution were qualitative and quantitative calculated by the evidence from CD and FT-IR spectroscopes. In addition, according to the Van't Hoff equation, the thermodynamic functions standard enthalpy (Δ H0) and standard entropy (Δ S0) for the reaction were calculated to be 3.45 kJ mol -1 and 92.52 J mol -1 K -1. These results indicated that naringin binds to HSA mainly by a hydrophobic interaction. Furthermore, the displacement experiments confirmed that naringin could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.

  14. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    DOE PAGES

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.; ...

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZmore » domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.« less

  15. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZmore » domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.« less

  16. Analysis of sequencing data for probing RNA secondary structures and protein-RNA binding in studying posttranscriptional regulations.

    PubMed

    Hu, Xihao; Wu, Yang; Lu, Zhi John; Yip, Kevin Y

    2016-11-01

    High-throughput sequencing has been used to study posttranscriptional regulations, where the identification of protein-RNA binding is a major and fast-developing sub-area, which is in turn benefited by the sequencing methods for whole-transcriptome probing of RNA secondary structures. In the study of RNA secondary structures using high-throughput sequencing, bases are modified or cleaved according to their structural features, which alter the resulting composition of sequencing reads. In the study of protein-RNA binding, methods have been proposed to immuno-precipitate (IP) protein-bound RNA transcripts in vitro or in vivo By sequencing these transcripts, the protein-RNA interactions and the binding locations can be identified. For both types of data, read counts are affected by a combination of confounding factors, including expression levels of transcripts, sequence biases, mapping errors and the probing or IP efficiency of the experimental protocols. Careful processing of the sequencing data and proper extraction of important features are fundamentally important to a successful analysis. Here we review and compare different experimental methods for probing RNA secondary structures and binding sites of RNA-binding proteins (RBPs), and the computational methods proposed for analyzing the corresponding sequencing data. We suggest how these two types of data should be integrated to study the structural properties of RBP binding sites as a systematic way to better understand posttranscriptional regulations. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Dimeric c-di-GMP Is Required for Post-translational Regulation of Alginate Production in Pseudomonas aeruginosa*

    PubMed Central

    Whitney, John C.; Whitfield, Gregory B.; Marmont, Lindsey S.; Yip, Patrick; Neculai, A. Mirela; Lobsanov, Yuri D.; Robinson, Howard; Ohman, Dennis E.; Howell, P. Lynne

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. These results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa. PMID:25817996

  18. Effects of competitive red blood cell binding and reduced hematocrit on the blood and plasma levels of (/sup 14/C)Indapamide in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettieri, J.T.; Portelli, S.T.

    1983-02-01

    The effects of chlorthalidone and acetazolamide on the red blood cell binding of indapamide were investigated. Both drugs caused a substantial decrease in the amount of indapamide bound to the erythrocytes in vitro. This effect was demonstrated by a change in the indapamide blood/plasma ratio from approximately 6 in control samples, to a value of 1 when either of the displacing agents was added. Coadministration of acetazolamide with /sup 14/C-labeled indapamide to rats, resulted in a 5-fold drop in the blood levels of total radioactivity, relative to rats dosed with (/sup 14/C)indapamide alone. Concomitantly, there was a 2-fold increase inmore » the plasma levels of total radioactivity after acetazolamide coadministration. In rats whose hematocrits had been reduced by extensive bleeding, there were only minor alterations in the blood/plasma partitioning of (/sup 14/C)indapamide. Thus, chlorthalidone and acetazolamide were able to displace indapamide from erythrocytes in vitro and in vivo, possibly by competition at a carbonic anhydrase binding site. The pharmacokinetics of drugs which are extensively bound to erythrocytes may be significantly altered by the presence of other agents capable of competitive binding.« less

  19. STAT1:DNA sequence-dependent binding modulation by phosphorylation, protein:protein interactions and small-molecule inhibition

    PubMed Central

    Bonham, Andrew J.; Wenta, Nikola; Osslund, Leah M.; Prussin, Aaron J.; Vinkemeier, Uwe; Reich, Norbert O.

    2013-01-01

    The DNA-binding specificity and affinity of the dimeric human transcription factor (TF) STAT1, were assessed by total internal reflectance fluorescence protein-binding microarrays (TIRF-PBM) to evaluate the effects of protein phosphorylation, higher-order polymerization and small-molecule inhibition. Active, phosphorylated STAT1 showed binding preferences consistent with prior characterization, whereas unphosphorylated STAT1 showed a weak-binding preference for one-half of the GAS consensus site, consistent with recent models of STAT1 structure and function in response to phosphorylation. This altered-binding preference was further tested by use of the inhibitor LLL3, which we show to disrupt STAT1 binding in a sequence-dependent fashion. To determine if this sequence-dependence is specific to STAT1 and not a general feature of human TF biology, the TF Myc/Max was analysed and tested with the inhibitor Mycro3. Myc/Max inhibition by Mycro3 is sequence independent, suggesting that the sequence-dependent inhibition of STAT1 may be specific to this system and a useful target for future inhibitor design. PMID:23180800

  20. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain

    PubMed Central

    Scheckel, Claudia; Drapeau, Elodie; Frias, Maria A; Park, Christopher Y; Fak, John; Zucker-Scharff, Ilana; Kou, Yan; Haroutunian, Vahram; Ma'ayan, Avi

    2016-01-01

    Neuronal ELAV-like (nELAVL) RNA binding proteins have been linked to numerous neurological disorders. We performed crosslinking-immunoprecipitation and RNAseq on human brain, and identified nELAVL binding sites on 8681 transcripts. Using knockout mice and RNAi in human neuroblastoma cells, we showed that nELAVL intronic and 3' UTR binding regulates human RNA splicing and abundance. We validated hundreds of nELAVL targets among which were important neuronal and disease-associated transcripts, including Alzheimer's disease (AD) transcripts. We therefore investigated RNA regulation in AD brain, and observed differential splicing of 150 transcripts, which in some cases correlated with differential nELAVL binding. Unexpectedly, the most significant change of nELAVL binding was evident on non-coding Y RNAs. nELAVL/Y RNA complexes were specifically remodeled in AD and after acute UV stress in neuroblastoma cells. We propose that the increased nELAVL/Y RNA association during stress may lead to nELAVL sequestration, redistribution of nELAVL target binding, and altered neuronal RNA splicing. DOI: http://dx.doi.org/10.7554/eLife.10421.001 PMID:26894958

  1. The Role of Genome Accessibility in Transcription Factor Binding in Bacteria.

    PubMed

    Gomes, Antonio L C; Wang, Harris H

    2016-04-01

    ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF)-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology.

  2. Crystal Structures of Active Fully Assembled Substrate- and Product-Bound Complexes of UDP-N-Acetylmuramic Acid:l-Alanine Ligase (MurC) from Haemophilus influenzae

    PubMed Central

    Mol, Clifford D.; Brooun, Alexei; Dougan, Douglas R.; Hilgers, Mark T.; Tari, Leslie W.; Wijnands, Robert A.; Knuth, Mark W.; McRee, Duncan E.; Swanson, Ronald V.

    2003-01-01

    UDP-N-acetylmuramic acid:l-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg2+ and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-l-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn2+ have been determined to 1.85- and 1.7-Å resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the γ-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates. PMID:12837790

  3. Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae.

    PubMed

    Mol, Clifford D; Brooun, Alexei; Dougan, Douglas R; Hilgers, Mark T; Tari, Leslie W; Wijnands, Robert A; Knuth, Mark W; McRee, Duncan E; Swanson, Ronald V

    2003-07-01

    UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.

  4. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M.

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using {sup 125}I-labeled melatonin ({sup 125}I-Mel), a potent melatonin agonist. {sup 125}I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K{sub d} of 2.3 {plus minus} 1.0 {times} 10{sup {minus}11} M and 2.06 {plus minus} 0.43 {times} 10{sup {minus}10} M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)), significantly reduced the number of high-affinity receptors and increasedmore » the dissociation rate of {sup 125}I-Mel from its receptor. Furthermore, GTP({gamma}S) treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of {sup 125}I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M{sub r} > 400,000 and M{sub r} ca. 110,000. This elution profile was markedly altered by pretreatment with GTP({gamma}S) before solubilization; only the M{sub r} 110,000 peak was present in GTP({gamma}S)-pretreated membranes. The results strongly suggest that {sup 125}I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000.« less

  5. Mutations altering the cleavage specificity of a homing endonuclease

    PubMed Central

    Seligman, Lenny M.; Chisholm, Karen M.; Chevalier, Brett S.; Chadsey, Meggen S.; Edwards, Samuel T.; Savage, Jeremiah H.; Veillet, Adeline L.

    2002-01-01

    The homing endonuclease I-CreI recognizes and cleaves a particular 22 bp DNA sequence. The crystal structure of I-CreI bound to homing site DNA has previously been determined, leading to a number of predictions about specific protein–DNA contacts. We test these predictions by analyzing a set of endonuclease mutants and a complementary set of homing site mutants. We find evidence that all structurally predicted I-CreI/DNA contacts contribute to DNA recognition and show that these contacts differ greatly in terms of their relative importance. We also describe the isolation of a collection of altered specificity I-CreI derivatives. The in vitro DNA-binding and cleavage properties of two such endonucleases demonstrate that our genetic approach is effective in identifying homing endonucleases that recognize and cleave novel target sequences. PMID:12202772

  6. Mannobiose Binding Induces Changes in Hydrogen Bonding and Protonation States of Acidic Residues in Concanavalin A As Revealed by Neutron Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlits, Oksana O.; Coates, Leighton; Woods, Robert J.

    Plant lectins are carbohydrate-binding proteins with various biomedical applications. Concanavalin A (Con A) holds promise in treating cancerous tumors. To better understand the Con A carbohydrate binding specificity, we obtained a room-temperature neutron structure of this legume lectin in complex with a disaccharide Manα1–2Man, mannobiose. The neutron structure afforded direct visualization of the hydrogen bonding between the protein and ligand, showing that the ligand is able to alter both protonation states and interactions for residues located close to and distant from the binding site. An unprecedented low-barrier hydrogen bond was observed forming between the carboxylic side chains of Asp28 andmore » Glu8, with the D atom positioned equidistant from the oxygen atoms having an O···D···O angle of 101.5°.« less

  7. Poly(A)-binding proteins and mRNA localization: who rules the roost?

    PubMed

    Gray, Nicola K; Hrabálková, Lenka; Scanlon, Jessica P; Smith, Richard W P

    2015-12-01

    RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals. © 2015 Authors; published by Portland Press Limited.

  8. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    PubMed Central

    Baum, Bernhard; Lecker, Laura S. M.; Zoltner, Martin; Jaenicke, Elmar; Schnell, Robert; Hunter, William N.; Brenk, Ruth

    2015-01-01

    Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials. PMID:26249693

  9. AtSPX1 affects the AtPHR1-DNA-binding equilibrium by binding monomeric AtPHR1 in solution.

    PubMed

    Qi, Wanjun; Manfield, Iain W; Muench, Stephen P; Baker, Alison

    2017-10-23

    Phosphorus is an essential macronutrient for plant growth and is deficient in ∼50% of agricultural soils. The transcription factor phosphate starvation response 1 (PHR1) plays a central role in regulating the expression of a subset of phosphate starvation-induced (PSI) genes through binding to a cis -acting DNA element termed P1BS (PHR1-binding sequences). In Arabidopsis and rice, activity of AtPHR1/OsPHR2 is regulated in part by their downstream target SPX ( S yg1, P ho81, X pr1) proteins through protein-protein interaction. Here, we provide kinetic and affinity data for interaction between AtPHR1 and P1BS sites. Using surface plasmon resonance, a tandem P1BS sequence showed ∼50-fold higher affinity for MBPAtdPHR1 (a fusion protein comprising the DNA-binding domain and coiled-coil domain of AtPHR1 fused to maltose-binding protein) than a single site. The affinity difference was largely reflected in a much slower dissociation rate from the 2× P1BS-binding site, suggesting an important role for protein co-operativity. Injection of AtSPX1 in the presence of phosphate or inositol hexakisphosphate (InsP6) failed to alter the MBPAtdPHR1-P1BS dissociation rate, while pre-mixing of these two proteins in the presence of either 5 mM Pi or 500 µM InsP6 resulted in a much lower DNA-binding signal from MBPAtdPHR1. These data suggest that, in the Pi-restored condition, AtSPX1 can bind to monomeric AtPHR1 in solution and therefore regulate PSI gene expression by tuning the AtPHR1-DNA-binding equilibrium. This Pi-dependent regulation of AtPHR1-DNA-binding equilibrium also generates a negative feedback loop on the expression of AtSPX1 itself, providing a tight control of PSI gene expression. © 2017 The Author(s).

  10. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols.

    PubMed

    Clay, Adam T; Lu, Peihua; Sharom, Frances J

    2015-11-03

    The ABC transporter P-glycoprotein (Pgp, ABCB1) actively exports structurally diverse substrates from within the lipid bilayer, leading to multidrug resistance. Many aspects of Pgp function are altered by the phospholipid environment, but its interactions with sterols remain enigmatic. In this work, the functional interaction between purified Pgp and various sterols was investigated in detergent solution and proteoliposomes. Fluorescence studies showed that dehydroergosterol, cholestatrienol, and NBD-cholesterol interact intimately with Pgp, resulting in both quenching of protein Trp fluorescence and enhancement of sterol fluorescence. Kd values indicated binding affinities in the range of 3-9 μM. Collisional quenching experiments showed that Pgp-bound NBD-cholesterol was protected from the external milieu, resonance energy transfer was observed between Pgp Trp residues and the sterol, and the fluorescence emission of bound sterol was enhanced. These observations suggested an intimate interaction of bound sterols with the transporter at a protected nonpolar site. Cholesterol hemisuccinate altered the thermal unfolding of Pgp and greatly stabilized its basal ATPase activity in both a detergent solution and reconstituted proteoliposomes of certain phospholipids. Other sterols, including dehydroergosterol, did not stabilize the basal ATPase activity of detergent-solubilized Pgp, which suggests that this is not a generalized sterol effect. The phospholipid composition and cholesterol hemisuccinate content of Pgp proteoliposomes altered the basal ATPase and drug transport cycles differently. Sterols may interact with Pgp and modulate its structure and function by occupying part of the drug-binding pocket or by binding to putative consensus cholesterol-binding (CRAC/CARC) motifs located within the transmembrane domains.

  11. Transcription factor target site search and gene regulation in a background of unspecific binding sites.

    PubMed

    Hettich, J; Gebhardt, J C M

    2018-06-02

    Response time and transcription level are vital parameters of gene regulation. They depend on how fast transcription factors (TFs) find and how efficient they occupy their specific target sites. It is well known that target site search is accelerated by TF binding to and sliding along unspecific DNA and that unspecific associations alter the occupation frequency of a gene. However, whether target site search time and occupation frequency can be optimized simultaneously is mostly unclear. We developed a transparent and intuitively accessible state-based formalism to calculate search times to target sites on and occupation frequencies of promoters of arbitrary state structure. Our formalism is based on dissociation rate constants experimentally accessible in live cell experiments. To demonstrate our approach, we consider promoters activated by a single TF, by two coactivators or in the presence of a competitive inhibitor. We find that target site search time and promoter occupancy differentially vary with the unspecific dissociation rate constant. Both parameters can be harmonized by adjusting the specific dissociation rate constant of the TF. However, while measured DNA residence times of various eukaryotic TFs correspond to a fast search time, the occupation frequencies of target sites are generally low. Cells might tolerate low target site occupancies as they enable timely gene regulation in response to a changing environment. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Homology modelling of frequent HLA class-II alleles: A perspective to improve prediction of HLA binding peptide and understand the HLA associated disease susceptibility.

    PubMed

    Kashyap, Manju; Farooq, Umar; Jaiswal, Varun

    2016-10-01

    Human leukocyte antigen (HLA) plays significant role via the regulation of immune system and contribute in the progression and protection of many diseases. HLA molecules bind and present peptides to T- cell receptors which generate the immune response. HLA peptide interaction and molecular function of HLA molecule is the key to predict peptide binding and understanding its role in different diseases. The availability of accurate three dimensional (3D) structures is the initial step towards this direction. In the present work, homology modelling of important and frequent HLA-DRB1 alleles (07:01, 11:01 and 09:01) was done and acceptable models were generated. These modelled alleles were further refined and cross validated by using several methods including Ramachandran plot, Z-score, ERRAT analysis and root mean square deviation (RMSD) calculations. It is known that numbers of allelic variants are related to the susceptibility or protection of various infectious diseases. Difference in amino acid sequences and structures of alleles were also studied to understand the association of HLA with disease susceptibility and protection. Susceptible alleles showed more amino acid variations than protective alleles in three selected diseases caused by different pathogens. Amino acid variations at binding site were found to be more than other part of alleles. RMSD values were also higher at variable positions within binding site. Higher RMSD values indicate that mutations occurring at peptide binding site alter protein structure more than rest of the protein. Hence, these findings and modelled structures can be used to design HLA-DRB1 binding peptides to overcome low prediction accuracy of HLA class II binding peptides. Furthermore, it may help to understand the allele specific molecular mechanisms involved in susceptibility/resistance against pathogenic diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Lectin histochemistry of metastatic adenocarcinomas of the lung.

    PubMed

    Thöm, Ina; Schult-Kronefeld, Olaf; Burkholder, Iris; Goern, Michael; Andritzky, Birte; Blonski, Katharina; Kugler, Christian; Edler, Lutz; Bokemeyer, Carsten; Schumacher, Udo; Laack, Eckart

    2007-06-01

    Several clinical studies indicate that primary tumour cells with high metastatic potential often show aberrant glycosylation as detected by lectin histochemistry. However, it is unclear whether aberrant glycosylation is still present in metastatic deposits. The aim of the present investigation was thus to analyse a possible association between the presence of lectin binding sites of pulmonary adenocarcinoma cells and their lymph node and haematogenous metastatic cells. For this purpose, the expression of HPA, PHA-L and UEA-I was assessed in primary tumours, lymph node metastases and haematogenous metastases of 96 patients with metastatic adenocarcinomas of the lung that underwent surgery between 1999 and 2002. Besides, lectin-binding data and other known prognostic factors were correlated with survival. We found a significant positive correlation between the binding of the lectins HPA (p=0.002), PHA-L (p<0.00001) and UEA-I (p<0.00001) to the cells of the primary tumour and to their lymph node metastases. There was a positive correlation between the binding of HPA to the cells of the primary tumour and the haematogenous metastases as well. Patients with tumours which did not show HPA binding sites had a median overall survival of 27.9 months (95%-CI 7.7-infinity months). Patients with a HPA binding tumour had a median overall survival of 20.9 months (95%-CI 18.5-28.7 months). This is the first investigation to demonstrate a positive correlation between the binding of the lectins HPA, PHA-L and UEA-I to the cells of the primary tumour and to their lymph node metastases. Expression of HPA binding sites is also preserved in the haematogenous metastases. In summary, our results support the hypothesis that altered glycosylation of the membrane-bound glycoproteins of the tumour cells is associated with, but not sufficient for promotion of lymphogenic and haematogenous metastasis.

  14. Mechanism of cinnamic acid-induced trypsin inhibition: A multi-technique approach

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Zhou, Qiuhua; Cao, Jian; Wang, Yanqing

    2013-12-01

    In order to investigate the association of the protease trypsin with cinnamic acid, the interaction was characterized by using fluorescence, UV-vis absorption spectroscopy, molecular modeling and an enzymatic inhibition assay. The binding process may be outlined as follows: cinnamic acid can interact with trypsin with one binding site to form cinnamic acid-trypsin complex, resulting in inhibition of trypsin activity; the spectroscopic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes being -8.95 kJ mol-1 and 50.70 J mol-1 K-1, respectively. Noncovalent interactions make the main contribution to stabilize the trypsin-cinnamic acid complex; cinnamic acid can enter into the primary substrate-binding pocket and alter the environment around Trp and Tyr residues.

  15. The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes.

    PubMed

    Ali, Manjoor; Kumar, Amit; Kumar, Mukesh; Pandey, Badri N

    2016-04-01

    Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of β-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Crystal structure of Yersinia pestis virulence factor YfeA reveals two polyspecific metal-binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radka, Christopher D.; DeLucas, Lawrence J.; Wilson, Landon S.

    2017-06-30

    Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. InYersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA ismore » polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.« less

  17. SMC condensation centers in Bacillus subtilis are dynamic structures.

    PubMed

    Kleine Borgmann, Luise A K; Hummel, Hanna; Ulbrich, Maximilian H; Graumann, Peter L

    2013-05-01

    SMC and MukB complexes consist of a central SMC dimer and two essential binding partners, ScpA and ScpB (MukE and MukF), and are crucial for correct chromosome compaction and segregation. The complexes form two bipolar assemblies on the chromosome, one in each cell half. Using fluorescence recovery after photobleaching (FRAP), we provide evidence that the SMC complex has high exchange rates. This depends to a considerable degree on de novo protein synthesis, revealing that the bacterial SMC complex has high on and off rates for binding to the chromosome. A mutation in SMC that affects ATPase activity and results in exaggerated DNA binding in vitro causes a strong segregation defect in vivo and affects the localization of the entire SMC complex, which localizes to many more sites in the cell than under normal conditions. These data indicate that ATP turnover is important for the function of Bacillus subtilis SMC. In contrast, the centromere protein Spo0J and DNA gyrase showed much less exchange between distinct binding sites on the chromosome than that seen with SMC. Binding of Spo0J to the origin regions was rather static and remained partially conserved until the next cell cycle. Our experiments reveal that the SMC complex has a high, condensin-like turnover rate and that an alteration of the ATPase cycle affects SMC function in vivo, while several nucleoid-associated proteins feature limited or slow exchange between different sites on the nucleoid, which may be the basis for epigenetic-like phenomena observed in bacteria.

  18. Effect of Dioxygen on Copper(II) Binding to α-Synuclein

    PubMed Central

    Lucas, Heather R.; Lee, Jennifer C.

    2010-01-01

    Using the fluorescent amino acid tryptophan (Trp), we have characterized the copper(II) binding of F4W α-synuclein in the presence and absence of dioxygen at neutral pH. Variations in Trp fluorescence indicate that copper(II) binding is enhanced by the presence of dioxygen, with the apparent dissociation constant (Kd(app)) changing from 100 nM (anaerobic) to 10 nM (aerobic). To investigate the possible role of methionine oxidation, complementary work focused on synthetic peptide models of the N-terminal Cu(II)-α-syn site, MDV(F/W) and M*DV(F/W), where M*= methionine sulfoxide. Furthermore, we employed circular dichroism (CD) spectroscopy to demonstrate that the phenyl-to-indole (F→W) substitution does not alter copper(II) binding properties and to confirm the 1:1 metal-peptide binding stoichiometry. CD comparisons also revealed that Met1 oxidation does not affect the copper-peptide conformation and further suggested the possible existence of a CuII-Trp/Phe (cation-π) interaction. PMID:20064662

  19. Characterization of interaction between esculin and human serum albumin in membrane mimetic environments

    NASA Astrophysics Data System (ADS)

    Zhang, Yaheng; Li, Jiazhong; Dong, Lijun; Li, Ying; Chen, Xingguo

    2008-10-01

    In this study the interaction between esculin and human serum albumin (HSA) in AOT/isooctane/water microemulsions was studied for the first time using fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) technique. Fluorescence data in ω o 20 microemulsions revealed the presence of the binding site of esculin on HSA and its binding constants at four different temperatures were obtained. The affinities in microemulsions are similar to that in buffer solution. The alterations of protein secondary structure in the microemulsions in the absence and presence of esculin compared with the free form of HSA in buffer were qualitatively and quantitatively analyzed by the evidence from CD and FT-IR spectroscopes. The displacement experiments confirmed that esculin could bind to the site I of HSA, which was in agreement with the result of the molecular modeling study. Furthermore, the DLS data suggested that HSA may locate at the interface of the microemulsion and esculin could interact with them.

  20. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus

    DOE PAGES

    Hu, Liya; Ramani, Sasirekha; Czako, Rita; ...

    2015-09-30

    We report that strain-dependent variation of glycan recognition during initial cell attachment of viruses is a critical determinant of host specificity, tissue-tropism and zoonosis. Rotaviruses (RVs), which cause life-threatening gastroenteritis in infants and children, display significant genotype-dependent variations in glycan recognition resulting from sequence alterations in the VP8* domain of the spike protein VP4. The structural basis of this genotype-dependent glycan specificity, particularly in human RVs, remains poorly understood. Here, from crystallographic studies, we show how genotypic variations configure a novel binding site in the VP8* of a neonate-specific bovine-human reassortant to uniquely recognize either type I or type IImore » precursor glycans, and to restrict type II glycan binding in the bovine counterpart. In conclusion, such a distinct glycan-binding site that allows differential recognition of the precursor glycans, which are developmentally regulated in the neonate gut and abundant in bovine and human milk provides a basis for age-restricted tropism and zoonotic transmission of G10P[11] rotaviruses.« less

  1. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Liya; Ramani, Sasirekha; Czako, Rita

    We report that strain-dependent variation of glycan recognition during initial cell attachment of viruses is a critical determinant of host specificity, tissue-tropism and zoonosis. Rotaviruses (RVs), which cause life-threatening gastroenteritis in infants and children, display significant genotype-dependent variations in glycan recognition resulting from sequence alterations in the VP8* domain of the spike protein VP4. The structural basis of this genotype-dependent glycan specificity, particularly in human RVs, remains poorly understood. Here, from crystallographic studies, we show how genotypic variations configure a novel binding site in the VP8* of a neonate-specific bovine-human reassortant to uniquely recognize either type I or type IImore » precursor glycans, and to restrict type II glycan binding in the bovine counterpart. In conclusion, such a distinct glycan-binding site that allows differential recognition of the precursor glycans, which are developmentally regulated in the neonate gut and abundant in bovine and human milk provides a basis for age-restricted tropism and zoonotic transmission of G10P[11] rotaviruses.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanli; Sheng, Gang; Juranek, Stefan

    The slicer activity of the RNA-induced silencing complex is associated with argonaute, the RNase H-like PIWI domain of which catalyses guide-strand-mediated sequence-specific cleavage of target messenger RNA. Here we report on the crystal structure of Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-base DNA guide strand, thereby identifying the nucleic-acid-binding channel positioned between the PAZ- and PIWI-containing lobes, as well as the pivot-like conformational changes associated with complex formation. The bound guide strand is anchored at both of its ends, with the solvent-exposed Watson-Crick edges of stacked bases 2 to 6 positioned for nucleation with the mRNA target, whereas twomore » critically positioned arginines lock bases 10 and 11 at the cleavage site into an unanticipated orthogonal alignment. Biochemical studies indicate that key amino acid residues at the active site and those lining the 5'-phosphate-binding pocket made up of the Mid domain are critical for cleavage activity, whereas alterations of residues lining the 2-nucleotide 3'-end-binding pocket made up of the PAZ domain show little effect.« less

  3. Molecular dynamics approach to probe PKCβII-ligand interactions and influence of crystal water molecules on these interactions.

    PubMed

    Grewal, Baljinder K; Bhat, Jyotsna; Sobhia, Masilamani Elizabeth

    2015-01-01

    PKCβII is a potential target for therapeutic intervention against pandemic diabetic complications. Present study probes the molecular interactions of PKCβII with its clinically important ligands, viz. ruboxistaurin, enzastaurin and co-crystallized ligand, 2-methyl-1H-indol-3-yl-BIM-1. The essentials of PKCβII-ligand interaction, crystal water-induced alterations in these interactions and key interacting flexible residues are analyzed. Computational methodologies, viz. molecular docking and molecular simulation coupled with molecular mechanics-Poisson-Boltzmann surface area and generalized born surface area (MM-PB[GB]SA) are employed. The structural changes in the presence and absence of crystal water molecules in PKCβII ATP binding site residues, and its interaction with bound ligand, are identified. Difference in interaction of selective and nonselective ligand with ATP binding site residues of PKCβII is reported. The study showed that the nonbonding interactions contribute significantly in PKCβII-ligand binding and presence of crystal water molecules affects the interactions. The findings of present work may integrate the new aspects in the drug design process of PKCβII inhibitors.

  4. Global Phosphoproteomics Identifies a Major Role for AKT and 14-3-3 in Regulating EDC3*

    PubMed Central

    Larance, Mark; Rowland, Alexander F.; Hoehn, Kyle L.; Humphreys, David T.; Preiss, Thomas; Guilhaus, Michael; James, David E.

    2010-01-01

    Insulin plays an essential role in metabolic homeostasis in mammals, and many of the underlying biochemical pathways are regulated via the canonical phosphatidylinositol 3-kinase/AKT pathway. To identify novel metabolic actions of insulin, we conducted a quantitative proteomics analysis of insulin-regulated 14-3-3-binding proteins in muscle cells. These studies revealed a novel role for insulin in the post-transcriptional regulation of mRNA expression. EDC3, a component of the mRNA decay and translation repression pathway associated with mRNA processing bodies, was shown to be phosphorylated by AKT downstream of insulin signaling. The major insulin-regulated site was mapped to Ser-161, and phosphorylation at this site led to increased 14-3-3 binding. Functional studies indicated that induction of 14-3-3 binding to EDC3 causes morphological changes in processing body structures, inhibition of microRNA-mediated mRNA post-transcriptional regulation, and alterations in the protein- protein interactions of EDC3. These data highlight an important new arm of the insulin signaling cascade in the regulation of mRNA utilization. PMID:20051463

  5. Bioinorganic Chemistry of Parkinson's Disease: Affinity and Structural Features of Cu(I) Binding to the Full-Length β-Synuclein Protein.

    PubMed

    Miotto, Marco C; Pavese, Mayra D; Quintanar, Liliana; Zweckstetter, Markus; Griesinger, Christian; Fernández, Claudio O

    2017-09-05

    Alterations in the levels of copper in brain tissue and formation of α-synuclein (αS)-copper complexes might play a key role in the amyloid aggregation of αS and the onset of Parkinson's disease (PD). Recently, we demonstrated that formation of the high-affinity Cu(I) complex with the N-terminally acetylated form of the protein αS substantially increases and stabilizes local conformations with α-helical secondary structure and restricted motility. In this work, we performed a detailed NMR-based structural characterization of the Cu(I) complexes with the full-length acetylated form of its homologue β-synuclein (βS), which is colocalized with αS in vivo and can bind copper ions. Our results show that, similarly to αS, the N-terminal region of βS constitutes the preferential binding interface for Cu(I) ions, encompassing two independent and noninteractive Cu(I) binding sites. According to these results, βS binds the metal ion with higher affinity than αS, in a coordination environment that involves the participation of Met-1, Met-5, and Met-10 residues (site 1). Compared to αS, the shift of His from position 50 to 65 in the N-terminal region of βS does not change the Cu(I) affinity features at that site (site 2). Interestingly, the formation of the high-affinity βS-Cu(I) complex at site 1 in the N-terminus promotes a short α-helix conformation that is restricted to the 1-5 segment of the AcβS sequence, which differs with the substantial increase in α-helix conformations seen for N-terminally acetylated αS upon Cu(I) complexation. Our NMR data demonstrate conclusively that the differences observed in the conformational transitions triggered by Cu(I) binding to AcαS and AcβS find a correlation at the level of their backbone dynamic properties; added to the potential biological implications of these findings, this fact opens new avenues of investigations into the bioinorganic chemistry of PD.

  6. Identification of a novel K311 ubiquitination site critical for androgen receptor transcriptional activity

    PubMed Central

    Cork, David M.W.; Darby, Steven; Ryan-Munden, Claudia A.; Nakjang, Sirintra; Mendes Côrtes, Leticia; Treumann, Achim; Gaughan, Luke

    2017-01-01

    Abstract The androgen receptor (AR) is the main driver of prostate cancer (PC) development and progression, and the primary therapeutic target in PC. To date, two functional ubiquitination sites have been identified on AR, both located in its C-terminal ligand binding domain (LBD). Recent reports highlight the emergence of AR splice variants lacking the LBD that can arise during disease progression and contribute to castrate resistance. Here, we report a novel N-terminal ubiquitination site at lysine 311. Ubiquitination of this site plays a role in AR stability and is critical for its transcriptional activity. Inactivation of this site causes AR to accumulate on chromatin and inactivates its transcriptional function as a consequence of inability to bind to p300. Additionally, mutation at lysine 311 affects cellular transcriptome altering the expression of genes involved in chromatin organization, signaling, adhesion, motility, development and metabolism. Even though this site is present in clinically relevant AR-variants it can only be ubiquitinated in cells when AR retains LBD suggesting a role for AR C-terminus in E2/E3 substrate recognition. We report that as a consequence AR variants lacking the LBD cannot be ubiquitinated in the cellular environment and their protein turnover must be regulated via an alternate pathway. PMID:27903893

  7. Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy.

    PubMed

    Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar

    2013-07-01

    The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins.

  8. A novel substance P binding site in rat brain regions modulates TRH receptor binding.

    PubMed

    Sharif, N A

    1990-10-01

    Binding sites for thyrotropin-releasing hormone (TRH) were labelled with [3H](2-Me-His3)TRH ([3H]MeTRH) on membranes from rat brain regions at 0 degrees C for 5 h. Amygdaloid membranes bound [3H]MeTRH with high-affinity (Kd = 3.1 +/- 0.5 nM (n = 4)). Five TRH analogs competed for this binding with the same rank order and with affinities that matched the pharmacological specificity of pituitary TRH receptors. Substance P (SP) and its C-terminal fragments reduced amygdaloid TRH receptor binding in a concentration dependent manner (IC50 for SP = 65 microM). The rank order of potency of SP analogs at inhibiting TRH receptor binding was: SP greater than nonapeptide (3-11) greater than hexapeptide (6-11) greater than heptapeptide (5-11) greater than pentapeptide (7-11). However, other tachykinins were inactive in this system. SP was a potent inhibitor of [3H]MeTRH binding in hippocampus greater than spinal cord greater than retina greater than n. accumbens greater than hypothalamus greater than amygdaloid greater than olfactory bulb greater than or equal to pituitary greater than pons/medulla in parallel assays. In amygdaloid membranes SP (50 microM) reduced the apparent maximum receptor density by 39% (p less than 0.01) without altering the binding affinity, and 100 microM SP induced a biphasic dissociation of [3H]MeTRH with kinetics faster than those induced by both TRH (10 microM) and serotonin (100 microM). In contrast, other neuropeptides such as neurotensin, proctolin, angiotensin II, bombesin and luteinizing hormone releasing hormone did not significantly inhibit [3H]MeTRH binding to amygdaloid membranes.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Harmane: an atypical neurotransmitter?

    PubMed

    Abu Ghazaleh, Haya; Lalies, Maggie D; Nutt, David J; Hudson, Alan L

    2015-03-17

    Harmane is an active component of clonidine displacing substance and a candidate endogenous ligand for imidazoline binding sites. The neurochemistry of tritiated harmane was investigated in the present study examining its uptake and release properties in the rat brain central nervous system (CNS) in vitro. At physiological temperature, [(3)H]harmane was shown to be taken up in rat brain cortex. Further investigations demonstrated that treatment with monoamine uptake blockers (citalopram, nomifensine and nisoxetine) did not alter [(3)H]harmane uptake implicating that the route of [(3)H]harmane transport was distinct from the monoamine uptake systems. Furthermore, imidazoline ligands (rilmenidine, efaroxan, 2-BFI and idazoxan) showed no prominent effect on [(3)H]harmane uptake suggesting the lack of involvement of imidazoline binding sites. Subsequent analyses showed that disruption of the Na(+) gradient using ouabain or choline chloride did not block [(3)H]harmane uptake suggesting a Na(+)-independent transport mechanism. Moreover, higher temperatures (50°C) failed to impede [(3)H]harmane uptake implying a non-physiological transporter. The failure of potassium to evoke the release of preloaded [(3)H]harmane from rat brain cortex indicates that the properties of this putative endogenous ligand for imidazoline binding sites do not resemble that of a conventional neurotransmitter. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Differential Effects of Mutations on the Transport Properties of the Na+/H+ Antiporter NhaA from Escherichia coli*

    PubMed Central

    Mager, Thomas; Braner, Markus; Kubsch, Bastian; Hatahet, Lina; Alkoby, Dudu; Rimon, Abraham; Padan, Etana; Fendler, Klaus

    2013-01-01

    Na+/H+ antiporters show a marked pH dependence, which is important for their physiological function in eukaryotic and prokaryotic cells. In NhaA, the Escherichia coli Na+/H+ antiporter, specific single site mutations modulating the pH profile of the transporter have been described in the past. To clarify the mechanism by which these mutations influence the pH dependence of NhaA, the substrate dependence of the kinetics of selected NhaA variants was electrophysiologically investigated and analyzed with a kinetic model. It is shown that the mutations affect NhaA activity in quite different ways by changing the properties of the binding site or the dynamics of the transporter. In the first case, pK and/or KDNa are altered, and in the second case, the rate constants of the conformational transition between the inside and the outside open conformation are modified. It is shown that residues as far apart as 15–20 Å from the binding site can have a significant impact on the dynamics of the conformational transitions or on the binding properties of NhaA. The implications of these results for the pH regulation mechanism of NhaA are discussed. PMID:23836890

  11. Spectroscopic analysis of the impact of oxidative stress on the structure of human serum albumin (HSA) in terms of its binding properties

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.

    2015-02-01

    Oxygen metabolism has an important role in the pathogenesis of rheumatoid arthritis (RA). Reactive oxygen species (ROS) are produced in the course of cellular oxidative phosphorylation and by activated phagocytic cells during oxidative bursts, exceed the physiological buffering capacity and result in oxidative stress. ROS result in oxidation of serum albumin, which causes a number of structural changes in the spatial structure, may influence the binding and cause significant drug interactions, particularly in polytherapy. During the oxidation modification of amino acid residues, particularly cysteine and methionine may occur. The aim of the study was to investigate the influence of oxidative stress on human serum albumin (HSA) structure and evaluate of possible alterations in the binding of the drug to oxidized human serum albumin (oHSA). HSA was oxidized by a chloramine-T (CT). CT reacts rapidly with sulfhydryl groups and at pH 7.4 the reaction was monitored by spectroscopic techniques. Modification of free thiol group in the Cys residue in HSA was quantitatively determined by the use of Ellman's reagent. Changes of albumin conformation were examined by comparison of modified (oHSA) and nonmodified human serum albumin (HSA) absorption spectra, emission spectra, red-edge shift (REES) and synchronous spectroscopy. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region of 200-250 nm involve structural alterations in peptide backbone conformation. Synchronous fluorescence spectroscopy technique confirmed changes of position of tryptophanyl and tyrosyl residues fluorescent band caused by CT. Moreover analysis of REES effect allowed to observe structural changes caused by CT in the region of the hydrophobic pocket containing the tryptophanyl residue. Effect of oxidative stress on binding of anti-rheumatic drugs, sulfasalazine (SSZ) and sulindac (SLD) in the high and low affinity binding sites was investigated by spectrofluorescence, ITC and 1H NMR spectroscopy, respectively. SSZ and SLD change the affinity of each other to the binding site in non- and modified human serum albumin. The presence of SLD causes the increase of association constant (Ka) of SSZ-oHSA system and the strength of binding and the stability of the complexes has been observed while in the presence of SSZ a displacement of SLD from the SLD-HSA has been recorded. The analysis of 1H NMR spectral parameters i.e. changes of chemical shifts of the drug indicate that the presence of SSZ and SLD have a mutual influence on changes in the affinity of human serum albumin binding site and this competition takes place not only due to the additional drug but also to the oxidation of HSA.

  12. Adsorption of lactic acid on chiral Pt surfaces—A density functional theory study

    NASA Astrophysics Data System (ADS)

    Franke, J.-H.; Kosov, D. S.

    2013-02-01

    The adsorption of the chiral molecule lactic acid on chiral Pt surfaces is studied by density functional theory calculations. First, we study the adsorption of L-lactic acid on the flat Pt(111) surface. Using the optimed PBE - van der Waals (oPBE-vdW) functional, which includes van der Waals forces on an ab initio level, it is shown that the molecule has two binding sites, a carboxyl and the hydroxyl oxygen atoms. Since real chiral surfaces are (i) known to undergo thermal roughening that alters the distribution of kinks and step edges but not the overall chirality and (ii) kink sites and edge sites are usually the energetically most favored adsorption sites, we focus on two surfaces that allow qualitative sampling of the most probable adsorption sites. We hereby consider chiral surfaces exhibiting (111) facets, in particular, Pt(321) and Pt(643). The binding sites are either both on kink sites—which is the case for Pt(321) or on one kink site—as on Pt(643). The binding energy of the molecule on the chiral surfaces is much higher than on the Pt(111) surface. We show that the carboxyl group interacts more strongly than the hydroxyl group with the kink sites. The results indicate the possible existence of very small chiral selectivities of the order of 20 meV for the Pt(321) and Pt(643) surfaces. L-lactic acid is more stable on Pt(321)S than D-lactic acid, while the chiral selectivity is inverted on Pt(643)S. The most stable adsorption configurations of L- and D-lactic acid are similar for Pt(321) but differ for Pt(643). We explore the impact of the different adsorption geometries on the work function, which is important for field ion microscopy.

  13. Efficacy of Lysine-Specific Demethylase 1 Inhibition in PCa

    DTIC Science & Technology

    2016-08-01

    specific demethylase 1 (LSD1) forms a complex with CoREST and has been well-characterized as an epigenetic regulator that mediates transcriptional...castration-resistant prostate cancer (CRPC), where AR activity persists and its function may be altered by epigenetic mechanisms. Specifically, we...hypothesized that LSD1 activity in PCa may allow tumor cells to epigenetically reprogram the AR cistrome by closing AR binding sites through which AR

  14. Variations in protein/flavin hydrogen bonding in a LOV domain produce non-Arrhenius kinetics of adduct decay†

    PubMed Central

    Zoltowski, Brian D.; Nash, Abigail I.; Gardner, Kevin H.

    2011-01-01

    Light Oxygen Voltage (LOV) domains utilize a conserved blue light-dependent mechanism to control a diverse array of effector domains in biological and engineered proteins. Variations in the kinetics and efficiency of LOV photochemistry fine tune various aspects of the photic response. Characterization of the kinetics of a key aspect of this photochemical mechanism in EL222, a blue-light responsive DNA binding protein from Erythrobacter litoralis HTCC2594, reveals unique non-Arrhenius behavior in the rate of dark state cleavage of the photochemically-generated adduct. Sequence analysis and mutagenesis studies establish that this effect stems from a Gln to Ala mutation unique to EL222 and homologous proteins from marine bacteria. Kinetic and spectroscopic analyses reveal that hydrogen bonding interactions between the FMN N1, O2 and ribityl hydroxyls with the surrounding protein regulate photocycle kinetics and stabilize the LOV active site from temperature-induced alteration in local structure. Substitution of residues interacting with the N1-O2 locus modulates adduct stability, structural flexibility and sequestration of the active site from bulk solvent without perturbation of light-activated DNA binding. Together, these variants link non-Arrhenius behavior to specific alteration of an H-bonding network, while affording tunability of photocycle kinetics. PMID:21923139

  15. Variations in protein-flavin hydrogen bonding in a light, oxygen, voltage domain produce non-Arrhenius kinetics of adduct decay.

    PubMed

    Zoltowski, Brian D; Nash, Abigail I; Gardner, Kevin H

    2011-10-18

    Light, oxygen, voltage (LOV) domains utilize a conserved blue light-dependent mechanism to control a diverse array of effector domains in biological and engineered proteins. Variations in the kinetics and efficiency of LOV photochemistry fine-tune various aspects of the photic response. Characterization of the kinetics of a key aspect of this photochemical mechanism in EL222, a blue light responsive DNA binding protein from Erythrobacter litoralis HTCC2594, reveals unique non-Arrhenius behavior in the rate of dark-state cleavage of the photochemically generated adduct. Sequence analysis and mutagenesis studies establish that this effect stems from a Gln to Ala mutation unique to EL222 and homologous proteins from marine bacteria. Kinetic and spectroscopic analyses reveal that hydrogen bonding interactions between the FMN N1, O2, and ribityl hydroxyls and the surrounding protein regulate photocycle kinetics and stabilize the LOV active site from temperature-induced alteration in local structure. Substitution of residues interacting with the N1-O2 locus modulates adduct stability, structural flexibility, and sequestration of the active site from bulk solvent without perturbation of light-activated DNA binding. Together, these variants link non-Arrhenius behavior to specific alteration of an H-bonding network, while affording tunability of photocycle kinetics. © 2011 American Chemical Society

  16. DNA wrapping and distortion by an oligomeric homeodomain protein.

    PubMed

    Williams, Hannah; Jayaraman, Padma-Sheela; Gaston, Kevin

    2008-10-31

    Many transcription factors alter DNA or chromatin structure. Changes in chromatin structure are often brought about by the recruitment of chromatin-binding proteins, chromatin-modifying proteins, or other transcription co-activator or co-repressor proteins. However, some transcription factors form oligomeric assemblies that may themselves induce changes in DNA conformation and chromatin structure. The proline-rich homeodomain (PRH/Hex) protein is a transcription factor that regulates cell differentiation and cell proliferation, and has multiple roles in embryonic development. Earlier, we showed that PRH can repress transcription by multiple mechanisms, including the recruitment of co-repressor proteins belonging to the TLE family of chromatin-binding proteins. Our in vivo crosslinking studies have shown that PRH forms oligomeric complexes in cells and a variety of biophysical techniques suggest that the protein forms octamers. However, as yet we have little knowledge of the role played by PRH oligomerisation in the regulation of promoter activity or of the architecture of promoters that are regulated directly by PRH in cells. Here, we compare the binding of PRH and the isolated PRH homeodomain to DNA fragments with single and multiple PRH sites, using gel retardation assays and DNase I and chemical footprinting. We show that the PRH oligomer binds to multiple sites within the human Goosecoid promoter with high affinity and that the binding of PRH brings about DNA distortion. We suggest that PRH octamers wrap DNA in order to bring about transcriptional repression.

  17. Prostaglandin E/sub 2/ localization and receptor identification within the developing murine secondary palate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.

    1986-01-01

    Transient elevations in murine secondary palatal adenosine 3',5'-monophosphate (cAMP) levels occur during palate ontogeny. Since palatal processes exposed to dibutyryl cAMP differentiate precociously, increases in palatal cAMP levels are of interest. Prostaglandin E/sub 2/ (PGE/sub 2/), which is synthesized by murine embryonic palate mesenchyme cells (MEPM), regulates cAMP levels in adult tissues via specific membrane bound receptors coupled to adenylate cyclase. Therefore, a PGE/sub 2/ receptor-adenylate cyclase systems was proposed in the developing murine secondary palate. Utilizing a radioligand binding assay, it was determined that murine palatal tissue on day 13 of gestation contained PGE/sub 2/ receptors that were saturable,more » of high affinity and low capacity. Specific (/sup 3/H)-PGE/sub 2/ binding was reversible by 30 min. The order of prostanoid binding affinity at specific PGE/sub 2/ binding sites was E/sub 2/ > F/sub 2//sub ..cap alpha../ > A/sub 2/ > E/sub 1/ = D/sub 2/ indicating specificity of the receptor for PGE/sub 2/. The ability of MEPM cells to respond to PGE/sub 2/ with dose-dependent accumulations of intracellular cAMP demonstrated the functional nature of these binding sites. Analysis of palatal PGE/sub 2/ receptor characteristics on days 12 and 14 of palate development indicated temporal alterations in receptor affinity and density during palate ontogeny.« less

  18. Effects of mutations at amino acid 61 in the arm of TF1 on its DNA-binding properties.

    PubMed

    Sayre, M H; Geiduschek, E P

    1990-12-20

    Transcription factor 1 (TF1) is the Bacillus subtilis phage SPO1-encoded member of the family of bacterial DNA-binding proteins that includes Escherichia coli HU and integration host factor (IHF). We have initiated a mutational analysis of the TF1 molecule to understand better its unique DNA-binding properties and to investigate its physiological function. We report here the consequences of mutating the putative DNA-binding "arms" of TF1. At position 61 in its primary sequence, TF1 contains a Phe residue in place of the Arg residue found in all other known members of the HU family. Substituting polar, uncharged residues for Phe61 substantially reduced the DNA-binding affinity and site-selectivity of TF1 in vitro, whereas the substitution of Tyr had no effect. Substituting Trp or Arg for Phe61 had little effect on the affinity of TF1 for SPO1 DNA, but altered the electrophoretic mobilities of protein-DNA complexes in non-denaturing gels. The Arg61 substitution increased the affinity of the protein for non-specific sites on thymine-containing DNA, thus reducing the natural preference of TF1 for (5-hydroxymethyluracil)-containing DNA. The Phe61-to-Arg mutation was also correlated with decreased phage yield and aberrant regulation of viral protein synthesis in vivo.

  19. Crystal structure of isoflurane bound to integrin LFA-1 supports a unified mechanism of volatile anesthetic action in the immune and central nervous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongmin; Astrof, Nathan S.; Liu, Jin-Huan

    2009-09-15

    Volatile anesthetics (VAs), such as isoflurane, induce a general anesthetic state by binding to specific targets (i.e., ion channels) in the central nervous system (CNS). Simultaneously, VAs modulate immune functions, possibly via direct interaction with alternative targets on leukocytes. One such target, the integrin lymphocyte function-associated antigen-1 (LFA-1), has been shown previously to be inhibited by isoflurane. A better understanding of the mechanism by which isoflurane alters protein function requires the detailed information about the drug-protein interaction at an atomic level. Here, we describe the crystal structure of the LFA-1 ligand-binding domain (I domain) in complex with isoflurane at 1.6more » {angstrom}. We discovered that isoflurane binds to an allosteric cavity previously implicated as critical for the transition of LFA-1 from the low- to the high-affinity state. The isoflurane binding site in the I domain involves an array of amphiphilic interactions, thereby resembling a 'common anesthetic binding motif' previously predicted for authentic VA binding sites. These results suggest that the allosteric modulation of protein function by isoflurane, as demonstrated for the integrin LFA-1, might represent a unified mechanism shared by the interactions of volatile anesthetics with targets in the CNS. Crystal structure of isoflurane bound to integrin LFA-1 supports a unified mechanism of volatile anesthetic action in the immune and central nervous systems.« less

  20. Sequence- and Interactome-Based Prediction of Viral Protein Hotspots Targeting Host Proteins: A Case Study for HIV Nef

    PubMed Central

    Sarmady, Mahdi; Dampier, William; Tozeren, Aydin

    2011-01-01

    Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk. PMID:21738584

  1. Structural studies of the natriuretic peptide receptor: a novel hormone-induced rotation mechanism for transmembrane signal transduction.

    PubMed

    Misono, Kunio S; Ogawa, Haruo; Qiu, Yue; Ogata, Craig M

    2005-06-01

    The atrial natriuretic peptide (ANP) receptor is a single-span transmembrane receptor that is coupled to its intrinsic intracellular guanylate cyclase (GCase) catalytic activity. To investigate the mechanisms of hormone binding and signal transduction, we have expressed the extracellular hormone-binding domain of the ANP receptor (ANPR) and characterized its structure and function. The disulfide-bond structure, state of glycosylation, binding-site residues, chloride-dependence of ANP binding, dimerization, and binding stoichiometry have been determined. More recently, the crystal structures of both the apoANPR dimer and ANP-bound complex have been determined. The structural comparison between the two has shown that, upon ANP binding, two ANPR molecules in the dimer undergo an inter-molecular twist with little intra-molecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains with essentially no change in the inter-domain distance. This movement alters the relative orientation of the two domains equivalent to counter-clockwise rotation of each by 24 degrees . These results suggest that transmembrane signaling by the ANP receptor is mediated by a novel hormone-induced rotation mechanism.

  2. Binding of nitrogen-containing bisphosphonates (N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chuan-Hsiang; Gabelli, Sandra B.; Oldfield, Eric

    Bisphosphonates (BPs) are a class of compounds that have been used extensively in the treatment of osteoporosis and malignancy-related hypercalcemia. Some of these compounds act through inhibition of farnesyl diphosphate synthase (FPPS), a key enzyme in the synthesis of isoprenoids. Recently, nitrogen-containing bisphosphonates (N-BPs) used in bone resorption therapy have been shown to be active against Trypanosoma cruzi, the parasite that causes American trypanosomiasis (Chagas disease), suggesting that they may be used as anti-trypanosomal agents. The crystal structures of TcFPPS in complex with substrate (isopentenyl diphosphate, IPP) and five N-BP inhibitors show that the C-1 hydroxyl and the nitrogen-containing groupsmore » of the inhibitors alter the binding of IPP and the conformation of two TcFPPS residues, Tyr94 and Gln167. Isothermal titration calorimetry experiments suggest that binding of the first N-BPs to the homodimeric TcFPPS changes the binding properties of the second site. This mechanism of binding of N-BPs to TcFPPS is different to that reported for the binding of the same compounds to human FPPS.« less

  3. Indicine N-oxide binds to tubulin at a distinct site and inhibits the assembly of microtubules: a mechanism for its cytotoxic activity.

    PubMed

    Appadurai, Prakash; Rathinasamy, Krishnan

    2014-02-10

    Indicine N-oxide, a pyrrolizidine alkaloid present in the plant Heliotropium indicum had shown promising cytotoxic activity in various tumor models. The compound exhibited severe toxicity to hepatocytes and bone marrow cells. The present work was aimed to evaluate the molecular mechanism of the toxicity of indicine N-oxide. We found that indicine N-oxide inhibited the proliferation of various cancer cell lines in a concentration dependent manner with IC50 ranging from 46 to 100 μM. At the half maximal inhibitory concentration it blocked the cell cycle progression at mitosis without significantly altering the organization of the spindle and interphase microtubules. The toxicities of the compound at higher concentrations are attributed to its severe depolymerizing effect on both the interphase and spindle microtubules. Binding studies using purified goat brain tubulin indicated that indicine N-oxide binds to tubulin at a distinct site not shared by colchicine or taxol. It decreased the polymer mass of both purified tubulin and MAP-rich tubulin. It was found to induce cleavage of DNA using pUC18 plasmid. The interactions of indicine N-oxide on DNA were also confirmed by computational analysis; which predicted its binding site at the minor groove of DNA. These studies bring to light that the toxicities of indicine N-oxide were due to its DNA damaging effects and depolymerization of microtubules. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Effects of a detergent micelle environment on P-glycoprotein (ABCB1)-ligand interactions

    PubMed Central

    Shukla, Suneet; Abel, Biebele; Chufan, Eduardo E.; Ambudkar, Suresh V.

    2017-01-01

    P-glycoprotein (P-gp) is a multidrug transporter that uses energy from ATP hydrolysis to export many structurally dissimilar hydrophobic and amphipathic compounds, including anticancer drugs from cells. Several structural studies on purified P-gp have been reported, but only limited and sometimes conflicting information is available on ligand interactions with the isolated transporter in a dodecyl-maltoside detergent environment. In this report we compared the biochemical properties of P-gp in native membranes, detergent micelles, and when reconstituted in artificial membranes. We found that the modulators zosuquidar, tariquidar, and elacridar stimulated the ATPase activity of purified human or mouse P-gp in a detergent micelle environment. In contrast, these drugs inhibited ATPase activity in native membranes or in proteoliposomes, with IC50 values in the 10–40 nm range. Similarly, a 30–150-fold decrease in the apparent affinity for verapamil and cyclic peptide inhibitor QZ59-SSS was observed in detergent micelles compared with native or artificial membranes. Together, these findings demonstrate that the high-affinity site is inaccessible because of either a conformational change or binding of detergent at the binding site in a detergent micelle environment. The ligands bind to a low-affinity site, resulting in altered modulation of P-gp ATPase activity. We, therefore, recommend studying structural and functional aspects of ligand interactions with purified P-gp and other ATP-binding cassette transporters that transport amphipathic or hydrophobic substrates in a detergent-free native or artificial membrane environment. PMID:28283574

  5. In silico and in vitro Studies on Begomovirus Induced Andrographolide Biosynthesis Pathway in Andrographis Paniculata for Combating Inflammation and Cancer.

    PubMed

    Khan, Asifa; Sharma, Pooja; Khan, Feroz; Ajayakumar, P V; Shanker, Karuna; Samad, Abdul

    2016-07-01

    Andrographolide and neoandrographolide are major bioactive molecules of Andrographis paniculata, a well-known medicinal plant. These molecules exhibited varying degrees of anti-inflammatory and anticancer activities in-vitro and in-vivo. Role of begomovirus protein C2/TrAP in biosynthesis of andrographolide was identified through molecular modeling, docking and predicted results were substantiated by in vitro studies. Homology molecular modeling and molecular docking were performed to study the binding conformations and different bonding behaviors, in order to reveal the possible mechanism of action behind higher accumulation of andrographolide. It was concluded that C2/TrAP inhibit the activation of SNF1-Related Protein Kinase-1 (SnRK1) in terpenoid pathway and removes the negative regulation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) by SnRK1, leading to higher accumulation of andrographolide and neoandrographolide in begomovirus infected plants. The binding site residues of SnRK1 docked with C2/TrAP were found to be associated with ATP binding site, substrate binding site and activation loop. Predicted results were also validated by HPTLC. This study provides important insights into understanding the role of viral protein in altering the regulation of biosynthesis of andrographolide and could be used in future research to develop biomimetic methods for increasing the production of such phytometabolites having anti-cancerous and anti-inflammatory properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A chronic treatment with fluoxetine decreases 5-HT(1A) receptors labeling in mice selected as a genetic model of helplessness.

    PubMed

    Naudon, Laurent; El Yacoubi, Malika; Vaugeois, Jean-Marie; Leroux-Nicollet, Isabelle; Costentin, Jean

    2002-05-17

    Two lines of mice were bred for their opposite helpless behavior in the tail suspension test, i.e., helpless (HL) mice and non helpless (NHL) mice. The 5-HT(1A) receptor labeling was quantified by means of autoradiography with (3)H-8-OH-DPAT on brain sections from mice of these two lines. We observed a significantly higher level of (3)H-8-OH-DPAT binding sites density in HL mice comparatively to NHL mice, in the medial prefrontal, cingulate, motor and sensorial cortices, in several regions of the limbic system, such as CA3 field of hippocampus, dentate gyrus, medial and baso-medial amygdala, and in dorsal and median raphe nuclei. A chronic 21-day treatment with the antidepressant fluoxetine (10 mg/kg, i.p. daily) attenuated significantly the spontaneous helplessness in HL mice but did not alter the behavior of NHL mice. In the brain of HL mice chronically injected with fluoxetine, the elevated (3)H-8-OH-DPAT binding sites density was no longer observed after treatment in several regions, among which the raphe nuclei. Conversely, the antidepressant treatment did not modify the (3)H-8-OH-DPAT binding sites density in NHL mice. The variation of 5-HT(1A) receptors binding density in the HL mice in response to a chronic fluoxetine treatment parallels the attenuation of the spontaneous helplessness observed in the tail suspension test, and may underlie this behavior.

  7. Changes at the nuclear lamina alter binding of pioneer factor Foxa2 in aged liver.

    PubMed

    Whitton, Holly; Singh, Larry N; Patrick, Marissa A; Price, Andrew J; Osorio, Fernando G; López-Otín, Carlos; Bochkis, Irina M

    2018-06-01

    Increasing evidence suggests that regulation of heterochromatin at the nuclear envelope underlies metabolic disease susceptibility and age-dependent metabolic changes, but the mechanism is unknown. Here, we profile lamina-associated domains (LADs) using lamin B1 ChIP-Seq in young and old hepatocytes and find that, although lamin B1 resides at a large fraction of domains at both ages, a third of lamin B1-associated regions are bound exclusively at each age in vivo. Regions occupied by lamin B1 solely in young livers are enriched for the forkhead motif, bound by Foxa pioneer factors. We also show that Foxa2 binds more sites in Zmpste24 mutant mice, a progeroid laminopathy model, similar to increased Foxa2 occupancy in old livers. Aged and Zmpste24-deficient livers share several features, including nuclear lamina abnormalities, increased Foxa2 binding, de-repression of PPAR- and LXR-dependent gene expression, and fatty liver. In old livers, additional Foxa2 binding is correlated to loss of lamin B1 and heterochromatin (H3K9me3 occupancy) at these loci. Our observations suggest that changes at the nuclear lamina are linked to altered Foxa2 binding, enabling opening of chromatin and de-repression of genes encoding lipid synthesis and storage targets that contribute to etiology of hepatic steatosis. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Cross-species analysis of Fc engineered anti-Lewis-Y human IgG1 variants in human neonatal receptor transgenic mice reveal importance of S254 and Y436 in binding human neonatal Fc receptor

    PubMed Central

    Burvenich, Ingrid J. G.; Farrugia, William; Lee, Fook T.; Catimel, Bruno; Liu, Zhanqi; Makris, Dahna; Cao, Diana; O'Keefe, Graeme J.; Brechbiel, Martin W.; King, Dylan; Spirkoska, Violeta; Allan, Laura C.; Ramsland, Paul A.; Scott, Andrew M.

    2016-01-01

    ABSTRACT IgG has a long half-life through engagement of its Fc region with the neonatal Fc receptor (FcRn). The FcRn binding site on IgG1 has been shown to contain I253 and H310 in the CH2 domain and H435 in the CH3 domain. Altering the half-life of IgG has been pursued with the aim to prolong or reduce the half-life of therapeutic IgGs. More recent studies have shown that IgGs bind differently to mouse and human FcRn. In this study we characterize a set of hu3S193 IgG1 variants with mutations in the FcRn binding site. A double mutation in the binding site is necessary to abrogate binding to murine FcRn, whereas a single mutation in the FcRn binding site is sufficient to no longer detect binding to human FcRn and create hu3S193 IgG1 variants with a half-life similar to previously studied hu3S193 F(ab')2 (t1/2β, I253A, 12.23 h; H310A, 12.94; H435A, 12.57; F(ab')2, 12.6 h). Alanine substitutions in S254 in the CH2 domain and Y436 in the CH3 domain showed reduced binding in vitro to human FcRn and reduced elimination half-lives in huFcRn transgenic mice (t1/2β, S254A, 37.43 h; Y436A, 39.53 h; wild-type, 83.15 h). These variants had minimal effect on half-life in BALB/c nu/nu mice (t1/2β, S254A, 119.9 h; Y436A, 162.1 h; wild-type, 163.1 h). These results provide insight into the interaction of human Fc by human FcRn, and are important for antibody-based therapeutics with optimal pharmacokinetics for payload strategies used in the clinic. PMID:27030023

  9. Ganglioside inhibition of sup 125 I-plasmin binding to colorectal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liepkalns, V.A.; Burtin, M.C.; Correc, P.

    1990-01-01

    The pre-incubation of human colorectal carcinoma cells SW 1116 with 25 to 100 uM purified gangliosides resulted in 35-60% inhibition of specific {sup 125}I-plasmin binding to the cell surface. After 5 to 6 days in culture, tumor cells were pre-incubated at 4 degrees for 1 to 4 h followed by post-incubation with {sup 125}I-plasmin by techniques previously described. At 25 uM the capacity for inhibition of plasmin binding was GT1b greater than GQ1b greater than or equal to GD1a greater than GM1 less than or equal to GgOse 4Cer. Thus a terminal sialyl moiety appears to be necessary (p lessmore » than 0.05) although exogenous N-acetyl neuraminic acid was ineffective (p greater than 0.05), indicating a role for the lipid portion of the ganglioside. Other (glyco)lipids such as sphingosine, fucolipid H-1 and sulfatide were without significant effect. The inhibition could not be reversed by the presence of 10 mM Ca+2, EDTA, pre-treatment of the cell with carboxypeptidase or pretreatment of plasmin with neuraminidases. The inhibition was however reversed by post-incubation in control medium without exogenous ganglioside. Cell counts determined prior to, and after ganglioside incubation showed that the effect was not due to cell death or detachment from the culture surface. The dissociation constant for {sup 125}I-plasmin binding was 5.6 x 10(-8) M (700,000 sites/cell), but in the presence of trisialoganglioside (GT1b), Scatchard plots suggested diversification of binding sites with 280,000 sites/cell at Kd 2.6 x 10(-8) M and 820,000 sites/cell at Kd 2.1 x 10(-7) M. Another interpretation of the Scatchard plot in the presence of ganglioside was that the glycolipid imposed negative cooperativity on plasmin binding to the cell surface. These results suggest that certain gangliosides can affect tumor cell invasiveness by altering protease binding to the cell surface.« less

  10. Mutagenesis of the Phosphatidylinositol 4,5-Bisphosphate (Pip2) Binding Site in the Nh2-Terminal Domain of Ezrin Correlates with Its Altered Cellular Distribution

    PubMed Central

    Barret, Cécile; Roy, Christian; Montcourrier, Philippe; Mangeat, Paul; Niggli, Verena

    2000-01-01

    The cytoskeleton-membrane linker protein ezrin has been shown to associate with phosphatidyl-inositol 4,5-bisphosphate (PIP2)-containing liposomes via its NH2-terminal domain. Using internal deletions and COOH-terminal truncations, determinants of PIP2 binding were located to amino acids 12–115 and 233–310. Both regions contain a KK(X)nK/RK motif conserved in the ezrin/radixin/moesin family. K/N mutations of residues 253 and 254 or 262 and 263 did not affect cosedimentation of ezrin 1-333 with PIP2-containing liposomes, but their combination almost completely abolished the capacity for interaction. Similarly, double mutation of Lys 63, 64 to Asn only partially reduced lipid interaction, but combined with the double mutation K253N, K254N, the interaction of PIP2 with ezrin 1-333 was strongly inhibited. Similar data were obtained with full-length ezrin. When residues 253, 254, 262, and 263 were mutated in full-length ezrin, the in vitro interaction with the cytoplasmic tail of CD44 was not impaired but was no longer PIP2 dependent. This construct was also expressed in COS1 and A431 cells. Unlike wild-type ezrin, it was not any more localized to dorsal actin-rich structures, but redistributed to the cytoplasm without strongly affecting the actin-rich structures. We have thus identified determinants of the PIP2 binding site in ezrin whose mutagenesis correlates with an altered cellular localization. PMID:11086008

  11. Recognition of Mannosylated Ligands and Influenza A Virus by Human Surfactant Protein D: Contributions of an Extended Site and Residue 343

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouch, E.; Hartshorn, K; Horlacher, T

    2009-01-01

    Surfactant protein D (SP-D) plays important roles in antiviral host defense. Although SP-D shows a preference for glucose/maltose, the protein also recognizes d-mannose and a variety of mannose-rich microbial ligands. This latter preference prompted an examination of the mechanisms of mannose recognition, particularly as they relate to high-mannose viral glycans. Trimeric neck plus carbohydrate recognition domains from human SP-D (hNCRD) preferred ?1-2-linked dimannose (DM) over the branched trimannose (TM) core, ?1-3 or ?1-6 DM, or d-mannose. Previous studies have shown residues flanking the carbohydrate binding site can fine-tune ligand recognition. A mutant with valine at 343 (R343V) showed enhanced bindingmore » to mannan relative to wild type and R343A. No alteration in affinity was observed for d-mannose or for ?1-3- or ?1-6-linked DM; however, substantially increased affinity was observed for ?1-2 DM. Both proteins showed efficient recognition of linear and branched subdomains of high-mannose glycans on carbohydrate microarrays, and R343V showed increased binding to a subset of the oligosaccharides. Crystallographic analysis of an R343V complex with 1,2-DM showed a novel mode of binding. The disaccharide is bound to calcium by the reducing sugar ring, and a stabilizing H-bond is formed between the 2-OH of the nonreducing sugar ring and Arg349. Although hNCRDs show negligible binding to influenza A virus (IAV), R343V showed markedly enhanced viral neutralizing activity. Hydrophobic substitutions for Arg343 selectively blocked binding of a monoclonal antibody (Hyb 246-05) that inhibits IAV binding activity. Our findings demonstrate an extended ligand binding site for mannosylated ligands and the significant contribution of the 343 side chain to specific recognition of multivalent microbial ligands, including high-mannose viral glycans.« less

  12. NM23 proteins: innocent bystanders or local energy boosters for CFTR?

    PubMed

    Muimo, Richmond; Alothaid, Hani Mm; Mehta, Anil

    2018-03-01

    NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies.

  13. Site-Mutation of Hydrophobic Core Residues Synchronically Poise Super Interleukin 2 for Signaling: Identifying Distant Structural Effects through Affordable Computations.

    PubMed

    Mei, Longcan; Zhou, Yanping; Zhu, Lizhe; Liu, Changlin; Wu, Zhuo; Wang, Fangkui; Hao, Gefei; Yu, Di; Yuan, Hong; Cui, Yanfang

    2018-03-20

    A superkine variant of interleukin-2 with six site mutations away from the binding interface developed from the yeast display technique has been previously characterized as undergoing a distal structure alteration which is responsible for its super-potency and provides an elegant case study with which to get insight about how to utilize allosteric effect to achieve desirable protein functions. By examining the dynamic network and the allosteric pathways related to those mutated residues using various computational approaches, we found that nanosecond time scale all-atom molecular dynamics simulations can identify the dynamic network as efficient as an ensemble algorithm. The differentiated pathways for the six core residues form a dynamic network that outlines the area of structure alteration. The results offer potentials of using affordable computing power to predict allosteric structure of mutants in knowledge-based mutagenesis.

  14. Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270.

    PubMed

    Navarro, Claudio A; von Bernath, Diego; Martínez-Bussenius, Cristóbal; Castillo, Rodrigo A; Jerez, Carlos A

    2016-02-15

    Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Preliminary Work in Obtaining Site-Directed Mutants of Hen Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, Leonard D.

    1996-01-01

    Protein crystal growth studies are recognized as a critical endeavor in the field of molecular biotechnology. The scientific applications of this field include the understanding of how enzymes function and the accumulation of accurate information of atomic structures, a key factor in the process of rational drug design. NASA has committed substantial investment and resources to the field of protein crystal growth and has conducted many microgravity protein crystal growth experiments aboard shuttle flights. Crystals grown in space tend to be larger, denser and have a more perfect habit and geometry. These improved properties gained in the microgravity environment of space result largely from the reduction of solutal convection, and the elimination of sedimentation at the growing crystal surface. Shuttle experiments have yielded many large, high quality crystals that are suitable for high resolution X-ray diffraction analysis. Examples of biologically important macromolecules which have been successfully crystallized during shuttle missions include: lysozyme, isocitrate lyase, gamma-interferon, insulin, human serum albumin and canavalin. Numerous other examples are also available. In addition to obtaining high quality crystals, investigators are also interested in learning the mechanisms by which the growth events take place. Crystallization experiments indicate that for the enzyme HEWL, measured growth rates do not follow mathematical models for 2D nucleation and dislocation-led growth of tetragonal protein crystals. As has been suggested by the laboratory of Marc L. Pusey, a possible explanation for the disagreement between observation and data is that HEWL tetraconal crystals form by aggregated units of lysozyme in supersaturated solutions. Surface measurement data was shown to fit very well with a model using an octamer unit cell as the growth unit. According to this model, the aggregation pathway and subsequent crystal growth is described by: monomer < ------ > dimer < ------- > tetramer < ------ > octamer < ------ > higher order. It is believed that multimer aggregation of lysozyme occurs by interaction at specific binding sites on the surface of the protein crystals. If the presence of discrete binding sites and the aggregation hypothesis is true, then it follows that the alteration of the binding site(s) should have significant effect on the measurements obtained during growth experiments. Site-directed mutagenesis allows the specific alteration of proteins by replacement, deletion or addition of specific amino acid residues. This report outlines the approach for this strategy and the progress made thus far toward that end.

  16. Mechanism of cinnamic acid-induced trypsin inhibition: a multi-technique approach.

    PubMed

    Zhang, Hongmei; Zhou, Qiuhua; Cao, Jian; Wang, Yanqing

    2013-12-01

    In order to investigate the association of the protease trypsin with cinnamic acid, the interaction was characterized by using fluorescence, UV-vis absorption spectroscopy, molecular modeling and an enzymatic inhibition assay. The binding process may be outlined as follows: cinnamic acid can interact with trypsin with one binding site to form cinnamic acid-trypsin complex, resulting in inhibition of trypsin activity; the spectroscopic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes being -8.95 kJ mol(-1) and 50.70 J mol(-1) K(-1), respectively. Noncovalent interactions make the main contribution to stabilize the trypsin-cinnamic acid complex; cinnamic acid can enter into the primary substrate-binding pocket and alter the environment around Trp and Tyr residues. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Conformational Changes in IpaD from Shigella flexneri Upon Binding Bile Salts Provide Insight into the Second Step of Type III Secretion†

    PubMed Central

    Dickenson, Nicholas E.; Zhang, Lingling; Epler, Chelsea R.; Adam, Philip R.; Picking, Wendy L.; Picking, William D.

    2011-01-01

    Shigella flexneri uses its type III secretion apparatus (TTSA) to inject host-altering proteins into targeted eukaryotic cells. The TTSA is composed of a basal body and an exposed needle with invasion plasmid antigen D (IpaD) forming a tip complex that controls secretion. The bile salt deoxycholate (DOC) stimulates recruitment of the translocator protein IpaB into the maturing TTSA needle tip complex. This process appears to be triggered by a direct interaction between DOC and IpaD. Fluorescence spectroscopy and NMR spectroscopy are used here to confirm the DOC-IpaD interaction and to reveal that IpaD conformational changes upon DOC binding trigger the appearance of IpaB at the needle tip. Förster resonance energy transfer between specific sites on IpaD was used here to identify changes in distances between IpaD domains as a result of DOC binding. To further explore the effects of DOC binding on IpaD structure, NMR chemical shift mapping was employed. The environments of residues within the proposed DOC binding site and additional residues within the “distal” globular domain were perturbed upon DOC binding, further indicating that conformational changes occur within IpaD upon DOC binding. These events are proposed to be responsible for the recruitment of IpaB at the TTSA needle tip. Mutation analyses combined with additional spectroscopic analyses confirms that conformational changes in IpaD induced by DOC binding contribute to the recruitment of IpaB to the S. flexneri TTSA needle tip. These findings lay the foundation for determining how environmental factors promote TTSA needle tip maturation prior to host cell contact. PMID:21126091

  18. The Hsp70 interdomain linker is a dynamic switch that enables allosteric communication between two structured domains.

    PubMed

    English, Charles A; Sherman, Woody; Meng, Wenli; Gierasch, Lila M

    2017-09-08

    Hsp70 molecular chaperones play key roles in cellular protein homeostasis by binding to exposed hydrophobic regions of incompletely folded or aggregated proteins. This crucial Hsp70 function relies on allosteric communication between two well-structured domains: an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD), which are tethered by an interdomain linker. ATP or ADP binding to the NBD alters the substrate-binding affinity of the SBD, triggering functionally essential cycles of substrate binding and release. The interdomain linker is a well-structured participant in the interdomain interface in ATP-bound Hsp70s. By contrast, in the ADP-bound state, exemplified by the Escherichia coli Hsp70 DnaK, the interdomain linker is flexible. Hsp70 interdomain linker sequences are highly conserved; moreover, mutations in this region compromise interdomain allostery. To better understand the role of this region in Hsp70 allostery, we used molecular dynamics simulations to explore the conformational landscape of the interdomain linker in ADP-bound DnaK and supported our simulations by strategic experimental data. We found that while the interdomain linker samples many conformations, it behaves as three relatively ordered segments connected by hinges. As a consequence, the distances and orientations between the NBD and SBD are limited. Additionally, the C-terminal region of the linker forms previously unreported, transient interactions with the SBD, and the predominant linker-docking site is available in only one allosteric state, that with high affinity for substrate. This preferential binding implicates the interdomain linker as a dynamic allosteric switch. The linker-binding site on the SBD is a potential target for small molecule modulators of the Hsp70 allosteric cycle. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The effect of natural organic matter on the adsorption of mercury to bacterial cells

    NASA Astrophysics Data System (ADS)

    Dunham-Cheatham, Sarrah; Mishra, Bhoopesh; Myneni, Satish; Fein, Jeremy B.

    2015-02-01

    We investigated the ability of non-metabolizing Bacillus subtilis, Shewanella oneidensis MR-1, and Geobacter sulfurreducens bacterial species to adsorb mercury in the absence and presence of Suwanee River fulvic acid (FA). Bulk adsorption and X-ray absorption spectroscopy (XAS) experiments were conducted at three pH conditions, and the results indicate that the presence of FA decreases the extent of Hg adsorption to biomass under all of the pH conditions studied. Hg XAS results show that the presence of FA does not alter the binding environment of Hg adsorbed onto the biomass regardless of pH or FA concentration, indicating that ternary bacteria-Hg-FA complexes do not form to an appreciable extent under the experimental conditions, and that Hg binding on the bacteria is dominated by sulfhydryl binding. We used the experimental results to calculate apparent partition coefficients, Kd, for Hg under each experimental condition. The calculations yield similar coefficients for Hg onto each of the bacterial species studies, suggesting there is no significant difference in Hg partitioning between the three bacterial species. The calculations also indicate similar coefficients for Hg-bacteria and Hg-FA complexes. S XAS measurements confirm the presence of sulfhydryl sites on both the FA and bacterial cells, and demonstrate the presence of a wide range of S moieties on the FA in contrast to the bacterial biomass, whose S sites are dominated by thiols. Our results suggest that although FA can compete with bacterial binding sites for aqueous Hg, because of the relatively similar partition coefficients for the types of sorbents, the competition is not dominated by either bacteria or FA unless the concentration of one type of site greatly exceeds that of the other.

  20. The m1A(58) modification in eubacterial tRNA: An overview of tRNA recognition and mechanism of catalysis by TrmI.

    PubMed

    Dégut, Clément; Ponchon, Luc; Folly-Klan, Marcia; Barraud, Pierre; Tisné, Carine

    2016-03-01

    The enzymes of the TrmI family catalyze the formation of the m(1)A58 modification in tRNA. We previously solved the crystal structure of the Thermus thermophilus enzyme and conducted a biophysical study to characterize the interaction between TrmI and tRNA. TrmI enzymes are active as a tetramer and up to two tRNAs can bind to TrmI simultaneously. In this paper, we present the structures of two TrmI mutants (D170A and Y78A). These residues are conserved in the active site of TrmIs and their mutations result in a dramatic alteration of TrmI activity. Both structures of TrmI mutants revealed the flexibility of the N-terminal domain that is probably important to bind tRNA. The structure of TrmI Y78A catalytic domain is unmodified regarding the binding of the SAM co-factor and the conformation of residues potentially interacting with the substrate adenine. This structure reinforces the previously proposed role of Y78, i.e. stabilize the conformation of the A58 ribose needed to hold the adenosine in the active site. The structure of the D170A mutant shows a flexible active site with one loop occupying in part the place of the co-factor and the second loop moving at the entrance to the active site. This structure and recent data confirms the central role of D170 residue binding the amino moiety of SAM and the exocyclic amino group of adenine. Possible mechanisms for methyl transfer are then discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Immunohistochemical localization of calcium-binding proteins in the brainstem vestibular nuclei of the jaundiced Gunn rat.

    PubMed

    Shaia, Wayne T; Shapiro, Steven M; Heller, Andrew J; Galiani, David L; Sismanis, Aristides; Spencer, Robert F

    2002-11-01

    Vestibular gaze and postural abnormalities are major sequelae of neonatal hyperbilirubinemia. The sites and cellular effects of bilirubin toxicity in the brainstem vestibular pathway are not easily detected. Since altered intracellular calcium homeostasis may play a role in neuronal cell death, we hypothesized that altered expression of calcium-binding proteins may occur in brainstem vestibular nuclei of the classic animal model of bilirubin neurotoxicity. The expression of the calcium-binding proteins calbindin-D28k and parvalbumin in the brainstem vestibular pathways and cerebellum of homozygous recessive jaundiced (jj) Gunn rats was examined by light microscopy and immunohistochemistry at 18 days postnatally and compared to the findings obtained from age-matched non-jaundiced heterozygous (Nj) littermate controls. Jaundiced animals exhibited decreased parvalbumin immunoreactivity specifically in synaptic inputs to superior, medial, and inferior vestibular nuclei, and to oculomotor and trochlear nuclei, whereas the neurons retained their normal immunoreactivity. Jaundiced animals also demonstrated a decrease in calbindin expression in the lateral vestibular nuclei and a paucity of calbindin-immunoreactive synaptic endings on the somata of Deiters' neurons. The involved regions are related to the control of the vestibulo-ocular and vestibulospinal reflexes. Decreased expression of calcium-binding proteins in brainstem vestibular neurons may relate to the vestibulo-ocular and vestibulospinal dysfunction seen with clinical kernicterus, and may provide a sensitive new way to assess bilirubin toxicity in the vestibular system.

  2. Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax.

    PubMed

    Baranger, A M; Palmer, C R; Hamm, M K; Giebler, H A; Brauweiler, A; Nyborg, J K; Schepartz, A

    1995-08-17

    Tax protein activates transcription of the human T-cell leukaemia virus type I (HTLV-I) genome through three imperfect cyclic AMP-responsive element (CRE) target sites located within the viral promoter. Previous work has shown that Tax interacts with the bZIP element of proteins that bind the CRE target site to promote peptide dimerization, suggesting an association between Tax and bZIP coiled coil. Here we show that the site of interaction with Tax is not the coiled coil, but the basic segment. This interaction increases the stability of the GCN4 bZIP dimer by 1.7 kcal mol-1 and the DNA affinity of the dimer by 1.9 kcal mol-1. The differential effect of Tax on several bZip-DNA complexes that differ in peptide sequence or DNA conformation suggests a model for Tax action based on stabilization of a distinct DNA-bound protein structure. This model may explain how Tax interacts with transcription factors of considerable sequence diversity to alter patterns of gene expression.

  3. Host-guest chemistry of dendrimer-drug complexes. 4. An in-depth look into the binding/encapsulation of guanosine monophosphate by dendrimers.

    PubMed

    Hu, Jingjing; Fang, Min; Cheng, Yiyun; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

    2010-06-03

    In the present study, we investigated the host-guest chemistry of dendrimer/guanosine monophosphate (GMP) and present an in-depth look into the binding/encapsulation of GMP by dendrimers using NMR studies. (1)H NMR spectra showed a significant downfield shift of methylene protons in the outmost layer of the G5 dendrimer, indicating the formation of ion pairs between cationic amine groups of dendrimer and anionic phosphate groups of GMP. Chemical shift titration results showed that the binding constant between G5 dendrimer and GMP is 17,400 M(-1) and each G5 dendrimer has 107 binding sites. The binding of GMP to dendrimers prevents its aggregation in aqueous solutions and thereby enhances its stability. Nuclear Overhauser effect measurements indicated that a GMP binding and encapsulation balance occurs on the surface and in the interior of dendrimer. The binding/encapsulation transitions can be easily tailored by altering the surface and interior charge densities of the dendrimer. All these findings provide a new insight into the host-guest chemistry of dendrimer/guest complexes and may play important roles in the study of dendrimer/DNA aggregates by a "bottom-up" strategy.

  4. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus.

    PubMed

    Chamberlain, Kyle; Fowler, Veronica L; Barnett, Paul V; Gold, Sarah; Wadsworth, Jemma; Knowles, Nick J; Jackson, Terry

    2015-09-01

    Vaccination remains the most effective tool for control of foot-and-mouth disease both in endemic countries and as an emergency preparedness for new outbreaks. Foot-and-mouth disease vaccines are chemically inactivated virus preparations and the production of new vaccines is critically dependent upon cell culture adaptation of field viruses, which can prove problematic. A major driver of cell culture adaptation is receptor availability. Field isolates of foot-and-mouth disease virus (FMDV) use RGD-dependent integrins as receptors, whereas cell culture adaptation often selects for variants with altered receptor preferences. Previously, two independent sites on the capsid have been identified where mutations are associated with improved cell culture growth. One is a shallow depression formed by the three major structural proteins (VP1-VP3) where mutations create a heparan sulphate (HS)-binding site (the canonical HS-binding site). The other involves residues of VP1 and is located at the fivefold symmetry axis. For some viruses, changes at this site result in HS binding; for others, the receptors are unknown. Here, we report the identification of a novel site on VP2 where mutations resulted in an expanded cell tropism of a vaccine variant of A/IRN/87 (called A - ). Furthermore, we show that introducing the same mutations into a different type A field virus (A/TUR/2/2006) resulted in the same expanded cell culture tropism as the A/IRN/87 A -  vaccine variant. These observations add to the evidence for multiple cell attachment mechanisms for FMDV and may be useful for vaccine manufacture when cell culture adaptation proves difficult.

  5. The DNA Maturation Domain of gpA, the DNA Packaging Motor Protein of Bacteriophage Lambda, Contains an ATPase Site Associated with Endonuclease Activity

    PubMed Central

    Ortega, Marcos E.; Gaussier, Helene; Catalano, Carlos E.

    2007-01-01

    Summary Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N-terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in E. coli. Biochemical characterization of gpA-ΔN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N-terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A “P-loop” sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme – DNA maturation and DNA packaging – are discussed. PMID:17870092

  6. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus

    PubMed Central

    Chamberlain, Kyle; Fowler, Veronica L.; Barnett, Paul V.; Gold, Sarah; Wadsworth, Jemma; Knowles, Nick J.

    2015-01-01

    Vaccination remains the most effective tool for control of foot-and-mouth disease both in endemic countries and as an emergency preparedness for new outbreaks. Foot-and-mouth disease vaccines are chemically inactivated virus preparations and the production of new vaccines is critically dependent upon cell culture adaptation of field viruses, which can prove problematic. A major driver of cell culture adaptation is receptor availability. Field isolates of foot-and-mouth disease virus (FMDV) use RGD-dependent integrins as receptors, whereas cell culture adaptation often selects for variants with altered receptor preferences. Previously, two independent sites on the capsid have been identified where mutations are associated with improved cell culture growth. One is a shallow depression formed by the three major structural proteins (VP1–VP3) where mutations create a heparan sulphate (HS)-binding site (the canonical HS-binding site). The other involves residues of VP1 and is located at the fivefold symmetry axis. For some viruses, changes at this site result in HS binding; for others, the receptors are unknown. Here, we report the identification of a novel site on VP2 where mutations resulted in an expanded cell tropism of a vaccine variant of A/IRN/87 (called A − ). Furthermore, we show that introducing the same mutations into a different type A field virus (A/TUR/2/2006) resulted in the same expanded cell culture tropism as the A/IRN/87 A −  vaccine variant. These observations add to the evidence for multiple cell attachment mechanisms for FMDV and may be useful for vaccine manufacture when cell culture adaptation proves difficult. PMID:26296881

  7. Functional roles of H98 and W99 and β2α2 loop dynamics in the α-l-arabinofuranosidase from Thermobacillus xylanilyticus.

    PubMed

    Arab-Jaziri, Faten; Bissaro, Bastien; Barbe, Sophie; Saurel, Olivier; Débat, Hélène; Dumon, Claire; Gervais, Virginie; Milon, Alain; André, Isabelle; Fauré, Régis; O'Donohue, Michael J

    2012-10-01

    This study is focused on the elucidation of the functional role of the mobile β2α2 loop in the α-L-arabinofuranosidase from Thermobacillus xylanilyticus, and particularly on the roles of loop residues H98 and W99. Using site-directed mutagenesis, coupled to characterization methods including isothermal titration calorimetry (ITC) and saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy, and molecular dynamics simulations, it has been possible to provide a molecular level view of interactions and the consequences of mutations. Binding of para-nitrophenyl α-L-arabinofuranoside (pNP-α-l-Araf) to the wild-type arabinofuranosidase was characterized by K(d) values (0.32 and 0.16 mm, from ITC and STD-NMR respectively) that highly resembled that of the arabinoxylo-oligosaccharide XA(3)XX (0.21 mm), and determination of the thermodynamic parameters of enzyme : pNP-α-L-Araf binding revealed that this process is driven by favourable entropy, which is linked to the movement of the β2α2 loop. Loop closure relocates the solvent-exposed W99 into a buried location, allowing its involvement in substrate binding and in the formation of a functional active site. Similarly, the data underline the role of H98 in the ‘dynamic’ formation and definition of a catalytically operational active site, which may be a specific feature of a subset of GH51 arabinofuranosidases. Substitution of H98 and W99 by alanine or phenylalanine revealed that mutations affected K(M) and/or k(cat). Molecular dynamics performed on W99A implied that this mutation causes the loss of a hydrogen bond and leads to an alternative binding mode that is detrimental for catalysis. STD-NMR experiments revealed altered binding of the aglycon motif in the active site, combined with reduced STD intensities of the α-L-arabinofuranosyl moiety for W99 substitutions. © 2012 The Authors Journal compilation © 2012 FEBS.

  8. Elevated transcription factor specificity protein 1 in autistic brains alters the expression of autism candidate genes.

    PubMed

    Thanseem, Ismail; Anitha, Ayyappan; Nakamura, Kazuhiko; Suda, Shiro; Iwata, Keiko; Matsuzaki, Hideo; Ohtsubo, Masafumi; Ueki, Takatoshi; Katayama, Taiichi; Iwata, Yasuhide; Suzuki, Katsuaki; Minoshima, Shinsei; Mori, Norio

    2012-03-01

    Profound changes in gene expression can result from abnormalities in the concentrations of sequence-specific transcription factors like specificity protein 1 (Sp1). Specificity protein 1 binding sites have been reported in the promoter regions of several genes implicated in autism. We hypothesize that dysfunction of Sp1 could affect the expression of multiple autism candidate genes, contributing to the heterogeneity of autism. We assessed any alterations in the expression of Sp1 and that of autism candidate genes in the postmortem brain (anterior cingulate gyrus [ACG], motor cortex, and thalamus) of autism patients (n = 8) compared with healthy control subjects (n = 13). Alterations in the expression of candidate genes upon Sp1/DNA binding inhibition with mithramycin and Sp1 silencing by RNAi were studied in SK-N-SH neuronal cells. We observed elevated expression of Sp1 in ACG of autism patients (p = .010). We also observed altered expression of several autism candidate genes. GABRB3, RELN, and HTR2A showed reduced expression, whereas CD38, ITGB3, MAOA, MECP2, OXTR, and PTEN showed elevated expression in autism. In SK-N-SH cells, OXTR, PTEN, and RELN showed reduced expression upon Sp1/DNA binding inhibition and Sp1 silencing. The RNA integrity number was not available for any of the samples. Transcription factor Sp1 is dysfunctional in the ACG of autistic brain. Consequently, the expression of potential autism candidate genes regulated by Sp1, especially OXTR and PTEN, could be affected. The diverse downstream pathways mediated by the Sp1-regulated genes, along with the environmental and intracellular signal-related regulation of Sp1, could explain the complex phenotypes associated with autism.

  9. Molecular modeling and residue interaction network studies on the mechanism of binding and resistance of the HCV NS5B polymerase mutants to VX-222 and ANA598.

    PubMed

    Xue, Weiwei; Jiao, Pingzu; Liu, Huanxiang; Yao, Xiaojun

    2014-04-01

    Hepatitis C virus (HCV) NS5B protein is an RNA-dependent RNA polymerase (RdRp) with essential functions in viral genome replication and represents a promising therapeutic target to develop direct-acting antivirals (DAAs). Multiple nonnucleoside inhibitors (NNIs) binding sites have been identified within the polymerase. VX-222 and ANA598 are two NNIs targeting thumb II site and palm I site of HCV NS5B polymerase, respectively. These two molecules have been shown to be very effective in phase II clinical trials. However, the emergence of resistant HCV replicon variants (L419M, M423T, I482L mutants to VX-222 and M414T, M414L, G554D mutants to ANA598) has significantly decreased their efficacy. To elucidate the molecular mechanism about how these mutations influenced the drug binding mode and decreased drug efficacy, we studied the binding modes of VX-222 and ANA598 to wild-type and mutant polymerase by molecular modeling approach. Molecular dynamics (MD) simulations results combined with binding free energy calculations indicated that the mutations significantly altered the binding free energy and the interaction for the drugs to polymerase. The further per-residue binding free energy decomposition analysis revealed that the mutations decreased the interactions with several key residues, such as L419, M423, L474, S476, I482, L497, for VX-222 and L384, N411, M414, Y415, Q446, S556, G557 for ANA598. These were the major origins for the resistance to these two drugs. In addition, by analyzing the residue interaction network (RIN) of the complexes between the drugs with wild-type and the mutant polymerase, we found that the mutation residues in the networks involved in the drug resistance possessed a relatively lower size of topology centralities. The shift of betweenness and closeness values of binding site residues in the mutant polymerase is relevant to the mechanism of drug resistance of VX-222 and ANA598. These results can provide an atomic-level understanding about the mechanisms of drug resistance conferred by the studied mutations and will be helpful to design more potent inhibitors which could effectively overcome drug resistance of antivirus agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.

    PubMed

    Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R

    2018-01-01

    The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels. Although membrane excitability and the kinetics of action potential currents were unaffected, the permeation of the channels underlying the diatom action potential was significantly altered in the presence of PbTx-3. However, at environmentally relevant concentrations the effects of PbTx- on diatom voltage activated currents and interference of cell signaling through this pathway may be limited. The relative insensitivity of phytoplankton VGCs may be due to divergence of site-5 (the putative PbTx binding site), and in some cases, such as O. sinensis , resistance to toxin effects may be because of evolutionary loss of the 4-domain eukaryote channel, while retaining a single domain bacterial-like VGC that can substitute in the generation of fast action potentials.

  11. Brain Region and Isoform-Specific Phosphorylation Alters Kalirin SH2 Domain Interaction Sites and Calpain Sensitivity

    PubMed Central

    Miller, Megan B.; Yan, Yan; Machida, Kazuya; Kiraly, Drew D.; Levy, Aaron D.; Wu, Yi I.; Lam, TuKiet T.; Abbott, Thomas; Koleske, Anthony J.; Eipper, Betty A.; Mains, Richard E.

    2017-01-01

    Kalirin7 (Kal7), a postsynaptic Rho GDP/GTP exchange factor (RhoGEF), plays a crucial role in long term potentiation and in the effects of cocaine on behavior and spine morphology. The KALRN gene has been linked to schizophrenia and other disorders of synaptic function. Mass spectrometry was used to quantify phosphorylation at 26 sites in Kal7 from individual adult rat nucleus accumbens and prefrontal cortex before and after exposure to acute or chronic cocaine. Region- and isoform-specific phosphorylation was observed along with region-specific effects of cocaine on Kal7 phosphorylation. Evaluation of the functional significance of multi-site phosphorylation in a complex protein like Kalirin is difficult. With the identification of five tyrosine phosphorylation (pY) sites, a panel of 71 SH2 domains was screened, identifying subsets that interacted with multiple pY sites in Kal7. In addition to this type of reversible interaction, endoproteolytic cleavage by calpain plays an essential role in long-term potentiation. Calpain cleaved Kal7 at two sites, separating the N-terminal domain, which affects spine length, and the PDZ binding motif from the GEF domain. Mutations preventing phosphorylation did not affect calpain sensitivity or GEF activity; phosphomimetic mutations at specific sites altered protein stability, increased calpain sensitivity and reduced GEF activity. PMID:28418645

  12. ACF7: an essential integrator of microtubule dynamics.

    PubMed

    Kodama, Atsuko; Karakesisoglou, Iakowos; Wong, Ellen; Vaezi, Alec; Fuchs, Elaine

    2003-10-31

    ACF7 is a member of the spectraplakin family of cytoskeletal crosslinking proteins possessing actin and microtubule binding domains. Here, we show that ACF7 is an essential integrator of MT-actin dynamics. In endodermal cells, ACF7 binds along microtubules but concentrates at their distal ends and at cell borders when polarized. In ACF7's absence, microtubules still bind EB1 and CLIP170, but they no longer grow along polarized actin bundles, nor do they pause and tether to actin-rich cortical sites. The consequences are less stable, long microtubules with skewed cytoplasmic trajectories and altered dynamic instability. In response to wounding, ACF7 null cultures activate polarizing signals, but fail to maintain them and coordinate migration. Rescue of these defects requires ACF7's actin and microtubule binding domains. Thus, spectraplakins are important for controlling microtubule dynamics and reinforcing links between microtubules and polarized F-actin, so that cellular polarization and coordinated cell movements can be sustained.

  13. Analysis of neonatal brain lacking ATRX or MeCP2 reveals changes in nucleosome density, CTCF binding and chromatin looping

    PubMed Central

    Kernohan, Kristin D.; Vernimmen, Douglas; Gloor, Gregory B.; Bérubé, Nathalie G.

    2014-01-01

    ATRX and MeCP2 belong to an expanding group of chromatin-associated proteins implicated in human neurodevelopmental disorders, although their gene-regulatory activities are not fully resolved. Loss of ATRX prevents full repression of an imprinted gene network in the postnatal brain and in this study we address the mechanistic aspects of this regulation. We show that ATRX binds many imprinted domains individually but that transient co-localization between imprinted domains in the nuclei of neurons does not require ATRX. We demonstrate that MeCP2 is required for ATRX recruitment and that deficiency of either ATRX or MeCP2 causes decreased frequency of long-range chromatin interactions associated with altered nucleosome density at CTCF-binding sites and reduced CTCF occupancy. These findings indicate that MeCP2 and ATRX regulate gene expression at a subset of imprinted domains by maintaining a nucleosome configuration conducive to CTCF binding and to the maintenance of higher order chromatin structure. PMID:24990380

  14. Molecular Mechanism of Wide Photoabsorption Spectral Shifts of Color Variants of Human Cellular Retinol Binding Protein II.

    PubMed

    Cheng, Cheng; Kamiya, Motoshi; Uchida, Yoshihiro; Hayashi, Shigehiko

    2015-10-21

    Color variants of human cellular retinol binding protein II (hCRBPII) created by protein engineering were recently shown to exhibit anomalously wide photoabsorption spectral shifts over ∼200 nm across the visible region. The remarkable phenomenon provides a unique opportunity to gain insight into the molecular basis of the color tuning of retinal binding proteins for understanding of color vision as well as for engineering of novel color variants of retinal binding photoreceptor proteins employed in optogenetics. Here, we report a theoretical investigation of the molecular mechanism underlying the anomalously wide spectral shifts of the color variants of hCRBPII. Computational modeling of the color variants with hybrid molecular simulations of free energy geometry optimization succeeded in reproducing the experimentally observed wide spectral shifts, and revealed that protein flexibility, through which the active site structure of the protein and bound water molecules is altered by remote mutations, plays a significant role in inducing the large spectral shifts.

  15. In Vivo Investigation of Escitalopram’s Allosteric Site on the Serotonin Transporter

    PubMed Central

    Murray, Karen E.; Ressler, Kerry J.; Owens, Michael J.

    2015-01-01

    Escitalopram is a commonly prescribed antidepressant of the selective serotonin reuptake inhibitor class. Clinical evidence and mapping of the serotonin transporter (SERT) identified that escitalopram, in addition to its binding to a primary uptake-blocking site, is capable of binding to the SERT via an allosteric site that is hypothesized to alter escitalopram’s kinetics at the SERT. The studies reported here examined the in vivo role of the SERT allosteric site in escitalopram action. A knockin mouse model that possesses an allosteric-null SERT was developed. Autoradiographic studies indicated that the knockin protein was expressed at a lower density than endogenous mouse SERT (approximately 10–30% of endogenous mouse SERT), but the knockin mice are a viable tool to study the allosteric site. Microdialysis studies in the ventral hippocampus found no measurable decrease in extracellular serotonin response after local escitalopram challenge in mice without the allosteric site compared to mice with the site (p = 0.297). In marble burying assays there was a modest effect of the absence of the allosteric site, with a larger systemic dose of escitalopram (10-fold) necessary for the same effect as in mice with intact SERT (p = 0.023). However, there was no effect of the allosteric site in the tail suspension test. Together these data suggest that there may be a regional specificity in the role of the allosteric site. The lack of a robust effect overall suggests that the role of the allosteric site for escitalopram on the SERT may not produce meaningful in vivo effects. PMID:26621784

  16. Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzarum, Netanel; de Vries, Robert P.; Zhu, Xueyong

    Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and humanmore » receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. Lastly, this binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics.« less

  17. Molecular Mechanism Underlying the Entomotoxic Effect of Colocasia esculenta Tuber Agglutinin against Dysdercus cingulatus

    PubMed Central

    Roy, Amit; Das, Sampa

    2015-01-01

    Colocasia esculenta tuber agglutinin (CEA), a mannose binding lectin, exhibits insecticidal efficacy against different hemipteran pests. Dysdercus cingulatus, red cotton bug (RCB), has also shown significant susceptibility to CEA intoxication. However, the molecular basis behind such entomotoxicity of CEA has not been addressed adequately. The present study elucidates the mechanism of insecticidal efficacy of CEA against RCB. Confocal and scanning electron microscopic analyses documented CEA binding to insect midgut tissue, resulting in an alteration of perimicrovillar membrane (PMM) morphology. Internalization of CEA into insect haemolymph and ovary was documented by western blotting analyses. Ligand blot followed by mass spectrometric identification revealed the cognate binding partners of CEA as actin, ATPase and cytochrome P450. Deglycosylation and mannose inhibition assays indicated the interaction to probably be mannose mediated. Bioinformatic identification of putative glycosylation or mannosylation sites in the binding partners further supports the sugar mediated interaction. Correlating entomotoxicity of CEA with immune histological and binding assays to the insect gut contributes to a better understanding of the insecticidal potential of CEA and endorses its future biotechnological application.

  18. STUDIES OF METABOLITE-PROTEIN INTERACTIONS: A REVIEW

    PubMed Central

    Matsuda, Ryan; Bi, Cong; Anguizola, Jeanethe; Sobansky, Matthew; Rodriquez, Elliot; Badilla, John Vargas; Zheng, Xiwei; Hage, Benjamin; Hage, David S.

    2014-01-01

    The study of metabolomics can provide valuable information about biochemical pathways and processes at the molecular level. There have been many reports that have examined the structure, identity and concentrations of metabolites in biological systems. However, the binding of metabolites with proteins is also of growing interest. This review examines past reports that have looked at the binding of various types of metabolites with proteins. An overview of the techniques that have been used to characterize and study metabolite-protein binding is first provided. This is followed by examples of studies that have investigated the binding of hormones, fatty acids, drugs or other xenobiotics, and their metabolites with transport proteins and receptors. These examples include reports that have considered the structure of the resulting solute-protein complexes, the nature of the binding sites, the strength of these interactions, the variations in these interactions with solute structure, and the kinetics of these reactions. The possible effects of metabolic diseases on these processes, including the impact of alterations in the structure and function of proteins, are also considered. PMID:24321277

  19. Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus

    DOE PAGES

    Tzarum, Netanel; de Vries, Robert P.; Zhu, Xueyong; ...

    2015-03-11

    Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and humanmore » receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. Lastly, this binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics.« less

  20. Sampling and energy evaluation challenges in ligand binding protein design

    PubMed Central

    Dou, Jiayi; Doyle, Lindsey; Jr. Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L.

    2017-01-01

    Abstract The steroid hormone 17α‐hydroxylprogesterone (17‐OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17‐OHP containing an extended, nonpolar, shape‐complementary binding pocket for the four‐ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17‐OHP with micromolar affinity. A co‐crystal structure of one of the designs revealed that 17‐OHP is rotated 180° around a pseudo‐two‐fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same “flipped” orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two‐fold symmetry of the molecule. PMID:28980354

  1. Computational analysis of a novel mutation in ETFDH gene highlights its long-range effects on the FAD-binding motif.

    PubMed

    Er, Tze-Kiong; Chen, Chih-Chieh; Liu, Yen-Yi; Chang, Hui-Chiu; Chien, Yin-Hsiu; Chang, Jan-Gowth; Hwang, Jenn-Kang; Jong, Yuh-Jyh

    2011-10-21

    Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an autosomal recessive disease caused by the defects in the mitochondrial electron transfer system and the metabolism of fatty acids. Recently, mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene, encoding electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) have been reported to be the major causes of riboflavin-responsive MADD. To date, no studies have been performed to explore the functional impact of these mutations or their mechanism of disrupting enzyme activity. High resolution melting (HRM) analysis and sequencing of the entire ETFDH gene revealed a novel mutation (p.Phe128Ser) and the hotspot mutation (p.Ala84Thr) from a patient with MADD. According to the predicted 3D structure of ETF:QO, the two mutations are located within the flavin adenine dinucleotide (FAD) binding domain; however, the two residues do not have direct interactions with the FAD ligand. Using molecular dynamics (MD) simulations and normal mode analysis (NMA), we found that the p.Ala84Thr and p.Phe128Ser mutations are most likely to alter the protein structure near the FAD binding site as well as disrupt the stability of the FAD binding required for the activation of ETF:QO. Intriguingly, NMA revealed that several reported disease-causing mutations in the ETF:QO protein show highly correlated motions with the FAD-binding site. Based on the present findings, we conclude that the changes made to the amino acids in ETF:QO are likely to influence the FAD-binding stability.

  2. Computational analysis of a novel mutation in ETFDH gene highlights its long-range effects on the FAD-binding motif

    PubMed Central

    2011-01-01

    Background Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an autosomal recessive disease caused by the defects in the mitochondrial electron transfer system and the metabolism of fatty acids. Recently, mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene, encoding electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) have been reported to be the major causes of riboflavin-responsive MADD. To date, no studies have been performed to explore the functional impact of these mutations or their mechanism of disrupting enzyme activity. Results High resolution melting (HRM) analysis and sequencing of the entire ETFDH gene revealed a novel mutation (p.Phe128Ser) and the hotspot mutation (p.Ala84Thr) from a patient with MADD. According to the predicted 3D structure of ETF:QO, the two mutations are located within the flavin adenine dinucleotide (FAD) binding domain; however, the two residues do not have direct interactions with the FAD ligand. Using molecular dynamics (MD) simulations and normal mode analysis (NMA), we found that the p.Ala84Thr and p.Phe128Ser mutations are most likely to alter the protein structure near the FAD binding site as well as disrupt the stability of the FAD binding required for the activation of ETF:QO. Intriguingly, NMA revealed that several reported disease-causing mutations in the ETF:QO protein show highly correlated motions with the FAD-binding site. Conclusions Based on the present findings, we conclude that the changes made to the amino acids in ETF:QO are likely to influence the FAD-binding stability. PMID:22013910

  3. Structure of Mandelate Racemase with Bound Intermediate Analogues Benzohydroxamate and Cupferron†

    PubMed Central

    Lietzan, Adam D.; Nagar, Mitesh; Pellmann, Elise A.; Bourque, Jennifer R.; Bearne, Stephen L.; St Maurice, Martin

    2012-01-01

    Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg2+-dependent interconversion of the enantiomers of mandelate, stabilizing the altered substrate in the transition state by 26 kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, we solved the X-ray crystal structures of wild-type MR complexed with two analogues of the putative aci-carboxylate intermediate, benzohydroxamate and cupferron, to 2.2-Å resolution. Benzohydroxamate is shown to be a reasonable mimic of the transition state/intermediate since its binding affinity to 21 MR variants correlates well with changes in the free energy of transition state stabilization afforded by these variants. Both benzohydroxamate and cupferron chelate the active site divalent metal ion and are bound in a conformation with the phenyl ring coplanar with the hydroxamate and diazeniumdiolate moieties, respectively. Structural overlays of MR complexed with benzohydroxamate, cupferron, and the ground state analogue (S)-atrolacatate reveal that the para-carbon of the substrate phenyl ring moves by 0.8–1.2 Å between the ground state and intermediate state, consistent with the proposal that the phenyl ring moves during MR catalysis while the polar groups remain relatively fixed. Although the overall protein structure of MR with bound intermediate analogues is very similar to MR with bound (S)-atrolactate, the intermediate-Mg2+ distance shortens, suggesting a tighter complex with the catalytic Mg2+. In addition, Tyr 54 moves nearer to the phenyl ring of the bound intermediate analogues, contributing to an overall constriction of the active site cavity. However, site-directed mutagenesis experiments revealed that the role of Tyr 54 in MR catalysis is relatively minor, suggesting that alterations in enzyme structure that contribute to discrimination between the altered substrate in the transition state and the ground state by this proficient enzyme are extremely subtle. PMID:22264153

  4. Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase.

    PubMed

    Poranen, Minna M; Salgado, Paula S; Koivunen, Minni R L; Wright, Sam; Bamford, Dennis H; Stuart, David I; Grimes, Jonathan M

    2008-11-01

    The biological role of manganese (Mn(2+)) has been a long-standing puzzle, since at low concentrations it activates several polymerases whilst at higher concentrations it inhibits. Viral RNA polymerases possess a common architecture, reminiscent of a closed right hand. The RNA-dependent RNA polymerase (RdRp) of bacteriophage 6 is one of the best understood examples of this important class of polymerases. We have probed the role of Mn(2+) by biochemical, biophysical and structural analyses of the wild-type enzyme and of a mutant form with an altered Mn(2+)-binding site (E491 to Q). The E491Q mutant has much reduced affinity for Mn(2+), reduced RNA binding and a compromised elongation rate. Loss of Mn(2+) binding structurally stabilizes the enzyme. These data and a re-examination of the structures of other viral RNA polymerases clarify the role of manganese in the activation of polymerization: Mn(2+) coordination of a catalytic aspartate is necessary to allow the active site to properly engage with the triphosphates of the incoming NTPs. The structural flexibility caused by Mn(2+) is also important for the enzyme dynamics, explaining the requirement for manganese throughout RNA polymerization.

  5. Engineering the Substrate Specificity of a Thermophilic Penicillin Acylase from Thermus thermophilus

    PubMed Central

    Torres, Leticia L.; Cantero, Ángel; del Valle, Mercedes; Marina, Anabel; López-Gallego, Fernando; Guisán, José M.

    2013-01-01

    A homologue of the Escherichia coli penicillin acylase is encoded in the genomes of several thermophiles, including in different Thermus thermophilus strains. Although the natural substrate of this enzyme is not known, this acylase shows a marked preference for penicillin K over penicillin G. Three-dimensional models were created in which the catalytic residues and the substrate binding pocket were identified. Through rational redesign, residues were replaced to mimic the aromatic binding site of the E. coli penicillin G acylase. A set of enzyme variants containing between one and four amino acid replacements was generated, with altered catalytic properties in the hydrolyses of penicillins K and G. The introduction of a single phenylalanine residue in position α188, α189, or β24 improved the Km for penicillin G between 9- and 12-fold, and the catalytic efficiency of these variants for penicillin G was improved up to 6.6-fold. Structural models, as well as docking analyses, can predict the positioning of penicillins G and K for catalysis and can demonstrate how binding in a productive pose is compromised when more than one bulky phenylalanine residue is introduced into the active site. PMID:23263966

  6. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligandmore » spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.« less

  7. Role of conserved nucleotides in building the 16S rRNA binding site of E. coli ribosomal protein S8.

    PubMed Central

    Allmang, C; Mougel, M; Westhof, E; Ehresmann, B; Ehresmann, C

    1994-01-01

    Ribosomal protein S8 specifically recognizes a helical and irregular region of 16S rRNA that is highly evolutionary constrained. Despite its restricted size, the precise conformation of this region remains a question of debate. Here, we used chemical probing to analyze the structural consequences of mutations in this RNA region. These data, combined with computer modelling and previously published data on protein binding were used to investigate the conformation of the RNA binding site. The experimental data confirm the model in which adenines A595, A640 and A642 bulge out in the deep groove. In addition to the already proposed non canonical U598-U641 interaction, the structure is stabilized by stacking interactions (between A595 and A640) and an array of hydrogen bonds involving bases and the sugar phosphate backbone. Mutations that alter the ability to form these interdependent interactions result in a local destabilization or reorganization. The specificity of recognition by protein S8 is provided by the irregular and distorted backbone and the two bulged adenines 640 and 642 in the deep groove. The third adenine (A595) is not a direct recognition site but must adopt a bulged position. The U598-U641 pair should not be directly in contact with the protein. Images PMID:7937081

  8. Putative Prostate Cancer Risk SNP in an Androgen Receptor‐Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites

    PubMed Central

    Bu, Huajie; Narisu, Narisu; Schlick, Bettina; Rainer, Johannes; Manke, Thomas; Schäfer, Georg; Pasqualini, Lorenza; Chines, Peter; Schweiger, Michal R.; Fuchsberger, Christian

    2015-01-01

    ABSTRACT Genome‐wide association studies have identified genomic loci, whose single‐nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the mechanisms of most of these variants are largely unknown. We integrated chromatin‐immunoprecipitation‐coupled sequencing and microarray expression profiling in TMPRSS2‐ERG gene rearrangement positive DUCaP cells with the GWAS PCa risk SNPs catalog to identify disease susceptibility SNPs localized within functional androgen receptor‐binding sites (ARBSs). Among the 48 GWAS index risk SNPs and 3,917 linked SNPs, 80 were found located in ARBSs. Of these, rs11891426:T>G in an intron of the melanophilin gene (MLPH) was within a novel putative auxiliary AR‐binding motif, which is enriched in the neighborhood of canonical androgen‐responsive elements. T→G exchange attenuated the transcriptional activity of the ARBS in an AR reporter gene assay. The expression of MLPH in primary prostate tumors was significantly lower in those with the G compared with the T allele and correlated significantly with AR protein. Higher melanophilin level in prostate tissue of patients with a favorable PCa risk profile points out a tumor‐suppressive effect. These results unravel a hidden link between AR and a functional putative PCa risk SNP, whose allele alteration affects androgen regulation of its host gene MLPH. PMID:26411452

  9. Evolutionary reconstructions of the transferrin receptor of Caniforms supports canine parvovirus being a re-emerged and not a novel pathogen in dogs.

    PubMed

    Kaelber, Jason T; Demogines, Ann; Harbison, Carole E; Allison, Andrew B; Goodman, Laura B; Ortega, Alicia N; Sawyer, Sara L; Parrish, Colin R

    2012-01-01

    Parvoviruses exploit transferrin receptor type-1 (TfR) for cellular entry in carnivores, and specific interactions are key to control of host range. We show that several key mutations acquired by TfR during the evolution of Caniforms (dogs and related species) modified the interactions with parvovirus capsids by reducing the level of binding. These data, along with signatures of positive selection in the TFRC gene, are consistent with an evolutionary arms race between the TfR of the Caniform clade and parvoviruses. As well as the modifications of amino acid sequence which modify binding, we found that a glycosylation site mutation in the TfR of dogs which provided resistance to the carnivore parvoviruses which were in circulation prior to about 1975 predates the speciation of coyotes and dogs. Because the closely-related black-backed jackal has a TfR similar to their common ancestor and lacks the glycosylation site, reconstructing this mutation into the jackal TfR shows the potency of that site in blocking binding and infection and explains the resistance of dogs until recent times. This alters our understanding of this well-known example of viral emergence by indicating that canine parvovirus emergence likely resulted from the re-adaptation of a parvovirus to the resistant receptor of a former host.

  10. High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis.

    PubMed

    Sridharan, Vinod; Heimiller, Joseph; Robida, Mark D; Singh, Ravinder

    2016-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5' ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows misregulation of transcripts that have been connected to spermatogenesis, including components of the actomyosin cytoskeletal apparatus. We show, for example, that the Myosin light chain 1 (Mlc1) transcript is aberrantly spliced. Furthermore, bioinformatics analysis reveals that Mlc1 contains a high affinity binding site(s) for dmPTB and that the site is conserved in many Drosophila species. We discuss that Mlc1 and other components of the actomyosin cytoskeletal apparatus offer important molecular links between the loss of dmPTB function and the observed developmental defect in spermatogenesis. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis.

  11. Synthetic alleles at position 121 define a functional domain of human interleukin-1 beta.

    PubMed

    Ambrosetti, D C; Palla, E; Mirtella, A; Galeotti, C; Solito, E; Navarra, P; Parente, L; Melli, M

    1996-06-01

    The non-conservative substitution of the tyrosine residue at position 121 of human interleukin-1 beta (IL-1 beta) generates protein mutants showing strong reduction of the capacity to induce (a) prostaglandin E2 (PGE2) release from fibroblasts and smooth muscle cells, (b) murine T-cells proliferation and (c) activation of interleukin-6 (IL-6) gene expression. It is generally accepted that these functions are mediated by the type-I interleukin-1 receptor (IL-1RI). However, the mutant proteins maintain the binding affinity to the types-I and II IL-1 receptors, which is the same as the control IL-1 beta, suggesting that this amino acid substitution does not alter the structure of the molecule, except locally. Thus we have identified a new functional site of IL-1 beta different from the known receptor binding region, responsible for fundamental IL-1 beta functions. Moreover, we show that the same mutants maintain at least two hypothalamic functions, that is, the in vitro short-term PGE2 release from rat hypothalamus and the induction of fever in rabbits. This result suggests that there is yet another site of the molecule responsible for the hypothalamic functions, implying that multiple active sites on the IL-1 beta molecule, possibly binding to more than one receptor chain, trigger different signals.

  12. Evolutionary Reconstructions of the Transferrin Receptor of Caniforms Supports Canine Parvovirus Being a Re-emerged and Not a Novel Pathogen in Dogs

    PubMed Central

    Kaelber, Jason T.; Demogines, Ann; Harbison, Carole E.; Allison, Andrew B.; Goodman, Laura B.; Ortega, Alicia N.; Sawyer, Sara L.; Parrish, Colin R.

    2012-01-01

    Parvoviruses exploit transferrin receptor type-1 (TfR) for cellular entry in carnivores, and specific interactions are key to control of host range. We show that several key mutations acquired by TfR during the evolution of Caniforms (dogs and related species) modified the interactions with parvovirus capsids by reducing the level of binding. These data, along with signatures of positive selection in the TFRC gene, are consistent with an evolutionary arms race between the TfR of the Caniform clade and parvoviruses. As well as the modifications of amino acid sequence which modify binding, we found that a glycosylation site mutation in the TfR of dogs which provided resistance to the carnivore parvoviruses which were in circulation prior to about 1975 predates the speciation of coyotes and dogs. Because the closely-related black-backed jackal has a TfR similar to their common ancestor and lacks the glycosylation site, reconstructing this mutation into the jackal TfR shows the potency of that site in blocking binding and infection and explains the resistance of dogs until recent times. This alters our understanding of this well-known example of viral emergence by indicating that canine parvovirus emergence likely resulted from the re-adaptation of a parvovirus to the resistant receptor of a former host. PMID:22570610

  13. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, Bernhard; Lecker, Laura S. M.; Zoltner, Martin

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF)more » are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.« less

  14. Structural and functional implications in the eubacterial ribosome as revealed by protein-rRNA and antibiotic contact sites.

    PubMed

    Wittmann-Liebold, B; Uhlein, M; Urlaub, H; Müller, E C; Otto, A; Bischof, O

    1995-01-01

    Contact sites between protein and rRNA in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus were investigated at the molecular level using UV and 2-iminothiolane as cross-linkers. Thirteen ribosomal proteins (S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29, and L36) from these organisms were cross-linked in direct contact with the RNAs, and the peptide stretches as well as amino acids involved were identified. Further, the binding sites of puromycin and spiramycin were established at the peptide level in several proteins that were found to constitute the antibiotic-binding sites. Peptide stretches of puromycin binding were identified from proteins S7, S14, S18, L18, AND L29; those of spiramycin attachment were derived from proteins S12, S14, L17, L18, L27, and L35. Comparison of the RNA-peptide contact sites with the peptides identified for antibiotic binding and with those altered in antibiotic-resistant mutants clearly showed identical peptide areas to be involved and, hence, demonstrated the functional importance of these peptides. Further evidence for a functional implication of ribosomal proteins in the translational process came from complementation experiments in which protein L2 from Halobacterium marismortui was incorporated into the E. coli ribosomes that were active. The incorporated protein was present in 50S subunits and 70S particles, in disomes, and in higher polysomes. These results clearly demonstrate the functional implication of protein L2 in protein biosynthesis. Incorporation studies with a mutant of HmaL2 with a replacement of histidine-229 by glycine completely abolished the functional activity of the ribosome. Accordingly, protein L2 with histidine-229 is a crucial element of the translational machinery.

  15. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression

    NASA Astrophysics Data System (ADS)

    Lengyel, Iván M.; Morelli, Luis G.

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  16. Mechanistic insight into ligand binding to G-quadruplex DNA

    PubMed Central

    Di Leva, Francesco Saverio; Novellino, Ettore; Cavalli, Andrea; Parrinello, Michele; Limongelli, Vittorio

    2014-01-01

    Specific guanine-rich regions in human genome can form higher-order DNA structures called G-quadruplexes, which regulate many relevant biological processes. For instance, the formation of G-quadruplex at telomeres can alter cellular functions, inducing apoptosis. Thus, developing small molecules that are able to bind and stabilize the telomeric G-quadruplexes represents an attractive strategy for antitumor therapy. An example is 3-(benzo[d]thiazol-2-yl)-7-hydroxy-8-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)-2H-chromen-2-one (compound 1), recently identified as potent ligand of the G-quadruplex [d(TGGGGT)]4 with promising in vitro antitumor activity. The experimental observations are suggestive of a complex binding mechanism that, despite efforts, has defied full characterization. Here, we provide through metadynamics simulations a comprehensive understanding of the binding mechanism of 1 to the G-quadruplex [d(TGGGGT)]4. In our calculations, the ligand explores all the available binding sites on the DNA structure and the free-energy landscape of the whole binding process is computed. We have thus disclosed a peculiar hopping binding mechanism whereas 1 is able to bind both to the groove and to the 3’ end of the G-quadruplex. Our results fully explain the available experimental data, rendering our approach of great value for further ligand/DNA studies. PMID:24753420

  17. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling.

    PubMed

    Feener, Edward P; Rosario, Felicia; Dunn, Sarah L; Stancheva, Zlatina; Myers, Martin G

    2004-06-01

    Jak family tyrosine kinases mediate signaling by cytokine receptors to regulate diverse biological processes. Although Jak2 and other Jak kinase family members are phosphorylated on numerous sites during cytokine signaling, the identity and function of most of these sites remains unknown. Using tandem mass spectroscopic analysis of activated Jak2 protein from intact cells, we identified Tyr(221) and Tyr(570) as novel sites of Jak2 phosphorylation. Phosphorylation of both sites was stimulated by cytokine treatment of cultured cells, and this stimulation required Jak2 kinase activity. While we observed no gross alteration of signaling upon mutation of Tyr(221), Tyr(570) lies within the inhibitory JH2 domain of Jak2, and mutation of this site (Jak2(Y570F)) results in constitutive Jak2-dependent signaling in the absence of cytokine stimulation and enhances and prolongs Jak2 activation during cytokine stimulation. Mutation of Tyr(570) does not alter the ability of SOCS3 to bind or inhibit Jak2, however. Thus, the phosphorylation of Tyr(570) in vivo inhibits Jak2-dependent signaling independently of SOCS3-mediated inhibition. This Tyr(570)-dependent mechanism of Jak2 inhibition likely represents an important mechanism by which cytokine function is regulated.

  18. Genome-wide DNA methylation measurements in prostate tissues uncovers novel prostate cancer diagnostic biomarkers and transcription factor binding patterns.

    PubMed

    Kirby, Marie K; Ramaker, Ryne C; Roberts, Brian S; Lasseigne, Brittany N; Gunther, David S; Burwell, Todd C; Davis, Nicholas S; Gulzar, Zulfiqar G; Absher, Devin M; Cooper, Sara J; Brooks, James D; Myers, Richard M

    2017-04-17

    Current diagnostic tools for prostate cancer lack specificity and sensitivity for detecting very early lesions. DNA methylation is a stable genomic modification that is detectable in peripheral patient fluids such as urine and blood plasma that could serve as a non-invasive diagnostic biomarker for prostate cancer. We measured genome-wide DNA methylation patterns in 73 clinically annotated fresh-frozen prostate cancers and 63 benign-adjacent prostate tissues using the Illumina Infinium HumanMethylation450 BeadChip array. We overlaid the most significantly differentially methylated sites in the genome with transcription factor binding sites measured by the Encyclopedia of DNA Elements consortium. We used logistic regression and receiver operating characteristic curves to assess the performance of candidate diagnostic models. We identified methylation patterns that have a high predictive power for distinguishing malignant prostate tissue from benign-adjacent prostate tissue, and these methylation signatures were validated using data from The Cancer Genome Atlas Project. Furthermore, by overlaying ENCODE transcription factor binding data, we observed an enrichment of enhancer of zeste homolog 2 binding in gene regulatory regions with higher DNA methylation in malignant prostate tissues. DNA methylation patterns are greatly altered in prostate cancer tissue in comparison to benign-adjacent tissue. We have discovered patterns of DNA methylation marks that can distinguish prostate cancers with high specificity and sensitivity in multiple patient tissue cohorts, and we have identified transcription factors binding in these differentially methylated regions that may play important roles in prostate cancer development.

  19. Design and characterization of α-melanotropin peptide analogs cyclized through rhenium and technetium metal coordination

    PubMed Central

    Giblin, Michael F.; Wang, Nannan; Hoffman, Timothy J.; Jurisson, Silvia S.; Quinn, Thomas P.

    1998-01-01

    α-Melanocyte stimulating hormone (α-MSH) analogs, cyclized through site-specific rhenium (Re) and technetium (Tc) metal coordination, were structurally characterized and analyzed for their abilities to bind α-MSH receptors present on melanoma cells and in tumor-bearing mice. Results from receptor-binding assays conducted with B16 F1 murine melanoma cells indicated that receptor-binding affinity was reduced to approximately 1% of its original levels after Re incorporation into the cyclic Cys4,10, d-Phe7–α-MSH4-13 analog. Structural analysis of the Re–peptide complex showed that the disulfide bond of the original peptide was replaced by thiolate–metal–thiolate cyclization. A comparison of the metal-bound and metal-free structures indicated that metal complexation dramatically altered the structure of the receptor-binding core sequence. Redesign of the metal binding site resulted in a second-generation Re–peptide complex (ReCCMSH) that displayed a receptor-binding affinity of 2.9 nM, 25-fold higher than the initial Re–α-MSH analog. Characterization of the second-generation Re–peptide complex indicated that the peptide was still cyclized through Re coordination, but the structure of the receptor-binding sequence was no longer constrained. The corresponding 99mTc- and 188ReCCMSH complexes were synthesized and shown to be stable in phosphate-buffered saline and to challenges from diethylenetriaminepentaacetic acid (DTPA) and free cysteine. In vivo, the 99mTcCCMSH complex exhibited significant tumor uptake and retention and was effective in imaging melanoma in a murine-tumor model system. Cyclization of α-MSH analogs via 99mTc and 188Re yields chemically stable and biologically active molecules with potential melanoma-imaging and therapeutic properties. PMID:9788997

  20. Effects of Single Nucleotide Polymorphisms on Human N-Acetyltransferase 2 Structure and Dynamics by Molecular Dynamics Simulation

    PubMed Central

    Rajasekaran, M.; Abirami, Santhanam; Chen, Chinpan

    2011-01-01

    Background Arylamine N-acetyltransferase 2 (NAT2) is an important catalytic enzyme that metabolizes the carcinogenic arylamines, hydrazine drugs and chemicals. This enzyme is highly polymorphic in different human populations. Several polymorphisms of NAT2, including the single amino acid substitutions R64Q, I114T, D122N, L137F, Q145P, R197Q, and G286E, are classified as slow acetylators, whereas the wild-type NAT2 is classified as a fast acetylator. The slow acetylators are often associated with drug toxicity and efficacy as well as cancer susceptibility. The biological functions of these 7 mutations have previously been characterized, but the structural basis behind the reduced catalytic activity and reduced protein level is not clear. Methodology/Principal Findings We performed multiple molecular dynamics simulations of these mutants as well as NAT2 to investigate the structural and dynamical effects throughout the protein structure, specifically the catalytic triad, cofactor binding site, and the substrate binding pocket. None of these mutations induced unfolding; instead, their effects were confined to the inter-domain, domain 3 and 17-residue insert region, where the flexibility was significantly reduced relative to the wild-type. Structural effects of these mutations propagate through space and cause a change in catalytic triad conformation, cofactor binding site, substrate binding pocket size/shape and electrostatic potential. Conclusions/Significance Our results showed that the dynamical properties of all the mutant structures, especially in inter-domain, domain 3 and 17-residue insert region were affected in the same manner. Similarly, the electrostatic potential of all the mutants were altered and also the functionally important regions such as catalytic triad, cofactor binding site, and substrate binding pocket adopted different orientation and/or conformation relative to the wild-type that may affect the functions of the mutants. Overall, our study may provide the structural basis for reduced catalytic activity and protein level, as was experimentally observed for these polymorphisms. PMID:21980537

  1. Proteomic Analysis of Arginine Methylation Sites in Human Cells Reveals Dynamic Regulation During Transcriptional Arrest*

    PubMed Central

    Sylvestersen, Kathrine B.; Horn, Heiko; Jungmichel, Stephanie; Jensen, Lars J.; Nielsen, Michael L.

    2014-01-01

    The covalent attachment of methyl groups to the side-chain of arginine residues is known to play essential roles in regulation of transcription, protein function, and RNA metabolism. The specific N-methylation of arginine residues is catalyzed by a small family of gene products known as protein arginine methyltransferases; however, very little is known about which arginine residues become methylated on target substrates. Here we describe a proteomics methodology that combines single-step immunoenrichment of methylated peptides with high-resolution mass spectrometry to identify endogenous arginine mono-methylation (MMA) sites. We thereby identify 1027 site-specific MMA sites on 494 human proteins, discovering numerous novel mono-methylation targets and confirming the majority of currently known MMA substrates. Nuclear RNA-binding proteins involved in RNA processing, RNA localization, transcription, and chromatin remodeling are predominantly found modified with MMA. Despite this, MMA sites prominently are located outside RNA-binding domains as compared with the proteome-wide distribution of arginine residues. Quantification of arginine methylation in cells treated with Actinomycin D uncovers strong site-specific regulation of MMA sites during transcriptional arrest. Interestingly, several MMA sites are down-regulated after a few hours of transcriptional arrest. In contrast, the corresponding di-methylation or protein expression levels are not altered, confirming that MMA sites contain regulated functions on their own. Collectively, we present a site-specific MMA data set in human cells and demonstrate for the first time that MMA is a dynamic post-translational modification regulated during transcriptional arrest by a hitherto uncharacterized arginine demethylase. PMID:24563534

  2. Reverse engineering the cooperative machinery of human hemoglobin.

    PubMed

    Ren, Zhong

    2013-01-01

    Hemoglobin transports molecular oxygen from the lungs to all human tissues for cellular respiration. Its α2β2 tetrameric assembly undergoes cooperative binding and releasing of oxygen for superior efficiency and responsiveness. Over past decades, hundreds of hemoglobin structures were determined under a wide range of conditions for investigation of molecular mechanism of cooperativity. Based on a joint analysis of hemoglobin structures in the Protein Data Bank (Ren, companion article), here I present a reverse engineering approach to elucidate how two subunits within each dimer reciprocate identical motions that achieves intradimer cooperativity, how ligand-induced structural signals from two subunits are integrated to drive quaternary rotation, and how the structural environment at the oxygen binding sites alter their binding affinity. This mechanical model reveals the intricate design that achieves the cooperative mechanism and has previously been masked by inconsistent structural fluctuations. A number of competing theories on hemoglobin cooperativity and broader protein allostery are reconciled and unified.

  3. Regulation of Phenylalanine Hydroxylase: Conformational Changes Upon Phenylalanine Binding Detected by H/D Exchange and Mass Spectrometry†

    PubMed Central

    Li, Jun; Dangott, Lawrence J.; Fitzpatrick, Paul F.

    2010-01-01

    Phenylalanine acts as an allosteric activator of the tetrahydropterin-dependent enzyme phenylalanine hydroxylase. Hydrogen/deuterium exchange monitored by mass spectrometry has been used to gain insight into local conformational changes accompanying activation of rat phenylalanine hydroxylase by phenylalanine. Peptides in the regulatory and catalytic domains that lie in the interface between these two domains show large increases in the extent of deuterium incorporation from solvent in the presence of phenylalanine. In contrast, the effects of phenylalanine on the exchange kinetics of a mutant enzyme lacking the regulatory domain are limited to peptides surrounding the binding site for the amino acid substrate. These results support a model in which the N-terminus of the protein acts as an inhibitory peptide, with phenylalanine binding causing a conformational change in the regulatory domain that alters the interaction between the catalytic and regulatory domains. PMID:20307070

  4. The Role of Glycine Residues 140 and 141 of Subunit B in the Functional Ubiquinone Binding Site of the Na+-pumping NADH:quinone Oxidoreductase from Vibrio cholerae*

    PubMed Central

    Juárez, Oscar; Neehaul, Yashvin; Turk, Erin; Chahboun, Najat; DeMicco, Jessica M.; Hellwig, Petra; Barquera, Blanca

    2012-01-01

    The Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) is the main entrance for electrons into the respiratory chain of many marine and pathogenic bacteria. The enzyme accepts electrons from NADH and donates them to ubiquinone, and the free energy released by this redox reaction is used to create an electrochemical gradient of sodium across the cell membrane. Here we report the role of glycine 140 and glycine 141 of the NqrB subunit in the functional binding of ubiquinone. Mutations at these residues altered the affinity of the enzyme for ubiquinol. Moreover, mutations in residue NqrB-G140 almost completely abolished the electron transfer to ubiquinone. Thus, NqrB-G140 and -G141 are critical for the binding and reaction of Na+-NQR with its electron acceptor, ubiquinone. PMID:22645140

  5. Assessment of mdm2 Alterations on p53 Expression in Breast Cancer

    DTIC Science & Technology

    2000-10-01

    Figure 2. Schematic Comparison of mdm2 with PCR Products of Various Sizes. nuclear localization signal I p53 binding site X acidic domain zinc...susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell. 85: 319-329, 1996. 36. Li, L., Li, X ...twelve years. Chinese Journal of Parasitology and Parasitic Diseases 10: 112-114, 1992. 7. Gao DQ, Cansesaa L, Mouradian MM, Jose P. Dopamine D2-long

  6. Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30

    PubMed Central

    Louet, Maxime; Labbé, Céline M.; Aono, Cassiano M.; Homem-de-Mello, Paula; Villoutreix, Bruno O.

    2018-01-01

    Cytochrome P450 2C9 (CYP2C9) metabolizes about 15% of clinically administrated drugs. The allelic variant CYP2C9*30 (A477T) is associated to diminished response to the antihypertensive effects of the prodrug losartan and affected metabolism of other drugs. Here, we investigated molecular mechanisms involved in the functional consequences of this amino-acid substitution. Molecular dynamics (MD) simulations performed for the active species of the enzyme (heme in the Compound I state), in the apo or substrate-bound state, and binding energy analyses gave insights into altered protein structure and dynamics involved in the defective drug metabolism of human CYP2C9.30. Our data revealed an increased rigidity of the key Substrate Recognition Sites SRS1 and SRS5 and shifting of the β turn 4 of SRS6 toward the helix F in CYP2C9.30. Channel and binding substrate dynamics analyses showed altered substrate channel access and active site accommodation. These conformational and dynamic changes are believed to be involved in the governing mechanism of the reduced catalytic activity. An ensemble of representative conformations of the WT and A477T mutant properly accommodating drug substrates were identified, those structures can be used for prediction of new CYP2C9 and CYP2C9.30 substrates and drug-drug interactions. PMID:29746595

  7. Structure prediction and functional analysis of a non-permutated lectin from Dioclea grandiflora.

    PubMed

    de Sousa, Bruno Lopes; Nagano, Celso Shiniti; Simões, Rafael da Conceição; Silva-Filho, José Caetano; Cunha, Rodrigo Maranguape da Silva; Cajazeiras, João Batista; do Nascimento, Kyria Santiago; Cavada, Benildo Sousa

    2016-12-01

    Legume lectins have been widely studied and applied for many purposes in the last few decades, but many of their physiological aspects remain elusive. The Diocleinae legume subtribe, which includes intensively explored lectins, such as ConA, presents an unusual and extensive post-translational process which results in minor alterations in protein structure, in turn making its function elusive. Despite previous reports about Diocleinae precursor activity, no structural or functional analyses have ever been carried out to understand the impacts of post-translational processing relative to lectin structure and binding specificity. Here we analyzed the functionality of a non glycosylated, recombinantly expressed lectin precursor from Dioclea grandiflora through inhibition assays, corroborating the experimental data with structural information generated by molecular modeling, docking calculations and molecular dynamics simulations. We demonstrate that Diocleinae precursors are active and share the same carbohydrate specificity as mature lectins. At the same time, however, subtle structural alterations were detected and mostly result in an "incomplete" functionality of the precursor, as consequence of an immature binding site and an unstructured tetramer interface, affecting carbohydrate binding and oligomer formation, respectively. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Central alpha/sub 2/ adrenergic receptors in the rat cerebral cortex: repopulation kinetics and receptor reserve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, C.H.

    1986-01-01

    The alpha/sub 2/ adrenergic receptor subtype is thought to play a role in the mechanism of action of antidepressant and antihypertensive drugs. This thesis has attempted to shed light on the regulation of central alpha/sub 2/ adrenergic receptors in the rat cerebral cortex. Repopulation kinetics analysis allows for the determination of the rate of receptor production, rate constant of degradation, and half-life of the receptor. This analysis was carried out using both radioligand binding and functional receptor assays at various times following the irreversible inactivation of central alpha/sub 2/ adrenergic receptors by in vivo administration of N-ethoxycarbonyl-2-ethyoxy-1,2-dihydroquinoline (EEDQ). Both alpha/submore » 2/ agonist and antagonist ligand binding sites recovered with a t/sub 1/2/ equal to approximately 4 days. The function of alpha/sub 2/ adrenergic autoreceptors, which inhibit stimulation-evoked release of /sup 3/H-norepinephrine (/sup 3/H-NE) and alpha/sub 2/ adrenergic heteroreceptors which inhibit stimulation-evoked release of /sup 3/H-serotonin (/sup 3/H-5-HT) were assayed. The t/sub 1/2/ for recovery of maximal autoreceptor and heteroreceptor function was 2.4 days and 4.6 days, respectively. The demonstration of a receptor reserve is critical to the interpretation of past and future studies of the alpha/sub 2/ adrenergic receptor since it demonstrates that: (1) alterations in the number of alpha/sub 2/ adrenergic receptor binding sites cannot be extrapolated to the actual function of the alpha/sub 2/ adrenergic receptor; and (2) alterations in the number of alpha/sub 2/ receptors is not necessarily accompanied by a change in the maximum function being studied, but may only result in shifting of the dose-response curve.« less

  9. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening

    PubMed Central

    2012-01-01

    Background Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. Results Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven SR/CAMTAs, designated as SlSRs, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All SlSRs were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of SlSR2 was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and SlSR3L and SlSR4 were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven SlSRs were dramatically altered in ripening mutant rin compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant nor and Nr fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all SlSRs within one to two hours. Conclusions This study indicates that SlSR expression is influenced by both the Rin-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions. PMID:22330838

  10. HMGN proteins modulate chromatin regulatory sites and gene expression during activation of naïve B cells

    PubMed Central

    Zhang, Shaofei; Zhu, Iris; Deng, Tao; Furusawa, Takashi; Rochman, Mark; Vacchio, Melanie S.; Bosselut, Remy; Yamane, Arito; Casellas, Rafael; Landsman, David; Bustin, Michael

    2016-01-01

    The activation of naïve B lymphocyte involves rapid and major changes in chromatin organization and gene expression; however, the complete repertoire of nuclear factors affecting these genomic changes is not known. We report that HMGN proteins, which bind to nucleosomes and affect chromatin structure and function, co-localize with, and maintain the intensity of DNase I hypersensitive sites genome wide, in resting but not in activated B cells. Transcription analyses of resting and activated B cells from wild-type and Hmgn−/− mice, show that loss of HMGNs dampens the magnitude of the transcriptional response and alters the pattern of gene expression during the course of B-cell activation; defense response genes are most affected at the onset of activation. Our study provides insights into the biological function of the ubiquitous HMGN chromatin binding proteins and into epigenetic processes that affect the fidelity of the transcriptional response during the activation of B cell lymphocytes. PMID:27112571

  11. Comparative Bioinformatic Analysis of Active Site Structures in Evolutionarily Remote Homologues of α,β-Hydrolase Superfamily Enzymes.

    PubMed

    Suplatov, D A; Arzhanik, V K; Svedas, V K

    2011-01-01

    Comparative bioinformatic analysis is the cornerstone of the study of enzymes' structure-function relationship. However, numerous enzymes that derive from a common ancestor and have undergone substantial functional alterations during natural selection appear not to have a sequence similarity acceptable for a statistically reliable comparative analysis. At the same time, their active site structures, in general, can be conserved, while other parts may largely differ. Therefore, it sounds both plausible and appealing to implement a comparative analysis of the most functionally important structural elements - the active site structures; that is, the amino acid residues involved in substrate binding and the catalytic mechanism. A computer algorithm has been developed to create a library of enzyme active site structures based on the use of the PDB database, together with programs of structural analysis and identification of functionally important amino acid residues and cavities in the enzyme structure. The proposed methodology has been used to compare some α,β-hydrolase superfamily enzymes. The insight has revealed a high structural similarity of catalytic site areas, including the conservative organization of a catalytic triad and oxyanion hole residues, despite the wide functional diversity among the remote homologues compared. The methodology can be used to compare the structural organization of the catalytic and substrate binding sites of various classes of enzymes, as well as study enzymes' evolution and to create of a databank of enzyme active site structures.

  12. Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation

    PubMed Central

    García, Andrés J.; Vega, María D.; Boettiger, David

    1999-01-01

    Integrin-mediated cell adhesion to extracellular matrices provides signals essential for cell cycle progression and differentiation. We demonstrate that substrate-dependent changes in the conformation of adsorbed fibronectin (Fn) modulated integrin binding and controlled switching between proliferation and differentiation. Adsorption of Fn onto bacterial polystyrene (B), tissue culture polystyrene (T), and collagen (C) resulted in differences in Fn conformation as indicated by antibody binding. Using a biochemical method to quantify bound integrins in cultured cells, we found that differences in Fn conformation altered the quantity of bound α5 and β1 integrin subunits but not αv or β3. C2C12 myoblasts grown on these Fn-coated substrates proliferated to different levels (B > T > C). Immunostaining for muscle-specific myosin revealed minimal differentiation on B, significant levels on T, and extensive differentiation on C. Differentiation required binding to the RGD cell binding site in Fn and was blocked by antibodies specific for this site. Switching between proliferation and differentiation was controlled by the levels of α5β1 integrin bound to Fn, and differentiation was inhibited by anti-α5, but not anti-αv, antibodies, suggesting distinct integrin-mediated signaling pathways. Control of cell proliferation and differentiation through conformational changes in extracellular matrix proteins represents a versatile mechanism to elicit specific cellular responses for biological and biotechnological applications. PMID:10069818

  13. DJ-1 Is a Copper Chaperone Acting on SOD1 Activation*

    PubMed Central

    Girotto, Stefania; Cendron, Laura; Bisaglia, Marco; Tessari, Isabella; Mammi, Stefano; Zanotti, Giuseppe; Bubacco, Luigi

    2014-01-01

    Lack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis. PMID:24567322

  14. Limits of transforming competence of SV40 nuclear and cytoplasmic large T mutants with altered Rb binding sequences.

    PubMed

    Tedesco, D; Fischer-Fantuzzi, L; Vesco, C

    1993-03-01

    Multiple amino acid substitutions were introduced into the SV40 large T region that harbors the retinoblastoma protein (Rb) binding site and the nuclear transport signal, changing either one or both of these determinants. Mutant activities were examined in a set of assays allowing different levels of transforming potential to be distinguished; phenotypic changes in established and pre-crisis rat embryo fibroblasts (REFs) were detected under isogenic cell conditions, and comparisons made with other established rodent cells. The limit of the transforming ability of mutants with important substitutions in the Rb binding site fell between two transformation levels of the same established rat cells. Such cells could be induced to form dense foci but not agar colonies (their parental pre-crises REFs, as expected, were untransformed either way). Nonetheless, agar colony induction was possible in other cell lines, such as mouse NIH3T3 and (for one of the mutants) rat F2408. All these mutants efficiently immortalized pre-crisis REFs. The transforming ability of cytoplasmic mutants appeared to depend on the integrity of the Rb-binding sequence to approximately the same extent as that of the wild-type large T, although evidence of in vivo Rb-cytoplasmic large T complexes was not found. The presence or absence of small t was critical when the transforming task of mutants was near the limit of their abilities.

  15. Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations

    PubMed Central

    Liu, Lu Tian; Xu, Yan; Tang, Pei

    2010-01-01

    Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662

  16. The metabolic regulator CodY links L. monocytogenes metabolism to virulence by directly activating the virulence regulatory gene, prfA

    PubMed Central

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Belitsky, Boris R.; Sonenshein, Abraham L.; Herskovits, Anat A.

    2015-01-01

    Summary Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAA) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence' while revealing novel features of CodY-mediated regulation. PMID:25430920

  17. The two Na+ sites in the human serotonin transporter play distinct roles in the ion coupling and electrogenicity of transport.

    PubMed

    Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H; Henry, L Keith

    2014-01-17

    Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na(+), Cl(-), and K(+) gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na(+)-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca(2+) (but not other cations) to functionally replace Na(+) for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca(2+) and Na(+) illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca(2+) promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na(+)-binding sites.

  18. The Two Na+ Sites in the Human Serotonin Transporter Play Distinct Roles in the Ion Coupling and Electrogenicity of Transport*

    PubMed Central

    Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H.; Henry, L. Keith

    2014-01-01

    Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na+, Cl−, and K+ gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na+-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca2+ (but not other cations) to functionally replace Na+ for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca2+ and Na+ illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca2+ promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na+-binding sites. PMID:24293367

  19. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, themore » chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.« less

  20. Structural Characterization of Two Metastable ATP-Bound States of P-Glycoprotein

    PubMed Central

    O’Mara, Megan L.; Mark, Alan E.

    2014-01-01

    ATP Binding Cassette (ABC) transporters couple the binding and hydrolysis of ATP to the transport of substrate molecules across the membrane. The mechanism by which ATP binding and/or hydrolysis drives the conformational changes associated with substrate transport has not yet been characterized fully. Here, changes in the conformation of the ABC export protein P-glycoprotein on ATP binding are examined in a series of molecular dynamics simulations. When one molecule of ATP is placed at the ATP binding site associated with each of the two nucleotide binding domains (NBDs), the membrane-embedded P-glycoprotein crystal structure adopts two distinct metastable conformations. In one, each ATP molecule interacts primarily with the Walker A motif of the corresponding NBD. In the other, the ATP molecules interacts with both Walker A motif of one NBD and the Signature motif of the opposite NBD inducing the partial dimerization of the NBDs. This interaction is more extensive in one of the two ATP binding site, leading to an asymmetric structure. The overall conformation of the transmembrane domains is not altered in either of these metastable states, indicating that the conformational changes associated with ATP binding observed in the simulations in the absence of substrate do not lead to the outward-facing conformation and thus would be insufficient in themselves to drive transport. Nevertheless, the metastable intermediate ATP-bound conformations observed are compatible with a wide range of experimental cross-linking data demonstrating the simulations do capture physiologically important conformations. Analysis of the interaction between ATP and its cofactor Mg2+ with each NBD indicates that the coordination of ATP and Mg2+ differs between the two NBDs. The role structural asymmetry may play in ATP binding and hydrolysis is discussed. Furthermore, we demonstrate that our results are not heavily influenced by the crystal structure chosen for initiation of the simulations. PMID:24632881

  1. Molecular Dynamics of CYP2D6 Polymorphisms in the Absence and Presence of a Mechanism-Based Inactivator Reveals Changes in Local Flexibility and Dominant Substrate Access Channels

    PubMed Central

    de Waal, Parker W.; Sunden, Kyle F.; Furge, Laura Lowe

    2014-01-01

    Cytochrome P450 enzymes (CYPs) represent an important enzyme superfamily involved in metabolism of many endogenous and exogenous small molecules. CYP2D6 is responsible for ∼15% of CYP-mediated drug metabolism and exhibits large phenotypic diversity within CYPs with over 100 different allelic variants. Many of these variants lead to functional changes in enzyme activity and substrate selectivity. Herein, a molecular dynamics comparative analysis of four different variants of CYP2D6 was performed. The comparative analysis included simulations with and without SCH 66712, a ligand that is also a mechanism-based inactivator, in order to investigate the possible structural basis of CYP2D6 inactivation. Analysis of protein stability highlighted significantly altered flexibility in both proximal and distal residues from the variant residues. In the absence of SCH 66712, *34, *17-2, and *17-3 displayed more flexibility than *1, and *53 displayed more rigidity. SCH 66712 binding reversed flexibility in *17-2 and *17-3, through *53 remained largely rigid. Throughout simulations with docked SCH 66712, ligand orientation within the heme-binding pocket was consistent with previously identified sites of metabolism and measured binding energies. Subsequent tunnel analysis of substrate access, egress, and solvent channels displayed varied bottle-neck radii. Taken together, our results indicate that SCH 66712 should inactivate these allelic variants, although varied flexibility and substrate binding-pocket accessibility may alter its interaction abilities. PMID:25286176

  2. Caspase-8 Binding to Cardiolipin in Giant Unilamellar Vesicles Provides a Functional Docking Platform for Bid

    PubMed Central

    Perry, Mark; Granjon, Thierry; Gonzalvez, François; Gottlieb, Eyal; Ayala-Sanmartin, Jesus; Klösgen, Beate; Schwille, Petra; Petit, Patrice X.

    2013-01-01

    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria. PMID:23418437

  3. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects

    NASA Technical Reports Server (NTRS)

    Ruegger, M.; Dewey, E.; Hobbie, L.; Brown, D.; Bernasconi, P.; Turner, J.; Muday, G.; Estelle, M.

    1997-01-01

    Polar auxin transport plays a key role in the regulation of plant growth and development. To identify genes involved in this process, we have developed a genetic procedure to screen for mutants of Arabidopsis that are altered in their response to auxin transport inhibitors. We recovered a total of 16 independent mutants that defined seven genes, called TRANSPORT INHIBITOR RESPONSE (TIR) genes. Recessive mutations in one of these genes, TIR3, result in altered responses to transport inhibitors, a reduction in polar auxin transport, and a variety of morphological defects that can be ascribed to changes in indole-3-acetic acid distribution. Most dramatically, tir3 seedlings are strongly deficient in lateral root production, a process that is known to depend on polar auxin transport from the shoot into the root. In addition, tir3 plants display a reduction in apical dominance as well as decreased elongation of siliques, pedicels, roots, and the inflorescence. Biochemical studies indicate that tir3 plants have a reduced number of N-1-naphthylphthalamic (NPA) binding sites, suggesting that the TIR3 gene is required for expression, localization, or stabilization of the NPA binding protein (NBP). Alternatively, the TIR3 gene may encode the NBP. Because the tir3 mutants have a substantial defect in NPA binding, their phenotype provides genetic evidence for a role for the NBP in plant growth and development.

  4. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively.

    PubMed

    Clifford, Jacob; Adami, Christoph

    2015-09-02

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  5. Increased mitochondrial matrix directed superoxide production by fatty acid hydroperoxides in skeletal muscle mitochondria

    PubMed Central

    Bhattacharya, Arunabh; Lustgarten, Michael; Shi, Yun; Liu, Yuhong; Jang, Youngmok C; Pulliam, Daniel; Jernigan, Amanda L; Van Remmen, Holly

    2013-01-01

    Previous studies have shown that muscle atrophy is associated with mitochondrial dysfunction and an increased rate of mitochondrial reactive oxygen species production. We recently demonstrated that fatty acid hydroperoxides (FA-OOH) are significantly elevated in mitochondria isolated from atrophied muscles. The purpose of the current study is to determine whether FA-OOH can alter skeletal muscle mitochondrial function. We found that FA-OOH (at low micromolar concentrations) induces mitochondrial dysfunction assessed by decrease in the rate of ATP production, oxygen consumption and activity of respiratory chain complexes I and III. Using methods to distinguish superoxide release towards the matrix and inter-membrane space, we demonstrate that FA-OOH significantly elevates oxidative stress in the mitochondrial matrix (and not the inter-membrane space) with complex I as the major site of superoxide production (most likely from a site upstream of the ubiquinone binding site but downstream from the flavin binding site-the iron sulfur clusters). Our results are the first to indicate that FA-OOH’s are important modulators of mitochondrial function and oxidative stress in skeletal muscle mitochondria and may play an important role in muscle atrophies that are associated with increased generation of FA-OOH’s, e.g., denervation-induced muscle atrophy. PMID:21172427

  6. A Single Rainbow Trout Cobalamin-binding Protein Stands in for Three Human Binders

    PubMed Central

    Greibe, Eva; Fedosov, Sergey; Sorensen, Boe S.; Højrup, Peter; Poulsen, Steen S.; Nexo, Ebba

    2012-01-01

    Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin-binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases, it appeared to be the same protein based on analysis of partial sequences and immunological responses. The trout cobalamin-binding protein was purified from roe fluid, sequenced, and further characterized. Like haptocorrin, the trout cobalamin-binding protein was stable at low pH and had a high binding affinity for the cobalamin analog cobinamide. Like haptocorrin and transcobalamin, the trout cobalamin-binding protein was present in plasma and recognized ligands with altered nucleotide moiety. Like intrinsic factors, the trout cobalamin-binding protein was present in the stomach and resisted degradation by trypsin and chymotrypsin. It also resembled intrinsic factor in the composition of conserved residues in the primary cobalamin-binding site in the C terminus. The trout cobalamin-binding protein was glycosylated and displayed spectral properties comparable with those of haptocorrin and intrinsic factor. In conclusion, only one soluble cobalamin-binding protein was identified in the rainbow trout, a protein that structurally behaves like an intermediate between the three human cobalamin-binding proteins. PMID:22872637

  7. Characterizing Solution Surface Loop Conformational Flexibility of the GM2 Activator Protein

    PubMed Central

    2015-01-01

    GM2AP has a β-cup topology with numerous X-ray structures showing multiple conformations for some of the surface loops, revealing conformational flexibility that may be related to function, where function is defined as either membrane binding associated with ligand binding and extraction or interaction with other proteins. Here, site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and molecular dynamic (MD) simulations are used to characterize the mobility and conformational flexibility of various structural regions of GM2AP. A series of 10 single cysteine amino acid substitutions were generated, and the constructs were chemically modified with the methanethiosulfonate spin label. Continuous wave (CW) EPR line shapes were obtained and subsequently simulated using the microscopic order macroscopic disorder (MOMD) program. Line shapes for sites that have multiple conformations in the X-ray structures required two spectral components, whereas spectra of the remaining sites were adequately fit with single-component parameters. For spin labeled sites L126C and I66C, spectra were acquired as a function of temperature, and simulations provided for the determination of thermodynamic parameters associated with conformational change. Binding to GM2 ligand did not alter the conformational flexibility of the loops, as evaluated by EPR and NMR spectroscopies. These results confirm that the conformational flexibility observed in the surface loops of GM2AP crystals is present in solution and that the exchange is slow on the EPR time scale (>ns). Furthermore, MD simulation results are presented and agree well with the conformational heterogeneity revealed by SDSL. PMID:25127419

  8. Structure of C3b reveals conformational changes that underlie complement activity.

    PubMed

    Janssen, Bert J C; Christodoulidou, Agni; McCarthy, Andrew; Lambris, John D; Gros, Piet

    2006-11-09

    Resistance to infection and clearance of cell debris in mammals depend on the activation of the complement system, which is an important component of innate and adaptive immunity. Central to the complement system is the activated form of C3, called C3b, which attaches covalently to target surfaces to amplify complement response, label cells for phagocytosis and stimulate the adaptive immune response. C3b consists of 1,560 amino-acid residues and has 12 domains. It binds various proteins and receptors to effect its functions. However, it is not known how C3 changes its conformation into C3b and thereby exposes its many binding sites. Here we present the crystal structure at 4-A resolution of the activated complement protein C3b and describe the conformational rearrangements of the 12 domains that take place upon proteolytic activation. In the activated form the thioester is fully exposed for covalent attachment to target surfaces and is more than 85 A away from the buried site in native C3 (ref. 5). Marked domain rearrangements in the alpha-chain present an altered molecular surface, exposing hidden and cryptic sites that are consistent with known putative binding sites of factor B and several complement regulators. The structural data indicate that the large conformational changes in the proteolytic activation and regulation of C3 take place mainly in the first conversion step, from C3 to C3b. These insights are important for the development of strategies to treat immune disorders that involve complement-mediated inflammation.

  9. Influence of parainfluenza-1 respiratory tract viral infection on endothelin receptor-effector systems in mouse and rat tracheal smooth muscle.

    PubMed Central

    Knott, P. G.; Henry, P. J.; McWilliam, A. S.; Rigby, P. J.; Fernandes, L. B.; Goldie, R. G.

    1996-01-01

    1. In this study we have compared the effects of parainfluenza-1 respiratory tract viral infection on the density and function of ETA and ETB receptors in rat and mouse tracheal airway smooth muscle. 2. The bronchoconstrictor effect of inhaled methacholine was significantly enhanced in virus-infected rats, at both 4 and 12 days post-inoculation. That is, the concentration of methacholine causing an increase in resistance of 100% (PC100 methacholine) was significantly lower in virus-infected animals at both 4 and 12 days post-inoculation (n = 6-8; P < 0.05). 3. Total specific binding of [125I]-endothelin-1 and the relative proportions of ETA and ETB binding sites for [125I]-endothelin-1 were assessed in tracheal airway smooth muscle in parainfluenza-1-infected rats and mice at days 2, 4 and 12 post-inoculation using the ligands BQ-123 (1 microM; ETA receptor-selective) and sarafotoxin S6c (100 nM; ETB receptor-selective). Total specific binding in mice was significantly reduced at day 2 post-inoculation (n = 5; P < 0.05) but not at days 4 and 12 post-inoculation (n = 5). In control mice, the proportions of ETA and ETB binding sites were 53%:47% at day 2 and 43%:57% at day 4 and these were significantly altered by parainfluenza-1 infection such that, the ratios were 81%:19% at day 2 and 89%:11% at day 4 (P < 0.05). By day 12 post-inoculation, the proportion of ETA and ETB binding sites in tracheal smooth muscle from mice infected with parainfluenza-1 was not significantly different from control. In rat tracheal airway smooth muscle, neither total specific binding nor the ETA and ETB binding site ratio (64%:36%) were significantly altered in virus-inoculated rats at days 2, 4 or 12 post-inoculation (n = 5). 4. Parainfluenza-1 infection in mice had no effect on the sensitivity or maximal contractile effect of endothelin-1 in tracheal smooth muscle at days 2, 4 or 12 post-inoculation (n = 4). In contrast, contraction in response to the ETB receptor-selective agonist sarafotoxin S6c was attenuated by 39% at day 2 and by 93% at day 4 post-inoculation (P < 0.05). However, by day 12 post-inoculation, contractions to sarafotoxin S6c were not significantly different between control and virus-infected mice. In parainfluenza-1-infected rats, there were small but significant reductions in the sensitivity to carbachol, endothelin-1 and sarafotoxin S6c whilst the maximal responses to the highest concentrations of these agonists were not significantly altered by virus infection (n = 8). 5. BQ-123 (3 microM) had no significant effect on cumulative concentration-effect curves to endothelin-1 in tracheal preparations from control mice (n = 4) or parainfluenza-1-infected rats (n = 8). In contrast, in tissues taken from virus-infected mice at day 4 post-inoculation, BQ-123 caused a marked 9.6 fold rightward shift in the concentration-effect curve to endothelin-1 (n = 4). 6. In summary, we have demonstrated that parainfluenza-1 infection in mice transiently reduced the density of tracheal airway smooth muscle ETB receptors and this was reflected in reduced responsiveness to the ETB receptor-selective agonist sarafotoxin S6c. In contrast, whilst parainfluenza-1 infection in rats was associated with the pathological features and bronchial hyperresponsiveness common to respiratory tract viral infection, there was no selective down-regulation of ETB receptor expression or functional activity. The reasons for these species differences are not clear, but may relate to differences in the airway inflammatory response to parainfluenza-1 virus. PMID:8886411

  10. Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions.

    PubMed

    Pugacheva, Elena M; Rivero-Hinojosa, Samuel; Espinoza, Celso A; Méndez-Catalá, Claudia Fabiola; Kang, Sungyun; Suzuki, Teruhiko; Kosaka-Suzuki, Natsuki; Robinson, Susan; Nagarajan, Vijayaraj; Ye, Zhen; Boukaba, Abdelhalim; Rasko, John E J; Strunnikov, Alexander V; Loukinov, Dmitri; Ren, Bing; Lobanenkov, Victor V

    2015-08-14

    CTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation. Here we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells. We discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells.

  11. Probing the behavior of bovine serum albumin upon binding to atenolol: insights from spectroscopic and molecular docking approaches.

    PubMed

    Jiang, Tuo-Ying; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi; Shi, Jie-Hua

    2018-04-01

    Molecular interaction of atenolol, a selective β 1 receptor antagonist with the major carrier protein, bovine serum albumin (BSA), was investigated under imitated physiological conditions (pH 7.4) by means of fluorescence spectroscopy, UV absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and molecular modeling studies. The steady-state fluorescence spectra manifested that static type, due to formation of the atenolol-BSA complex, was the dominant mechanism for fluorescence quenching. The characteristic information about the binding interaction of atenolol with BSA in terms of binding constant (K b ) were determined by the UV-vis absorption titration, and were found to be in the order of 10 3  M -1 at different temperatures, indicating the existence of a weak binding in this system. Thermodynamic analysis revealed that the binding process was primarily mediated by van der Waals force and hydrogen bonds due to the negative sign for enthalpy change (ΔH 0 ), entropy change (ΔS 0 ). The molecular docking results elucidated that atenolol preferred binding on the site II of BSA according to the findings observed in competitive binding experiments. Moreover, via alterations in synchronous fluorescence, three-dimensional fluorescence and FT-IR spectral properties, it was concluded that atenolol could arouse slight configurational and micro-environmental changes of BSA.

  12. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing

    PubMed Central

    Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric

    2017-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457

  13. Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties

    PubMed Central

    Lim, Kwang-il; Klimczak, Ryan; Yu, Julie H.; Schaffer, David V.

    2010-01-01

    Retroviral vectors offer benefits of efficient delivery and stable gene expression; however, their clinical use raises the concerns of insertional mutagenesis and potential oncogenesis due to genomic integration preferences in transcriptional start sites (TSS). We have shifted the integration preferences of retroviral vectors by generating a library of viral variants with a DNA-binding domain inserted at random positions throughout murine leukemia virus Gag-Pol, then selecting for variants that are viable and exhibit altered integration properties. We found seven permissive zinc finger domain (ZFD) insertion sites throughout Gag-Pol, including within p12, reverse transcriptase, and integrase. Comprehensive genome integration analysis showed that several ZFD insertions yielded retroviral vector variants with shifted integration patterns that did not favor TSS. Furthermore, integration site analysis revealed selective integration for numerous mutants. For example, two retroviral variants with a given ZFD at appropriate positions in Gag-Pol strikingly integrated primarily into four common sites out of 3.1 × 109 possible human genome locations (P = 4.6 × 10-29). Our findings demonstrate that insertion of DNA-binding motifs into multiple locations in Gag-Pol can make considerable progress toward engineering safer retroviral vectors that integrate into a significantly narrowed pool of sites on human genome and overcome the preference for TSS. PMID:20616052

  14. Single-molecule DNA unzipping reveals asymmetric modulation of a transcription factor by its binding site sequence and context

    PubMed Central

    Rudnizky, Sergei; Khamis, Hadeel; Malik, Omri; Squires, Allison H; Meller, Amit; Melamed, Philippa

    2018-01-01

    Abstract Most functional transcription factor (TF) binding sites deviate from their ‘consensus’ recognition motif, although their sites and flanking sequences are often conserved across species. Here, we used single-molecule DNA unzipping with optical tweezers to study how Egr-1, a TF harboring three zinc fingers (ZF1, ZF2 and ZF3), is modulated by the sequence and context of its functional sites in the Lhb gene promoter. We find that both the core 9 bp bound to Egr-1 in each of the sites, and the base pairs flanking them, modulate the affinity and structure of the protein–DNA complex. The effect of the flanking sequences is asymmetric, with a stronger effect for the sequence flanking ZF3. Characterization of the dissociation time of Egr-1 revealed that a local, mechanical perturbation of the interactions of ZF3 destabilizes the complex more effectively than a perturbation of the ZF1 interactions. Our results reveal a novel role for ZF3 in the interaction of Egr-1 with other proteins and the DNA, providing insight on the regulation of Lhb and other genes by Egr-1. Moreover, our findings reveal the potential of small changes in DNA sequence to alter transcriptional regulation, and may shed light on the organization of regulatory elements at promoters. PMID:29253225

  15. An Electrostatic Funnel in the GABA-Binding Pathway

    PubMed Central

    Lightstone, Felice C.

    2016-01-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  16. Quantitative Glycoproteomics Analysis Reveals Changes in N-Glycosylation Level Associated with Pancreatic Ductal Adenocarcinoma

    PubMed Central

    2015-01-01

    Glycosylation plays an important role in epithelial cancers, including pancreatic ductal adenocarcinoma. However, little is known about the glycoproteome of the human pancreas or its alterations associated with pancreatic tumorigenesis. Using quantitative glycoproteomics approach, we investigated protein N-glycosylation in pancreatic tumor tissue in comparison with normal pancreas and chronic pancreatitis tissue. The study lead to the discovery of a roster of glycoproteins with aberrant N-glycosylation level associated with pancreatic cancer, including mucin-5AC (MUC5AC), carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), insulin-like growth factor binding protein (IGFBP3), and galectin-3-binding protein (LGALS3BP). Pathway analysis of cancer-associated aberrant glycoproteins revealed an emerging phenomenon that increased activity of N-glycosylation was implicated in several pancreatic cancer pathways, including TGF-β, TNF, NF-kappa-B, and TFEB-related lysosomal changes. In addition, the study provided evidence that specific N-glycosylation sites within certain individual proteins can have significantly altered glycosylation occupancy in pancreatic cancer, reflecting the complexity of the molecular mechanisms underlying cancer-associated glycosylation events. PMID:24471499

  17. Modified rubisco large subunit n-methyltransferase useful for targeting molecules to the active-site vicinity of ribulose-1,5-bisphosphate

    DOEpatents

    Houtz, Robert L [Lexington, KY

    2012-03-20

    The present invention generally relates to a modified Rubisco large subunit .sup..epsilon.N-Methyltransferase (Rubisco LSMT, or RLSMT). The present invention also relates to a modified RLSMT-carbonic anhydrase (RLSMT-CA). This modified RLSMT-CA improves the efficiency of the reduction of CO.sub.2 during photosynthesis, which may increase plant growth rates. The present invention also relates to nucleic acids encoding the modified RLSMT-CA or modified RLSMT. Also, the present invention relates to cells including the modified RLSMT-CA or modified RLSMT, plants containing the modified RLSMT-CA or modified RLSMT, and methods using compositions of the present invention. In addition, the present invention relates to antibodies conjugated to CA which may bind to Rubisco, and antibodies which bind a modified RLSMT-CA. The invention also relates to modified forms of the LS and SS of Rubisco where the modified forms are fusions with CA or biologically active fragments thereof. The present invention provides methods of altering Rubisco carboxylase activity and altering plant growth.

  18. FR171456 is a specific inhibitor of mammalian NSDHL and yeast Erg26p

    PubMed Central

    Helliwell, Stephen B.; Karkare, Shantanu; Bergdoll, Marc; Rahier, Alain; Leighton-Davis, Juliet R.; Fioretto, Celine; Aust, Thomas; Filipuzzi, Ireos; Frederiksen, Mathias; Gounarides, John; Hoepfner, Dominic; Hofmann, Andreas; Imbert, Pierre-Eloi; Jeker, Rolf; Knochenmuss, Richard; Krastel, Philipp; Margerit, Anais; Memmert, Klaus; Miault, Charlotte V.; Rao Movva, N.; Muller, Alban; Naegeli, Hans-Ulrich; Oberer, Lukas; Prindle, Vivian; Riedl, Ralph; Schuierer, Sven; Sexton, Jessica A.; Tao, Jianshi; Wagner, Trixie; Yin, Hong; Zhang, Juan; Roggo, Silvio; Reinker, Stefan; Parker, Christian N.

    2015-01-01

    FR171456 is a natural product with cholesterol-lowering properties in animal models, but its molecular target is unknown, which hinders further drug development. Here we show that FR171456 specifically targets the sterol-4-alpha-carboxylate-3-dehydrogenase (Saccharomyces cerevisiae—Erg26p, Homo sapiens—NSDHL (NAD(P) dependent steroid dehydrogenase-like)), an essential enzyme in the ergosterol/cholesterol biosynthesis pathway. FR171456 significantly alters the levels of cholesterol pathway intermediates in human and yeast cells. Genome-wide yeast haploinsufficiency profiling experiments highlight the erg26/ERG26 strain, and multiple mutations in ERG26 confer resistance to FR171456 in growth and enzyme assays. Some of these ERG26 mutations likely alter Erg26 binding to FR171456, based on a model of Erg26. Finally, we show that FR171456 inhibits an artificial Hepatitis C viral replicon, and has broad antifungal activity, suggesting potential additional utility as an anti-infective. The discovery of the target and binding site of FR171456 within the target will aid further development of this compound. PMID:26456460

  19. Quantitative glycoproteomics analysis reveals changes in N-glycosylation level associated with pancreatic ductal adenocarcinoma.

    PubMed

    Pan, Sheng; Chen, Ru; Tamura, Yasuko; Crispin, David A; Lai, Lisa A; May, Damon H; McIntosh, Martin W; Goodlett, David R; Brentnall, Teresa A

    2014-03-07

    Glycosylation plays an important role in epithelial cancers, including pancreatic ductal adenocarcinoma. However, little is known about the glycoproteome of the human pancreas or its alterations associated with pancreatic tumorigenesis. Using quantitative glycoproteomics approach, we investigated protein N-glycosylation in pancreatic tumor tissue in comparison with normal pancreas and chronic pancreatitis tissue. The study lead to the discovery of a roster of glycoproteins with aberrant N-glycosylation level associated with pancreatic cancer, including mucin-5AC (MUC5AC), carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), insulin-like growth factor binding protein (IGFBP3), and galectin-3-binding protein (LGALS3BP). Pathway analysis of cancer-associated aberrant glycoproteins revealed an emerging phenomenon that increased activity of N-glycosylation was implicated in several pancreatic cancer pathways, including TGF-β, TNF, NF-kappa-B, and TFEB-related lysosomal changes. In addition, the study provided evidence that specific N-glycosylation sites within certain individual proteins can have significantly altered glycosylation occupancy in pancreatic cancer, reflecting the complexity of the molecular mechanisms underlying cancer-associated glycosylation events.

  20. Modeling Complex Equilibria in ITC Experiments: Thermodynamic Parameters Estimation for a Three Binding Site Model

    PubMed Central

    Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.

    2013-01-01

    Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283

  1. CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function

    PubMed Central

    Guo, Ya; Xu, Quan; Canzio, Daniele; Shou, Jia; Li, Jinhuan; Gorkin, David U.; Jung, Inkyung; Wu, Haiyang; Zhai, Yanan; Tang, Yuanxiao; Lu, Yichao; Wu, Yonghu; Jia, Zhilian; Li, Wei; Zhang, Michael Q.; Ren, Bing; Krainer, Adrian R.; Maniatis, Tom; Wu, Qiang

    2015-01-01

    SUMMARY CTCF/cohesin play a central role in insulator function and higher-order chromatin organization of mammalian genomes. Recent studies identified a correlation between the orientation of CTCF-binding sites (CBSs) and chromatin loops. To test the functional significance of this observation, we combined CRISPR/Cas9-based genomic-DNA-fragment editing with chromosome-conformation-capture experiments to show that the location and relative orientations of CBSs determine the specificity of long-range chromatin looping in mammalian genomes, using protocadherin (Pcdh) and β-globin as model genes. Inversion of CBS elements within the Pcdh enhancer reconfigures the topology of chromatin loops between the distal enhancer and target promoters, and alters gene-expression patterns. Thus, although enhancers can function in an orientation-independent manner in reporter assays, in the native chromosome context the orientation of at least some enhancers carrying CBSs can determine both the architecture of topological chromatin domains and enhancer/promoter specificity. The findings reveal how 3D chromosome architecture can be encoded by genome sequence. PMID:26276636

  2. A tool for calculating binding-site residues on proteins from PDB structures.

    PubMed

    Hu, Jing; Yan, Changhui

    2009-08-03

    In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB) that consists of the protein of interest and its interacting partner(s) and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. The developed tool is very useful for the research on protein binding site analysis and prediction.

  3. Calcium binding to an elastic portion of connectin/titin filaments.

    PubMed

    Tatsumi, R; Maeda, K; Hattori, A; Takahashi, K

    2001-01-01

    Alpha-connectin/titin-1 exists as an elastic filament that links a thick filament with the Z-disk, keeping thick filaments centered within the sarcomere during force generation. We have shown that the connectin filament has an affinity for calcium ions and its binding site(s) is restricted to the beta-connectin/titin-2 portion. We now report the localization and the characterization of calcium-binding sites on beta-connectin. Purified beta-connectin was digested by trypsin into 1700- and 400-kDa fragments. which were then subjected to fluorescence calcium-binding assays. The 400-kDa fragment possesses calcium-binding activity; the binding constant was 1.0 x 10(7) M(-1) and the molar ratio of bound calcium ions to the 400-kDa fragment reached a maximum of 12 at a free calcium ion concentration of approximately 1.0 microM. Antibodies against the 400-kDa fragment formed a sharp dense stripe at the boundary of the A and the I bands, indicating that the calcium-binding domain constitutes the N-terminal region of beta-connectin, that is, the elastic portion of connectin filaments. Furthermore, we estimated the N-terminal location of beta-connectin of various origins (n = 26). Myofibrils were treated with a solution containing 0.1 mM CaCl2 and 70 microM leupeptin to split connectin filaments into beta-connectin and a subfragment, and chain weights of these polypeptides were estimated according to their mobility in 2% polyacrylamide slab gels. The subfragment exhibited a similar chain weight of 1200+/-33 kDa (mean+/-SD), while alpha- and beta-connectins were variable in size according to their origin. These results suggest that the apparent length of the 1200-kDa subfragment portion is almost constant in all instances, about 0.34 microm at the slack condition, therefore that the C-terminus of the 1200-kDa subfragment, that is, the N-terminus of the calcium-binding domain, is at the N2 line region of parent filaments in situ. Because the secondary structure of the 400-kDa fragment was changed by the binding of calcium ions, connectin filaments could be expected to alter their elasticity during the contraction-relaxation cycle of skeletal muscle.

  4. Mutation of the C/EBP binding sites in the Rous sarcoma virus long terminal repeat and gag enhancers.

    PubMed Central

    Ryden, T A; de Mars, M; Beemon, K

    1993-01-01

    Several C/EBP binding sites within the Rous sarcoma virus (RSV) long terminal repeat (LTR) and gag enhancers were mutated, and the effect of these mutations on viral gene expression was assessed. Minimal site-specific mutations in each of three adjacent C/EBP binding sites in the LTR reduced steady-state viral RNA levels. Double mutation of the two 5' proximal LTR binding sites resulted in production of 30% of wild-type levels of virus. DNase I footprinting analysis of mutant DNAs indicated that the mutations blocked C/EBP binding at the affected sites. Additional C/EBP binding sites were identified upstream of the 3' LTR and within the 5' end of the LTRs. Point mutations in the RSV gag intragenic enhancer region, which blocked binding of C/EBP at two of three adjacent C/EBP sites, also reduced virus production significantly. Nuclear extracts prepared from both chicken embryo fibroblasts (CEFs) and chicken muscle contained proteins binding to the same RSV DNA sites as did C/EBP, and mutations that prevented C/EBP binding also blocked binding of these chicken proteins. It appears that CEFs and chicken muscle contain distinct proteins binding to these RSV DNA sites; the CEF binding protein was heat stable, as is C/EBP, while the chicken muscle protein was heat sensitive. Images PMID:8386280

  5. The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes.

    PubMed

    Atambayeva, Shara; Niyazova, Raigul; Ivashchenko, Anatoliy; Pyrkova, Anna; Pinsky, Ilya; Akimniyazova, Aigul; Labeit, Siegfried

    2017-06-01

    Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one mRNA can be the target of many miRNAs. This significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications. The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. For the binding sites of the miR-619-5p the hybridization free energy of the bonds was equal to 100% of the maximum potential free energy. The mRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3'UTR (214 sites), CDS (3 sites), and 5'UTR (4 sites). The mRNAs of CATAD1, ICA1L, GK5, POLH, and PRR11 genes have six miR-619-5p binding sites, and the mRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these miR-619-5p binding sites are located in the 3'UTRs. The miR-619-5p binding site in the 5'UTR of mRNA of human USP29 gene is found in the mRNAs of orthologous genes of primates. Binding sites of miR-619-5p in the coding regions of mRNAs of C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is present in the orthologous proteins. Binding sites of miR-619-5p in the mRNAs of transcription factor genes ZNF429 and ZNF429 encode the AHACNP oligopeptide in another reading frame. Binding sites of miR-619-5p in the 3'UTRs of all human target genes are also present in the 3'UTRs of orthologous genes of mammals. The completely complementary binding sites for miR-619-5p are conservative in the orthologous mammalian genes. The majority of miR-619-5p binding sites are located in the 3'UTRs but some genes have miRNA binding sites in the 5'UTRs of mRNAs. Several genes have binding sites for miRNAs in the CDSs that are read in different open reading frames. Identical nucleotide sequences of binding sites encode different amino acids in different proteins. The binding sites of miR-619-5p in 3'UTRs, 5'UTRs and CDSs are conservative in the orthologous mammalian genes.

  6. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin.

    PubMed

    Chakraborty, Parthasarathi; Sander, Sylvia G; Jayachandran, Saranya; Nath, B Nagender; Nagaraju, G; Chennuri, Kartheek; Vudamala, Krushna; Lathika, N; Mascarenhas-Pereira, Maria Brenda L

    2014-11-01

    The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Sampling and energy evaluation challenges in ligand binding protein design.

    PubMed

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  8. Virions at the gates: receptors and the host-virus arms race.

    PubMed

    Coffin, John M

    2013-01-01

    All viruses need to bind to specific receptor molecules on the surface of target cells to initiate infection. Virus-receptor binding is highly specific, and this specificity determines both the species and the cell type that can be infected by a given virus. In some well-studied cases, the virus-binding region on the receptor has been found to be unrelated to the receptor's normal cellular function. Resistance to virus infection can thus evolve by selection of mutations that alter amino acids in the binding region with minimal effect on normal function. This sort of positive selection can be used to infer the history of the host-virus "arms race" during their coevolution. In a new study, Demogines et al. use a combination of phylogenetic, structural, and virological analysis to infer the history and significance of positive selection on the transferrin receptor TfR1, a housekeeping protein required for iron uptake and the cell surface receptor for at least three different types of virus. The authors show that only two parts of the rodent TfR1 molecule have been subject to positive selection and that these correspond to the binding sites for two of these viruses-the mouse mammary tumor virus (a retrovirus) and Machupo virus (an arenavirus). They confirmed this result by introducing the inferred binding site mutations into the wild-type protein and testing for receptor function. Related arenaviruses are beginning to spread in human populations in South America as the cause of often fatal hemorrhagic fevers, and, although Demogines et al. could find no evidence of TfR1 mutations in this region that might have been selected as a consequence of human infection, the authors identified one such mutation in Asian populations that affects infection with these viruses.

  9. Multifunctional centromere binding factor 1 is essential for chromosome segregation in the human pathogenic yeast Candida glabrata.

    PubMed

    Stoyan, T; Gloeckner, G; Diekmann, S; Carbon, J

    2001-08-01

    The CBF1 (centromere binding factor 1) gene of Candida glabrata was cloned by functional complementation of the methionine biosynthesis defect of a Saccharomyces cerevisiae cbf1 deletion mutant. The C. glabrata-coded protein, CgCbf1, contains a basic-helix-loop-helix leucine zipper domain and has features similar to those of other budding yeast Cbf1 proteins. CgCbf1p binds in vitro to the centromere DNA element I (CDEI) sequence GTCACATG with high affinity (0.9 x 10(9) M(-1)). Bandshift experiments revealed a pattern of protein-DNA complexes on CgCEN DNA different from that known for S. cerevisiae. We examined the effect of altering the CDEI binding site on CEN plasmid segregation, using a newly developed colony-sectoring assay. Internal deletion of the CDEI binding site led only to a fivefold increase in rates of plasmid loss, indicating that direct binding of Cbf1p to the centromere DNA is not required for full function. Additional deletion of sequences to the left of CDEI, however, led to a 70-fold increase in plasmid loss rates. Deletion of the CBF1 gene proved to be lethal in C. glabrata. C. glabrata cells containing the CBF1 gene under the influence of a shutdown promoter (tetO-ScHOP) arrested their growth after 5 h of cultivation in the presence of the reactive drug doxycycline. DAPI (4',6'-diamidino-2-phenylindole) staining of the arrested cells revealed a significant increase in the number of large-budded cells with single nuclei, 2C DNA content, and short spindles, indicating a defect in the G(2)/M transition of the cell cycle. Thus, we conclude that Cbf1p is required for chromosome segregation in C. glabrata.

  10. Cell membrane-bound CD200 signals both via an extracellular domain and following nuclear translocation of a cytoplasmic fragment.

    PubMed

    Chen, Zhiqi; Kapus, Andras; Khatri, Ismat; Kos, Olha; Zhu, Fang; Gorczynski, Reginald M

    2018-06-01

    In previous studies we had reported that the immunosuppressive cell membrane bound molecule CD200 is released from the cell following cleavage by matrix metalloproteases, with the released soluble CD200 acting as an immunosuppressant following binding to, and signaling through, its cognate receptor CD200R expressed on target cells. We now show that although the intracellular cytoplasmic tail (CD200 C-tail ) of CD200 has no consensus sites for adapter molecules which might signal the CD200 + cell directly, cleavage of the CD200 C-tail from the membrane region of CD200 by a consensus γ-secretase, leads to nuclear translocation and DNA binding (identified by chromatin immunoprecipitation followed by sequencing, Chip-sequencing) of the CD200 C-tail . Subsequently there occurs an altered expression of a limited number of genes, many of which are transcription factors (TFs) known to be associated with regulation of cell proliferation. Altered expression of these TFs was also prominent following transfection of CD200 + B cell lines and fresh patient CLL cells with a vector construct containing the CD200 C-tail . Artificial transfection of non CD200 + Hek293 cells with this CD200 C-tail construct resulted in altered expression of most of these same genes. Introduction of a siRNA for one of these TFs, POTEA, reversed CD200 C-tail regulation of altered cell proliferation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Differential binding of /sup 3/H-imipramine and /sup 3/H-mianserin in rat cerebral cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbrille-Ross, A.; Tang, S.W.; Coscina, D.V.

    1981-11-16

    Drug competition profiles, effect of raphe lesion, and sodium dependency of the binding of two antidepressant drugs /sup 3/H-imipramine and /sup 3/H-mianserin to rat cerebral cortex homogenate were compared to examine whether the drugs bound to a common ''antidepressant receptor.'' Of the neurotransmitters tested, only serotonin displaced binding of both /sup 3/H-imipramine and /sup 3/H-mianserin. /sup 3/H-Mianserin binding was potently displaced by serotonin S/sub 2/ antagonists and exhibited a profile similar to that of /sup 3/H-spiperone binding. In the presence of the serotonin S/sub 2/ antagonist spiperone, antihistamines (H/sub 1/) potently displaced /sup 3/H-mianserin binding. /sup 3/H-Imipramine binding was displacedmore » potently by serotonin uptake inhibitors. The order of potency of serotonergic drugs in displacing /sup 3/H-imipramine binding was not similar to their order in displacing /sup 3/H-spiperone or -3H-serotonin binding. Prior midbrain raphe lesions greatly decreased the binding of /sup 3/H-imipramine but did not alter binding of /sup 3/H-mianserin. Binding of /sup 3/H-imipramine but not /sup 3/H-mianserin was sodium dependent. These results show that /sup 3/H-imipramine and /sup 3/H-mianserin bind to different receptors. /sup 3/H-Imipramine binds to a presynaptic serotonin receptor which is probably related to a serotonin uptake recognition site, the binding of which is sodium dependent. /sup 3/H-Mianserin binds to postsynaptic receptors, possibly both serotonin S/sub 2/ and histamine H/sub 1/ receptors, the binding of which is sodium independent.« less

  12. Computational Investigation of Glycosylation Effects on a Family 1 Carbohydrate-binding Module*

    PubMed Central

    Taylor, Courtney B.; Talib, M. Faiz; McCabe, Clare; Bu, Lintao; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.

    2012-01-01

    Carbohydrate-binding modules (CBMs) are ubiquitous components of glycoside hydrolases, which degrade polysaccharides in nature. CBMs target specific polysaccharides, and CBM binding affinity to cellulose is known to be proportional to cellulase activity, such that increasing binding affinity is an important component of performance improvement. To ascertain the impact of protein and glycan engineering on CBM binding, we use molecular simulation to quantify cellulose binding of a natively glycosylated Family 1 CBM. To validate our approach, we first examine aromatic-carbohydrate interactions on binding, and our predictions are consistent with previous experiments, showing that a tyrosine to tryptophan mutation yields a 2-fold improvement in binding affinity. We then demonstrate that enhanced binding of 3–6-fold over a nonglycosylated CBM is achieved by the addition of a single, native mannose or a mannose dimer, respectively, which has not been considered previously. Furthermore, we show that the addition of a single, artificial glycan on the anterior of the CBM, with the native, posterior glycans also present, can have a dramatic impact on binding affinity in our model, increasing it up to 140-fold relative to the nonglycosylated CBM. These results suggest new directions in protein engineering, in that modifying glycosylation patterns via heterologous expression, manipulation of culture conditions, or introduction of artificial glycosylation sites, can alter CBM binding affinity to carbohydrates and may thus be a general strategy to enhance cellulase performance. Our results also suggest that CBM binding studies should consider the effects of glycosylation on binding and function. PMID:22147693

  13. Direct interplay between two candidate genes in FSHD muscular dystrophy

    PubMed Central

    Ferri, Giulia; Huichalaf, Claudia H.; Caccia, Roberta; Gabellini, Davide

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders. The major form of the disease (FSHD1) is linked to decrease in copy number of a 3.3-kb tandem repeated macrosatellite (D4Z4), located on chromosome 4q35. D4Z4 deletion alters chromatin structure of the locus leading to aberrant expression of nearby 4q35 genes. Given the high variability in disease onset and progression, multiple factors could contribute to the pathogenesis of FSHD. Among the FSHD candidate genes are double homeobox 4 (DUX4), encoded by the most telomeric D4Z4 unit, and FSHD region gene 1 (FRG1). DUX4 is a sequence-specific transcription factor. Here, we located putative DUX4 binding sites in the human FRG1 genomic area and we show specific DUX4 association to these regions. We found also that ectopically expressed DUX4 up-regulates the endogenous human FRG1 gene in healthy muscle cells, while DUX4 knockdown leads to a decrease in FRG1 expression in FSHD muscle cells. Moreover, DUX4 binds directly and specifically to its binding site located in the human FRG1 gene and transactivates constructs containing FRG1 genomic regions. Intriguingly, the mouse Frg1 genomic area lacks DUX4 binding sites and DUX4 is unable to activate the endogenous mouse Frg1 gene providing a possible explanation for the lack of muscle phenotype in DUX4 transgenic mice. Altogether, our results demonstrate that FRG1 is a direct DUX4 transcriptional target uncovering a novel regulatory circuit contributing to FSHD. PMID:25326393

  14. Both endothelin-A and endothelin-B receptors are present on adult rat cardiac ventricular myocytes.

    PubMed

    Allen, Bruce G; Phuong, Luu Lien; Farhat, Hala; Chevalier, Dominique

    2003-02-01

    Endothelin-A (ET(A)) and endothelin-B (ET(B)) receptors have been demonstrated in intact heart and cardiac membranes. ET(A) receptors have been demonstrated on adult ventricular myocytes. The aim of the present study was to determine the presence of ET(B) and the relative contribution of this receptor subtype to total endothelin-1 (ET-1) binding on adult ventricular myocytes. Saturation binding experiments indicated that ET-1 bound to a single population of receptors (Kd = 0.52 +/- 0.13 nM, n = 4) with an apparent maximum binding (Bmax) of 2.10 +/- 0.25 sites (x 10(5))/cell (n = 4). Competition experiments using 40 pM [125I]ET-1 and nonradioactive ET-1 revealed a Ki of 660 +/- 71 pM (n = 10) and a Hill coefficient (nH) of 0.99 +/- 0.10 (n = 10). A selective ET(A) antagonist, BQ610, displaced 80% of the bound [125I]ET-1. No displacement was observed by concentrations of an ET(B)-selective antagonist, BQ788, up to 1.0 microM. However, in the presence of 1.0 microM BQ610, BQ788 inhibited the remaining [125I]ET-1 binding. Similarly, in the presence of 1.0 microM BQ788, BQ610 inhibited the remaining specific [125I]ET-1 binding. Binding of an ET(B1)-selective agonist, [125I]IRL-1620, confirmed the presence of ET(B). ET(B) bound to ET-1 irreversibly, whereas binding to ET(A) demonstrated both reversible and irreversible components, and BQ610 and BQ788 bound reversibly. Reducing the incubation temperature to 0 degrees C did not alter the irreversible component of ET-1 binding. Hence, both ET(A) and ET(B) receptors are present on intact adult rat ventricular myocytes, and the ratio of ET(A):ET(B) binding sites is 4:1. Both receptor subtypes bind to ET-1 by a two-step association involving the formation of a tight receptor-ligand complex; however, the kinetics of ET-1 binding to ET(A) versus ET(B) differ.

  15. Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade

    NASA Astrophysics Data System (ADS)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-04-01

    The signalling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, associate with SLAM-associated protein (SAP)-related molecules, composed of single SH2 domain architecture. SAP activates Src-family kinase Fyn after SLAM ligation, resulting in a SLAM-SAP-Fyn complex, where, SAP binds the Fyn SH3 domain that does not involve canonical SH3 or SH2 interactions. This demands insight into this SAP mediated signalling cascade. Thermodynamics of the conformational changes are extracted from the histograms of dihedral angles obtained from the all-atom molecular dynamics simulations of this structurally well characterized SAP-SLAM complex. The results incorporate the binding induced thermodynamic changes of individual amino acid as well as the secondary structural elements of the protein and the solvent. Stabilization of the peptide partially comes through a strong hydrogen bonding network with the protein, while hydrophobic interactions also play a significant role where the peptide inserts itself into a hydrophobic cavity of the protein. SLAM binding widens SAP's second binding site for Fyn, which is the next step in the signal transduction cascade. The higher stabilization and less fluctuation of specific residues of SAP in the Fyn binding site, induced by SAP-SLAM complexation, emerge as the key structural elements to trigger the recognition of SAP by the SH3 domain of Fyn. The thermodynamic quantification of the protein due to complexation not only throws deeper understanding in the established mode of SAP-SLAM interaction but also assists in the recognition of the relevant residues of the protein responsible for alterations in its activity.

  16. Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade.

    PubMed

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-04-28

    The signalling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, associate with SLAM-associated protein (SAP)-related molecules, composed of single SH2 domain architecture. SAP activates Src-family kinase Fyn after SLAM ligation, resulting in a SLAM-SAP-Fyn complex, where, SAP binds the Fyn SH3 domain that does not involve canonical SH3 or SH2 interactions. This demands insight into this SAP mediated signalling cascade. Thermodynamics of the conformational changes are extracted from the histograms of dihedral angles obtained from the all-atom molecular dynamics simulations of this structurally well characterized SAP-SLAM complex. The results incorporate the binding induced thermodynamic changes of individual amino acid as well as the secondary structural elements of the protein and the solvent. Stabilization of the peptide partially comes through a strong hydrogen bonding network with the protein, while hydrophobic interactions also play a significant role where the peptide inserts itself into a hydrophobic cavity of the protein. SLAM binding widens SAP's second binding site for Fyn, which is the next step in the signal transduction cascade. The higher stabilization and less fluctuation of specific residues of SAP in the Fyn binding site, induced by SAP-SLAM complexation, emerge as the key structural elements to trigger the recognition of SAP by the SH3 domain of Fyn. The thermodynamic quantification of the protein due to complexation not only throws deeper understanding in the established mode of SAP-SLAM interaction but also assists in the recognition of the relevant residues of the protein responsible for alterations in its activity.

  17. Myosin MyTH4-FERM structures highlight important principles of convergent evolution.

    PubMed

    Planelles-Herrero, Vicente José; Blanc, Florian; Sirigu, Serena; Sirkia, Helena; Clause, Jeffrey; Sourigues, Yannick; Johnsrud, Daniel O; Amigues, Beatrice; Cecchini, Marco; Gilbert, Susan P; Houdusse, Anne; Titus, Margaret A

    2016-05-24

    Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution.

  18. Effect of Scoparia dulcis extract on insulin receptors in streptozotocin induced diabetic rats: studies on insulin binding to erythrocytes.

    PubMed

    Pari, Leelavinothan; Latha, Muniappan; Rao, Chippada Appa

    2004-01-01

    We investigated the insulin-receptor-binding effect of Scoparia dulcis plant extract in streptozotocin (STZ)-induced male Wistar rats, using circulating erythrocytes (ER) as a model system. An aqueous extract of S dulcis plant (SPEt) (200 mg/kg body weight) was administered orally. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors. Glibenclamide was used as standard reference drug. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (55.0 +/- 2.8%) than in SPEt-treated (70.0 +/- 3.5%)- and glibenclamide-treated (65.0 +/- 3.3%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with SPEt- and glibenclamide-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from SPEt and glibenclamide treated diabetic rats having 2.5 +/- 0.15 x 10(10) M(-1) (Kd1); 17.0 +/- 1.0 x 10(-8) M(-1) (Kd2), and 2.0 +/- 0.1 x 10(-10) M(-1) (Kd1); 12.3 +/- 0.9 x 10(-8) M(-1) (Kd2) compared with 1.0 +/- 0.08 x 10(-10) M(-1) (Kd1); 2.7 +/- 0.25 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in STZ-induced diabetic rats. Treatment with SPEt and glibenclamide significantly improved specific insulin binding, with receptor number and affinity binding (p < 0.001) reaching almost normal non-diabetic levels. The data presented here show that SPEt and glibenclamide increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.

  19. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites

    NASA Technical Reports Server (NTRS)

    Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.

    2000-01-01

    Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.

  20. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase

    NASA Astrophysics Data System (ADS)

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-01

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2‧,3‧-O-(2,4,6-trinitrophenyl)adenosine 5‧-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase.

  1. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase.

    PubMed

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-05

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    NASA Astrophysics Data System (ADS)

    D'Aquino, J. Alejandro; Ringe, Dagmar

    2006-08-01

    The diphtheria toxin repressor, DtxR, is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear (1 - 3). Calorimetric techniques have demonstrated that while binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 × 10-7, binding site 2 (primary) is a low affinity binding site with a binding constant of 6.3 × 10-4. These two binding sites act independently and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here and the previously reported DtxR(H79A) (4) has allowed us to propose a mechanism of metal ion activation for DtxR.

  3. Allosteric binding sites in Rab11 for potential drug candidates

    PubMed Central

    2018-01-01

    Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously. PMID:29874286

  4. Laminar and regional distribution of galanin binding sites in cat and monkey visual cortex determined by in vitro receptor autoradiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosier, A.M.; Vandesande, F.; Orban, G.A.

    1991-03-08

    The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of ({sup 125}I)-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites,more » while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed.« less

  5. Natural single amino acid polymorphism (F19Y) in human galectin-8: detection of structural alterations and increased growth-regulatory activity on tumor cells.

    PubMed

    Ruiz, Federico M; Scholz, Barbara A; Buzamet, Eliza; Kopitz, Jürgen; André, Sabine; Menéndez, Margarita; Romero, Antonio; Solís, Dolores; Gabius, Hans-Joachim

    2014-03-01

    Natural amino acid substitution by single-site nucleotide polymorphism can become a valuable tool for structure-activity correlations, especially if evidence for association to disease parameters exists. Focusing on the F19Y change in human galectin-8, connected clinically to rheumatoid arthritis, we here initiate the study of consequences of a single-site substitution in the carbohydrate recognition domain of this family of cellular effectors. We apply a strategically combined set of structural and cell biological techniques for comparing properties of the wild-type and variant proteins. The overall hydrodynamic behavior of the full-length protein and of the separate N-domain is not noticeably altered, but displacements in the F0 β-strand of the β-sandwich fold in the N-domain are induced, as evidenced by protein crystallography. Analysis of thermal stability by circular dichroism spectroscopy revealed perceptible differences for the full-length proteins, pointing to an impact of the substitution beyond the N-domain. In addition, small differences in thermodynamic parameters of carbohydrate binding are detected. On the level of two types of tumor cells, characteristics of binding appeared rather similar. In further comparison of the influence on proliferation, the variant proved to be more active as growth regulator in the six tested lines of neuroblastoma, erythroleukemia and colon adenocarcinoma. The seemingly subtle structural change identified here thus has functional implications in vitro, encouraging further analysis in autoimmune regulation and, in a broad context, in work with other natural single-site variants, using the documented combined strategy. The atomic coordinates and structure factors (codes 4BMB, 4BME) have been deposited in the Protein Data Bank. © 2014 FEBS.

  6. Bisphenol A-Associated Alterations in the Expression and Epigenetic Regulation of Genes Encoding Xenobiotic Metabolizing Enzymes in Human Fetal Liver

    PubMed Central

    Nahar, Muna S.; Kim, Jung H.; Sartor, Maureen A.; Dolinoy, Dana C.

    2014-01-01

    Alterations in xenobiotic metabolizing enzyme (XME) expression across the life course, along with genetic, nutritional, and environmental regulation, can influence how organisms respond to toxic insults. In this study, we investigated the hypothesis that in utero exposure to the endocrine active compound, bisphenol A (BPA), influences expression and epigenetic regulation of phase I and II XME genes during development. Using healthy 1st to 2nd trimester human fetal liver specimens quantified for internal BPA levels, we examined XME gene expression using PCR Array (n =8) and RNA-sequencing (n =12) platforms. Of the greater than 160 XME genes assayed, 2 phase I and 12 phase II genes exhibited significantly reduced expression with higher BPA levels, including isoforms from the carboxylesterase, catechol O-methyltransferase, glutathione S-transferase, sulfotransferase, and UDP-glucuronosyltransferase families. When the promoters of these candidate genes were evaluated in silico, putative binding sites for the E-twenty-six (ETS) and activator protein1 (AP1) related transcription factor families were identified and unique to 97% of all candidate transcripts. Interestingly, many ETS binding sites contain cytosine-guanine dinucleotides (CpGs) within their consensus sequences. Thus, quantitative analysis of CpG methylation of three candidate genes was conducted across n =50 samples. Higher BPA levels were associated with increased site-specific methylation at COMT (P <0.005) and increased average methylation at SULT2A1 (P <0.020) promoters. While toxicological studies have traditionally focused on high-dose effects and hormonal receptor mediated regulation, our findings suggest the importance of low-dose effects and nonclassical mechanisms of endocrine disruption during development. PMID:24214726

  7. Comparison of dynamics of wildtype and V94M human UDP-galactose 4-epimerase-A computational perspective on severe epimerase-deficiency galactosemia.

    PubMed

    Timson, David J; Lindert, Steffen

    2013-09-10

    UDP-galactose 4'-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD+ cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Msn2 Coordinates a Stoichiometric Gene Expression Program

    PubMed Central

    Stewart-Ornstein, Jacob; Nelson, Christopher; DeRisi, Joe; Weissman, Jonathan S.; El-Samad, Hana

    2014-01-01

    Summary Background Many cellular processes operate in an “analog” regime in which the magnitude of the response is precisely tailored to the intensity of the stimulus. In order to maintain the coherence of such responses, the cell must provide for proportional expression of multiple target genes across a wide dynamic range of induction states. Our understanding of the strategies used to achieve graded gene regulation is limited. Results In this work, we document a relationship between stress responsive gene expression and the transcription factor Msn2 that is graded over a large range of Msn2 cocnentrations. We use computational modeling, in vivo, and in vitro analysis to dissect the roots of this relationship. Our studies reveal a simple and general strategy based on non-cooperative low-affinity interactions between Msn2 and its cognate binding sites, as well as competition over a large number of Msn2 binding sites in the genome relative to the number of Msn2 molecules. Conclusions In addition to enabling precise tuning of gene expression to the state of the environment, this strategy ensures co-linear activation of target genes, allowing for stoichiometric expression of large groups of genes without extensive promoter tuning. Furthermore, such a strategy enables precise modulation of the activity of any given promoter by addition of binding sites without altering the qualitative relationship between different genes in a regulon. This feature renders a given regulon highly ‘evolvable’. PMID:24210615

  9. Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.

    PubMed Central

    Hansen, M R; Simorre, J P; Hanson, P; Mokler, V; Bellon, L; Beigelman, L; Pardi, A

    1999-01-01

    A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids. PMID:10445883

  10. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations.

    PubMed

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  11. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  12. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction.

    PubMed

    Feilen, Lukas P; Haubrich, Kevin; Strecker, Paul; Probst, Sabine; Eggert, Simone; Stier, Gunter; Sinning, Irmgard; Konietzko, Uwe; Kins, Stefan; Simon, Bernd; Wild, Klemens

    2017-01-01

    Physiological function and pathology of the Alzheimer's disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

  13. Differential regulation of serotonin-1A receptor-stimulated [35S]GTP gamma S binding in the dorsal raphe nucleus by citalopram and escitalopram.

    PubMed

    Rossi, Dania V; Burke, Teresa F; Hensler, Julie G

    2008-03-31

    The effect of chronic citalopram or escitalopram administration on 5-HT1A receptor function in the dorsal raphe nucleus was determined by measuring [35S]GTP gamma S binding stimulated by the 5-HT1A receptor agonist (R)-(+)-8-OH-DPAT (1nM-10 microM). Although chronic administration of citalopram or escitalopram has been shown to desensitize somatodendritic 5-HT1A autoreceptors, we found that escitalopram treatment decreased the efficacy of 5-HT1A receptors to activate G proteins, whereas citalopram treatment did not. The binding of [3H]8-OH-DPAT to the coupled, high affinity agonist state of the receptor was not altered by either treatment. Interestingly, escitalopram administration resulted in greater occupancy of serotonin transporter sites as measured by the inhibition of [3H]cyanoimipramine binding. As the binding and action of escitalopram is limited by the inactive enantiomer R-citalopram present in racemic citalopram, we propose that the regulation of 5-HT1A receptor function in the dorsal raphe nucleus at the level of receptor-G protein interaction may be a result of greater inhibition of the serotonin transporter by escitalopram.

  14. Differential regulation of serotonin-1A receptor stimulated [35S]GTPγS binding in the dorsal raphe nucleus by citalopram and escitalopram

    PubMed Central

    Rossi, Dania V.; Burke, Teresa F.; Hensler, Julie G.

    2008-01-01

    The effect of chronic citalopram or escitalopram administration on 5-HT1A receptor function in the dorsal raphe nucleus was determined by measuring [35S]GTPγS binding stimulated by the 5-HT1A receptor agonist (R)-(+)-8-OH-DPAT (1nM-10μM). Although chronic administration of citalopram or escitalopram has been shown to desensitize somatodendritic 5-HT1A autoreceptors, we found that escitalopram treatment decreased the efficacy of 5-HT1A receptors to activate G-proteins, whereas citalopram treatment did not. The binding of [3H]8-OH-DPAT to the coupled, high affinity agonist state of the receptor was not altered by either treatment. Interestingly, escitalopram administration resulted in greater occupancy of serotonin transporter sites as measured by the inhibition of [3H]cyanoimipramine binding. As the binding and action of escitalopram is limited by the inactive enantiomer R-citalopram present in racemic citalopram, we propose that the regulation of 5-HT1A receptor function in the dorsal raphe nucleus at the level of receptor-G protein interaction may be a result of greater inhibition of the serotonin transporter by escitalopram. PMID:18289523

  15. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction

    PubMed Central

    Feilen, Lukas P.; Haubrich, Kevin; Strecker, Paul; Probst, Sabine; Eggert, Simone; Stier, Gunter; Sinning, Irmgard; Konietzko, Uwe; Kins, Stefan; Simon, Bernd; Wild, Klemens

    2017-01-01

    Physiological function and pathology of the Alzheimer’s disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling. PMID:28553201

  16. Phosphorylation of the IDP KID Modulates Affinity for KIX by Increasing the Lifetime of the Complex.

    PubMed

    Dahal, Liza; Shammas, Sarah L; Clarke, Jane

    2017-12-19

    Intrinsically disordered proteins (IDPs) are known to undergo a range of posttranslational modifications, but by what mechanism do such modifications affect the binding of an IDP to its partner protein? We investigate this question using one such IDP, the kinase inducible domain (KID) of the transcription factor CREB, which interacts with the KIX domain of CREB-binding protein upon phosphorylation. As with many other IDPs, KID undergoes coupled folding and binding to form α-helical structure upon interacting with KIX. This single site phosphorylation plays an important role in the control of transcriptional activation in vivo. Here we show that, contrary to expectation, phosphorylation has no effect on association rates-unphosphorylated KID binds just as rapidly as pKID, the phosphorylated form-but rather, acts by increasing the lifetime of the complex. We propose that by controlling the lifetime of the bound complex of pKID:KIX via altering the dissociation rate, phosphorylation can facilitate effective control of transcription regulation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Synergistic Interactions of Sugars/Polyols and Monovalent Salts with Phospholipids Depend upon Sugar/Polyol Complexity and Anion Identity.

    PubMed

    Clark, Ginevra A; Henderson, J Michael; Heffern, Charles; Akgün, Bülent; Majewski, Jaroslaw; Lee, Ka Yee C

    2015-11-24

    We found that interactions of dipalmitoylphosphatidylcholine (DPPC) lipid monolayers with sugars are influenced by addition of NaCl. This work is of general importance in understanding how sugar-lipid-salt interactions impact biological systems. Using Langmuir isothermal compressions, fluorescence microscopy, atomic force microscopy, and neutron reflectometry, we examined DPPC monolayers upon addition of sugars/polyols and/or monovalent salts. Sugar-lipid interactions in the presence of NaCl increased with increasing complexity of the sugar/polyol in the order glycerol ≪ glucose < trehalose. When the anion was altered in the series NaF, NaCl, and NaBr, only minor differences were observed. When comparing LiCl, NaCl, and KCl, sodium chloride had the greatest influence on glucose and trehalose interactions with DPPC. We propose that heterogeneity created by cation binding allows for sugars to bind the lipid headgroups. While cation binding increases in the order K(+) < Na(+) < Li(+), lithium ions may also compete with glucose for binding sites. Thus, both cooperative and competitive factors contribute to the overall influence of salts on sugar-lipid interactions.

  18. Structural Basis of PP2A Inhibition by Small t Antigen

    PubMed Central

    Cho, Uhn Soo; Morrone, Seamus; Sablina, Anna A; Arroyo, Jason D; Hahn, William C; Xu, Wenqing

    2007-01-01

    The SV40 small t antigen (ST) is a potent oncoprotein that perturbs the function of protein phosphatase 2A (PP2A). ST directly interacts with the PP2A scaffolding A subunit and alters PP2A activity by displacing regulatory B subunits from the A subunit. We have determined the crystal structure of full-length ST in complex with PP2A A subunit at 3.1 Å resolution. ST consists of an N-terminal J domain and a C-terminal unique domain that contains two zinc-binding motifs. Both the J domain and second zinc-binding motif interact with the intra-HEAT-repeat loops of HEAT repeats 3–7 of the A subunit, which overlaps with the binding site of the PP2A B56 subunit. Intriguingly, the first zinc-binding motif is in a position that may allow it to directly interact with and inhibit the phosphatase activity of the PP2A catalytic C subunit. These observations provide a structural basis for understanding the oncogenic functions of ST. PMID:17608567

  19. A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress

    PubMed Central

    Elfving, Nils; Chereji, Răzvan V.; Bharatula, Vasudha; Björklund, Stefan; Morozov, Alexandre V.; Broach, James R.

    2014-01-01

    The transcription factor Msn2 mediates a significant proportion of the environmental stress response, in which a common cohort of genes changes expression in a stereotypic fashion upon exposure to any of a wide variety of stresses. We have applied genome-wide chromatin immunoprecipitation and nucleosome profiling to determine where Msn2 binds under stressful conditions and how that binding affects, and is affected by, nucleosome positioning. We concurrently determined the effect of Msn2 activity on gene expression following stress and demonstrated that Msn2 stimulates both activation and repression. We found that some genes responded to both intermittent and continuous Msn2 nuclear occupancy while others responded only to continuous occupancy. Finally, these studies document a dynamic interplay between nucleosomes and Msn2 such that nucleosomes can restrict access of Msn2 to its canonical binding sites while Msn2 can promote reposition, expulsion and recruitment of nucleosomes to alter gene expression. This interplay may allow the cell to discriminate between different types of stress signaling. PMID:24598258

  20. Investigating inhibitory activity of novel synthetic sericin peptide on α-D-glucosidase: kinetics and interaction mechanism study using a docking simulation.

    PubMed

    Xie, Fan; Wang, Shaoyun; Zhang, Li; Wu, Jinhong; Wang, Zhengwu

    2018-03-01

    We synthesised a novel sericin peptide (SP-GI) with α-d-glucosidase inhibitory activity, which has a sequence of SEDSSEVDIDLGN. The kinetics of its peptide-induced inhibition on α-d-glucosidase activity and its interaction mechanism merging with molecular docking were both investigated. SP-GI exhibited significant inhibitory activity with an IC 50 of 2.9 ± 0.1 µmol L -1 and this inhibition was reversible and non-competitive with a K i value of 1.0 ± 0.1 µmol L -1 . An interaction study with SP-GI revealed it bound to α-d-glucosidase at a single binding site, resulting in alterations in α-d-glucosidase secondary structure. This led to quenching of intrinsic α-d-glucosidase fluorescence by a static quenching mechanism. Molecular docking results showed that the SP-GI binding site on α-d-glucosidase differed from acarbose, with hydrogen bonding and van der Waals forces being the main binding drivers. These findings suggest the potential use for SP-GI or other natural sericin peptides as dietary supplements for the treatment of type 2 diabetes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

Top