Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys
Celik, Fuat E.; Mavrikakis, Manos
2015-01-12
Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less
Stability of Surface and Subsurface Hydrogen on and in Au/Ni Near-Surface Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celik, Fuat E.; Mavrikakis, Manos
2015-10-01
Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less
Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys
NASA Astrophysics Data System (ADS)
Celik, Fuat E.; Mavrikakis, Manos
2015-10-01
Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While the metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.
Tsai, Keng-Chang; Jian, Jhih-Wei; Yang, Ei-Wen; Hsu, Po-Chiang; Peng, Hung-Pin; Chen, Ching-Tai; Chen, Jun-Bo; Chang, Jeng-Yih; Hsu, Wen-Lian; Yang, An-Suei
2012-01-01
Non-covalent protein-carbohydrate interactions mediate molecular targeting in many biological processes. Prediction of non-covalent carbohydrate binding sites on protein surfaces not only provides insights into the functions of the query proteins; information on key carbohydrate-binding residues could suggest site-directed mutagenesis experiments, design therapeutics targeting carbohydrate-binding proteins, and provide guidance in engineering protein-carbohydrate interactions. In this work, we show that non-covalent carbohydrate binding sites on protein surfaces can be predicted with relatively high accuracy when the query protein structures are known. The prediction capabilities were based on a novel encoding scheme of the three-dimensional probability density maps describing the distributions of 36 non-covalent interacting atom types around protein surfaces. One machine learning model was trained for each of the 30 protein atom types. The machine learning algorithms predicted tentative carbohydrate binding sites on query proteins by recognizing the characteristic interacting atom distribution patterns specific for carbohydrate binding sites from known protein structures. The prediction results for all protein atom types were integrated into surface patches as tentative carbohydrate binding sites based on normalized prediction confidence level. The prediction capabilities of the predictors were benchmarked by a 10-fold cross validation on 497 non-redundant proteins with known carbohydrate binding sites. The predictors were further tested on an independent test set with 108 proteins. The residue-based Matthews correlation coefficient (MCC) for the independent test was 0.45, with prediction precision and sensitivity (or recall) of 0.45 and 0.49 respectively. In addition, 111 unbound carbohydrate-binding protein structures for which the structures were determined in the absence of the carbohydrate ligands were predicted with the trained predictors. The overall prediction MCC was 0.49. Independent tests on anti-carbohydrate antibodies showed that the carbohydrate antigen binding sites were predicted with comparable accuracy. These results demonstrate that the predictors are among the best in carbohydrate binding site predictions to date. PMID:22848404
Ravindranath, Pradeep Anand; Sanner, Michel F.
2016-01-01
Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702
NASA Technical Reports Server (NTRS)
Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.
1997-01-01
The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.
Binding of dinitrogen to an iron-sulfur-carbon site
NASA Astrophysics Data System (ADS)
Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.
2015-10-01
Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.
Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins
Kinjo, Akira R.; Nakamura, Haruki
2012-01-01
Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478
Mg2+ ions: do they bind to nucleobase nitrogens?
Leonarski, Filip; D'Ascenzo, Luigi; Auffinger, Pascal
2017-01-01
Given the many roles proposed for Mg2+ in nucleic acids, it is essential to accurately determine their binding modes. Here, we surveyed the PDB to classify Mg2+ inner-sphere binding patterns to nucleobase imine N1/N3/N7 atoms. Among those, purine N7 atoms are considered to be the best nucleobase binding sites for divalent metals. Further, Mg2+ coordination to N7 has been implied in several ribozyme catalytic mechanisms. We report that Mg2+ assigned near imine nitrogens derive mostly from poor interpretations of electron density patterns and are most often misidentified Na+, K+, NH4+ ions, water molecules or spurious density peaks. Consequently, apart from few documented exceptions, Mg2+ ions do not bind to N7 atoms. Without much of a surprise, Mn2+, Zn2+ and Cd2+, which have a higher affinity for nitrogens, may contact N7 atoms when present in crystallization buffers. In this respect, we describe for the first time a potential Zn2+ ribosomal binding site involving two purine N7 atoms. Further, we provide a set of guidelines to help in the assignment of Mg2+ in crystallographic, cryo-EM, NMR and model building practices and discuss implications of our findings related to ion substitution experiments. PMID:27923930
Holby, Edward F.; Taylor, Christopher D.
2015-03-19
We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore » structures have the highest calculated activity to date.« less
Identifying Interactions that Determine Fragment Binding at Protein Hotspots.
Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L
2016-05-12
Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project.
Mann, G; Hermans, J
2000-09-29
The complexes of phage T4 lysozyme L99A with noble gases have been studied by molecular dynamics simulation. In a long simulation of the complex with one Xe atom, the structure was found to undergo global conformation change involving a reversible opening and closing of the entrance to the substrate-binding site, during which the conformations of the N and C-terminal domains varied little. The distributions of Xe positions sampled in dynamics simulations were refined in terms of anisotropic Gaussian distributions via least-squares minimization of the difference between Fourier transforms. In addition, molecular transformation simulations have been applied in order to calculate the binding free energies of Xe, Kr and Ar relative to a standard state at a pressure of 1 bar. A single bound Xe is found to assume an equilibrium distribution over three adjacent preferred sites, while in a two-Xe complex, the two Xe atoms preferentially occupy two of these. The positions of the three sites agree closely with the positions of bound Xe determined in the refined crystal structure of a complex formed at a pressure of 8 bar Xe, and the calculated affinities agree well with the observed partial occupancies. At a pressure of 8 bar, a mixture of one-Xe and two-Xe complexes is present, and similarly for complexes with Kr and Ar, with single occupancy relatively more prevalent with Kr and Ar. (Binding of a third Xe atom is found to be quite unfavorable.) A comparison with simulation results for the binding of benzene to the same site leads to the conclusion that binding of Xe within cavities in proteins is common because of several favorable factors: (1) Xe has a large atomic polarizability; (2) Xe can be applied at a relatively high pressure, i.e. high chemical potential; (3) an unfavorable entropic term related to the need to orient the ligand in the binding site is absent. Finally, it is found that the model's binding energy of a water molecule in the cavity is insufficient to overcome the unfavorable binding entropy. Copyright 2000 Academic Press.
Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics.
Montoya, Alejandro; Schlunke, Anna; Haynes, Brian S
2006-08-31
The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.
Neyman, Konstantin M; Inntam, Chan; Matveev, Alexei V; Nasluzov, Vladimir A; Rösch, Notker
2005-08-24
Single d-metal atoms on oxygen defects F(s) and F(s+) of the MgO(001) surface were studied theoretically. We employed an accurate density functional method combined with cluster models, embedded in an elastic polarizable environment, and we applied two gradient-corrected exchange-correlation functionals. In this way, we quantified how 17 metal atoms from groups 6-11 of the periodic table (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; and Cr, Mo, W) interact with terrace sites of MgO. We found bonding with F(s) and F(s+) defects to be in general stronger than that with O2- sites, except for Mn-, Re-, and Fe/F(s) complexes. In M/F(s) systems, electron density is accumulated on the metal center in a notable fashion. The binding energy on both kinds of O defects increases from 3d- to 4d- to 5d-atoms of a given group, at variance with the binding energy trend established earlier for the M/O2- complexes, 4d < 3d < 5d. Regarding the evolution of the binding energy along a period, group 7 atoms are slightly destabilized compared to their group 6 congeners in both the F(s) and F(s+) complexes; for later transition elements, the binding energy increases gradually up to group 10 and finally decreases again in group 11, most strongly on the F(s) site. This trend is governed by the negative charge on the adsorbed atoms. We discuss implications for an experimental detection of metal atoms on oxide supports based on computed core-level energies.
Universal aspects of adhesion and atomic force microscopy
NASA Technical Reports Server (NTRS)
Banerjea, Amitava; Smith, John R.; Ferrante, John
1990-01-01
Adhesive energies are computed for flat and atomically sharp tips as a function of the normal distance to the substrate. The dependence of binding energies on tip shape is investigated. The magnitudes of the binding energies for the atomic force microscope are found to depend sensitively on tip material, tip shape and the sample site being probed. The form of the energy-distance curve, however, is universal and independent of these variables, including tip shape.
NASA Technical Reports Server (NTRS)
Mehandru, S. P.; Anderson, A. B.; Ross, P. N.
1985-01-01
The CO adsorption on a 40 atom cluster model of the (111) surface and a 36 atom cluster model of the (100) surface of the Pt3Ti alloy was studied. Parallel binding to high coordinate sites associated with Ti and low CO bond scission barriers are predicted for both surfaces. The binding of CO to Pt sites occurs in an upright orientation. These orientations are a consequence of the nature of the CO pi donation interactions with the surface. On the Ti sites the orbitals donate to the nearly empty Ti 3d band and the antibonding counterpart orbitals are empty. On the Pt sites, however, they are in the filled Pt 5d region of the alloy band, which causes CO to bond in a vertical orientation by 5 delta donation from the carbon end.
Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy
NASA Astrophysics Data System (ADS)
Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.
2016-03-01
We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e
Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei
2016-01-01
Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851
Partial Ionic Character beyond the Pauling Paradigm: Metal Nanoparticles
Duanmu, Kaining; Truhlar, Donald G.
2014-11-12
A canonical perspective on the chemical bond is the Pauling paradigm: a bond in a molecule containing only identical atoms has no ionic character. However, we show that homonuclear silver clusters have very uneven charge distributions (for example, the C 2v structure of Ag 4 has a larger dipole moment than formaldehyde or acetone), and we show how to predict the charge distribution from coordination numbers and Hirshfeld charges. The new charge model is validated against Kohn–Sham calculations of dipole moments with four approximations for the exchange–correlation functional. We report Kohn–Sham studies of the binding energies of CO on silvermore » monomer and silver clusters containing 2–18 atoms. We also find that an accurate charge model is essential for understanding the site dependence of binding. In particular we find that atoms with more positive charges tend to have higher binding energies, which can be used for guidance in catalyst modeling and design. Furthermore, the nonuniform charge distribution of silver clusters predisposes the site preference of binding of carbon monoxide, and we conclude that nonuniform charge distributions are an important property for understanding binding of metal nanoparticles in general.« less
Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S
2010-03-01
The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, H.; Qiu, Y; Philo, J
2010-01-01
The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. Amore » new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.« less
Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S
2010-01-01
The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(−)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(−) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(−) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis. PMID:20066666
Sriram, K. K.; Yeh, Jia-Wei; Lin, Yii-Lih; Chang, Yi-Ren; Chou, Chia-Fu
2014-01-01
Mapping transcription factor (TF) binding sites along a DNA backbone is crucial in understanding the regulatory circuits that control cellular processes. Here, we deployed a method adopting bioconjugation, nanofluidic confinement and fluorescence single molecule imaging for direct mapping of TF (RNA polymerase) binding sites on field-stretched single DNA molecules. Using this method, we have mapped out five of the TF binding sites of E. coli RNA polymerase to bacteriophage λ-DNA, where two promoter sites and three pseudo-promoter sites are identified with the corresponding binding frequency of 45% and 30%, respectively. Our method is quick, robust and capable of resolving protein-binding locations with high accuracy (∼ 300 bp), making our system a complementary platform to the methods currently practiced. It is advantageous in parallel analysis and less prone to false positive results over other single molecule mapping techniques such as optical tweezers, atomic force microscopy and molecular combing, and could potentially be extended to general mapping of protein–DNA interaction sites. PMID:24753422
Tanley, Simon W M; Schreurs, Antoine M M; Kroon-Batenburg, Loes M J; Helliwell, John R
2012-11-01
The anticancer complexes cisplatin and carboplatin are known to bind to both the Nδ and the Nℇ atoms of His15 of hen egg-white lysozyme (HEWL) in the presence of dimethyl sulfoxide (DMSO). However, neither binds in aqueous media after 4 d of crystallization and crystal growth, suggesting that DMSO facilitates cisplatin/carboplatin binding to the N atoms of His15 by an unknown mechanism. Crystals of HEWL cocrystallized with cisplatin in both aqueous and DMSO media, of HEWL cocrystallized with carboplatin in DMSO medium and of HEWL cocrystallized with cisplatin and N-acetylglucosamine (NAG) in DMSO medium were stored for between seven and 15 months. X-ray diffraction studies of these crystals were carried out on a Bruker APEX II home-source diffractometer at room temperature. Room-temperature X-ray diffraction data collection removed the need for cryoprotectants to be used, ruling out any effect that the cryoprotectants might have had on binding to the protein. Both cisplatin and carboplatin still bind to both the Nδ and Nℇ atoms of His15 in DMSO media as expected, but more detail for the cyclobutanedicarboxylate (CBDC) moiety of carboplatin was observed at the Nℇ binding site. However, two molecules of cisplatin were now observed to be bound to His15 in aqueous conditions. The platinum peak positions were identified using anomalous difference electron-density maps as a cross-check with Fo-Fc OMIT electron-density maps. The occupancies of each binding site were calculated using SHELXTL. These results show that over time cisplatin binds to both N atoms of His15 of HEWL in aqueous media, whereas this binding is speeded up in the presence of DMSO. The implication of cisplatin binding to proteins after a prolonged period of time is an important consideration for the length of treatment in patients who are given cisplatin.
Modes of action for arsenic carcinogenesis and toxicity
There are three principal ways in which arsenic species can interact with important biological molecules. First, trivalent arsenicals can bind to macromolecule sites, principally the sulfhydryls of peptides and proteins. Selenocysteines, selenium atoms and molybdenum atoms are al...
Atomic and molecular adsorption on Au(111)
Santiago-Rodriguez, Yohaselly; Herron, Jeffrey A.; Curet-Arana, Maria C.; ...
2014-05-02
Periodic self-consistent density functional theory (DFT-GGA) calculations were used to study the adsorption of several atomic species, molecular species and molecular fragments on the Au(111) surface with a coverage of 1/4 monolayer (ML). Binding geometries, binding energies, and diffusion barriers were calculated for 27 species. Furthermore, we calculated the surface deformation energy associated with the binding events. The binding strength for all the analyzed species can be ordered as follows: NH 3 < NO < CO < CH 3 < HCO < NH 2 < COOH < OH < HCOO < CNH 2 < H < N < NH
Meslamani, Jamel; Rognan, Didier; Kellenberger, Esther
2011-05-01
The sc-PDB database is an annotated archive of druggable binding sites extracted from the Protein Data Bank. It contains all-atoms coordinates for 8166 protein-ligand complexes, chosen for their geometrical and physico-chemical properties. The sc-PDB provides a functional annotation for proteins, a chemical description for ligands and the detailed intermolecular interactions for complexes. The sc-PDB now includes a hierarchical classification of all the binding sites within a functional class. The sc-PDB entries were first clustered according to the protein name indifferent of the species. For each cluster, we identified dissimilar sites (e.g. catalytic and allosteric sites of an enzyme). SCOPE AND APPLICATIONS: The classification of sc-PDB targets by binding site diversity was intended to facilitate chemogenomics approaches to drug design. In ligand-based approaches, it avoids comparing ligands that do not share the same binding site. In structure-based approaches, it permits to quantitatively evaluate the diversity of the binding site definition (variations in size, sequence and/or structure). The sc-PDB database is freely available at: http://bioinfo-pharma.u-strasbg.fr/scPDB.
Comparison of S-adsorption on (111) and (100) facets of Cu nanoclusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boschen, Jeffery S.; Lee, Jiyoung; Windus, Theresa L.
2016-10-31
In order to gain insight into the nature of chemical bonding of sulfur atoms on coinage metal surfaces, we compare the adsorption energy and structural parameters for sulfur at four-fold hollow (4fh) sites on (100) facets and at three-fold hollow (3fh) sites on (111) facets of Cu nanoclusters. Consistent results are obtained from localized atomic orbital and plane-wave based density functional theory using the same functionals. PBE and its hybrid counterpart (PBE0 or HSE06) also give similar results. 4fh sites are preferred over 3fh sites with stronger bonding by ~0.6 eV for nanocluster sizes above ~280 atoms. However, for smallermore » sizes there are strong variations in the binding strength and the extent of the binding site preference. In addition, we show that suitable averaging over clusters of different sizes, or smearing the occupancy of orbitals, provide useful strategies to aid assessment of the behavior in extended surface systems. From site-projected density of states analysis using the smearing technique, we show that S adsorbed on a 4fh site has similar bonding interactions with the substrate as that on a 3fh site, but with much weaker antibonding interactions.« less
An Electrostatic Funnel in the GABA-Binding Pathway
Lightstone, Felice C.
2016-01-01
The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953
The binding of calcium ions by erythrocytes and `ghost'-cell membranes
Long, C.; Mouat, Barbara
1971-01-01
1. Washed human erythrocytes, suspended in iso-osmotic sucrose containing 2.5mm-calcium chloride, bind about 400μg-atoms of calcium/litre of packed cells. Sucrose may be replaced by other sugars. 2. Partial replacement of sucrose by iso-osmotic potassium chloride diminishes the uptake of calcium, 50% inhibition occurring at about 50mm-potassium chloride. 3. Other univalent cations behave like potassium, whereas bivalent cations are much more inhibitory. The tervalent cations, yttrium and lanthanum, however, are the most effective inhibitors of calcium uptake. 4. An approximate correlation exists between the calcium uptake and the sialic acid content of erythrocytes of various species and of human erythrocytes that have been partially depleted of sialic acid by treatment with neuraminidase. However, even after complete removal of sialic acid, human erythrocytes still bind about 140μg-atoms of calcium/litre of packed cells. 5. A Scatchard (1949) plot of calcium uptake at various Ca2+ concentrations in the suspending media shows the presence of three different binding sites on the external surface of the human erythrocyte membrane. 6. Erythrocyte `ghost' cells, the membranes of which appear to be permeable to Ca2+ ions, can bind about 1000μg-atoms of calcium per `ghost'-cell equivalent of 1 litre of packed erythrocytes. This indicates that there are also binding sites for calcium on the internal surface of the erythrocyte membrane. PMID:5124387
sc-PDB: a 3D-database of ligandable binding sites—10 years on
Desaphy, Jérémy; Bret, Guillaume; Rognan, Didier; Kellenberger, Esther
2015-01-01
The sc-PDB database (available at http://bioinfo-pharma.u-strasbg.fr/scPDB/) is a comprehensive and up-to-date selection of ligandable binding sites of the Protein Data Bank. Sites are defined from complexes between a protein and a pharmacological ligand. The database provides the all-atom description of the protein, its ligand, their binding site and their binding mode. Currently, the sc-PDB archive registers 9283 binding sites from 3678 unique proteins and 5608 unique ligands. The sc-PDB database was publicly launched in 2004 with the aim of providing structure files suitable for computational approaches to drug design, such as docking. During the last 10 years we have improved and standardized the processes for (i) identifying binding sites, (ii) correcting structures, (iii) annotating protein function and ligand properties and (iv) characterizing their binding mode. This paper presents the latest enhancements in the database, specifically pertaining to the representation of molecular interaction and to the similarity between ligand/protein binding patterns. The new website puts emphasis in pictorial analysis of data. PMID:25300483
Alcohol-Binding Sites in Distinct Brain Proteins: The Quest for Atomic Level Resolution
Howard, Rebecca J.; Slesinger, Paul A.; Davies, Daryl L.; Das, Joydip; Trudell, James R.; Harris, R. Adron
2011-01-01
Defining the sites of action of ethanol on brain proteins is a major prerequisite to understanding the molecular pharmacology of this drug. The main barrier to reaching an atomic-level understanding of alcohol action is the low potency of alcohols, ethanol in particular, which is a reflection of transient, low-affinity interactions with their targets. These mechanisms are difficult or impossible to study with traditional techniques such as radioligand binding or spectroscopy. However, there has been considerable recent progress in combining X-ray crystallography, structural modeling, and site-directed mutagenesis to define the sites and mechanisms of action of ethanol and related alcohols on key brain proteins. We review such insights for several diverse classes of proteins including inwardly rectifying potassium, transient receptor potential, and neurotransmit-ter-gated ion channels, as well as protein kinase C epsilon. Some common themes are beginning to emerge from these proteins, including hydrogen bonding of the hydroxyl group and van der Waals interactions of the methylene groups of ethanol with specific amino acid residues. The resulting binding energy is proposed to facilitate or stabilize low-energy state transitions in the bound proteins, allowing ethanol to act as a “molecular lubricant” for protein function. We discuss evidence for characteristic, discrete alcohol-binding sites on protein targets, as well as evidence that binding to some proteins is better characterized by an interaction region that can accommodate multiple molecules of ethanol. PMID:21676006
Role of hydrogen bonding in ligand interaction with the N-methyl-D-aspartate receptor ion channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leeson, P.D.; Carling, R.W.; James, K.
1990-05-01
Displacement of (3H)MK-801 (dizocilpine, 1) binding to rat brain membranes has been used to evaluate the affinities of novel dibenzocycloalkenimines related to 1 for the ion channel binding site (also known as the phencyclidine or PCP receptor) on the N-methyl-D-aspartate (NMDA) subtype of excitory amino acid receptor. In common with many other agents having actions in the central nervous system, these compounds contain a hydrophobic aromatic moiety and a basic nitrogen atom. The conformational rigidity of these ligands provides a unique opportunity to evaluate the importance of specific geometrical properties that influence active-site recognition, in particular the role of themore » nitrogen atom in hydrogen-bonding interactions. The relative affinities (IC50s) of hydrocarbon-substituted analogues of 1 and ring homologated cyclooctenimines illustrate the importance of size-limited hydrophobic binding of both aryl rings and of the quaternary C-5 methyl group. Analysis of the binding of a series of the 10 available structurally rigid dibenzoazabicyclo(x.y.z)alkanes, by using molecular modeling techniques, uncovered a highly significant correlation between affinity and a proposed ligand-active site hydrogen bonding vector (r = 0.950, p less than 0.001). These results are used to generate a pharmacophore of the MK-801 recognition site/PCP receptor, which accounts for the binding of all of the known ligands.« less
Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms
2015-01-01
ABSTRACT Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114
Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowery, Thomas J.; Doucleff, Michealeen; Ruiz, E. Janette
2005-02-01
The chemical shift of the {sup 129}Xe NMR signal has been shown to be extremely sensitive to the local environment around the atom and has been used to follow processes such as ligand binding by bacterial periplasmic binding proteins (Rubin et al. 2000; Lowery et al. 2004). Here we show that the {sup 129}Xe shift can sense more subtle changes: magnesium binding, BeF{sub 3}{sup -} activation, and peptide binding by the E. coli chemotaxis Y protein. {sup 1}H-{sup 15}N correlation spectroscopy and x-ray crystallography were used to identify two xenon-binding cavities in CheY that are primarily responsible for the shiftmore » changes. One site is near the active site, and the other is near the peptide binding site.« less
sc-PDB: a 3D-database of ligandable binding sites--10 years on.
Desaphy, Jérémy; Bret, Guillaume; Rognan, Didier; Kellenberger, Esther
2015-01-01
The sc-PDB database (available at http://bioinfo-pharma.u-strasbg.fr/scPDB/) is a comprehensive and up-to-date selection of ligandable binding sites of the Protein Data Bank. Sites are defined from complexes between a protein and a pharmacological ligand. The database provides the all-atom description of the protein, its ligand, their binding site and their binding mode. Currently, the sc-PDB archive registers 9283 binding sites from 3678 unique proteins and 5608 unique ligands. The sc-PDB database was publicly launched in 2004 with the aim of providing structure files suitable for computational approaches to drug design, such as docking. During the last 10 years we have improved and standardized the processes for (i) identifying binding sites, (ii) correcting structures, (iii) annotating protein function and ligand properties and (iv) characterizing their binding mode. This paper presents the latest enhancements in the database, specifically pertaining to the representation of molecular interaction and to the similarity between ligand/protein binding patterns. The new website puts emphasis in pictorial analysis of data. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
sc-PDB: an annotated database of druggable binding sites from the Protein Data Bank.
Kellenberger, Esther; Muller, Pascal; Schalon, Claire; Bret, Guillaume; Foata, Nicolas; Rognan, Didier
2006-01-01
The sc-PDB is a collection of 6 415 three-dimensional structures of binding sites found in the Protein Data Bank (PDB). Binding sites were extracted from all high-resolution crystal structures in which a complex between a protein cavity and a small-molecular-weight ligand could be identified. Importantly, ligands are considered from a pharmacological and not a structural point of view. Therefore, solvents, detergents, and most metal ions are not stored in the sc-PDB. Ligands are classified into four main categories: nucleotides (< 4-mer), peptides (< 9-mer), cofactors, and organic compounds. The corresponding binding site is formed by all protein residues (including amino acids, cofactors, and important metal ions) with at least one atom within 6.5 angstroms of any ligand atom. The database was carefully annotated by browsing several protein databases (PDB, UniProt, and GO) and storing, for every sc-PDB entry, the following features: protein name, function, source, domain and mutations, ligand name, and structure. The repository of ligands has also been archived by diversity analysis of molecular scaffolds, and several chemoinformatics descriptors were computed to better understand the chemical space covered by stored ligands. The sc-PDB may be used for several purposes: (i) screening a collection of binding sites for predicting the most likely target(s) of any ligand, (ii) analyzing the molecular similarity between different cavities, and (iii) deriving rules that describe the relationship between ligand pharmacophoric points and active-site properties. The database is periodically updated and accessible on the web at http://bioinfo-pharma.u-strasbg.fr/scPDB/.
NASA Astrophysics Data System (ADS)
Leleyter, M.; Olivi-Tran, N.
2008-12-01
We studied in tight-binding approximation involving spν hybridization (ν=2,3), some Si2Cn (n=3 to 42) microclusters. We then investigated, on one hand, fragments of fullerene-like structures (sp2), and on the other hand, nanodiamonds (sp3) of adamantane-type or a 44-atom nanodiamond (with 2 inner atoms which are assumed to play the role of bulk atoms). We compared the stabilities, i.e. the electronic energies of these clusters, according to the various positions of the 2 Si atoms. Results are very different in the two kinds of hybridization. Besides, they can be analysed according to two different points of view: either the clusters are considered as small particles with limited sizes, or they are assumed to be used as models in order to simulate the Si-atom behaviour in very larger systems. In sp2 hybridization (fullerene-like geometries), the most stable isomer is always encountered when the 2 Si atoms build a Si2 group, and this result holds for both viewpoints quoted above. Conversely, in sp3 hybridization (nanodiamonds), since Si atoms “prefer” sites having the minimum connectivity, they are never found in adjacent sites. We see that with a simple and fast computational method we can explain an experimental fact which is very interesting such as the relative position of two heteroatoms in the cluster. This enhances the generality and the fecondity in the tight binding approximation due essentially to the link between this model and the graph theory, link based on the topology of the clusters.
Robust, self-assembled, biocompatible films
Swanson, Basil I; Anderson, Aaron S.; Dattelbaum, Andrew M.; Schmidt, Jurgen G.
2014-06-24
The present invention provides a composite material including a substrate having an oxide surface, and, a continuous monolayer on the oxide surface, the monolayer including a silicon atom from a trifunctional alkyl/alkenyl/alkynyl silane group that attaches to the oxide surface, an alkyl/alkenyl/alkynyl portion of at least three carbon atoms, a polyalkylene glycol spacer group, and either a reactive site (e.g., a recognition ligand) or a site resistant to non-specific binding (e.g., a methoxy or the like) at the terminus of each modified SAM. The present invention further provides a sensor element, a sensor array and a method of sensing, each employing the composite material. Patterning is also provided together with backfilling to minimize non-specific binding.
Faller, Christina E; Raman, E Prabhu; MacKerell, Alexander D; Guvench, Olgun
2015-01-01
Fragment-based drug design (FBDD) involves screening low molecular weight molecules ("fragments") that correspond to functional groups found in larger drug-like molecules to determine their binding to target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that bind nonoverlapping nearby sites on the target can be combined to yield a new molecule whose binding free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray crystallography, have proven very useful but can be expensive in terms of time, materials, and labor. Accordingly, a variety of computational FBDD approaches have been developed that provide different levels of detail and accuracy.The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The target is "soaked" in an aqueous solution with multiple fragments having different identities. The resulting computational competition assay reveals what small molecule types are most likely to bind which regions of the target. From SILCS simulations, 3D probability maps of fragment binding called "FragMaps" can be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine "Grid Free Energies (GFEs)," which provide per-atom contributions to fragment binding affinities. For essentially no additional computational overhead relative to the production of the FragMaps, GFEs can be used to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can be used to rank-order the molecules in accordance with binding affinities.
Pinto, Marta; Almeida, Maria Rosário; Gales, Luis; Ballesteros, Alfredo; Barluenga, José; Pérez, Juan J.; Vázquez, Jesús T.; Centeno, Nuria B.; Saraiva, Maria Joao; Damas, Ana M.; Planas, Antoni; Arsequell, Gemma; Valencia, Gregorio
2009-01-01
The thyroid hormone and retinol transporter protein known as transthyretin (TTR) is in the origin of one of the 20 or so known amyloid diseases. TTR self assembles as a homotetramer leaving a central hydrophobic channel with two symmetrical binding sites. The aggregation pathway of TTR into amiloid fibrils is not yet well characterized but in vitro binding of thyroid hormones and other small organic molecules to TTR binding channel results in tetramer stabilization which prevents amyloid formation in an extent which is proportional to the binding constant. Up to now, TTR aggregation inhibitors have been designed looking at various structural features of this binding channel others than its ability to host iodine atoms. In the present work, greatly improved inhibitors have been designed and tested by taking into account that thyroid hormones are unique in human biochemistry owing to the presence of multiple iodine atoms in their molecules which are probed to interact with specific halogen binding domains sitting at the TTR binding channel. The new TTR fibrillogenesis inhibitors are based on the diflunisal core structure because diflunisal is a registered salicylate drug with NSAID activity now undergoing clinical trials for TTR amyloid diseases. Biochemical and biophysical evidence confirms that iodine atoms can be an important design feature in the search for candidate drugs for TTR related amyloidosis. PMID:19125186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ida, Tomoyo; Suzuki, Hideyuki; Fukuyama, Keiichi
2014-02-01
The binding modes of acivicin, a classical and an electrophilic active-site-directed glutamate analogue, to bacterial γ-glutamyltranspeptidases were found to be diverse. γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalentlymore » through its C3 atom with sp{sup 2} hybridization to Thr403 O{sup γ}, the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs.« less
Helium behavior in oxide dispersion strengthened (ODS) steel: Insights from ab initio modeling
NASA Astrophysics Data System (ADS)
Sun, Dan; Li, Ruihuan; Ding, Jianhua; Huang, Shaosong; Zhang, Pengbo; Lu, Zheng; Zhao, Jijun
2018-02-01
Using first-principles calculations, we systemically investigate the energetics and stability behavior of helium (He) atoms and small Hen (n = 2-4) clusters inside oxide dispersion strengthened (ODS) steel, as well as the incorporation of large amount of He atoms inside Y2O3 crystal. From the energetic point of view, He atom inside Y2O3 cluster is most stable, followed by the interstitial sites at the α-Fe/Y2O3 interface, and the tetrahedral interstitial sites inside α-Fe region. We further consider Hen (n = 2-4) clusters at the tetrahedral interstitial site surrounded by four Y atoms, which is the most stable site in the ODS steel model. The incorporation energies of all these Hen clusters are lower than that of single He atom in α-Fe, while the binding energy between two He atoms is relatively small. With insertion of 15 He atoms into 80-atom unit cell of Y2O3 crystal, the incorporation energy of He atoms is still lower than that of He4 cluster in α-Fe crystal. These theoretical results suggest that He atoms tend to aggregate inside Y2O3 clusters or at the α-Fe/Y2O3 interface, which is beneficial to prevent the He embrittlement in ODS steels.
Quillin, M L; Breyer, W A; Griswold, I J; Matthews, B W
2000-09-29
To investigate the relative importance of size and polarizability in ligand binding within proteins, we have determined the crystal structures of pseudo wild-type and cavity-containing mutant phage T4 lysozymes in the presence of argon, krypton, and xenon. These proteins provide a representative sample of predominantly apolar cavities of varying size and shape. Even though the volumes of these cavities range up to the equivalent of five xenon atoms, the noble gases bind preferentially at highly localized sites that appear to be defined by constrictions in the walls of the cavities, coupled with the relatively large radii of the noble gases. The cavities within pseudo wild-type and L121A lysozymes each bind only a single atom of noble gas, while the cavities within mutants L133A and F153A have two independent binding sites, and the L99A cavity has three interacting sites. The binding of noble gases within two double mutants was studied to characterize the additivity of binding at such sites. In general, when a cavity in a protein is created by a "large-to-small" substitution, the surrounding residues relax somewhat to reduce the volume of the cavity. The binding of xenon and, to a lesser degree, krypton and argon, tend to expand the volume of the cavity and to return it closer to what it would have been had no relaxation occurred. In nearly all cases, the extent of binding of the noble gases follows the trend xenon>krypton>argon. Pressure titrations of the L99A mutant have confirmed that the crystallographic occupancies accurately reflect fractional saturation of the binding sites. The trend in noble gas affinity can be understood in terms of the effects of size and polarizability on the intermolecular potential. The plasticity of the protein matrix permits repulsion due to increased ligand size to be more than compensated for by attraction due to increased ligand polarizability. These results have implications for the mechanism of general anesthesia, the migration of small ligands within proteins, the detection of water molecules within apolar cavities and the determination of crystallographic phases. Copyright 2000 Academic Press.
Kimura, Yukihiro; Yura, Yuki; Hayashi, Yusuke; Li, Yong; Onoda, Moe; Yu, Long-Jiang; Wang-Otomo, Zheng-Yu; Ohno, Takashi
2016-12-15
The light-harvesting 1 reaction center (LH1-RC) complex from thermophilic photosynthetic bacterium Thermochromatium (Tch.) tepidum exhibits enhanced thermostability and an unusual LH1 Q y transition, both induced by Ca 2+ binding. In this study, metal-binding sites and metal-protein interactions in the LH1-RC complexes from wild-type (B915) and biosynthetically Sr 2+ -substituted (B888) Tch. tepidum were investigated by isothermal titration calorimetry (ITC), atomic absorption (AA), and attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopies. The ITC measurements revealed stoichiometric ratios of approximately 1:1 for binding of Ca 2+ , Sr 2+ , or Ba 2+ to the LH1 αβ-subunit, indicating the presence of 16 binding sites in both B915 and B888. The AA analysis provided direct evidence for Ca 2+ and Sr 2+ binding to B915 and B888, respectively, in their purified states. Metal-binding experiments supported that Ca 2+ and Sr 2+ (or Ba 2+ ) competitively associate with the binding sites in both species. The ATR-FTIR difference spectra upon Ca 2+ depletion and Sr 2+ substitution demonstrated that dissociation and binding of Ca 2+ are predominantly responsible for metal-dependent conformational changes of B915 and B888. The present results are largely compatible with the recent structural evidence that another binding site for Sr 2+ (or Ba 2+ ) exists in the vicinity of the Ca 2+ -binding site, a part of which is shared in both metal-binding sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koropatkin, Nicole M.; Smith, Thomas J.
SusG is an {alpha}-amylase and part of a large protein complex on the outer surface of the bacterial cell and plays a major role in carbohydrate acquisition by the animal gut microbiota. Presented here, the atomic structure of SusG has an unusual extended, bilobed structure composed of amylase at one end and an unprecedented internal carbohydrate-binding motif at the other. Structural studies further demonstrate that the carbohydrate-binding motif binds maltooligosaccharide distal to, and on the opposite side of, the amylase catalytic site. SusG has an additional starch-binding site on the amylase domain immediately adjacent to the active cleft. Mutagenesis analysismore » demonstrates that these two additional starch-binding sites appear to play a role in catabolism of insoluble starch. However, elimination of these sites has only a limited effect, suggesting that they may have a more important role in product exchange with other Sus components.« less
1978-12-12
EPR and ultrafiltration studies are recommceided to conduct luture metal ion- IgG binding research. Using Scatchard plots, bind.ng levels can be...of the binding sites can be best pursued by EPR and ultrafiltration using the fragments of IgG . This report noted some difference in the binding...immunoelectrophoresis, ultrafiltration, UV spectroscopy, atomic absorption spectroscopy, and electron paramagnetic resonance (EPR). IgG used ,- ,is non
Deep analysis of N-cadherin/ADH-1 interaction: a computational survey.
Eslami, Mahboobeh; Nezafat, Navid; Khajeh, Sahar; Mostafavi-Pour, Zohreh; Bagheri Novir, Samaneh; Negahdaripour, Manica; Ghasemi, Younes; Razban, Vahid
2018-01-19
Due to the considerable role of N-cadherin in cancer metastasis, tumor growth, and progression, inhibition of this protein has been highly regarded in recent years. Although ADH-1 has been known as an appropriate inhibitor of N-cadherin in clinical trials, its chemical nature and binding mode with N-cadherin have not been precisely specified yet. Accordingly, in this study, quantum mechanics calculations were used to investigate the chemical nature of ADH-1. These calculations clarify the molecular properties of ADH-1 and determine its reactive sites. Based on the results, the oxygen atoms are suitable for electrophilic reactivity, while the hydrogen atoms that are connected to nitrogen atoms are the favorite sites for nucleophilic reactivity. The higher electronegativity of the oxygen atoms makes them the most reactive portions in this molecule. Molecular docking and molecular dynamics (MD) simulation have also been applied to specify the binding mode of ADH-1 with N-cadherin and determine the important residues of N-cadherin involving in the interaction with ADH-1. Moreover, the verified model by MD simulation has been studied to extract the free energy value and find driving forces. These calculations and molecular electrostatic potential map of ADH-1 indicated that hydrophobic and electrostatic interactions are almost equally involved in the implantation of ADH-1 in the N-cadherin binding site. The presented results not only enable a closer examination of N-cadherin in complex with ADH-1 molecule, but also are very beneficial in designing new inhibitors for N-cadherin and can help to save time and cost in this field.
Aidas, Kęstutis; Olsen, Jógvan Magnus H; Kongsted, Jacob; Ågren, Hans
2013-02-21
Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores-acridine yellow and proflavin-located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site. The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted to reproduce the electrostatic potential and isotropic atomic polarizabilities computed individually for every residue of the protein was used in the linear response calculations. Comparing the calculated aqueous solution-to-protein shifts of maximum absorption energies to available experimental data, we concluded that the cationic proflavin chromophore is likely not to bind albumin at its drug binding site 1 nor at its heme binding site. Although agreement with experimental data could only be obtained in qualitative terms, our results clearly indicate that the difference in optical response of the two probes is due to deprotonation, and not, as earlier suggested, to different binding sites. The ramifications of this finding for design of molecular probes targeting albumin or other proteins is briefly discussed.
The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.
Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E
2017-12-05
Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.
2016-01-01
An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results. PMID:27983843
Hayatshahi, Hamed S; Roe, Daniel R; Galindo-Murillo, Rodrigo; Hall, Kathleen B; Cheatham, Thomas E
2017-01-26
An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results.
A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface
NASA Astrophysics Data System (ADS)
Naderi, Ebadollah; Ghaisas, S. V.
2016-08-01
In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.
A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naderi, Ebadollah, E-mail: enaderi42@gmail.com; Ghaisas, S. V.
2016-08-15
In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked outmore » from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.« less
Gold, Nicola D; Jackson, Richard M
2006-02-03
The rapid growth in protein structural data and the emergence of structural genomics projects have increased the need for automatic structure analysis and tools for function prediction. Small molecule recognition is critical to the function of many proteins; therefore, determination of ligand binding site similarity is important for understanding ligand interactions and may allow their functional classification. Here, we present a binding sites database (SitesBase) that given a known protein-ligand binding site allows rapid retrieval of other binding sites with similar structure independent of overall sequence or fold similarity. However, each match is also annotated with sequence similarity and fold information to aid interpretation of structure and functional similarity. Similarity in ligand binding sites can indicate common binding modes and recognition of similar molecules, allowing potential inference of function for an uncharacterised protein or providing additional evidence of common function where sequence or fold similarity is already known. Alternatively, the resource can provide valuable information for detailed studies of molecular recognition including structure-based ligand design and in understanding ligand cross-reactivity. Here, we show examples of atomic similarity between superfamily or more distant fold relatives as well as between seemingly unrelated proteins. Assignment of unclassified proteins to structural superfamiles is also undertaken and in most cases substantiates assignments made using sequence similarity. Correct assignment is also possible where sequence similarity fails to find significant matches, illustrating the potential use of binding site comparisons for newly determined proteins.
NASA Astrophysics Data System (ADS)
Pandey, Ras; Kuang, Zhifeng; Farmer, Barry; Kim, Sang; Naik, Rajesh
2012-02-01
Recently, Kim et al. [1] have found that peptides P1: HSSYWYAFNNKT and P2: EPLQLKM bind selectively to graphene surfaces and edges respectively which are critical in modulating both the mechanical as well as electronic transport properties of graphene. Such distinctions in binding sites (edge versus surface) observed in electron micrographs were verified by computer simulation by an all-atomic model that captures the pi-pi bonding. We propose a hierarchical approach that involves input from the all-atom Molecular Dynamics (MD) study (with atomistic detail) into a coarse-grained Monte Carlo simulation to extend this study further to a larger scale. The binding energy of a free amino acid with the graphene sheet from all-atom simulation is used in the interaction parameter for the coarse-grained approach. Peptide chain executes its stochastic motion with the Metropolis algorithm. We investigate a number of local and global physical quantities and find that peptide P1 is likely to bind more strongly to graphene sheet than P2 and that it is anchored by three residues ^4Y^5W^6Y. [1] S.N. Kim et al J. Am. Chem. Soc. 133, 14480 (2011).
Analysis of zinc binding sites in protein crystal structures.
Alberts, I L; Nadassy, K; Wodak, S J
1998-08-01
The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.
Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies
NASA Astrophysics Data System (ADS)
Pang, Yuan-Ping; Kozikowski, Alan P.
1994-12-01
We have performed docking studies with the SYSDOC program on acetylcholinesterase (AChE) to predict the binding sites in AChE of huperzine A (HA), which is a potent and selective, reversible inhibitor of AChE. The unique aspects of our docking studies include the following: (i) Molecular flexibility of the guest and the host is taken into account, which permits both to change their conformations upon binding. (ii) The binding energy is evaluated by a sum of energies of steric, electrostatic and hydrogen bonding interactions. In the energy calculation no grid approximation is used, and all hydrogen atoms of the system are treated explicitly. (iii) The energy of cation-π interactions between the guest and the host, which is important in the binding of AChE, is included in the calculated binding energy. (iv) Docking is performed in all regions of the host's binding cavity. Based on our docking studies and the pharmacological results reported for HA and its analogs, we predict that HA binds to the bottom of the binding cavity of AChE (the gorge) with its ammonium group interacting with Trp84, Phe330, Glu199 and Asp72 (catalytic site). At the the opening of the gorge with its ammonium group partially interacting with Trp279 (peripheral site). At the catalytic site, three partially overlapping subsites of HA were identified which might provide a dynamic view of binding of HA to the catalytic site.
Faller, Christina E.; Raman, E. Prabhu; MacKerell, Alexander D.; Guvench, Olgun
2015-01-01
Fragment-based drug design (FBDD) involves screening low molecular weight molecules (“fragments”) that correspond to functional groups found in larger drug-like molecules to determine their binding to target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that bind non-overlapping nearby sites on the target can be combined to yield a new molecule whose binding free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray crystallography, have proven very useful but can be expensive in terms of time, materials, and labor. Accordingly, a variety of computational FBDD approaches have been developed that provide different levels of detail and accuracy. The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The target is “soaked” in an aqueous solution with multiple fragments having different identities. The resulting computational competition assay reveals what small molecule types are most likely to bind which regions of the target. From SILCS simulations, 3D probability maps of fragment binding called “FragMaps” can be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine “Grid Free Energies (GFEs),” which provide per-atom contributions to fragment binding affinities. For essentially no additional computational overhead relative to the production of the FragMaps, GFEs can be used to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can be used to rank-order the molecules in accordance with binding affinities. PMID:25709034
Laine, Elodie; Martínez, Leandro; Blondel, Arnaud; Malliavin, Thérèse E
2010-10-06
Calmodulin (CaM) is a remarkably flexible protein which can bind multiple targets in response to changes in intracellular calcium concentration. It contains four calcium-binding sites, arranged in two globular domains. The calcium affinity of CaM N-terminal domain (N-CaM) is dramatically reduced when the complex with the edema factor (EF) of Bacillus anthracis is formed. Here, an atomic explanation for this reduced affinity is proposed through molecular dynamics simulations and free energy perturbation calculations of the EF-CaM complex starting from different crystallographic models. The simulations show that electrostatic interactions between CaM and EF disfavor the opening of N-CaM domains usually induced by calcium binding. Relative calcium affinities of the N-CaM binding sites are probed by free energy perturbation, and dissociation probabilities are evaluated with locally enhanced sampling simulations. We show that EF impairs calcium binding on N-CaM through a direct conformational restraint on Site 1, by an indirect destabilization of Site 2, and by reducing the cooperativity between the two sites. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ion Binding Energies Determining Functional Transport of ClC Proteins
NASA Astrophysics Data System (ADS)
Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping
2014-06-01
The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.
Factors governing the substitution of La3+ for Ca2+ and Mg2+ in metalloproteins: a DFT/CDM study.
Dudev, Todor; Chang, Li-Ying; Lim, Carmay
2005-03-23
Trivalent lanthanide cations are extensively being used in biochemical experiments to probe various dication-binding sites in proteins; however, the factors governing the binding specificity of lanthanide cations for these binding sites remain unclear. Hence, we have performed systematic studies to evaluate the interactions between La3+ and model Ca2+ - and Mg2+ -binding sites using density functional theory combined with continuum dielectric methods. The calculations reveal the key factors and corresponding physical bases favoring the substitution of trivalent lanthanides for divalent Ca2+ and Mg2+ in holoproteins. Replacing Ca2+ or Mg2+ with La3+ is facilitated by (1) minimizing the solvent exposure and the flexibility of the metal-binding cavity, (2) freeing both carboxylate oxygen atoms of Asp/Glu side chains in the metal-binding site so that they could bind bidentately to La3+, (3) maximizing the number of metal-bound carboxylate groups in buried sites, but minimizing the number of metal-bound carboxylate groups in solvent-exposed sites, and (4) including an Asn/Gln side chain for sites lined with four Asp/Glu side chains. In proteins bound to both Mg2+ and Ca2+, La3+ would prefer to replace Ca2+, as compared to Mg2+. A second Mg2+-binding site with a net positive charge would hamper the Mg2+ --> La3+ exchange, as compared to the respective mononuclear site, although the La3+ substitution of the first native metal is more favorable than the second one. The findings of this work are in accord with available experimental data.
Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto
2012-08-02
The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.
Hatch, Courtney; Orlando, Roberto
2012-01-01
The electronic properties of undoped and Ca or Fe doped MgO (001) surfaces, as well as their propensity towards atmospheric acidic gas (CO2, SO2 and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, Osurf, using periodic Density Functional Theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the Osurf sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe doped MgO (001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca doped MgO (001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces. PMID:22775293
Li, Yan; Li, Xiang; Dong, Zigang
2015-12-28
Fatty acid binding protein 4 (FABP4), reversibly binding to fatty acids and other lipids with high affinities, is a potential target for treatment of cancers. The binding site of FABP4 is buried in an interior cavity and thereby ligand binding/unbinding is coupled with opening/closing of FABP4. It is a difficult task both experimentally and computationally to illuminate the entry or exit pathway, especially with the conformational gating. In this report we combine extensive computer simulations, clustering analysis, and the Markov state model to investigate the binding mechanism of FABP4 and troglitazone. Our simulations capture spontaneous binding and unbinding events as well as the conformational transition of FABP4 between the open and closed states. An allosteric binding site on the protein surface is recognized for the development of novel FABP4 inhibitors. The binding affinity is calculated and compared with the experimental value. The kinetic analysis suggests that ligand residence on the protein surface may delay the binding process. Overall, our results provide a comprehensive picture of ligand diffusion on the protein surface, ligand migration into the buried cavity, and the conformational change of FABP4 at an atomic level.
Extended Graph-Based Models for Enhanced Similarity Search in Cavbase.
Krotzky, Timo; Fober, Thomas; Hüllermeier, Eyke; Klebe, Gerhard
2014-01-01
To calculate similarities between molecular structures, measures based on the maximum common subgraph are frequently applied. For the comparison of protein binding sites, these measures are not fully appropriate since graphs representing binding sites on a detailed atomic level tend to get very large. In combination with an NP-hard problem, a large graph leads to a computationally demanding task. Therefore, for the comparison of binding sites, a less detailed coarse graph model is used building upon so-called pseudocenters. Consistently, a loss of structural data is caused since many atoms are discarded and no information about the shape of the binding site is considered. This is usually resolved by performing subsequent calculations based on additional information. These steps are usually quite expensive, making the whole approach very slow. The main drawback of a graph-based model solely based on pseudocenters, however, is the loss of information about the shape of the protein surface. In this study, we propose a novel and efficient modeling formalism that does not increase the size of the graph model compared to the original approach, but leads to graphs containing considerably more information assigned to the nodes. More specifically, additional descriptors considering surface characteristics are extracted from the local surface and attributed to the pseudocenters stored in Cavbase. These properties are evaluated as additional node labels, which lead to a gain of information and allow for much faster but still very accurate comparisons between different structures.
Modulation of individual steps in group I intron catalysis by a peripheral metal ion.
Forconi, Marcello; Piccirilli, Joseph A; Herschlag, Daniel
2007-10-01
Enzymes are complex macromolecules that catalyze chemical reactions at their active sites. Important information about catalytic interactions is commonly gathered by perturbation or mutation of active site residues that directly contact substrates. However, active sites are engaged in intricate networks of interactions within the overall structure of the macromolecule, and there is a growing body of evidence about the importance of peripheral interactions in the precise structural organization of the active site. Here, we use functional studies, in conjunction with published structural information, to determine the effect of perturbation of a peripheral metal ion binding site on catalysis in a well-characterized catalytic RNA, the Tetrahymena thermophila group I ribozyme. We perturbed the metal ion binding site by site-specifically introducing a phosphorothioate substitution in the ribozyme's backbone, replacing the native ligands (the pro-R (P) oxygen atoms at positions 307 and 308) with sulfur atoms. Our data reveal that these perturbations affect several reaction steps, including the chemical step, despite the absence of direct contacts of this metal ion with the atoms involved in the chemical transformation. As structural probing with hydroxyl radicals did not reveal significant change in the three-dimensional structure upon phosphorothioate substitution, the effects are likely transmitted through local, rather subtle conformational rearrangements. Addition of Cd(2+), a thiophilic metal ion, rescues some reaction steps but has deleterious effects on other steps. These results suggest that native interactions in the active site may have been aligned by the naturally occurring peripheral residues and interactions to optimize the overall catalytic cycle.
First principles study of hydrogen behaviors in hexagonal tungsten carbide
NASA Astrophysics Data System (ADS)
Kong, Xiang-Shan; You, Yu-Wei; Liu, C. S.; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.
2011-11-01
Understanding the behaviors of hydrogen in hexagonal tungsten carbide (WC) is of particular interest for fusion reactor design due to the presence of WC in the divertor of fusion reactors. Here, we have used first principles calculations to study the hydrogen behavior in WC. It is found that the most stable interstitial site for the hydrogen atom is the projection of the octahedral interstitial site on tungsten basal plane, followed by the site near the projection of the octahedral interstitial site on carbon basal plane. The binding energy between two interstitial hydrogen atoms is negative, suggesting that hydrogen itself is not capable of trapping another hydrogen atoms to form hydrogen molecule. The calculated results on the interaction between hydrogen and vacancy indicate that hydrogen atom is preferably trapped by vacancy defects and hydrogen molecule can not be formed in mono-vacancy. In addition, the hydrogen atom bound to carbon is only found in tungsten vacancy. We also study the migrations of hydrogen in WC and find that the interstitial hydrogen atom prefers to diffuse along the c-axis. Our studies provide some explanations for the results of the thermal desorption process of energetic hydrogen ion implanted into WC.
Key binding and susceptibility of NS3/4A serine protease inhibitors against hepatitis C virus.
Meeprasert, Arthitaya; Hannongbua, Supot; Rungrotmongkol, Thanyada
2014-04-28
Hepatitis C virus (HCV) causes an infectious disease that manifests itself as liver inflammation, cirrhosis, and can lead to the development of liver cancer. Its NS3/4A serine protease is a potent target for drug design and development since it is responsible for cleavage of the scissile peptide bonds in the polyprotein important for the HCV life cycle. Herein, the ligand-target interactions and the binding free energy of the four current NS3/4A inhibitors (boceprevir, telaprevir, danoprevir, and BI201335) were investigated by all-atom molecular dynamics simulations with three different initial atomic velocities. The per-residue free energy decomposition suggests that the key residues involved in inhibitor binding were residues 41-43, 57, 81, 136-139, 155-159, and 168 in the NS3 domain. The van der Waals interactions yielded the main driving force for inhibitor binding at the protease active site for the cleavage reaction. In addition, the highest number of hydrogen bonds was formed at the reactive P1 site of the four studied inhibitors. Although the hydrogen bond patterns of these inhibitors were different, their P3 site was most likely to be recognized by the A157 backbone. Both molecular mechanic (MM)/Poisson-Boltzmann surface area and MM/generalized Born surface area approaches predicted the relative binding affinities of the four inhibitors in a somewhat similar trend to their experimentally derived biological activities.
Atomic and molecular adsorption on Fe(110)
Xu, Lang; Kirvassilis, Demetrios; Bai, Yunhai; ...
2017-09-12
Iron is the principal catalyst for the ammonia synthesis process and the Fischer–Tropsch process, as well as many other heterogeneously catalyzed reactions. It is thus of fundamental importance to understand the interactions between the iron surface and various reaction intermediates. Here in this paper, we present a systematic study of atomic and molecular adsorption behavior over Fe(110) using periodic, self-consistent density functional theory (DFT-GGA) calculations. The preferred binding sites, binding energies, and the corresponding surface deformation energies of five atomic species (H, C, N, O, and S), six molecular species (NH 3, CH 4, N 2, CO, HCN, and NO),more » and eleven molecular fragments (CH, CH 2, CH 3, NH, NH 2, OH, CN, COH, HCO, NOH, and HNO) were determined on the Fe(110) surface at a coverage of 0.25 monolayer. The binding strengths calculated using the PW91 functional decreased in the following order: C> CH > N > O > S > NH > COH > CN > CH2 > NOH > OH > HNO > HCO > NH2 > H > NO > HCN > CH 3 > CO > N 2 > NH 3. No stable binding structures were observed for CH 4. The estimated diffusion barriers and pathways, as well as the adsorbate-surface and intramolecular vibrational modes of all the adsorbates at their preferred binding sites, were identified. Using the calculated adsorption energetics, we constructed the potential energy surfaces for a few surface reactions including the decomposition of methane, ammonia, dinitrogen, carbon monoxide, and nitric oxide. These potential energy surfaces provide valuable insight into the ability of Fe(110) to catalyze common elementary steps.« less
Superfluid-Mott insulator transition of spin-1 bosons in an optical lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchiya, Shunji; Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7; Kurihara, Susumu
2004-10-01
We study the superfluid-Mott insulator (SF-MI) transition of spin-1 bosons interacting antiferromagnetically in an optical lattice. Starting from a Bose-Hubbard tight-binding model for spin-1 bosons, we obtain the zero-temperature phase diagram by a mean-field approximation. We find that the MI phase with an even number of atoms per site is a spin singlet state, while the MI phase with an odd number of atoms per site has spin 1 at each site in the limit of t=0, where t is the hopping matrix element. We also show that the superfluid phase is a polar state as in the case formore » a spin-1 Bose condensate in a harmonic trap. It is found that the MI phase is strongly stabilized against the SF-MI transition when the number of atoms per site is even, due to the formation of singlet pairs. We derive the effective spin Hamiltonian for the MI phase with one atom per site and briefly discuss the spin order in the MI phase.« less
Control of Ion Selectivity in LeuT: Two Na+ Binding Sites with two different mechanisms
Noskov, Sergei Y.; Roux, Benoît
2016-01-01
The x-ray structure of LeuT, a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporter, provides a great opportunity to better understand the molecular basis of monovalent cation selectivity in ion-coupled transporters. LeuT possesses two ion-binding sites, NA1 and NA2, which are highly selective for Na+. Extensive all-atom free energy molecular dynamics simulations of LeuT embedded in an explicit membrane are performed at different temperatures and various occupancy states of the binding sites to dissect the molecular mechanism of ion selectivity. The results show that the two binding sites display robust selectivity for Na+ over K+ or Li+, the competing ions of most similar radii. Of particular interest, the mechanism primarily responsible for selectivity for each of the two binding sites appears to be different. In site NA1, selectivity for Na+ over K+ arises predominantly from the strong electrostatic field arising from the negatively charged carboxylate group of the leucine substrate coordinating the ion directly. In site NA2, which comprises only neutral ligands, selectivity for Na+ is enforced by the local structural restraints arising from the hydrogen-bonding network and the covalent connectivity of the poly-peptide chain surrounding the ion according to a snug-fit mechanism. PMID:18280500
Kamal, J. K. Amisha; Benchaar, Sabrina A.; Takamoto, Keiji; Reisler, Emil; Chance, Mark R.
2007-01-01
The cytoskeletal protein, actin, has its structure and function regulated by cofilin. In the absence of an atomic resolution structure for the actin/cofilin complex, the mechanism of cofilin regulation is poorly understood. Theoretical studies based on the similarities of cofilin and gelsolin segment 1 proposed the cleft between subdomains 1 and 3 in actin as the cofilin binding site. We used radiolytic protein footprinting with mass spectrometry and molecular modeling to provide an atomic model of how cofilin binds to monomeric actin. Footprinting data suggest that cofilin binds to the cleft between subdomains 1 and 2 in actin and that cofilin induces further closure of the actin nucleotide cleft. Site-specific fluorescence data confirm these results. The model identifies key ionic and hydrophobic interactions at the binding interface, including hydrogen-bonding between His-87 of actin to Ser-89 of cofilin that may control the charge dependence of cofilin binding. This model and its implications fill an especially important niche in the actin field, owing to the fact that ongoing crystallization efforts of the actin/cofilin complex have so far failed. This 3D binary complex structure is derived from a combination of solution footprinting data and computational approaches and outlines a general method for determining the structure of such complexes. PMID:17470807
Warfield, Becka M.
2017-01-01
RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are present the population of binding-competent aptamer states increases more than twofold. This population change, rather than direct interactions between Mg2+ and theophylline, accounts for altered theophylline binding kinetics. PMID:28437473
Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.
Shibata, Mikihiro; Nishimasu, Hiroshi; Kodera, Noriyuki; Hirano, Seiichi; Ando, Toshio; Uchihashi, Takayuki; Nureki, Osamu
2017-11-10
The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.
The diffusion of a Ga atom on GaAs(001)β2(2 × 4): Local superbasin kinetic Monte Carlo
NASA Astrophysics Data System (ADS)
Lin, Yangzheng; Fichthorn, Kristen A.
2017-10-01
We use first-principles density-functional theory to characterize the binding sites and diffusion mechanisms for a Ga adatom on the GaAs(001)β 2(2 × 4) surface. Diffusion in this system is a complex process involving eleven unique binding sites and sixteen different hops between neighboring binding sites. Among the binding sites, we can identify four different superbasins such that the motion between binding sites within a superbasin is much faster than hops exiting the superbasin. To describe diffusion, we use a recently developed local superbasin kinetic Monte Carlo (LSKMC) method, which accelerates a conventional kinetic Monte Carlo (KMC) simulation by describing the superbasins as absorbing Markov chains. We find that LSKMC is up to 4300 times faster than KMC for the conditions probed in this study. We characterize the distribution of exit times from the superbasins and find that these are sometimes, but not always, exponential and we characterize the conditions under which the superbasin exit-time distribution should be exponential. We demonstrate that LSKMC simulations assuming an exponential superbasin exit-time distribution yield the same diffusion coefficients as conventional KMC.
Mlinsek, G; Novic, M; Hodoscek, M; Solmajer, T
2001-01-01
Thrombin is a serine protease which plays important roles in the human body, the key one being the control of thrombus formation. The inhibition of thrombin has become a target for new antithrombotics. The aim of our work was to (i) construct a model which would enable us to predict Ki values for the binding of an inhibitor into the active site of thrombin based on a database of known X-ray structures of inhibitor-enzyme complexes and (ii) to identify the structural and electrostatic characteristics of inhibitor molecules crucially important to their effective binding. To retain as much of the 3D structural information of the bound inhibitor as possible, we implemented the quantum mechanical/molecular mechanical (QM/MM) procedure for calculating the molecular electrostatic potential (MEP) at the van der Waals surfaces of atoms in the protein's active site. The inhibitor was treated quantum mechanically, while the rest of the complex was treated by classical means. The obtained MEP values served as inputs into the counter-propagation artificial neural network (CP-ANN), and a genetic algorithm was subsequently used to search for the combination of atoms that predominantly influences the binding. The constructed CP-ANN model yielded Ki values predictions with a correlation coefficient of 0.96, with Ki values extended over 7 orders of magnitude. Our approach also shows the relative importance of the various amino acid residues present in the active site of the enzyme for inhibitor binding. The list of residues selected by our automatic procedure is in good correlation with the current consensus regarding the importance of certain crucial residues in thrombin's active site.
Hidden relationships between metalloproteins unveiled by structural comparison of their metal sites
NASA Astrophysics Data System (ADS)
Valasatava, Yana; Andreini, Claudia; Rosato, Antonio
2015-03-01
Metalloproteins account for a substantial fraction of all proteins. They incorporate metal atoms, which are required for their structure and/or function. Here we describe a new computational protocol to systematically compare and classify metal-binding sites on the basis of their structural similarity. These sites are extracted from the MetalPDB database of minimal functional sites (MFSs) in metal-binding biological macromolecules. Structural similarity is measured by the scoring function of the available MetalS2 program. Hierarchical clustering was used to organize MFSs into clusters, for each of which a representative MFS was identified. The comparison of all representative MFSs provided a thorough structure-based classification of the sites analyzed. As examples, the application of the proposed computational protocol to all heme-binding proteins and zinc-binding proteins of known structure highlighted the existence of structural subtypes, validated known evolutionary links and shed new light on the occurrence of similar sites in systems at different evolutionary distances. The present approach thus makes available an innovative viewpoint on metalloproteins, where the functionally crucial metal sites effectively lead the discovery of structural and functional relationships in a largely protein-independent manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlits, Oksana O.; Coates, Leighton; Woods, Robert J.
Plant lectins are carbohydrate-binding proteins with various biomedical applications. Concanavalin A (Con A) holds promise in treating cancerous tumors. To better understand the Con A carbohydrate binding specificity, we obtained a room-temperature neutron structure of this legume lectin in complex with a disaccharide Manα1–2Man, mannobiose. The neutron structure afforded direct visualization of the hydrogen bonding between the protein and ligand, showing that the ligand is able to alter both protonation states and interactions for residues located close to and distant from the binding site. An unprecedented low-barrier hydrogen bond was observed forming between the carboxylic side chains of Asp28 andmore » Glu8, with the D atom positioned equidistant from the oxygen atoms having an O···D···O angle of 101.5°.« less
Chamorro, Ester R; Sequeira, Alfredo F; Zalazar, M Fernanda; Peruchena, Nélida M
2008-09-15
In the present work, the distribution of the electronic charge density of the natural sex pheromone, the (Z)-13-hexadecen-11-ynyl acetate, in the female processionary moth, Thaumetopoea pytiocampa, and its nine analogue derivatives was studied within the framework of the Density Functional Theory and the Atoms in Molecules (AIM) Theory at B3LYP/6-31G *//B3LYP/6-31++G * * level. Additionally, molecular electrostatic potential (MEP) maps of the previously mentioned compounds were computed and compared. Furthermore, the substitution of hydrogen atoms from the methyl group in the acetate group by electron withdrawing substituents (i.e., halogen atoms) as well as the replacement effect of hydrogen by electron donor substituents (+I effect) as methyl group, were explored. The key feature of the topological distribution of the charge density in analogue compounds, such as the variations of the topological properties encountered in the region formed by neighbouring atoms from the substitution site were presented and discussed. Using topological parameters, such as electronic charge density, Laplacian, kinetic energy density, and potential energy density evaluated at bond critical points (BCP), we provide here a detailed analysis of the nature of the chemical bonding of these molecules. In addition, the atomic properties (population, charge, energy, volume, and dipole moment) were determined on selected atoms. These properties were analyzed at the substitution site (with respect to the natural sex pheromone) and related to the biological activity and to the possible binding site with the pheromone binding protein, (PBP). Moreover, the Laplacian function of the electronic density was used to locate electrophilic regions susceptible to be attacked (by deficient electron atoms or donor hydrogen). Our results indicate that the change in the atomic properties, such as electronic population and atomic volume, are sensitive indicators of the loss of the biological activity in the analogues studied here. The crucial interaction between the acetate group of the natural sex pheromone and the PBP is most likely to be a hydrogen bonding and the substitution of hydrogen atoms by electronegative atoms in the pheromone molecule reduces the hydrogen acceptor capacity. This situation is mirrored by the diminish of the electronic population on carbon and oxygen atoms at the carbonylic group in the halo-acetate group. Additionally, the modified acetate group (with electronegative atoms) shows new charge concentration critical points or regions of concentration of charge density in which an electrophilic attack can also occur. Finally, the use of the topological analysis based in the charge density distribution and its Laplacian function, in conjunction with MEP maps provides valuable information about the steric volume and electronic requirement of the sex pheromone for binding to the PBP.
Probing the ATP site of GRP78 with nucleotide triphosphate analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Scott J.; Antoshchenko, Tetyana; Chen, Yun
GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78 ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligandsmore » (ATP analogs) to a receptor (GRP78 ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78 ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the beta-gamma bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg ++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg ++-dependent, as the removal of Mg ++ nearly abolished binding to GRP78 ATPase. The AMPPCP-Mg ++ structure showed evidence for the critical role of Mg ++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg ++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg ++. The 2'-deoxyATP structure showed the conformation of the bound nucleotide flipped out of the active site, explaining the low affinity binding to GRP78 and suggesting that the 2'-OH group is essential for the high affinity binding to GRP78. Altogether, our results demonstrate that GRP78 ATPase possesses nucleotide specificity more relaxed than previously anticipated and can tolerate certain modifications to the nucleobase 7-position and, to a lesser extent, the beta-gamma bridging atom, thereby providing a possible atomic mechanism underlying the transmembrane transport of the ATP analogs.« less
Probing the ATP site of GRP78 with nucleotide triphosphate analogs
Hughes, Scott J.; Antoshchenko, Tetyana; Chen, Yun; ...
2016-05-04
GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78 ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligandsmore » (ATP analogs) to a receptor (GRP78 ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78 ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the beta-gamma bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg ++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg ++-dependent, as the removal of Mg ++ nearly abolished binding to GRP78 ATPase. The AMPPCP-Mg ++ structure showed evidence for the critical role of Mg ++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg ++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg ++. The 2'-deoxyATP structure showed the conformation of the bound nucleotide flipped out of the active site, explaining the low affinity binding to GRP78 and suggesting that the 2'-OH group is essential for the high affinity binding to GRP78. Altogether, our results demonstrate that GRP78 ATPase possesses nucleotide specificity more relaxed than previously anticipated and can tolerate certain modifications to the nucleobase 7-position and, to a lesser extent, the beta-gamma bridging atom, thereby providing a possible atomic mechanism underlying the transmembrane transport of the ATP analogs.« less
[Radiolabelling and assay of Chinese agkistrodon acutus venom with carrier-free Na 125I].
Gong, Y; Deng, C; Li, S; Li, L; Guan, J
1995-03-01
Chinese agkistroden acutus venom (CAAV) was radiolabelled with carrier-free Na 125I by the method of Iodogen. The specific activity and radiochemical purity for radiolabelled products were 4236.5 x 10(10) Bq/mmol and 98%, respectively. Each CAAV molecule carried 0.52 125I atom. Physical and chemical characterization of radiolabelled CAAV was similar to unradiolabelled CAAV. Binding analysis showed that 125I-CAAV was bound to platelet in a saturable manner. Binding sites per platelet were 13,255 +/- 6292/platelet. The dissociation constant (Kd) was 3.2 +/- 0.69 x 10(-10) mol/L. These results are similar to binding sites of other snake venom on platelet. The investigation showed that radiolabelled CAAV made by our laboratory was useful for radioligand binding assay.
Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs
NASA Astrophysics Data System (ADS)
Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.
2013-11-01
The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.
Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors
2016-01-01
Available crystal structures of opioid receptors provide a high-resolution picture of ligand binding at the primary (“orthosteric”) site, that is, the site targeted by endogenous ligands. Recently, positive allosteric modulators of opioid receptors have also been discovered, but their modes of binding and action remain unknown. Here, we use a metadynamics-based strategy to efficiently sample the binding process of a recently discovered positive allosteric modulator of the δ-opioid receptor, BMS-986187, in the presence of the orthosteric agonist SNC-80, and with the receptor embedded in an explicit lipid–water environment. The dynamics of BMS-986187 were enhanced by biasing the potential acting on the ligand–receptor distance and ligand–receptor interaction contacts. Representative lowest-energy structures from the reconstructed free-energy landscape revealed two alternative ligand binding poses at an allosteric site delineated by transmembrane (TM) helices TM1, TM2, and TM7, with some participation of TM6. Mutations of amino acid residues at these proposed allosteric sites were found to either affect the binding of BMS-986187 or its ability to modulate the affinity and/or efficacy of SNC-80. Taken together, these combined experimental and computational studies provide the first atomic-level insight into the modulation of opioid receptor binding and signaling by allosteric modulators. PMID:26841170
Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins
Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali
2012-01-01
Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization. PMID:22574219
Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy.
Baumann, Fabian; Bauer, Magnus S; Milles, Lukas F; Alexandrovich, Alexander; Gaub, Hermann E; Pippig, Diana A
2016-01-01
Strep-Tactin, an engineered form of streptavidin, binds avidly to the genetically encoded peptide Strep-tag II in a manner comparable to streptavidin binding to biotin. These interactions have been used in protein purification and detection applications. However, in single-molecule studies, for example using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), the tetravalency of these systems impedes the measurement of monodispersed data. Here, we introduce a monovalent form of Strep-Tactin that harbours a unique binding site for Strep-tag II and a single cysteine that allows Strep-Tactin to specifically attach to the atomic force microscope cantilever and form a consistent pulling geometry to obtain homogeneous rupture data. Using AFM-SMFS, the mechanical properties of the interaction between Strep-tag II and monovalent Strep-Tactin were characterized. Rupture forces comparable to biotin:streptavidin unbinding were observed. Using titin kinase and green fluorescent protein, we show that monovalent Strep-Tactin is generally applicable to protein unfolding experiments. We expect monovalent Strep-Tactin to be a reliable anchoring tool for a range of single-molecule studies.
Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy
NASA Astrophysics Data System (ADS)
Baumann, Fabian; Bauer, Magnus S.; Milles, Lukas F.; Alexandrovich, Alexander; Gaub, Hermann E.; Pippig, Diana A.
2016-01-01
Strep-Tactin, an engineered form of streptavidin, binds avidly to the genetically encoded peptide Strep-tag II in a manner comparable to streptavidin binding to biotin. These interactions have been used in protein purification and detection applications. However, in single-molecule studies, for example using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), the tetravalency of these systems impedes the measurement of monodispersed data. Here, we introduce a monovalent form of Strep-Tactin that harbours a unique binding site for Strep-tag II and a single cysteine that allows Strep-Tactin to specifically attach to the atomic force microscope cantilever and form a consistent pulling geometry to obtain homogeneous rupture data. Using AFM-SMFS, the mechanical properties of the interaction between Strep-tag II and monovalent Strep-Tactin were characterized. Rupture forces comparable to biotin:streptavidin unbinding were observed. Using titin kinase and green fluorescent protein, we show that monovalent Strep-Tactin is generally applicable to protein unfolding experiments. We expect monovalent Strep-Tactin to be a reliable anchoring tool for a range of single-molecule studies.
Abriata, Luciano A; Vila, Alejandro J; Dal Peraro, Matteo
2014-06-01
Cupredoxins perform copper-mediated long-range electron transfer (ET) in biological systems. Their copper-binding sites have evolved to force copper ions into ET-competent systems with decreased reorganization energy, increased reduction potential, and a distinct electronic structure compared with those of non-ET-competent copper complexes. The entatic or rack-induced state hypothesis explains these special properties in terms of the strain that the protein matrix exerts on the metal ions. This idea is supported by X-ray structures of apocupredoxins displaying "closed" arrangements of the copper ligands like those observed in the holoproteins; however, it implies completely buried copper-binding atoms, conflicting with the notion that they must be exposed for copper loading. On the other hand, a recent work based on NMR showed that the copper-binding regions of apocupredoxins are flexible in solution. We have explored five cupredoxins in their "closed" apo forms through molecular dynamics simulations. We observed that prearranged ligand conformations are not stable as the X-ray data suggest, although they do form part of the dynamic landscape of the apoproteins. This translates into variable flexibility of the copper-binding regions within a rigid fold, accompanied by fluctuations of the hydrogen bonds around the copper ligands. Major conformations with solvent-exposed copper-binding atoms could allow initial binding of the copper ions. An eventual subsequent incursion to the closed state would result in binding of the remaining ligands, trapping the closed conformation thanks to the additional binding energy and the fastening of noncovalent interactions that make up the rack.
Bozeman, Trevor C; Nanjunda, Rupesh; Tang, Chenhong; Liu, Yang; Segerman, Zachary J; Zaleski, Paul A; Wilson, W David; Hecht, Sidney M
2012-10-31
Recent studies involving DNAs bound strongly by bleomycins have documented that such DNAs are degraded by the antitumor antibiotic with characteristics different from those observed when studying the cleavage of randomly chosen DNAs in the presence of excess Fe·BLM. In the present study, surface plasmon resonance has been used to characterize the dynamics of BLM B(2) binding to a strongly bound hairpin DNA, to define the effects of Fe(3+), salt, and temperature on BLM-DNA interaction. One strong primary DNA binding site, and at least one much weaker site, were documented. In contrast, more than one strong cleavage site was found, an observation also made for two other hairpin DNAs. Evidence is presented for BLM equilibration between the stronger and weaker binding sites in a way that renders BLM unavailable to other, less strongly bound DNAs. Thus, enhanced binding to a given site does not necessarily result in increased DNA degradation at that site; i.e., for strongly bound DNAs, the facility of DNA cleavage must involve other parameters in addition to the intrinsic rate of C-4' H atom abstraction from DNA sugars.
Evaluation of water displacement energetics in protein binding sites with grid cell theory.
Gerogiokas, G; Southey, M W Y; Mazanetz, M P; Heifetz, A; Hefeitz, A; Bodkin, M; Law, R J; Michel, J
2015-04-07
Excess free energies, enthalpies and entropies of water in protein binding sites were computed via classical simulations and Grid Cell Theory (GCT) analyses for three pairs of congeneric ligands in complex with the proteins scytalone dehydratase, p38α MAP kinase and EGFR kinase respectively. Comparative analysis is of interest since the binding modes for each ligand pair differ in the displacement of one binding site water molecule, but significant variations in relative binding affinities are observed. Protocols that vary in their use of restraints on protein and ligand atoms were compared to determine the influence of protein-ligand flexibility on computed water structure and energetics, and to assess protocols for routine analyses of protein-ligand complexes. The GCT-derived binding affinities correctly reproduce experimental trends, but the magnitude of the predicted changes in binding affinities is exaggerated with respect to results from a previous Monte Carlo Free Energy Perturbation study. Breakdown of the GCT water free energies into enthalpic and entropic components indicates that enthalpy changes dominate the observed variations in energetics. In EGFR kinase GCT analyses revealed that replacement of a pyrimidine by a cyanopyridine perturbs water energetics up three hydration shells away from the ligand.
Johnson, Kenneth A.; Ve, Thomas; Larsen, Øivind; Pedersen, Rolf B.; Lillehaug, Johan R.; Jensen, Harald B.; Helland, Ronny; Karlsen, Odd A.
2014-01-01
CorA is a copper repressible protein previously identified in the methanotrophic bacterium Methylomicrobium album BG8. In this work, we demonstrate that CorA is located on the cell surface and binds one copper ion per protein molecule, which, based on X-ray Absorption Near Edge Structure analysis, is in the reduced state (Cu(I)). The structure of endogenously expressed CorA was solved using X-ray crystallography. The 1.6 Å three-dimensional structure confirmed the binding of copper and revealed that the copper atom was coordinated in a mononuclear binding site defined by two histidines, one water molecule, and the tryptophan metabolite, kynurenine. This arrangement of the copper-binding site is similar to that of its homologous protein MopE* from Metylococcus capsulatus Bath, confirming the importance of kynurenine for copper binding in these proteins. Our findings show that CorA has an overall fold similar to MopE, including the unique copper(I)-binding site and most of the secondary structure elements. We suggest that CorA plays a role in the M. album BG8 copper acquisition. PMID:24498370
NASA Astrophysics Data System (ADS)
Ilyasov, Victor V.; Pham, Khang D.; Zhdanova, Tatiana P.; Phuc, Huynh V.; Hieu, Nguyen N.; Nguyen, Chuong V.
2017-12-01
In this paper, we systematically investigate the atomic structure, electronic and thermodynamic properties of adsorbed W atoms on the polar Ti-terminated TixCy (111) surface with different configurations of adsorptions using first principle calculations. The bond length, adsorption energy, and formation energy for different reconstructions of the atomic structure of the W/TixCy (111) systems were established. The effect of the tungsten coverage on the electronic structure and the adsorption mechanism of tungsten atom on the TixCy (111) are also investigated. We also suggest the possible mechanisms of W nucleation on the TixCy (111) surface. The effective charges on W atoms and nearest-neighbor atoms in the examined reconstructions were identified. Additionally, we have established the charge transfer from titanium atom to tungsten and carbon atoms which determine by the reconstruction of the local atomic and electronic structures. Our calculations showed that the charge transfer correlates with the electronegativity of tungsten and nearest-neighbor atoms. We also determined the effective charge per atom of titanium, carbon atoms, and neighboring adsorbed tungsten atom in different binding configurations. We found that, with reduction of the lattice symmetry associated with titanium and carbon vacancies, the adsorption energy increases by 1.2 times in the binding site A of W/TixCy systems.
Spin polarized first principles study of Mn doped gallium nitride monolayer nanosheet
NASA Astrophysics Data System (ADS)
Sharma, Venus; Kaur, Sumandeep; Srivastava, Sunita; Kumar, Tankeshwar
2017-05-01
The structural, electronic and magnetic properties of gallium nitride nanosheet (GaNs) doped with Mn atoms have been studied using spin polarized density functional theory. The binding energy per atom, Energy Band gap, Fermi energy, magnetic moment, electric dipole moment have been found. The doped nanosheet is found to be more stable than pure GaN monolayer nanosheet. Adsorption of Mn atom has been done at four different sites on GaNs which affects the fermi level position. It is found that depending on the doping site, Mn can behave both like p-type semiconductor and also as n-type semiconductor. Also, it is ascertained that Mn doped GaNs (GaNs-Mn) exhibits ferromagnetic behavior.
Interfacial metal and antibody recognition.
Zhou, Tongqing; Hamer, Dean H; Hendrickson, Wayne A; Sattentau, Quentin J; Kwong, Peter D
2005-10-11
The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca(2+), Ba(2+), or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with approximately 1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition.
Interfacial metal and antibody recognition
Zhou, Tongqing; Hamer, Dean H.; Hendrickson, Wayne A.; Sattentau, Quentin J.; Kwong, Peter D.
2005-01-01
The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca2+, Ba2+, or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with ≈1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition. PMID:16195378
SiteBinder: an improved approach for comparing multiple protein structural motifs.
Sehnal, David; Vařeková, Radka Svobodová; Huber, Heinrich J; Geidl, Stanislav; Ionescu, Crina-Maria; Wimmerová, Michaela; Koča, Jaroslav
2012-02-27
There is a paramount need to develop new techniques and tools that will extract as much information as possible from the ever growing repository of protein 3D structures. We report here on the development of a software tool for the multiple superimposition of large sets of protein structural motifs. Our superimposition methodology performs a systematic search for the atom pairing that provides the best fit. During this search, the RMSD values for all chemically relevant pairings are calculated by quaternion algebra. The number of evaluated pairings is markedly decreased by using PDB annotations for atoms. This approach guarantees that the best fit will be found and can be applied even when sequence similarity is low or does not exist at all. We have implemented this methodology in the Web application SiteBinder, which is able to process up to thousands of protein structural motifs in a very short time, and which provides an intuitive and user-friendly interface. Our benchmarking analysis has shown the robustness, efficiency, and versatility of our methodology and its implementation by the successful superimposition of 1000 experimentally determined structures for each of 32 eukaryotic linear motifs. We also demonstrate the applicability of SiteBinder using three case studies. We first compared the structures of 61 PA-IIL sugar binding sites containing nine different sugars, and we found that the sugar binding sites of PA-IIL and its mutants have a conserved structure despite their binding different sugars. We then superimposed over 300 zinc finger central motifs and revealed that the molecular structure in the vicinity of the Zn atom is highly conserved. Finally, we superimposed 12 BH3 domains from pro-apoptotic proteins. Our findings come to support the hypothesis that there is a structural basis for the functional segregation of BH3-only proteins into activators and enablers.
Electrostatic Interactions in Aminoglycoside-RNA Complexes
Kulik, Marta; Goral, Anna M.; Jasiński, Maciej; Dominiak, Paulina M.; Trylska, Joanna
2015-01-01
Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity. PMID:25650932
The stability of vacancy clusters and their effect on helium behaviors in 3C-SiC
NASA Astrophysics Data System (ADS)
Sun, Jingjing; Li, B. S.; You, Yu-Wei; Hou, Jie; Xu, Yichun; Liu, C. S.; Fang, Q. F.; Wang, Z. G.
2018-05-01
We have carried out systematical ab initio calculations to study the stability of vacancy clusters and their effect on helium behaviors in 3C-SiC. It is found that the formation energies of vacancy clusters containing only carbon vacancies are the lowest although the vacancies are not closest to each other, while the binding energies of vacancy clusters composed of both silicon and carbon vacancies in the closest neighbors to each other are the highest. Vacancy clusters can provide with free space for helium atoms to aggregate, while interstitial sites are not favorable for helium atoms to accumulate. The binding energies of vacancy clusters with helium atoms increase almost linearly with the ratio of helium to vacancy, n/m. The binding strength of vacancy cluster having the participation of the silicon vacancy with helium is relatively stronger than that without silicon vacancy. The vacancy clusters with more vacancies can trap helium atoms more tightly. With the presence of vacancy clusters in the material, the diffusivity of helium will be significantly reduced. Moreover, the three-dimension electron density is calculated to analyze the interplay of vacancy clusters with helium.
Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang
2015-01-01
Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964
Where's water? The many binding sites of hydantoin.
Gruet, Sébastien; Pérez, Cristóbal; Steber, Amanda L; Schnell, Melanie
2018-02-21
Prebiotic hydantoin and its complexes with one and two water molecules are investigated using high-resolution broadband rotational spectroscopy in the 2-8 GHz frequency range. The hyperfine structure due to the nuclear quadrupole coupling of the two 14 N atoms is analysed for the monomer and the complexes. This characteristic hyperfine structure will support a definitive assignment from low frequency radioastronomy data. Experiments with H 2 18 O provide accurate experimental information on the preferred binding sites of water, which are compared with quantum-chemically calculated coordinates. In the 2-water complexes, the water molecules bind to hydantoin as a dimer instead of individually, indicating the strong water-water interactions. This information provides first insight on how hydantoin interacts with water on the molecular level.
Specific Interactions of Antitumor Metallocenes with Deoxydinucleoside Monophosphates
NASA Astrophysics Data System (ADS)
Eberle, Rahel P.; Hari, Yvonne; Schürch, Stefan
2017-09-01
Bent metallocenes Cp2MCl2 (M = Ti, V, Nb, Mo) are known to exhibit cytotoxic activity against a variety of cancer types. Though the mechanism of action is not fully understood yet, the accumulation of the metal ions in the nucleus points towards DNA as one of the primary targets. A set of eight deoxydinucleoside monophosphates was used to study the adduct yields with metallocenes and cisplatin. The binding affinities are reflected by the relative intensities of the adducts and were found to follow the order of Pt > V > Ti > Mo (no adducts were detected with Nb). High-resolution tandem mass spectrometry was applied to locate the binding patterns in the deoxydinucleoside monophosphates. Whereas cisplatin binds to the soft nitrogen atoms in the purine nucleobases, the metallocenes additionally interact with the hard phosphate oxygen, which is in good agreement with the hard and soft (Lewis) acids and bases (HSAB) concept. However, the binding specificities were found to be unique for each metallocene. The hard Lewis acids titanium and vanadium predominantly bind to the deprotonated phosphate oxygen, whereas molybdenum, an intermediate Lewis acid, preferentially interacts with the nucleobases. Nucleobases comprise alternative binding sites for titanium and vanadium, presumably oxygen atoms for the first and nitrogen atoms for the latter. In summary, the intrinsic binding behavior of the different metallodrugs is reflected by the gas-phase dissociation of the adducts. Consequently, MS/MS can provide insights into therapeutically relevant interactions between metallodrugs and their cellular targets. [Figure not available: see fulltext.
Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward
2006-01-01
Synopsis A multi-subunit mitochondrial membrane protein complex involved in the Krebs Cycle and respiratory chain has been crystallized in a form suitable for near-atomic resolution structure determination. A procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Å with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites. PMID:15805592
Atomic Structure of Salutaridine Reductase from the Opium Poppy (Papaver somniferum)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higashi, Yasuhiro; Kutchan, Toni M.; Smith, Thomas J.
The opium poppy (Papaver somniferum L.) is one of the oldest known medicinal plants. In the biosynthetic pathway for morphine and codeine, salutaridine is reduced to salutaridinol by salutaridine reductase (SalR; EC 1.1.1.248) using NADPH as coenzyme. Here, we report the atomic structure of SalR to a resolution of {approx}1.9 {angstrom} in the presence of NADPH. The core structure is highly homologous to other members of the short chain dehydrogenase/reductase family. The major difference is that the nicotinamide moiety and the substrate-binding pocket are covered by a loop (residues 265-279), on top of which lies a large 'flap'-like domain (residuesmore » 105-140). This configuration appears to be a combination of the two common structural themes found in other members of the short chain dehydrogenase/reductase family. Previous modeling studies suggested that substrate inhibition is due to mutually exclusive productive and nonproductive modes of substrate binding in the active site. This model was tested via site-directed mutagenesis, and a number of these mutations abrogated substrate inhibition. However, the atomic structure of SalR shows that these mutated residues are instead distributed over a wide area of the enzyme, and many are not in the active site. To explain how residues distal to the active site might affect catalysis, a model is presented whereby SalR may undergo significant conformational changes during catalytic turnover.« less
Cheng, Tao; Xiao, Hai; Goddard, William A
2017-08-30
Recent experiments show that the grain boundaries (GBs) of copper nanoparticles (NPs) lead to an outstanding performance in reducing CO 2 and CO to alcohol products. We report here multiscale simulations that simulate experimental synthesis conditions to predict the structure of a 10 nm Cu NP (158 555 atoms). To identify active sites, we first predict the CO binding at a large number of sites and select four exhibiting CO binding stronger than the (211) step surface. Then, we predict the formation energy of the *OCCOH intermediate as a descriptor for C-C coupling, identifying two active sites, both of which have an under-coordinated surface square site adjacent to a subsurface stacking fault. We then propose a periodic Cu surface (4 by 4 supercell) with a similar site that substantially decreases the formation energy of *OCCOH, by 0.14 eV.
Cordes, Frank S; Kraiczy, Peter; Roversi, Pietro; Simon, Markus M; Brade, Volker; Jahraus, Oliver; Wallis, Russell; Goodstadt, Leo; Ponting, Chris P; Skerka, Christine; Zipfel, Peter F; Wallich, Reinhard; Lea, Susan M
2006-05-01
Borrelia burgdorferi, a spirochaete transmitted to human hosts during feeding of infected Ixodes ticks, is the causative agent of Lyme disease, the most frequent vector-borne disease in Eurasia and North America. Sporadically Lyme disease develops into a chronic, multisystemic disorder. Serum-resistant B. burgdorferi strains bind complement factor H (FH) and FH-like protein 1 (FHL-1) on the spirochaete surface. This binding is dependent on the expression of proteins termed complement-regulator acquiring surface proteins (CRASPs). The atomic structure of BbCRASP-1, the key FHL-1/FH-binding protein of B. burgdorferi, has recently been determined. Our analysis indicates that its protein topology apparently evolved to provide a high affinity interaction site for FH/FHL-1 and leads to an atomic-level hypothesis for the functioning of BbCRASP-1. This work demonstrates that pathogens interact with complement regulators in ways that are distinct from the mechanisms used by the host and are thus obvious targets for drug design.
Mahalingam, Rajasekaran; Peng, Hung-Pin; Yang, An-Suei
2014-08-01
Protein-fatty acid interaction is vital for many cellular processes and understanding this interaction is important for functional annotation as well as drug discovery. In this work, we present a method for predicting the fatty acid (FA)-binding residues by using three-dimensional probability density distributions of interacting atoms of FAs on protein surfaces which are derived from the known protein-FA complex structures. A machine learning algorithm was established to learn the characteristic patterns of the probability density maps specific to the FA-binding sites. The predictor was trained with five-fold cross validation on a non-redundant training set and then evaluated with an independent test set as well as on holo-apo pair's dataset. The results showed good accuracy in predicting the FA-binding residues. Further, the predictor developed in this study is implemented as an online server which is freely accessible at the following website, http://ismblab.genomics.sinica.edu.tw/. Copyright © 2014 Elsevier B.V. All rights reserved.
Ab initio study of novel carbon nanofoam structure as an anode material for Li secondary battery
NASA Astrophysics Data System (ADS)
Park, Hanjin; Park, Sora; Kang, Seoung-Hun; Kwon, Young-Kyun
2014-03-01
Using ab inito density functional theory, we investigate the adsorption and diffusion properties of Li atoms on a new carbon nanostructure, which may be used as an anode of Li secondary battery. We focus on a special carbon nanofoam structure consisting of Schwarzite structures with negative Gaussian curvature as core parts, which are interconnected through (4,4) CNT segments. Considering the symmetry of the nanofoam structure, we find various Li adsorption sites exhibiting relatively large binding energies (>= 2 . 00 eV). Based on these adsorption sites, we identify several diffusion paths on the outside or inside surface of the nanofoam structure and examine the diffusion barriers along the paths. Our results show that Li atom can diffuse almost freely due to its low energy barriers on both outside and inside surfaces. Finally, we also evaluate the energy gain tendency and the volume expansion as well as the average binding energy while adding Li atoms to estimate the Li-capacity and recyclability of the system, which are important characterisitics for anode materials. We conclude that the carbon nanofoam structure would be better as an anode material than graphite in Li capacity and volume expansion.
Carlow, D C; Carter, C W; Mejlhede, N; Neuhard, J; Wolfenden, R
1999-09-21
Cytidine deaminase from E. coli is a dimer of identical subunits (M(r) = 31 540), each containing a single zinc atom. Cytidine deaminase from B. subtilis is a tetramer of identical subunits (M(r) = 14 800). After purification from an overexpressing strain, the enzyme from B. subtilis is found to contain a single atom of zinc per enzyme subunit by flame atomic absorption spectroscopy. Fluorescence titration indicates that each of the four subunits contains a binding site for the transition state analogue inhibitor 5-fluoro-3,4-dihydrouridine. A region of amino acid sequence homology, containing residues that are involved in zinc coordination in the enzyme from E. coli, strongly suggests that in the enzyme from B. subtilis, zinc is coordinated by the thiolate side chains of three cysteine residues (Cys-53, Cys-86, and Cys-89) [Song, B. H., and Neuhard, J. (1989) Mol. Gen. Genet. 216, 462-468]. This pattern of zinc coordination appears to be novel for a hydrolytic enzyme, and might be expected to reduce the reactivity of the active site substantially compared with that of the enzyme from E. coli (His-102, Cys-129, and Cys-132). Instead, the B. subtilis and E. coli enzymes are found to be similar in their activities, and also in their relative binding affinities for a series of structurally related inhibitors with binding affinities that span a range of 6 orders of magnitude. In addition, the apparent pK(a) value of the active site is shifted upward by less than 1 unit. Sequence alignments, together with model building, suggest one possible mechanism of compensation.
New functionalized IRMOF-10 with strong affinity for methanol: A simulation study
NASA Astrophysics Data System (ADS)
Liu, Zewei; Zhang, Kai; Wu, Ying; Xi, Hongxia
2018-05-01
Grand Canonical Monte Carlo (GCMC) method simulation combined with density functional theory (DFT) calculation were used to investigate the methanol adsorption in IRMOF-10, with nitrogen and metal-doping functionalizations in order to understand the underlying performance of MOFs in methanol adsorption. New doped IRMOF-10s (M-2N-IRMOF-10, M = Be, Mg, Ca, Sr, Ba) were theoretically constructed by binding nitrogen atoms of organic linkers in N-doping IRMOF-10 (2N-IRMOF-10) with various metal atoms. 2N-IRMOF-10 shows only a little higher methanol capacity in the measured pressure range. However, M-2N-IRMOF-10s (especially Be-2N-IRMOF-10) demonstrate much higher methanol capacity due to the stronger interaction between the induced Be atoms and methanol molecules. Furthermore, the obtained results can be attributed to the new adsorption sites created by metal-doping, as revealed by the more exothermic binding energies (BEs) on Be-sites (-160.8 kJ/mol) than Zn-sites (-19.4 kJ/mol). According to the simulation results, it can be concluded that functionalized IRMOF-10 are capable of enhancing the adsorption capacity of methanol at pressure from 0 to 12 kPa at 298 K. This study provides a new functionalized method to effectively enhance methanol adsorption capacity of MOFs, which might extend the application of MOFs on methanol adsorption in the near future.
Structure of an extracellular giant hemoglobin of the gutless beard worm Oligobrachia mashikoi
Numoto, Nobutaka; Nakagawa, Taro; Kita, Akiko; Sasayama, Yuichi; Fukumori, Yoshihiro; Miki, Kunio
2005-01-01
Mouthless and gutless marine animals, pogonophorans and vestimentiferans, obtain their nutrition solely from their symbiotic chemoautotrophic sulfur-oxidizing bacteria. These animals have sulfide-binding 400-kDa and/or 3,500-kDa Hb, which transports oxygen and sulfide simultaneously. The symbiotic bacteria are supplied with sulfide by Hb of the host animal and use it to provide carbon compounds. Here, we report the crystal structure of a 400-kDa Hb from pogonophoran Oligobrachia mashikoi at 2.85-Å resolution. The structure is hollow-spherical, composed of a total of 24 globins as a dimer of dodecamer. This dodecameric assemblage would be a fundamental structural unit of both 400-kDa and 3,500-kDa Hbs. The structure of the mercury derivative used for phasing provides insights into the sulfide-binding mechanism. The mercury compounds bound to all free Cys residues that have been expected as sulfide-binding sites. Some of the free Cys residues are surrounded by Phe aromatic rings, and mercury atoms come into contact with these residues in the derivative structure. It is strongly suggested that sulfur atoms bound to these sites could be stabilized by aromatic-electrostatic interactions by the surrounding Phe residues. PMID:16204001
Positron trapping at defects in copper oxide superconductors
NASA Astrophysics Data System (ADS)
McMullen, T.; Jena, P.; Khanna, S. N.; Li, Yi; Jensen, Kjeld O.
1991-05-01
Positron states and lifetimes at defects in the copper oxide superconductors La2-xSrxCuO4, YBa2Cu3O7-x, and Bi2Sr2CaCu2O8+x are calculated with use of the superposed-atom model. In the Bi2Sr2CaCu2O8+x compound, we find that the smaller metal-ion vacancies appear to only bind positrons weakly, while missing oxygens do not trap positrons. In contrast, metal-ion vacancies in La2-xSrxCuO4 and YBa2Cu3O7-x bind positrons by ~1 eV, and oxygen-related defects appear to be the weak-binding sites in these materials. The sites that bind positrons only weakly, by energies ~kBT, are of particular interest in view of the complex temperature dependences of the annihilation characteristics that are observed in these materials.
NASA Astrophysics Data System (ADS)
Shahabadi, Nahid; Fili, Soraya Moradi
2014-01-01
The interaction of mesalamine (5-aminosalicylic acid (5-ASA)) with bovine serum albumin (BSA) was investigated by fluorescence quenching, absorption spectroscopy, circular dichroism (CD) techniques, and molecular docking. Thermodynamic parameters (ΔH < 0 and ΔS 0) indicated that the hydrogen bond and electrostatic forces played the major role in the binding of 5-ASA to BSA. The results of CD and UV-vis spectroscopy showed that the binding of this drug to BSA induces some conformational changes in BSA. Displacement experiments predicted that the binding of 5-ASA to BSA is located within domain III, Sudlows site 2, that these observations were substantiated by molecular docking studies. In addition, the docking result shows that the 5-ASA in its anionic form mainly interacts with Gln-416 residue through one hydrogen bond between H atom of 5-ASA anion and the adjacent O atom of the hydroxyl group of Gln-416.
NASA Astrophysics Data System (ADS)
Wambo, Thierry; Rodriguez, Roberto
Human carbonic anhydrase II (hCAII) is a metalloenzyme with a Zinc cation at its binding site. The presence of the Zinc turns the protein into an efficient enzyme which catalyzes the reversible hydration of carbon dioxide into bicarbonate anion. Available X-ray structures of the apo-hCAII and holo-hCAII show no significant differences in the overall structure of these proteins. What difference, if any, is there between the structures of the hydrated apo-hCAII and holo? How can we use computer simulation to efficiently compute the binding affinity of Zinc to hCAII? We will present a scheme developed to compute the binding affinity of Zinc cation to hCAII on the basis of all-atom molecular dynamics simulation where Zinc is represented as a point charge and the CHARMM36 force field is used for running the dynamics of the system. Our computed binding affinity of the cation to hCAII is in good agreement with experiment, within the margin of error, while a look at the dynamics of the binding site suggests that in the absence of the Zinc, there is a re-organization of the nearby histidine residues which adopt a new distinct configuration. The authors are thankful for the NIH support through Grants GM084834 and GM060655. They also acknowledge the Texas Advanced Computing Center at the University of Texas at Austin for the supercomputing time. They thank Dr Liao Chen for his comments.
Kolasinski, R. D.; Hammond, K. D.; Whaley, J. A.; ...
2014-12-03
In our work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1–2 keV Ne + ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25 °C. Moreover, the H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here,more » we find that surface sites remain populated with H until the surface temperature reaches 200 °C. Then, we observe H rapidly desorbing until only a residual concentration remains at 450 °C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.« less
Zheng, Heping; Shabalin, Ivan G.; Handing, Katarzyna B.; Bujnicki, Janusz M.; Minor, Wladek
2015-01-01
The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs. PMID:25800744
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanley, Simon W. M.; Starkey, Laurina-Victoria; Lamplough, Lucinda
The platinum hexahalides have an octahedral arrangement of six halogen atoms bound to a Pt centre, thus having an octahedral shape that could prove to be useful in interpreting poor electron-density maps. In a detailed characterization, PtI{sub 6} chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15 of HEWL was also observed, which was not observed for PtBr{sub 6} or PtCl{sub 6}. This study examines the binding and chemical stability of the platinum hexahalides K{sub 2}PtCl{sub 6}, K{sub 2}PtBr{sub 6} and K{sub 2}PtI{sub 6} when soaked into pre-grown hen egg-white lysozyme (HEWL) crystalsmore » as the protein host. Direct comparison of the iodo complex with the chloro and bromo complexes shows that the iodo complex is partly chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15, a chemical behaviour that is not exhibited by the chloro or bromo complexes. Each complex does, however, bind to HEWL in its octahedral form either at one site (PtI{sub 6}) or at two sites (PtBr{sub 6} and PtCl{sub 6}). As heavy-atom derivatives of a protein, the octahedral shape of the hexahalides could be helpful in cases of difficult-to-interpret electron-density maps as they would be recognisable ‘objects’.« less
Pham, Nguyet N T; Le, Hung M
2017-05-19
In this study, we examine the adsorptions of Ni, Pd, and Pt clusters on C 60 by using a computational approach. Our calculation results show that the base structure of C 60 can host Ni n /Pd n /Pt n (n=1-4) clusters with good adsorption stability and the complexes establish either two or no unpaired electrons. The binding energy of Pd and Pt clusters increases as the number of metal atoms increases, implying that the coverage of C 60 with Pd or Pt preferentially establishes a large-size metal cluster. A single metal atom favorably occupies the C-C bridge site. For dimer clusters, the three metals of interest share a similar binding fashion, in which two metal atoms establish direct interactions with the C-C bridge sites. For trimer adsorptions, the formation of linear and triangular structures is observed. Both Pt 3 and Ni 3 preferably constitute isosceles triangles on C 60 , whilst Pd 3 favorably establishes a linear shape. Finally, for each of the Ni 4 and Pd 4 adsorption cases, we observed three stable binding configurations: rhombus, tetrahedron, and Y-form. Whereas Ni 4 establishes a tetrahedral form, Pd 4 attains the most stable form with the Y-shape geometry on C 60 . Overall, we observe that the trend of Pd binding to C 60 tends to go beyond the fashion of Ni and Pt. In terms of magnetic alignment, the Pd n -C 60 systems seem to be non-magnetic in most cases, unlike the Ni and Pt cases, the structures of which possess magnetic moments of 2 μB in their most stable forms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crystal structure of glucose isomerase in complex with xylitol inhibitor in one metal binding mode.
Bae, Ji-Eun; Kim, In Jung; Nam, Ki Hyun
2017-11-04
Glucose isomerase (GI) is an intramolecular oxidoreductase that interconverts aldoses and ketoses. These characteristics are widely used in the food, detergent, and pharmaceutical industries. In order to obtain an efficient GI, identification of novel GI genes and substrate binding/inhibition have been studied. Xylitol is a well-known inhibitor of GI. In Streptomyces rubiginosus, two crystal structures have been reported for GI in complex with xylitol inhibitor. However, a structural comparison showed that xylitol can have variable conformation at the substrate binding site, e.g., a nonspecific binding mode. In this study, we report the crystal structure of S. rubiginosus GI in a complex with xylitol and glycerol. Our crystal structure showed one metal binding mode in GI, which we presumed to represent the inactive form of the GI. The metal ion was found only at the M1 site, which was involved in substrate binding, and was not present at the M2 site, which was involved in catalytic function. The O 2 and O 4 atoms of xylitol molecules contributed to the stable octahedral coordination of the metal in M1. Although there was no metal at the M2 site, no large conformational change was observed for the conserved residues coordinating M2. Our structural analysis showed that the metal at the M2 site was not important when a xylitol inhibitor was bound to the M1 site in GI. Thus, these findings provided important information for elucidation or engineering of GI functions. Copyright © 2017 Elsevier Inc. All rights reserved.
Thermally stable single-atom platinum-on-ceria catalysts via atom trapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, John; Xiong, Haifeng; DelaRiva, Andrew
2016-07-08
Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having similar surface areas but different exposed surface facets. When mixed with a platinum/ aluminum oxide catalyst and aged in air at 800°C, the platinum transferred to the ceria and was trapped. Polyhedral ceria and nanorods were more effective than ceria cubes at anchoringmore » the platinum. Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.« less
Podjarny, A; Cachau, R E; Schneider, T; Van Zandt, M; Joachimiak, A
2004-04-01
The determination of several of aldose reductase-inhibitor complexes at subatomic resolution has revealed new structural details, including the specific interatomic contacts involved in inhibitor binding. In this article, we review the structures of the complexes of ALR2 with IDD 594 (resolution: 0.66 angstrom, IC50 (concentration of the inhibitor that produced half-maximal effect): 30 nM, space group: P2(1)), IDD 393 (resolution: 0.90 angstrom, IC50: 6 nM, space group: P1), fidarestat (resolution: 0.92 angstrom, IC50: 9 nM, space group: P2(1)) and minalrestat (resolution: 1.10 angstrom, IC50: 73 nM, space group: P1). The structures are compared and found to be highly reproductible within the same space group (root mean square (RMS) deviations: 0.15 approximately 0.3 angstrom). The mode of binding of the carboxylate inhibitors IDD 594 and IDD 393 is analysed. The binding of the carboxylate head can be accurately determined by the subatomic resolution structures, since both the protonation states and the positions of the atoms are very precisely known. The differences appear in the binding in the specificity pocket. The high-resolution structures explain the differences in IC50, which are confirmed both experimentally by mass spectrometry measures of VC50 and theoretically by free energy perturbation calculations. The binding of the cyclic imide inhibitors fidarestat and minalrestat is also described, focusing on the observation of a Cl(-) ion which binds simultaneously with fidarestat. The presence of this anion, binding also to the active site residue His110, leads to a mechanism in which the inhibitor can bind in a neutral state and then become charged inside the active site pocket. This mechanism can explain the excellent in vivo properties of cyclic imide inhibitors. In summary, the complete and detailed information supplied by the subatomic resolution structures can explain the differences in binding energy of the different inhibitors.
Frederick, Thomas E; Peng, Jeffrey W
2018-01-01
Increasing evidence shows that active sites of proteins have non-trivial conformational dynamics. These dynamics include active site residues sampling different local conformations that allow for multiple, and possibly novel, inhibitor binding poses. Yet, active site dynamics garner only marginal attention in most inhibitor design efforts and exert little influence on synthesis strategies. This is partly because synthesis requires a level of atomic structural detail that is frequently missing in current characterizations of conformational dynamics. In particular, while the identity of the mobile protein residues may be clear, the specific conformations they sample remain obscure. Here, we show how an appropriate choice of ligand can significantly sharpen our abilities to describe the interconverting binding poses (conformations) of protein active sites. Specifically, we show how 2-(2'-carboxyphenyl)-benzoyl-6-aminopenicillanic acid (CBAP) exposes otherwise hidden dynamics of a protein active site that binds β-lactam antibiotics. When CBAP acylates (binds) the active site serine of the β-lactam sensor domain of BlaR1 (BlaRS), it shifts the time scale of the active site dynamics to the slow exchange regime. Slow exchange enables direct characterization of inter-converting protein and bound ligand conformations using NMR methods. These methods include chemical shift analysis, 2-d exchange spectroscopy, off-resonance ROESY of the bound ligand, and reduced spectral density mapping. The active site architecture of BlaRS is shared by many β-lactamases of therapeutic interest, suggesting CBAP could expose functional motions in other β-lactam binding proteins. More broadly, CBAP highlights the utility of identifying chemical probes common to structurally homologous proteins to better expose functional motions of active sites.
Trabanino, Rene J.; Hall, Spencer E.; Vaidehi, Nagarajan; Floriano, Wely B.; Kam, Victor W. T.; Goddard, William A.
2004-01-01
G-protein-coupled receptors (GPCRs) are involved in cell communication processes and with mediating such senses as vision, smell, taste, and pain. They constitute a prominent superfamily of drug targets, but an atomic-level structure is available for only one GPCR, bovine rhodopsin, making it difficult to use structure-based methods to design receptor-specific drugs. We have developed the MembStruk first principles computational method for predicting the three-dimensional structure of GPCRs. In this article we validate the MembStruk procedure by comparing its predictions with the high-resolution crystal structure of bovine rhodopsin. The crystal structure of bovine rhodopsin has the second extracellular (EC-II) loop closed over the transmembrane regions by making a disulfide linkage between Cys-110 and Cys-187, but we speculate that opening this loop may play a role in the activation process of the receptor through the cysteine linkage with helix 3. Consequently we predicted two structures for bovine rhodopsin from the primary sequence (with no input from the crystal structure)—one with the EC-II loop closed as in the crystal structure, and the other with the EC-II loop open. The MembStruk-predicted structure of bovine rhodopsin with the closed EC-II loop deviates from the crystal by 2.84 Å coordinate root mean-square (CRMS) in the transmembrane region main-chain atoms. The predicted three-dimensional structures for other GPCRs can be validated only by predicting binding sites and energies for various ligands. For such predictions we developed the HierDock first principles computational method. We validate HierDock by predicting the binding site of 11-cis-retinal in the crystal structure of bovine rhodopsin. Scanning the whole protein without using any prior knowledge of the binding site, we find that the best scoring conformation in rhodopsin is 1.1 Å CRMS from the crystal structure for the ligand atoms. This predicted conformation has the carbonyl O only 2.82 Å from the N of Lys-296. Making this Schiff base bond and minimizing leads to a final conformation only 0.62 Å CRMS from the crystal structure. We also used HierDock to predict the binding site of 11-cis-retinal in the MembStruk-predicted structure of bovine rhodopsin (closed loop). Scanning the whole protein structure leads to a structure in which the carbonyl O is only 2.85 Å from the N of Lys-296. Making this Schiff base bond and minimizing leads to a final conformation only 2.92 Å CRMS from the crystal structure. The good agreement of the ab initio-predicted protein structures and ligand binding site with experiment validates the use of the MembStruk and HierDock first principles' methods. Since these methods are generic and applicable to any GPCR, they should be useful in predicting the structures of other GPCRs and the binding site of ligands to these proteins. PMID:15041637
Molecular Basis of Ligand Dissociation in β-Adrenergic Receptors
González, Angel; Perez-Acle, Tomas; Pardo, Leonardo; Deupi, Xavier
2011-01-01
The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use the steered molecular dynamics simulation method to describe, in atomic detail, the unbinding process of two inverse agonists, which have been recently co-crystallized with β1 and β2ARs subtypes, along four different channels. Our results indicate that this type of compounds likely accesses the orthosteric binding site of βARs from the extracellular water environment. Importantly, reconstruction of forces and energies from the simulations of the dissociation process suggests, for the first time, the presence of secondary binding sites located in the extracellular loops 2 and 3 and transmembrane helix 7, where ligands are transiently retained by electrostatic and Van der Waals interactions. Comparison of the residues that form these new transient allosteric binding sites in both βARs subtypes reveals the importance of non-conserved electrostatic interactions as well as conserved aromatic contacts in the early steps of the binding process. PMID:21915263
Haider, Kamran; Huggins, David J
2013-10-28
Intermolecular interactions in the aqueous phase must compete with the interactions between the two binding partners and their solvating water molecules. In biological systems, water molecules in protein binding sites cluster at well-defined hydration sites and can form strong hydrogen-bonding interactions with backbone and side-chain atoms. Displacement of such water molecules is only favorable when the ligand can form strong compensating hydrogen bonds. Conversely, water molecules in hydrophobic regions of protein binding sites make only weak interactions, and the requirements for favorable displacement are less stringent. The propensity of water molecules for displacement can be identified using inhomogeneous fluid solvation theory (IFST), a statistical mechanical method that decomposes the solvation free energy of a solute into the contributions from different spatial regions and identifies potential binding hotspots. In this study, we employed IFST to study the displacement of water molecules from the ATP binding site of Hsp90, using a test set of 103 ligands. The predicted contribution of a hydration site to the hydration free energy was found to correlate well with the observed displacement. Additionally, we investigated if this correlation could be improved by using the energetic scores of favorable probe groups binding at the location of hydration sites, derived from a multiple copy simultaneous search (MCSS) method. The probe binding scores were not highly predictive of the observed displacement and did not improve the predictivity when used in combination with IFST-based hydration free energies. The results show that IFST alone can be used to reliably predict the observed displacement of water molecules in Hsp90. However, MCSS can augment IFST calculations by suggesting which functional groups should be used to replace highly displaceable water molecules. Such an approach could be very useful in improving the hit-to-lead process for new drug targets.
Magnetic properties of single-phase MnBi grown from MnBi{sub 49} melt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, X. F.; Si, P. Z., E-mail: pzsi@cjlu.edu.cn; Feng, H.
2014-05-07
The single-phase NiAs-type MnBi, embedded in Bi matrix, was grown from homogeneous MnBi{sub 49} melt at low temperatures to prevent the formation of Mn{sub 1.08}Bi. An abrupt magnetization change was observed at ∼240 K. The origin of this change was ascribed to the movement of the Mn atoms between the regular sites and the interstitial sites in the MnBi lattices. The splitting of the x-ray photoelectron lines of MnBi indicates the presence of two binding states of Mn atoms, one of which was ascribed to interstitial Mn atoms. A large coercivity up to 1.79 T at 400 K was observed in the as-grownmore » bulk isotropic MnBi alloys.« less
Atomic-Resolution Structure of an N(5) Flavin Adduct in D-Arginine Dehydrogenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Guoxing; Yuan, Hongling; Wang, Siming
2011-09-06
D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 {angstrom} atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct.
Principles for designing proteins with cavities formed by curved β sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcos, Enrique; Basanta, Benjamin; Chidyausiku, Tamuka M.
Active sites and ligand-binding cavities in native proteins are often formed by curved β sheets, and the ability to control β-sheet curvature would allow design of binding proteins with cavities customized to specific ligands. Toward this end, we investigated the mechanisms controlling β-sheet curvature by studying the geometry of β sheets in naturally occurring protein structures and folding simulations. The principles emerging from this analysis were used to design, de novo, a series of proteins with curved β sheets topped with α helices. Nuclear magnetic resonance and crystal structures of the designs closely match the computational models, showing that β-sheetmore » curvature can be controlled with atomic-level accuracy. Our approach enables the design of proteins with cavities and provides a route to custom design ligand-binding and catalytic sites.« less
2-(Hetero(aryl)methylene)hydrazine-1-carbothioamides as potent urease inhibitors.
Saeed, Aamer; Imran, Aqeel; Channar, Pervaiz A; Shahid, Mohammad; Mahmood, Wajahat; Iqbal, Jamshed
2015-02-01
A small series of 2-(hetero(aryl)methylene) hydrazine-1-carbothioamides including two aryl derivatives was synthesized and tested for their inhibitory activity against urease. Compound (E)-2-(Furan-2-ylmethylene) hydrazine-1-carbothioamide (3f), having a furan ring, was the most potent inhibitor of urease with an IC50 value of 0.58 μM. Molecular modeling was carried out through docking the designed compounds into the urease binding site to predict whether these derivatives have analogous binding mode to the urease inhibitors. The study revealed that all of the tested compounds bind with both metal atoms at the active site of the enzyme. The aromatic ring of the compounds forms ionic interactions with the residues, Ala(440), Asp(494), Ala(636), and Met(637). © 2014 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Wang, Ying-Fan; Li, Kun; Wang, Gui-Chang
2018-04-01
Inspired by the recent surface experimental results that the monatomic Pt catalysts has more excellent hydrogen production that Cu(111) surface, the mechanism of decomposition of formic acid on Cu(111) and single atom Pt1/Cu(111) surface was studied by periodic density functional theory calculations in the present work. The results show that the formic acid tends to undergo dehydrogenation on both surfaces to obtain the hydrogen product of the target product, and the selectivity and catalytic activity of Pt1/Cu (111) surface for formic acid dehydrogenation are better. The reason is that the single atom Pt1/Cu(111) catalyst reduces the reaction energy barrier (i.e., HCOO → CO2 + H) of the critical step of the dehydrogenation reaction due to the fact that the single atom Pt1/Cu(111) catalyst binds formate weakly compared to that of Cu (111) one. Moreover, it was found that the Pt1/Cu (111) binds CO more strongly than that of Cu (111) one and thus leading to the difficult for the formation of CO. These two factors would make the single Pt atom catalyst had the high selectivity for the H2 production. It is hoped that the present work may help people to design the efficient H2 production from HCOOH decomposition by reduce the surface binding strength of HCOO species, for example, using the low coordination number active site like single atom or other related catalytic system.
Understanding the mechanisms of protein-DNA interactions
NASA Astrophysics Data System (ADS)
Lavery, Richard
2004-03-01
Structural, biochemical and thermodynamic data on protein-DNA interactions show that specific recognition cannot be reduced to a simple set of binary interactions between the partners (such as hydrogen bonds, ion pairs or steric contacts). The mechanical properties of the partners also play a role and, in the case of DNA, variations in both conformation and flexibility as a function of base sequence can be a significant factor in guiding a protein to the correct binding site. All-atom molecular modeling offers a means of analyzing the role of different binding mechanisms within protein-DNA complexes of known structure. This however requires estimating the binding strengths for the full range of sequences with which a given protein can interact. Since this number grows exponentially with the length of the binding site it is necessary to find a method to accelerate the calculations. We have achieved this by using a multi-copy approach (ADAPT) which allows us to build a DNA fragment with a variable base sequence. The results obtained with this method correlate well with experimental consensus binding sequences. They enable us to show that indirect recognition mechanisms involving the sequence dependent properties of DNA play a significant role in many complexes. This approach also offers a means of predicting protein binding sites on the basis of binding energies, which is complementary to conventional lexical techniques.
Site Selective Binding of Zn(ll) ot Metallo-b-Lactamase L1 from Stenotrophomonas Maltophilia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costello,A.; Periyannan, G.; Yang, K.
2006-01-01
Extended X-ray absorption fine structure studies of the metallo-{beta}-lactamase L1 from Stenotrophomonas maltophilia containing 1 and 2 equiv of Zn(II) and containing 2 equiv of Zn(II) plus hydrolyzed nitrocefin are presented. The data indicate that the first, catalytically dominant metal ion is bound by L1 at the consensus Zn1 site. The data further suggest that binding of the first metal helps preorganize the ligands for binding of the second metal ion. The di-Zn enzyme displays a well-defined metal-metal interaction at 3.42 Angstroms. Reaction with the {beta}-lactam antibiotic nitrocefin results in a product-bound species, in which the ring-opened lactam rotates inmore » the active site to present the S1 sulfur atom of nitrocefin to one of the metal ions for coordination. The product bridges the two metal ions, with a concomitant lengthening of the Zn-Zn interaction to 3.62 Angstroms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy
2010-11-03
Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4{prime}-aminopyrimidine N1{prime} atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu{sup 571}, Glu{sup 235}, and Glu{sup 237}) and Arg{sup 606} resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. (1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding inmore » the second active center was affected. (2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. (3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. (4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu{sup 235} makes no direct contact with the cofactor. The role of the conserved Glu{sup 571} residue in both catalysis and cofactor orientation is revealed by the combined results for the first time.« less
Rangarajan, Srinivas; Mavrikakis, Manos
2016-12-14
Hydrodesulfurization is a process to produce ultralow-sulfur diesel fuel. Although promoted molybdenum sulfide (MoS 2) catalysts have been used industrially for several decades, the active site requirements for selective hydrodesulfurization of organosulfur compounds with minimal inhibition by organonitrogen constituents of a real gasoil feed has not been resolved. By using molecular binding energy descriptors derived from plane wave density functional theory calculations for comparative adsorption of organosulfur and organonitrogen compounds, we analyzed more than 20 potential sites on unpromoted and Ni- and Co-promoted MoS 2. We also found that hydrogen sulfide and ammonia are simple descriptors of adsorption of stericallymore » unhindered organosulfur and organonitrogen compounds such as dibenzothiophene and acridine, respectively. Further, organonitrogen compounds in gasoil bind more strongly than organosulfur compounds on all sites except on sites with exposed metal atoms on the corner and sulfur edges of promoted MoS 2. Consequently, these sites are proposed as required for maximum-hydrodesulfurization minimum-inhibition catalysis.« less
Tunable reactivity of supported single metal atoms by impurity engineering of the MgO(001) support.
Pašti, Igor A; Johansson, Börje; Skorodumova, Natalia V
2018-02-28
Development of novel materials may often require a rational use of high price components, like noble metals, in combination with the possibility to tune their properties in a desirable way. Here we present a theoretical DFT study of Au and Pd single atoms supported by doped MgO(001). By introducing B, C and N impurities into the MgO(001) surface, the interaction between the surface and the supported metal adatoms can be adjusted. Impurity atoms act as strong binding sites for Au and Pd adatoms and can help to produce highly dispersed metal particles. The reactivity of metal atoms supported by doped MgO(001), as probed by CO, is altered compared to their counterparts on pristine MgO(001). We find that Pd atoms on doped MgO(001) are less reactive than on perfect MgO(001). In contrast, Au adatoms bind CO much more strongly when placed on doped MgO(001). In the case of Au on N-doped MgO(001) we find that charge redistribution between the metal atom and impurity takes place even when not in direct contact, which enhances the interaction of Au with CO. The presented results suggest possible ways for optimizing the reactivity of oxide supported metal catalysts through impurity engineering.
Yang, Xianhai; Lyakurwa, Felichesmi; Xie, Hongbin; Chen, Jingwen; Li, Xuehua; Qiao, Xianliang; Cai, Xiyun
2017-09-01
Chemical forms-dependent binding interactions between phenolic compounds and human transthyretin (hTTR) have been elaborated previously. However, it is not known whether the binding interactions between ionizable halogenated alphatic compounds and hTTR also have the same manner. In this study, poly-/perfluorinated chemicals (PFCs) were selected as model compounds and molecular dynamic simulation was performed to investigate the binding mechanisms between PFCs and hTTR. Results show the binding interactions between the halogenated aliphatic compounds and hTTR are related to the chemical forms. The ionized groups of PFCs can form electrostatic interactions with the -NH + 3 groups of Lys 15 residues in hTTR and form hydrogen bonds with the residues of hTTR. By analyzing the molecular orbital energies of PFCs, we also found that the anionic groups (nucleophile) in PFCs could form electron donor - acceptor interactions with the -NH + 3 groups (electrophile) in Lys 15. The aforementioned orientational interactions make the ionized groups of the PFCs point toward the entry port of the binding site. The roles of fluorine atoms in the binding interactions were also explored. The fluorine atoms can influence the binding interactions via inductive effects. Appropriate molecular descriptors were selected to characterize these interactions, and two quantitative structure-activity relationship models were developed. Copyright © 2017 Elsevier Ltd. All rights reserved.
First-principles study of hydrogen adsorption in metal-doped COF-10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Miaomiao; Sun Qiang; Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284
2010-10-21
Covalent organic frameworks (COFs), due to their low-density, high-porosity, and high-stability, have promising applications in gas storage. In this study we have explored the potential of COFs doped with Li and Ca metal atoms for storing hydrogen under ambient thermodynamic conditions. Using density functional theory we have performed detailed calculations of the sites Li and Ca atoms occupy in COF-10 and their interaction with hydrogen molecules. The binding energy of Li atom on COF-10 substrate is found to be about 1.0 eV and each Li atom can adsorb up to three H{sub 2} molecules. However, at high concentration, Li atomsmore » cluster and, consequently, their hydrogen storage capacity is reduced due to steric hindrance between H{sub 2} molecules. On the other hand, due to charge transfer from Li to the substrate, O sites provide additional enhancement for hydrogen adsorption. With increasing concentration of doped metal atoms, the COF-10 substrate provides an additional platform for storing hydrogen. Similar conclusions are reached for Ca doped COF-10.« less
Marutaphan, Ampaiwan; Seekaew, Yotsarayuth; Wongchoosuk, Chatchawal
2017-12-01
Geometric and electronic properties of 3,4-ethylenedioxythiophene (EDOT), styrene sulfonate (SS), and EDOT: SS oligomers up to 10 repeating units were studied by the self-consistent charge density functional tight-binding (SCC-DFTB) method. An application of PEDOT:PSS for ammonia (NH 3 ) detection was highlighted and investigated both experimentally and theoretically. The results showed an important role of H-bonds in EDOT:SS oligomers complex conformation. Electrical conductivity of EDOT increased with increasing oligomers and doping SS due to enhancement of π conjugation. Printed PEDOT:PSS gas sensor exhibited relatively high response and selectivity to NH 3 . The SCC-DFTB calculation suggested domination of direct charge transfer process in changing of PEDOT:PSS conductivity upon NH 3 exposure at room temperature. The NH 3 molecules preferred to bind with PEDOT:PSS via physisorption. The most favorable adsorption site for PEDOT:PSS-NH 3 interaction was found to be at the nitrogen atom of NH 3 and hydrogen atoms of SS with an average optimal binding distance of 2.00 Å.
Al-Balas, Qosay; Hassan, Mohammad; Al-Oudat, Buthina; Alzoubi, Hassan; Mhaidat, Nizar; Almaaytah, Ammar
2012-11-22
Within this study, a unique 3D structure-based pharmacophore model of the enzyme glyoxalase-1 (Glo-1) has been revealed. Glo-1 is considered a zinc metalloenzyme in which the inhibitor binding with zinc atom at the active site is crucial. To our knowledge, this is the first pharmacophore model that has a selective feature for a "zinc binding group" which has been customized within the structure-based pharmacophore model of Glo-1 to extract ligands that possess functional groups able to bind zinc atom solely from database screening. In addition, an extensive 2D similarity search using three diverse similarity techniques (Tanimoto, Dice, Cosine) has been performed over the commercially available "Zinc Clean Drug-Like Database" that contains around 10 million compounds to help find suitable inhibitors for this enzyme based on known inhibitors from the literature. The resultant hits were mapped over the structure based pharmacophore and the successful hits were further docked using three docking programs with different pose fitting and scoring techniques (GOLD, LibDock, CDOCKER). Nine candidates were suggested to be novel Glo-1 inhibitors containing the "zinc binding group" with the highest consensus scoring from docking.
The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites
2013-01-01
Background Many Protein Data Bank (PDB) users assume that the deposited structural models are of high quality but forget that these models are derived from the interpretation of experimental data. The accuracy of atom coordinates is not homogeneous between models or throughout the same model. To avoid basing a research project on a flawed model, we present a tool for assessing the quality of ligands and binding sites in crystallographic models from the PDB. Results The Validation HElper for LIgands and Binding Sites (VHELIBS) is software that aims to ease the validation of binding site and ligand coordinates for non-crystallographers (i.e., users with little or no crystallography knowledge). Using a convenient graphical user interface, it allows one to check how ligand and binding site coordinates fit to the electron density map. VHELIBS can use models from either the PDB or the PDB_REDO databank of re-refined and re-built crystallographic models. The user can specify threshold values for a series of properties related to the fit of coordinates to electron density (Real Space R, Real Space Correlation Coefficient and average occupancy are used by default). VHELIBS will automatically classify residues and ligands as Good, Dubious or Bad based on the specified limits. The user is also able to visually check the quality of the fit of residues and ligands to the electron density map and reclassify them if needed. Conclusions VHELIBS allows inexperienced users to examine the binding site and the ligand coordinates in relation to the experimental data. This is an important step to evaluate models for their fitness for drug discovery purposes such as structure-based pharmacophore development and protein-ligand docking experiments. PMID:23895374
Solomon, Gemma C; Reimers, Jeffrey R; Hush, Noel S
2005-06-08
In the calculation of conduction through single molecule's approximations about the geometry and electronic structure of the system are usually made in order to simplify the problem. Previously [G. C. Solomon, J. R. Reimers, and N. S. Hush, J. Chem. Phys. 121, 6615 (2004)], we have shown that, in calculations employing cluster models for the electrodes, proper treatment of the open-shell nature of the clusters is the most important computational feature required to make the results sensitive to variations in the structural and chemical features of the system. Here, we expand this and establish a general hierarchy of requirements involving treatment of geometrical approximations. These approximations are categorized into two classes: those associated with finite-dimensional methods for representing the semi-infinite electrodes, and those associated with the chemisorption topology. We show that ca. 100 unique atoms are required in order to properly characterize each electrode: using fewer atoms leads to nonsystematic variations in conductivity that can overwhelm the subtler changes. The choice of binding site is shown to be the next most important feature, while some effects that are difficult to control experimentally concerning the orientations at each binding site are actually shown to be insignificant. Verification of this result provides a general test for the precision of computational procedures for molecular conductivity. Predictions concerning the dependence of conduction on substituent and other effects on the central molecule are found to be meaningful only when they exceed the uncertainties of the effects associated with binding-site variation.
NASA Astrophysics Data System (ADS)
Solomon, Gemma C.; Reimers, Jeffrey R.; Hush, Noel S.
2005-06-01
In the calculation of conduction through single molecule's approximations about the geometry and electronic structure of the system are usually made in order to simplify the problem. Previously [G. C. Solomon, J. R. Reimers, and N. S. Hush, J. Chem. Phys. 121, 6615 (2004)], we have shown that, in calculations employing cluster models for the electrodes, proper treatment of the open-shell nature of the clusters is the most important computational feature required to make the results sensitive to variations in the structural and chemical features of the system. Here, we expand this and establish a general hierarchy of requirements involving treatment of geometrical approximations. These approximations are categorized into two classes: those associated with finite-dimensional methods for representing the semi-infinite electrodes, and those associated with the chemisorption topology. We show that ca. 100 unique atoms are required in order to properly characterize each electrode: using fewer atoms leads to nonsystematic variations in conductivity that can overwhelm the subtler changes. The choice of binding site is shown to be the next most important feature, while some effects that are difficult to control experimentally concerning the orientations at each binding site are actually shown to be insignificant. Verification of this result provides a general test for the precision of computational procedures for molecular conductivity. Predictions concerning the dependence of conduction on substituent and other effects on the central molecule are found to be meaningful only when they exceed the uncertainties of the effects associated with binding-site variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacik, John -Paul; Klesmith, Justin R.; Whitehead, Timothy A.
The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium andmore » solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Furthermore, greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production.« less
NASA Astrophysics Data System (ADS)
Bozso, F.; Avouris, Ph.
1986-09-01
We report on the low-temperature reaction of ammonia with Si(100)-(2×1). The dangling bonds in the clean Si surface promote NH3 dissociation even at temperatures as low as 90 K. The N atoms thus produced occupy subsurface sites, while the H atoms bind to surface Si atoms, tie up the dangling bonds, and inactivate the surface. Thermal or electronic-excitation-induced hydrogen desorption restores the dangling bonds and the reactivity of the surface. Silicon nitride film growth is achieved at 90 K by simultaneous exposure of the Si surface to NH3 and an electron beam.
The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.
Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M
2011-01-07
Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully understanding the activity of gold are considered.
NASA Astrophysics Data System (ADS)
Erikat, I. A.; Hamad, B. A.
2013-11-01
We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.
Zhang, Ren-Qin; Lee, Tae-Hun; Yu, Byung-Deok; Stampfl, Catherine; Soon, Aloysius
2012-12-28
As a first step towards a microscopic understanding of single-Pt atom-dispersed catalysts on non-conventional TiN supports, we present density-functional theory (DFT) calculations to investigate the adsorption properties of Pt atoms on the pristine TiN(100) surface, as well as the dominant influence of surface defects on the thermodynamic stability of platinized TiN. Optimized atomic geometries, energetics, and analysis of the electronic structure of the Pt/TiN system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM fuel cell operating conditions, i.e. strongly oxidizing conditions, TiN surface vacancies play a crucial role in anchoring the Pt atom for its catalytic function. Whilst considering the energetic stability of the Pt/TiN structures under varying N conditions, embedding Pt at the surface N-vacancy site is found to be the most favorable under N-lean conditions. Thus, the system of embedding Pt at the surface N-vacancy sites on TiN(100) surfaces could be promising catalysts for PEM fuel cells.
Erikat, I A; Hamad, B A
2013-11-07
We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.
Abriata, Luciano Andres
2013-04-01
Protein X-ray structures with non-corrin cobalt(II)-containing sites, either natural or substituting another native ion, were downloaded from the Protein Data Bank and explored to (i) describe which amino acids are involved in their first ligand shells and (ii) analyze cobalt(II)-donor bond lengths in comparison with previously reported target distances, CSD data and EXAFS data. The set of amino acids involved in Co(II) binding is similar to that observed for catalytic Zn(II) sites, i.e. with a large fraction of carboxylate O atoms from aspartate and glutamate and aromatic N atoms from histidine. The computed Co(II)-donor bond lengths were found to depend strongly on structure resolution, an artifact previously detected for other metal-donor distances. Small corrections are suggested for the target bond lengths to the aromatic N atoms of histidines and the O atoms of water and hydroxide. The available target distance for cysteine (Scys) is confirmed; those for backbone O and other donors remain uncertain and should be handled with caution in refinement and modeling protocols. Finally, a relationship between both Co(II)-O bond lengths in bidentate carboxylates is quantified.
Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.
Cao, Xinrui; Fu, Qiang; Luo, Yi
2014-05-14
The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.
The complex nature of calcium cation interactions with phospholipid bilayers
Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz
2016-01-01
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555
The complex nature of calcium cation interactions with phospholipid bilayers
NASA Astrophysics Data System (ADS)
Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz
2016-12-01
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.
Tracing Cytoplasmic Ca2+ Ion and Water Access Points in the Ca2+-ATPase
Musgaard, Maria; Thøgersen, Lea; Schiøtt, Birgit; Tajkhorshid, Emad
2012-01-01
Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) transports two Ca2+ ions across the membrane of the sarco(endo)plasmic reticulum against the concentration gradient, harvesting the required energy by hydrolyzing one ATP molecule during each transport cycle. Although SERCA is one of the best structurally characterized membrane transporters, it is still largely unknown how the transported Ca2+ ions reach their transmembrane binding sites in SERCA from the cytoplasmic side. Here, we performed extended all-atom molecular dynamics simulations of SERCA. The calculated electrostatic potential of the protein reveals a putative mechanism by which cations may be attracted to and bind to the Ca2+-free state of the transporter. Additional molecular dynamics simulations performed on a Ca2+-bound state of SERCA reveal a water-filled pathway that may be used by the Ca2+ ions to reach their buried binding sites from the cytoplasm. Finally, several residues that are involved in attracting and guiding the cations toward the possible entry channel are identified. The results point to a single Ca2+ entry site close to the kinked part of the first transmembrane helix, in a region loaded with negatively charged residues. From this point, a water pathway outlines a putative Ca2+ translocation pathway toward the transmembrane ion-binding sites. PMID:22339863
Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan
2016-03-24
Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the -2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the -1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes.
Shahabadi, Nahid; Fili, Soraya Moradi
2014-01-24
The interaction of mesalamine (5-aminosalicylic acid (5-ASA)) with bovine serum albumin (BSA) was investigated by fluorescence quenching, absorption spectroscopy, circular dichroism (CD) techniques, and molecular docking. Thermodynamic parameters (ΔH<0 and ΔS 0) indicated that the hydrogen bond and electrostatic forces played the major role in the binding of 5-ASA to BSA. The results of CD and UV-vis spectroscopy showed that the binding of this drug to BSA induces some conformational changes in BSA. Displacement experiments predicted that the binding of 5-ASA to BSA is located within domain III, Sudlows site 2, that these observations were substantiated by molecular docking studies. In addition, the docking result shows that the 5-ASA in its anionic form mainly interacts with Gln-416 residue through one hydrogen bond between H atom of 5-ASA anion and the adjacent O atom of the hydroxyl group of Gln-416. Copyright © 2013 Elsevier B.V. All rights reserved.
Atomic and Molecular Adsorption on Cu(111)
Xu, Lang; Lin, Joshua; Bai, Yunhai; ...
2018-05-15
Here, due to the wide use of copper-based catalysts in industrial chemical processes, fundamental understanding of the interactions between copper surfaces and various reaction intermediates is highly desired. Here, we performed periodic, self-consistent density functional theory (DFT-GGA) calculations to study the adsorption of five atomic species (H, C, N, O, and S), seven molecular species (NH 3, CH 4, N 2, CO, HCN, NO, and HCOOH), and 13 molecular fragments (CH, CH 2, CH 3, NH, NH 2, OH, CN, COH, HCO, COOH, HCOO, NOH, and HNO) on the Cu(111) surface at a coverage of 0.25 monolayer. The preferred bindingmore » site, binding energy, and the corresponding surface deformation energy of each species were determined, as well as the estimated diffusion barrier and diffusion pathway. The binding strengths calculated using the PW91 functional decreased in the following order: CH > C > O > S > CN > NH > N > CH 2 > OH > HCOO > COH > H > NH 2 > NOH > COOH > HNO > HCO > CH 3 > NO > CO > NH 3 > HCOOH. No stable binding structures were observed for N 2, HCN, and CH 4. The adsorbate–surface and intramolecular vibrational modes of all the adsorbates at their preferred binding sites were deternined. Using the calculated adsorption energetics, potential energy surfaces were constructed for the direct decomposition of CO, CO 2, NO, N 2, NH 3, and CH 4 and the hydrogen-assisted decomposition of CO, CO 2, and NO.« less
Manzoni, Francesco; Wallerstein, Johan; Schrader, Tobias E; Ostermann, Andreas; Coates, Leighton; Akke, Mikael; Blakeley, Matthew P; Oksanen, Esko; Logan, Derek T
2018-05-24
The medically important drug target galectin-3 binds galactose-containing moieties on glycoproteins through an intricate pattern of hydrogen bonds to a largely polar surface-exposed binding site. All successful inhibitors of galectin-3 to date have been based on mono- or disaccharide cores closely resembling natural ligands. A detailed understanding of the H-bonding networks in these natural ligands will provide an improved foundation for the design of novel inhibitors. Neutron crystallography is an ideal technique to reveal the geometry of hydrogen bonds because the positions of hydrogen atoms are directly detected rather than being inferred from the positions of heavier atoms as in X-ray crystallography. We present three neutron crystal structures of the C-terminal carbohydrate recognition domain of galectin-3: the ligand-free form and the complexes with the natural substrate lactose and with glycerol, which mimics important interactions made by lactose. The neutron crystal structures reveal unambiguously the exquisite fine-tuning of the hydrogen bonding pattern in the binding site to the natural disaccharide ligand. The ligand-free structure shows that most of these hydrogen bonds are preserved even when the polar groups of the ligand are replaced by water molecules. The protonation states of all histidine residues in the protein are also revealed and correlate well with NMR observations. The structures give a solid starting point for molecular dynamics simulations and computational estimates of ligand binding affinity that will inform future drug design.
Atomic and Molecular Adsorption on Cu(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lang; Lin, Joshua; Bai, Yunhai
Here, due to the wide use of copper-based catalysts in industrial chemical processes, fundamental understanding of the interactions between copper surfaces and various reaction intermediates is highly desired. Here, we performed periodic, self-consistent density functional theory (DFT-GGA) calculations to study the adsorption of five atomic species (H, C, N, O, and S), seven molecular species (NH 3, CH 4, N 2, CO, HCN, NO, and HCOOH), and 13 molecular fragments (CH, CH 2, CH 3, NH, NH 2, OH, CN, COH, HCO, COOH, HCOO, NOH, and HNO) on the Cu(111) surface at a coverage of 0.25 monolayer. The preferred bindingmore » site, binding energy, and the corresponding surface deformation energy of each species were determined, as well as the estimated diffusion barrier and diffusion pathway. The binding strengths calculated using the PW91 functional decreased in the following order: CH > C > O > S > CN > NH > N > CH 2 > OH > HCOO > COH > H > NH 2 > NOH > COOH > HNO > HCO > CH 3 > NO > CO > NH 3 > HCOOH. No stable binding structures were observed for N 2, HCN, and CH 4. The adsorbate–surface and intramolecular vibrational modes of all the adsorbates at their preferred binding sites were deternined. Using the calculated adsorption energetics, potential energy surfaces were constructed for the direct decomposition of CO, CO 2, NO, N 2, NH 3, and CH 4 and the hydrogen-assisted decomposition of CO, CO 2, and NO.« less
Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schubert,H.; Hill, C.
Mutations in the gene encoding human ATP:cobalamin adenosyltransferase (hATR) can result in the metabolic disorder known as methylmalonic aciduria (MMA). This enzyme catalyzes the final step in the conversion of cyanocobalamin (vitamin B{sub 12}) to the essential human cofactor adenosylcobalamin. Here we present the 2.5 {angstrom} crystal structure of ATP bound to hATR refined to an R{sub free} value of 25.2%. The enzyme forms a tightly associated trimer, where the monomer comprises a five-helix bundle and the active sites lie on the subunit interfaces. Only two of the three active sites within the trimer contain the bound ATP substrate, therebymore » providing examples of apo- and substrate-bound-active sites within the same crystal structure. Comparison of the empty and occupied sites indicates that twenty residues at the enzyme's N-terminus become ordered upon binding of ATP to form a novel ATP-binding site and an extended cleft that likely binds cobalamin. The structure explains the role of 20 invariant residues; six are involved in ATP binding, including Arg190, which hydrogen bonds to ATP atoms on both sides of the scissile bond. Ten of the hydrogen bonds are required for structural stability, and four are in positions to interact with cobalamin. The structure also reveals how the point mutations that cause MMA are deficient in these functions.« less
Adsorption and dynamics of Si atoms at the monolayer Pb/Si(111) surface
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Fang, Chuang-Kai; Lee, Chih-Hao; Hwang, Ing-Shouh
2017-06-01
In this work, we studied the adsorption behavior of deposited Si atoms along with their diffusion and other dynamic processes on a Pb monolayer-covered Si(111) surface from 125 to 230 K using a variable-temperature scanning tunneling microscope. The Pb-covered Si(111) surface forms a low-symmetry rowlike (√{7 }×√{3 } ) structure in this temperature range and the Si atoms bind favorably to two specific on-top sites (T1 A and T1 B) on the trimer row after deposition at the sample temperature of ˜125 K . The Si atoms were immobile at low temperatures and started to switch between the two neighboring T1 A and T1 B sites within the same trimer when the temperature was raised to ˜150 K . When the temperature was raised above ˜160 K , the adsorbed Si atoms could hop to other trimers along the same trimer row. Below ˜170 K , short hops to adjacent trimers dominated, but long hops dominated at temperatures above ˜170 K . The activation energy and prefactor for the Si atoms diffusion were derived through analysis of continuous-time imaging at temperatures from 160 to 174 K. In addition, irreversible aggregation of single Si atoms into Si clusters started to occur at the phase boundaries or defective sites at temperatures above ˜170 K . At temperature above ˜180 K , nearly all Si atoms aggregated into clusters, which may have important implications for the atomic mechanism of epitaxial growth of Si on the Pb-covered Si(111) surface. In addition, our study provides strong evidence for breaking in the mirror symmetry in the (√{7 }×√{3 } )-Pb structure, which has implications for the atomic model of this controversial structure.
Protein arginine methyltransferase 7 has a novel homodimer-like structure formed by tandem repeats.
Hasegawa, Morio; Toma-Fukai, Sachiko; Kim, Jun-Dal; Fukamizu, Akiyoshi; Shimizu, Toshiyuki
2014-05-21
Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyze the transfer of methyl groups from S-adenosyl-l-methionine to nitrogen atoms on arginine residues. Here, we describe the crystal structure of Caenorhabditis elegans PRMT7 in complex with its reaction product S-adenosyl-L-homocysteine. The structural data indicated that PRMT7 harbors two tandem repeated PRMT core domains that form a novel homodimer-like structure. S-adenosyl-L-homocysteine bound to the N-terminal catalytic site only; the C-terminal catalytic site is occupied by a loop that inhibits cofactor binding. Mutagenesis demonstrated that only the N-terminal catalytic site of PRMT7 is responsible for cofactor binding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Kubli-Garfias, Carlos; Vázquez-Ramírez, Ricardo; Trejo-Muñoz, Cynthia; Berber, Arturo
2017-01-01
Imidazoquinolines are powerful immunostimulants (IMMS) that function through Toll-like receptors, particularly TLR7 and TLR8. In addition to enhancing the immune response, IMMS also function as antineoplastic drugs and vaccine adjuvants. These small compounds display almost the same molecular structure, except in some cases in which atom in position 1 varies and changes the imidazole characteristics. A variable acyclic side chain is also always attached at atom in position 2, while another chain may be attached at atom in position 1. These structural differences alter immune responses, such as the production of interferon regulatory factor and nuclear factor-κB (IRF-NFκB). In this work, quantum mechanics theory and computational chemistry methods were applied to study the physicochemical properties of the crystal binding site of TLR8 complexed with the following six IMMS molecules: Hybrid-2, XG1-236, DS802, CL075, CL097 and R848 (resiquimod). The PDB IDs of the crystals were: 4R6A, 4QC0, 4QBZ, 3W3K, 3W3J, and 3W3N respectively. Thus, were calculated, the total energy, solvation energy, interaction energy (instead of free energy) of the system and interaction energy of the polar region of the IMMS. Additionally, the dipole moment, electrostatic potential, polar surface, atomic charges, hydrogen bonds, and polar and hydrophobic interactions, among others, were assessed. Together, these properties revealed important differences among the six TLR8-immunostimulant complexes, reflected as different interaction energies and therefore different electrostatic environments and binding energies. Remarkably, the interaction energy of a defined polar region composed of the highly polarized N3, N5 atoms and the N11 amino group, acted as a polar pharmacophore that correlates directly with the reported immunopharmacological potency of the six complexed molecules. Based on these results, it was concluded that accurate physicochemical analysis of the crystal binding site could reveal the binding energy (measured as interaction energy) and associated molecular mechanism of action between IMMS and TLR8. These findings may facilitate the development and design of improved small molecules with IMMS properties that are targeted to the TLR system and have enhanced pharmacological effectiveness and reduced toxicity.
Kubli-Garfias, Carlos; Vázquez-Ramírez, Ricardo; Trejo-Muñoz, Cynthia; Berber, Arturo
2017-01-01
Imidazoquinolines are powerful immunostimulants (IMMS) that function through Toll-like receptors, particularly TLR7 and TLR8. In addition to enhancing the immune response, IMMS also function as antineoplastic drugs and vaccine adjuvants. These small compounds display almost the same molecular structure, except in some cases in which atom in position 1 varies and changes the imidazole characteristics. A variable acyclic side chain is also always attached at atom in position 2, while another chain may be attached at atom in position 1. These structural differences alter immune responses, such as the production of interferon regulatory factor and nuclear factor-κB (IRF-NFκB). In this work, quantum mechanics theory and computational chemistry methods were applied to study the physicochemical properties of the crystal binding site of TLR8 complexed with the following six IMMS molecules: Hybrid-2, XG1-236, DS802, CL075, CL097 and R848 (resiquimod). The PDB IDs of the crystals were: 4R6A, 4QC0, 4QBZ, 3W3K, 3W3J, and 3W3N respectively. Thus, were calculated, the total energy, solvation energy, interaction energy (instead of free energy) of the system and interaction energy of the polar region of the IMMS. Additionally, the dipole moment, electrostatic potential, polar surface, atomic charges, hydrogen bonds, and polar and hydrophobic interactions, among others, were assessed. Together, these properties revealed important differences among the six TLR8-immunostimulant complexes, reflected as different interaction energies and therefore different electrostatic environments and binding energies. Remarkably, the interaction energy of a defined polar region composed of the highly polarized N3, N5 atoms and the N11 amino group, acted as a polar pharmacophore that correlates directly with the reported immunopharmacological potency of the six complexed molecules. Based on these results, it was concluded that accurate physicochemical analysis of the crystal binding site could reveal the binding energy (measured as interaction energy) and associated molecular mechanism of action between IMMS and TLR8. These findings may facilitate the development and design of improved small molecules with IMMS properties that are targeted to the TLR system and have enhanced pharmacological effectiveness and reduced toxicity. PMID:28582454
Energetics of a Li Atom adsorbed on B/N doped graphene with monovacancy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Babita, E-mail: babitabaghla15@gmail.com; Department of Physics, Punjabi University, Patiala 147002; Jindal, V.K.
We use density functional theory (DFT) to study the adsorption properties and diffusion of Li atom across B/N-pyridinic graphene. Regardless of the dopant type, B atoms of B-pyridinic graphene lose electron density. On the other hand, N atoms (p-type dopants) have tendency to gain electron density in N-pyridinic graphene. Higher chemical reactivity and electronic conductivity of B/N-pyridinic graphene are responsible for stronger binding of Li with the substrates as compared to pristine graphene. The binding energy of Li with B/N-pyridinic graphene exceeds the cohesive energy of bulk Li, making it energetically unfavourable for Li to form clusters on these substrates.more » Li atom gets better adsorbed on N-pyridinic graphene due to an additional p-p hybridization of the orbitals while Li on B-pyridinic prefers the ionic bonding. Also, significant distortion of N-pyridinic graphene upon Li adsorption is a consequence of the change in bonding mechanism between Li atom and the substrate. Our results show that bonding character and hence binding energies between Li and graphene can be tuned with the help of B/N doping of monovacancy defects. Further, the sites for most stable adsorption are different for the two types of doped and defective graphene, leading to greater Li uptake capacity of B-pyridinic graphene near the defect. In addition, B-pyridinic graphene offering lower diffusion barrier, ensures better Li kinetics. Thus, B-pyridinic graphene presents itself as a better anode material for LIBs as compared to N-pyridinic graphene. - Graphical abstract: Adsorption and diffusion of Li atom across the B/N doped monovacancy graphene is studied using ab-initio DFT calculations. Our results show that bonding mechanism and binding of Li with graphene can be tuned with the help of N/B doping of defects. Also, B-pyridinic graphene presents itself as a better anode material for lithium ion batteries as compared to N-pyridinic graphene. Display Omitted - Highlights: • Density functional theory (DFT) calculations are employed to study the effect of B/N doping of monovacancy graphene on the adsorption and diffusion of Li atom across the sheet using VASP. • Higher chemical reactivity and electronic conductivity of B/N-pyridinic graphene (p-type semiconductors) as compared to pristine graphene lead to stronger binding of Li. It also exceeds the cohesive energy of bulk Li. Thus, uniform distribution of Li atoms is possible on both substrates. • Li gets adsorbed stably at centre of defect in N-pyridinic graphene. B-pyridinic graphene has stable adsorption of Li at hollow site of hexagon, neighboring the defect, having only one boron atom. It leads to maximum Li uptake capacity of B-pyridinic graphene. • Li gets better adsorbed on N-pyridinic graphene due to an additional p-p hybridization of the orbitals. This change in bonding mechanism causes significant distortion of the substrate. On the other hand, Li on B-pyridinic graphene shows ionic bonding character. • B-pyridinic graphene offers lower energy barrier for Li to diffuse across the substrate in comparison to N-pyridinic graphene. Thus, B-pyridinic graphene presents itself as a better anode material for lithium ion batteries due to optimal Li adsorption and better diffusion kinetics.« less
Melnikov, Sergey V.; Söll, Dieter; Steitz, Thomas A.
2016-01-01
Abstract Cisplatin is a widely prescribed anticancer drug, which triggers cell death by covalent binding to a broad range of biological molecules. Among cisplatin targets, cellular RNAs remain the most poorly characterized molecules. Although cisplatin was shown to inactivate essential RNAs, including ribosomal, spliceosomal and telomeric RNAs, cisplatin binding sites in most RNA molecules are unknown, and therefore it remains challenging to study how modifications of RNA by cisplatin contributes to its toxicity. Here we report a 2.6Å-resolution X-ray structure of cisplatin-modified 70S ribosome, which describes cisplatin binding to the ribosome and provides the first nearly atomic model of cisplatin–RNA complex. We observe nine cisplatin molecules bound to the ribosome and reveal consensus structural features of the cisplatin-binding sites. Two of the cisplatin molecules modify conserved functional centers of the ribosome—the mRNA-channel and the GTPase center. In the mRNA-channel, cisplatin intercalates between the ribosome and the messenger RNA, suggesting that the observed inhibition of protein synthesis by cisplatin is caused by impaired mRNA-translocation. Our structure provides an insight into RNA targeting and inhibition by cisplatin, which can help predict cisplatin-binding sites in other cellular RNAs and design studies to elucidate a link between RNA modifications by cisplatin and cisplatin toxicity. PMID:27079977
NASA Astrophysics Data System (ADS)
Ishiuchi, Shun-ichi; Sakai, Makoto; Tsuchida, Yuji; Takeda, Akihiro; Kawashima, Yasutake; Dopfer, Otto; Müller-Dethlefs, Klaus; Fujii, Masaaki
2007-09-01
IR spectra of phenol-Arn (PhOH-Arn) clusters with n =1 and 2 were measured in the neutral and cationic electronic ground states in order to determine the preferential intermolecular ligand binding motifs, hydrogen bonding (hydrophilic interaction) versus π bonding (hydrophobic interaction). Analysis of the vibrational frequencies of the OH stretching motion, νOH, observed in nanosecond IR spectra demonstrates that neutral PhOH-Ar and PhOH -Ar2 as well as cationic PhOH +-Ar have a π-bound structure, in which the Ar atoms bind to the aromatic ring. In contrast, the PhOH +-Ar2 cluster cation is concluded to have a H-bound structure, in which one Ar atom is hydrogen-bonded to the OH group. This π →H binding site switching induced by ionization was directly monitored in real time by picosecond time-resolved IR spectroscopy. The π-bound νOH band is observed just after the ionization and disappears simultaneously with the appearance of the H-bound νOH band. The analysis of the picosecond IR spectra demonstrates that (i) the π →H site switching is an elementary reaction with a time constant of ˜7ps, which is roughly independent of the available internal vibrational energy, (ii) the barrier for the isomerization reaction is rather low(<100cm-1), (iii) both the position and the width of the H-bound νOH band change with the delay time, and the time evolution of these spectral changes can be rationalized by intracluster vibrational energy redistribution occurring after the site switching. The observation of the ionization-induced switch from π bonding to H bonding in the PhOH +-Ar2 cation corresponds to the first manifestation of an intermolecular isomerization reaction in a charged aggregate.
Kitevski-LeBlanc, Julianne; Fradet-Turcotte, Amélie; Portella, Guillem; Yuwen, Tairan; Panier, Stephanie; Duan, Shili; Canny, Marella D; van Ingen, Hugo; Arrowsmith, Cheryl H; Rubinstein, John L; Vendruscolo, Michele; Durocher, Daniel; Kay, Lewis E
2017-01-01
Site-specific histone ubiquitylation plays a central role in orchestrating the response to DNA double-strand breaks (DSBs). DSBs elicit a cascade of events controlled by the ubiquitin ligase RNF168, which promotes the accumulation of repair factors such as 53BP1 and BRCA1 on the chromatin flanking the break site. RNF168 also promotes its own accumulation, and that of its paralog RNF169, but how they recognize ubiquitylated chromatin is unknown. Using methyl-TROSY solution NMR spectroscopy and molecular dynamics simulations, we present an atomic resolution model of human RNF169 binding to a ubiquitylated nucleosome, and validate it by electron cryomicroscopy. We establish that RNF169 binds to ubiquitylated H2A-Lys13/Lys15 in a manner that involves its canonical ubiquitin-binding helix and a pair of arginine-rich motifs that interact with the nucleosome acidic patch. This three-pronged interaction mechanism is distinct from that by which 53BP1 binds to ubiquitylated H2A-Lys15 highlighting the diversity in site-specific recognition of ubiquitylated nucleosomes. DOI: http://dx.doi.org/10.7554/eLife.23872.001 PMID:28406400
The integrity of the G2421-C2395 base pair in the ribosomal E-site is crucial for protein synthesis
Koch, Miriam; Clementi, Nina; Rusca, Nicola; Vögele, Paul; Erlacher, Matthias; Polacek, Norbert
2015-01-01
During the elongation cycle of protein biosynthesis, tRNAs traverse through the ribosome by consecutive binding to the 3 ribosomal binding sites (A-, P-, and E- sites). While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Previous studies suggested an important functional interaction of the terminal residue A76 of E-tRNA with the nucleobase of the universally conserved 23S rRNA residue C2394. Using an atomic mutagenesis approach to introduce non-natural nucleoside analogs into the 23S rRNA, we could show that removal of the nucleobase or the ribose 2'-OH at C2394 had no effect on protein synthesis. On the other hand, our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis. PMID:25826414
Computational Design of Ligand Binding Proteins with High Affinity and Selectivity
Dou, Jiayi; Doyle, Lindsey; Nelson, Jorgen W.; Schena, Alberto; Jankowski, Wojciech; Kalodimos, Charalampos G.; Johnsson, Kai; Stoddard, Barry L.; Baker, David
2014-01-01
The ability to design proteins with high affinity and selectivity for any given small molecule would have numerous applications in biosensing, diagnostics, and therapeutics, and is a rigorous test of our understanding of the physiochemical principles that govern molecular recognition phenomena. Attempts to design ligand binding proteins have met with little success, however, and the computational design of precise molecular recognition between proteins and small molecules remains an “unsolved problem”1. We describe a general method for the computational design of small molecule binding sites with pre-organized hydrogen bonding and hydrophobic interfaces and high overall shape complementary to the ligand, and use it to design protein binding sites for the steroid digoxigenin (DIG). Of 17 designs that were experimentally characterized, two bind DIG; the highest affinity design has the lowest predicted interaction energy and the most pre-organized binding site in the set. A comprehensive binding-fitness landscape of this design generated by library selection and deep sequencing was used to guide optimization of binding affinity to a picomolar level, and two X-ray co-crystal structures of optimized complexes show atomic level agreement with the design models. The designed binder has a high selectivity for DIG over the related steroids digitoxigenin, progesterone, and β-estradiol, which can be reprogrammed through the designed hydrogen-bonding interactions. Taken together, the binding fitness landscape, co-crystal structures, and thermodynamic binding parameters illustrate how increases in binding affinity can result from distal sequence changes that limit the protein ensemble to conformers making the most energetically favorable interactions with the ligand. The computational design method presented here should enable the development of a new generation of biosensors, therapeutics, and diagnostics. PMID:24005320
Prigozhin, Daniil M; Papavinasasundaram, Kadamba G; Baer, Christina E; Murphy, Kenan C; Moskaleva, Alisa; Chen, Tony Y; Alber, Tom; Sassetti, Christopher M
2016-10-28
Monitoring the environment with serine/threonine protein kinases is critical for growth and survival of Mycobacterium tuberculosis, a devastating human pathogen. Protein kinase B (PknB) is a transmembrane serine/threonine protein kinase that acts as an essential regulator of mycobacterial growth and division. The PknB extracellular domain (ECD) consists of four repeats homologous to penicillin-binding protein and serine/threonine kinase associated (PASTA) domains, and binds fragments of peptidoglycan. These properties suggest that PknB activity is modulated by ECD binding to peptidoglycan substructures, however, the molecular mechanisms underpinning PknB regulation remain unclear. In this study, we report structural and genetic characterization of the PknB ECD. We determined the crystal structures of overlapping ECD fragments at near atomic resolution, built a model of the full ECD, and discovered a region on the C-terminal PASTA domain that has the properties of a ligand-binding site. Hydrophobic interaction between this surface and a bound molecule of citrate was observed in a crystal structure. Our genetic analyses in M. tuberculosis showed that nonfunctional alleles were produced either by deletion of any of single PASTA domain or by mutation of individual conserved residues lining the putative ligand-binding surface of the C-terminal PASTA repeat. These results define two distinct structural features necessary for PknB signal transduction, a fully extended ECD and a conserved, membrane-distal putative ligand-binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Narczyk, Marta; Bertoša, Branimir; Papa, Lucija; Vuković, Vedran; Leščić Ašler, Ivana; Wielgus-Kutrowska, Beata; Bzowska, Agnieszka; Luić, Marija; Štefanić, Zoran
2018-04-01
Even with decades of research, purine nucleoside phosphorylases (PNPs) are enzymes whose mechanism is yet to be fully understood. This is especially true in the case of hexameric PNPs, and is probably, in part, due to their complex oligomeric nature and a whole spectrum of active site conformations related to interactions with different ligands. Here we report an extensive structural characterization of the apo forms of hexameric PNP from Helicobacter pylori (HpPNP), as well as its complexes with phosphate (P i ) and an inhibitor, formycin A (FA), together with kinetic, binding, docking and molecular dynamics studies. X-ray structures show previously unseen distributions of open and closed active sites. Microscale thermophoresis results indicate that a two-site model describes P i binding, while a three-site model is needed to characterize FA binding, irrespective of P i presence. The latter may be related to the newly found nonstandard mode of FA binding. The ternary complex of the enzyme with P i and FA shows, however, that P i binding stabilizes the standard mode of FA binding. Surprisingly, HpPNP has low affinity towards the natural substrate adenosine. Molecular dynamics simulations show that P i moves out of most active sites, in accordance with its weak binding. Conformational changes between nonstandard and standard binding modes of nucleoside are observed during the simulations. Altogether, these findings show some unique features of HpPNP and provide new insights into the functioning of the active sites, with implications for understanding the complex mechanism of catalysis of this enzyme. The atomic coordinates and structure factors have been deposited in the Protein Data Bank: with accession codes 6F52 (HpPNPapo_1), 6F5A (HpPNPapo_2), 6F5I (HpPNPapo_3), 5LU0 (HpPNP_PO4), 6F4W (HpPNP_FA) and 6F4X (HpPNP_PO4_FA). Purine nucleoside orthophosphate ribosyl transferase, EC2.4.2.1, UniProtID: P56463. © 2018 Federation of European Biochemical Societies.
Density functional theory and surface reactivity study of bimetallic AgnYm (n+m = 10) clusters
NASA Astrophysics Data System (ADS)
Hussain, Riaz; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid; Hussain, Riaz; Hanif, Usman; Ayub, Khurshid
2018-06-01
Density functional theory calculations have been performed on pure silver (Agn), yttrium (Ym) and bimetallic silver yttrium clusters AgnYm (n + m = 2-10) for reactivity descriptors in order to realize sites for nucleophilic and electrophilic attack. The reactivity descriptors of the clusters, studied as a function of cluster size and shape, reveal the presence of different type of reactive sites in a cluster. The size and shape of the pure silver, yttrium and bimetallic silver yttrium cluster (n = 2-10) strongly influences the number and position of active sites for an electrophilic and/or nucleophilic attack. The trends of reactivities through reactivity descriptors are confirmed through comparison with experimental data for CO binding with silver clusters. Moreover, the adsorption of CO on bimetallic silver yttrium clusters is also evaluated. The trends of binding energies support the reactivity descriptors values. Doping of pure cluster with the other element also influence the hardness, softness and chemical reactivity of the clusters. The softness increases as we increase the number of silver atoms in the cluster, whereas the hardness decreases. The chemical reactivity increases with silver doping whereas it decreases by increasing yttrium concentration. Silver atoms are nucleophilic in small clusters but changed to electrophilic in large clusters.
Schenk, Gerhard; Gahan, Lawrence R.; Carrington, Lyle E.; Mitić, Nataša; Valizadeh, Mohsen; Hamilton, Susan E.; de Jersey, John; Guddat, Luke W.
2005-01-01
Purple acid phosphatases (PAPs) are a family of binuclear metalloenzymes that catalyze the hydrolysis of phosphoric acid esters and anhydrides. A PAP in sweet potato has a unique, strongly antiferromagnetically coupled Fe(III)–Mn(II) center and is distinguished from other PAPs by its increased catalytic efficiency for a range of activated and unactivated phosphate esters, its strict requirement for Mn(II), and the presence of a μ-oxo bridge at pH 4.90. This enzyme displays maximum catalytic efficiency (kcat/Km) at pH 4.5, whereas its catalytic rate constant (kcat) is maximal at near-neutral pH, and, in contrast to other PAPs, its catalytic parameters are not dependent on the pKa of the leaving group. The crystal structure of the phosphate-bound Fe(III)–Mn(II) PAP has been determined to 2.5-Å resolution (final Rfree value of 0.256). Structural comparisons of the active site of sweet potato, red kidney bean, and mammalian PAPs show several amino acid substitutions in the sweet potato enzyme that can account for its increased catalytic efficiency. The phosphate molecule binds in an unusual tripodal mode to the two metal ions, with two of the phosphate oxygen atoms binding to Fe(III) and Mn(II), a third oxygen atom bridging the two metal ions, and the fourth oxygen pointing toward the substrate binding pocket. This binding mode is unique among the known structures in this family but is reminiscent of phosphate binding to urease and of sulfate binding to λ protein phosphatase. The structure and kinetics support the hypothesis that the bridging oxygen atom initiates hydrolysis. PMID:15625111
Barua, Bipasha; Fagnant, Patricia M; Winkelmann, Donald A; Trybus, Kathleen M; Hitchcock-DeGregori, Sarah E
2013-04-05
Actin filament cytoskeletal and muscle functions are regulated by actin binding proteins using a variety of mechanisms. A universal actin filament regulator is the protein tropomyosin, which binds end-to-end along the length of the filament. The actin-tropomyosin filament structure is unknown, but there are atomic models in different regulatory states based on electron microscopy reconstructions, computational modeling of actin-tropomyosin, and docking of atomic resolution structures of tropomyosin to actin filament models. Here, we have tested models of the actin-tropomyosin interface in the "closed state" where tropomyosin binds to actin in the absence of myosin or troponin. Using mutagenesis coupled with functional analyses, we determined residues of actin and tropomyosin required for complex formation. The sites of mutations in tropomyosin were based on an evolutionary analysis and revealed a pattern of basic and acidic residues in the first halves of the periodic repeats (periods) in tropomyosin. In periods P1, P4, and P6, basic residues are most important for actin affinity, in contrast to periods P2, P3, P5, and P7, where both basic and acidic residues or predominantly acidic residues contribute to actin affinity. Hydrophobic interactions were found to be relatively less important for actin binding. We mutated actin residues in subdomains 1 and 3 (Asp(25)-Glu(334)-Lys(326)-Lys(328)) that are poised to make electrostatic interactions with the residues in the repeating motif on tropomyosin in the models. Tropomyosin failed to bind mutant actin filaments. Our mutagenesis studies provide the first experimental support for the atomic models of the actin-tropomyosin interface.
Adsorption of magnetic transition metals on borophene: an ab initio study
NASA Astrophysics Data System (ADS)
Tomar, Shalini; Rastogi, Priyank; Bhadoria, Bhagirath Singh; Bhowmick, Somnath; Chauhan, Yogesh Singh; Agarwal, Amit
2018-03-01
We explore the doping strategy for adsorbing different metallic 3d transition-metal atoms (Fe, Co and Ni) on two different polymorphs of borophene monolayer: 2-Pmmn and 8-Pmmn borophene. Both have energy dispersion, with 2-Pmmn borophene being metallic in nature, and 8-Pmmn borophene being semi-metallic with a tilted Dirac cone like dispersion. Using density functional theory based calculations, we find the most suitable adsorption site for each adatom, and calculate the binding energy, binding energy per atom, charge transfer, density of states and magnetic moment of the resulting borophene-adatom system. We show that Ni is the most effective for electron doping for both the polymorphs. Additionally Fe is the most suitable to magnetically dope 8-Pmmn borophene, while Co is the best for magnetically doping 2-Pmmn borophene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Richa Naja, E-mail: ltprichanaja@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
The electronic structure and hydrogen storage capability of Yttrium-doped BNNTs has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site in the center of the hexagonal ring with a binding energy of 0.8048eV. Decorating by Y makes the system half-metallic and magnetic with a magnetic moment of 1.0µ{sub B}. Y decorated Boron-Nitride (8,0) nanotube can adsorb up to five hydrogen molecules whose average binding energy is computed as 0.5044eV. All the hydrogen molecules are adsorbed with an average desorption temperature of 644.708 K. Taking that the Y atoms can be placed only in alternatemore » hexagons, the implied wt% comes out to be 5.31%, a relatively acceptable value for hydrogen storage materials. Thus, this system can serve as potential hydrogen storage medium.« less
PDZ binding to the BAR domain of PICK1 is elucidated by coarse-grained molecular dynamics.
He, Yi; Liwo, Adam; Weinstein, Harel; Scheraga, Harold A
2011-01-07
A key regulator of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor traffic, PICK1 is known to interact with over 40 other proteins, including receptors, transporters and ionic channels, and to be active mostly as a homodimer. The current lack of a complete PICK1 structure determined at atomic resolution hinders the elucidation of its functional mechanisms. Here, we identify interactions between the component PDZ and BAR domains of PICK1 by calculating possible binding sites for the PDZ domain of PICK1 (PICK1-PDZ) to the homology-modeled, crescent-shaped dimer of the PICK1-BAR domain using multiplexed replica-exchange molecular dynamics (MREMD) and canonical molecular dynamics simulations with the coarse-grained UNRES force field. The MREMD results show that the preferred binding site for the single PDZ domain is the concave cavity of the BAR dimer. A second possible binding site is near the N-terminus of the BAR domain that is linked directly to the PDZ domain. Subsequent short canonical molecular dynamics simulations used to determine how the PICK1-PDZ domain moves to the preferred binding site on the BAR domain of PICK1 revealed that initial hydrophobic interactions drive the progress of the simulated binding. Thus, the concave face of the BAR dimer accommodates the PDZ domain first by weak hydrophobic interactions and then the PDZ domain slides to the center of the concave face, where more favorable hydrophobic interactions take over. Copyright © 2010 Elsevier Ltd. All rights reserved.
Bacik, John -Paul; Klesmith, Justin R.; Whitehead, Timothy A.; ...
2015-09-09
The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium andmore » solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Furthermore, greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production.« less
NASA Astrophysics Data System (ADS)
Li, Huilin; Wongkongkathep, Piriya; Van Orden, Steve L.; Ogorzalek Loo, Rachel R.; Loo, Joseph A.
2014-12-01
"Native" mass spectrometry (MS) has been proven to be increasingly useful for structural biology studies of macromolecular assemblies. Using horse liver alcohol dehydrogenase (hADH) and yeast alcohol dehydrogenase (yADH) as examples, we demonstrate that rich information can be obtained in a single native top-down MS experiment using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Beyond measuring the molecular weights of the protein complexes, isotopic mass resolution was achieved for yeast ADH tetramer (147 kDa) with an average resolving power of 412,700 at m/z 5466 in absorption mode, and the mass reflects that each subunit binds to two zinc atoms. The N-terminal 89 amino acid residues were sequenced in a top-down electron capture dissociation (ECD) experiment, along with the identifications of the zinc binding site at Cys46 and a point mutation (V58T). With the combination of various activation/dissociation techniques, including ECD, in-source dissociation (ISD), collisionally activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD), 40% of the yADH sequence was derived directly from the native tetramer complex. For hADH, native top-down ECD-MS shows that both E and S subunits are present in the hADH sample, with a relative ratio of 4:1. Native top-down ISD of the hADH dimer shows that each subunit (E and S chains) binds not only to two zinc atoms, but also the NAD/NADH ligand, with a higher NAD/NADH binding preference for the S chain relative to the E chain. In total, 32% sequence coverage was achieved for both E and S chains.
Vanommeslaeghe, Kenno; Van Alsenoy, Christian; De Proft, Frank; Martins, José C; Tourwé, Dirk; Geerlings, Paul
2003-08-21
Histone deacetylase (HDAC) inhibitors have recently attracted considerable interest because of their therapeutic potential for the treatment of cell proliferative diseases. An X-ray structure of a very potent inhibitor, Trichostatin A (TSA), bound to HDLP (an HDAC analogue isolated from Aquifex aeolicus), is available. From this structure, an active site model (322 atoms), relevant for the binding of TSA and structural analogues, has been derived, and TSA has been minimized in this active site at HF 3-21G* level. The resulting conformation is in excellent accordance with the X-ray structure, and indicates a deprotonation of the hydroxamic acid in TSA by His 131. Also, a water molecule was minimized in the active site. In addition to a similar deprotonation, in accordance with a possible catalytic mechanism of HDAC as proposed by Finnin et al. (M. S. Finnin, J. R. Donigian, A. Cohen, V. M. Richon, R. A. Rifkind and P. A. Marks, Nature, 1999, 401, 188-193), a displacement of the resulting OH- ion in the active site was observed. Based on these results, the difference in energy of binding between TSA and water was calculated. The resulting value is realistic in respect to experimental binding affinities. Furthermore, the mechanism of action of the His 131-Asp 166 charge relay system was investigated. Although the Asp residue in this motif is known to substantially increase the basicity of the His residue, no proton transfer from His 131 to Asp 166 was observed on binding of TSA or water. However, in the empty protonated active site, this proton transfer does occur.
NASA Astrophysics Data System (ADS)
Lyon, Jonathan T.; Gruene, Philipp; Fielicke, André; Meijer, Gerard; Rayner, David M.
2009-11-01
The binding of carbon monoxide to iron, ruthenium, rhenium, and tungsten clusters is studied by means of infrared multiple photon dissociation spectroscopy. The CO stretching mode is used to probe the interaction of the CO molecule with the metal clusters and thereby the activation of the C-O bond. CO is found to adsorb molecularly to atop positions on iron clusters. On ruthenium and rhenium clusters it also binds molecularly. In the case of ruthenium, binding is predominantly to atop sites, however higher coordinated CO binding is also observed for both metals and becomes prevalent for rhenium clusters containing more than nine atoms. Tungsten clusters exhibit a clear size dependence for molecular versus dissociative CO binding. This behavior denotes the crossover to the purely dissociative CO binding on the earlier transition metals such as tantalum.
Ping, Gang; Lv, Gang; Gutmann, Sebastian; Chen, Chen; Zhang, Renyun; Wang, Xuemei
2006-01-01
The interaction between procaine hydrochloride and DNA/DNA bases in the absence and presence of cadmium sulfide (CdS) nanoparticles has been explored in this study by using differential pulse voltammetry, atomic force microscopy (AFM) and so on, which illustrates the different binding behaviors of procaine hydrochloride with different DNA bases. The results clearly indicate that the binding of purines to procaine hydrochloride is stronger than that of pyrimidines and the binding affinity is in the order of G > A > T > C. In addition, it was observed that the presence of CdS nanoparticles could remarkably enhance the probing sensitivity for the interaction between procaine hydrochloride and DNA/DNA bases. Furthermore, AFM study illustrates that procaine hydrochloride can bind to some specific sites of DNA chains, which indicates that procaine hydrochloride may interact with some special sequences of DNA.
Atomic Mass and Nuclear Binding Energy for I-131 (Iodine)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-131 (Iodine, atomic number Z = 53, mass number A = 131).
Atomic Mass and Nuclear Binding Energy for F-22 (Fluorine)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-22 (Fluorine, atomic number Z = 9, mass number A = 22).
Company, Anna; Prat, Irene; Frisch, Jonathan R.; Ballesté, Ruben Mas; Güell, Mireia; Juhász, Gergely; Ribas, Xavi; Münck, Eckard; Luis, Josep M.; Que, Lawrence
2011-01-01
The spectroscopic and chemical characterization of a new synthetic non-heme iron(IV)-oxo species [FeIV(O)(Me,HPytacn)(S)]2+ (2, Me,HPytacn = 1-(2′-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane, S = CH3CN or H2O) is described. 2 has been prepared by reaction of [FeII(CF3SO3)2(Me,HPytacn)] (1) with peracetic acid. Complex 2 bears a tetradentate N4 ligand that leaves two cis- sites available for binding an oxo group and a second external ligand but, unlike related iron(IV)-oxo of tetradentate ligands, it is remarkably stable at room temperature (t1/2 > 2h at 288 K). Its ability to exchange the oxygen atom of the oxo ligand with water has been analyzed in detail by means of kinetic studies, and a mechanism has been proposed on the basis of DFT calculations. Hydrogen-atom abstraction from C-H bonds and oxygen atom transfer to sulfides by 2 have also been studied. Despite its thermal stability, 2 proves to be a very powerful oxidant that is capable of breaking the strong C-H bond of cyclohexane (BDE = 99.3 kcal·mol−1). PMID:21268165
Cho, Eun-Min; Singh, Dheeraj K; Ganbold, Erdene-Ochir; Dembereldorj, Uuriintuya; Jang, Seok-Won; Kim, Doseok; Choo, Jaebum; Kim, Sehun; Lee, Cheol Min; Yang, Sung Ik; Joo, Sang-Woo
2014-01-01
Surface-enhanced Raman scattering (SERS) of an antifungal reagent, myclobutanil (MCB), was performed on Au and Ag nanoparticles (NPs) to estimate the drug-release behaviors in fungal cells. A density functional theory (DFT) calculation was introduced to predict a favorable binding site of MCB to either the Ag or Au atom. Myclobutanil was presumed to bind more strongly to Au than to Ag in their most stable, optimized geometries of the N4 atom in its 1,2,4-triazole unit binding to the metal atom. Strong intensities were observed in the Ag SERS spectra only at acidic pH values, whereas the most prominent peaks in the Au SERS spectra of MCB matched quite well with those of 1,2,4-triazole regardless of pH conditions. The Raman spectral intensities of the MCB-assembled Ag and Au NPs decreased after treatment with either potato dextrose agar (PDA) or glutathione (GSH). Darkfield microscopy and confocal SERS were performed to analyze the MCB-assembled metal NPs inside Penicillium digitatum fungal cells. The results suggested that MCB was released from the metal NPs in the intracellular GSH in the fungi because we observed only fungal cell peaks.
Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W
2018-03-07
To determine the preferred water molecule binding sites of the polybasic sulfa drugs sulfamethoxazole (SMX) and sulfisoxazole (SIX), we have studied their monomers and monohydrated complexes through laser-desorption conformer-specific UV and IR spectroscopy. Both the SMX and SIX monomer adopt a single conformer in the molecular beam. On the basis of their conformer-specific IR spectra in the NH stretch region, these conformers were assigned to the SMX and SIX global minimum structures, both exhibiting a staggered sulfonamide group and an intramolecular C-HO[double bond, length as m-dash]S hydrogen bond. The SMX-H 2 O and SIX-H 2 O complexes each adopt a single isomer in the molecular beam. Their isomeric structures were determined based on their isomer-specific IR spectra in the NH/OH stretch region. Quantum Theory of Atoms in Molecules analysis of the calculated electron densities revealed that in the SMX-H 2 O complex the water molecule donates an O-HN hydrogen bond to the heterocycle nitrogen atom and accepts an N-HO hydrogen bond from the sulfonamide NH group. In the SIX-H 2 O complex, however, the water molecule does not bind to the heterocycle but instead donates an O-HO[double bond, length as m-dash]S hydrogen bond to the sulfonamide group and accepts an N-HO hydrogen bond from the sulfonamide NH group. Both water complexes are additionally stabilized by a C ph -HOH 2 hydrogen bond. Interacting Quantum Atoms analysis suggests that all intermolecular hydrogen bonds are dominated by the short-range exchange-correlation contribution.
Knowledge-Based Elastic Potentials for Docking Drugs or Proteins with Nucleic Acids
Ge, Wei; Schneider, Bohdan; Olson, Wilma K.
2005-01-01
Elastic ellipsoidal functions defined by the observed hydration patterns around the DNA bases provide a new basis for measuring the recognition of ligands in the grooves of double-helical structures. Here a set of knowledge-based potentials suitable for quantitative description of such behavior is extracted from the observed positions of water molecules and amino acid atoms that form hydrogen bonds with the nitrogenous bases in high resolution crystal structures. Energies based on the displacement of hydrogen-bonding sites on drugs in DNA-crystal complexes relative to the preferred locations of water binding around the heterocyclic bases are low, pointing to the reliability of the potentials and the apparent displacement of water molecules by drug atoms in these structures. The validity of the energy functions has been further examined in a series of sequence substitution studies based on the structures of DNA bound to polyamides that have been designed to recognize the minor-groove edges of Watson-Crick basepairs. The higher energies of binding to incorrect sequences superimposed (without conformational adjustment or displacement of polyamide ligands) on observed high resolution structures confirm the hypothesis that the drug subunits associate with specific DNA bases. The knowledge-based functions also account satisfactorily for the measured free energies of DNA-polyamide association in solution and the observed sites of polyamide binding on nucleosomal DNA. The computations are generally consistent with mechanisms by which minor-groove binding ligands are thought to recognize DNA basepairs. The calculations suggest that the asymmetric distributions of hydrogen-bond-forming atoms on the minor-groove edge of the basepairs may underlie ligand discrimination of G·C from C·G pairs, in addition to the commonly believed role of steric hindrance. The analysis of polyamide-bound nucleosomal structures reveals other discrepancies in the expected chemical design, including unexpected contacts to DNA and modified basepair targets of some ligands. The ellipsoidal potentials thus appear promising as a mathematical tool for the study of drug- and protein-DNA interactions and for gaining new insights into DNA-binding mechanisms. PMID:15501936
Sahihi, M; Ghayeb, Y
2014-08-01
Citrus flavonoids are natural compounds with important health benefits. The study of their interaction with a transport protein, such as bovine β-lactoglobulin (BLG), at the atomic level could be a valuable factor to control their transport to biological sites. In the present study, molecular docking and molecular dynamics simulation methods were used to investigate the interaction of hesperetin, naringenin, nobiletin and tangeretin as citrus flavonoids and BLG as transport protein. The molecular docking results revealed that these flavonoids bind in the internal cavity of BLG and the BLG affinity for binding the flavonoids follows naringenin>hesperetin>tangeretin>nobiletin. The docking results also indicated that the BLG-flavonoid complexes are stabilized through hydrophobic interactions, hydrogen bond interactions and π-π stacking interactions. The analysis of molecular dynamics (MD) simulation trajectories showed that the root mean square deviation (RMSD) of various systems reaches equilibrium and fluctuates around the mean value at various times. Time evolution of the radius of gyration, total solvent accessible surface of the protein and the second structure of protein showed as well that BLG and BLG-flavonoid complexes were stable around 2500ps, and there was not any conformational change as for BLG-flavonoid complexes. Further, the profiles of atomic fluctuations indicated the rigidity of the ligand binding site during the simulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Structures of small Pd Pt bimetallic clusters by Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Cheng, Daojian; Huang, Shiping; Wang, Wenchuan
2006-11-01
Segregation phenomena of Pd-Pt bimetallic clusters with icosahedral and decahedral structures are investigated by using Monte Carlo method based on the second-moment approximation of the tight-binding (TB-SMA) potentials. The simulation results indicate that the Pd atoms generally lie on the surface of the smaller clusters. The three-shell onion-like structures are observed in 55-atom Pd-Pt bimetallic clusters, in which a single Pd atom is located in the center, and the Pt atoms are in the middle shell, while the Pd atoms are enriched on the surface. With the increase of Pd mole fraction in 55-atom Pd-Pt bimetallic clusters, the Pd atoms occupy the vertices of clusters first, then edge and center sites, and finally the interior shell. It is noticed that some decahedral structures can be transformed into the icosahedron-like structure at 300 and 500 K. Comparisons are made with previous experiments and theoretical studies of Pd-Pt bimetallic clusters.
The QSAR and docking calculations of fullerene derivatives as HIV-1 protease inhibitors
NASA Astrophysics Data System (ADS)
Saleh, Noha A.
2015-02-01
The inhibition of HIV-1 protease is considered as one of the most important targets for drug design and the deactivation of HIV-1. In the present work, the fullerene surface (C60) is modified by adding oxygen atoms as well as hydroxymethylcarbonyl (HMC) groups to form 6 investigated fullerene derivative compounds. These compounds have one, two, three, four or five O atoms + HMC groups at different positions on phenyl ring. The effect of the repeating of these groups on the ability of suggested compounds to inhibit the HIV protease is studied by calculating both Quantitative Structure Activity Relationship (QSAR) properties and docking simulation. Based on the QSAR descriptors, the solubility and the hydrophilicity of studied fullerene derivatives increased with increasing the number of oxygen atoms + HMC groups in the compound. While docking calculations indicate that, the compound with two oxygen atoms + HMC groups could interact and binds with HIV-1 protease active site. This is could be attributed to the active site residues of HIV-1 protease are hydrophobic except the two aspartic acids. So that, the increase in the hydrophilicity and polarity of the compound is preventing and/or decreasing the hydrophobic interaction between the compound and HIV-1 protease active site.
Duan, Yuhua; Stinespring, Charter D.; Chorpening, Benjamin
2015-06-18
To better understand the effects of low-level fluorine in graphene-based sensors, first-principles density functional theory (DFT) with van der Waals dispersion interactions has been employed to investigate the structure and impact of fluorine defects on the electrical properties of single-layer graphene films. The results show that both graphite-2H and graphene have zero band gaps. When fluorine bonds to a carbon atom, the carbon atom is pulled slightly above the graphene plane, creating what is referred to as a CF defect. The lowest-binding energy state is found to correspond to two CF defects on nearest neighbor sites, with one fluorine abovemore » the carbon plane and the other below the plane. Overall this has the effect of buckling the graphene. The results further show that the addition of fluorine to graphene leads to the formation of an energy band (BF) near the Fermi level, contributed mainly from the 2p orbitals of fluorine with a small contribution from the porbitals of the carbon. Among the 11 binding configurations studied, our results show that only in two cases does the BF serve as a conduction band and open a band gap of 0.37 eV and 0.24 eV respectively. The binding energy decreases with decreasing fluorine concentration due to the interaction between neighboring fluorine atoms. The obtained results are useful for sensor development and nanoelectronics.« less
Rangarajan, Srinivas; Mavrikakis, Manos
2016-04-07
The adsorption of 20 nitrogen-/sulfur-containing and hydrocarbon compounds on the sulfur edge of cobalt-promoted molybdenum sulfide (CoMoS) catalyst was studied using density functional theory, accounting for van der Waals interactions, to elicit comparative structure–property trends across different classes of molecules relevant to hydrotreating. Unhindered organosulfur compounds preferentially adsorb on a “CUS-like” site formed by the dimerization of two neighboring sulfur atoms on the edge to create a vacancy. Nitrogen-containing compounds and 4,6-dimethyldibenzothiophene, however, prefer the brim sites. Binding energy trends indicate that nitrogen-containing compounds will inhibit hydrodesulfurization on the brim sites and, relatively weakly, on the CUS-like sites. Edge vacanciesmore » are,thus, likely to be essential for hydrodesulfurization of unhindered organosulfur compounds. Furthermore, van der Waals forces contribute significantly to the binding energy of compounds (up to 1.0 eV for large compounds such as alkyl-substituted acridines) on CoMoS.« less
Sikowitz, Megan D; Shome, Brateen; Zhang, Yang; Begley, Tadhg P; Ealick, Steven E
2013-11-05
Thiaminases are responsible for the degradation of thiamin and its metabolites. Two classes of thiaminases have been identified based on their three-dimensional structures and their requirements for a nucleophilic second substrate. Although the reactions of several thiaminases have been characterized, the physiological role of thiamin degradation is not fully understood. We have determined the three-dimensional X-ray structure of an inactive C143S mutant of Clostridium botulinum (Cb) thiaminase I with bound thiamin at 2.2 Å resolution. The C143S/thiamin complex provides atomic level details of the orientation of thiamin upon binding to Cb-thiaminase I and the identity of active site residues involved in substrate binding and catalysis. The specific roles of active site residues were probed by using site directed mutagenesis and kinetic analyses, leading to a detailed mechanism for Cb-thiaminase I. The structure of Cb-thiaminase I is also compared to the functionally similar but structurally distinct thiaminase II.
Direct evidence for interaction between nano-anatase and superoxide dismutase from rat erythrocytes
NASA Astrophysics Data System (ADS)
Ma, Linglan; Ze, Yuguang; Liu, Jie; Liu, Huiting; Liu, Chao; Li, Zhongrui; Zhao, Jinfang; Yan, Jinying; Duan, Yanmei; Xie, Yaning; Hong, Fashui
2009-07-01
Nano-TiO2 and superoxide dismutase (SOD, EC 1.15.1.1) have been added to cosmetics and used to prevent injury of skin from UV-radiation, which might be related to the decrease of oxidative damage of skin. In previous studies we had proven that nano-anatase could increase the activity of SOD and decrease the oxidative damage in vivo. The mechanisms by which nano-anatase promoted SOD activity, however, are still not clearly understood. In the present work, nano-anatase in various concentrations was added to SOD from rat erythrocytes in vitro to gain insight into the mechanism of molecular interactions between nano-anatase and SOD by various spectral methods, suggesting that the reaction between SOD and nano-anatase was two-order, which meant that the SOD activity was greatly increased by low concentration of nano-anatase and inhibited by high concentration of nano-anatase. The spectroscopic assays suggested that the nano-anatase was determined to directly bind to SOD; the binding site of nano-anatase to SOD was 0.256 and the binding constants were 6.54 × 105 and 3.6 × 105 L mol-1; Ti was bound with three oxygen or nitrogen atoms and a sulfur atoms of amino acid residues at the Ti-O(N) and Ti-S bond lengths of 1.86 and 2.37 Å, respectively, the binding nano-anatase entirely altered the secondary structure of SOD. It implied that the nano-anatase coordination created a new metal ion-active site form in SOD, thus leading to an enhancement in SOD activity.
Xu, Yechun; Shen, Jianhua; Luo, Xiaomin; Silman, Israel; Sussman, Joel L; Chen, Kaixian; Jiang, Hualiang
2003-09-17
The entering and leaving processes of Huperzine A (HupA) binding with the long active-site gorge of Torpedo californica acetylcholinesterase (TcAChE) have been investigated by using steered molecular dynamics simulations. The analysis of the force required along the pathway shows that it is easier for HupA to bind to the active site of AChE than to disassociate from it, which for the first time interprets at the atomic level the previous experimental result that unbinding process of HupA is much slower than its binding process to AChE. The direct hydrogen bonds, water bridges, and hydrophobic interactions were analyzed during two steered molecular dynamics (SMD) simulations. Break of the direct hydrogen bond needs a great pulling force. The steric hindrance of bottleneck might be the most important factor to produce the maximal rupture force for HupA to leave the binding site but it has a little effect on the binding process of HupA with AChE. Residue Asp72 forms a lot of water bridges with HupA leaving and entering the AChE binding gorge, acting as a clamp to take out HupA from or put HupA into the active site. The flip of the peptide bond between Gly117 and Gly118 has been detected during both the conventional MD and SMD simulations. The simulation results indicate that this flip phenomenon could be an intrinsic property of AChE and the Gly117-Gly118 peptide bond in both HupA bound and unbound AChE structures tends to adopt the native enzyme structure. At last, in a vacuum the rupture force is increased up to 1500 pN while in water solution the greatest rupture force is about 800 pN, which means water molecules in the binding gorge act as lubricant to facilitate HupA entering or leaving the binding gorge.
Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B
2018-04-01
Human papillomaviruses (HPVs) encompass a large family of viruses that range from benign to highly carcinogenic. The crucial differences between benign and carcinogenic types of HPV remain unknown, except that the two HPV types differ in the frequency of DNA replication. We have systematically analyzed the mechanism of HPV DNA replication initiation in low-risk and high-risk HPVs. Our results demonstrate that HPV-encoded E2 initiator protein and its four binding sites in the replication origin play pivotal roles in determining the destiny of the HPV-infected cell. We have identified strain-specific single nucleotide variations in E2 binding sites found only in the high-risk HPVs. We have demonstrated that these variations result in attenuated formation of the E2-DNA complex. E2 binding to these sites is linked to the activation of the DNA replication origin as well as initiation of DNA replication. Both electrophoretic mobility shift assay and atomic force microscopy studies demonstrated that binding of E2 from either low- or high-risk HPVs with variant binding sequences lacked multimeric E2-DNA complex formation in vitro. These results provided a molecular basis of differential DNA replication in the two types of HPVs and pointed to a correlation with the development of cancer. Copyright © 2017. Published by Elsevier B.V.
The action of stress hormones on the structure and function of erythrocyte membrane.
Mokrushnikov, Pavel V; Panin, Lev E; Zaitsev, Boris N
2015-07-01
The action of a mixture of hormones (cortisol and adrenaline) on erythrocyte membrane during their binding was investigated. Changes in the membrane structure were elucidated by atomic force microscopy; microviscosity of the lipid bilayer and changes in the activity of Na(+),K(+)-ATPase at different concentrations of the hormones in erythrocyte suspension were estimated by the fluorescence method. Cortisol and adrenaline were shown to compete for the binding sites. A hormone that managed to bind nonspecifically to the membrane hindered the binding of another hormone. In a mixture of these hormones, cortisol won a competition for the binding sites; therewith, microviscosity of the membranes increased by 25%, which corresponds to a change in microviscosity produced by the action of cortisol alone. The competitive relationships affected also the Na(+),K(+)-ATPase activity, which was indicated by appearance of the second maximum of enzyme activity. It is assumed that an increase in microviscosity of erythrocyte membrane first raises the Na(+),K(+)-ATPase activity due to a growth of the maximum energy of membrane phonons, and then decreases the activity due to hindering of conformational transitions in the enzyme molecule.
NASA Astrophysics Data System (ADS)
Guevremont, J. M.; Strongin, D. R.; Schoonen, M. A. A.
1997-11-01
Studies are presented that investigate the adsorption and binding of CH 3OH and H 2O on the atomically clean (100) crystallographic plane of pyrite, FeS 2. Temperature programmed desorption suggests that both reactants adsorb molecularly at 90 K and desorb thermally between 170 and 400 K depending on the surface coverage. Photoemission of adsorbed xenon (PAX) suggests that the surface of pyrite is heterogeneous and contains a significant fraction of defect sites that are believed to be, at least in part, anion vacancy or sulfur-deficient sites. An upper limit of 0.2 is proposed for the fraction of surface sites that are defects on FeS 2(100). PAX indicates that these defect sites at low adsorbate coverage serve as the exclusive binding sites for H 2O and CH 3OH adsorbate. We speculate, on the basis of our ability to interpret PAX data for pyrite, that PAX may be of use for understanding the effect of short range order on adsorbate binding on other complex mineral surfaces. On the basis of high resolution electron energy loss spectroscopy, it is found that some dissociation of the adsorbate occurs on the pyrite. Vibrational data obtained with this technique suggests that FeO species result from the adsorbate decomposition. After saturation of the defect sites, further molecular adsorption is accommodated on the less reactive surface that we postulate is largely disulfide, the characteristic structural group of pyrite.
Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys
NASA Astrophysics Data System (ADS)
Turek, I.; Kudrnovský, J.; Drchal, V.
2015-12-01
We present an ab initio theory of the Gilbert damping in substitutionally disordered ferromagnetic alloys. The theory rests on introduced nonlocal torques which replace traditional local torque operators in the well-known torque-correlation formula and which can be formulated within the atomic-sphere approximation. The formalism is sketched in a simple tight-binding model and worked out in detail in the relativistic tight-binding linear muffin-tin orbital method and the coherent potential approximation (CPA). The resulting nonlocal torques are represented by nonrandom, non-site-diagonal, and spin-independent matrices, which simplifies the configuration averaging. The CPA-vertex corrections play a crucial role for the internal consistency of the theory and for its exact equivalence to other first-principles approaches based on the random local torques. This equivalence is also illustrated by the calculated Gilbert damping parameters for binary NiFe and FeCo random alloys, for pure iron with a model atomic-level disorder, and for stoichiometric FePt alloys with a varying degree of L 10 atomic long-range order.
[Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers].
Ren, Hui-peng; Guan, Yu-yu; Dai, Rong-hua; Liu, Guo-yan; Chai, Chun-yan
2016-02-01
In order to solve the problem of on-site rapid detection of salbutamol residues in feed and animal products, and develop a new method of fast detection of salbutamol on the basis of the molecular imprinting technology, this article uses the salbutamol (SAL) working as template molecule, methacrylic acid (MAA) working as functional monomer. On this basis, a new type of core-shell type salbutamol molecularly imprinted polymers were prepared with colloidal gold particles as triggering core. Superficial characteristics of the MIPs and the related compounds were investigated by ultraviolet (UV) spectra and infrared (IR) spectra, Raman spectra, Scanning electron microscopy (SEM) respectively. The results indicated that a stable hydrogen bonding complex has been formed between the carboxyl groups of SAL and MA with a matching ratio of 1:1. The complex can be easily eluted by the reagent containing hydrogen bonding. The chemical binding constant K reaches -0.245 x 10⁶ L² · mol⁻². The possible binding sites of the hydrogen bonding was formed between the hydrogen atoms of -COOH in MA and the oxygen atoms of C==O in SAL. IR and Raman spectrum showed that, compared with MA, a significant red shift of -OH absorption peak was manifested in MIPs, which proved that SAL as template molecule occurred a specific bond between MA. Red shift of stretching vibration absorption peak of C==O was also detected in the un-eluted MIPs and obvious energy loss happened, which demonstrated a possible binding sites is SAL intramolecular of C==O atom of oxygen. If the hydrogen atoms of -COOH in MA wanted to generate hydrogen bond. However, the shapes of absorption peak of other functional groups including C==C, C==O, and -OH were very similar both in MIPs and NIPs. Specific cavities were formed after the template molecules in MIPs were removed. It was proved by the adsorption experiment that the specific sites in these cavities highly match with the chemical and space structure of SAL. Besides, colloidal gold type core-shell molecularly imprinted polymers have looser surface, more cavities in the surface compared with ordinary molecularly imprinted polymers, which increased the effective area of adsorption to target molecules. So it have better performance in adsorption. Based on the principle that these cavities can specificly recognize and combine with target molecule in the test sample, and the excellent ability of colloidal gold core-shell molecularly imprinted polymers, the development of novel methods for fast determination of SAL based on the molecular imprinting technology can be expected in the near future.
Atomic Mass and Nuclear Binding Energy for U-287 (Uranium)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope U-287 (Uranium, atomic number Z = 92, mass number A = 287).
Atomic Mass and Nuclear Binding Energy for Ac-212 (Actinium)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Ac-212 (Actinium, atomic number Z = 89, mass number A = 212).
NASA Astrophysics Data System (ADS)
Xi, Lei; Wang, Yu; He, Qing; Zhang, Qingyan; Du, Linfang
2016-12-01
The binding of epigallocatechin-3-gallate (EGCG) to wild type Pin1 in solution was studied by spectroscopic methods and molecular dynamics simulations in this research to explore the binding mode and inhibition mechanism. The binding constants and number of binding sites per Pin1 for EGCG were calculated through the Stern-Volmer equation. The values of binding free energy and thermodynamic parameters were calculated and indicated that hydrogen bonds, electrostatic interaction and Van der Waals interaction played the major role in the binding process. The alterations of Pin1 secondary structure in the presence of EGCG were confirmed by far-UV circular dichroism spectra. The binding model at atomic-level revealed that EGCG was bound to the Glu12, Lys13, Arg14, Met15 and Arg17 in WW domain. Furthermore, EGCG could also interact with Arg69, Asp112, Cys113 and Ser114 in PPIase domain.
NASA Astrophysics Data System (ADS)
Liu, Xiao-Qiang; Xue, Ying; Tian, Zhi-Yue; Mo, Jing-Jing; Qiu, Nian-Xiang; Chu, Wei; Xie, He-Ping
2013-11-01
Graphene doped by nitrogen (N) and/or boron (B) is used to represent the surface models of coal with the structural heterogeneity. Through the density functional theory (DFT) calculations, the interactions between coalbed methane (CBM) and coal surfaces have been investigated. Several adsorption sites and orientations of methane (CH4) on graphenes were systematically considered. Our calculations predicted adsorption energies of CH4 on graphenes of up to -0.179 eV, with the strongest binding mode in which three hydrogen atoms of CH4 direct to graphene surface, observed for N-doped graphene, compared to the perfect (-0.154 eV), B-doped (-0.150 eV), and NB-doped graphenes (-0.170 eV). Doping N in graphene increases the adsorption energies of CH4, but slightly reduced binding is found when graphene is doped by B. Our results indicate that all of graphenes act as the role of a weak electron acceptor with respect to CH4. The interactions between CH4 and graphenes are the physical adsorption and slightly depend upon the adsorption sites on graphenes and the orientations of methane as well as the electronegativity of dopant atoms in graphene.
Calculations of the binding affinities of protein-protein complexes with the fast multipole method
NASA Astrophysics Data System (ADS)
Kim, Bongkeun; Song, Jiming; Song, Xueyu
2010-09-01
In this paper, we used a coarse-grained model at the residue level to calculate the binding free energies of three protein-protein complexes. General formulations to calculate the electrostatic binding free energy and the van der Waals free energy are presented by solving linearized Poisson-Boltzmann equations using the boundary element method in combination with the fast multipole method. The residue level model with the fast multipole method allows us to efficiently investigate how the mutations on the active site of the protein-protein interface affect the changes in binding affinities of protein complexes. Good correlations between the calculated results and the experimental ones indicate that our model can capture the dominant contributions to the protein-protein interactions. At the same time, additional effects on protein binding due to atomic details are also discussed in the context of the limitations of such a coarse-grained model.
Is the isolated ligand binding domain a good model of the domain in the native receptor?
Deming, Dustin; Cheng, Qing; Jayaraman, Vasanthi
2003-05-16
Numerous studies have used the atomic level structure of the isolated ligand binding domain of the glutamate receptor to elucidate the agonist-induced activation and desensitization processes in this group of proteins. However, no study has demonstrated the structural equivalence of the isolated ligand binding fragments and the protein in the native receptor. In this report, using visible absorption spectroscopy we show that the electronic environment of the antagonist 6-cyano-7-nitro-2,3-dihydroxyquinoxaline is identical for the isolated protein and the native glutamate receptors expressed in cells. Our results hence establish that the local structure of the ligand binding site is the same in the two proteins and validate the detailed structure-function relationships that have been developed based on a comparison of the structure of the isolated ligand binding domain and electrophysiological consequences in the native receptor.
ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites.
Konc, Janez; Miller, Benjamin T; Štular, Tanja; Lešnik, Samo; Woodcock, H Lee; Brooks, Bernard R; Janežič, Dušanka
2015-11-23
Proteins often exist only as apo structures (unligated) in the Protein Data Bank, with their corresponding holo structures (with ligands) unavailable. However, apoproteins may not represent the amino-acid residue arrangement upon ligand binding well, which is especially problematic for molecular docking. We developed the ProBiS-CHARMMing web interface by connecting the ProBiS ( http://probis.cmm.ki.si ) and CHARMMing ( http://www.charmming.org ) web servers into one functional unit that enables prediction of protein-ligand complexes and allows for their geometry optimization and interaction energy calculation. The ProBiS web server predicts ligands (small compounds, proteins, nucleic acids, and single-atom ligands) that may bind to a query protein. This is achieved by comparing its surface structure against a nonredundant database of protein structures and finding those that have binding sites similar to that of the query protein. Existing ligands found in the similar binding sites are then transposed to the query according to predictions from ProBiS. The CHARMMing web server enables, among other things, minimization and potential energy calculation for a wide variety of biomolecular systems, and it is used here to optimize the geometry of the predicted protein-ligand complex structures using the CHARMM force field and to calculate their interaction energies with the corresponding query proteins. We show how ProBiS-CHARMMing can be used to predict ligands and their poses for a particular binding site, and minimize the predicted protein-ligand complexes to obtain representations of holoproteins. The ProBiS-CHARMMing web interface is freely available for academic users at http://probis.nih.gov.
Mendt, Matthias; Barth, Benjamin; Hartmann, Martin; Pöppl, Andreas
2017-12-14
The low-temperature binding of nitric oxide (NO) in the metal-organic framework MIL-100(Al) has been investigated by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Three NO adsorption species have been identified. Among them, one species has been verified experimentally to bind directly to an 27 Al atom and all its relevant 14 N and 27 Al hyperfine interaction parameters have been determined spectroscopically. Those parameters fit well to the calculated ones of a theoretical cluster model, which was derived by density functional theory (DFT) in the present work and describes the low temperature binding of NO to the regular coordinatively unsaturated Al 3+ site of the MIL-100(Al) structure. As a result, the Lewis acidity of that site has been characterized using the NO molecule as an electron paramagnetic resonance active probe. The DFT derived wave function analysis revealed a bent end-on coordination of the NO molecule adsorbed at that site which is almost purely ionic and has a weak binding energy. The calculated flat potential energy surface of this species indicates the ability of the NO molecule to freely rotate at intermediate temperatures while it is still binding to the Al 3+ site. For the other two NO adsorption species, no structural models could be derived, but one of them is indicated to be adsorbed at the organic part of the metal-organic framework. Hyperfine interactions with protons, weakly coupled to the observed NO adsorption species, have also been measured by pulsed electron paramagnetic resonance and found to be consistent with their attribution to protons of the MIL-100(Al) benzenetricarboxylate ligand molecules.
Ajao, At; Kannan, M; Yakubu, Se; Vj, Umoh; Jb, Ameh
2012-01-01
Catechol 2, 3-dioxygenase is present in several types of bacteria and undergoes degradation of environmental pollutants through an important key biochemical pathways. Specifically, this enzyme cleaves aromatic rings of several environmental pollutants such as toluene, xylene, naphthalene and biphenyl derivatives. Hence, the importance of Catechol 2, 3-dioxygenase and its role in the degradation of environmental pollutants made us to predict the three-dimensional structure of Catechol 2, 3-dioxygenase from Burkholderia cepacia. The 10ns molecular dynamics simulation was carried out to check the stability of the modeled Catechol 2, 3- dioxygenase. The results show that the model was energetically stable, and it attains their equilibrium within 2000 ps of production MD run. The docking of various petroleum hydrocarbons into the Catechol 2,3-dioxygenase reveals that the benzene, O-xylene, Toluene, Fluorene, Naphthalene, Carbazol, Pyrene, Dibenzothiophene, Anthracene, Phenanthrene, Biphenyl makes strong hydrogen bond and Van der waals interaction with the active site residues of H150, L152, W198, H206, H220, H252, I254, T255, Y261, E271, L276 and F309. Free energy of binding and estimated inhibition constant of these compounds demonstrates that they are energetically stable in their binding cavity. Chrysene shows positive energy of binding in the active site atom of Fe. Except Pyrene all the substrates made close contact with Fe atom by the distance ranges from 1.67 to 2.43 Å. In addition to that, the above mentioned substrate except pyrene all other made π-π stacking interaction with H252 by the distance ranges from 3.40 to 3.90 Å. All these docking results reveal that, except Chrysene all other substrate has good free energy of binding to hold enough in the active site and makes strong VdW interaction with Catechol-2,3-dioxygenase. These results suggest that, the enzyme is capable of catalyzing the above-mentioned substrate.
Ajao, AT; Kannan, M; Yakubu, SE; VJ, Umoh; JB, Ameh
2012-01-01
Catechol 2, 3-dioxygenase is present in several types of bacteria and undergoes degradation of environmental pollutants through an important key biochemical pathways. Specifically, this enzyme cleaves aromatic rings of several environmental pollutants such as toluene, xylene, naphthalene and biphenyl derivatives. Hence, the importance of Catechol 2, 3-dioxygenase and its role in the degradation of environmental pollutants made us to predict the three-dimensional structure of Catechol 2, 3-dioxygenase from Burkholderia cepacia. The 10ns molecular dynamics simulation was carried out to check the stability of the modeled Catechol 2, 3- dioxygenase. The results show that the model was energetically stable, and it attains their equilibrium within 2000 ps of production MD run. The docking of various petroleum hydrocarbons into the Catechol 2,3-dioxygenase reveals that the benzene, O-xylene, Toluene, Fluorene, Naphthalene, Carbazol, Pyrene, Dibenzothiophene, Anthracene, Phenanthrene, Biphenyl makes strong hydrogen bond and Van der waals interaction with the active site residues of H150, L152, W198, H206, H220, H252, I254, T255, Y261, E271, L276 and F309. Free energy of binding and estimated inhibition constant of these compounds demonstrates that they are energetically stable in their binding cavity. Chrysene shows positive energy of binding in the active site atom of Fe. Except Pyrene all the substrates made close contact with Fe atom by the distance ranges from 1.67 to 2.43 Å. In addition to that, the above mentioned substrate except pyrene all other made π-π stacking interaction with H252 by the distance ranges from 3.40 to 3.90 Å. All these docking results reveal that, except Chrysene all other substrate has good free energy of binding to hold enough in the active site and makes strong VdW interaction with Catechol-2,3-dioxygenase. These results suggest that, the enzyme is capable of catalyzing the above-mentioned substrate. PMID:23144539
Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl−/H+ Exchanger ClC-ec1
Jiang, Tao; Han, Wei; Maduke, Merritt; Tajkhorshid, Emad
2016-01-01
Cl−/H+ transporters of the CLC superfamily form a ubiquitous class of membrane proteins that catalyze stoichiometrically coupled exchange of Cl− and H+ across biological membranes. CLC transporters exchange H+ for halides and certain polyatomic anions, but exclude cations, F−, and larger physiological anions, such as PO43− and SO42−. Despite comparable transport rates of different anions, the H+ coupling in CLC transporters varies significantly depending on the chemical nature of the transported anion. Although the molecular mechanism of exchange remains unknown, studies on bacterial ClC-ec1 transporter revealed that Cl− binding to the central anion-binding site (Scen) is crucial for the anion-coupled H+ transport. Here, we show that Cl−, F−, NO3−, and SCN− display distinct binding coordinations at the Scen site and are hydrated in different manners. Consistent with the observation of differential bindings, ClC-ec1 exhibits markedly variable ability to support the formation of the transient water wires, which are necessary to support the connection of the two H+ transfer sites (Gluin and Gluex), in the presence of different anions. While continuous water wires are frequently observed in the presence of physiologically transported Cl−, binding of F− or NO3− leads to the formation of pseudo-water-wires that are substantially different from the wires formed with Cl−. Binding of SCN−, however, eliminates the water wires altogether. These findings provide structural details of anion binding in ClC-ec1 and reveal a putative atomic-level mechanism for the decoupling of H+ transport to the transport of anions other than Cl−. PMID:26880377
Isobe, Minoru; Kuse, Masaki; Tani, Naoki; Fujii, Tatsuya; Matsuda, Tsukasa
2008-01-01
Symplectin is a photoprotein from a luminous squid, Symplectoteuthis oualaniensis. It has a luminous substrate, dehydrocoelenterazine (DCZ), linked through a thioether bond with a cysteine residue. We have proven the binding site of luminous substrate in symplectin by using an artificial analogue of DCZ, ortho-fluoro-DCZ (F-DCZ). F-DCZ-symplectin emitting strong blue light was reconstituted from apo-symplectin and F-DCZ. Proteolytic digestion of the reconstituted F-DCZ-symplectin afforded peptides including C390GLK-F-DCZ (amide), which was detected with a house assembled nano-LC-ESI-Q-TOF-MS. The chromo-peptide derived from the F-DCZ-symplectin after luminescence showed the lower molecular mass than that before the luminescence by 12 mass units, corresponding to the loss of one carbon atom upon emitting light. Thus, we have concluded that F-DCZ analogue binds to Cys390 in symplectin so as to emit light. PMID:18997450
Sulphur shuttling across a chaperone during molybdenum cofactor maturation.
Arnoux, Pascal; Ruppelt, Christian; Oudouhou, Flore; Lavergne, Jérôme; Siponen, Marina I; Toci, René; Mendel, Ralf R; Bittner, Florian; Pignol, David; Magalon, Axel; Walburger, Anne
2015-02-04
Formate dehydrogenases (FDHs) are of interest as they are natural catalysts that sequester atmospheric CO2, generating reduced carbon compounds with possible uses as fuel. FDHs activity in Escherichia coli strictly requires the sulphurtransferase EcFdhD, which likely transfers sulphur from IscS to the molybdenum cofactor (Mo-bisPGD) of FDHs. Here we show that EcFdhD binds Mo-bisPGD in vivo and has submicromolar affinity for GDP-used as a surrogate of the molybdenum cofactor's nucleotide moieties. The crystal structure of EcFdhD in complex with GDP shows two symmetrical binding sites located on the same face of the dimer. These binding sites are connected via a tunnel-like cavity to the opposite face of the dimer where two dynamic loops, each harbouring two functionally important cysteine residues, are present. On the basis of structure-guided mutagenesis, we propose a model for the sulphuration mechanism of Mo-bisPGD where the sulphur atom shuttles across the chaperone dimer.
Sulphur shuttling across a chaperone during molybdenum cofactor maturation
NASA Astrophysics Data System (ADS)
Arnoux, Pascal; Ruppelt, Christian; Oudouhou, Flore; Lavergne, Jérôme; Siponen, Marina I.; Toci, René; Mendel, Ralf R.; Bittner, Florian; Pignol, David; Magalon, Axel; Walburger, Anne
2015-02-01
Formate dehydrogenases (FDHs) are of interest as they are natural catalysts that sequester atmospheric CO2, generating reduced carbon compounds with possible uses as fuel. FDHs activity in Escherichia coli strictly requires the sulphurtransferase EcFdhD, which likely transfers sulphur from IscS to the molybdenum cofactor (Mo-bisPGD) of FDHs. Here we show that EcFdhD binds Mo-bisPGD in vivo and has submicromolar affinity for GDP—used as a surrogate of the molybdenum cofactor’s nucleotide moieties. The crystal structure of EcFdhD in complex with GDP shows two symmetrical binding sites located on the same face of the dimer. These binding sites are connected via a tunnel-like cavity to the opposite face of the dimer where two dynamic loops, each harbouring two functionally important cysteine residues, are present. On the basis of structure-guided mutagenesis, we propose a model for the sulphuration mechanism of Mo-bisPGD where the sulphur atom shuttles across the chaperone dimer.
NASA Astrophysics Data System (ADS)
Jean, Bernandie
The monoamine transporter (MAT) proteins responsible for the reuptake of the neurotransmitter substrates, dopamine, serotonin, and norepinephrine, are drug targets for the treatment of psychiatric disorders including depression, anxiety, and attention deficit hyperactivity disorder. Small molecules that inhibit these proteins can serve as useful therapeutic agents. However, some dopamine transporter (DAT) inhibitors, such as cocaine and methamphetamine, are highly addictive and abusable. Efforts have been made to develop small molecules that will inhibit the transporters and elucidate specific binding site interactions. This work provides knowledge of molecular interactions associated with MAT inhibitors by offering an atomistic perspective that can guide designs of new pharmacotherapeutics with enhanced activity. The work described herein evaluates intermolecular interactions using computational methods to reveal the mechanistic detail of inhibitors binding in the DAT. Because cocaine recognizes the extracellular-facing or outward-facing (OF) DAT conformation and benztropine recognizes the intracellular-facing or inward-facing (IF) conformation, it was postulated that behaviorally "typical" (abusable, locomotor psychostimulant) inhibitors stabilize the OF DAT and "atypical" (little or no abuse potential) inhibitors favor IF DAT. Indeed, behaviorally-atypical cocaine analogs have now been shown to prefer the OF DAT conformation. Specifically, the binding interactions of two cocaine analogs, LX10 and LX11, were studied in the OF DAT using molecular dynamics simulations. LX11 was able to interact with residues of transmembrane helix 8 and bind in a fashion that allowed for hydration of the primary binding site (S1) from the intracellular space, thus impacting the intracellular interaction network capable of regulating conformational transitions in DAT. Additionally, a novel serotonin transporter (SERT) inhibitor previously discovered through virtual screening at the SERT secondary binding site (S2) was studied. Intermolecular interactions between SM11 and SERT have been assessed using binding free energy calculations to predict the ligand-binding site and optimize ligand-binding interactions. Results indicate the addition of atoms to the 4-chlorobenzyl moiety were most energetically favorable. The simulations carried out in DAT and SERT were supported by experimental results. Furthermore, the co-crystal structures of DAT and SERT share similar ligand-binding interactions with the homology models used in this study.
Improved catalytic properties of halohydrin dehalogenase by modification of the halide-binding site.
Tang, Lixia; Torres Pazmiño, Daniel E; Fraaije, Marco W; de Jong, René M; Dijkstra, Bauke W; Janssen, Dick B
2005-05-03
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the dehalogenation of vicinal haloalcohols by an intramolecular substitution reaction, resulting in the formation of the corresponding epoxide, a halide ion, and a proton. Halide release is rate-limiting during the catalytic cycle of the conversion of (R)-p-nitro-2-bromo-1-phenylethanol by the enzyme. The recent elucidation of the X-ray structure of HheC showed that hydrogen bonds between the OH group of Tyr187 and between the Odelta1 atom of Asn176 and Nepsilon1 atom of Trp249 could play a role in stabilizing the conformation of the halide-binding site. The possibility that these hydrogen bonds are important for halide binding and release was studied using site-directed mutagenesis. Steady-state kinetic studies revealed that mutant Y187F, which has lost both hydrogen bonds, has a higher catalytic activity (k(cat)) with two of the three tested substrates compared to the wild-type enzyme. Mutant W249F also shows an enhanced k(cat) value with these two substrates, as well as a remarkable increase in enantiopreference for (R)-p-nitro-2-bromo-1-phenylethanol. In case of a mutation at position 176 (N176A and N176D), a 1000-fold lower catalytic efficiency (k(cat)/K(m)) was obtained, which is mainly due to an increase of the K(m) value of the enzyme. Pre-steady-state kinetic studies showed that a burst of product formation precedes the steady state, indicating that halide release is still rate-limiting for mutants Y187F and W249F. Stopped-flow fluorescence experiments revealed that the rate of halide release is 5.6-fold higher for the Y187F mutant than for the wild-type enzyme and even higher for the W249F enzyme. Taken together, these results show that the disruption of two hydrogen bonds around the halide-binding site increases the rate of halide release and can enhance the overall catalytic activity of HheC.
NASA Astrophysics Data System (ADS)
Gohda, Keigo; Hakoshima, Toshio
2008-11-01
Rho-kinase is a leading player in the regulation of cytoskeletal events involving smooth muscle contraction and neurite growth-cone collapse and retraction, and is a promising drug target in the treatment of both vascular and neurological disorders. Recent crystal structure of Rho-kinase complexed with a small-molecule inhibitor fasudil has revealed structural details of the ATP-binding site, which represents the target site for the inhibitor, and showed that the conserved phenylalanine on the P-loop occupies the pocket, resulting in an increase of protein-ligand contacts. Thus, the P-loop pliability is considered to play an important role in inhibitor binding affinity and specificity. In this study, we carried out a molecular dynamic simulation for Rho-kinase-fasudil complexes with two different P-loop conformations, i.e., the extended and folded conformations, in order to understand the P-loop pliability and dynamics at atomic level. A PKA-fasudil complex was also used for comparison. In the MD simulation, the flip-flop movement of the P-loop conformation starting either from the extended or folded conformation was not able to be observed. However, a significant conformational change in a long loop region covering over the P-loop, and also alteration of ionic interaction-manner of fasudil with acidic residues in the ATP binding site were shown only in the Rho-kinase-fasudil complex with the extended P-loop conformation, while Rho-kinase with the folded P-loop conformation and PKA complexes did not show large fluctuations, suggesting that the Rho-kinase-fasudil complex with the extended P-loop conformation represents a meta-stable state. The information of the P-loop pliability at atomic level obtained in this study could provide valuable clues to designing potent and/or selective inhibitors for Rho-kinase.
Liu, Shijia; Shao, Shangjin; Li, Linlin; Cheng, Zhi; Tian, Li; Gao, Peiji; Wang, Lushan
2015-12-11
Chitinases and chitosanases, referred to as chitinolytic enzymes, are two important categories of glycoside hydrolases (GH) that play a key role in degrading chitin and chitosan, two naturally abundant polysaccharides. Here, we investigate the active site architecture of the major chitosanase (GH8, GH46) and chitinase families (GH18, GH19). Both charged (Glu, His, Arg, Asp) and aromatic amino acids (Tyr, Trp, Phe) are observed with higher frequency within chitinolytic active sites as compared to elsewhere in the enzyme structure, indicating significant roles related to enzyme function. Hydrogen bonds between chitinolytic enzymes and the substrate C2 functional groups, i.e. amino groups and N-acetyl groups, drive substrate recognition, while non-specific CH-π interactions between aromatic residues and substrate mainly contribute to tighter binding and enhanced processivity evident in GH8 and GH18 enzymes. For different families of chitinolytic enzymes, the number, type, and position of substrate atoms bound in the active site vary, resulting in different substrate-binding specificities. The data presented here explain the synergistic action of multiple enzyme families at a molecular level and provide a more reasonable method for functional annotation, which can be further applied toward the practical engineering of chitinases and chitosanases. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Seminovski, Yohanna; Amaral, Rafael C.; Tereshchuk, Polina; Da Silva, Juarez L. F.
2018-01-01
Platinum (Pt) atoms in the bulk face-centered cubic structure have neutral charge because they are equivalent by symmetry, however, in clean Pt surfaces, the effective charge on Pt atoms can turn slightly negative (anionic) or positive (cationic) while increasing substantially in magnitude for defected (low-coordinated) Pt sites. The effective charge affect the adsorption properties of molecular species on Pt surfaces and it can compete in importance with the coupling of the substrate-molecule electronic states. Although several studies have been reported due to the importance of Pt for catalysis, our understanding of the role played by low-coordinated sites is still limited. Here, we employ density functional theory within the Perdew-Burke-Ernzerhof exchange-correlation functional and the D3 van der Waals (vdW) correction to investigate the role of the cationic and anionic Pt sites on the adsorption properties of ethanol and water on defected Pt4/Pt(111) substrates. Four substrates were carefully selected, namely, two two-dimensional (2D) Pt4 configurations (2D-strand and 2D-island) and two tri-dimensional (3D) Pt4 (3D-fcc and 3D-hcp), to understand the role of coordination, effective charge, and coupling of the electronic states in the adsorption properties. From the Bader charge analysis, we identified the cationic and anionic sites among the Pt atoms exposed to the vacuum region in the Pt4/Pt(111) substrates. We found that ethanol and water bind via the anionic O atoms to the low-coordinated defected Pt sites of the substrates, where the angle PtOH is nearly 100° for most configurations. In the 3D-fcc or 3D-hcp defected configurations, the lowest-coordinated Pt atoms are anionic, hence, those Pt sites are not preferable for the adsorption of O atoms. The charge transfer from water and ethanol to the Pt substrates has similar magnitude for all cases, which implies similar Coulomb contribution to the adsorption energy. Moreover, we found a correlation of the adsorption energy with the shift of the center of gravity of the occupied d-states of Pt sites.
The allosteric switching mechanism in bacteriophage MS2
NASA Astrophysics Data System (ADS)
Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F.
2016-07-01
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.
Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan
2015-08-01
Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.
The allosteric switching mechanism in bacteriophage MS2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu
2016-07-21
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we usemore » all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.« less
The allosteric switching mechanism in bacteriophage MS2
Perkett, Matthew R.; Mirijanian, Dina T.
2016-01-01
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates. PMID:27448905
Atomic model of a cell-wall cross-linking enzyme in complex with an intact bacterial peptidoglycan.
Schanda, Paul; Triboulet, Sébastien; Laguri, Cédric; Bougault, Catherine M; Ayala, Isabel; Callon, Morgane; Arthur, Michel; Simorre, Jean-Pierre
2014-12-24
The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillus subtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains-the catalytic domain as well as the proposed peptidoglycan recognition domain-are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis.
Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro.
Rane, Jitendra Subhash; Bhaumik, Prasenjit; Panda, Dulal
2017-01-01
The pathological aggregation of tau is a common feature of most of the neuronal disorders including frontotemporal dementia, Parkinson's disease, and Alzheimer's disease. The inhibition of tau aggregation is considered to be one of the important strategies for treating these neurodegenerative diseases. Curcumin, a natural polyphenolic molecule, has been reported to have neuroprotective ability. In this work, curcumin was found to bind to adult tau and fetal tau with a dissociation constant of 3.3±0.4 and 8±1 μM, respectively. Molecular docking studies indicated a putative binding site of curcumin in the microtubule-binding region of tau. Using several complementary techniques, including dynamic light scattering, thioflavin S fluorescence, 90° light scattering, electron microscopy, and atomic force microscopy, curcumin was found to inhibit the aggregation of tau. The dynamic light scattering analysis and atomic force microscopic images revealed that curcumin inhibits the oligomerization of tau. Curcumin also disintegrated preformed tau oligomers. Using Far-UV circular dichroism, curcumin was found to inhibit the β-sheets formation in tau indicating that curcumin inhibits an initial step of tau aggregation. In addition, curcumin inhibited tau fibril formation. Furthermore, the effect of curcumin on the preformed tau filaments was analyzed by atomic force microscopy, transmission electron microscopy, and 90° light scattering. Curcumin treatment disintegrated preformed tau filaments. The results indicated that curcumin inhibited the oligomerization of tau and could disaggregate tau filaments.
NASA Astrophysics Data System (ADS)
Lousada, Cláudio M.; Korzhavyi, Pavel A.
2018-05-01
The formation of islands of O-atoms is the dominant mode of growth of the oxide in the first stages of oxidation of Al(1 1 1). It is however unknown if a similar mechanism exists for other low index surfaces of Al. We performed a density functional theory (DFT) and ab initio molecular dynamics investigation of the first stages of the oxidation of Al(1 1 0) using two distinct models: a homogeneous surface disposition of O-atoms; and a model where the O-atoms are close-spaced forming clusters or islands. We investigated the surface reactions with oxygen up to a coverage of 2 ML and found that for both models the adsorption energy per dissociating O2(g) becomes more negative with increasing coverage. Our results show that for coverages up to 1.25 ML the oxide forms clusters or islands while for coverages higher than 1.5 ML the oxide covers the surface homogeneously. This is because the O-atoms bind preferably to neighboring sites even at the minimum coverage. With increasing coverage, the clusters of O start to form stripes along the [1 1 bar 0] direction. The work function (ϕ) of the surface decreases when going from bare Al(1 1 0) to up to 1 ML coverage of O-atoms, but for coverages of 1.25 ML and higher, ϕ increases. The Al 2p surface core level shifts (SCLS) shift towards higher binding energies with increasing surface coverage of O-atoms and start to approach the values of Al 2p in Al2O3 already at a coverage of 2ML. A relation between the SCLS and the coordination number of Al to O-atoms was made. The Al 2p SCLS increases with increasing coordination to O-atoms, for single, twofold and three-fourfold coordinated cations. For the O-atoms that terminate the surface at the short-bridge sites, the SCLS of O 1s, is largely affected by the proximity to other O-atoms. These results demonstrate that the cooperative effects between surface bound O-atoms have important roles in the mechanism of growth of the oxide at Al(1 1 0), and similarly to what happens for Al(1 1 1), the initial oxidation of Al(1 1 0) proceeds via the formation of islands of O-atoms.
Hydrogen storage capacity on Ti-decorated porous graphene: First-principles investigation
NASA Astrophysics Data System (ADS)
Yuan, Lihua; Kang, Long; Chen, Yuhong; Wang, Daobin; Gong, Jijun; Wang, Chunni; Zhang, Meiling; Wu, Xiaojuan
2018-03-01
Hydrogen storage capacity on Titanium (Ti) decorated porous graphene (PG) has been investigated using density functional theory simulations with generalized gradient approximation method. The possible adsorption sites of Ti atom on PG and electronic properties of Ti-PG system are also discussed.The results show a Ti atom prefers to strongly adsorb on the center site above the C hexagon with the binding energy of 3.65 eV, and the polarization and the hybridization mechanisms both contribute to the Ti atom adsorption on PG. To avoid a tendency of clustering among Ti atoms, the single side of the PG unit cell should only contain one Ti atom. For the single side of PG, four H2 molecules can be adsorbed around Ti atom, and the adsorption mechanism of H2 molecules come from not only the polarization mechanism between Ti and H atoms but also the orbital hybridization among Ti atom, H2 molecules and C atoms. For the case of double sides of PG, eight H2 molecules can be adsorbed on Ti-decorated PG unit cell with the average adsorption energy of -0.457 eV, and the gravimetric hydrogen storage capacity is 6.11 wt.%. Furthermore, ab inito molecular-dynaics simulation result shows that six H2 molecules can be adsorbed on double sides of unit cell of Ti-PG system and the configuration of Ti-PG is very stable at 300 K and without external pressure, which indicates Ti-decorated PG could be considered as a potential hydrogen storage medium at ambient conditions.
Macromolecular beta-adrenergic antagonists discriminating between receptor and antibody.
Pitha, J; Zjawiony, J; Lefkowitz, R J; Caron, M G
1980-01-01
The beta-adrenergic antagonist, alprenolol, was attached in an irreversible manner to macromolecular dextran via side arms that differed in length. The ability of these macromolecules to bind to the beta-adrenergic receptor of frog erythrocytes and to catecholamine-binding antibodies raised against partially purified receptors was studied. Compared to the parent drug the potency of binding of macromolecular alprenolol to the receptor decreased about 1/10, 1/600, and 1/8000 when the length of the arm separating alprenolol from the dextran moiety was 13, 8, and 4 atoms, respectively. In contrast, the binding potencies of the parent drug and of all its macromolecular derivatives for the antibody were within the same order of magnitude. Thus, conversion of a drug to a macromolecular form may not only sustain its binding activity but may also lead in a higher selectivity. The macromolecular derivatives described here may be suitable probes for investigation of the location and of the molecular properties of the binding sites for beta-adrenergic drugs. PMID:6154947
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utschig, L. M.; Dalosto, S. D.; Thurnauer, M. C.
Metal ion binding to a surface site on photosynthetic reaction centers (RCs) modulates light-induced electron and proton transfer events in the RC. Whereas many studies have elucidated aspects of metal ion modulation events in Rhodobacter sphaeroides RCs, much less is understood about the surface site in Blastochloris viridis (Blc. viridis) RCs. Interestingly, electron paramagnetic resonance studies revealed two spectroscopically distinct Cu{sup 2+} surface site environments in Blc. viridis RCs. Herein, Cu{sup 2+} has been used to spectroscopically probe the structure of these Cu{sup 2+} site(s) in response to freezing conditions, temperature, and charge separation. One Cu{sup 2+} environment in Blc.more » viridis RCs, termed CuA, exhibits temperature-dependent conformational flexibility. Different conformation states of the CuA{sup 2+} site are trapped when the RC is frozen in the dark either by fast-freeze or slow-freeze procedure. The second Cu{sup 2+} environment, termed CuB, is structurally invariant to different freezing conditions and shows resolved hyperfine coupling to three nitrogen atoms. Cu{sup 2+} is most likely binding at the same location on the RC, but in different coordination environments which may reflect two distinct conformational states of the isolated Blc. viridis RC protein.« less
Gong, Wenjing; Wu, Ruibo; Zhang, Yingkai
2015-01-01
Zinc-dependent histone deacetylases (HDACs) play a critical role in transcriptional repression and gene silencing, and are among the most attractive targets for the development of new therapeutics against cancer and various other diseases. Two HDAC inhibitors have been approved by FDA as anti-cancer drugs: one is SAHA whose hydroxamate is directly bound to zinc, the other is FK228 whose active form may use thiol as the zinc binding group. In spite of extensive studies, it remains to be ambiguous regarding how thiol and hydroxamate are bound to the zinc active site of HDACs. In this work, our computational approaches center on Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics with umbrella sampling, which allow for modeling of the zinc active site with reasonable accuracy while properly including dynamics and effects of protein environment. Meanwhile, an improved short-long effective function (SLEF2) to describe non-bonded interactions between zinc and other atoms has been employed in initial MM equilibrations. Our ab initio QM/MM MD simulations have confirmed that hydroxamate is neutral when it is bound to HDAC8, and found that thiol is deprotonated when directly bound to zinc in the HDAC active site. By comparing thiol and hydroxamate, our results elucidated the differences in their binding environment in the HDAC active sites, and emphasized the importance of the linker design to achieve more specific binding towards class IIa HDACs. PMID:26452222
Gong, Wenjing; Wu, Ruibo; Zhang, Yingkai
2015-11-15
Zinc-dependent histone deacetylases (HDACs) play a critical role in transcriptional repression and gene silencing, and are among the most attractive targets for the development of new therapeutics against cancer and various other diseases. Two HDAC inhibitors have been approved by FDA as anti-cancer drugs: one is SAHA whose hydroxamate is directly bound to zinc, the other is FK228 whose active form may use thiol as the zinc binding group. In spite of extensive studies, it remains to be ambiguous regarding how thiol and hydroxamate are bound to the zinc active site of HDACs. In this work, our computational approaches center on Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics with umbrella sampling, which allow for modeling of the zinc active site with reasonable accuracy while properly including dynamics and effects of protein environment. Meanwhile, an improved short-long effective function (SLEF2) to describe non-bonded interactions between zinc and other atoms has been employed in initial MM equilibrations. Our ab initio QM/MM MD simulations have confirmed that hydroxamate is neutral when it is bound to HDAC8, and found that thiol is deprotonated when directly bound to zinc in the HDAC active site. By comparing thiol and hydroxamate, our results elucidated the differences in their binding environment in the HDAC active sites, and emphasized the importance of the linker design to achieve more specific binding toward class IIa HDACs. © 2015 Wiley Periodicals, Inc.
Zhang, Juling; Gu, Huaimin; Zhang, Xiaohui
2014-01-30
The interaction of 4-thiothymidine (S(4)TdR) with human serum albumin (HSA) was studied by equilibrium dialysis under normal physiological conditions. In this work, the mechanism of the interaction between S(4)TdR and human serum albumin (HSA) was exploited by fluorescence, UV, CD circular, and SERS spectroscopic. Fluorescence and UV spectroscopy suggest that HSA intensities are significantly decreased when adding S(4)TdR to HAS, and the quenching mechanism of the fluorescence is static. Also, the ΔG, ΔH, and ΔS values across temperature indicated that hydrophobic interaction was the predominant binding force. The CD circular results show that there is little change in the secondary structure of HSA except the environment of amino acid changes when adding S(4)TdR to HSA. The surface-enhanced Raman scattering (SERS) shows that the interaction between S(4)TdR and HSA can be achieved through different binding sites which are probably located in the II A and III A hydrophobic pockets of HSA which correspond to Sudlow's I and II binding sites. In addition, the molecular modeling displays that S(4)TdR-HSA complex is stabilized by hydrophobic forces, which result from amino acid residues. The atomic force microscopy results revealed that the single HSA molecular dimensions were larger after interaction of 4-thiothymidine. This work would be useful to understand the state of the transportation, distribution, and metabolism of the anticancer drugs in the human body, and it could provide a useful biochemistry parameter for the development of new anti-cancer drugs and research of pharmacology mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Root, D. D.; Reisler, E.
1992-01-01
Recent publication of the atomic structure of G-actin (Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., & Holmes, K. C., 1990, Nature 347, 37-44) raises questions about how the conformation of actin changes upon its polymerization. In this work, the effects of various quenchers of etheno-nucleotides bound to G- and F-actin were examined in order to assess polymerization-related changes in the nucleotide phosphate site. The Mg(2+)-induced polymerization of actin quenched the fluorescence of the etheno-nucleotides by approximately 20% simultaneously with the increase in light scattering by actin. A conformational change at the nucleotide binding site was also indicated by greater accessibility of F-actin than G-actin to positively, negatively, and neutrally charged collisional quenchers. The difference in accessibility between G- and F-actin was greatest for I-, indicating that the environment of the etheno group is more positively charged in the polymerized form of actin. Based on calculations of the change in electric potential of the environment of the etheno group, specific polymerization-related movements of charged residues in the atomic structure of G-actin are suggested. The binding of S-1 to epsilon-ATP-G-actin increased the accessibility of the etheno group to I- even over that in Mg(2+)-polymerized actin. The quenching of the etheno group by nitromethane was, however, unaffected by the binding of S-1 to actin. Thus, the binding of S-1 induces conformational changes in the cleft region of actin that are different from those caused by Mg2+ polymerization of actin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1304380
Asadi, Parvin; Khodarahmi, Ghadamali; Farrokhpour, Hossein; Hassanzadeh, Farshid; Saghaei, Lotfollah
2017-01-01
In an attempt to identify some new potential leads as anti-breast cancer agents, novel hybrid compounds were designed by molecular hybridization approach. These derivatives were structurally derived from hybrid benzofuran–imidazole and quinazolinone derivatives, which had shown good cytotoxicity against the breast cancer cell line (MCF-7). Since aromatase enzyme (CYP19) is highly expressed in the MCF-7 cell line, the binding of these novel hybrid compounds to aromatase was investigated using the docking method. In this study, due to the positive charge on the imidazole ring of the designed ligands and also, the presence of heme iron in the active site of the enzyme, it was decided to optimize the ligand inside the protein to obtain more realistic atomic charges for it. Quantum mechanical/molecular mechanical (QM/MM) method was used to obtain more accurate atomic charges of ligand for docking calculations by considering the polarization effects of CYP19 on ligands. It was observed that the refitted charge improved the binding energy of the docked compounds. Also, the results showed that these novel hybrid compounds were adopted properly within the aromatase binding site, thereby suggesting that they could be potential inhibitors of aromatase. The main binding modes in these complexes were through hydrophobic and H bond interactions showing agreement with the basic physicochemical features of known anti aromatase compounds. Finally, the complex structures obtained from the docking study were used for single point QM/MM calculations to obtain more accurate electronic interaction energy, considering the electronic polarization of the ligand by its protein environment. PMID:28626481
NASA Astrophysics Data System (ADS)
Khongpracha, P.; Probst, M.; Limtrakul, J.
2008-07-01
The interactions of a gold atom with: (a) a single-wall carbon nanohorn (SWNH) conic tip; (b) with a single-wall carbon nanotube (SWNT) tip; and (c) their complexes with a CO molecule were studied using first-principle calculations based on density functional theory. The analysis of the pyramidalization angle (θp) as well as the π-orbital misalignment angles indicate that there should be many reactive carbon sites on the tips of SWNH and SWNT. It was found that SWNH provides reactive sites that can more selectively interact with the target atom. We identified five sites on both the SWNT tip and the nanohorn where attachment of a gold atom leads to a stable complex. This metal is found to be bi-coordinated with the tip of SWNH, while it is mono-coordinated with the SWNT tip. The largest interaction energies are -10.75 kcal/mol and -16.17 kcal/mol, respectively. The CO probe molecule binds to Au on the Au/SWNH or Au/SWNT tips with interaction energies of -22.34 and -18.29 kcal/mol, respectively. The main contributions of the interaction with both carbon nanostructures stems from σ-donation and π-backbonding. The results suggest that SWNHs could be one of the promising candidates for the development of high-specifity nanosensors.
Salinas, Gustavo; Gao, Wei; Wang, Yang; Bonilla, Mariana; Yu, Long; Novikov, Andrey; Virginio, Veridiana G; Ferreira, Henrique B; Vieites, Marisol; Gladyshev, Vadim N; Gambino, Dinorah; Dai, Shaodong
2017-12-20
New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with Au I -MPO, a novel gold inhibitor, together with inhibition assays were performed. Au I -MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer-monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxin (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys 519 and Cys 573 in the Au I -TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys 519 and Cys 573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491-1504.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salinas, Gustavo; Gao, Wei; Wang, Yang
Aims: New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with AuI-MPO, a novel gold inhibitor, together with inhibition assays were performed. Results: AuI-MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer–monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxinmore » (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys519 and Cys573 in the AuI-TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. Innovation: The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. Conclusions: The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys519 and Cys573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491–1504.« less
Yamanaka, Yuki; Winardhi, Ricksen S; Yamauchi, Erika; Nishiyama, So-Ichiro; Sowa, Yoshiyuki; Yan, Jie; Kawagishi, Ikuro; Ishihama, Akira; Yamamoto, Kaneyoshi
2018-06-15
The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radić, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer
2008-01-01
Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 Å in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids. PMID:18477694
NASA Astrophysics Data System (ADS)
Rim, Kwang Taeg; Fitts, Jeffrey P.; Müller, Thomas; Adib, Kaveh; Camillone, Nicholas; Osgood, Richard M.; Joyce, S. A.; Flynn, George W.
2003-09-01
Scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) were used to study the degradation of CCl 4 on the reduced selvedge of a natural single crystal α-Fe 2O 3(0 0 0 1) surface in ultrahigh vacuum. Before exposure to CCl 4, STM images indicate that approximately 85% of the reduced surface exhibits a Fe 3O 4(1 1 1) 2 × 2 termination, while the remaining 15% is terminated by 1 × 1 and superstructure phases. Images obtained after room temperature dosing with CCl 4 and subsequent flashing to 600 K reveal that chlorine atoms are adsorbed only on surface regions with the Fe 3O 4(1 1 1) 2 × 2 termination, not on 1 × 1 and superstructure regions. Chlorine atoms from dissociative adsorption of CCl 4 are observed to occupy two distinct positions located atop lattice protrusions and in threefold oxygen vacancy sites. However, in companion chemical labeling experiments, chlorine atoms provided by room temperature, dissociative Cl 2 adsorption on this surface are found to occupy sites atop lattice protrusions exclusively. The clear dissimilarity in STM feature shape and brightness at the two distinct chlorine adsorption sites arising from CCl 4 dissociation as well as the results of the Cl 2 chemical labeling experiments are best explained via reactions on a Fe 3O 4(1 1 1) 2 × 2 selvedge terminated by a 1/4 monolayer of tetrahedrally coordinated iron atoms. On this surface, adsorption atop an iron atom occurs for both the CCl 4 and Cl 2 dissociative reactions. A second adsorption site, assigned as binding to second layer iron atoms left exposed following surface oxygen atom abstraction resulting in the formation of phosgene (COCl 2), only appears in the case of reaction with CCl 4. The reaction mechanism and active site requirements for CCl 4 degradation on iron oxide surfaces are discussed in light of this evidence and in the context of our previously reported results from Auger electron spectroscopy (AES), LEED, temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy studies.
NASA Astrophysics Data System (ADS)
Ezerski, Jacob; Cheung, Margaret
CaM forms distinct conformation states through modifications in its charge distribution upon binding to Ca2+ ions. The occurrence of protein structural change resulting from an altered charge distribution is paramount in the scheme of cellular signaling. Not only is charge induced structural change observed in CaM, it is also seen in an essential binding target: calmodulin-depended protein kinase II (CaMKII). In order to investigate the mechanism of selectivity in relation to changes in secondary structure, the CaM binding domain of CaMKII is isolated. Experimentally, charged residues of the CaMKII peptide are systematically mutated to alanine, resulting in altered binding kinetics between the peptide and the Ca2+ saturated state of CaM. We perform an all atom simulation of the wildtype (RRK) and mutated (AAA) CaMKII peptides and generate structures from the trajectory. We analyze RRK and AAA using DSSP and find significant structural differences due to the mutation. Structures from the RRK and AAA ensembles are then selected and docked onto the crystal structure of Ca2+ saturated CaM. We observe that RRK binds to CaM at the C-terminus, whereas the 3-residue mutation, AAA, shows increased patterns of binding to the N-terminus and linker regions of CaM. Due to the conformational change of the peptide ensemble from charged residue mutation, a distinct change in the binding site can be seen, which offers an explanation to experimentally observed changes in kinetic binding rates
Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations.
Hertig, Samuel; Latorraca, Naomi R; Dror, Ron O
2016-06-01
Molecular dynamics (MD) simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.
Ice surfaces in the mesosphere: Absence of dangling bonds in the presence of atomic oxygen
NASA Astrophysics Data System (ADS)
Boulter, James E.; Morgan, Christopher G.; Marschall, Jochen
2005-07-01
Ice deposition experiments in the presence of microwave discharge-dissociated molecular oxygen suggest heterogeneous interactions between dangling OH bonds on the ice surface and atomic oxygen. Ice films deposited on a gold substrate at temperatures of 115, 130, and 140 K from oxygen/water gas mixtures representative of the summertime polar mesosphere exhibit infrared absorption features characteristic of dangling bonds, whereas films grown in the presence of atomic oxygen do not. Dangling bond spectral features are shown to diminish rapidly when the microwave discharge is activated during ice deposition. Similar decreases were not seen when the gas stream was heated or when the ice film was slowly annealed from 130 to 160 K. One interpretation of these results is that atomic oxygen binds to dangling bond sites during ice growth, a phenomenon that may also occur during the formation of ice particles observed just below the cold summertime mesopause.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, V. Ya.; Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru
An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electronsmore » in an arbitrary atom.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, Carolyn E.; Musiani, Francesco; Huang, Hsin-Ting
Escherichia coli RcnR (resistance to cobalt and nickel regulator, EcRcnR) is a metal-responsive repressor of the genes encoding the Ni(II) and Co(II) exporter proteins RcnAB by binding to PRcnAB. The DNA binding affinity is weakened when the cognate ions Ni(II) and Co(II) bind to EcRcnR in a six-coordinate site that features a (N/O)5S ligand donor-atom set in distinct sites: while both metal ions are bound by the N terminus, Cys35, and His64, Co(II) is additionally bound by His3. On the other hand, the noncognate Zn(II) and Cu(I) ions feature a lower coordination number, have a solvent-accessible binding site, and coordinatemore » protein ligands that do not include the N-terminal amine. A molecular model of apo-EcRcnR suggested potential roles for Glu34 and Glu63 in binding Ni(II) and Co(II) to EcRcnR. The roles of Glu34 and Glu63 in metal binding, metal selectivity, and function were therefore investigated using a structure/function approach. X-ray absorption spectroscopy was used to assess the structural changes in the Ni(II), Co(II), and Zn(II) binding sites of Glu → Ala and Glu → Cys variants at both positions. The effect of these structural alterations on the regulation of PrcnA by EcRcnR in response to metal binding was explored using LacZ reporter assays. These combined studies indicate that while Glu63 is a ligand for both metal ions, Glu34 is a ligand for Co(II) but possibly not for Ni(II). The Glu34 variants affect the structure of the cognate metal sites, but they have no effect on the transcriptional response. In contrast, the Glu63 variants affect both the structure and transcriptional response, although they do not completely abolish the function of EcRcnR. The structure of the Zn(II) site is not significantly perturbed by any of the glutamic acid variations. The spectroscopic and functional data obtained on the mutants were used to calculate models of the metal-site structures of EcRcnR bound to Ni(II), Co(II), and Zn(II). The results are interpreted in terms of a switch mechanism, in which a subset of the metal-binding ligands is responsible for the allosteric response required for DNA release.« less
Macrolide antibiotic interaction and resistance on the bacterial ribosome.
Poehlsgaard, Jacob; Douthwaite, Stephen
2003-02-01
Our understanding of the fine structure of many antibiotic target sites has reached a new level of enlightenment in the last couple of years due to the advent, by X-ray crystallography, of high-resolution structures of the bacterial ribosome. Many classes of clinically useful antibiotics bind to the ribosome to inhibit bacterial protein synthesis. Macrolide, lincosamide and streptogramin B (MLSB) antibiotics form one of the largest groups, and bind to the same site on the 50S ribosomal subunit. Here, we review the molecular details of the ribosomal MLSB site to put into perspective the main points from a wealth of biochemical and genetic data that have been collected over several decades. The information is now available to understand, at atomic resolution, how macrolide antibiotics interact with their ribosomal target, how the target is altered to confer resistance, and in which directions we need to look if we are to rationally design better drugs to overcome the extant resistance mechanisms.
Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank
Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less
Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides
Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank
2017-07-17
Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less
NASA Technical Reports Server (NTRS)
Mukhopadhyay, C. K.; Mazumder, B.; Lindley, P. F.; Fox, P. L.
1997-01-01
Free transition metal ions oxidize lipids and lipoproteins in vitro; however, recent evidence suggests that free metal ion-independent mechanisms are more likely in vivo. We have shown previously that human ceruloplasmin (Cp), a serum protein containing seven Cu atoms, induces low density lipoprotein oxidation in vitro and that the activity depends on the presence of a single, chelatable Cu atom. We here use biochemical and molecular approaches to determine the site responsible for Cp prooxidant activity. Experiments with the His-specific reagent diethylpyrocarbonate (DEPC) showed that one or more His residues was specifically required. Quantitative [14C]DEPC binding studies indicated the importance of a single His residue because only one was exposed upon removal of the prooxidant Cu. Plasmin digestion of [14C]DEPC-treated Cp (and N-terminal sequence analysis of the fragments) showed that the critical His was in a 17-kDa region containing four His residues in the second major sequence homology domain of Cp. A full length human Cp cDNA was modified by site-directed mutagenesis to give His-to-Ala substitutions at each of the four positions and was transfected into COS-7 cells, and low density lipoprotein oxidation was measured. The prooxidant site was localized to a region containing His426 because CpH426A almost completely lacked prooxidant activity whereas the other mutants expressed normal activity. These observations support the hypothesis that Cu bound at specific sites on protein surfaces can cause oxidative damage to macromolecules in their environment. Cp may serve as a model protein for understanding mechanisms of oxidant damage by copper-containing (or -binding) proteins such as Cu, Zn superoxide dismutase, and amyloid precursor protein.
A Wsbnd Ne interatomic potential for simulation of neon implantation in tungsten
NASA Astrophysics Data System (ADS)
Backman, Marie; Juslin, Niklas; Huang, Guiyang; Wirth, Brian D.
2016-08-01
An interatomic pair potential for Wsbnd Ne is developed for atomistic molecular dynamics simulations of neon implantation in tungsten. The new potential predicts point defect energies and binding energies of small clusters that are in good agreement with electronic structure calculations. Molecular dynamics simulations of small neon clusters in tungsten show that trap mutation, in which an interstitial neon cluster displaces a tungsten atom from its lattice site, occurs for clusters of three or more neon atoms. However, near a free surface, trap mutation can occur at smaller sizes, including even a single neon interstitial in close proximity to a (100) or (110) surface.
Han, Yong; Evans, James W.
2015-10-27
Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom inmore » the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).« less
Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine.
Olafson, Katy N; Ketchum, Megan A; Rimer, Jeffrey D; Vekilov, Peter G
2015-04-21
Hematin crystallization is the primary mechanism of heme detoxification in malaria parasites and the target of the quinoline class of antimalarials. Despite numerous studies of malaria pathophysiology, fundamental questions regarding hematin growth and inhibition remain. Among them are the identity of the crystallization medium in vivo, aqueous or organic; the mechanism of crystallization, classical or nonclassical; and whether quinoline antimalarials inhibit crystallization by sequestering hematin in the solution, or by blocking surface sites crucial for growth. Here we use time-resolved in situ atomic force microscopy (AFM) and show that the lipid subphase in the parasite may be a preferred growth medium. We provide, to our knowledge, the first evidence of the molecular mechanisms of hematin crystallization and inhibition by chloroquine, a common quinoline antimalarial drug. AFM observations demonstrate that crystallization strictly follows a classical mechanism wherein new crystal layers are generated by 2D nucleation and grow by the attachment of solute molecules. We identify four classes of surface sites available for binding of potential drugs and propose respective mechanisms of drug action. Further studies reveal that chloroquine inhibits hematin crystallization by binding to molecularly flat {100} surfaces. A 2-μM concentration of chloroquine fully arrests layer generation and step advancement, which is ∼10(4)× less than hematin's physiological concentration. Our results suggest that adsorption at specific growth sites may be a general mode of hemozoin growth inhibition for the quinoline antimalarials. Because the atomic structures of the identified sites are known, this insight could advance the future design and/or optimization of new antimalarials.
Heard, Christopher J.; Heiles, Sven; Vajda, Stefan; ...
2014-08-07
We employed the novel surface mode of the Birmingham Cluster Genetic Algorithm (S-BCGA) for the global optimisation of noble metal tetramers upon an MgO(100) substrate at the GGA-DFT level of theory. The effect of element identity and alloying in surface-bound neutral subnanometre clusters is determined by energetic comparison between all compositions of Pd nAg (4-n) and Pd nPt (4-n). And while the binding strengths to the surface increase in the order Pt > Pd > Ag, the excess energy profiles suggest a preference for mixed clusters for both cases. The binding of CO is also modelled, showing that the adsorptionmore » site can be predicted solely by electrophilicity. Comparison to CO binding on a single metal atom shows a reversal of the 5s-d activation process for clusters, weakening the cluster surface interaction on CO adsorption. Charge localisation determines homotop, CO binding and surface site preferences. Furthermore, the electronic behaviour, which is intermediate between molecular and metallic particles allows for tunable features in the subnanometre size range.« less
Josephs, Eric A.; Kocak, D. Dewran; Fitzgibbon, Christopher J.; McMenemy, Joshua; Gersbach, Charles A.; Marszalek, Piotr E.
2015-01-01
CRISPR-associated endonuclease Cas9 cuts DNA at variable target sites designated by a Cas9-bound RNA molecule. Cas9's ability to be directed by single ‘guide RNA’ molecules to target nearly any sequence has been recently exploited for a number of emerging biological and medical applications. Therefore, understanding the nature of Cas9's off-target activity is of paramount importance for its practical use. Using atomic force microscopy (AFM), we directly resolve individual Cas9 and nuclease-inactive dCas9 proteins as they bind along engineered DNA substrates. High-resolution imaging allows us to determine their relative propensities to bind with different guide RNA variants to targeted or off-target sequences. Mapping the structural properties of Cas9 and dCas9 to their respective binding sites reveals a progressive conformational transformation at DNA sites with increasing sequence similarity to its target. With kinetic Monte Carlo (KMC) simulations, these results provide evidence of a ‘conformational gating’ mechanism driven by the interactions between the guide RNA and the 14th–17th nucleotide region of the targeted DNA, the stabilities of which we find correlate significantly with reported off-target cleavage rates. KMC simulations also reveal potential methodologies to engineer guide RNA sequences with improved specificity by considering the invasion of guide RNAs into targeted DNA duplex. PMID:26384421
Jun, Sangmi; Gillespie, Joel R; Shin, Byong-kyu; Saxena, Sunil
2009-11-17
The overall morphology and Cu(II) ion coordination for the aggregated amyloid-beta(1-40) [Abeta(1-40)] in N-ethylmorpholine (NEM) buffer are affected by Cu(II) ion concentration. This effect is investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and electron spin echo envelope modulation (ESEEM) spectroscopy. At lower than equimolar concentrations of Cu(II) ions, fibrillar aggregates of Abeta(1-40) are observed. At these concentrations of Cu(II), the monomeric and fibrillar Abeta(1-40) ESEEM data indicate that the Cu(II) ion is coordinated by histidine residues. For aggregated Abeta(1-40) at a Cu(II):Abeta molar ratio of 2:1, TEM and AFM images show both linear fibrils and granular amorphous aggregates. The ESEEM spectra show that the multi-histidine coordination for Cu(II) ion partially breaks up and becomes exposed to water or exchangeable protons of the peptide at a higher Cu(II) concentration. Since the continuous-wave electron spin resonance results also suggest two copper-binding sites in Abeta(1-40), the proton ESEEM peak may arise from the second copper-binding site, which may be significantly involved in the formation of granular amorphous aggregates. Thioflavin T fluorescence and circular dichroism experiments also show that Cu(II) inhibits the formation of fibrils and induces a nonfibrillar beta-sheet conformation. Therefore, we propose that Abeta(1-40) has a second copper-binding site in a proton-rich environment and the second binding Cu(II) ion interferes with a conformational transition into amyloid fibrils, inducing the formation of granular amorphous aggregates.
First-principles study of Ti intercalation between graphene and Au surface
NASA Astrophysics Data System (ADS)
Kaneko, T.; Imamura, H.
2011-06-01
We investigate the effects of Ti intercalation between graphene and Au surface on binding energy and charge doping by using the first-principles calculations. We show that the largest binding energy is realized by the intercalation of single mono-layer of Ti. We also show that electronic structure is very sensitive to the arrangement of metal atoms at the interface. If the composition of the interface layer is Ti0.33Au0.67 and the Ti is located at the top site, the Fermi level lies closely at the Dirac point, i.e., the Dirac cone of the ideal free-standing graphene is recovered.
Meher, Biswa Ranjan; Wang, Yixuan
2012-01-01
Most of the currently treated HIV-1 protease (HIV-PR) inhibitors have been prone to suffer from the mutations associated drug resistance. Therefore, it is necessary to search for potent alternatives against the drug resistance. In the current study we have tested the single-walled carbon nanotube (SWCNT) as an inhibitor in wild type (WT) as well as in three primary mutants (I50VPR, V82APR and I84VPR) of the HIV-1-PR through docking the SWCNT in the active site region, and then performed all-atom MD simulations for the complexes. The conformational dynamics of HIV-PR with a 20 ns trajectory reveals that the SWCNT can effectively bind to the HIV-1-PR active site and regulate the flap dynamics such as maintaining the flap-flap closed. To gain an insight into the binding affinity, we also performed the MM-PBSA based binding free energy calculations for the four HIV-PR/SWCNT complexes. It was observed that, although the binding between the SWCNT and the HIV-PR decreases due to the mutations, the SWCNTs bind to the HIV-PRs 3–5 folds stronger than the most potent HIV-1-PR inhibitor, TMC114. Remarkably, the significant interactions with binding energy higher than 1 kcal/mol focus on the flap and active regions, which favors closing flap-flap and deactivating the active residues of the HIV-PR. The flap dynamics and binding strength information for HIV-PR and SWCNTs can help design SWCNT-based HIV-1-PR inhibitors. PMID:23142620
Meditope-Fab interaction: threading the hole.
Bzymek, Krzysztof P; Ma, Yuelong; Avery, Kendra N; Horne, David A; Williams, John C
2017-12-01
Meditope, a cyclic 12-residue peptide, binds to a unique binding side between the light and heavy chains of the cetuximab Fab. In an effort to improve the affinity of the interaction, it was sought to extend the side chain of Arg8 in the meditope, a residue that is accessible from the other side of the meditope binding site, in order to increase the number of interactions. These modifications included an n-butyl and n-octyl extension as well as hydroxyl, amine and carboxyl substitutions. The atomic structures of the complexes and the binding kinetics for each modified meditope indicated that each extension threaded through the Fab `hole' and that the carboxyethylarginine substitution makes a favorable interaction with the Fab, increasing the half-life of the complex by threefold compared with the unmodified meditope. Taken together, these studies provide a basis for the design of additional modifications to enhance the overall affinity of this unique interaction.
Nanomechanical mapping of first binding steps of a virus to animal cells
NASA Astrophysics Data System (ADS)
Alsteens, David; Newton, Richard; Schubert, Rajib; Martinez-Martin, David; Delguste, Martin; Roska, Botond; Müller, Daniel J.
2017-02-01
Viral infection is initiated when a virus binds to cell surface receptors. Because the cell membrane is dynamic and heterogeneous, imaging living cells and simultaneously quantifying the first viral binding events is difficult. Here, we show an atomic force and confocal microscopy set-up that allows the surface receptor landscape of cells to be imaged and the virus binding events within the first millisecond of contact with the cell to be mapped at high resolution (<50 nm). We present theoretical approaches to contour the free-energy landscape of early binding events between an engineered virus and cell surface receptors. We find that the first bond formed between the viral glycoprotein and its cognate cell surface receptor has relatively low lifetime and free energy, but this increases as additional bonds form rapidly (≤1 ms). The formation of additional bonds occurs with positive allosteric modulation and the three binding sites of the viral glycoprotein are quickly occupied. Our quantitative approach can be readily applied to study the binding of other viruses to animal cells.
Koentjoro, Maharani Pertiwi; Adachi, Naruhiko; Senda, Miki; Ogawa, Naoto; Senda, Toshiya
2018-03-01
LysR-type transcriptional regulators (LTTRs) are among the most abundant transcriptional regulators in bacteria. CbnR is an LTTR derived from Cupriavidus necator (formerly Alcaligenes eutrophus or Ralstonia eutropha) NH9 and is involved in transcriptional activation of the cbnABCD genes encoding chlorocatechol degradative enzymes. CbnR interacts with a cbnA promoter region of approximately 60 bp in length that contains the recognition-binding site (RBS) and activation-binding site (ABS). Upon inducer binding, CbnR seems to undergo conformational changes, leading to the activation of the transcription. Since the interaction of an LTTR with RBS is considered to be the first step of the transcriptional activation, the CbnR-RBS interaction is responsible for the selectivity of the promoter to be activated. To understand the sequence selectivity of CbnR, we determined the crystal structure of the DNA-binding domain of CbnR in complex with RBS of the cbnA promoter at 2.55 Å resolution. The crystal structure revealed details of the interactions between the DNA-binding domain and the promoter DNA. A comparison with the previously reported crystal structure of the DNA-binding domain of BenM in complex with its cognate RBS showed several differences in the DNA interactions, despite the structural similarity between CbnR and BenM. These differences explain the observed promoter sequence selectivity between CbnR and BenM. Particularly, the difference between Thr33 in CbnR and Ser33 in BenM appears to affect the conformations of neighboring residues, leading to the selective interactions with DNA. Atomic coordinates and structure factors for the DNA-binding domain of Cupriavidus necatorNH9 CbnR in complex with RBS are available in the Protein Data Bank under the accession code 5XXP. © 2018 Federation of European Biochemical Societies.
Arakawa, H; Neault, J F; Tajmir-Riahi, H A
2001-01-01
Ag(I) is a strong nucleic acids binder and forms several complexes with DNA such as types I, II, and III. However, the details of the binding mode of silver(I) in the Ag-polynucleotides remains unknown. Therefore, it was of interest to examine the binding of Ag(I) with calf-thymus DNA and bakers yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentration of DNA or RNA and various concentrations of Ag(I). Fourier transform infrared spectroscopy and capillary electrophoresis were used to analyze the Ag(I) binding mode, the binding constant, and the polynucleotides' structural changes in the Ag-DNA and Ag-RNA complexes. The spectroscopic results showed that in the type I complex formed with DNA, Ag(I) binds to guanine N7 at low cation concentration (r = 1/80) and adenine N7 site at higher concentrations (r = 1/20 to 1/10), but not to the backbone phosphate group. At r = 1/2, type II complexes formed with DNA in which Ag(I) binds to the G-C and A-T base pairs. On the other hand, Ag(I) binds to the guanine N7 atom but not to the adenine and the backbone phosphate group in the Ag-RNA complexes. Although a minor alteration of the sugar-phosphate geometry was observed, DNA remained in the B-family structure, whereas RNA retained its A conformation. Scatchard analysis following capillary electrophoresis showed two binding sites for the Ag-DNA complexes with K(1) = 8.3 x 10(4) M(-1) for the guanine and K(2) = 1.5 x 10(4) M(-1) for the adenine bases. On the other hand, Ag-RNA adducts showed one binding site with K = 1.5 x 10(5) M(-1) for the guanine bases. PMID:11509371
Liu, Chao; Hong, Fa-shui; Tao, Ye; Liu, Tao; Xie, Ya-ning; Xu, Jian-hua; Li, Zhong-rui
2011-11-01
The mechanism of the molecular interaction between Ce3+, a member of rare earth elements, and Rubisco in vitro is investigated. The carboxylase activity of Rubisco greatly increased under low concentrations of Ce3+ and decreased under high concentrations of Ce3+. The ultraviolet absorption spectra show that the various concentrations of Ce3+ treatment do not shift the characteristic peaks of Rubisco while the characteristic peak intensity of Rubisco increases with increasing Ce3+ concentration. The Rubisco-Ce3+ interactions also do not cause any noticeable change in the λmax of Rubisco fluorescence spectra. However, the fluorescence intensity of Rubisco is found quenched by the addition of Ce3+, which strongly suggests that Ce3+ could directly bind to the Rubisco protein. and the binding sites is estimated to 1.52 per protein. The binding between Ce3+ and Rubisco is also proved by extended X-ray absorption fine-structure essay; Ce3+ coordinated with eight oxygen atoms of Rubisco in first shells and six oxygen atoms in second shells. The results implied that Ce3+ might improve the microenvironment of Rubisco and, in turn, affected the carboxylase capacity of Rubisco greatly.
Characterization of the recombinant copper chaperone (CCS) from the plant Glycine (G.) max.
Sagasti, Sara; Yruela, Inmaculada; Bernal, Maria; Lujan, Maria A; Frago, Susana; Medina, Milagros; Picorel, Rafael
2011-02-01
The goal of the present work was to characterize the recombinant copper chaperone (CCS) from soybean. Very little is known about plant copper chaperones, which makes this study of current interest, and allows for a comparison with the better known homologues from yeast and humans. To obtain sizeable amounts of pure protein suitable for spectroscopic characterization, we cloned and overexpressed the G. max CCS chaperone in E. coli in the presence of 0.5 mM CuSO(4) and 0.5 mM ZnSO(4) in the broth. A pure protein preparation was obtained by using two IMAC steps and pH gradient chromatography. Most of the proteins were obtained as apo-form, devoid of copper atoms. The chaperone showed a high content (i.e., over 40%) of loops, turns and random coil as determined both by circular dichroism and homology modelling. The homology 3-D structural model suggests the protein might fold in three structural protein domains. The 3-D model along with the primary structure and spectroscopic data may suggest that copper atoms occupy the two metal binding sites, MKCEGC and CTC, within the N-terminal domain I and C-terminal domain III, respectively. But only one Zn-binding site was obtained spectroscopically.
Borgnia, Mario J.; Banerjee, Soojay; Merk, Alan; Matthies, Doreen; Bartesaghi, Alberto; Rao, Prashant; Pierson, Jason; Earl, Lesley A.; Falconieri, Veronica
2016-01-01
Cryo-electron microscopy (cryo-EM) methods are now being used to determine structures at near-atomic resolution and have great promise in molecular pharmacology, especially in the context of mapping the binding of small-molecule ligands to protein complexes that display conformational flexibility. We illustrate this here using glutamate dehydrogenase (GDH), a 336-kDa metabolic enzyme that catalyzes the oxidative deamination of glutamate. Dysregulation of GDH leads to a variety of metabolic and neurologic disorders. Here, we report near-atomic resolution cryo-EM structures, at resolutions ranging from 3.2 Å to 3.6 Å for GDH complexes, including complexes for which crystal structures are not available. We show that the binding of the coenzyme NADH alone or in concert with GTP results in a binary mixture in which the enzyme is in either an “open” or “closed” state. Whereas the structure of NADH in the active site is similar between the open and closed states, it is unexpectedly different at the regulatory site. Our studies thus demonstrate that even in instances when there is considerable structural information available from X-ray crystallography, cryo-EM methods can provide useful complementary insights into regulatory mechanisms for dynamic protein complexes. PMID:27036132
Dynamics of the EAG1 K+ channel selectivity filter assessed by molecular dynamics simulations.
Bernsteiner, Harald; Bründl, Michael; Stary-Weinzinger, Anna
2017-02-26
EAG1 channels belong to the KCNH family of voltage gated potassium channels. They are expressed in several brain regions and increased expression is linked to certain cancer types. Recent cryo-EM structure determination finally revealed the structure of these channels in atomic detail, allowing computational investigations. In this study, we performed molecular dynamics simulations to investigate the ion binding sites and the dynamical behavior of the selectivity filter. Our simulations suggest that sites S2 and S4 form stable ion binding sites, while ions placed at sites S1 and S3 rapidly switched to sites S2 and S4. Further, ions tended to dissociate away from S0 within less than 20 ns, due to increased filter flexibility. This was followed by water influx from the extracellular side, leading to a widening of the filter in this region, and likely non-conductive filter configurations. Simulations with the inactivation-enhancing mutant Y464A or Na + ions lead to trapped water molecules behind the SF, suggesting that these simulations captured early conformational changes linked to C-type inactivation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Y. H.; Raghunath, P.; Lin, M. C.
2016-01-01
The adsorption and dissociation mechanisms of SiHx(x = 1-4) species on W(1 1 1) surface have been investigated by using the periodic density functional theory with the projector-augmented wave approach. The adsorption of all the species on four surface sites: top (T), bridge (B), shallow (S), and deep (D) sites have been analyzed. For SiH4 on a top site, T-SiH4(a), it is more stable with an adsorption energy of 2.6 kcal/mol. For SiH3, the 3-fold shallow site is most favorable with adsorption energy of 46.0 kcal/mol. For SiH2, its adsorption on a bridge site is most stable with 73.0 kcal/mol binding energy, whereas for SiH and Si the most stable adsorption configurations are on 3-fold deep sites with very high adsorption energies, 111.8 and 134.7 kcal/mol, respectively. The potential energy surfaces for the dissociative adsorption of all SiHx species on the W(1 1 1) surface have been constructed using the CINEB method. The barriers for H-atom migration from SiHx(a) to its neighboring W atoms, preferentially on B-sites, were predicted to be 0.4, 1.0, 4.5 and, 8.0 kcal/mol, respectively, for x = 4, 3, 2, and 1, respectively. The adsorption energy of the H atom on a bridge site on the clean W(1 1 1) surface was predicted to be 65.9 kcal/mol, which was found to be slightly affected by the co-adsorption of SiHx-1 within ± 1 kcal/mol.
A general strategy to solve the phase problem in RNA crystallography
Keel, Amanda Y.; Rambo, Robert P.; Batey, Robert T.; Kieft, Jeffrey S.
2007-01-01
SUMMARY X-ray crystallography of biologically important RNA molecules has been hampered by technical challenges, including finding a heavy-atom derivative to obtain high-quality experimental phase information. Existing techniques have drawbacks, severely limiting the rate at which important new structures are solved. To address this need, we have developed a reliable means to localize heavy atoms specifically to virtually any RNA. By solving the crystal structures of thirteen variants of the G·U wobble pair cation binding motif we have identified an optimal version that when inserted into an RNA helix introduces a high-occupancy cation binding site suitable for phasing. This “directed soaking” strategy can be integrated fully into existing RNA and crystallography methods, potentially increasing the rate at which important structures are solved and facilitating routine solving of structures using Cu-Kα radiation. The success of this method has been proven in that it has already been used to solve several novel crystal structures. PMID:17637337
Sun, Na; Jin, Ziqi; Li, Dongmei; Yin, Hongjie; Lin, Songyi
2017-11-08
The binding mode between the pentapeptide (DHTKE) from egg white hydrolysates and calcium ions was elucidated upon its structural and thermodynamics characteristics. The present study demonstrated that the DHTKE peptide could spontaneously bind calcium with a 1:1 stoichiometry, and that the calcium-binding site corresponded to the carboxyl oxygen, amino nitrogen, and imidazole nitrogen atoms of the DHTKE peptide. Moreover, the effect of the DHTKE-calcium complex on improving the calcium absorption was investigated in vitro using Caco-2 cells. Results showed that the DHTKE-calcium complex could facilitate the calcium influx into the cytosol and further improve calcium absorption across Caco-2 cell monolayers by more than 7 times when compared to calcium-free control. This study facilitates the understanding about the binding mechanism between peptides and calcium ions as well as suggests a potential application of egg white peptides as nutraceuticals to improve calcium absorption.
Structural analysis of binding functionality of folic acid-PEG dendrimers against folate receptor.
Sampogna-Mireles, Diana; Araya-Durán, Ingrid D; Márquez-Miranda, Valeria; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D
2017-03-01
Dendrimers functionalized with folic acid (FA) are drug delivery systems that can selectively target cancer cells with folate receptors (FR-α) overexpression. Incorporation of polyethylene glycol (PEG) can enhance dendrimers solubility and pharmacokinetics, but ligand-receptor binding must not be affected. In this work we characterized, at atomic level, the binding functionality of conventional site-specific dendrimers conjugated with FA with PEG 750 or PEG 3350 as a linker. After Molecular Dynamics simulation, we observed that both PEG's did not interfere over ligand-receptor binding functionality. Although binding kinetics could be notably affected, the folate fragment from both dendrimers remained exposed to the solvent before approaching selectively to FR-α. PEG 3350 provided better solubility and protection from enzymatic degradation to the dendrimer than PEG 750. Also, FA-PEG3350 dendrimer showed a slightly better interaction with FR-α than FA-PEG750 dendrimer. Therefore, theoretical evidence supports that both dendrimers are suitable as drug delivery systems for cancer therapies. Copyright © 2017 Elsevier Inc. All rights reserved.
Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites.
Laverty, Duncan; Thomas, Philip; Field, Martin; Andersen, Ole J; Gold, Matthew G; Biggin, Philip C; Gielen, Marc; Smart, Trevor G
2017-11-01
γ-Aminobutyric acid receptors (GABA A Rs) are vital for controlling excitability in the brain. This is emphasized by the numerous neuropsychiatric disorders that result from receptor dysfunction. A critical component of most native GABA A Rs is the α subunit. Its transmembrane domain is the target for many modulators, including endogenous brain neurosteroids that impact anxiety, stress and depression, and for therapeutic drugs, such as general anesthetics. Understanding the basis for the modulation of GABA A R function requires high-resolution structures. Here we present the first atomic structures of a GABA A R chimera at 2.8-Å resolution, including those bound with potentiating and inhibitory neurosteroids. These structures define new allosteric binding sites for these modulators that are associated with the α-subunit transmembrane domain. Our findings will enable the exploitation of neurosteroids for therapeutic drug design to regulate GABA A Rs in neurological disorders.
A molecular dynamics study of chloride binding by the cryptand SC24
NASA Technical Reports Server (NTRS)
Owenson, B.; MacElroy, R. D.; Pohorille, A.
1988-01-01
The capture of chloride from water by the tetraprotonated form of the spherical macrotricyclic molecule SC24 was studied using molecular dynamics simulation methods. This model ionophore represents a broad class of molecules which remove ions from water. Two binding sites for the chloride were found, one inside and one outside the ligand. These sites are separated by a potential energy barrier of approximately 20 kcal mol-1. The major contribution to this barrier comes from dehydration of the chloride. The large, unfavorable dehydration effect is compensated for by an increase in electrostatic attraction between the oppositely charged chloride and cryptand, and by energetically favorable rearrangements of water structure. Additional assistance in crossing the barrier and completing the dehydration of the ion is provided by the shift of three positively charged hydrogen atoms of the cryptand towards the chloride. This structural rigidity is partially responsible for its selectivity.
Salmas, Ramin Ekhteiari; Mestanoglu, Mert; Unlu, Ayhan; Yurtsever, Mine; Durdagi, Serdar
2016-11-01
Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.
Arcon, Juan Pablo; Defelipe, Lucas A; Modenutti, Carlos P; López, Elias D; Alvarez-Garcia, Daniel; Barril, Xavier; Turjanski, Adrián G; Martí, Marcelo A
2017-04-24
One of the most important biological processes at the molecular level is the formation of protein-ligand complexes. Therefore, determining their structure and underlying key interactions is of paramount relevance and has direct applications in drug development. Because of its low cost relative to its experimental sibling, molecular dynamics (MD) simulations in the presence of different solvent probes mimicking specific types of interactions have been increasingly used to analyze protein binding sites and reveal protein-ligand interaction hot spots. However, a systematic comparison of different probes and their real predictive power from a quantitative and thermodynamic point of view is still missing. In the present work, we have performed MD simulations of 18 different proteins in pure water as well as water mixtures of ethanol, acetamide, acetonitrile and methylammonium acetate, leading to a total of 5.4 μs simulation time. For each system, we determined the corresponding solvent sites, defined as space regions adjacent to the protein surface where the probability of finding a probe atom is higher than that in the bulk solvent. Finally, we compared the identified solvent sites with 121 different protein-ligand complexes and used them to perform molecular docking and ligand binding free energy estimates. Our results show that combining solely water and ethanol sites allows sampling over 70% of all possible protein-ligand interactions, especially those that coincide with ligand-based pharmacophoric points. Most important, we also show how the solvent sites can be used to significantly improve ligand docking in terms of both accuracy and precision, and that accurate predictions of ligand binding free energies, along with relative ranking of ligand affinity, can be performed.
Ligand induced ferromagnetism in ZnO nanostructures.
Wang, Qian; Sun, Qiang; Jena, P
2008-10-28
Complementary to the experimental finding that ZnO nanoparticles become ferromagnetic when coated with N and S containing ligands such as dodecylamine and dodecanethiol [Garcia et al., Nano Lett. 7, 1489 (2007)], we provide the first theoretical understanding of the origin of magnetism in ligated ZnO nanoparticles as well as the structural properties of the ligated systems by using density functional theory and generalized gradient approximation for exchange and correlation, and a cluster model for the nanoparticles. We show that N or S atoms of the ligand bind to the Zn sites. The accompanying changes in the Zn-O bond length, hybridization between Zn 4s orbitals with N 2p or S 3p orbitals, and consequently the redistribution of charges between Zn and O atoms result in a magnetic system where the 2p electrons in O and N, and 3p electrons in S sites are spin polarized. Furthermore, the sites nearest to the Zn atom attached to the ligand carry bulk of the magnetic moment. Studies, as a function of cluster size, also illustrate that magnetism resides only on the surface. Our results confirm that the use of ligands can pave a new way for introducing magnetism in ZnO nanostructures, which can be used to develop magnetic sensors to detect N and S containing molecules.
Łomozik, Lechosław; Jastrzab, Renata
2003-10-01
Reactions of metallation and non-covalent interactions have been studied in ternary systems of Cu(II) ions with uridine, uridine 5'-monophosphate and diamines or triamines. It has been found that in metal-free systems the reaction centres of the nucleoside with the polyamine are the donor nitrogen atoms N(3) and protonated -NH(x) groups of the amines. In comparison to systems with adenosine or cytidine, the pH range of complex formation is shifted towards higher values. It is a consequence of significantly higher basicity of uridine and in agreement with the ion-ion, ion-dipole interaction model assumed. Formation of molecular complexes of uridine 5'-monophosphate with polyamines at a low pH is the result of activity of the phosphate group which plays the role of a negatively charged reaction site. Non-covalent interactions interfere in processes of bioligand metallation. Centres of weak interactions are simultaneously binding sites of metal ions. In protonated Cu(Urd)(PA)H(x) complexes, coordination has been found to involve the N(3) atom from the nucleoside and two donor nitrogen atoms from the polyamine (PA). In the heteroligand species Cu(Urd)(PA), despite deprotonation of all amine groups, one of these groups is located outside the inner coordination sphere. In complexes with uridine-5'-monophosphate, the phosphate group is active in metallation. Moreover, in certain coordination compounds this group is engaged in non-covalent interactions with PA molecules, despite binding Cu ions, as has been shown on the basis of equilibrium and spectral studies.
Subramanian, Sundar Raman; Singam, Ettayapuram Ramaprasad Azhagiya; Berinski, Michael; Subramanian, Venkatesan; Wade, Rebecca C
2016-08-25
Sequence-specific cleavage of collagen by mammalian collagenase plays a pivotal role in cell function. Collagenases are matrix metalloproteinases that cleave the peptide bond at a specific position on fibrillar collagen. The collagenase Hemopexin-like (HPX) domain has been proposed to be responsible for substrate recognition, but the mechanism by which collagenases identify the cleavage site on fibrillar collagen is not clearly understood. In this study, Brownian dynamics simulations coupled with atomic-detail and coarse-grained molecular dynamics simulations were performed to dock matrix metalloproteinase-1 (MMP-1) on a collagen IIIα1 triple helical peptide. We find that the HPX domain recognizes the collagen triple helix at a conserved R-X11-R motif C-terminal to the cleavage site to which the HPX domain of collagen is guided electrostatically. The binding of the HPX domain between the two arginine residues is energetically stabilized by hydrophobic contacts with collagen. From the simulations and analysis of the sequences and structural flexibility of collagen and collagenase, a mechanistic scheme by which MMP-1 can recognize and bind collagen for proteolysis is proposed.
Identification and structural analysis of ricin inhibitors. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertus, J.D.
1996-12-01
Ricin is a potent cytotoxin which has been used by governments and terrorists as a poison. The three-dimensional structure of this toxic molecule was solved by X-ray crystallography, including an atomic description of its active site. The goal of this project was to use computer searches and other molecular modeling techniques to identify an inhibitor or ricin A chain (RTA). The program CHEM-X was used to predict that pteroic acid (PTA) would bind to RTA. This was shown to be the case by kinetic assays, where PTA protected ribosomes against the action of RTA, and by X-ray crystallography. The affinitymore » of PTA is weak, with a Ki estimated at 600 Micrometers. The pterin group of PTA was observed to make many polar interactions with RTA within the specificity site of the enzyme, and to bind more strongly than the natural substrate adenine. Further work will be required to increase the binding affinity of this class of inhibitors, and to improve their solubility if efficacious antidotes are to be designed from this lead.« less
Prediction of Water Binding to Protein Hydration Sites with a Discrete, Semiexplicit Solvent Model.
Setny, Piotr
2015-12-08
Buried water molecules are ubiquitous in protein structures and are found at the interface of most protein-ligand complexes. Determining their distribution and thermodynamic effect is a challenging yet important task, of great of practical value for the modeling of biomolecular structures and their interactions. In this study, we present a novel method aimed at the prediction of buried water molecules in protein structures and estimation of their binding free energies. It is based on a semiexplicit, discrete solvation model, which we previously introduced in the context of small molecule hydration. The method is applicable to all macromolecular structures described by a standard all-atom force field, and predicts complete solvent distribution within a single run with modest computational cost. We demonstrate that it indicates positions of buried hydration sites, including those filled by more than one water molecule, and accurately differentiates them from sterically accessible to water but void regions. The obtained estimates of water binding free energies are in fair agreement with reference results determined with the double decoupling method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Tine Kragh; Hildmann, Christian; Riester, Daniel
2007-04-01
The crystal structure of HDAH FB188 in complex with a trifluoromethylketone at 2.2 Å resolution is reported and compared to a previously determined inhibitor complex. Histone deacetylases (HDACs) have emerged as attractive targets in anticancer drug development. To date, a number of HDAC inhibitors have been developed and most of them are hydroxamic acid derivatives, typified by suberoylanilide hydroxamic acid (SAHA). Not surprisingly, structural information that can greatly enhance the design of novel HDAC inhibitors is so far only available for hydroxamic acids in complex with HDAC or HDAC-like enzymes. Here, the first structure of an enzyme complex with amore » nonhydroxamate HDAC inhibitor is presented. The structure of the trifluoromethyl ketone inhibitor 9,9,9-trifluoro-8-oxo-N-phenylnonanamide in complex with bacterial FB188 HDAH (histone deacetylase-like amidohydrolase from Bordetella/Alcaligenes strain FB188) has been determined. HDAH reveals high sequential and functional homology to human class 2 HDACs and a high structural homology to human class 1 HDACs. Comparison with the structure of HDAH in complex with SAHA reveals that the two inhibitors superimpose well. However, significant differences in binding to the active site of HDAH were observed. In the presented structure the O atom of the trifluoromethyl ketone moiety is within binding distance of the Zn atom of the enzyme and the F atoms participate in interactions with the enzyme, thereby involving more amino acids in enzyme–inhibitor binding.« less
Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P
2013-01-01
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.
Molecular Mechanism of Thioflavin-T Binding to the Surface of [beta]-Rich Peptide Self-Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancalana, Matthew; Makabe, Koki; Koide, Akiko
A number of small organic molecules have been developed that bind to amyloid fibrils, a subset of which also inhibit fibrillization. Among these, the benzothiol dye Thioflavin-T (ThT) has been used for decades in the diagnosis of protein-misfolding diseases and in kinetic studies of self-assembly (fibrillization). Despite its importance, efforts to characterize the ThT-binding mechanism at the atomic level have been hampered by the inherent insolubility and heterogeneity of peptide self-assemblies. To overcome these challenges, we have developed a minimalist approach to designing a ThT-binding site in a 'peptide self-assembly mimic' (PSAM) scaffold. PSAMs are engineered water-soluble proteins that mimicmore » a segment of beta-rich peptide self-assembly, and they are amenable to standard biophysical techniques and systematic mutagenesis. The PSAM beta-sheet contains rows of repetitive amino acid patterns running perpendicular to the strands (cross-strand ladders) that represent a ubiquitous structural feature of fibril-like surfaces. We successfully designed a ThT-binding site that recapitulates the hallmarks of ThT-fibril interactions by constructing a cross-strand ladder consisting of contiguous tyrosines. The X-ray crystal structures suggest that ThT interacts with the beta-sheet by docking onto surfaces formed by a single tyrosine ladder, rather than in the space between adjacent ladders. Systematic mutagenesis further demonstrated that tyrosine surfaces across four or more beta-strands formed the minimal binding site for ThT. Our work thus provides structural insights into how this widely used dye recognizes a prominent subset of peptide self-assemblies, and proposes a strategy to elucidate the mechanisms of fibril-ligand interactions.« less
Paris, Guillaume; Ramseyer, Christophe; Enescu, Mironel
2014-05-01
The conformational dynamics of human serum albumin (HSA) was investigated by principal component analysis (PCA) applied to three molecular dynamics trajectories of 200 ns each. The overlap of the essential subspaces spanned by the first 10 principal components (PC) of different trajectories was about 0.3 showing that the PCA based on a trajectory length of 200 ns is not completely convergent for this protein. The contributions of the relative motion of subdomains and of the subdomains (internal) distortion to the first 10 PCs were found to be comparable. Based on the distribution of the first 3 PC, 10 protein conformers are identified showing relative root mean square deviations (RMSD) between 2.3 and 4.6 Å. The main PCs are found to be delocalized over the whole protein structure indicating that the motions of different protein subdomains are coupled. This coupling is considered as being related to the allosteric effects observed upon ligand binding to HSA. On the other hand, the first PC of one of the three trajectories describes a conformational transition of the protein domain I that is close to that experimentally observed upon myristate binding. This is a theoretical support for the older hypothesis stating that changes of the protein onformation favorable to binding can precede the ligand complexation. A detailed all atoms PCA performed on the primary Sites 1 and 2 confirms the multiconformational character of the HSA binding sites as well as the significant coupling of their motions. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Marshall, Mark D.; Leung, Helen O.; Wronkovich, Miles A.; Tracy, Megan E.; Hoque, Laboni; Randy-Cofie, Allison M.; Dao, Alina K.
2017-06-01
The determination of the structures of heterodimers of haloethylenes with protic acids has provided a wealth of information and a few surprises concerning intermolecular forces and the sometimes cooperative and sometimes competing effects of electrostatic, steric, and dispersion forces. In seeking to apply this knowledge to larger systems with a wider variety of possible interactions and binding sites, we extend the carbon chain by one atom via the addition of a trifluoromethyl moeity. As a first step the microwave rotational spectra of the halopropene monomers, 2,3,3,3-tetrafluoropropene, 2-chloro-3,3,3-trifluoropropene, (E)-1-chloro-3,3,3-trifluoropropene, and (Z)-1-chloro-3,3,3-trifluoropropene, and their complexes with the argon atom are obtained and analyzed to obtain molecular structures.
Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots.
Liu, Qian; Ren, Jing; Song, Jiangning; Li, Jinyan
2015-01-01
A binding hot spot is a small area at a protein-protein interface that can make significant contribution to binding free energy. This work investigates the substantial contribution made by some special co-occurring atomic contacts at a binding hot spot. A co-occurring atomic contact is a pair of atomic contacts that are close to each other with no more than three covalent-bond steps. We found that two kinds of co-occurring atomic contacts can play an important part in the accurate prediction of binding hot spot residues. One is the co-occurrence of two nearby hydrogen bonds. For example, mutations of any residue in a hydrogen bond network consisting of multiple co-occurring hydrogen bonds could disrupt the interaction considerably. The other kind of co-occurring atomic contact is the co-occurrence of a hydrophobic carbon contact and a contact between a hydrophobic carbon atom and a π ring. In fact, this co-occurrence signifies the collective effect of hydrophobic contacts. We also found that the B-factor measurements of several specific groups of amino acids are useful for the prediction of hot spots. Taking the B-factor, individual atomic contacts and the co-occurring contacts as features, we developed a new prediction method and thoroughly assessed its performance via cross-validation and independent dataset test. The results show that our method achieves higher prediction performance than well-known methods such as Robetta, FoldX and Hotpoint. We conclude that these contact descriptors, in particular the novel co-occurring atomic contacts, can be used to facilitate accurate and interpretable characterization of protein binding hot spots.
Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots
Liu, Qian; Ren, Jing; Song, Jiangning; Li, Jinyan
2015-01-01
A binding hot spot is a small area at a protein-protein interface that can make significant contribution to binding free energy. This work investigates the substantial contribution made by some special co-occurring atomic contacts at a binding hot spot. A co-occurring atomic contact is a pair of atomic contacts that are close to each other with no more than three covalent-bond steps. We found that two kinds of co-occurring atomic contacts can play an important part in the accurate prediction of binding hot spot residues. One is the co-occurrence of two nearby hydrogen bonds. For example, mutations of any residue in a hydrogen bond network consisting of multiple co-occurring hydrogen bonds could disrupt the interaction considerably. The other kind of co-occurring atomic contact is the co-occurrence of a hydrophobic carbon contact and a contact between a hydrophobic carbon atom and a π ring. In fact, this co-occurrence signifies the collective effect of hydrophobic contacts. We also found that the B-factor measurements of several specific groups of amino acids are useful for the prediction of hot spots. Taking the B-factor, individual atomic contacts and the co-occurring contacts as features, we developed a new prediction method and thoroughly assessed its performance via cross-validation and independent dataset test. The results show that our method achieves higher prediction performance than well-known methods such as Robetta, FoldX and Hotpoint. We conclude that these contact descriptors, in particular the novel co-occurring atomic contacts, can be used to facilitate accurate and interpretable characterization of protein binding hot spots. PMID:26675422
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cosman, M; Krishnan, V V; Balhorn, R
2004-04-29
Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique for studying bi-molecular interactions at the atomic scale. Our NMR lab is involved in the identification of small molecules, or ligands that bind to target protein receptors, such as tetanus (TeNT) and botulinum (BoNT) neurotoxins, anthrax proteins and HLA-DR10 receptors on non-Hodgkin's lymphoma cancer cells. Once low affinity binders are identified, they can be linked together to produce multidentate synthetic high affinity ligands (SHALs) that have very high specificity for their target protein receptors. An important nanotechnology application for SHALs is their use in the development of robust chemical sensors ormore » biochips for the detection of pathogen proteins in environmental samples or body fluids. Here, we describe a recently developed NMR competition assay based on transferred nuclear Overhauser effect spectroscopy (trNOESY) that enables the identification of sets of ligands that bind to the same site, or a different site, on the surface of TeNT fragment C (TetC) than a known ''marker'' ligand, doxorubicin. Using this assay, we can identify the optimal pairs of ligands to be linked together for creating detection reagents, as well as estimate the relative binding constants for ligands competing for the same site.« less
Entrapment of Carbon Dioxide in the Active Site of Carbonic Anhydrase II*♦
Domsic, John F.; Avvaru, Balendu Sankara; Kim, Chae Un; Gruner, Sol M.; Agbandje-McKenna, Mavis; Silverman, David N.; McKenna, Robert
2008-01-01
The visualization at near atomic resolution of transient substrates in the active site of enzymes is fundamental to fully understanding their mechanism of action. Here we show the application of using CO2-pressurized, cryo-cooled crystals to capture the first step of CO2 hydration catalyzed by the zinc-metalloenzyme human carbonic anhydrase II, the binding of substrate CO2, for both the holo and the apo (without zinc) enzyme to 1.1Å resolution. Until now, the feasibility of such a study was thought to be technically too challenging because of the low solubility of CO2 and the fast turnover to bicarbonate by the enzyme (Liang, J. Y., and Lipscomb, W. N. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 3675–3679). These structures provide insight into the long hypothesized binding of CO2 in a hydrophobic pocket at the active site and demonstrate that the zinc does not play a critical role in the binding or orientation of CO2. This method may also have a much broader implication for the study of other enzymes for which CO2 is a substrate or product and for the capturing of transient substrates and revealing hydrophobic pockets in proteins. PMID:18768466
Zhou, Wenchang; Leone, Vanessa; Krah, Alexander; Faraldo-Gómez, José D
2017-04-20
Recent years have witnessed a renewed interest in the ATP synthase as a drug target against human pathogens. Indeed, clinical, biochemical, and structural data indicate that hydrophobic inhibitors targeting the membrane-embedded proton-binding sites of the c-subunit ring could serve as last-resort antibiotics against multidrug resistant strains. However, because inhibition of the mitochondrial ATP synthase in humans is lethal, it is essential that these inhibitors be not only potent but also highly selective for the bacterial enzyme. To this end, a detailed understanding of the structure of this protein target is arguably instrumental. Here, we use computational methods to predict the atomic structures of the proton-binding sites in two prototypical c-rings: that of the ATP synthase from Saccharomyces cerevisiae, which is a model system for mitochondrial enzymes, and that from Escherichia coli, which can be pathogenic for humans. Our study reveals the structure of these binding sites loaded with protons and in the context of the membrane, that is, in the state that would mediate the recognition of a potential inhibitor. Both structures reflect a mode of proton coordination unlike those previously observed in other c-ring structures, whether experimental or modeled.
Beta Atomic Contacts: Identifying Critical Specific Contacts in Protein Binding Interfaces
Liu, Qian; Kwoh, Chee Keong; Hoi, Steven C. H.
2013-01-01
Specific binding between proteins plays a crucial role in molecular functions and biological processes. Protein binding interfaces and their atomic contacts are typically defined by simple criteria, such as distance-based definitions that only use some threshold of spatial distance in previous studies. These definitions neglect the nearby atomic organization of contact atoms, and thus detect predominant contacts which are interrupted by other atoms. It is questionable whether such kinds of interrupted contacts are as important as other contacts in protein binding. To tackle this challenge, we propose a new definition called beta (β) atomic contacts. Our definition, founded on the β-skeletons in computational geometry, requires that there is no other atom in the contact spheres defined by two contact atoms; this sphere is similar to the van der Waals spheres of atoms. The statistical analysis on a large dataset shows that β contacts are only a small fraction of conventional distance-based contacts. To empirically quantify the importance of β contacts, we design βACV, an SVM classifier with β contacts as input, to classify homodimers from crystal packing. We found that our βACV is able to achieve the state-of-the-art classification performance superior to SVM classifiers with distance-based contacts as input. Our βACV also outperforms several existing methods when being evaluated on several datasets in previous works. The promising empirical performance suggests that β contacts can truly identify critical specific contacts in protein binding interfaces. β contacts thus provide a new model for more precise description of atomic organization in protein quaternary structures than distance-based contacts. PMID:23630569
Sun, Na; Cui, Pengbo; Jin, Ziqi; Wu, Haitao; Wang, Yixing; Lin, Songyi
2017-09-01
This study investigated the contributions of molecular size, charge distribution and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates (SCOHs), and further explored their iron-binding sites. It was demonstrated that enzyme type and degree of hydrolysis (DH) significantly influenced the iron-binding capacity of the SCOHs. The SCOHs produced by alcalase at a DH of 25.9% possessed the highest iron-binding capacity at 92.1%. As the hydrolysis time increased, the molecular size of the SCOHs decreased, the negative charges increased, and the hydrophilic amino acids were exposed to the surface, facilitating iron binding. Furthermore, the Fourier transform infrared spectra, combined with amino acid composition analysis, revealed that iron bound to the SCOHs primarily through interactions with carboxyl oxygen of Asp, guanidine nitrogen of Arg or nitrogen atoms in imidazole group of His. The formed SCOHs-iron complexes exhibited a fold and crystal structure with spherical particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rationalizing Tight Ligand Binding through Cooperative Interaction Networks
2011-01-01
Small modifications of the molecular structure of a ligand sometimes cause strong gains in binding affinity to a protein target, rendering a weakly active chemical series suddenly attractive for further optimization. Our goal in this study is to better rationalize and predict the occurrence of such interaction hot-spots in receptor binding sites. To this end, we introduce two new concepts into the computational description of molecular recognition. First, we take a broader view of noncovalent interactions and describe protein–ligand binding with a comprehensive set of favorable and unfavorable contact types, including for example halogen bonding and orthogonal multipolar interactions. Second, we go beyond the commonly used pairwise additive treatment of atomic interactions and use a small world network approach to describe how interactions are modulated by their environment. This approach allows us to capture local cooperativity effects and considerably improves the performance of a newly derived empirical scoring function, ScorpionScore. More importantly, however, we demonstrate how an intuitive visualization of key intermolecular interactions, interaction networks, and binding hot-spots supports the identification and rationalization of tight ligand binding. PMID:22087588
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, Vitaly; Sushko, Maria L.; Schreiber, Daniel K.
A density-functional-theory modeling study of atomic oxygen/sulfur adsorption and diffusion at pristine and doped Ni(111) and (110) surfaces is presented. We find that oxygen and sulfur feature comparable adsorption energies over the same surface sites, however, the surface diffusion of sulfur is characterized by an activation barrier about one half that of oxygen. Calculations with different alloying elements at Ni surfaces show that Cr strongly enhances surface binding of both species in comparison to Al. These results in combination with previous modeling studies help explain the observed differences in selective grain boundary oxidation mechanisms of Ni-Cr and Ni-Al alloys.
NASA Astrophysics Data System (ADS)
Rosenfeld, Robin J.; Goodsell, David S.; Musah, Rabi A.; Morris, Garrett M.; Goodin, David B.; Olson, Arthur J.
2003-08-01
The W191G cavity of cytochrome c peroxidase is useful as a model system for introducing small molecule oxidation in an artificially created cavity. A set of small, cyclic, organic cations was previously shown to bind in the buried, solvent-filled pocket created by the W191G mutation. We docked these ligands and a set of non-binders in the W191G cavity using AutoDock 3.0. For the ligands, we compared docking predictions with experimentally determined binding energies and X-ray crystal structure complexes. For the ligands, predicted binding energies differed from measured values by ± 0.8 kcal/mol. For most ligands, the docking simulation clearly predicted a single binding mode that matched the crystallographic binding mode within 1.0 Å RMSD. For 2 ligands, where the docking procedure yielded an ambiguous result, solutions matching the crystallographic result could be obtained by including an additional crystallographically observed water molecule in the protein model. For the remaining 2 ligands, docking indicated multiple binding modes, consistent with the original electron density, suggesting disordered binding of these ligands. Visual inspection of the atomic affinity grid maps used in docking calculations revealed two patches of high affinity for hydrogen bond donating groups. Multiple solutions are predicted as these two sites compete for polar hydrogens in the ligand during the docking simulation. Ligands could be distinguished, to some extent, from non-binders using a combination of two trends: predicted binding energy and level of clustering. In summary, AutoDock 3.0 appears to be useful in predicting key structural and energetic features of ligand binding in the W191G cavity.
Site-selective local fluorination of graphene induced by focused ion beam irradiation.
Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus
2016-01-29
The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.
Site-selective local fluorination of graphene induced by focused ion beam irradiation
NASA Astrophysics Data System (ADS)
Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus
2016-01-01
The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.
Computational insights into the interaction of small molecule inhibitors with HRI kinase domain.
Palrecha, Sourabh; Lakade, Dushant; Kulkarni, Abhijeet; Pal, Jayanta K; Joshi, Manali
2018-05-07
The Heme-Regulated Inhibitor (HRI) kinase regulates globin synthesis in a heme-dependent manner in reticulocytes and erythroid cells in bone marrow. Inhibitors of HRI have been proposed to lead to an increased amount of haemoglobin, benefitting anaemia patients. A series of indeno[1,2-c]pyrazoles were discovered to be the first known in vitro inhibitors of HRI. However, the structural mechanism of inhibition is yet to be understood. The aim of this study was to unravel the binding mechanism of these inhibitors using molecular dynamic simulations and docking. The docking scores were observed to correlate well with experimentally determined pIC 50 values. The inhibitors were observed to bind in the ATP-binding site forming hydrogen bonds with the hinge region and van der Waals interactions with non-polar residues in the binding site. Further, quantitative structure-activity relationship (QSAR) studies were performed to correlate the structural features of the inhibitors with their biological activity. The developed QSAR models were found to be statistically significant in terms of internal and external predictabilities. The presence of chlorine atoms and the hydroxymethyl groups were found to correlate with higher activity. The identified binding modes and the descriptors can support future rational identification of more potent and selective small molecule inhibitors for this kinase which are of therapeutic importance in the context of various human pathological disorders.
A Unitary Anesthetic Binding Site at High Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedula, L. Sangeetha; Brannigan, Grace; Economou, Nicoleta J.
2009-10-21
Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show thatmore » apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less
A Unitary Anesthetic Binding Site at High Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
L Vedula; G Brannigan; N Economou
2011-12-31
Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show thatmore » apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less
A Unitary Anesthetic-Binding Site at High Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedula, L.; Brannigan, G; Economou, N
2009-01-01
Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABAA receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritinmore » also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongmin; Astrof, Nathan S.; Liu, Jin-Huan
2009-09-15
Volatile anesthetics (VAs), such as isoflurane, induce a general anesthetic state by binding to specific targets (i.e., ion channels) in the central nervous system (CNS). Simultaneously, VAs modulate immune functions, possibly via direct interaction with alternative targets on leukocytes. One such target, the integrin lymphocyte function-associated antigen-1 (LFA-1), has been shown previously to be inhibited by isoflurane. A better understanding of the mechanism by which isoflurane alters protein function requires the detailed information about the drug-protein interaction at an atomic level. Here, we describe the crystal structure of the LFA-1 ligand-binding domain (I domain) in complex with isoflurane at 1.6more » {angstrom}. We discovered that isoflurane binds to an allosteric cavity previously implicated as critical for the transition of LFA-1 from the low- to the high-affinity state. The isoflurane binding site in the I domain involves an array of amphiphilic interactions, thereby resembling a 'common anesthetic binding motif' previously predicted for authentic VA binding sites. These results suggest that the allosteric modulation of protein function by isoflurane, as demonstrated for the integrin LFA-1, might represent a unified mechanism shared by the interactions of volatile anesthetics with targets in the CNS. Crystal structure of isoflurane bound to integrin LFA-1 supports a unified mechanism of volatile anesthetic action in the immune and central nervous systems.« less
Testing inhomogeneous solvation theory in structure-based ligand discovery.
Balius, Trent E; Fischer, Marcus; Stein, Reed M; Adler, Thomas B; Nguyen, Crystal N; Cruz, Anthony; Gilson, Michael K; Kurtzman, Tom; Shoichet, Brian K
2017-08-15
Binding-site water is often displaced upon ligand recognition, but is commonly neglected in structure-based ligand discovery. Inhomogeneous solvation theory (IST) has become popular for treating this effect, but it has not been tested in controlled experiments at atomic resolution. To do so, we turned to a grid-based version of this method, GIST, readily implemented in molecular docking. Whereas the term only improves docking modestly in retrospective ligand enrichment, it could be added without disrupting performance. We thus turned to prospective docking of large libraries to investigate GIST's impact on ligand discovery, geometry, and water structure in a model cavity site well-suited to exploring these terms. Although top-ranked docked molecules with and without the GIST term often overlapped, many ligands were meaningfully prioritized or deprioritized; some of these were selected for testing. Experimentally, 13/14 molecules prioritized by GIST did bind, whereas none of the molecules that it deprioritized were observed to bind. Nine crystal complexes were determined. In six, the ligand geometry corresponded to that predicted by GIST, for one of these the pose without the GIST term was wrong, and three crystallographic poses differed from both predictions. Notably, in one structure, an ordered water molecule with a high GIST displacement penalty was observed to stay in place. Inclusion of this water-displacement term can substantially improve the hit rates and ligand geometries from docking screens, although the magnitude of its effects can be small and its impact in drug binding sites merits further controlled studies.
Adsorption of lactic acid on chiral Pt surfaces—A density functional theory study
NASA Astrophysics Data System (ADS)
Franke, J.-H.; Kosov, D. S.
2013-02-01
The adsorption of the chiral molecule lactic acid on chiral Pt surfaces is studied by density functional theory calculations. First, we study the adsorption of L-lactic acid on the flat Pt(111) surface. Using the optimed PBE - van der Waals (oPBE-vdW) functional, which includes van der Waals forces on an ab initio level, it is shown that the molecule has two binding sites, a carboxyl and the hydroxyl oxygen atoms. Since real chiral surfaces are (i) known to undergo thermal roughening that alters the distribution of kinks and step edges but not the overall chirality and (ii) kink sites and edge sites are usually the energetically most favored adsorption sites, we focus on two surfaces that allow qualitative sampling of the most probable adsorption sites. We hereby consider chiral surfaces exhibiting (111) facets, in particular, Pt(321) and Pt(643). The binding sites are either both on kink sites—which is the case for Pt(321) or on one kink site—as on Pt(643). The binding energy of the molecule on the chiral surfaces is much higher than on the Pt(111) surface. We show that the carboxyl group interacts more strongly than the hydroxyl group with the kink sites. The results indicate the possible existence of very small chiral selectivities of the order of 20 meV for the Pt(321) and Pt(643) surfaces. L-lactic acid is more stable on Pt(321)S than D-lactic acid, while the chiral selectivity is inverted on Pt(643)S. The most stable adsorption configurations of L- and D-lactic acid are similar for Pt(321) but differ for Pt(643). We explore the impact of the different adsorption geometries on the work function, which is important for field ion microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterjovski, Jasminka; Churchill, Melissa J.; Roche, Michael
2011-02-20
CD4-binding site (CD4bs) alterations in gp120 contribute to different pathophysiological phenotypes of CCR5-using (R5) HIV-1 strains, but the potential structural basis is unknown. Here, we characterized functionally diverse R5 envelope (Env) clones (n = 16) to elucidate potential structural alterations within the gp120 CD4bs that influence Env function. Initially, we showed that the magnitude of gp120-CD4-binding correlates with increased fusogenicity and reduced CD4 dependence. Analysis of three-dimensional gp120 structural models revealed two CD4bs variants, D279 and N362, that were associated with reduced CD4 dependence. Further structural analysis showed that a wider aperture of the predicted CD4bs cavity, as constrained bymore » the inner-most atoms at the gp120 V1V2 stem and the V5 loop, was associated with amino acid alterations within V5 and correlated with increased gp120-CD4 binding and increased fusogenicity. Our results provide evidence that the gp120 V5 loop may alter CD4bs conformation and contribute to increased gp120-CD4 interactions and Env fusogenicity.« less
NASA Astrophysics Data System (ADS)
Cerdeira, M. A.; Palacios, S. L.; González, C.; Fernández-Pello, D.; Iglesias, R.
2016-09-01
The formation, binding and migration energetics of helium clusters inside a niobium crystal have been analysed via ab initio simulations. The effect of placing several He atoms within an n-vacancy previously formed or as interstitials inside the initial perfect bulk matrix has been studied. DFT-based results show that He atoms prefer to aggregate forming small clusters at n-vacancy sites rather than at interstitial positions in the perfect crystal. The minimum formation energy is found when NHe is equal to the number of vacancies, n. It follows that vacancies act as almost perfect traps for He atoms, as is well known for other metals. The migration barriers of He atoms inside vacancies increase considerably when compared to what happens for vacancies alone. A secondary consequence is that the full set of energies obtained will be highly relevant as an input for new approaches to KMC simulations of defects in Nb.
Donor assists acceptor binding and catalysis of human α1,6-fucosyltransferase.
Kötzler, Miriam P; Blank, Simon; Bantleon, Frank I; Wienke, Martin; Spillner, Edzard; Meyer, Bernd
2013-08-16
α1,6-Core-fucosyltransferase (FUT8) is a vital enzyme in mammalian physiological and pathophysiological processes such as tumorigenesis and progress of, among others, non-small cell lung cancer and colon carcinoma. It was also shown that therapeutic antibodies have a dramatically higher efficacy if the α1,6-fucosyl residue is absent. However, specific and potent inhibitors for FUT8 and related enzymes are lacking. Hence, it is crucial to elucidate the structural basis of acceptor binding and the catalytic mechanism. We present here the first structural model of FUT8 in complex with its acceptor and donor molecules. An unusually large acceptor, i.e., a hexasaccharide from the core of N-glycans, is required as minimal structure. Acceptor substrate binding of FUT8 is being dissected experimentally by STD NMR and SPR and theoretically by molecular dynamics simulations. The acceptor binding site forms an unusually large and shallow binding site. Binding of the acceptor to the enzyme is much faster and stronger if the donor is present. This is due to strong hydrogen bonding between O6 of the proximal N-acetylglucosamine and an oxygen atom of the β-phosphate of GDP-fucose. Therefore, we propose an ordered Bi Bi mechanism for FUT8 where the donor molecule binds first. No specific amino acid is present that could act as base during catalysis. Our results indicate a donor-assisted mechanism, where an oxygen of the β-phosphate deprotonates the acceptor. Knowledge of the mechanism of FUT8 is now being used for rational design of targeted inhibitors to address metastasis and prognosis of carcinomas.
Heinecke, Christine L; Ni, Thomas W; Malola, Sami; Mäkinen, Ville; Wong, O Andrea; Häkkinen, Hannu; Ackerson, Christopher J
2012-08-15
Ligand exchange reactions are widely used for imparting new functionality on or integrating nanoparticles into devices. Thiolate-for-thiolate ligand exchange in monolayer protected gold nanoclusters has been used for over a decade; however, a firm structural basis of this reaction has been lacking. Herein, we present the first single-crystal X-ray structure of a partially exchanged Au(102)(p-MBA)(40)(p-BBT)(4) (p-MBA = para-mercaptobenzoic acid, p-BBT = para-bromobenzene thiol) with p-BBT as the incoming ligand. The crystal structure shows that 2 of the 22 symmetry-unique p-MBA ligand sites are partially exchanged to p-BBT under the initial fast kinetics in a 5 min timescale exchange reaction. Each of these ligand-binding sites is bonded to a different solvent-exposed Au atom, suggesting an associative mechanism for the initial ligand exchange. Density functional theory calculations modeling both thiol and thiolate incoming ligands postulate a mechanistic pathway for thiol-based ligand exchange. The discrete modification of a small set of ligand binding sites suggests Au(102)(p-MBA)(44) as a powerful platform for surface chemical engineering.
Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; ...
2015-11-05
Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp 2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexesmore » in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less
Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R.I.; Wood, Brandon C.; Wang, Y. Morris
2015-01-01
Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes. PMID:26536830
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bak, J. H.; Le, V. D.; Kang, J.
2012-04-05
Open-site paddle wheels, comprised of two transition metals bridged with four carboxylate ions, have been widely used for constructing metal-organic frameworks with large surface area and high binding energy sites. Using first-principles density functional theory calculations, we have investigated atomic and electronic structures of various 3d transition metal paddle wheels before and after metal exposure and their hydrogen adsorption properties at open metal sites. Notably, the hydrogen adsorption is impeded by covalent metal-metal bonds in early transition metal paddle wheels from Sc to Cr and by the strong ferromagnetic coupling of diatomic Mn and Fe in the paddle wheel configurations.more » A significantly enhanced H{sub 2} adsorption is predicted in the nonmagnetic Co{sub 2} and Zn{sub 2} paddle wheel with the binding energy of {approx}0.2 eV per H{sub 2}. We also propose the use of two-dimensional Co{sub 2} and Zn{sub 2} paddle wheel frameworks that could have strongly adsorbed dihydrogen up to 1.35 wt % for noncryogenic hydrogen storage applications.« less
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Dominiak, Paulina
2003-01-01
The derivative of vitamin B1 thiamin pyrophosphate (TPP) is a cofactor of enzymes performing catalysis in pathways of energy production, including (i) decarboxylation of alpha-keto acids followed by (ii) transketolation. These enzymes have shown a common mechanism of TPP activation by imposing an active V-conformation of this coenzyme that brings the N4 atom of the aminopyrimidine ring to the distance required for the intramolecular C-H N hydrogen-bonding with the C2- atom of the thiazolium ring. The reactive C2 atom of TPP is the nucleophile that attacks the carbonyl carbon of different substrates used by the TPP-dependent enzymes. The structure of the heterotetrameric human pyruvate dehydrogenase (Elp) recently determined in our laboratory (1) revealed the association pattern of the subunits and the specifics of two chemically equivalent cofactor binding sites. Dynamic nonequivalence of these two cofactor sites directs the flip-flop action of this enzyme, depending upon which two active sites effect each other (2). The crystal structure derived from the holo-form of Elp provided the basis for the model of the flip-flop action of Elp in which different steps of the catalytic reaction are performed in each of the two cofactor sites at any given moment, where these steps are governed by the concerted shuttle-like motion of the subunits. It is further proposed that balancing a hydrogen-bond network and related cofactor geometry determine the continuity of catalytic events.
Affinity comparison of different THCA synthase to CBGA using modeling computational approaches.
Alaoui, Moulay Abdelaziz El; Ibrahimi, Azeddine; Semlali, Oussama; Tarhda, Zineb; Marouane, Melloul; Najwa, Alaoui; Soulaymani, Abdelmajid; Fahime, Elmostafa El
2014-01-01
The Δ(9-)Tetrahydrocannabinol (THCA) is the primary psychoactive compound of Cannabis Sativa. It is produced by Δ(1-) Tetrahydrocannabinolic acid synthase (THCA) which catalyzes the oxidative cyclization of cannabigerolic acid (CBGA) the precursor of the THCA. In this study, we were interested by the three dimensional structure of THCA synthase protein. Generation of models were done by MODELLER v9.11 and homology modeling with Δ1-tetrahydrocannabinolic acid (THCA) synthase X ray structure (PDB code 3VTE) on the basis of sequences retrieved from GenBank. Procheck, Errat, and Verify 3D tools were used to verify the reliability of the six 3D models obtained, the overall quality factor and the Prosa Z-score were also used to check the quality of the six modeled proteins. The RMSDs for C-alpha atoms, main-chain atoms, side-chain atoms and all atoms between the modeled structures and the corresponding template ranged between 0.290 Å-1.252 Å, reflecting the good quality of the obtained models. Our study of the CBGA-THCA synthase docking demonstrated that the active site pocket was successfully recognized using computational approach. The interaction energy of CBGA computed in 'fiber types' proteins ranged between -4.1 95 kcal/mol and -5.95 kcal/mol whereas in the 'drug type' was about -7.02 kcal/mol to -7.16 kcal/mol, which maybe indicate the important role played by the interaction energy of CBGA in the determination of the THCA level in Cannabis Sativa L. varieties. Finally, we have proposed an experimental design in order to explore the binding energy source of ligand-enzyme in Cannabis Sativa and the production level of the THCA in the absence of any information regarding the correlation between the enzyme affinity and THCA level production. This report opens the doors to more studies predicting the binding site pocket with accuracy from the perspective of the protein affinity and THCA level produced in Cannabis Sativa.
Chakraborty, Srirupa; Zheng, Wenjun
2015-01-27
We have employed molecular dynamics (MD) simulation to investigate, with atomic details, the structural dynamics and energetics of three major ATPase states (ADP, APO, and ATP state) of a human kinesin-1 monomer in complex with a tubulin dimer. Starting from a recently solved crystal structure of ATP-like kinesin-tubulin complex by the Knossow lab, we have used flexible fitting of cryo-electron-microscopy maps to construct new structural models of the kinesin-tubulin complex in APO and ATP state, and then conducted extensive MD simulations (total 400 ns for each state), followed by flexibility analysis, principal component analysis, hydrogen bond analysis, and binding free energy analysis. Our modeling and simulation have revealed key nucleotide-dependent changes in the structure and flexibility of the nucleotide-binding pocket (featuring a highly flexible and open switch I in APO state) and the tubulin-binding site, and allosterically coupled motions driving the APO to ATP transition. In addition, our binding free energy analysis has identified a set of key residues involved in kinesin-tubulin binding. On the basis of our simulation, we have attempted to address several outstanding issues in kinesin study, including the possible roles of β-sheet twist and neck linker docking in regulating nucleotide release and binding, the structural mechanism of ADP release, and possible extension and shortening of α4 helix during the ATPase cycle. This study has provided a comprehensive structural and dynamic picture of kinesin's major ATPase states, and offered promising targets for future mutational and functional studies to investigate the molecular mechanism of kinesin motors.
Structural and biochemical insights into 7β-hydroxysteroid dehydrogenase stereoselectivity.
Savino, Simone; Ferrandi, Erica Elisa; Forneris, Federico; Rovida, Stefano; Riva, Sergio; Monti, Daniela; Mattevi, Andrea
2016-06-01
Hydroxysteroid dehydrogenases are of great interest as biocatalysts for transformations involving steroid substrates. They feature a high degree of stereo- and regio-selectivity, acting on a defined atom with a specific configuration of the steroid nucleus. The crystal structure of 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens reveals a loop gating active-site accessibility, the bases of the specificity for NADP(+) , and the general architecture of the steroid binding site. Comparison with 7α-hydroxysteroid dehydrogenase provides a rationale for the opposite stereoselectivity. The presence of a C-terminal extension reshapes the substrate site of the β-selective enzyme, possibly leading to an inverted orientation of the bound substrate. Proteins 2016; 84:859-865. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Jobst, Markus A; Milles, Lukas F; Schoeler, Constantin; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Gaub, Hermann E; Nash, Michael A
2015-10-31
Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given the vast number of Doc domains with predicted dual binding modes across multiple bacterial species, our approach opens up new possibilities for understanding assembly and catalytic properties of a broad range of multi-enzyme complexes.
Sekula, Bartosz; Ciesielska, Anna; Rytczak, Przemyslaw; Koziołkiewicz, Maria; Bujacz, Anna
2016-01-01
Cyclic phosphatidic acids (cPAs) are naturally occurring, very active signalling molecules, which are involved in several pathological states, such as cancer, diabetes or obesity. As molecules of highly lipidic character found in the circulatory system, cPAs are bound and transported by the main extracellular lipid binding protein–serum albumin. Here, we present the detailed interactions between human serum albumin (HSA) and equine serum albumin (ESA) with a derivative of cPA, 1-O-myristoyl-sn-glycerol-2,3-cyclic phosphorodithioate (Myr-2S-cPA). Initial selection of the ligand used for the structural study was made by the analysis of the therapeutically promising properties of the sulfur containing analogues of cPA in respect to the unmodified lysophospholipids (LPLs). Substitution of one or two non-bridging oxygen atoms in the phosphate group with one or two sulfur atoms increases the cytotoxic effect of cPAs up to 60% on the human prostate cancer (PC) cells. Myr-2S-cPA reduces cancer cell viability in a dose-dependent manner, with IC50 value of 29.0 μM after 24 h incubation, which is almost 30% lower than IC50 of single substituted phosphorothioate cPA. Although, the structural homology between HSA and ESA is big, their crystal complexes with Myr-2S-cPA demonstrate significantly different mode of binding of this LPL analogue. HSA binds three molecules of Myr-2S-cPA, whereas ESA only one. Moreover, none of the identified Myr-2S-cPA binding sites overlap in both albumins. PMID:27129297
Banerjee, Suvrajit; Parimal, Siddharth; Cramer, Steven M
2017-08-18
Multimodal (MM) chromatography provides a powerful means to enhance the selectivity of protein separations by taking advantage of multiple weak interactions that include electrostatic, hydrophobic and van der Waals interactions. In order to increase our understanding of such phenomena, a computationally efficient approach was developed that combines short molecular dynamics simulations and continuum solvent based coarse-grained free energy calculations in order to study the binding of proteins to Self Assembled Monolayers (SAM) presenting MM ligands. Using this method, the free energies of protein-MM SAM binding over a range of incident orientations of the protein can be determined. The resulting free energies were then examined to identify the more "strongly bound" orientations of different proteins with two multimodal surfaces. The overall free energy of protein-MM surface binding was then determined and correlated to retention factors from isocratic chromatography. This correlation, combined with analytical expressions from the literature, was then employed to predict protein gradient elution salt concentrations as well as selectivity reversals with different MM resin systems. Patches on protein surfaces that interacted strongly with MM surfaces were also identified by determining the frequency of heavy atom contacts with the atoms of the MM SAMs. A comparison of these patches to Electrostatic Potential and hydrophobicity maps indicated that while all of these patches contained significant positive charge, only the highest frequency sites also possessed hydrophobicity. The ability to identify key binding patches on proteins may have significant impact on process development for the separation of bioproduct related impurities. Copyright © 2017 Elsevier B.V. All rights reserved.
Interfacial phenomena in high-kappa dielectrics
NASA Astrophysics Data System (ADS)
Mathew, Anoop
The introduction of novel high-kappa dielectric materials to replace the traditional SiO2 insulating layer in CMOS transistors is a watershed event in the history of transistor development. Further, replacement of the traditional highly-doped polycrystalline silicon gate electrode with a new set of materials for metal gates complicates the transition and introduces further integration challenges. A whole variety of new material surfaces and interfaces are thus introduced that merit close investigation to determine parameters for optimal device performance. Nitrogen is a key component that improves the performance of a variety of materials for the next generation of these CMOS transistors. Nitrogen is introduced into new gate dielectric materials such as hafnium silicates as well as in potential metal gate materials such as hafnium nitride. A photoemission study of the binding energies of the various atoms in these systems using photoemission reveals the nature of the atomic bonding. The current study compares hafnium silicates of various compositions which were thermally nitrided at different temperatures in ammonia, hafnium nitrides, and thin HfO2 films using photoelectron spectroscopy. A recurring theme that is explored is the competition between oxygen and nitrogen atoms in bonding with hafnium and other atoms. The N 1s photoemission peak is seen to have contributions from its bonding with hafnium, oxygen, and silicon atoms. The Hf 4f and O 1s spectra similarly exhibit signatures of their bonding environment with their neighboring atoms. Angle resolved photoemission and in-situ annealing/argon sputtering experiments are used to elucidate the nature of the bonding and its evolution with processing. A nondestructive profilitng of nitrogen distribution as a function of composition in nitrided hafnium silicates is also constructed using angle resolved photoemission as a function of the take-off angle. These results are corroborated with depth reconstruction obtained using medium energy ion scattering (MEIS). A comparison of samples nitrided at progressively increasing temperatures in an ammonia environment shows substitution of oxygen with nitrogen atoms and increasing penetration of nitrogen into the gate stack. Trends in the binding energy of the the as-prepared hafnium silicates suggest that they are non-phase separated, and the binding energy of the hafnium and silicon track the relative composition. Upon being subject to rapid thermal annealing, the samples are observed to show behavior consistent with phase separation. There is also the evidence of charges at the oxide/Si interface that modify the expected behavior of the shifts in binding energy. In another set of experiments, a one-cycle atomic layer deposition (ALD) growth reaction on the water terminated Si(100) -- (2x1) surface is shown to lead to successful nucleation, high metal oxide coverage, and an abrupt metal-oxide/silicon interface as confirmed by photoemission, reflection high energy electron diffraction (RHEED), and Rutherford back scattering (RBS) measurements. Photoemission results confirm the coordination states of the hafnium and oxygen atoms. A Hf 4f core level shift is observed and assigned to the presence of the Si-O-Hf bonding environment with the more electronegative Si atom inducing the binding energy shift. This Hf 4f shift is smaller than that reported previously for silicates because of the difference of the semiconductor bonding environment. The subspecies *(O)2HfCl2 and *OHfCl3 are seen to be the predominant intermediate species in these reactions and photoemission results provide corroborative evidence for their presence. Experiments indicate that the hydroxyl sites bound to Si(100) are active for adsorption. The abrupt interface could be useful for aggressive Effective Oxide Thickness (EOT) scaling.
La Regina, Giuseppe; Edler, Michael C; Brancale, Andrea; Kandil, Sahar; Coluccia, Antonio; Piscitelli, Francesco; Hamel, Ernest; De Martino, Gabriella; Matesanz, Ruth; Díaz, José Fernando; Scovassi, Anna Ivana; Prosperi, Ennio; Lavecchia, Antonio; Novellino, Ettore; Artico, Marino; Silvestri, Romano
2007-06-14
The new arylthioindole (ATI) derivatives 10, 14-18, and 21-24, which bear a halogen atom or a small size ether group at position 5 of the indole moiety, were compared with the reference compounds colchicine and combretastatin A-4 for biological activity. Derivatives 10, 11, 16, and 21-24 inhibited MCF-7 cell growth with IC50 values <50 nM. A halogen atom (14-17) at position 5 caused a significant reduction in the free energy of binding of compound to tubulin, with a concomitant reduction in cytotoxicity. In contrast, methyl (21) and methoxy (22) substituents at position 5 caused an increase in cytotoxicity. Compound 16, the most potent antitubulin agent, led to a large increase (56%) in HeLa cells in the G2/M phase at 24 h, and at 48 h, 26% of the cells were hyperploid. Molecular modeling studies showed that, despite the absence of the ester moiety present in the previously examined analogues, most of the compounds bind in the colchicine site in the same orientation as the previously studied ATIs. Binding to beta-tubulin involved formation of a hydrogen bond between the indole and Thr179 and positioning of the trimethoxy phenyl group in a hydrophobic pocket near Cys241.
Influence of Na+ and Mg2+ ions on RNA structures studied with molecular dynamics simulations.
Fischer, Nina M; Polêto, Marcelo D; Steuer, Jakob; van der Spoel, David
2018-06-01
The structure of ribonucleic acid (RNA) polymers is strongly dependent on the presence of, in particular Mg2+ cations to stabilize structural features. Only in high-resolution X-ray crystallography structures can ions be identified reliably. Here, we perform molecular dynamics simulations of 24 RNA structures with varying ion concentrations. Twelve of the structures were helical and the others complex folded. The aim of the study is to predict ion positions but also to evaluate the impact of different types of ions (Na+ or Mg2+) and the ionic strength on structural stability and variations of RNA. As a general conclusion Mg2+ is found to conserve the experimental structure better than Na+ and, where experimental ion positions are available, they can be reproduced with reasonable accuracy. If a large surplus of ions is present the added electrostatic screening makes prediction of binding-sites less reproducible. Distinct differences in ion-binding between helical and complex folded structures are found. The strength of binding (ΔG‡ for breaking RNA atom-ion interactions) is found to differ between roughly 10 and 26 kJ/mol for the different RNA atoms. Differences in stability between helical and complex folded structures and of the influence of metal ions on either are discussed.
Inhibition of d-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography
Kovalevsky, Andrey; Hanson, B. Leif; Mason, Sax A.; Forsyth, V. Trevor; Fisher, Zoe; Mustyakimov, Marat; Blakeley, Matthew P.; Keen, David A.; Langan, Paul
2012-01-01
d-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni2+ cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg2+ ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni2+ ions occupying the catalytic metal site (M2) were found at two locations, while Mg2+ in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH. PMID:22948921
Kaufmann, Kristian W.; Dawson, Eric S.; Henry, L. Keith; Field, Julie R.; Blakely, Randy D.; Meiler, Jens
2009-01-01
To identify potential determinants of substrate selectivity in serotonin (5-HT) transporters (SERT), models of human and Drosophila serotonin transporters (hSERT, dSERT) were built based on the leucine transporter (LeuTAa) structure reported by Yamashita et al. (Nature 2005;437:215–223), PBDID 2A65. Although the overall amino acid identity between SERTs and the LeuTAa is only 17%, it increases to above 50% in the first shell of the putative 5-HT binding site, allowing de novo computational docking of tryptamine derivatives in atomic detail. Comparison of hSERT and dSERT complexed with substrates pinpoints likely structural determinants for substrate binding. Forgoing the use of experimental transport and binding data of tryptamine derivatives for construction of these models enables us to cHitically assess and validate their predictive power: A single 5-HT binding mode was identified that retains the amine placement observed in the LeuTAa structure, matches site-directed mutagenesis and substituted cysteine accessibility method (SCAM) data, complies with support vector machine derived relations activity relations, and predicts computational binding energies for 5-HT analogs with a significant correlation coefficient (R = 0.72). This binding mode places 5-HT deep in the binding pocket of the SERT with the 5-position near residue hSERT A169/dSERT D164 in transmembrane helix 3, the indole nitrogen next to residue Y176/Y171, and the ethylamine tail under residues F335/F327 and S336/S328 within 4 Å of residue D98. Our studies identify a number of potential contacts whose contribution to substrate binding and transport was previously unsuspected. PMID:18704946
Ishikawa, Atsushi; Nakatsuji, Hiroshi
2013-08-05
O1s core-electron binding energies (CEBE) of the atomic oxygens on different Ag surfaces were investigated by the symmetry adapted cluster-configuration interaction (SAC-CI) method combined with the dipped adcluster model, in which the electron exchange between bulk metal and adsorbate is taken into account properly. Electrophilic and nucleophilic oxygens (O(elec) and O(nuc)) that might be important for olefin epoxidation in a low-oxygen coverage condition were focused here. We consider the O1s CEBE as a key property to distinguish the surface oxygen states, and series of calculation was carried out by the Hartree-Fock, Density functional theory, and SAC/SAC-CI methods. The experimental information and our SAC/SAC-CI results indicate that O(elec) is the atomic oxygen adsorbed on the fcc site of Ag(111) and that O(nuc) is the one on the reconstructed added-row site of Ag(110) and that one- and two-electron transfers occur, respectively, to the O(elec) and O(nuc) adclusters from the silver surface. Copyright © 2013 Wiley Periodicals, Inc.
m1A Post-Transcriptional Modification in tRNAs.
Oerum, Stephanie; Dégut, Clément; Barraud, Pierre; Tisné, Carine
2017-02-21
To date, about 90 post-transcriptional modifications have been reported in tRNA expanding their chemical and functional diversity. Methylation is the most frequent post-transcriptional tRNA modification that can occur on almost all nitrogen sites of the nucleobases, on the C5 atom of pyrimidines, on the C2 and C8 atoms of adenosine and, additionally, on the oxygen of the ribose 2'-OH. The methylation on the N1 atom of adenosine to form 1-methyladenosine (m1A) has been identified at nucleotide position 9, 14, 22, 57, and 58 in different tRNAs. In some cases, these modifications have been shown to increase tRNA structural stability and induce correct tRNA folding. This review provides an overview of the currently known m1A modifications, the different m1A modification sites, the biological role of each modification, and the enzyme responsible for each methylation in different species. The review further describes, in detail, two enzyme families responsible for formation of m1A at nucleotide position 9 and 58 in tRNA with a focus on the tRNA binding, m1A mechanism, protein domain organisation and overall structures.
First-principles calculations of the interaction between hydrogen and 3d alloying atom in nickel
NASA Astrophysics Data System (ADS)
Liu, Wenguan; Qian, Yuan; Zhang, Dongxun; Liu, Wei; Han, Han
2015-10-01
Knowledge of the behavior of hydrogen (H) in Ni-based alloy is essential for the prediction of Tritium behavior in Molten Salt Reactor. First-principles calculations were performed to investigate the interaction between H and 3d transition metal (TM) alloying atom in Ni-based alloy. H prefers the octahedral interstitial site to the tetrahedral interstitial site energetically. Most of the 3d TM elements (except Zn) attract H. The attraction to H in the Ni-TM-H system can be mainly attributed to the differences in electronegativity. With the large electronegativity, H and Ni gain electrons from the other TM elements, resulting in the enhanced Ni-H bonds which are the source of the attraction to H in the Ni-TM-H system. The obviously covalent-like Cr-H and Co-H bindings are also beneficial to the attraction to H. On the other hand, the repulsion to H in the Ni-Zn-H system is due to the stable electronic configuration of Zn. We mainly utilize the results calculated in 32-atom supercell which corresponds to the case of a relatively high concentration of hydrogen. Our results are in good agreement with the experimental ones.
The Molecular Structure of Epoxide Hydrolase B From And Its Complex With Urea-Based Inhibitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswal, B.K.; Morisseau, C.; Garen, G.
2009-05-11
Mycobacterium tuberculosis (Mtb), the intracellular pathogen that infects macrophages primarily, is the causative agent of the infectious disease tuberculosis in humans. The Mtb genome encodes at least six epoxide hydrolases (EHs A to F). EHs convert epoxides to trans-dihydrodiols and have roles in drug metabolism as well as in the processing of signaling molecules. Herein, we report the crystal structures of unbound Mtb EHB and Mtb EHB bound to a potent, low-nanomolar (IC(50) approximately 19 nM) urea-based inhibitor at 2.1 and 2.4 A resolution, respectively. The enzyme is a homodimer; each monomer adopts the classical alpha/beta hydrolase fold that composesmore » the catalytic domain; there is a cap domain that regulates access to the active site. The catalytic triad, comprising Asp104, His333 and Asp302, protrudes from the catalytic domain into the substrate binding cavity between the two domains. The urea portion of the inhibitor is bound in the catalytic cavity, mimicking, in part, the substrate binding; the two urea nitrogen atoms donate hydrogen bonds to the nucleophilic carboxylate of Asp104, and the carbonyl oxygen of the urea moiety receives hydrogen bonds from the phenolic oxygen atoms of Tyr164 and Tyr272. The phenolic oxygen groups of these two residues provide electrophilic assistance during the epoxide hydrolytic cleavage. Upon inhibitor binding, the binding-site residues undergo subtle structural rearrangement. In particular, the side chain of Ile137 exhibits a rotation of around 120 degrees about its C(alpha)-C(beta) bond in order to accommodate the inhibitor. These findings have not only shed light on the enzyme mechanism but also have opened a path for the development of potent inhibitors with good pharmacokinetic profiles against all Mtb EHs of the alpha/beta type.« less
Exploration of the Ca2+ interaction modes of the nifedipine calcium channel antagonist.
Liu, Huichun; Zhang, Liang; Li, Ping; Cukier, Robert I; Bu, Yuxiang
2007-02-02
A comprehensive study is carried out using quantum chemical computation and molecular dynamics (MD) simulations to gain insight into the interaction between Ca(2+) ions and the most important class of calcium channel antagonists--nifedipine. First, the chelating structures and energetic characters of nifedipine-Ca(2+) in the gas phase are explored, and 25 isomers are found. The most favorable chelating mode is a tridentate one, that is, Ca(2+) binds to two carbonyl O atoms and one nitryl O atom, where Ca(2+) is above the plane of the three O atoms to form a pyramidal structure. Accurate geometric structures, relative stabilities, vertical and adiabatic binding energies, and charge distributions are discussed. The differences in the geometries and energies among these isomers are analyzed from the contributions of chelating sites, electrostatics and polarizations, steric repulsions, and charge distributions. The interconversions among isomers with similar geometries and energies are also investigated because of the importance of the geometric transformation in the biological system. Furthermore, certain numbers of water molecules are added to the nifedipine-Ca(2+) system to probe the effect of water. A detailed study is performed on the hydrated geometries on the basis of the most stable isomer 1. Stepwise hydration can weaken the nifedipine-Ca(2+) interaction, and the chelating sites of nifedipine are gradually replaced by the added water molecules. Hexacoordination is found to be the most favorable geometry no matter how many water molecules were added, which can be verified by the MD simulations. The transfer of water molecules from the inner shell to the outer shell is also supported by MD simulations of the hexahydrated complexes.
Yabukarski, Filip; Blocquel, David; Schneider, Robert; Tarbouriech, Nicolas; Papageorgiou, Nicolas; Ruigrok, Rob W. H.; Jamin, Marc; Jensen, Malene Ringkjøbing; Longhi, Sonia; Blackledge, Martin
2013-01-01
Hendra virus (HeV) is a recently emerged severe human pathogen that belongs to the Henipavirus genus within the Paramyxoviridae family. The HeV genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid. Recruitment of the viral polymerase onto the nucleocapsid template relies on the interaction between the C-terminal domain, NTAIL, of N and the C-terminal X domain, XD, of the polymerase co-factor phosphoprotein (P). Here, we provide an atomic resolution description of the intrinsically disordered NTAIL domain in its isolated state and in intact nucleocapsids using nuclear magnetic resonance (NMR) spectroscopy. Using electron microscopy, we show that HeV nucleocapsids form herringbone-like structures typical of paramyxoviruses. We also report the crystal structure of XD of P that consists of a three-helix bundle. We study the interaction between NTAIL and XD using NMR titration experiments and provide a detailed mapping of the reciprocal binding sites. We show that the interaction is accompanied by α-helical folding of the molecular recognition element of NTAIL upon binding to a hydrophobic patch on the surface of XD. Finally, using solution NMR, we investigate the interaction between intact nucleocapsids and XD. Our results indicate that monomeric XD binds to NTAIL without triggering an additional unwinding of the nucleocapsid template. The present results provide a structural description at the atomic level of the protein-protein interactions required for transcription and replication of HeV, and the first direct observation of the interaction between the X domain of P and intact nucleocapsids in Paramyxoviridae. PMID:24086133
Communie, Guillaume; Habchi, Johnny; Yabukarski, Filip; Blocquel, David; Schneider, Robert; Tarbouriech, Nicolas; Papageorgiou, Nicolas; Ruigrok, Rob W H; Jamin, Marc; Jensen, Malene Ringkjøbing; Longhi, Sonia; Blackledge, Martin
2013-01-01
Hendra virus (HeV) is a recently emerged severe human pathogen that belongs to the Henipavirus genus within the Paramyxoviridae family. The HeV genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid. Recruitment of the viral polymerase onto the nucleocapsid template relies on the interaction between the C-terminal domain, N(TAIL), of N and the C-terminal X domain, XD, of the polymerase co-factor phosphoprotein (P). Here, we provide an atomic resolution description of the intrinsically disordered N(TAIL) domain in its isolated state and in intact nucleocapsids using nuclear magnetic resonance (NMR) spectroscopy. Using electron microscopy, we show that HeV nucleocapsids form herringbone-like structures typical of paramyxoviruses. We also report the crystal structure of XD of P that consists of a three-helix bundle. We study the interaction between N(TAIL) and XD using NMR titration experiments and provide a detailed mapping of the reciprocal binding sites. We show that the interaction is accompanied by α-helical folding of the molecular recognition element of N(TAIL) upon binding to a hydrophobic patch on the surface of XD. Finally, using solution NMR, we investigate the interaction between intact nucleocapsids and XD. Our results indicate that monomeric XD binds to N(TAIL) without triggering an additional unwinding of the nucleocapsid template. The present results provide a structural description at the atomic level of the protein-protein interactions required for transcription and replication of HeV, and the first direct observation of the interaction between the X domain of P and intact nucleocapsids in Paramyxoviridae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseinzadeh, Parisa; Tian, Shiliang; Marshall, Nicholas M.
2016-05-25
Mononuclear cupredoxin proteins usually contain a coordinately saturated type 1 copper (T1Cu) center and function exclusively as electron carriers. Here we report a cupredoxin isolated from the nitrifying archaeon Nitrosopumilus maritimus SCM1, called Nmar1307, that contains a T1Cu center with an open binding site containing water. It displays a deep purple color due to strong absorptions around 413 nm (1880 M –1 cm –1) and 558 nm (2290 M –1 cm –1) in the UV–vis electronic spectrum. EPR studies suggest the protein contains two Cu(II) species of nearly equal population, one nearly axial, with hyperfine constant A∥ = 98 ×more » 10 –4 cm –1, and another more rhombic, with a smaller A∥ value of 69 × 10 –4 cm –1. The X-ray crystal structure at 1.6 Å resolution confirms that it contains a Cu atom coordinated by two His and one Cys in a trigonal plane, with an axial H2O at 2.25 Å. Both UV–vis absorption and EPR spectroscopic studies suggest that the Nmar1307 can oxidize NO to nitrite, an activity that is attributable to the high reduction potential (354 mV vs SHE) of the copper site. These results suggest that mononuclear cupredoxins can have a wide range of structural features, including an open binding site containing water, making this class of proteins even more versatile.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonovis, Juan Pablo; Hunt, Adrian; Palomino, Robert M.
The interaction between a catalyst and reactants often induce changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface stability of a Pt/Cu(111) single atom alloy (SAA) in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in UHV,more » where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. Furthermore, we also found that temperatures above 450 K cause a restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely due to the presence of neighboring subsurface Pt atoms.« less
Simonovis, Juan Pablo; Hunt, Adrian; Palomino, Robert M.; ...
2018-02-05
The interaction between a catalyst and reactants often induce changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface stability of a Pt/Cu(111) single atom alloy (SAA) in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in UHV,more » where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. Furthermore, we also found that temperatures above 450 K cause a restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely due to the presence of neighboring subsurface Pt atoms.« less
Computational characterization of how the VX nerve agent binds human serum paraoxonase 1.
Fairchild, Steven Z; Peterson, Matthew W; Hamza, Adel; Zhan, Chang-Guo; Cerasoli, Douglas M; Chang, Wenling E
2011-01-01
Human serum paraoxonase 1 (HuPON1) is an enzyme that can hydrolyze various chemical warfare nerve agents including VX. A previous study has suggested that increasing HuPON1's VX hydrolysis activity one to two orders of magnitude would make the enzyme an effective countermeasure for in vivo use against VX. This study helps facilitate further engineering of HuPON1 for enhanced VX-hydrolase activity by computationally characterizing HuPON1's tertiary structure and how HuPON1 binds VX. HuPON1's structure is first predicted through two homology modeling procedures. Docking is then performed using four separate methods, and the stability of each bound conformation is analyzed through molecular dynamics and solvated interaction energy calculations. The results show that VX's lone oxygen atom has a strong preference for forming a direct electrostatic interaction with HuPON1's active site calcium ion. Various HuPON1 residues are also detected that are in close proximity to VX and are therefore potential targets for future mutagenesis studies. These include E53, H115, N168, F222, N224, L240, D269, I291, F292, and V346. Additionally, D183 was found to have a predicted pKa near physiological pH. Given D183's location in HuPON1's active site, this residue could potentially act as a proton donor or accepter during hydrolysis. The results from the binding simulations also indicate that steered molecular dynamics can potentially be used to obtain accurate binding predictions even when starting with a closed conformation of a protein's binding or active site.
Sivanandam, Magudeeswaran; Saravanan, Kandasamy; Kumaradhas, Poomani
2017-10-30
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are enzymes that exhibit an important transcription activity. Dysfunction of these enzymes may lead to different diseases including cancer, cardiovascular, and other diseases. Therefore, these enzymes are the potential target for the generation of new therapeutics. C646 is a synthetic p300 HAT inhibitor; its structural and the electrostatic properties are the paradigm to understand its activity in the active site of p300 HAT enzyme. The docked C646 molecule in the active site forms expected key intermolecular interactions with the amino acid residues Trp1436, Tyr1467, and one water molecule (W1861); and these interactions are important for acetylation reaction. When compare the active site structure of C646 with the gas-phase structure, it is confirmed that the electron density distribution of polar bonds are highly altered, when the molecule present in the active site. In the gas-phase structure of C646, a large negative regions of electrostatic potential is found at the vicinity of O(4), O(5), and O(6) atoms; whereas, the negative region of these atoms are reduced in the active site. The molecular dynamics (MD) simulation also performed, it reveals the conformational stability and the intermolecular interactions of C646 molecule in the active site of p300.
Najmanovich, Rafael
2013-01-01
IsoCleft Finder is a web-based tool for the detection of local geometric and chemical similarities between potential small-molecule binding cavities and a non-redundant dataset of ligand-bound known small-molecule binding-sites. The non-redundant dataset developed as part of this study is composed of 7339 entries representing unique Pfam/PDB-ligand (hetero group code) combinations with known levels of cognate ligand similarity. The query cavity can be uploaded by the user or detected automatically by the system using existing PDB entries as well as user-provided structures in PDB format. In all cases, the user can refine the definition of the cavity interactively via a browser-based Jmol 3D molecular visualization interface. Furthermore, users can restrict the search to a subset of the dataset using a cognate-similarity threshold. Local structural similarities are detected using the IsoCleft software and ranked according to two criteria (number of atoms in common and Tanimoto score of local structural similarity) and the associated Z-score and p-value measures of statistical significance. The results, including predicted ligands, target proteins, similarity scores, number of atoms in common, etc., are shown in a powerful interactive graphical interface. This interface permits the visualization of target ligands superimposed on the query cavity and additionally provides a table of pairwise ligand topological similarities. Similarities between top scoring ligands serve as an additional tool to judge the quality of the results obtained. We present several examples where IsoCleft Finder provides useful functional information. IsoCleft Finder results are complementary to existing approaches for the prediction of protein function from structure, rational drug design and x-ray crystallography. IsoCleft Finder can be found at: http://bcb.med.usherbrooke.ca/isocleftfinder. PMID:24555058
Rathinavelan, Thenmalarchelvi; Lara-Tejero, Maria; Lefebre, Matthew; Chatterjee, Srirupa; McShan, Andrew C.; Guo, Da-Chuan; Tang, Chun; Galan, Jorge E.; De Guzman, Roberto N.
2014-01-01
Salmonella and other pathogenic bacteria use the type III secretion system (T3SS) to inject virulence proteins into human cells to initiate infections. The structural component of the T3SS contains a needle and a needle tip. The needle is assembled from PrgI needle protomers and the needle tip is capped with several copies of the SipD tip protein. How a tip protein docks on the needle is unclear. A crystal structure of a PrgI-SipD fusion protein docked on the PrgI needle results in steric clash of SipD at the needle tip when modeled on the recent atomic structure of the needle. Thus, there is currently no good model of how SipD is docked on the PrgI needle tip. Previously, we showed by NMR paramagnetic relaxation enhancement (PRE) methods that a specific region in the SipD coiled-coil is the binding site for PrgI. Others have hypothesized that a domain of the tip protein – the N-terminal α-helical hairpin, has to swing away during the assembly of the needle apparatus. Here, we show by PRE methods that a truncated form of SipD lacking the α-helical hairpin domain binds more tightly to PrgI. Further, PRE-based structure calculations revealed multiple PrgI binding sites on the SipD coiled-coil. Our PRE results together with the recent NMR-derived atomic structure of the Salmonella needle suggest a possible model of how SipD might dock at the PrgI needle tip. SipD and PrgI are conserved in other bacterial T3SSs, thus our results have wider implication in understanding other needle-tip complexes. PMID:24951833
Probing the effects of surface hydrophobicity and tether orientation on antibody-antigen binding
NASA Astrophysics Data System (ADS)
Bush, Derek B.; Knotts, Thomas A.
2017-04-01
Antibody microarrays have the potential to revolutionize molecular detection for many applications, but their current use is limited by poor reliability, and efforts to change this have not yielded fruitful results. One difficulty which limits the rational engineering of next-generation devices is that little is known, at the molecular level, about the antibody-antigen binding process near solid surfaces. Atomic-level structural information is scant because typical experimental techniques (X-ray crystallography and NMR) cannot be used to image proteins bound to surfaces. To overcome this limitation, this study uses molecular simulation and an advanced, experimentally validated, coarse-grain, protein-surface model to compare fab-lysozyme binding in bulk solution and when the fab is tethered to hydrophobic and hydrophilic surfaces. The results show that the tether site in the fab, as well as the surface hydrophobicity, significantly impacts the binding process and suggests that the optimal design involves tethering fabs upright on a hydrophilic surface. The results offer an unprecedented, molecular-level picture of the binding process and give hope that the rational design of protein-microarrays is possible.
NASA Astrophysics Data System (ADS)
Marsac, R.; Davranche, M.; Gruau, G.; Dia, A.
2009-04-01
In natural organic-rich waters, rare earth elements (REE) speciation is mainly controlled by organic colloids such as humic acid (HA). Different series of REE-HA complexation experiments performed at several metal loading (REE/C) displayed two pattern shapes (i) at high metal loading, a middle-REE (MREE) downward concavity, and (ii) at low metal loading, a regular increase from La to Lu (e.g. Sonke and Salters, 2006; Pourret et al., 2007). Both REE patterns might be related to REE binding with different surface sites on HA. To understand REE-HA binding, REE-HA complexation experiments at various metals loading were carried out using ultrafiltration combined with ICP-MS measurements, for the 14 REE simultaneously. The patterns of the apparent coefficients of REE partition between HA and the inorganic solution (log Kd) evolved regularly according to the metal loading. The REE patterns presented a MREE downward concavity at low loading and a regular increase from La to Lu at high loading. The dataset was modelled with Model VI by adjusting two specific parameters, log KMA, the apparent complexation constant of HA low affinity sites and DLK2, the parameter increasing high affinity sites binding strength. Experiments and modelling provided evidence that HA high affinity sites controlled the REE binding with HA at low metal loading. The REE-HA complex could be as multidentate complexes with carboxylic or phenolic sites or potentially with sites constituted of N, P or S as donor atoms. Moreover, these high affinity sites could be different for light and heavy REE, because heavy REE have higher affinity for these sites, in low density, and could saturate them. These new Model VI parameter sets allowed the prediction of the REE-HA pattern shape evolution on a large range of pH and metal loading. According to the metal loading, the evolution of the calculated REE patterns was similar to the various REE pattern observed in natural acidic organic-rich waters (pH<7 and DOC>10 mg L-1). As a consequence, the metal loading could be the key parameter controlling the REE pattern in organic-rich waters.
Schmidt, Andrea; Gruber, Karl; Kratky, Christoph; Lamzin, Victor S
2008-08-01
Hydroxynitrile lyases are versatile enzymes that enantiospecifically cope with cyanohydrins, important intermediates in the production of various agrochemicals or pharmaceuticals. We determined four atomic resolution crystal structures of hydroxynitrile lyase from Hevea brasiliensis: one native and three complexes with acetone, isopropyl alcohol, and thiocyanate. We observed distinct distance changes among the active site residues related to proton shifts upon substrate binding. The combined use of crystallography and ab initio quantum chemical calculations allowed the determination of the protonation states in the enzyme active site. We show that His(235) of the catalytic triad must be protonated in order for catalysis to proceed, and we could reproduce the cyanohydrin synthesis in ab initio calculations. We also found evidence for the considerable pK(a) shifts that had been hypothesized earlier. We envision that this knowledge can be used to enhance the catalytic properties and the stability of the enzyme for industrial production of enantiomerically pure cyanohydrins.
NASA Technical Reports Server (NTRS)
Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.
1976-01-01
Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.
IgGs are made for walking on bacterial and viral surfaces
NASA Astrophysics Data System (ADS)
Preiner, Johannes; Kodera, Noriyuki; Tang, Jilin; Ebner, Andreas; Brameshuber, Mario; Blaas, Dieter; Gelbmann, Nicola; Gruber, Hermann J.; Ando, Toshio; Hinterdorfer, Peter
2014-07-01
Binding of antibodies to their cognate antigens is fundamental for adaptive immunity. Molecular engineering of antibodies for therapeutic and diagnostic purposes emerges to be one of the major technologies in combating many human diseases. Despite its importance, a detailed description of the nanomechanical process of antibody-antigen binding and dissociation on the molecular level is lacking. Here we utilize high-speed atomic force microscopy to examine the dynamics of antibody recognition and uncover a principle; antibodies do not remain stationary on surfaces of regularly spaced epitopes; they rather exhibit ‘bipedal’ stochastic walking. As monovalent Fab fragments do not move, steric strain is identified as the origin of short-lived bivalent binding. Walking antibodies gather in transient clusters that might serve as docking sites for the complement system and/or phagocytes. Our findings could inspire the rational design of antibodies and multivalent receptors to exploit/inhibit steric strain-induced dynamic effects.
Kinjo, Akira R.; Nakamura, Haruki
2012-01-01
Comparison and classification of protein structures are fundamental means to understand protein functions. Due to the computational difficulty and the ever-increasing amount of structural data, however, it is in general not feasible to perform exhaustive all-against-all structure comparisons necessary for comprehensive classifications. To efficiently handle such situations, we have previously proposed a method, now called GIRAF. We herein describe further improvements in the GIRAF protein structure search and alignment method. The GIRAF method achieves extremely efficient search of similar structures of ligand binding sites of proteins by exploiting database indexing of structural features of local coordinate frames. In addition, it produces refined atom-wise alignments by iterative applications of the Hungarian method to the bipartite graph defined for a pair of superimposed structures. By combining the refined alignments based on different local coordinate frames, it is made possible to align structures involving domain movements. We provide detailed accounts for the database design, the search and alignment algorithms as well as some benchmark results. PMID:27493524
NASA Astrophysics Data System (ADS)
Park, Hwangseo; Lee, Hye Seon; Ku, Bonsu; Lee, Sang-Rae; Kim, Seung Jun
2017-08-01
Despite a wealth of persuasive evidence for the involvement of human small C-terminal domain phosphatase 1 (Scp1) in the impairment of neuronal differentiation and in Huntington's disease, small-molecule inhibitors of Scp1 have been rarely reported so far. This study aims to the discovery of both competitive and allosteric Scp1 inhibitors through the two-track virtual screening procedure. By virtue of the improvement of the scoring function by implementing a new molecular solvation energy term and by reoptimizing the atomic charges for the active-site Mg2+ ion cluster, we have been able to identify three allosteric and five competitive Scp1 inhibitors with low-micromolar inhibitory activity. Consistent with the results of kinetic studies on the inhibitory mechanisms, the allosteric inhibitors appear to be accommodated in the peripheral binding pocket through the hydrophobic interactions with the nonpolar residues whereas the competitive ones bind tightly in the active site with a direct coordination to the central Mg2+ ion. Some structural modifications to improve the biochemical potency of the newly identified inhibitors are proposed based on the binding modes estimated with docking simulations.
Moonsamy, Suri; Bhakat, Soumendranath; Walker, Ross C; Soliman, Mahmoud E S
2016-03-01
Molecular dynamics simulations, binding free energy calculations, principle component analysis (PCA), and residue interaction network analysis were employed in order to investigate the molecular mechanism of M184I single mutation which played pivotal role in making the HIV-1 reverse transcriptase (RT) totally resistant to lamivudine. Results showed that single mutations at residue 184 of RT caused (1) distortion of the orientation of lamivudine in the active site due to the steric conflict between the oxathiolane ring of lamivudine and the side chain of beta-branched amino acids Ile at position 184 which, in turn, perturbs inhibitor binding, (2) decrease in the binding affinity by (~8 kcal/mol) when compared to the wild-type, (3) variation in the overall enzyme motion as evident from the PCA for both systems, and (4) distortion of the hydrogen bonding network and atomic interactions with the inhibitor. The comprehensive analysis presented in this report can provide useful information for understanding the drug resistance mechanism against lamivudine. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiruselvam, Viswanathan; Sivaraman, Padavattan; Kumarevel, Thirumananseri, E-mail: kumarevel.thirumananseri@riken.jp
Highlights: • Crystal structure of ferritin was determined. • Endogenously expressed iron’s were identified. • Binuclear iron sites were observed at A and B active sites. - Abstract: Ferritin is an iron regulatory protein. It is responsible for storage and detoxification of excess iron thereby it regulates iron level in the body. Here we report the crystal structure of ferritin with two endogenously expressed Fe atoms binding in both the sites. The protein was purified and characterized by MALDI-TOF and N-terminal amino acid sequencing. The crystal belongs to I4 space group and it diffracted up to 2.5 Å. The structuralmore » analysis suggested that it crystallizes as hexamer and confirmed that it happened to be the first report of endogenously expressed Fe ions incorporated in both the A and B sites, situated in between the helices.« less
Raman, E. Prabhu; MacKerell, Alexander D.
2015-01-01
The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202
Prediction of TF target sites based on atomistic models of protein-DNA complexes
Angarica, Vladimir Espinosa; Pérez, Abel González; Vasconcelos, Ana T; Collado-Vides, Julio; Contreras-Moreira, Bruno
2008-01-01
Background The specific recognition of genomic cis-regulatory elements by transcription factors (TFs) plays an essential role in the regulation of coordinated gene expression. Studying the mechanisms determining binding specificity in protein-DNA interactions is thus an important goal. Most current approaches for modeling TF specific recognition rely on the knowledge of large sets of cognate target sites and consider only the information contained in their primary sequence. Results Here we describe a structure-based methodology for predicting sequence motifs starting from the coordinates of a TF-DNA complex. Our algorithm combines information regarding the direct and indirect readout of DNA into an atomistic statistical model, which is used to estimate the interaction potential. We first measure the ability of our method to correctly estimate the binding specificities of eight prokaryotic and eukaryotic TFs that belong to different structural superfamilies. Secondly, the method is applied to two homology models, finding that sampling of interface side-chain rotamers remarkably improves the results. Thirdly, the algorithm is compared with a reference structural method based on contact counts, obtaining comparable predictions for the experimental complexes and more accurate sequence motifs for the homology models. Conclusion Our results demonstrate that atomic-detail structural information can be feasibly used to predict TF binding sites. The computational method presented here is universal and might be applied to other systems involving protein-DNA recognition. PMID:18922190
NASA Astrophysics Data System (ADS)
Perez, Camilo; Faust, Belinda; Mehdipour, Ahmad Reza; Francesconi, Kevin A.; Forrest, Lucy R.; Ziegler, Christine
2014-07-01
The Na+-coupled betaine symporter BetP shares a highly conserved fold with other sequence unrelated secondary transporters, for example, with neurotransmitter symporters. Recently, we obtained atomic structures of BetP in distinct conformational states, which elucidated parts of its alternating-access mechanism. Here, we report a structure of BetP in a new outward-open state in complex with an anomalous scattering substrate, adding a fundamental piece to an unprecedented set of structural snapshots for a secondary transporter. In combination with molecular dynamics simulations these structural data highlight important features of the sequential formation of the substrate and sodium-binding sites, in which coordinating water molecules play a crucial role. We observe a strictly interdependent binding of betaine and sodium ions during the coupling process. All three sites undergo progressive reshaping and dehydration during the alternating-access cycle, with the most optimal coordination of all substrates found in the closed state.
Xue, Weiwei; Jiao, Pingzu; Liu, Huanxiang; Yao, Xiaojun
2014-04-01
Hepatitis C virus (HCV) NS5B protein is an RNA-dependent RNA polymerase (RdRp) with essential functions in viral genome replication and represents a promising therapeutic target to develop direct-acting antivirals (DAAs). Multiple nonnucleoside inhibitors (NNIs) binding sites have been identified within the polymerase. VX-222 and ANA598 are two NNIs targeting thumb II site and palm I site of HCV NS5B polymerase, respectively. These two molecules have been shown to be very effective in phase II clinical trials. However, the emergence of resistant HCV replicon variants (L419M, M423T, I482L mutants to VX-222 and M414T, M414L, G554D mutants to ANA598) has significantly decreased their efficacy. To elucidate the molecular mechanism about how these mutations influenced the drug binding mode and decreased drug efficacy, we studied the binding modes of VX-222 and ANA598 to wild-type and mutant polymerase by molecular modeling approach. Molecular dynamics (MD) simulations results combined with binding free energy calculations indicated that the mutations significantly altered the binding free energy and the interaction for the drugs to polymerase. The further per-residue binding free energy decomposition analysis revealed that the mutations decreased the interactions with several key residues, such as L419, M423, L474, S476, I482, L497, for VX-222 and L384, N411, M414, Y415, Q446, S556, G557 for ANA598. These were the major origins for the resistance to these two drugs. In addition, by analyzing the residue interaction network (RIN) of the complexes between the drugs with wild-type and the mutant polymerase, we found that the mutation residues in the networks involved in the drug resistance possessed a relatively lower size of topology centralities. The shift of betweenness and closeness values of binding site residues in the mutant polymerase is relevant to the mechanism of drug resistance of VX-222 and ANA598. These results can provide an atomic-level understanding about the mechanisms of drug resistance conferred by the studied mutations and will be helpful to design more potent inhibitors which could effectively overcome drug resistance of antivirus agents. Copyright © 2014 Elsevier B.V. All rights reserved.
Structure and dynamics of calmodulin in solution.
Wriggers, W; Mehler, E; Pitici, F; Weinstein, H; Schulten, K
1998-01-01
To characterize the dynamic behavior of calmodulin in solution, we have carried out molecular dynamics (MD) simulations of the Ca2+-loaded structure. The crystal structure of calmodulin was placed in a solvent sphere of radius 44 A, and 6 Cl- and 22 Na+ ions were included to neutralize the system and to model a 150 mM salt concentration. The total number of atoms was 32,867. During the 3-ns simulation, the structure exhibits large conformational changes on the nanosecond time scale. The central alpha-helix, which has been shown to unwind locally upon binding of calmodulin to target proteins, bends and unwinds near residue Arg74. We interpret this result as a preparative step in the more extensive structural transition observed in the "flexible linker" region 74-82 of the central helix upon complex formation. The major structural change is a reorientation of the two Ca2+-binding domains with respect to each other and a rearrangement of alpha-helices in the N-terminus domain that makes the hydrophobic target peptide binding site more accessible. This structural rearrangement brings the domains to a more favorable position for target binding, poised to achieve the orientation observed in the complex of calmodulin with myosin light-chain kinase. Analysis of solvent structure reveals an inhomogeneity in the mobility of water in the vicinity of the protein, which is attributable to the hydrophobic effect exerted by calmodulin's binding sites for target peptides. PMID:9545028
Zhang, Tong; Mu, Yuguang
2012-01-01
Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III) Hexamine ions or Mg2+ ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III) Hexamine ions were found to bind stronger with the loop than Mg2+ ions with binding free energy −7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg2+ ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III) Hexamine ions on CorA ions transportation. PMID:22952795
Factors driving stable growth of He clusters in W: first-principles study
NASA Astrophysics Data System (ADS)
Feng, Y. J.; Xin, T. Y.; Xu, Q.; Wang, Y. X.
2018-07-01
The evolution of helium (He) bubbles is responsible for the surface morphology variation and subsequent degradation of the properties of plasma-facing materials (PFMs) in nuclear fusion reactors. These severe problems unquestionably trace back to the behavior of He in PFMs, which is closely associated with the interaction between He and the matrix. In this paper, we decomposed the binding energy of the He cluster into three parts, those from W–W, W–He, and He–He interactions, using density functional theory. As a result, we clearly identified the main factors that determine a steplike decrease in the binding energy with increasing number of He atoms, which explains the process of self-trapping and athermal vacancy generation during He cluster growth in the PFM tungsten. The three interactions were found to synergetically shape the features of the steplike decrease in the binding energy. Fairly strong He–He repulsive forces at a short distance, which stem from antibonding states between He atoms, need to be released when additional He atoms are continuously bonded to the He cluster. This causes the steplike feature in the binding energy. The bonding states between W and He atoms in principle facilitate the decreasing trend of the binding energy. The decrease in binding energy with increasing number of He atoms implies that He clusters can grow stably.
Structural dynamics of F-actin: I. Changes in the C terminus.
Orlova, A; Egelman, E H
1995-02-03
The biochemical properties of G-actin, and the kinetics of polymerization of G-actin into F-actin, are dependent upon whether Mg2+ or Ca2+ is bound at the high-affinity metal-binding site in actin. Three-dimensional reconstructions from electron micrographs show that a bridge of density, that we interpret as arising from a major shift of the C terminus, exists between the two strands of the filament in Ca(2+)-actin that is absent in Mg(2+)-actin. This bridge is also absent in models of F-actin built from an atomic structure of G-Ca(2+)-actin. The cleavage of the DNase I-binding loop in actin between residues 42 and 43, with the non-covalent association of the 42 cleaved residues with the remainder of the actin, induces an even larger bridge of density between the two strands. When the bridge is absent, the two C-terminal residues in F-actin are easily cleaved by trypsin, while these residues become increasingly resistant to tryptic cleavage as the bridge becomes more prominent. Conversely, cleavage of the two C-terminal residues leads to a conformational change in the DNase I-binding loop. Since both the DNase I-binding loop and the metal-binding site are quite distant from the C terminus, large allosteric effects must exist in F-actin. The conformational change in F-actin that results from the creation of this bridge may be induced by myosin binding, since this movement generates changes in actin's diffraction that are very similar to the changes in the muscle X-ray pattern during activation that are associated with the binding of myosin to the thin filament.
Monomeric Yeast Frataxin is an Iron-Binding Protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook,J.; Bencze, K.; Jankovic, A.
Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly)more » share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.« less
Monomeric Yeast Frataxin is an Iron Binding Protein†
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.; Bencze, K; Jankovic, A
Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) sharemore » requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.« less
Stability chart of small mixed 4He-3He clusters
NASA Astrophysics Data System (ADS)
Guardiola, R.; Navarro, J.
2003-11-01
A stability chart of mixed 4He and 3He clusters has been obtained by means of the diffusion Monte Carlo method, using both the Aziz HFD-B and the Tang-Toennies-Yiu atom-atom interaction. The investigated clusters contain up to eight 4He atoms and up to 20 3He atoms. One single 4He binds 20 3He atoms, and two 4He bind 1, 2, 8, and more than 14 3He atoms. All clusters with three or more 4He atoms are bound, although the combinations 4He33He9,10,11 and 4He34He9 are metastable. Clusters with 2, 8, and 20 3He atoms are particularly stable and define magic 3He numbers.
Site-selective local fluorination of graphene induced by focused ion beam irradiation
Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus
2016-01-01
The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases. PMID:26822900
First-principles study of the binding energy between nanostructures and its scaling with system size
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Jiao, Yang; Mo, Yuxiang; Yang, Zeng-Hui; Zhu, Jian-Xin; Hyldgaard, Per; Perdew, John P.
2018-04-01
The equilibrium van der Waals binding energy is an important factor in the design of materials and devices. However, it presents great computational challenges for materials built up from nanostructures. Here we investigate the binding-energy scaling behavior from first-principles calculations. We show that the equilibrium binding energy per atom between identical nanostructures can scale up or down with nanostructure size, but can be parametrized for large N with an analytical formula (in meV/atom), Eb/N =a +b /N +c /N2+d /N3 , where N is the number of atoms in a nanostructure and a , b , c , and d are fitting parameters, depending on the properties of a nanostructure. The formula is consistent with a finite large-size limit of binding energy per atom. We find that there are two competing factors in the determination of the binding energy: Nonadditivities of van der Waals coefficients and center-to-center distance between nanostructures. To decode the detail, the nonadditivity of the static multipole polarizability is investigated from an accurate spherical-shell model. We find that the higher-order multipole polarizability displays ultrastrong intrinsic nonadditivity, no matter if the dipole polarizability is additive or not.
Towards a Pharmacophore for Amyloid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.
2011-09-16
Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine sidemore » chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a cocktail of compounds may be required for future amyloid therapies. The structures described here start to define the amyloid pharmacophore, opening the way to structure-based design of improved diagnostics and therapeutics.« less
Gagnon, Derek M.; Brophy, Megan Brunjes; Bowman, Sarah E. J.; Stich, Troy A.; Drennan, Catherine L.; Britt, R. David; Nolan, Elizabeth M.
2015-01-01
The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed 15N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by ca. two orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin. PMID:25597447
Gagnon, Derek M; Brophy, Megan Brunjes; Bowman, Sarah E J; Stich, Troy A; Drennan, Catherine L; Britt, R David; Nolan, Elizabeth M
2015-03-04
The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron-nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed (15)N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin.
Gagnon, Derek M.; Brophy, Megan Brunjes; Bowman, Sarah E. J.; ...
2015-01-18
The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Here in this paper, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimermore » is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin–echo envelope modulation and electron–nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed 15N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His 6 site of human calprotectin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Derek M.; Brophy, Megan Brunjes; Bowman, Sarah E. J.
The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Here in this paper, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimermore » is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin–echo envelope modulation and electron–nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed 15N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His 6 site of human calprotectin.« less
Molecular Features of the Copper Binding Sites in the Octarepeat Domain of the Prion Protein†
Burns, Colin S.; Aronoff-Spencer, Eliah; Dunham, Christine M.; Lario, Paula; Avdievich, Nikolai I.; Antholine, William E.; Olmstead, Marilyn M.; Vrielink, Alice; Gerfen, Gary J.; Peisach, Jack; Scott, William G.; Millhauser, Glenn L.
2010-01-01
Recent evidence suggests that the prion protein (PrP) is a copper binding protein. The N-terminal region of human PrP contains four sequential copies of the highly conserved octarepeat sequence PHGGGWGQ spanning residues 60–91. This region selectively binds Cu2+ in vivo. In a previous study using peptide design, EPR, and CD spectroscopy, we showed that the HGGGW segment within each octarepeat comprises the fundamental Cu2+ binding unit [Aronoff-Spencer et al. (2000) Biochemistry 40, 13760–13771]. Here we present the first atomic resolution view of the copper binding site within an octarepeat. The crystal structure of HGGGW in a complex with Cu2+ reveals equatorial coordination by the histidine imidazole, two deprotonated glycine amides, and a glycine carbonyl, along with an axial water bridging to the Trp indole. Companion S-band EPR, X-band ESEEM, and HYSCORE experiments performed on a library of 15N-labeled peptides indicate that the structure of the copper binding site in HGGGW and PHGGGWGQ in solution is consistent with that of the crystal structure. Moreover, EPR performed on PrP(23–28, 57–91) and an 15N-labeled analogue demonstrates that the identified structure is maintained in the full PrP octarepeat domain. It has been shown that copper stimulates PrP endocytosis. The identified Gly–Cu linkage is unstable below pH ≈6.5 and thus suggests a pH-dependent molecular mechanism by which PrP detects Cu2+ in the extracellular matrix or releases PrP-bound Cu2+ within the endosome. The structure also reveals an unusual complementary interaction between copper-structured HGGGW units that may facilitate molecular recognition between prion proteins, thereby suggesting a mechanism for transmembrane signaling and perhaps conversion to the pathogenic form. PMID:11900542
Vasavi, C S; Tamizhselvi, Ramasamy; Munusami, Punnagai
2017-08-01
HIV-1 protease plays a crucial role in viral replication and maturation, which makes it one of the most attractive targets for anti-retroviral therapy. The majority of HIV infections in developing countries are due to non-B subtype. Subtype AE is spreading rapidly and infecting huge population worldwide. The mutations in the active site of subtype AE directly impair the interactions with the inhibitor. The non-active site mutations influence the binding of the inhibitor indirectly and their resistance mechanism is not well understood. It is important to design new effective inhibitors that combat drug resistance in subtype AE protease. In this work, we examined the effect of non active site mutations L10F, L10F/N88S and L90M with nelfinavir using molecular dynamics simulation and binding free energy calculations. The simulations suggested that the L10F and L10F/N88S mutants decrease the binding affinity of nelfinavir, whereas the L90M mutant increases the binding affinity. The formation of hydrogen bonds between nelfinavir and Asp30 is crucial for effective binding. The benzamide moiety of nelfinavir shows large positional deviation in L10F and L10F/N88S complexes and the L10F/N88S mutation changes the hydrogen bond between the side chain atoms of 30th residue and the 88th residue. Consequently the hydrogen bond interaction between Asp30 and nelfinavir are destroyed leading to drug resistance. Our present study shed light on the resistance mechanism of the strongly linked mutation L10F/N88S observed experimentally in AE subtype. Copyright © 2017 Elsevier Inc. All rights reserved.
Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P.
2013-01-01
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design. PMID:23844024
Wu, Wei; Sankhala, Rajeshwer S; Florio, Tyler J; Zhou, Lixin; Nguyen, Nhan L T; Lokareddy, Ravi K; Cingolani, Gino; Panté, Nelly
2017-09-12
The influenza A virus nucleoprotein (NP) is an essential multifunctional protein that encapsidates the viral genome and functions as an adapter between the virus and the host cell machinery. NPs from all strains of influenza A viruses contain two nuclear localization signals (NLSs): a well-studied monopartite NLS1 and a less-characterized NLS2, thought to be bipartite. Through site-directed mutagenesis and functional analysis, we found that NLS2 is also monopartite and is indispensable for viral infection. Atomic structures of importin α bound to two variants of NLS2 revealed NLS2 primarily binds the major-NLS binding site of importin α, unlike NLS1 that associates with the minor NLS-pocket. Though peptides corresponding to NLS1 and NLS2 bind weakly to importin α, the two NLSs synergize in the context of the full length NP to confer high avidity for importin α7, explaining why the virus efficiently replicates in the respiratory tract that exhibits high levels of this isoform. This study, the first to functionally characterize NLS2, demonstrates NLS2 plays an important and unexpected role in influenza A virus infection. We propose NLS1 and NLS2 form a bipartite NLS in trans, which ensures high avidity for importin α7 while preventing non-specific binding to viral RNA.
NASA Astrophysics Data System (ADS)
Mayboroda, I. O.; Knizhnik, A. A.; Grishchenko, Yu. V.; Ezubchenko, I. S.; Zanaveskin, Maxim L.; Kondratev, O. A.; Presniakov, M. Yu.; Potapkin, B. V.; Ilyin, V. A.
2017-09-01
The growth kinetics of AlGaN in NH3 MBE under significant Ga desorption was studied. It was found that the addition of gallium stimulates 2D growth and provides better morphology of films compared to pure AlN. The effect was experimentally observed at up to 98% desorption of the impinging gallium. We found that under the conditions of significant thermal desorption, larger amounts of gallium were retained at lateral boundaries of 3D surface features than at flat terraces because of the higher binding energy of Ga atoms at specific surface defects. The selective accumulation of gallium resulted in an increase in the lateral growth component through the formation of the Ga-enriched AlGaN phase at boundaries of 3D surface features. We studied the temperature dependence of AlGaN growth rate and developed a kinetic model analytically describing this dependence. As the model was in good agreement with the experimental data, we used it to estimate the increase in the binding energy of Ga atoms at surface defects compared to terrace surface sites using data on the Ga content in different AlGaN phases. We also applied first-principles calculations to the thermodynamic analysis of stable configurations on the AlN surface and then used these surface configurations to compare the binding energy of Ga atoms at terraces and steps. Both first-principles calculations and analytical estimations of the experimental results gave similar values of difference in binding energies; this value is 0.3 eV. Finally, it was studied experimentally whether gallium can act as a surfactant in AlN growth by NH3 MBE at elevated temperatures. Gallium application has allowed us to grow a 300 nm thick AlN film with a RMS surface roughness of 2.2 Å over an area of 10 × 10 μm and a reduced density of screw dislocations.
Virtual fragment preparation for computational fragment-based drug design.
Ludington, Jennifer L
2015-01-01
Fragment-based drug design (FBDD) has become an important component of the drug discovery process. The use of fragments can accelerate both the search for a hit molecule and the development of that hit into a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR and X-ray Crystallography screens, computational techniques are playing an increasingly important role. The success of the computational simulations is due in large part to how the database of virtual fragments is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD differs from other approaches and the issues inherent in building up molecules from smaller fragment pieces. The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has an experimental binding affinity consistent with the additive predicted binding affinities of the virtual fragments. Computationally predicting binding affinities is a complex process, with many opportunities for introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid introducing additional inaccuracies.This chapter is focused on the preparation process used to create a virtual fragment database. Several key issues of fragment preparation which affect the accuracy of binding affinity predictions are discussed. The first issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although the particular usage of the fragment can affect this choice (i.e., whether the fragment will be used for calibration, binding site characterization, hit identification, or lead optimization), general factors such as synthetic accessibility, size, and flexibility are major considerations in selecting the 2D structure. Other aspects of preparing the virtual fragments for simulation are the generation of three-dimensional conformations and the assignment of the associated atomic point charges.
Sekula, Bartosz; Ciesielska, Anna; Rytczak, Przemyslaw; Koziołkiewicz, Maria; Bujacz, Anna
2016-07-01
Cyclic phosphatidic acids (cPAs) are naturally occurring, very active signalling molecules, which are involved in several pathological states, such as cancer, diabetes or obesity. As molecules of highly lipidic character found in the circulatory system, cPAs are bound and transported by the main extracellular lipid binding protein-serum albumin. Here, we present the detailed interactions between human serum albumin (HSA) and equine serum albumin (ESA) with a derivative of cPA, 1-O-myristoyl-sn-glycerol-2,3-cyclic phosphorodithioate (Myr-2S-cPA). Initial selection of the ligand used for the structural study was made by the analysis of the therapeutically promising properties of the sulfur containing analogues of cPA in respect to the unmodified lysophospholipids (LPLs). Substitution of one or two non-bridging oxygen atoms in the phosphate group with one or two sulfur atoms increases the cytotoxic effect of cPAs up to 60% on the human prostate cancer (PC) cells. Myr-2S-cPA reduces cancer cell viability in a dose-dependent manner, with IC50 value of 29.0 μM after 24 h incubation, which is almost 30% lower than IC50 of single substituted phosphorothioate cPA. Although, the structural homology between HSA and ESA is big, their crystal complexes with Myr-2S-cPA demonstrate significantly different mode of binding of this LPL analogue. HSA binds three molecules of Myr-2S-cPA, whereas ESA only one. Moreover, none of the identified Myr-2S-cPA binding sites overlap in both albumins. © 2016 The Author(s).
Signorelli, Sara; Santini, Simona; Yamada, Tohru; Bizzarri, Anna Rita; Beattie, Craig W; Cannistraro, Salvatore
2017-04-01
Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. Copyright © 2017 Elsevier B.V. All rights reserved.
Crown oxygen-doping graphene with embedded main-group metal atoms
NASA Astrophysics Data System (ADS)
Wu, Liyuan; Wang, Qian; Yang, Chuanghua; Quhe, Ruge; Guan, Pengfei; Lu, Pengfei
2018-02-01
Different main-group metal atoms embedded in crown oxygen-doping graphene (metal@OG) systems are studied by the density functional theory. The binding energies and electronic structures are calculated by using first-principles calculations. The binding energy of metal@OG system mainly depends on the electronegativity of the metal atom. The lower the value of the electronegativity, the larger the binding energy, indicating the more stable the system. The electronic structure of metal@OG arouses the emergence of bandgap and shift of Dirac point. It is shown that interaction between metal atom and crown oxygen-doping graphene leads to the graphene's stable n-doping, and the metal@OG systems are stable semiconducting materials, which can be used in technological applications.
Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site.
Kroneck, Peter M H
2016-03-01
In living systems, tungsten is exclusively found in microbial enzymes coordinated by the pyranopterin cofactor, with additional metal coordination provided by oxygen and/or sulfur, and/or selenium atoms in diverse arrangements. Prominent examples are formate dehydrogenase, formylmethanofuran dehydrogenase, and aldehyde oxidoreductase all of which catalyze redox reactions. The bacterial enzyme acetylene hydratase (AH) stands out of its class as it catalyzes the conversion of acetylene to acetaldehyde, clearly a non-redox reaction and a reaction distinct from the reduction of acetylene to ethylene by nitrogenase. AH harbors two pyranopterins bound to W, and a [4Fe-4S] cluster. W is coordinated by four dithiolene sulfur atoms, one cysteine sulfur, and one oxygen ligand. AH activity requires a strong reductant suggesting W(IV) as the active oxidation state. Two different types of reaction pathways have been proposed. The 1.26 Å structure reveals a water molecule coordinated to W which could gain a partially positive net charge by the adjacent protonated Asp-13, enabling a direct attack of C2H2. To access the W-Asp site, a substrate channel was evolved distant from where it is found in other members of the DMSOR family. Computational studies of this second shell mechanism led to unrealistically high energy barriers, and alternative pathways were proposed where C2H2 binds directly to W. The architecture of the catalytic cavity, the specificity for C2H2 and the results from site-directed mutagenesis do not support this first shell mechanism. More investigations including structural information on the binding of C2H2 are needed to present a conclusive answer.
Neundlinger, Isabel; Puntheeranurak, Theeraporn; Wildling, Linda; Rankl, Christian; Wang, Lai-Xi; Gruber, Hermann J.; Kinne, Rolf K. H.; Hinterdorfer, Peter
2014-01-01
Single molecule force spectroscopy was employed to investigate the dynamics of the sodium glucose co-transporter (SGLT1) upon substrate and inhibitor binding on the single molecule level. CHO cells stably expressing rbSGLT1 were probed by using atomic force microscopy tips carrying either thioglucose, 2′-aminoethyl β-d-glucopyranoside, or aminophlorizin. Poly(ethylene glycol) (PEG) chains of different length and varying end groups were used as tether. Experiments were performed at 10, 25 and 37 °C to address different conformational states of SGLT1. Unbinding forces between ligands and SGLT1 were recorded at different loading rates by changing the retraction velocity, yielding binding probability, width of energy barrier of the binding pocket, and the kinetic off rate constant of the binding reaction. With increasing temperature, width of energy barrier and average life time increased for the interaction of SGLT1 with thioglucose (coupled via acrylamide to a long PEG) but decreased for aminophlorizin binding. The former indicates that in the membrane-bound SGLT1 the pathway to sugar translocation involves several steps with different temperature sensitivity. The latter suggests that also the aglucon binding sites for transport inhibitors have specific, temperature-sensitive conformations. PMID:24962566
Jobst, Markus A; Milles, Lukas F; Schoeler, Constantin; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Gaub, Hermann E; Nash, Michael A
2015-01-01
Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given the vast number of Doc domains with predicteddual binding modes across multiple bacterial species, our approach opens up newpossibilities for understanding assembly and catalytic properties of a broadrange of multi-enzyme complexes. DOI: http://dx.doi.org/10.7554/eLife.10319.001 PMID:26519733
Yu, Tao; Wang, Xiao-Qing; Sang, Jian-Ping; Pan, Chun-Xu; Zou, Xian-Wu; Chen, Tsung-Yu; Zou, Xiaoqin
2012-01-01
Mutations in ClC channel proteins may cause serious functional changes and even diseases. The function of ClC proteins mainly manifests as Cl− transport, which is related to the binding free energies of chloride ions. Therefore, the influence of a mutation on ClC function can be studied by investigating the mutational effect on the binding free energies of chloride ions. The present study provides quantitative and systematic investigations on the influences of residue mutations on the electrostatic binding free energies in Escherichia coli ClC (EcClC) proteins, using all-atom molecular dynamics simulations. It was found that the change of the electrostatic binding free energy decreases linearly with the increase of the residue-chloride ion distance for a mutation. This work reveals how changes in the charge of a mutated residue and in the distance between the mutated residue and the binding site govern the variations in the electrostatic binding free energies, and therefore influence the transport of chloride ions and conduction in EcClC. This work would facilitate our understanding of the mutational effects on transport of chloride ions and functions of ClC proteins, and provide a guideline to estimate which residue mutations will have great influences on ClC functions. PMID:22612693
Anastassopoulou, J; Theophanides, T
2002-04-01
Magnesium deficiency causes renal complications. The appearance of several diseases is related to its depletion in the human body. In radiotherapy, as well as in chemotherapy, especially in treatment of cancers with cis-platinum, hypomagnesaemia is observed. The site effects of chemotherapy that are due to hypomagnesaemia are decreased using Mg supplements. The role of magnesium in DNA stabilization is concentration dependent. At high concentrations there is an accumulation of Mg binding, which induces conformational changes leading to Z-DNA, while at low concentration there is deficiency and destabilization of DNA. The biological and clinical consequences of abnormal concentrations are DNA cleavage leading to diseases and cancer. Carcinogenesis and cell growth are also magnesium-ion concentration dependent. Several reports point out that the interaction of magnesium in the presence of other metal ions showed that there is synergism with Li and Mn, but there is magnesium antagonism in DNA binding with the essential metal ions in the order: Zn>Mg>Ca. In the case of toxic metals such as Cd, Ga and Ni there is also antagonism for DNA binding. It was found from radiolysis of deaerated aqueous solutions of the nucleoside 5'-guanosine monophosphate (5'-GMP) in the presence as well as in the absence of magnesium ions that, although the addition of hydroxyl radicals (*OH) has been increased by 2-fold, the opening of the imidazole ring of the guanine base was prevented. This effect was due to the binding of Mg2+ ions to N7 site of the molecule by stabilizing the five-member ring imitating cis-platinum. It was also observed using Fourier Transform Infrared spectroscopy, Raman spectroscopy and Fast Atom Bombardment mass spectrometry that *OH radicals subtract H atoms from the C1', C4' and C5' sites of the nucleotide. Irradiation of 5'-GMP in the presence of oxygen (2.5 x 10(-4) M) shows that magnesium is released from the complex. There is spectroscopic evidence that superoxide anions (O2-*) react with magnesium ions leading to magnesium release from the complex. From radiolysis data it was suggested that magnesium ions can act as radiosensitizers in the absence of oxygen, while in the presence of oxygen they act as protectors and stabilizers of DNA.
A density functional theory study on the acetylene cyclotrimerization on Pd-modified Au(111) surface
NASA Astrophysics Data System (ADS)
Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua
2017-10-01
Calculations based on the first-principle density functional theory were carried out to study the possible acetylene cyclotrimerization reactions on Pd-Au(111) surface and to investigate the effect of Au atom alloying with Pd. The adsorption of C2H2, C4H4, C6H6 and the PDOS of 4d orbitals of surface Pd and Au atoms were studied. The comparison of d-band center of Pd and Au atom before and after C2H2 or C4H4 adsorption suggests that these molecules affect the activity of Pd-Au(111) surface to some degree due to the high binding energy of the adsorption. In our study, the second neighboring Pd ensembles on Pd-Au(111) surface can adsorb two acetylene molecules on parallel-bridge site of two Au atoms and one Pd atom, respectively. Csbnd C bonds are parallel to each other and two acetylenes are adsorbed face to face to produce four-membered ring C4H4 firstly. The geometric effect and electronic effect of Pd-Au(111) surface with the second neighboring Pd ensembles both help to reduce this activation barrier.
Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges
Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi
2015-01-01
Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca2+-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca2+-binding sites of Ca2+-ATPase and that of the iron atom in the heme in catalase. PMID:25730881
Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.
Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi
2015-03-17
Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase.
Hosseinzadeh, Parisa; Tian, Shiliang; Marshall, Nicholas M.; ...
2016-04-27
Mononuclear cupredoxin proteins usually contain a coordinately saturated type 1 copper (T1Cu) center and function exclusively as electron carriers. Here we report a cupredoxin isolated from the nitrifying archaeon Nitrosopumilus maritimus SCM1, called Nmar1307, that contains a T1Cu center with an open binding site containing water. It displays a deep purple color due to strong absorptions around 413 nm (1880 M –1 cm –1) and 558 nm (2290 M –1 cm –1) in the UV–vis electronic spectrum. EPR studies suggest the protein contains two Cu(II) species of nearly equal population, one nearly axial, with hyperfine constant A ∥ = 98more » × 10 –4 cm –1, and another more rhombic, with a smaller A ∥ value of 69 × 10 –4 cm –1. The X-ray crystal structure at 1.6 Å resolution confirms that it contains a Cu atom coordinated by two His and one Cys in a trigonal plane, with an axial H 2O at 2.25 Å. Both UV–vis absorption and EPR spectroscopic studies suggest that the Nmar1307 can oxidize NO to nitrite, an activity that is attributable to the high reduction potential (354 mV vs SHE) of the copper site. Lastly, these results suggest that mononuclear cupredoxins can have a wide range of structural features, including an open binding site containing water, making this class of proteins even more versatile.« less
McCusker, Kevin P; Klinman, Judith P
2010-04-14
Enzymes that cleave C-H bonds are often found to depend on well-packed hydrophobic cores that influence the distance between the hydrogen donor and acceptor. Residue F159 in taurine alpha-ketoglutarate dioxygenase (TauD) is demonstrated to play an important role in the binding and orientation of its substrate, which undergoes a hydrogen atom transfer to the active site Fe(IV)=O. Mutation of F159 to smaller hydrophobic side chains (L, V, A) leads to substantially reduced rates for substrate binding and for C-H bond cleavage, as well as increased contribution of the chemical step to k(cat) under steady-state turnover conditions. The greater sensitivity of these substrate-dependent processes to mutation at position 159 than observed for the oxygen activation process supports a previous conclusion of modularity of function within the active site of TauD (McCusker, K. P.; Klinman, J. P. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19791-19795). Extraction of intrinsic deuterium kinetic isotope effects (KIEs) using single turnover transients shows 2- to 4-fold increase in the size of the KIE for F159V in relation to wild-type and F159L. It appears that there is a break in behavior following removal of a single methylene from the side chain of F159L to generate F159V, whereby the protein active site loses its ability to restore the internuclear distance between substrate and Fe(IV)=O that supports optimal hydrogenic wave function overlap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ascenzi, Paolo; National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', Via Portuense 292, I-00149 Roma; Imperi, Francesco
Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k{sub off}) is reported. In the absence of drugs, the value of k{sub off} is (1.3 {+-} 0.2) x 10{sup -4} s{sup -1}. Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k{sub off} value increases to (8.6 {+-} 0.9) x 10{sup -4} s{sup -1}. From the dependence of k{sub off} on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NOmore » (i.e., K = (1.2 {+-} 0.2) x 10{sup -3} M and (6.2 {+-} 0.7) x 10{sup -5} M, respectively) were determined. The increase of k{sub off} values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.« less
Estimating Atomic Contributions to Hydration and Binding Using Free Energy Perturbation.
Irwin, Benedict W J; Huggins, David J
2018-06-12
We present a general method called atom-wise free energy perturbation (AFEP), which extends a conventional molecular dynamics free energy perturbation (FEP) simulation to give the contribution to a free energy change from each atom. AFEP is derived from an expansion of the Zwanzig equation used in the exponential averaging method by defining that the system total energy can be partitioned into contributions from each atom. A partitioning method is assumed and used to group terms in the expansion to correspond to individual atoms. AFEP is applied to six example free energy changes to demonstrate the method. Firstly, the hydration free energies of methane, methanol, methylamine, methanethiol, and caffeine in water. AFEP highlights the atoms in the molecules that interact favorably or unfavorably with water. Finally AFEP is applied to the binding free energy of human immunodeficiency virus type 1 protease to lopinavir, and AFEP reveals the contribution of each atom to the binding free energy, indicating candidate areas of the molecule to improve to produce a more strongly binding inhibitor. FEP gives a single value for the free energy change and is already a very useful method. AFEP gives a free energy change for each "part" of the system being simulated, where part can mean individual atoms, chemical groups, amino acids, or larger partitions depending on what the user is trying to measure. This method should have various applications in molecular dynamics studies of physical, chemical, or biochemical phenomena, specifically in the field of computational drug discovery.
Modelling realistic TiO2 nanospheres: A benchmark study of SCC-DFTB against hybrid DFT
NASA Astrophysics Data System (ADS)
Selli, Daniele; Fazio, Gianluca; Di Valentin, Cristiana
2017-10-01
TiO2 nanoparticles (NPs) are nowadays considered fundamental building blocks for many technological applications. Morphology is found to play a key role with spherical NPs presenting higher binding properties and chemical activity. From the experimental point of view, the characterization of these nano-objects is extremely complex, opening a large room for computational investigations. In this work, TiO2 spherical NPs of different sizes (from 300 to 4000 atoms) have been studied with a two-scale computational approach. Global optimization to obtain stable and equilibrated nanospheres was performed with a self-consistent charge density functional tight-binding (SCC-DFTB) simulated annealing process, causing a considerable atomic rearrangement within the nanospheres. Those SCC-DFTB relaxed structures have been then optimized at the DFT(B3LYP) level of theory. We present a systematic and comparative SCC-DFTB vs DFT(B3LYP) study of the structural properties, with particular emphasis on the surface-to-bulk sites ratio, coordination distribution of surface sites, and surface energy. From the electronic point of view, we compare HOMO-LUMO and Kohn-Sham gaps, total and projected density of states. Overall, the comparisons between DFTB and hybrid density functional theory show that DFTB provides a rather accurate geometrical and electronic description of these nanospheres of realistic size (up to a diameter of 4.4 nm) at an extremely reduced computational cost. This opens for new challenges in simulations of very large systems and more extended molecular dynamics.
Han, Zhong-Kang; Gao, Yi
2016-02-01
Single-atom catalysts have attracted wide attention owing to their extremely high atom efficiency and activities. In this paper, we applied density functional theory with the inclusion of the on-site Coulomb interaction (DFT+U) to investigate water adsorption and dissociation on clean CeO 2 (111) surfaces and single transition metal atoms (STMAs) adsorbed on the CeO 2 (111) surface. It is found that the most stable water configuration is molecular adsorption on the clean CeO 2 (111) surface and dissociative adsorption on STMA/CeO 2 (111) surfaces, respectively. In addition, our results indicate that the more the electrons that transfer from STMA to the ceria substrate, the stronger the binding energies between the STMA and ceria surfaces. A linear relationship is identified between the water dissociation barriers and the d band centers of STMA, known as the generalized Brønsted-Evans-Polanyi principle. By combining the oxygen spillovers, single-atom dispersion stabilities, and water dissociation barriers, Zn, Cr, and V are identified as potential candidates for the future design of ceria-supported single-atom catalysts for reactions in which the dissociation of water plays an important role, such as the water-gas shift reaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pašti, Igor A.; Jovanović, Aleksandar; Dobrota, Ana S.; Mentus, Slavko V.; Johansson, Börje; Skorodumova, Natalia V.
Vacancies in graphene present sites of altered chemical reactivity and open possibilities to tune graphene properties by defect engineering. The understanding of chemical reactivity of such defects is essential for successful implementation of carbon materials in advanced technologies. We report the results of a systematic DFT study of atomic adsorption on graphene with a single vacancy for the elements of rows 1 to 6 of the Periodic Table of Elements (PTE), excluding lanthanides. The calculations have been performed using PBE, long-range dispersion interaction-corrected PBE (PBE+D2 and PBE+D3) and non-local vdW-DF2 functional. We find that most elements strongly bind to the vacancy, except for the elements of groups 11 and 12, and noble gases, for which the contribution of dispersion interaction to bonding is most significant. The strength of the interaction with the vacancy correlates with the cohesive energy of the elements in their stable phases: the higher the cohesive energy is the stronger bonding to the vacancy can be expected. As most atoms can be trapped at the SV site we have calculated the potentials of dissolution and found that in most cases the metals adsorbed at the vacancy are more "noble" than they are in their corresponding stable phases.
Pašti, Igor A; Jovanović, Aleksandar; Dobrota, Ana S; Mentus, Slavko V; Johansson, Börje; Skorodumova, Natalia V
2018-01-03
Vacancies in graphene present sites of altered chemical reactivity and open possibilities to tune graphene properties by defect engineering. The understanding of chemical reactivity of such defects is essential for successful implementation of carbon materials in advanced technologies. We report the results of a systematic DFT study of atomic adsorption on graphene with a single vacancy for the elements of rows 1-6 of the periodic table of elements (PTE), excluding lanthanides. The calculations have been performed using the PBE, long-range dispersion interaction-corrected PBE (PBE+D2 and PBE+D3) and non-local vdW-DF2 functionals. We find that most elements strongly bind to the vacancy, except for the elements of groups 11 and 12, and noble gases, for which the contribution of dispersion interaction to bonding is most significant. The strength of the interaction with the vacancy correlates with the cohesive energy of the elements in their stable phases: the higher the cohesive energy is, the stronger bonding to the vacancy can be expected. As most atoms can be trapped at the SV site we have calculated the potentials of dissolution and found that in most cases the metals adsorbed at the vacancy are more "noble" than they are in their corresponding stable phases.
Li, Xin; Yang, Zhong-Zhi
2005-05-12
We present a potential model for Li(+)-water clusters based on a combination of the atom-bond electronegativity equalization and molecular mechanics (ABEEM/MM) that is to take ABEEM charges of the cation and all atoms, bonds, and lone pairs of water molecules into the intermolecular electrostatic interaction term in molecular mechanics. The model allows point charges on cationic site and seven sites of an ABEEM-7P water molecule to fluctuate responding to the cluster geometry. The water molecules in the first sphere of Li(+) are strongly structured and there is obvious charge transfer between the cation and the water molecules; therefore, the charge constraint on the ionic cluster includes the charged constraint on the Li(+) and the first-shell water molecules and the charge neutrality constraint on each water molecule in the external hydration shells. The newly constructed potential model based on ABEEM/MM is first applied to ionic clusters and reproduces gas-phase state properties of Li(+)(H(2)O)(n) (n = 1-6 and 8) including optimized geometries, ABEEM charges, binding energies, frequencies, and so on, which are in fair agreement with those measured by available experiments and calculated by ab initio methods. Prospects and benefits introduced by this potential model are pointed out.
2014-01-01
Background Binding free energy and binding hot spots at protein-protein interfaces are two important research areas for understanding protein interactions. Computational methods have been developed previously for accurate prediction of binding free energy change upon mutation for interfacial residues. However, a large number of interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss. Results This work proposes a new method, βACV ASA , to predict the change of binding free energy after alanine mutations. βACV ASA integrates accessible surface area (ASA) and our newly defined β contacts together into an atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396 alanine mutations, our method is found to be superior in classification performance to many other methods, including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACV ASA methods (similar to βACV ASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation; (ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces; (iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a necessary condition for a residue to become a binding hot spot. Conclusions βACV ASA is designed using the advantages of both β contacts and water exclusion. It is an excellent tool to predict binding free energy changes and binding hot spots after alanine mutation. PMID:24568581
Clark, Ginevra A; Henderson, J Michael; Heffern, Charles; Akgün, Bülent; Majewski, Jaroslaw; Lee, Ka Yee C
2015-11-24
We found that interactions of dipalmitoylphosphatidylcholine (DPPC) lipid monolayers with sugars are influenced by addition of NaCl. This work is of general importance in understanding how sugar-lipid-salt interactions impact biological systems. Using Langmuir isothermal compressions, fluorescence microscopy, atomic force microscopy, and neutron reflectometry, we examined DPPC monolayers upon addition of sugars/polyols and/or monovalent salts. Sugar-lipid interactions in the presence of NaCl increased with increasing complexity of the sugar/polyol in the order glycerol ≪ glucose < trehalose. When the anion was altered in the series NaF, NaCl, and NaBr, only minor differences were observed. When comparing LiCl, NaCl, and KCl, sodium chloride had the greatest influence on glucose and trehalose interactions with DPPC. We propose that heterogeneity created by cation binding allows for sugars to bind the lipid headgroups. While cation binding increases in the order K(+) < Na(+) < Li(+), lithium ions may also compete with glucose for binding sites. Thus, both cooperative and competitive factors contribute to the overall influence of salts on sugar-lipid interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moulaei, Tinoush; Shenoy, Shilpa R.; Giomarelli, Barbara
2010-10-28
Mutations were introduced to the domain-swapped homodimer of the antiviral lectin griffithsin (GRFT). Whereas several single and double mutants remained dimeric, insertion of either two or four amino acids at the dimerization interface resulted in a monomeric form of the protein (mGRFT). Monomeric character of the modified proteins was confirmed by sedimentation equilibrium ultracentrifugation and by their high resolution X-ray crystal structures, whereas their binding to carbohydrates was assessed by isothermal titration calorimetry. Cell-based antiviral activity assays utilizing different variants of mGRFT indicated that the monomeric form of the lectin had greatly reduced activity against HIV-1, suggesting that the antiviralmore » activity of GRFT stems from crosslinking and aggregation of viral particles via multivalent interactions between GRFT and oligosaccharides present on HIV envelope glycoproteins. Atomic resolution crystal structure of a complex between mGRFT and nonamannoside revealed that a single mGRFT molecule binds to two different nonamannoside molecules through all three carbohydrate-binding sites present on the monomer.« less
Binding of mouse immunoglobulin G to polylysine-coated glass substrate for immunodiagnosis
NASA Astrophysics Data System (ADS)
Vashist, Sandeep Kumar; Tewari, Rupinder; Bajpai, Ram Prakash; Bharadwaj, Lalit Mohan; Raiteri, Roberto
2006-12-01
We report a method for immobilizing mouse immunoglobulin G (IgG) on polylysine-coated glass substrate for immunodiagnostic applications. Mouse IgG molecules were immobilized on polylysine-coated glass substrate employing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and protein A. The amino groups of the polylysine-coated glass slide were cross linked to the carboxyl groups of protein A employing EDC crosslinker. Protein A was employed as it binds to the constant Fc region of antibodies keeping their antigen binding sites on the variable F ab region free to bind to antigens. The qualitative analysis of surface immobilized mouse IgG was done by fluorescent microscopy employing fluorescein isothiocyanate (FITC) labeled mouse IgG molecules. The immobilization densities of protein A and mouse IgG were determined by 3, 3', 4, 4'-tetramethyl benzidine (TMB) substrate assay employing horse radish peroxidise labelled molecules and were found to be 130 +/- 17 ng/cm2 and 596 +/- 31 ng/cm2 respectively. The biomolecular coatings analyzed by atomic force microscopy (AFM) were found to be uniform.
Lukman, Suryani; Lane, David P.; Verma, Chandra S.
2013-01-01
The transcription factor p53 regulates cellular integrity in response to stress. p53 is mutated in more than half of cancerous cells, with a majority of the mutations localized to the DNA binding domain (DBD). In order to map the structural and dynamical features of the DBD, we carried out multiple copy molecular dynamics simulations (totaling 0.8 μs). Simulations show the loop 1 to be the most dynamic element among the DNA-contacting loops (loops 1-3). Loop 1 occupies two major conformational states: extended and recessed; the former but not the latter displays correlations in atomic fluctuations with those of loop 2 (~24 Å apart). Since loop 1 binds to the major groove whereas loop 2 binds to the minor groove of DNA, our results begin to provide some insight into the possible mechanism underpinning the cooperative nature of DBD binding to DNA. We propose (1) a novel mechanism underlying the dynamics of loop 1 and the possible tread-milling of p53 on DNA and (2) possible mutations on loop 1 residues to restore the transcriptional activity of an oncogenic mutation at a distant site. PMID:24324553
Properties of Vacancy Complexes with Hydrogen and Helium Atoms in Tungsten from First Principles
Samolyuk, German D.; Osetsky, Yury N.; Stoller, Roger E.
2016-12-03
Tungsten and its alloys are the primary candidate materials for plasma-facing components in fusion reactors. The material is exposed to high-energy neutrons and the high flux of helium and hydrogen atoms. In this paper, we have studied the properties of vacancy clusters and their interaction with H and He in W using density functional theory. Convergence of calculations with respect to modeling cell size was investigated. It is demonstrated that vacancy cluster formation energy converges with small cells with a size of 6 × 6 × 6 (432 lattice sites) enough to consider a microvoid of up to six vacanciesmore » with high accuracy. Most of the vacancy clusters containing fewer than six vacancies are unstable. Introducing He or H atoms increases their binding energy potentially making gas-filled bubbles stable. Finally, according to the results of the calculations, the H 2 molecule is unstable in clusters containing six or fewer vacancies.« less
Li, Bing-Bing; Xiao, Bo
2009-01-01
In the title coordination polymer, [Cd(C8H11O4)2(C14H14N4)]n, the Cd atom (site symmetry 2) is six-coordinated by two O,O′-bidentate 4-carboxycyclohexanecarboxylate (Hchdc) ligands and two N atoms from two different 1,4-bis(imidazol-1-ylmethyl)benzene (1,4-bix) molecules in a very distorted cis-CdN2O4 octahedral environment. The 1,4-bix molecules act as bridging ligands that bind two CdII atoms, thus forming an infinite chain propagating in [100], which is decorated by the Hchdc anions. The structure is completed by O—H⋯O hydrogen bonds, which link the chains together. PMID:21582692
Regulation of the protein-conducting channel by a bound ribosome
Gumbart, James; Trabuco, Leonardo G.; Schreiner, Eduard; Villa, Elizabeth; Schulten, Klaus
2009-01-01
Summary During protein synthesis, it is often necessary for the ribosome to form a complex with a membrane-bound channel, the SecY/Sec61 complex, in order to translocate nascent proteins across a cellular membrane. Structural data on the ribosome-channel complex are currently limited to low-resolution cryo-electron microscopy maps, including one showing a bacterial ribosome bound to a monomeric SecY complex. Using that map along with available atomic-level models of the ribosome and SecY, we have determined, through molecular dynamics flexible fitting (MDFF), an atomic-resolution model of the ribosome-channel complex. We characterized computationally the sites of ribosome-SecY interaction within the complex and determined the effect of ribosome binding on the SecY channel. We also constructed a model of a ribosome in complex with a SecY dimer by adding a second copy of SecY to the MDFF-derived model. The study involved 2.7-million-atom simulations over altogether nearly 50 ns. PMID:19913480
Na Ayutthaya, Pratchaya Pramoj; Chanchao, Chanpen; Chunsrivirot, Surasak
2018-01-01
Honey from the European honeybee, Apis mellifera, is produced by α-glucosidases (HBGases) and is widely used in food, pharmaceutical, and cosmetic industries. Categorized by their substrate specificities, HBGases have three isoforms: HBGase I, II and III. Previous experimental investigations showed that wild-type HBGase III from Apis mellifera (WT) preferred sucrose to maltose as a substrate, while the Y227H mutant (MT) preferred maltose to sucrose. This mutant can potentially be used for malt hydrolysis because it can efficiently hydrolyze maltose. In this work, to elucidate important factors contributing to substrate specificity of this enzyme and gain insight into how the Y227H mutation causes substrate specificity change, WT and MT homology models were constructed, and sucrose/maltose was docked into active sites of the WT and MT. AMBER14 was employed to perform three independent molecular dynamics runs for these four complexes. Based on the relative binding free energies calculated by the MM-GBSA method, sucrose is better than maltose for WT binding, while maltose is better than sucrose for MT binding. These rankings support the experimentally observed substrate specificity that WT preferred sucrose to maltose as a substrate, while MT preferred maltose to sucrose, suggesting the importance of binding affinity for substrate specificity. We also found that the Y227H mutation caused changes in the proximities between the atoms necessary for sucrose/maltose hydrolysis that may affect enzyme efficiency in the hydrolysis of sucrose/maltose. Moreover, the per-residue binding free energy decomposition results show that Y227/H227 may be a key residue for preference binding of sucrose/maltose in the WT/MT active site. Our study provides important and novel insight into the binding of sucrose/maltose in the active site of Apis mellifera HBGase III and into how the Y227H mutation leads to the substrate specificity change at the molecular level. This knowledge could be beneficial in the design of this enzyme for increased production of desired products.
Schiaffino-Ortega, Santiago; Baglioni, Eleonora; Mariotto, Elena; Bortolozzi, Roberta; Serrán-Aguilera, Lucía; Ríos-Marco, Pablo; Carrasco-Jimenez, M Paz; Gallo, Miguel A; Hurtado-Guerrero, Ramon; Marco, Carmen; Basso, Giuseppe; Viola, Giampietro; Entrena, Antonio; López-Cara, Luisa Carlota
2016-03-31
A novel family of compounds derivative of 1,1'-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bispyridinium or -bisquinolinium bromide (10a-l) containing a pair of oxygen atoms in the spacer of the linker between the biscationic moieties, were synthesized and evaluated as inhibitors of choline kinase against a panel of cancer-cell lines. The most promising compounds in this series were 1,1'-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))bis(4-(dimethylamino)pyridinium) bromide (10a) and 1,1'-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bis(7-chloro-4-(pyrrolidin-1-yl)quinolinium) bromide (10l), which inhibit human choline kinase (ChoKα1) with IC50 of 1.0 and 0.92 μM, respectively, in a range similar to that of the previously reported biscationic compounds MN58b and RSM932A. Our compounds show greater antiproliferative activities than do the reference compounds, with unprecedented values of GI50 in the nanomolar range for several of the cancer-cell lines assayed, and more importantly they present low toxicity in non-tumoral cell lines, suggesting a cancer-cell-selective antiproliferative activity. Docking studies predict that the compounds interact with the choline-binding site in agreement with the binding mode of most previously reported biscationic compounds. Moreover, the crystal structure of ChoKα1 with compound 10a reveals that this compound binds to the choline-binding site and mimics HC-3 binding mode as never before.
NASA Astrophysics Data System (ADS)
Samanta, Sudipta; Mukherjee, Sanchita
2017-04-01
The signalling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, associate with SLAM-associated protein (SAP)-related molecules, composed of single SH2 domain architecture. SAP activates Src-family kinase Fyn after SLAM ligation, resulting in a SLAM-SAP-Fyn complex, where, SAP binds the Fyn SH3 domain that does not involve canonical SH3 or SH2 interactions. This demands insight into this SAP mediated signalling cascade. Thermodynamics of the conformational changes are extracted from the histograms of dihedral angles obtained from the all-atom molecular dynamics simulations of this structurally well characterized SAP-SLAM complex. The results incorporate the binding induced thermodynamic changes of individual amino acid as well as the secondary structural elements of the protein and the solvent. Stabilization of the peptide partially comes through a strong hydrogen bonding network with the protein, while hydrophobic interactions also play a significant role where the peptide inserts itself into a hydrophobic cavity of the protein. SLAM binding widens SAP's second binding site for Fyn, which is the next step in the signal transduction cascade. The higher stabilization and less fluctuation of specific residues of SAP in the Fyn binding site, induced by SAP-SLAM complexation, emerge as the key structural elements to trigger the recognition of SAP by the SH3 domain of Fyn. The thermodynamic quantification of the protein due to complexation not only throws deeper understanding in the established mode of SAP-SLAM interaction but also assists in the recognition of the relevant residues of the protein responsible for alterations in its activity.
Allosteric regulation of focal adhesion kinase by PIP₂ and ATP.
Zhou, Jing; Bronowska, Agnieszka; Le Coq, Johanne; Lietha, Daniel; Gräter, Frauke
2015-02-03
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that regulates cell signaling, proliferation, migration, and development. A major mechanism of regulation of FAK activity is an intramolecular autoinhibitory interaction between two of its domains--the catalytic and FERM domains. Upon cell adhesion to the extracellular matrix, FAK is being translocated toward focal adhesion sites and activated. Interactions of FAK with phosphoinositide phosphatidylinsositol-4,5-bis-phosphate (PIP₂) are required to activate FAK. However, the molecular mechanism of the activation remains poorly understood. Recent fluorescence resonance energy transfer experiments revealed a closure of the FERM-kinase interface upon ATP binding, which is reversed upon additional binding of PIP₂. Here, we addressed the allosteric regulation of FAK by performing all-atom molecular-dynamics simulations of a FAK fragment containing the catalytic and FERM domains, and comparing the dynamics in the absence or presence of ATP and PIP₂. As a major conformational change, we observe a closing and opening motion upon ATP and additional PIP₂ binding, respectively, in good agreement with the fluorescence resonance energy transfer experiments. To reveal how the binding of the regulatory PIP₂ to the FERM F2 lobe is transduced to the very distant F1/N-lobe interface, we employed force distribution analysis. We identified a network of mainly charged residue-residue interactions spanning from the PIP₂ binding site to the distant interface between the kinase and FERM domains, comprising candidate residues for mutagenesis to validate the predicted mechanism of FAK activation. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Samanta, Sudipta; Mukherjee, Sanchita
2017-04-28
The signalling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, associate with SLAM-associated protein (SAP)-related molecules, composed of single SH2 domain architecture. SAP activates Src-family kinase Fyn after SLAM ligation, resulting in a SLAM-SAP-Fyn complex, where, SAP binds the Fyn SH3 domain that does not involve canonical SH3 or SH2 interactions. This demands insight into this SAP mediated signalling cascade. Thermodynamics of the conformational changes are extracted from the histograms of dihedral angles obtained from the all-atom molecular dynamics simulations of this structurally well characterized SAP-SLAM complex. The results incorporate the binding induced thermodynamic changes of individual amino acid as well as the secondary structural elements of the protein and the solvent. Stabilization of the peptide partially comes through a strong hydrogen bonding network with the protein, while hydrophobic interactions also play a significant role where the peptide inserts itself into a hydrophobic cavity of the protein. SLAM binding widens SAP's second binding site for Fyn, which is the next step in the signal transduction cascade. The higher stabilization and less fluctuation of specific residues of SAP in the Fyn binding site, induced by SAP-SLAM complexation, emerge as the key structural elements to trigger the recognition of SAP by the SH3 domain of Fyn. The thermodynamic quantification of the protein due to complexation not only throws deeper understanding in the established mode of SAP-SLAM interaction but also assists in the recognition of the relevant residues of the protein responsible for alterations in its activity.
Determination of the Bridging Ligand in the Active Site of Tyrosinase.
Zou, Congming; Huang, Wei; Zhao, Gaokun; Wan, Xiao; Hu, Xiaodong; Jin, Yan; Li, Junying; Liu, Junjun
2017-10-28
Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In the crystal structure of Agaricus bisporus mushroom tyrosinase, there is an oxygen atom bridging the two copper ions in the active site. It is unclear whether the identity of this bridging oxygen is a water molecule or a hydroxide anion. In the present study, we theoretically determine the identity of this critical bridging oxygen by performing first-principles hybrid quantum mechanics/molecular mechanics/Poisson-Boltzmann-surface area (QM/MM-PBSA) calculations along with a thermodynamic cycle that aim to improve the accuracy. Our results show that the binding with water molecule is energy favored and the QM/MM-optimized structure is very close to the crystal structure, whereas the binding with hydroxide anions causes the increase of energy and significant structural changes of the active site, indicating that the identity of the bridging oxygen must be a water molecule rather than a hydroxide anion. The different binding behavior between water and hydroxide anions may explain why molecules with a carboxyl group or too many negative charges have lower inhibitory activity. In light of this, the design of high potent active inhibitors against tyrosinase should satisfy both the affinity to the copper ions and the charge neutrality of the entire molecule.
Crystal Structure of the Catalytic Domain of Drosophila [beta]1,4-Galactosyltransferase-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakrishnan, Boopathy; Qasba, Pradman K.
2010-11-03
The {beta}1,4-galactosyltransferase-7 ({beta}4Gal-T7) enzyme, one of seven members of the {beta}4Gal-T family, transfers in the presence of manganese Gal from UDP-Gal to an acceptor sugar (xylose) that is attached to a side chain hydroxyl group of Ser/Thr residues of proteoglycan proteins. It exhibits the least protein sequence similarity with the other family members, including the well studied family member {beta}4Gal-T1, which, in the presence of manganese, transfers Gal from UDP-Gal to GlcNAc. We report here the crystal structure of the catalytic domain of {beta}4Gal-T7 from Drosophila in the presence of manganese and UDP at 1.81 {angstrom} resolution. In the crystalmore » structure, a new manganese ion-binding motif (HXH) has been observed. Superposition of the crystal structures of {beta}4Gal-T7 and {beta}4Gal-T1 shows that the catalytic pocket and the substrate-binding sites in these proteins are similar. Compared with GlcNAc, xylose has a hydroxyl group (instead of an N-acetyl group) at C2 and lacks the CH{sub 2}OH group at C5; thus, these protein structures show significant differences in their acceptor-binding site. Modeling of xylose in the acceptor-binding site of the {beta}4Gal-T7 crystal structure shows that the aromatic side chain of Tyr{sup 177} interacts strongly with the C5 atom of xylose, causing steric hindrance to any additional group at C5. Because Drosophila Cd7 has a 73% protein sequence similarity to human Cd7, the present crystal structure offers a structure-based explanation for the mutations in human Cd7 that have been linked to Ehlers-Danlos syndrome.« less
Ce{sub 11}Ge{sub 3.73(2)}In{sub 6.27}: Solid-state synthesis, crystal structure and site-preference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Beom-Yong; Nam, Gnu; Lee, Dong Woo
A novel intermetallic compound of Ce{sub 11}Ge{sub 3.73(2)}In{sub 6.27} has been synthesized through the high-temperature solid-state reaction using Nb-ampoules. A batch of well grown block-/short bar-shaped single-crystals has been obtained, and the crystal structure of the title compound has been characterized by single-crystal X-ray diffraction analyses. Ce{sub 11}Ge{sub 3.73(2)}In{sub 6.27} adopts the Ho{sub 11}Ge{sub 10}-type structure belonging to the tetragonal space group I4/mmm (Z=4, Pearson symbol tI84) with nine crystallographically unique atomic positions in the asymmetric unit. The lattice parameters are a=12.0163(1) Å and c=16.5396(2) Å. The overall crystal structure can simply be depicted as an assembly of three differentmore » types of co-facial cationic polyhedra centered by anions, which is further enclosed by the three-dimensional (3-D) cage-like anionic framework. The extra amount of In is observed in one of three isolated anionic sites resulting in introducing the Ge/In-mixed site at the Wyckoff 4e site. This unique site-preference of In substitution for Ge at the 4e site has been enlightened via the atomic size-aspect which was fully supported and rationalized by the site- and bond-energies analyses using tight-binding linear muffin-tin orbital (TB-LMTO) calculations. Energy-dispersive X-ray spectroscopy (EDS), density of states (DOS), crystal orbital Hamilton population (COHP), and electron localization function (ELF) analyses for the title compound are also presented. Magnetic susceptibility measurement proves that an antiferromagnetic ordering of Ce atoms at a low temperature with a paramagnetic Curie temperature of −23.2 K. - Graphical abstract: Reported is experimental and theoretical investigations for Ce{sub 11}Ge{sub 3.73(2)}In{sub 6.27}, which is the first reported example having the extra amounts of In substitution for Ge at one of three “isolated” anionic sites in the Ho{sub 11}Ge{sub 10}-type phase. The observed In site-preference toward the particular anionic site was rationalized via the atomic size-aspect supported by comprehensive analyses for the site-energies including the Wyckoff 4e and 8j sites. - Highlights: • Block or short-bar shaped single-crystals of Ce{sub 11}Ge{sub 3.73(2)}In{sub 6.27} were synthesized. • The first example of having the In/Ge mixture at the “isolated” anionic site. • The site-preference of In was rationalized by the site- and bond-energies.« less
Long Distance Modulation of Disorder-to-Order Transitions in Protein Allostery.
Wang, Jingheng; Custer, Gregory; Beckett, Dorothy; Matysiak, Silvina
2017-08-29
Elucidation of the molecular details of allosteric communication between distant sites in a protein is key to understanding and manipulating many biological regulatory processes. Although protein disorder is acknowledged to play an important thermodynamic role in allostery, the molecular mechanisms by which this disorder is harnessed for long distance communication are known for a limited number of systems. Transcription repression by the Escherichia coli biotin repressor, BirA, is allosterically activated by binding of the small molecule effector biotinoyl-5'-AMP. The effector acts by promoting BirA dimerization, which is a prerequisite for sequence-specific binding to the biotin biosynthetic operon operator sequence. A 30 Å distance separates the effector binding and dimerization surfaces in BirA, and previous studies indicate that allostery is mediated, in part, by disorder-to-order transitions on the two coupled sites. In this work, combined experimental and computational methods have been applied to investigate the molecular basis of allosteric communication in BirA. Double-mutant cycle analysis coupled with thermodynamic measurements indicates functional coupling between residues in disordered loops on the two distant surfaces. All atom molecular dynamics simulations reveal that this coupling occurs through long distance reciprocal modulation of the structure and dynamics of disorder-to-order transitions on the two surfaces.
Keitel, T; Meldgaard, M; Heinemann, U
1994-05-15
The hybrid Bacillus (1,3-1,4)-beta-glucanase H(A16-M), consisting of 16 N-terminal amino acids derived from the mature form of the B. amyloliquefaciens enzyme and of 198 C-proximal amino acids from the B. macerans enzyme, binds a calcium ion at a site at its molecular surface remote from the active center [T. Keitel, O. Simon, R. Borriss & U. Heinemann (1993) Proc. Natl Acad. Sci. USA 90, 5287-5291]. X-ray diffraction analysis at 0.22-nm resolution of crystals grown in the absence of calcium and in the presence of EDTA shows this site to be occupied by a sodium ion. Whereas the calcium ion has six oxygen atoms in its coordination sphere, two of which are from water molecules, sodium is fivefold coordinated with a fifth ligand belonging to a symmetry-related protein molecule in the crystal lattice. The affinity of H(A16-M) for calcium over sodium has been determined calorimetrically. Calcium binding stabilizes the native three-dimensional structure of the protein as shown by guanidinium chloride unfolding and thermal inactivation experiments. The enhanced enzymic activity of Bacillus beta-glucanases at elevated temperatures in the presence of calcium ions is attributed to a general stabilizing effect by the cation.
SABER: A computational method for identifying active sites for new reactions
Nosrati, Geoffrey R; Houk, K N
2012-01-01
A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644–1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were l-Ala d/l-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. PMID:22492397
NASA Astrophysics Data System (ADS)
Tabassum, Sartaj; Sharma, Girish Chandra; Arjmand, Farukh; Azam, Ameer
2010-05-01
A new nano dimensional heterobimetallic Cu-Sn containing complex as a potential drug candidate was designed, synthesized and characterized by analytical and spectral methods. The electronic absorption and electron paramagnetic resonance parameters of the complex revealed that the Cu(II) ion exhibits a square pyramidal geometry with the two pyrazole nitrogen atoms, the amine nitrogen atom and the carboxylate oxygen of the phenyl glycine chloride ligand located at the equatorial sites and the coordinated chloride ion occupying an apical position. 119Sn NMR spectral data showed a hexa-coordinated environment around the Sn(IV) metal ion. TEM, AFM and XRD measurements illustrate that the complex could induce the condensation of CT-DNA to a particulate nanostructure. The interaction of the Cu-Sn complex with CT-DNA was investigated by UV-vis absorption and emission spectroscopy, as well as cyclic voltammetric measurements. The results indicated that the complex interacts with DNA through an electrostatic mode of binding with an intrinsic binding constant Kb = 8.42 × 104 M - 1. The Cu-Sn complex exhibits effective cleavage of pBR322 plasmid DNA by an oxidative cleavage mechanism, monitored at different concentrations both in the absence and in the presence of reducing agents.
NASA Astrophysics Data System (ADS)
Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard
2014-03-01
Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.
Conformational Analysis on structural perturbations of the zinc finger NEMO
NASA Astrophysics Data System (ADS)
Godwin, Ryan; Salsbury, Freddie; Salsbury Group Team
2014-03-01
The NEMO (NF-kB Essential Modulator) Zinc Finger protein (2jvx) is a functional Ubiquitin-binding domain, and plays a role in signaling pathways for immune/inflammatory responses, apoptosis, and oncogenesis [Cordier et al., 2008]. Characterized by 3 cysteines and 1 histidine residue at the active site, the biologically occurring, bound zinc configuration is a stable structural motif. Perturbations of the zinc binding residues suggest conformational changes in the 423-atom protein characterized via analysis of all-atom molecular dynamics simulations. Structural perturbations include simulations with and without a zinc ion and with and without de-protonated cysteines, resulting in four distinct configurations. Simulations of various time scales show consistent results, yet the longest, GPU driven, microsecond runs show more drastic structural and dynamic fluctuations when compared to shorter duration time-scales. The last cysteine residue (26 of 28) and the helix on which it resides exhibit a secondary, locally unfolded conformation in addition to its normal bound conformation. Combined analytics elucidate how the presence of zinc and/or protonated cysteines impact the dynamics and energetic fluctuations of NEMO. Comprehensive Cancer Center of Wake Forest University Computational Biosciences shared resource supported by NCI CCSG P30CA012197.
NASA Astrophysics Data System (ADS)
Duan, Sibin; Wang, Rongming; Liu, Jingyue
2018-05-01
Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water–gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal–support interaction.
Duan, Sibin; Wang, Rongming; Liu, Jingyue
2018-05-18
Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt 1 /Fe 2 O 3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water-gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe 2 O 3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H 2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H 2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H 2 O molecules to the CO or H 2 significantly accelerates the sintering of the Fe 2 O 3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal-support interaction.
Schnute, Mark E; O'Brien, Patrick M; Nahra, Joe; Morris, Mark; Howard Roark, W; Hanau, Cathleen E; Ruminski, Peter G; Scholten, Jeffrey A; Fletcher, Theresa R; Hamper, Bruce C; Carroll, Jeffery N; Patt, William C; Shieh, Huey S; Collins, Brandon; Pavlovsky, Alexander G; Palmquist, Katherine E; Aston, Karl W; Hitchcock, Jeffrey; Rogers, Michael D; McDonald, Joseph; Johnson, Adam R; Munie, Grace E; Wittwer, Arthur J; Man, Chiu-Fai; Settle, Steven L; Nemirovskiy, Olga; Vickery, Lillian E; Agawal, Arun; Dyer, Richard D; Sunyer, Teresa
2010-01-15
Potent, highly selective and orally-bioavailable MMP-13 inhibitors have been identified based upon a (pyridin-4-yl)-2H-tetrazole scaffold. Co-crystal structure analysis revealed that the inhibitors bind at the S(1)(') active site pocket and are not ligands for the catalytic zinc atom. Compound 29b demonstrated reduction of cartilage degradation biomarker (TIINE) levels associated with cartilage protection in a preclinical rat osteoarthritis model. Copyright 2009 Elsevier Ltd. All rights reserved.
A structural biology perspective on bioactive small molecules and their plant targets.
Kumari, Selva; van der Hoorn, Renier A L
2011-10-01
Structural biology efforts in recent years have generated numerous co-crystal structures of bioactive small molecules interacting with their plant targets. These studies include the targets of various phytohormones, pathogen-derived effectors, herbicides and other bioactive compounds. Here we discuss that this collection of structures contains excellent examples of nine collective observations: molecular glues, allostery, inhibitors, molecular mimicry, promiscuous binding sites, unexpected electron densities, natural selection at atomic resolution, and applications in structure-guided mutagenesis and small molecule design. Copyright © 2011 Elsevier Ltd. All rights reserved.
Prediction of allosteric sites and mediating interactions through bond-to-bond propensities
NASA Astrophysics Data System (ADS)
Amor, B. R. C.; Schaub, M. T.; Yaliraki, S. N.; Barahona, M.
2016-08-01
Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to fine-tune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites.
Prediction of allosteric sites and mediating interactions through bond-to-bond propensities
Amor, B. R. C.; Schaub, M. T.; Yaliraki, S. N.; Barahona, M.
2016-01-01
Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to fine-tune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites. PMID:27561351
Interdependence of Inhibitor Recognition in HIV-1 Protease
2017-01-01
Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1′ and S2′ subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. All-atom molecular dynamics simulations starting from these structures were performed and systematically analyzed in terms of atomic fluctuations, intermolecular interactions, and water structure. These analyses reveal that the S1′ subsite highly influences other subsites: the extension of the hydrophobic P1′ moiety results in 1) reduced van der Waals contacts in the P2′ subsite, 2) more variability in the hydrogen bond frequencies with catalytic residues and the flap water, and 3) changes in the occupancy of conserved water sites both proximal and distal to the active site. In addition, one of the monomers in this homodimeric enzyme has atomic fluctuations more highly correlated with DRV than the other monomer. These relationships intricately link the HIV-1 protease subsites and are critical to understanding molecular recognition and inhibitor binding. More broadly, the interdependency of subsite recognition within an active site requires consideration in the selection of chemical moieties in drug design; this strategy is in contrast to what is traditionally done with independent optimization of chemical moieties of an inhibitor. PMID:28358514
Interdependence of Inhibitor Recognition in HIV-1 Protease.
Paulsen, Janet L; Leidner, Florian; Ragland, Debra A; Kurt Yilmaz, Nese; Schiffer, Celia A
2017-05-09
Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. All-atom molecular dynamics simulations starting from these structures were performed and systematically analyzed in terms of atomic fluctuations, intermolecular interactions, and water structure. These analyses reveal that the S1' subsite highly influences other subsites: the extension of the hydrophobic P1' moiety results in 1) reduced van der Waals contacts in the P2' subsite, 2) more variability in the hydrogen bond frequencies with catalytic residues and the flap water, and 3) changes in the occupancy of conserved water sites both proximal and distal to the active site. In addition, one of the monomers in this homodimeric enzyme has atomic fluctuations more highly correlated with DRV than the other monomer. These relationships intricately link the HIV-1 protease subsites and are critical to understanding molecular recognition and inhibitor binding. More broadly, the interdependency of subsite recognition within an active site requires consideration in the selection of chemical moieties in drug design; this strategy is in contrast to what is traditionally done with independent optimization of chemical moieties of an inhibitor.
Aza-Bambusurils En Route to Anion Transporters.
Singh, Mandeep; Solel, Ephrath; Keinan, Ehud; Reany, Ofer
2016-06-20
Previous calculations of anion binding with various bambusuril analogs predicted that the replacement of oxygen by nitrogen atoms to produce semiaza-bambus[6]urils would award these new cavitands with multiple anion binding properties. This study validates the hypothesis by efficient synthesis, crystallography, thermogravimetric analysis and calorimetry. These unique host molecules are easily accessible from the corresponding semithio-bambusurils in a one-pot reaction, which converts a single anion receptor into a potential anion channel. Solid-state structures exhibit simultaneous accommodation of three anions, linearly positioned within the cavity along the main symmetry axis. The ability to hold anions at a short distance of about 4 Å is reminiscent of natural chloride channels in E. coli, which exhibit similar distances between their adjacent anion binding sites. The calculated transition-state energy for double-anion movement through the channel suggests that although these host-guest complexes are thermodynamically stable they enjoy high kinetic flexibility to render them efficient anion channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luna-Zurita, Luis; Stirnimann, Christian U; Glatt, Sebastian; Kaynak, Bogac L; Thomas, Sean; Baudin, Florence; Samee, Md Abul Hassan; He, Daniel; Small, Eric M; Mileikovsky, Maria; Nagy, Andras; Holloway, Alisha K; Pollard, Katherine S; Müller, Christoph W; Bruneau, Benoit G
2016-02-25
Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.
Everse, S J; Spraggon, G; Veerapandian, L; Doolittle, R F
1999-03-09
The structure of fragment double-D from human fibrin has been solved in the presence and absence of the peptide ligands that simulate the two knobs exposed by the removal of fibrinopeptides A and B, respectively. All told, six crystal structures have been determined, three of which are reported here for the first time: namely, fragments D and double-D with the peptide GHRPam alone and double-D in the absence of any peptide ligand. Comparison of the structures has revealed a series of conformational changes that are brought about by the various knob-hole interactions. Of greatest interest is a moveable "flap" of two negatively charged amino acids (Glubeta397 and Aspbeta398) whose side chains are pinned back to the coiled coil with a calcium atom bridge until GHRPam occupies the beta-chain pocket. Additionally, in the absence of the peptide ligand GPRPam, GHRPam binds to the gamma-chain pocket, a new calcium-binding site being formed concomitantly.
Naproxen Interferes with the Assembly of Aβ Oligomers Implicated in Alzheimer's Disease
Kim, Seongwon; Chang, Wenling E.; Kumar, Rashmi; Klimov, Dmitri K.
2011-01-01
Experimental and epidemiological studies have shown that the nonsteroidal antiinflammatory drug naproxen may be useful in the treatment of Alzheimer's disease. To investigate the interactions of naproxen with Aβ dimers, which are the smallest cytotoxic aggregated Aβ peptide species, we use united atom implicit solvent model and exhaustive replica exchange molecular dynamics. We show that naproxen ligands bind to Aβ dimer and penetrate its volume interfering with the interpeptide interactions. As a result naproxen induces a destabilizing effect on Aβ dimer. By comparing the free-energy landscapes of naproxen interactions with Aβ dimers and fibrils, we conclude that this ligand has stronger antiaggregation potential against Aβ fibrils rather than against dimers. The analysis of naproxen binding energetics shows that the location of ligand binding sites in Aβ dimer is dictated by the Aβ amino acid sequence. Comparison of the in silico findings with experimental observations reveals potential limitations of naproxen as an effective therapeutic agent in the treatment of Alzheimer's disease. PMID:21504739
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eun-Jung; Son, Hyeoncheol Francis; Kim, Sangwoo
Highlights: • We determined a crystal structure of β-keto thiolase from Ralstonia eutropha H16 (ReBktB). • Distinct substrate binding mode ReBktB was elucidated. • Enzymatic kinetic parameters of ReBktB were revealed. - Abstract: ReBktB is a β-keto thiolase from Ralstonia eutropha H16 that catalyzes condensation reactions between acetyl-CoA with acyl-CoA molecules that contains different numbers of carbon atoms, such as acetyl-CoA, propionyl-CoA, and butyryl-CoA, to produce valuable bioproducts, such as polyhydroxybutyrate, polyhydroxybutyrate-hydroxyvalerate, and hexanoate. We solved a crystal structure of ReBktB at 2.3 Å, and the overall structure has a similar fold to that of type II biosynthetic thiolases, suchmore » as PhbA from Zoogloea ramigera (ZrPhbA). The superposition of this structure with that of ZrPhbA complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of ReBktB. The catalytic site of ReBktB contains three conserved residues, Cys90, His350, and Cys380, which may function as a covalent nucleophile, a general base, and second nucleophile, respectively. For substrate binding, ReBktB stabilized the ADP moiety of CoA in a distinct way compared to ZrPhbA with His219, Arg221, and Asp228 residues, whereas the stabilization of β-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar between these two enzymes. Kinetic study of ReBktB revealed that K{sub m}, V{sub max}, and K{sub cat} values of 11.58 μM, 1.5 μmol/min, and 102.18 s{sup −1}, respectively, and the catalytic and substrate binding sites of ReBktB were further confirmed by site-directed mutagenesis experiments.« less
Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar
2017-10-18
The bacterial NaK ion channel is distinctly different from other known ion channels due to its inherent non-selective feature. One of the unexplored and rather interesting features is its ability to permeate divalent metal ions (such as Ca 2+ and Ba 2+ ) and not monovalent alkali metal ions. Several intriguing questions about the energetics and structural aspects still remain unanswered. For instance, what causes Ca 2+ to permeate as well as block the selectivity filter (SF) of the NaK ion channel and act as a "permeating blocker"? How and at what energetic cost does another chemical congener, Sr 2+ , as well as Ba 2+ , a potent blocker of the K + ion channel, permeate through the SF of the NaK ion channel? Finally, how do their translocation energetics differ from those of monovalent ions such as K + ? Here, in an attempt to address these outstanding issues, we elucidate the structure, binding and selectivity of divalent ions (Ca 2+ , Sr 2+ and Ba 2+ ) as they permeate through the SF of the NaK ion channel using all-atom molecular dynamics simulations and density functional theory based calculations. We unveil mechanistic insight into this translocation event using well-tempered metadynamics simulations in a polarizable environment using the mean-field model of water and incorporating electronic continuum corrections for ions via charge rescaling. The results show that, akin to K + coordination, Sr 2+ and Ba 2+ bind at the SF in a very similar fashion and remain octa-coordinated at all sites. Interestingly, differing from its local hydration structure, Ca 2+ interacts with eight carbonyls to remain at the middle of the S3 site. Furthermore, the binding of divalent metals at SF binding sites is more favorable than the binding of K + . However, their permeation through the extracellular entrance faces a considerably higher energetic barrier compared to that for K + , which eventually manifests their inherent blocking feature.
Analysis of ice-binding sites in fish type II antifreeze protein by quantum mechanics.
Cheng, Yuhua; Yang, Zuoyin; Tan, Hongwei; Liu, Ruozhuang; Chen, Guangju; Jia, Zongchao
2002-10-01
Many organisms living in cold environments can survive subzero temperatures by producing antifreeze proteins (AFPs) or antifreeze glycoproteins. In this paper we investigate the ice-binding surface of type II AFP by quantum mechanical methods, which, to the best of our knowledge, represents the first time that molecular orbital computational approaches have been applied to AFPs. Molecular mechanical approaches, including molecular docking, energy minimization, and molecular dynamics simulation, were used to obtain optimal systems for subsequent quantum mechanical analysis. We selected 17 surface patches covering the entire surface of the type II AFP and evaluated the interaction energy between each of these patches and two different ice planes using semi-empirical quantum mechanical methods. We have demonstrated the weak orbital overlay phenomenon and the change of bond orders in ice. These results consistently indicate that a surface patch containing 19 residues (K37, L38, Y20, E22, Y21, I19, L57, T56, F53, M127, T128, F129, R17, C7, N6, P5, G10, Q1, and W11) is the most favorable ice-binding site for both a regular ice plane and an ice plane where water O atoms are randomly positioned. Furthermore, for the first time the computation results provide new insights into the weakening of the ice lattice upon AFP binding, which may well be a primary factor leading to AFP-induced ice growth inhibition.
Analysis of ice-binding sites in fish type II antifreeze protein by quantum mechanics.
Cheng, Yuhua; Yang, Zuoyin; Tan, Hongwei; Liu, Ruozhuang; Chen, Guangju; Jia, Zongchao
2002-01-01
Many organisms living in cold environments can survive subzero temperatures by producing antifreeze proteins (AFPs) or antifreeze glycoproteins. In this paper we investigate the ice-binding surface of type II AFP by quantum mechanical methods, which, to the best of our knowledge, represents the first time that molecular orbital computational approaches have been applied to AFPs. Molecular mechanical approaches, including molecular docking, energy minimization, and molecular dynamics simulation, were used to obtain optimal systems for subsequent quantum mechanical analysis. We selected 17 surface patches covering the entire surface of the type II AFP and evaluated the interaction energy between each of these patches and two different ice planes using semi-empirical quantum mechanical methods. We have demonstrated the weak orbital overlay phenomenon and the change of bond orders in ice. These results consistently indicate that a surface patch containing 19 residues (K37, L38, Y20, E22, Y21, I19, L57, T56, F53, M127, T128, F129, R17, C7, N6, P5, G10, Q1, and W11) is the most favorable ice-binding site for both a regular ice plane and an ice plane where water O atoms are randomly positioned. Furthermore, for the first time the computation results provide new insights into the weakening of the ice lattice upon AFP binding, which may well be a primary factor leading to AFP-induced ice growth inhibition. PMID:12324437
Inhibition of Eukaryotic Translation by the Antitumor Natural Product Agelastatin A.
McClary, Brandon; Zinshteyn, Boris; Meyer, Mélanie; Jouanneau, Morgan; Pellegrino, Simone; Yusupova, Gulnara; Schuller, Anthony; Reyes, Jeremy Chris P; Lu, Junyan; Guo, Zufeng; Ayinde, Safiat; Luo, Cheng; Dang, Yongjun; Romo, Daniel; Yusupov, Marat; Green, Rachel; Liu, Jun O
2017-05-18
Protein synthesis plays an essential role in cell proliferation, differentiation, and survival. Inhibitors of eukaryotic translation have entered the clinic, establishing the translation machinery as a promising target for chemotherapy. A recently discovered, structurally unique marine sponge-derived brominated alkaloid, (-)-agelastatin A (AglA), possesses potent antitumor activity. Its underlying mechanism of action, however, has remained unknown. Using a systematic top-down approach, we show that AglA selectively inhibits protein synthesis. Using a high-throughput chemical footprinting method, we mapped the AglA-binding site to the ribosomal A site. A 3.5 Å crystal structure of the 80S eukaryotic ribosome from S. cerevisiae in complex with AglA was obtained, revealing multiple conformational changes of the nucleotide bases in the ribosome accompanying the binding of AglA. Together, these results have unraveled the mechanism of inhibition of eukaryotic translation by AglA at atomic level, paving the way for future structural modifications to develop AglA analogs into novel anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enzymatic Transition States, Transition-State Analogs, Dynamics, Thermodynamics, and Lifetimes
Schramm, Vern L.
2017-01-01
Experimental analysis of enzymatic transition-state structures uses kinetic isotope effects (KIEs) to report on bonding and geometry differences between reactants and the transition state. Computational correlation of experimental values with chemical models permits three-dimensional geometric and electrostatic assignment of transition states formed at enzymatic catalytic sites. The combination of experimental and computational access to transition-state information permits (a) the design of transition-state analogs as powerful enzymatic inhibitors, (b) exploration of protein features linked to transition-state structure, (c) analysis of ensemble atomic motions involved in achieving the transition state, (d) transition-state lifetimes, and (e) separation of ground-state (Michaelis complexes) from transition-state effects. Transition-state analogs with picomolar dissociation constants have been achieved for several enzymatic targets. Transition states of closely related isozymes indicate that the protein’s dynamic architecture is linked to transition-state structure. Fast dynamic motions in catalytic sites are linked to transition-state generation. Enzymatic transition states have lifetimes of femtoseconds, the lifetime of bond vibrations. Binding isotope effects (BIEs) reveal relative reactant and transition-state analog binding distortion for comparison with actual transition states. PMID:21675920
Oligomerization of a molecular chaperone modulates its activity
Kawagoe, Soichiro; Ishimori, Koichiro
2018-01-01
Molecular chaperones alter the folding properties of cellular proteins via mechanisms that are not well understood. Here, we show that Trigger Factor (TF), an ATP-independent chaperone, exerts strikingly contrasting effects on the folding of non-native proteins as it transitions between a monomeric and a dimeric state. We used NMR spectroscopy to determine the atomic resolution structure of the 100 kDa dimeric TF. The structural data show that some of the substrate-binding sites are buried in the dimeric interface, explaining the lower affinity for protein substrates of the dimeric compared to the monomeric TF. Surprisingly, the dimeric TF associates faster with proteins and it exhibits stronger anti-aggregation and holdase activity than the monomeric TF. The structural data show that the dimer assembles in a way that substrate-binding sites in the two subunits form a large contiguous surface inside a cavity, thus accounting for the observed accelerated association with unfolded proteins. Our results demonstrate how the activity of a chaperone can be modulated to provide distinct functional outcomes in the cell. PMID:29714686
Site-discrimination by molecular imposters at dissymmetric molecular crystal surfaces
NASA Astrophysics Data System (ADS)
Poloni, Laura N.
The organization of atoms and molecules into crystalline forms is ubiquitous in nature and has been critical to the development of many technologies on which modern society relies. Classical crystal growth theory can describe atomic crystal growth, however, a description of molecular crystal growth is lacking. Molecular crystals are often characterized by anisotropic intermolecular interactions and dissymmetric crystal surfaces with anisotropic growth rates along different crystallographic directions. This thesis describes combination of experimental and computational techniques to relate crystal structure to surface structure and observed growth rates. Molecular imposters, also known as tailor-made impurities, can be used to control crystal growth for practical applications such as inhibition of pathological crystals, but can also be used to understand site specificity at crystal growth surfaces. The first part of this thesis builds on previous real-time in situ atomic force microscopy (AFM) observations of dislocation-actuated growth on the morphologically significant face of hexagonal L-cystine crystals, which aggregate in vivo to form kidney stones in patients suffering from cystinuria. The inhibitory effect of various L-cystine structural mimics (a.k.a. molecular imposters) was investigated through experimental and computational methods to identify the key structural factors responsible for molecular recognition between molecular imposters and L-cystine crystal surface sites. The investigation of L-cystine crystal growth in the presence of molecular imposters through a combination of kinetic analysis using in situ AFM, morphology analysis and birefringence measurements of bulk crystals, and molecular modeling of imposter binding to energetically inequivalent surface sites revealed that different molecular imposters inhibited crystal growth by a Cabrera-Vermilyea pinning mechanism and that imposters bind to a single binding site on the dissymmetric {1000} L-cystine surfaces. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and L-cystine crystal step sites, thereby articulating a strategy for stone prevention based on molecular design. The second part of this thesis describes the crystal growth and inhibition of a P2X3 receptor antagonist, denoted as DAPSA, recently reported as a non-opioid treatment of chronic pain. The low solubility of this compound results in the formation of drug-induced renal calculi (a.k.a. xenostones). in situ AFM of the morphologically significant (011) DAPSA surface revealed dislocation-actuated growth spirals with an anisotropic morphology, behavior that can be attributed to the non-uniform rate of solute attachment to eight crystallographically unique steps of the spiral, a direct consequence of the dissymmetry of this crystal surface. Eighteen molecular imposters were selected from the screening library to systematically investigate the roles of imposter substitute position, size, and functionality on the step velocities along the eight unique crystallographic directions. A non-uniform reduction in step velocities was observed, signaling site discrimination of imposter binding that can be attributed to stereochemical recognition of the imposters at specific crystal sites. The anisotropy of growth inhibition observed in the presence of the various imposters is consistent with binding energies calculated for the thirty-two crystallographically unique kink sites on steps advancing along predominant growth directions. These results provide insight to the design of growth inhibitors for molecular crystalline solids with complex and dissymmetric surfaces, while also suggesting a strategy for formulations containing congeners that can prevent harmful crystal growth in human renal structures. The last two crystalline systems discussed in this thesis are two isomorphous crystal systems that are ideal for the study of impurity incorporation at dissymmetric surfaces because their morphology is dominated by dissymmetric {101} growth faces. Growth processes on the dissymmetric (101) surfaces of these crystalline systems were investigated using metadynamics simulations to determine the free energy of adsorption for solute and impurity attachment to different flat, stepped, and kinked (101) surface terminations. Results suggest that growth occurs via a non-Kossel crystal growth mechanism, and highlights the need for dissymmetric surface structures (i.e. steps and kinks) for a higher fidelity in the orientation of adsorbed molecules. Overall, the results presented in this thesis suggest that growth of molecular crystals, particularly at dissymmetric surfaces, is complex and requires the combination of several experimental and computational techniques to decipher the mechanisms responsible for growth phenomena. The use of molecular imposters to inhibit growth can be useful for the development of therapeutics for pathological crystals, but can also inform processes by which crystal growth occurs at complex surfaces as a result of their site selectivity.
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2014-11-01
We have investigated the electronic properties of A-BNNRs in the external electric field using third nearest neighbor tight binding approximation including edge effects. We found that the dependence of on-site energy to the external electric field for edge atoms and center part atoms is different. By comparing the band structure in the different fields, several differences are clearly seen such as modification of energy dispersions, creation of additional band edge states and band gap reduction. By increasing the electric field the band gap reduces linearly until reaches zero and BNNRs with larger width are more sensitive than small ones. All changes in the band structure are directly reflected in the DOS spectrum. The numbers and the energies of the DOS peaks are dependent on the electric field strength.
Protein Structure and Function Prediction Using I-TASSER
Yang, Jianyi; Zhang, Yang
2016-01-01
I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. PMID:26678386
Chavent, Matthieu; Duncan, Anna L; Sansom, Mark Sp
2016-10-01
Molecular dynamics simulations provide a computational tool to probe membrane proteins and systems at length scales ranging from nanometers to close to a micrometer, and on microsecond timescales. All atom and coarse-grained simulations may be used to explore in detail the interactions of membrane proteins and specific lipids, yielding predictions of lipid binding sites in good agreement with available structural data. Building on the success of protein-lipid interaction simulations, larger scale simulations reveal crowding and clustering of proteins, resulting in slow and anomalous diffusional dynamics, within realistic models of cell membranes. Current methods allow near atomic resolution simulations of small membrane organelles, and of enveloped viruses to be performed, revealing key aspects of their structure and functionally important dynamics. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8
Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.; Rawat, Swati; Solano, Carlos; Kumar, Abhay; Grøtli, Morten; Stemmler, Timothy L.; Rosen, Barry P.
2015-01-01
The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeast Saccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)] in vitro and in vivo and that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation. PMID:26711267
Duan, Juan; Hu, Chuncai; Guo, Jiafan; Guo, Lianxian; Sun, Jia; Zhao, Zuguo
2018-02-28
The mechanism of substrate hydrolysis of New Delhi metallo-β-lactamase 1 (NDM-1) has been reported, but the process in which NDM-1 captures and transports the substrate into its active center remains unknown. In this study, we investigated the process of the substrate entry into the NDM-1 activity center through long unguided molecular dynamics simulations using meropenem as the substrate. A total of 550 individual simulations were performed, each of which for 200 ns, and 110 of them showed enzyme-substrate binding events. The results reveal three categories of relatively persistent and noteworthy enzyme-substrate binding configurations, which we call configurations A, B, and C. We performed binding free energy calculations of the enzyme-substrate complexes of different configurations using the molecular mechanics Poisson-Boltzmann surface area method. The role of each residue of the active site in binding the substrate was investigated using energy decomposition analysis. The simulated trajectories provide a continuous atomic-level view of the entire binding process, revealing potentially valuable regions where the enzyme and the substrate interact persistently and five possible pathways of the substrate entering into the active center, which were validated using well-tempered metadynamics. These findings provide important insights into the binding mechanism of meropenem to NDM-1, which may provide new prospects for the design of novel metallo-β-lactamase inhibitors and enzyme-resistant antibiotics.
Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.
The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8more » is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.« less
Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh,S.; Yamashita, A.; Gouaux, E.
Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibitionmore » exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of new inhibitors.« less
Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.
1991-01-01
Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligandmore » spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.« less
NASA Astrophysics Data System (ADS)
Lengyel, Iván M.; Morelli, Luis G.
2017-04-01
Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.
Nature of bonding and cooperativity in linear DMSO clusters: A DFT, AIM and NCI analysis.
Venkataramanan, Natarajan Sathiyamoorthy; Suvitha, Ambigapathy
2018-05-01
This study aims to cast light on the nature of interactions and cooperativity that exists in linear dimethyl sulfoxide (DMSO) clusters using dispersion corrected density functional theory. In the linear DMSO, DMSO molecules in the middle of the clusters are bound strongly than at the terminal. The plot of the total binding energy of the clusters vs the cluster size and mean polarizabilities vs cluster size shows an excellent linearity demonstrating the presence of cooperativity effect. The computed incremental binding energy of the clusters remains nearly constant, implying that DMSO addition at the terminal site can happen to form an infinite chain. In the linear clusters, two σ-hole at the terminal DMSO molecules were found and the value on it was found to increase with the increase in cluster size. The quantum theory of atoms in molecules topography shows the existence of hydrogen and SO⋯S type in linear tetramer and larger clusters. In the dimer and trimer SO⋯OS type of interaction exists. In 2D non-covalent interactions plot, additional peaks in the regions which contribute to the stabilization of the clusters were observed and it splits in the trimer and intensifies in the larger clusters. In the trimer and larger clusters in addition to the blue patches due to hydrogen bonds, additional, light blue patches were seen between the hydrogen atom of the methyl groups and the sulphur atom of the nearby DMSO molecule. Thus, in addition to the strong H-bonds, strong electrostatic interactions between the sulphur atom and methyl hydrogens exists in the linear clusters. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com; Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id
2015-09-30
One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) andmore » LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.« less
NASA Astrophysics Data System (ADS)
Mandal, Gopa; Bhattacharya, Sudeshna; Ganguly, Tapan
2011-07-01
The interactions between two heme proteins myoglobin (HMb) and horseradish peroxidase (HRP) with zinc oxide (ZnO) nanoparticles are investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, time-resolved fluorescence, FT-IR, atomic force microscopy (AFM) and circular dichroism (CD) techniques under physiological condition of pH˜7.4. The presence of mainly static mode in fluorescence quenching mechanism of HMb and HRP by ZnO nanoparticle indicates the possibility of formation of ground state complex. The processes of bindings of ZnO nanoparticles with the two proteins are spontaneous molecular interaction procedures. In both cases hydrogen bonding plays a major role. The circular dichroism (CD) spectra reveal that a helicity of the proteins is reduced by increasing ZnO nanoparticle concentration although the α-helical structures of HMb and HRP retain their identity. On binding to the ZnO nanoparticles the secondary structure of HRP molecules (or HMb molecules) remains unchanged while there is a substantial change in the environment of the tyrosin active site in case of HRP molecules and tryptophan active site in case of HMb molecules. Tapping mode atomic force microscopy (AFM) was applied for the investigation the structure of HRP adsorbed in the environment of nanoparticles on the silicon and on the bare silicon. HRP molecules adsorb and aggregate on the mica with ZnO nanoparticle. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed on the bare silicon wafer. The adsorption of HRP in the environment of ZnO nanoparticle changes drastically the domains due to a strong interaction between HRP and ZnO nanoparticles. Similar situation is observed in case of HMb molecules. These findings demonstrate the efficacy of biomedical applications of ZnO nanoparticles as well as in elucidating their mechanisms of action as drugs in both human and plant systems.
Wang, B; Lou, Z; Park, B; Kwon, Y; Zhang, H; Xu, B
2015-01-07
We used atomic force microscopy (AFM) and surface plasmon resonance (SPR) to study the surface conformations of an anti-ricin aptamer and its specific binding affinity for ricin molecules. The effect of surface modification of the Au(111) substrate on the aptamer affinity was also estimated. The AFM topography images had a resolution high enough to distinguish different aptamer conformations. The specific binding site on the aptamer molecule was clearly located by the AFM recognition images. The aptamer on a Au(111) surface modified with carboxymethylated-dextran (CD) showed both similarities to and differences from the one without CD modification. The influence of CD modification was evaluated using AFM images of various aptamer conformations on the Au(111) surface. The affinity between ricin and the anti-ricin aptamer was estimated using the off-rate values measured using AFM and SPR. The SPR measurements of the ricin sample were conducted in the range from 83.3 pM to 8.33 nM, and the limit of detection was estimated as 25 pM (1.5 ng mL(-1)). The off-rate values of the ricin-aptamer interactions were estimated using both single-molecule dynamic force spectroscopy (DFS) and SPR as (7.3 ± 0.4) × 10(-4) s(-1) and (1.82 ± 0.067) × 10(-2) s(-1), respectively. The results show that single-molecule measurements can obtain different reaction parameters from bulk solution measurements. In AFM single-molecule measurements, the various conformations of the aptamer immobilized on the gold surface determined the availability of each specific binding site to the ricin molecules. The SPR bulk solution measurements averaged the signals from specific and non-specific interactions. AFM images and DFS measurements provide more specific information on the interactions of individual aptamer and ricin molecules.
Larsson, Daniel S D; van der Spoel, David
2012-07-10
The complete structure of the genomic material inside a virus capsid remains elusive, although a limited amount of symmetric nucleic acid can be resolved in the crystal structure of 17 icosahedral viruses. The negatively charged sugar-phosphate backbone of RNA and DNA as well as the large positive charge of the interior surface of the virus capsids suggest that electrostatic complementarity is an important factor in the packaging of the genomes in these viruses. To test how much packing information is encoded by the electrostatic and steric envelope of the capsid interior, we performed extensive all-atom molecular dynamics (MD) simulations of virus capsids with explicit water molecules and solvent ions. The model systems were two small plant viruses in which significant amounts of RNA has been observed by X-ray crystallography: satellite tobacco mosaic virus (STMV, 62% RNA visible) and satellite tobacco necrosis virus (STNV, 34% RNA visible). Simulations of half-capsids of these viruses with no RNA present revealed that the binding sites of RNA correlated well with regions populated by chloride ions, suggesting that it is possible to screen for the binding sites of nucleic acids by determining the equilibrium distribution of negative ions. By including the crystallographically resolved RNA in addition to ions, we predicted the localization of the unresolved RNA in the viruses. Both viruses showed a hot-spot for RNA binding at the 5-fold symmetry axis. The MD simulations were compared to predictions of the chloride density based on nonlinear Poisson-Boltzmann equation (PBE) calculations with mobile ions. Although the predictions are superficially similar, the PBE calculations overestimate the ion concentration close to the capsid surface and underestimate it far away, mainly because protein dynamics is not taken into account. Density maps from chloride screening can be used to aid in building atomic models of packaged virus genomes. Knowledge of the principles of genome packaging might be exploited for both antiviral therapy and technological applications.
Conductance of three-terminal molecular bridge based on tight-binding theory
NASA Astrophysics Data System (ADS)
Wang, Li-Guang; Li, Yong; Yu, Ding-Wen; Katsunori, Tagami; Masaru, Tsukada
2005-05-01
The quantum transmission characteristic of three-benzene ring nano-molecular bridge is investigated theoretically by using Green's function approach based on tight-binding theory with only a π orbital per carbon atom at the site. The transmission probabilities that electrons transport through the molecular bridge from one terminal to the other two terminals are obtained. The electronic current distributions inside the molecular bridge are calculated and shown in graphical analogy by the current density method based on Fisher-Lee formula at the energy points E = ±0.42, ±1.06 and ±1.5, respectively, where the transmission spectra appear peaks. We find that the transmission spectra are related to the incident electronic energy and the molecular levels strongly and the current distributions agree well with Kirchhoff quantum current momentum conservation law.
Structure-Derived Proton-Transfer Mechanism of Action Human Pyruvate Dehydrogenase
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Dominiak, Paulina
2003-01-01
The derivative of vitamin B1 thiamin pyrophosphate (TPP) is a cofactor of pyruvate dehydrogenase (E1p) that is involved in decarboxylation of pyruvate followed by reductive acetylation of lipoic acid covalently bound to a lysine residue of dihydrolipoamide acetyltransferase. The structure of E1p recently determined in our laboratory revealed patterns of association of foul subunits and specifics of two TPP binding sites. The mechanism of action in part includes a conserved hydrogen bond between the N1' atom of the aminopyrimidine ring of the cofactor and the carboxylate group of Glu59 from the beta subunits, and a V-conformation of the cofactor that brings the N4' atom of the aminopyrimidine ring to the distance of the intramolecular hydrogen bond formed with the C2-atom of the thiazolium moiety. The carboxylate group of Glu59 is the local proton acceptor that enables proton translocation within the aminopyrimidine ring and stabilization of the rare N4' - iminopyrimidine tautomer. Based on the analysis of E1p structure, we postulate that the protein environment drives N4' - amino/N4' - imino dynamics resulting in a concerted shuttle-like movement of the subunits. We also propose that this movement of the subunits is strictly coordinated with the two enzymatic reactions carried out in E1p by each of the two cofactor sites. It is proposed that these reactions are in alternating phases such that when one active site is involved in decarboxylation, the other is involved in acetylation of lipoyl noiety.
Hayashi, Shigehiko
2017-01-01
The mitochondrial ADP/ATP carrier (AAC) is a membrane transporter that exchanges a cytosolic ADP for a matrix ATP. Atomic structures in an outward-facing (OF) form which binds an ADP from the intermembrane space have been solved by X-ray crystallography, and revealed their unique pseudo three-fold symmetry fold which is qualitatively different from pseudo two-fold symmetry of most transporters of which atomic structures have been solved. However, any atomic-level information on an inward-facing (IF) form, which binds an ATP from the matrix side and is fixed by binding of an inhibitor, bongkrekic acid (BA), is not available, and thus its alternating access mechanism for the transport process is unknown. Here, we report an atomic structure of the IF form predicted by atomic-level molecular dynamics (MD) simulations of the alternating access transition with a recently developed accelerating technique. We successfully obtained a significantly stable IF structure characterized by newly formed well-packed and -organized inter-domain interactions through the accelerated simulations of unprecedentedly large conformational changes of the alternating access without a prior knowledge of the target protein structure. The simulation also shed light on an atomistic mechanism of the strict transport selectivity of adenosine nucleotides over guanosine and inosine ones. Furthermore, the IF structure was shown to bind ATP and BA, and thus revealed their binding mechanisms. The present study proposes a qualitatively novel view of the alternating access of transporters having the unique three-fold symmetry in atomic details and opens the way for rational drug design targeting the transporter in the dynamic functional cycle. PMID:28727843
Schuschke, Christian; Schwarz, Matthias; Hohner, Chantal; Silva, Thais N; Fromm, Lukas; Döpper, Tibor; Görling, Andreas; Libuda, Jörg
2018-04-19
We have studied the anchoring mechanism of a phosphonic acid on an atomically defined oxide surface. Using time-resolved infrared reflection absorption spectroscopy, we investigated the reaction of deuterated phenylphosphonic acid (DPPA, C 6 H 5 PO 3 D 2 ) with an atomically defined Co 3 O 4 (111) surface in situ during film growth by physical vapor deposition. We show that the binding motif of the phosphonate anchor group changes as a function of coverage. At low coverage, DPPA binds in the form of a chelating tridentate phosphonate, while a transition to a chelating bidentate occurs close to monolayer saturation coverage. However, the coverage-dependent change in the binding motif is not associated with a major change of the molecular orientation, suggesting that the rigid phosphonate linker always maintains the DPPA in a strongly tilted orientation irrespective of the surface coverage.
Equilibrium binding behavior of magnesium to wall teichoic acid.
Thomas, Kieth J; Rice, Charles V
2015-10-01
Peptidoglycan and teichoic acids are the major cell wall components of Gram-positive bacteria that obtain and sequester metal ions required for biochemical processes. The delivery of metals to the cytoplasmic membrane is aided by anionic binding sites within the peptidoglycan and along the phosphodiester polymer of teichoic acid. The interaction with metals is a delicate balance between the need for attraction and ion diffusion to the membrane. Likewise, metal chelation from the extracellular fluid must initially have strong binding energetics that weaken within the cell wall to enable ion release. We employed atomic absorption and equilibrium dialysis to measure the metal binding capacity and metal binding affinity of wall teichoic acid and Mg2+. Data show that Mg2+ binds to WTA with a 1:2Mg2+ to phosphate ratio with a binding capacity of 1.27 μmol/mg. The affinity of Mg2+ to WTA was also found to be 41×10(3) M(-1) at low metal concentrations and 1.3×10(3) M(-1) at higher Mg2+ concentrations due to weakening electrostatic effects. These values are lower than the values describing Mg2+ interactions with peptidoglycan. However, the binding capacity of WTA is 4 times larger than peptidoglycan. External WTA initially binds metals with positive cooperativity, but metal binding switches to negative cooperativity, whereas interior WTA binds metals with only negative cooperativity. The relevance of this work is to describe changes in metal binding behavior depending on environment. When metals are sparse, chelation is strong to ensure survival yet the binding weakens when essential minerals are abundant. Copyright © 2015 Elsevier B.V. All rights reserved.
Xenon for tunnelling analysis of the efflux pump component OprN.
Ntsogo Enguéné, Yvette Véronique; Phan, Gilles; Garnier, Cyril; Ducruix, Arnaud; Prangé, Thierry; Broutin, Isabelle
2017-01-01
Tripartite efflux pumps are among the main actors responsible for antibiotics resistance in Gram-negative bacteria. In the last two decades, structural studies gave crucial information about the assembly interfaces and the mechanistic motions. Thus rigidifying the assembly seems to be an interesting way to hamper the drug efflux. In this context, xenon is a suitable probe for checking whether small ligands could act as conformational lockers by targeting hydrophobic cavities. Here we focus on OprN, the outer membrane channel of the MexEF efflux pump from Pseudomonas aeruginosa. After exposing OprN crystals to xenon gas pressure, 14 binding sites were observed using X-ray crystallography. These binding sites were unambiguously characterized in hydrophobic cavities of OprN. The major site is observed in the sensitive iris-like region gating the channel at the periplasmic side, built by the three key-residues Leu 405, Asp 109, and Arg 412. This arrangement defines along the tunnel axis a strong hydrophobic/polar gradient able to enhance the passive efflux mechanism of OprN. The other xenon atoms reveal strategic hydrophobic regions of the channel scaffold to target, with the aim to freeze the dynamic movements responsible of the open/close conformational equilibrium in OprN.
NASA Astrophysics Data System (ADS)
Soundararajan, Venky; Aravamudan, Murali
2014-12-01
The efficacy and mechanisms of therapeutic action are largely described by atomic bonds and interactions local to drug binding sites. Here we introduce global connectivity analysis as a high-throughput computational assay of therapeutic action - inspired by the Google page rank algorithm that unearths most ``globally connected'' websites from the information-dense world wide web (WWW). We execute short timescale (30 ps) molecular dynamics simulations with high sampling frequency (0.01 ps), to identify amino acid residue hubs whose global connectivity dynamics are characteristic of the ligand or mutation associated with the target protein. We find that unexpected allosteric hubs - up to 20Å from the ATP binding site, but within 5Å of the phosphorylation site - encode the Gibbs free energy of inhibition (ΔGinhibition) for select protein kinase-targeted cancer therapeutics. We further find that clinically relevant somatic cancer mutations implicated in both drug resistance and personalized drug sensitivity can be predicted in a high-throughput fashion. Our results establish global connectivity analysis as a potent assay of protein functional modulation. This sets the stage for unearthing disease-causal exome mutations and motivates forecast of clinical drug response on a patient-by-patient basis. We suggest incorporation of structure-guided genetic inference assays into pharmaceutical and healthcare Oncology workflows.
Towards a molecular level understanding of the sulfanilamide-soil organic matter-interaction.
Ahmed, Ashour A; Thiele-Bruhn, Sören; Leinweber, Peter; Kühn, Oliver
2016-07-15
Sorption experiments of sulfanilamide (SAA) on well-characterized samples of soil size-fractions were combined with the modeling of SAA-soil-interaction via quantum chemical calculations. Freundlich unit capacities were determined in batch experiments and it was found that they increase with the soil organic matter (SOM) content according to the order fine silt > medium silt > clay > whole soil > coarse silt > sand. The calculated binding energies for mass-spectrometrically quantified sorption sites followed the order ionic species > peptides > carbohydrates > phenols and lignin monomers > lignin dimers > heterocyclic compounds > fatty acids > sterols > aromatic compounds > lipids, alkanes, and alkenes. SAA forms H-bonds through its polar centers with the polar SOM sorption sites. In contrast dispersion and π-π-interactions predominate the interaction of the SAA aromatic ring with the non-polar moieties of SOM. Moreover, the dipole moment, partial atomic charges, and molecular volume of the SOM sorption sites are the main physical properties controlling the SAA-SOM-interaction. Further, reasonable estimates of the Freundlich unit capacities from the calculated binding energies have been established. Consequently, we suggest using this approach in forthcoming studies to disclose the interactions of a wide range of organic pollutants with SOM. Copyright © 2016 Elsevier B.V. All rights reserved.
Xenon for tunnelling analysis of the efflux pump component OprN
Garnier, Cyril; Ducruix, Arnaud; Broutin, Isabelle
2017-01-01
Tripartite efflux pumps are among the main actors responsible for antibiotics resistance in Gram-negative bacteria. In the last two decades, structural studies gave crucial information about the assembly interfaces and the mechanistic motions. Thus rigidifying the assembly seems to be an interesting way to hamper the drug efflux. In this context, xenon is a suitable probe for checking whether small ligands could act as conformational lockers by targeting hydrophobic cavities. Here we focus on OprN, the outer membrane channel of the MexEF efflux pump from Pseudomonas aeruginosa. After exposing OprN crystals to xenon gas pressure, 14 binding sites were observed using X-ray crystallography. These binding sites were unambiguously characterized in hydrophobic cavities of OprN. The major site is observed in the sensitive iris-like region gating the channel at the periplasmic side, built by the three key-residues Leu 405, Asp 109, and Arg 412. This arrangement defines along the tunnel axis a strong hydrophobic/polar gradient able to enhance the passive efflux mechanism of OprN. The other xenon atoms reveal strategic hydrophobic regions of the channel scaffold to target, with the aim to freeze the dynamic movements responsible of the open/close conformational equilibrium in OprN. PMID:28886086
Wan, Jiawei; Chen, Wenxing; Jia, Chuanyi; Zheng, Lirong; Dong, Juncai; Zheng, Xusheng; Wang, Yu; Yan, Wensheng; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong
2018-03-01
Isolated single atomic site catalysts have attracted great interest due to their remarkable catalytic properties. Because of their high surface energy, single atoms are highly mobile and tend to form aggregate during synthetic and catalytic processes. Therefore, it is a significant challenge to fabricate isolated single atomic site catalysts with good stability. Herein, a gentle method to stabilize single atomic site metal by constructing defects on the surface of supports is presented. As a proof of concept, single atomic site Au supported on defective TiO 2 nanosheets is prepared and it is discovered that (1) the surface defects on TiO 2 nanosheets can effectively stabilize Au single atomic sites through forming the Ti-Au-Ti structure; and (2) the Ti-Au-Ti structure can also promote the catalytic properties through reducing the energy barrier and relieving the competitive adsorption on isolated Au atomic sites. It is believed that this work paves a way to design stable and active single atomic site catalysts on oxide supports. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes.
Sun, Chia-Liang; Pao, Chih-Wen; Tsai, Huang-Ming; Chiou, Jau-Wern; Ray, Sekhar C; Wang, Houng-Wei; Hayashi, Michitoshi; Chen, Li-Chyong; Lin, Hong-Ji; Lee, Jyh-Fu; Chang, Li; Tsai, Min-Hsiung; Chen, Kuei-Hsien; Pong, Way-Faung
2013-08-07
The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt-C and Pt-N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan, J.W.
1984-01-01
These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) havemore » been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.« less
Lintuluoto, Masami; Yamada, Chiaki; Lintuluoto, Juha M
2017-08-03
The entire enzyme catalytic mechanism including the electron and the proton transfers of the copper- and zinc-containing extracellular superoxide dismutase (SOD3) was investigated by using QM/MM method. In the first step, the electron transfer from O 2 ·- to SOD3 occurred without the bond formation between the donor and the acceptor and formed the triplet oxygen molecule and reduced SOD3. In the reduced SOD3, the distorted tetrahedral structure of Cu(I) atom was maintained. The reduction of Cu(II) atom induced the protonation of His113, which bridges between the Cu(II) and Zn(II) atoms in the resting state. Since the protonation of His113 broke the bond between Cu(I) and His113, three-coordinated Cu(I) was formed. Further, we suggest the binding of O 2 ·- formed hydrogen peroxide and the resting state after both the Cu reduction and the protonation of His113. The protonation of His113 caused the conformational change of Arg186 located at the entrance of the reactive site. The electrostatic potential surface around the reactive site showed that Arg186 plays an important role as electrostatic guidance for the negatively charged substrates only after the protonation of His113. The rotation of Arg186 switched the proton supply routes via Glu108 or Glu179 for transferring two protons from the bulk solvent.
The magic triangle goes MAD: experimental phasing with a bromine derivative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Tobias, E-mail: tbeck@shelx.uni-ac.gwdg.de; Gruene, Tim; Sheldrick, George M.
2010-04-01
5-Amino-2, 4, 6-tribromoisophthalic acid is used as a phasing tool for protein structure determination by MAD phasing. It is the second representative of a novel class of compounds for heavy-atom derivatization that combine heavy atoms with amino and carboxyl groups for binding to proteins. Experimental phasing is an essential technique for the solution of macromolecular structures. Since many heavy-atom ion soaks suffer from nonspecific binding, a novel class of compounds has been developed that combines heavy atoms with functional groups for binding to proteins. The phasing tool 5-amino-2, 4, 6-tribromoisophthalic acid (B3C) contains three functional groups (two carboxylate groups andmore » one amino group) that interact with proteins via hydrogen bonds. Three Br atoms suitable for anomalous dispersion phasing are arranged in an equilateral triangle and are thus readily identified in the heavy-atom substructure. B3C was incorporated into proteinase K and a multiwavelength anomalous dispersion (MAD) experiment at the Br K edge was successfully carried out. Radiation damage to the bromine–carbon bond was investigated. A comparison with the phasing tool I3C that contains three I atoms for single-wavelength anomalous dispersion (SAD) phasing was also carried out.« less
NASA Astrophysics Data System (ADS)
Bharty, M. K.; Paswan, S.; Dani, R. K.; Singh, N. K.; Sharma, V. K.; Kharwar, R. N.; Butcher, R. J.
2017-02-01
Syntheses of a polymeric Cd(II) complex, [Cd(mptt)2]n (1), a trinuclear Ni(II) complex, [Ni3(μ-mptt)4(μ-H2O)2(H2O)2(ttfa)2]·3H2O (2) and a mononuclear Ni(II) complex [Ni(mptt)2(en)2] (3) have been performed using the ligand 5-methyl-4-phenyl-1,2,4-triazole-3-thione (Hmptt) and nickel(II)/cadmium(II) salts {ttfa = thenoyltrifluroacetonate). The ligand and the complexes have been characterized by various physicochemical methods in addition to their single crystal X-ray structure. The Cd centre in complex 1 adopts a distorted tetrahedral geometry with one sulfur atom and two mptt ligands provide three nitrogen atoms from three triazole units. The sulfur atom of the ligand binds covalently and overall the ligand acts as uninigative N,S/N,N bidentate moiety. The polymeric structure of complex 1 results from the N atoms of the neighboring triazole units coordinating with the Cd(II) centre. The three Ni(II) centres in the trinuclear Ni(II) complex 2 form a linear arrangement and all have six coordinated arrangements. The middle Ni(II) binds with four deprotonated triazole ring nitrogens and two water molecules form two bridges. The terminal Ni(II) centres bind through two thenoyl oxygens, two triazole nitrogens and water molecules that formed bridges with the middle Ni centre. In complex 3, the nickel(II) centre is covalently bonded through two deprotonated triazole ring nitrogens from two ligand moieties and other four sites are occupied by four nitrogens from two bidentate en ligands. Thermogravimetric analyses (TGA) of the complexes indicated for NiO as the final residue. The bioefficacy of the ligand and complexes 2 and 3 have been examined against the growth of bacteria to evaluate their anti-microbial potential. Complex 2 showed high antibacterial activity as compared to the ligand and complex 3. Complexes 1, 2 and 3 are fluorescent materials with maximum emissions at 425, 421 and 396 nm at an excitation wavelength of 323, 348 and 322 nm, respectively.
Design of stapled DNA-minor-groove-binding molecules with a mutable atom simulated annealing method
NASA Astrophysics Data System (ADS)
Walker, Wynn L.; Kopka, Mary L.; Dickerson, Richard E.; Goodsell, David S.
1997-11-01
We report the design of optimal linker geometries for the synthesis of stapledDNA-minor-groove-binding molecules. Netropsin, distamycin, and lexitropsinsbind side-by-side to mixed-sequence DNA and offer an opportunity for thedesign of sequence-reading molecules. Stapled molecules, with two moleculescovalently linked side-by-side, provide entropic gains and restrain theposition of one molecule relative to its neighbor. Using a free-atom simulatedannealing technique combined with a discrete mutable atom definition, optimallengths and atomic composition for covalent linkages are determined, and anovel hydrogen bond `zipper' is proposed to phase two molecules accuratelyside-by-side.
NASA Astrophysics Data System (ADS)
Schiaffino-Ortega, Santiago; Baglioni, Eleonora; Mariotto, Elena; Bortolozzi, Roberta; Serrán-Aguilera, Lucía; Ríos-Marco, Pablo; Carrasco-Jimenez, M. Paz; Gallo, Miguel A.; Hurtado-Guerrero, Ramon; Marco, Carmen; Basso, Giuseppe; Viola, Giampietro; Entrena, Antonio; López-Cara, Luisa Carlota
2016-03-01
A novel family of compounds derivative of 1,1‧-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bispyridinium or -bisquinolinium bromide (10a-l) containing a pair of oxygen atoms in the spacer of the linker between the biscationic moieties, were synthesized and evaluated as inhibitors of choline kinase against a panel of cancer-cell lines. The most promising compounds in this series were 1,1‧-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))bis(4-(dimethylamino)pyridinium) bromide (10a) and 1,1‧-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bis(7-chloro-4-(pyrrolidin-1-yl)quinolinium) bromide (10l), which inhibit human choline kinase (ChoKα1) with IC50 of 1.0 and 0.92 μM, respectively, in a range similar to that of the previously reported biscationic compounds MN58b and RSM932A. Our compounds show greater antiproliferative activities than do the reference compounds, with unprecedented values of GI50 in the nanomolar range for several of the cancer-cell lines assayed, and more importantly they present low toxicity in non-tumoral cell lines, suggesting a cancer-cell-selective antiproliferative activity. Docking studies predict that the compounds interact with the choline-binding site in agreement with the binding mode of most previously reported biscationic compounds. Moreover, the crystal structure of ChoKα1 with compound 10a reveals that this compound binds to the choline-binding site and mimics HC-3 binding mode as never before.
Tight-binding calculation studies of vacancy and adatom defects in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing
2016-02-19
Computational studies of complex defects in graphene usually need to deal with a larger number of atoms than the current first-principles methods can handle. We show a recently developed three-center tight-binding potential for carbon is very efficient for large scale atomistic simulations and can accurately describe the structures and energies of various defects in graphene. Using the three-center tight-binding potential, we have systematically studied the stable structures and formation energies of vacancy and embedded-atom defects of various sizes up to 4 vacancies and 4 embedded atoms in graphene. In conclusion, our calculations reveal low-energy defect structures and provide a moremore » comprehensive understanding of the structures and stability of defects in graphene.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patarroyo, Manuel E., E-mail: mepatarr@mail.com; Universidad Nacional de Colombia, Bogota; Almonacid, Hannia
Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of theirmore » critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.« less
SABER: a computational method for identifying active sites for new reactions.
Nosrati, Geoffrey R; Houk, K N
2012-05-01
A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644-1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were L-Ala D/L-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. Copyright © 2012 The Protein Society.
Wang, Xurong; Zhang, Fuxian; Su, Rui; Li, Xiaowu; Chen, Wenyuan; Chen, Qingxiu; Yang, Tao; Wang, Jiawei; Liu, Hongrong; Fang, Qin; Cheng, Lingpeng
2018-06-25
Most double-stranded RNA (dsRNA) viruses transcribe RNA plus strands within a common innermost capsid shell. This process requires coordinated efforts by RNA-dependent RNA polymerase (RdRp) together with other capsid proteins and genomic RNA. Here we report the near-atomic resolution structure of the RdRp protein VP2 in complex with its cofactor protein VP4 and genomic RNA within an aquareovirus capsid using 200-kV cryoelectron microscopy and symmetry-mismatch reconstruction. The structure of these capsid proteins enabled us to observe the elaborate nonicosahedral structure within the double-layered icosahedral capsid. Our structure shows that the RdRp complex is anchored at the inner surface of the capsid shell and interacts with genomic dsRNA and four of the five asymmetrically arranged N termini of the capsid shell proteins under the fivefold axis, implying roles for these N termini in virus assembly. The binding site of the RNA end at VP2 is different from the RNA cap binding site identified in the crystal structure of orthoreovirus RdRp λ3, although the structures of VP2 and λ3 are almost identical. A loop, which was thought to separate the RNA template and transcript, interacts with an apical domain of the capsid shell protein, suggesting a mechanism for regulating RdRp replication and transcription. A conserved nucleoside triphosphate binding site was localized in our RdRp cofactor protein VP4 structure, and interactions between the VP4 and the genomic RNA were identified.
Clifford, Jacob; Adami, Christoph
2015-09-02
Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.
Deng, Jianjun; Chen, Fei; Fan, Daidi; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao
2013-10-01
Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein-iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (nb) and apparent association constant (Kapp) between iron and phosphorylated HLC were measured at nb=23.7 and log Kapp=4.57, respectively. The amount of iron (Fe(2+) sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. © 2013.
Hayes, Michael L; Giang, Karolyn; Berhane, Beniam; Mulligan, R Michael
2013-12-20
Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome.
High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay.
Prestwich, G D; Wawrzeńczyk, C
1985-01-01
A stereoselective total synthesis of chiral juvenile hormone I is described that allows stoichiometric introduction of two tritium atoms in the final step. Both optical antipodes of the pivotal epoxy alcohol intermediate were prepared in 95% enantiomeric excess by the Sharpless epoxidation of a (Z)-allylic alcohol. Elaboration of the hydroxy-methyl group to a vinyl group followed by selective homogeneous tritiation affords optically active juvenile hormone I analogs at 58 Ci/mmol. Competitive binding of the labeled 10R, 11S and 10S,11R enantiomers with unlabeled enantiomers to the hemolymph binding protein of Manduca sexta larvae was determined by using a dextran-coated charcoal assay. The natural 10R,11S enantiomer has twice the relative binding affinity of the 10S,11R enantiomer. The availability of such high specific activity optically pure hormones will contribute substantially to the search for high-affinity receptors for juvenile hormones in the nuclei of cells. Moreover, the chiral 12-hydroxy-(10R,11S)-epoxy intermediate allows modification of juvenile hormone for solid-phase biochemical and radioimmunochemical work without altering either the biologically important carbomethoxy or epoxy recognition sites. PMID:3860862
The role of water molecules in computational drug design.
de Beer, Stephanie B A; Vermeulen, Nico P E; Oostenbrink, Chris
2010-01-01
Although water molecules are small and only consist of two different atom types, they play various roles in cellular systems. This review discusses their influence on the binding process between biomacromolecular targets and small molecule ligands and how this influence can be modeled in computational drug design approaches. Both the structure and the thermodynamics of active site waters will be discussed as these influence the binding process significantly. Structurally conserved waters cannot always be determined experimentally and if observed, it is not clear if they will be replaced upon ligand binding, even if sufficient space is available. Methods to predict the presence of water in protein-ligand complexes will be reviewed. Subsequently, we will discuss methods to include water in computational drug research. Either as an additional factor in automated docking experiments, or explicitly in detailed molecular dynamics simulations, the effect of water on the quality of the simulations is significant, but not easily predicted. The most detailed calculations involve estimates of the free energy contribution of water molecules to protein-ligand complexes. These calculations are computationally demanding, but give insight in the versatility and importance of water in ligand binding.
Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing
Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric
2017-01-01
AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457
Watanabe, Go; Sato, Shunsuke; Iwadate, Mitsuo; Umeyama, Hideaki; Hayakawa, Michiyo; Murakami, Yoshiki; Yoneda, Shigetaka
2016-01-01
Hepatitis B virus (HBV) chronically infects millions of people worldwide and is a major cause of serious liver diseases, including liver cirrhosis and liver cancer. In our previous study, in silico screening was used to isolate new anti-viral compounds predicted to bind to the HBV capsid. Four of the isolated compounds have been reported to suppress the cellular multiplication of HBV experimentally. In the present study, molecular dynamics simulations of the HBV capsid were performed under rotational symmetry boundary conditions, to clarify how the structure and dynamics of the capsid are affected at the atomic level by the binding of one of the isolated compounds, C13. Two simulations of the free HBV capsid, two further simulations of the capsid-C13 complex, and one simulation of the capsid-AT-130 complex were performed. For statistical confidence, each set of simulations was repeated by five times, changing the simulation conditions. C13 continued to bind at the predicted binding site during the simulations, supporting the hypothesis that C13 is a capsid-binding compound. The structure and dynamics of the HBV capsid were greatly influenced by the binding and release of C13, and these effects were essentially identical to those seen for AT-130, indicating that C13 likely inhibits the function of the HBV capsid.
NASA Astrophysics Data System (ADS)
Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.
2017-08-01
The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.
Schneider, Sebastian; Provasi, Davide; Filizola, Marta
2016-11-22
Substantial attention has recently been devoted to G protein-biased agonism of the μ-opioid receptor (MOR) as an ideal new mechanism for the design of analgesics devoid of serious side effects. However, designing opioids with appropriate efficacy and bias is challenging because it requires an understanding of the ligand binding process and of the allosteric modulation of the receptor. Here, we investigated these phenomena for TRV-130, a G protein-biased MOR small-molecule agonist that has been shown to exert analgesia with less respiratory depression and constipation than morphine and that is currently being evaluated in human clinical trials for acute pain management. Specifically, we carried out multimicrosecond, all-atom molecular dynamics (MD) simulations of the binding of this ligand to the activated MOR crystal structure. Analysis of >50 μs of these MD simulations provides insights into the energetically preferred binding pathway of TRV-130 and its stable pose at the orthosteric binding site of MOR. Information transfer from the TRV-130 binding pocket to the intracellular region of the receptor was also analyzed, and was compared to a similar analysis carried out on the receptor bound to the classical unbiased agonist morphine. Taken together, these studies lead to a series of testable hypotheses of ligand-receptor interactions that are expected to inform the structure-based design of improved opioid analgesics.
Design of Cyclic Peptide Based Glucose Receptors and Their Application in Glucose Sensing.
Li, Chao; Chen, Xin; Zhang, Fuyuan; He, Xingxing; Fang, Guozhen; Liu, Jifeng; Wang, Shuo
2017-10-03
Glucose assay is of great scientific significance in clinical diagnostics and bioprocess monitoring, and to design a new glucose receptor is necessary for the development of more sensitive, selective, and robust glucose detection techniques. Herein, a series of cyclic peptide (CP) glucose receptors were designed to mimic the binding sites of glucose binding protein (GBP), and CPs' sequence contained amino acid sites Asp, Asn, His, Asp, and Arg, which constituted the first layer interactions of GBP. The properties of these CPs used as a glucose receptor or substitute for the GBP were studied by using a quartz crystal microbalance (QCM) technique. It was found that CPs can form a self-assembled monolayer at the Au quartz electrode surface, and the monolayer's properties were characterized by using cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy. The CPs' binding affinity to saccharide (i.e., galactose, fructose, lactose, sucrose, and maltose) was investigated, and the CPs' sensitivity and selectivity toward glucose were found to be dependent upon the configuration,i.e., the amino acids sequence of the CPs. The cyclic unit with a cyclo[-CNDNHCRDNDC-] sequence gave the highest selectivity and sensitivity for glucose sensing. This work suggests that a synthetic peptide bearing a particular functional sequence could be applied for developing a new generation of glucose receptors and would find huge application in biological, life science, and clinical diagnostics fields.
Molecular determinants of origin discrimination by Orc1 initiators in archaea.
Dueber, Erin C; Costa, Alessandro; Corn, Jacob E; Bell, Stephen D; Berger, James M
2011-05-01
Unlike bacteria, many eukaryotes initiate DNA replication from genomic sites that lack apparent sequence conservation. These loci are identified and bound by the origin recognition complex (ORC), and subsequently activated by a cascade of events that includes recruitment of an additional factor, Cdc6. Archaeal organisms generally possess one or more Orc1/Cdc6 homologs, belonging to the Initiator clade of ATPases associated with various cellular activities (AAA(+)) superfamily; however, these proteins recognize specific sequences within replication origins. Atomic resolution studies have shown that archaeal Orc1 proteins contact double-stranded DNA through an N-terminal AAA(+) domain and a C-terminal winged-helix domain (WHD), but use remarkably few base-specific contacts. To investigate the biochemical effects of these associations, we mutated the DNA-interacting elements of the Orc1-1 and Orc1-3 paralogs from the archaeon Sulfolobus solfataricus, and tested their effect on origin binding and deformation. We find that the AAA(+) domain has an unpredicted role in controlling the sequence selectivity of DNA binding, despite an absence of base-specific contacts to this region. Our results show that both the WHD and ATPase region influence origin recognition by Orc1/Cdc6, and suggest that not only DNA sequence, but also local DNA structure help define archaeal initiator binding sites. © The Author(s) 2011. Published by Oxford University Press.
Lerner, Mitchell B.; D’Souza, Jimson; Pazina, Tatiana; Dailey, Jennifer; Goldsmith, Brett R.; Robinson, Matthew K.; Johnson, A.T. Charlie
2012-01-01
We developed a novel detection method for osteopontin (OPN), a new biomarker for prostate cancer, by attaching a genetically engineered single chain variable fragment (scFv) protein with high binding affinity for OPN to a carbon nanotube field-effect transistor (NTFET). Chemical functionalization using diazonium salts is used to covalently attach scFv to NT-FETs, as confirmed by atomic force microscopy, while preserving the activity of the biological binding site for OPN. Electron transport measurements indicate that functionalized NT-FET may be used to detect the binding of OPN to the complementary scFv protein. A concentration-dependent increase in the source-drain current is observed in the regime of clinical significance, with a detection limit of approximately 30 fM. The scFv-NT hybrid devices exhibit selectivity for OPN over other control proteins. These devices respond to the presence of OPN in a background of concentrated bovine serum albumin, without loss of signal. Based on these observations, the detection mechanism is attributed to changes in scattering at scFv protein-occupied defect sites on the carbon nanotube sidewall. The functionalization procedure described here is expected to be generalizable to any antibody containing an accessible amine group, and to result in biosensors appropriate for detection of corresponding complementary proteins at fM concentrations. PMID:22575126
Molecular dynamics simulation studies of novel β-lactamase inhibitor.
Ul Haq, Farhan; Abro, Asma; Raza, Saad; Liedl, Klaus R; Azam, Syed Sikander
2017-06-01
New Delhi Metallo-β-Lactamase-1 (NDM-1) has drawn great attention due to its diverse antibiotic resistant activity. It can hydrolyze almost all clinically available β-lactam antibiotics. To inhibit the activity of NDM-1 a new strategy is proposed using computational methods. Molecular dynamics (MD) simulations are used to analyze the molecular interactions between selected inhibitor candidates and NDM-1 structure. The enzyme-ligand complex is subject to binding free energy calculations using MM(PB/GB)SA methods. The role of each residue of the active site contributing in ligand binding affinity is explored using energy decomposition analysis. Furthermore, a hydrogen bonding network between ligand and enzyme active site is observed and key residues are identified ensuring that the ligand stays inside the active site and maintains its movement towards the active site pocket. A production run of 150ns is carried out and results are analyzed using root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (Rg) to explain the stability of enzyme ligand complex. Important active site residue e.g. PHE70, VAL73, TRP93, HIS122, GLN123, ASP124, HIS189, LYS216, CYS208, LYS211, ALA215, HIS250, and SER251 were observed to be involved in ligand attachemet inside the active site pocket, hence depicting its inhibitor potential. Hydrogen bonds involved in structural stability are analyzed through radial distribution function (RDF) and contribution of important residues involved in ligand movement is explained using a novel analytical tool, axial frequency distribution (AFD) to observe the role of important hydrogen bonding partners between ligand atoms and active site residues. Copyright © 2017 Elsevier Inc. All rights reserved.
Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.
2013-01-01
Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283
Study of p-diaminobenzene Adsorption on Au(111) by Scanning Tunneling Microscopy
NASA Astrophysics Data System (ADS)
Zhou, Hui; Hu, Zonghai; Eom, Daejin; Rim, Kwang; Liu, Li; Flynn, George; Venkataraman, Latha; Morgante, Alberto; Heinz, Tony
2008-03-01
From the well-defined conductivity obtained for various individual diamino-substituted molecules spanning two gold contacts, as well as from theoretical analysis [1], researchers have suggested that amines adsorb preferentially to coordinatively unsaturated surface Au atoms through the N lone pair. To understand the nature of the amine binding, we have applied ultrahigh vacuum scanning tunneling microscope (STM) to investigate the adsorption of p-diaminobenzene molecules on the reconstructed Au(111) surface. The STM topography images (taken at 4 K) show that the molecules adsorb preferentially to step edges, corresponding to sites of reduced Au atom coordination. The adsorbed molecules are found to display a distinctive orientation along the step edges. The two-lobe topographic structure of each molecule seen by STM is compatible with the previously calculated charge density of the HOMO level. [1] L. Venkataraman at el., Nano Lett. 7, 502 (2007).
A tool for calculating binding-site residues on proteins from PDB structures.
Hu, Jing; Yan, Changhui
2009-08-03
In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB) that consists of the protein of interest and its interacting partner(s) and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. The developed tool is very useful for the research on protein binding site analysis and prediction.
Ultralong-range Rydberg Molecules: Investigation of a Novel Binding Mechanism
NASA Astrophysics Data System (ADS)
Butscher, Björn; Bendkowsky, Vera; Nipper, Johannes; Balewski, Jonathan; Shaffer, James P.; Löw, Robert; Pfau, Tilman
2010-03-01
For highly excited Rydberg atoms, the scattering of the Rydberg electron from a nearby polarizable ground state atom can generate an attractive mean-field potential which is able to bind the ground state atom to the Rydberg atom within the Rydberg electron wave function at binding energies ranging from a few MHz to hundreds of MHz[1]. We present spectroscopic data on the observation of various bound states including the vibrational ground and excited states of rubidium dimers Rb(5S)-Rb(nS) as well as those of trimer states. Furthermore, we show calculations that reproduce the observed binding energies remarkably well and reveal that some of the excited states are purely bound by quantum reflection at a shape resonance for p-wave scattering [2]. To further characterize the coherent excitation of the molecular states, we performed echo experiments. [0pt] [1] V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, T. Pfau, Nature 458, 1005 (2009); [2] V. Bendkowsky, B. Butscher, J. Nipper, J. Balewski, J. P. Shaffer, R. Löw, T. Pfau, W. Li, J. Stanojevic, T. Pohl,and J. M. Rost, arXiv:0912.4058 (2009)
Alam, Tanfis I; Rao, Venigalla B
2008-03-07
Translocation of double-stranded DNA into a preformed capsid by tailed bacteriophages is driven by powerful motors assembled at the special portal vertex. The motor is thought to drive processive cycles of DNA binding, movement, and release to package the viral genome. In phage T4, there is evidence that the large terminase protein, gene product 17 (gp17), assembles into a multisubunit motor and translocates DNA by an inchworm mechanism. gp17 consists of two domains; an N-terminal ATPase domain (amino acids 1-360) that powers translocation of DNA, and a C-terminal nuclease domain (amino acids 361-610) that cuts concatemeric DNA to generate a headful-size viral genome. While the functional motifs of ATPase and nuclease have been well defined and the ATPase atomic structure has been solved, the DNA binding motif(s) responsible for viral DNA recognition, cutting, and translocation are unknown. Here we report the first evidence for the presence of a double-stranded DNA binding activity in the gp17 ATPase domain. Binding to DNA is sensitive to Mg(2+) and salt, but not the type of DNA used. DNA fragments as short as 20 bp can bind to the ATPase but preferential binding was observed to DNA greater than 1 kb. A high molecular weight ATPase-DNA complex was isolated by gel filtration, suggesting oligomerization of ATPase following DNA interaction. DNA binding was not observed with the full-length gp17, or the C-terminal nuclease domain. The small terminase protein, gp16, inhibited DNA binding, which was further accentuated by ATP. The presence of a DNA binding site in the ATPase domain and its binding properties implicate a role in the DNA packaging mechanism.
Speranskiy, Kirill; Kurnikova, Maria
2005-08-30
Ionotropic glutamate receptors (GluRs) are ligand-gated membrane channel proteins found in the central neural system that mediate a fast excitatory response of neurons. In this paper, we report theoretical analysis of the ligand-protein interactions in the binding pocket of the S1S2 (ligand binding) domain of the GluR2 receptor in the closed conformation. By utilizing several theoretical methods ranging from continuum electrostatics to all-atom molecular dynamics simulations and quantum chemical calculations, we were able to characterize in detail glutamate agonist binding to the wild-type and E705D mutant proteins. A theoretical model of the protein-ligand interactions is validated via direct comparison of theoretical and Fourier transform infrared spectroscopy (FTIR) measured frequency shifts of the ligand's carboxylate group vibrations [Jayaraman et al. (2000) Biochemistry 39, 8693-8697; Cheng et al. (2002) Biochemistry 41, 1602-1608]. A detailed picture of the interactions in the binding site is inferred by analyzing contributions to vibrational frequencies produced by protein residues forming the ligand-binding pocket. The role of mobility and hydrogen-bonding network of water in the ligand-binding pocket and the contribution of protein residues exposed in the binding pocket to the binding and selectivity of the ligand are discussed. It is demonstrated that the molecular surface of the protein in the ligand-free state has mainly positive electrostatic potential attractive to the negatively charged ligand, and the potential produced by the protein in the ligand-binding pocket in the closed state is complementary to the distribution of the electrostatic potential produced by the ligand itself. Such charge complementarity ensures specificity to the unique charge distribution of the ligand.
Ryden, T A; de Mars, M; Beemon, K
1993-01-01
Several C/EBP binding sites within the Rous sarcoma virus (RSV) long terminal repeat (LTR) and gag enhancers were mutated, and the effect of these mutations on viral gene expression was assessed. Minimal site-specific mutations in each of three adjacent C/EBP binding sites in the LTR reduced steady-state viral RNA levels. Double mutation of the two 5' proximal LTR binding sites resulted in production of 30% of wild-type levels of virus. DNase I footprinting analysis of mutant DNAs indicated that the mutations blocked C/EBP binding at the affected sites. Additional C/EBP binding sites were identified upstream of the 3' LTR and within the 5' end of the LTRs. Point mutations in the RSV gag intragenic enhancer region, which blocked binding of C/EBP at two of three adjacent C/EBP sites, also reduced virus production significantly. Nuclear extracts prepared from both chicken embryo fibroblasts (CEFs) and chicken muscle contained proteins binding to the same RSV DNA sites as did C/EBP, and mutations that prevented C/EBP binding also blocked binding of these chicken proteins. It appears that CEFs and chicken muscle contain distinct proteins binding to these RSV DNA sites; the CEF binding protein was heat stable, as is C/EBP, while the chicken muscle protein was heat sensitive. Images PMID:8386280
Is Einstein the Father of the Atomic Bomb
NASA Astrophysics Data System (ADS)
Lustig, Harry
2009-05-01
Soon after the American atomic bombs were dropped on Hiroshima and Nagasaki, the notion took hold in the popular mind that Albert Einstein was ``the father of the bomb.'' The claim of paternity rests on the belief that E=mc2 is what makes the release of enormous amounts of energy in the fission process possible and that the atomic bomb could not have been built without it. This is a misapprehension. Most physicists have known that all along. Nevertheless in his reaction to the opera Dr. Atomic, a prominent physicist claimed that Einstein's discovery that matter can be transformed into energy ``is precisely what made the bomb possible.'' In fact what makes the fission reaction and one of its applications,the atomic bomb, possible is the smaller binding energies of fission products compared to the binding energies of the nuclei that undergo fission.The binding energies of nuclei are a well understood consequence of the numbers and arrangements of protons and neutrons in the nucleus and of quantum-mechanical effects. The realization that composite systems have binding energies predates relativity. In the 19th century they were ascribed to potential and other forms of energy that reside in the system. With Einstein they became rest mass energy. While E=mc2 is not the cause of fission, measuring the masses of the participants in the reaction does permit an easy calculation of the kinetic energy that is released.
Sedlak, Steffen M.; Bauer, Magnus S.; Kluger, Carleen; Schendel, Leonard C.; Milles, Lukas F.; Pippig, Diana A.
2017-01-01
The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin’s tetravalency results in diverse force propagation pathways through the different binding interfaces. This multiplicity gives rise to polydisperse force spectroscopy data. Here, we present an engineered monovalent streptavidin tetramer with a single cysteine in its functional subunit that allows for site-specific immobilization of the molecule, orthogonal to biotin binding. Functionality of streptavidin and its binding properties for biotin remain unaffected. We thus created a stable and reliable molecular anchor with a unique high-affinity binding site for biotinylated molecules or nanoparticles, which we expect to be useful for many single-molecule applications. To characterize the mechanical properties of the bond between biotin and our monovalent streptavidin, we performed force spectroscopy experiments using an atomic force microscope. We were able to conduct measurements at the single-molecule level with 1:1-stoichiometry and a well-defined geometry, in which force exclusively propagates through a single subunit of the streptavidin tetramer. For different force loading rates, we obtained narrow force distributions of the bond rupture forces ranging from 200 pN at 1,500 pN/s to 230 pN at 110,000 pN/s. The data are in very good agreement with the standard Bell-Evans model with a single potential barrier at Δx0 = 0.38 nm and a zero-force off-rate koff,0 in the 10−6 s-1 range. PMID:29206886
Sedlak, Steffen M; Bauer, Magnus S; Kluger, Carleen; Schendel, Leonard C; Milles, Lukas F; Pippig, Diana A; Gaub, Hermann E
2017-01-01
The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin's tetravalency results in diverse force propagation pathways through the different binding interfaces. This multiplicity gives rise to polydisperse force spectroscopy data. Here, we present an engineered monovalent streptavidin tetramer with a single cysteine in its functional subunit that allows for site-specific immobilization of the molecule, orthogonal to biotin binding. Functionality of streptavidin and its binding properties for biotin remain unaffected. We thus created a stable and reliable molecular anchor with a unique high-affinity binding site for biotinylated molecules or nanoparticles, which we expect to be useful for many single-molecule applications. To characterize the mechanical properties of the bond between biotin and our monovalent streptavidin, we performed force spectroscopy experiments using an atomic force microscope. We were able to conduct measurements at the single-molecule level with 1:1-stoichiometry and a well-defined geometry, in which force exclusively propagates through a single subunit of the streptavidin tetramer. For different force loading rates, we obtained narrow force distributions of the bond rupture forces ranging from 200 pN at 1,500 pN/s to 230 pN at 110,000 pN/s. The data are in very good agreement with the standard Bell-Evans model with a single potential barrier at Δx0 = 0.38 nm and a zero-force off-rate koff,0 in the 10-6 s-1 range.
Allosteric effects of gold nanoparticles on human serum albumin.
Shao, Qing; Hall, Carol K
2017-01-07
The ability of nanoparticles to alter protein structure and dynamics plays an important role in their medical and biological applications. We investigate allosteric effects of gold nanoparticles on human serum albumin protein using molecular simulations. The extent to which bound nanoparticles influence the structure and dynamics of residues distant from the binding site is analyzed. The root mean square deviation, root mean square fluctuation and variation in the secondary structure of individual residues on a human serum albumin protein are calculated for four protein-gold nanoparticle binding complexes. The complexes are identified in a brute-force search process using an implicit-solvent coarse-grained model for proteins and nanoparticles. They are then converted to atomic resolution and their structural and dynamic properties are investigated using explicit-solvent atomistic molecular dynamics simulations. The results show that even though the albumin protein remains in a folded structure, the presence of a gold nanoparticle can cause more than 50% of the residues to decrease their flexibility significantly, and approximately 10% of the residues to change their secondary structure. These affected residues are distributed on the whole protein, even on regions that are distant from the nanoparticle. We analyze the changes in structure and flexibility of amino acid residues on a variety of binding sites on albumin and confirm that nanoparticles could allosterically affect the ability of albumin to bind fatty acids, thyroxin and metals. Our simulations suggest that allosteric effects must be considered when designing and deploying nanoparticles in medical and biological applications that depend on protein-nanoparticle interactions.
The Free Energy Landscape of Small Molecule Unbinding
Huang, Danzhi; Caflisch, Amedeo
2011-01-01
The spontaneous dissociation of six small ligands from the active site of FKBP (the FK506 binding protein) is investigated by explicit water molecular dynamics simulations and network analysis. The ligands have between four (dimethylsulphoxide) and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms, and an affinity for FKBP ranging from 20 to 0.2 mM. The conformations of the FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each ligand) are grouped according to a set of intermolecular distances into nodes of a network, and the direct transitions between them are the links. The network analysis reveals that the bound state consists of several subbasins, i.e., binding modes characterized by distinct intermolecular hydrogen bonds and hydrophobic contacts. The dissociation kinetics show a simple (i.e., single-exponential) time dependence because the unbinding barrier is much higher than the barriers between subbasins in the bound state. The unbinding transition state is made up of heterogeneous positions and orientations of the ligand in the FKBP active site, which correspond to multiple pathways of dissociation. For the six small ligands of FKBP, the weaker the binding affinity the closer to the bound state (along the intermolecular distance) are the transition state structures, which is a new manifestation of Hammond behavior. Experimental approaches to the study of fragment binding to proteins have limitations in temporal and spatial resolution. Our network analysis of the unbinding simulations of small inhibitors from an enzyme paints a clear picture of the free energy landscape (both thermodynamics and kinetics) of ligand unbinding. PMID:21390201
The free energy landscape of small molecule unbinding.
Huang, Danzhi; Caflisch, Amedeo
2011-02-01
The spontaneous dissociation of six small ligands from the active site of FKBP (the FK506 binding protein) is investigated by explicit water molecular dynamics simulations and network analysis. The ligands have between four (dimethylsulphoxide) and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms, and an affinity for FKBP ranging from 20 to 0.2 mM. The conformations of the FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each ligand) are grouped according to a set of intermolecular distances into nodes of a network, and the direct transitions between them are the links. The network analysis reveals that the bound state consists of several subbasins, i.e., binding modes characterized by distinct intermolecular hydrogen bonds and hydrophobic contacts. The dissociation kinetics show a simple (i.e., single-exponential) time dependence because the unbinding barrier is much higher than the barriers between subbasins in the bound state. The unbinding transition state is made up of heterogeneous positions and orientations of the ligand in the FKBP active site, which correspond to multiple pathways of dissociation. For the six small ligands of FKBP, the weaker the binding affinity the closer to the bound state (along the intermolecular distance) are the transition state structures, which is a new manifestation of Hammond behavior. Experimental approaches to the study of fragment binding to proteins have limitations in temporal and spatial resolution. Our network analysis of the unbinding simulations of small inhibitors from an enzyme paints a clear picture of the free energy landscape (both thermodynamics and kinetics) of ligand unbinding.
The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes.
Atambayeva, Shara; Niyazova, Raigul; Ivashchenko, Anatoliy; Pyrkova, Anna; Pinsky, Ilya; Akimniyazova, Aigul; Labeit, Siegfried
2017-06-01
Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one mRNA can be the target of many miRNAs. This significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications. The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. For the binding sites of the miR-619-5p the hybridization free energy of the bonds was equal to 100% of the maximum potential free energy. The mRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3'UTR (214 sites), CDS (3 sites), and 5'UTR (4 sites). The mRNAs of CATAD1, ICA1L, GK5, POLH, and PRR11 genes have six miR-619-5p binding sites, and the mRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these miR-619-5p binding sites are located in the 3'UTRs. The miR-619-5p binding site in the 5'UTR of mRNA of human USP29 gene is found in the mRNAs of orthologous genes of primates. Binding sites of miR-619-5p in the coding regions of mRNAs of C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is present in the orthologous proteins. Binding sites of miR-619-5p in the mRNAs of transcription factor genes ZNF429 and ZNF429 encode the AHACNP oligopeptide in another reading frame. Binding sites of miR-619-5p in the 3'UTRs of all human target genes are also present in the 3'UTRs of orthologous genes of mammals. The completely complementary binding sites for miR-619-5p are conservative in the orthologous mammalian genes. The majority of miR-619-5p binding sites are located in the 3'UTRs but some genes have miRNA binding sites in the 5'UTRs of mRNAs. Several genes have binding sites for miRNAs in the CDSs that are read in different open reading frames. Identical nucleotide sequences of binding sites encode different amino acids in different proteins. The binding sites of miR-619-5p in 3'UTRs, 5'UTRs and CDSs are conservative in the orthologous mammalian genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nocek, Boguslaw; Reidl, Cory; Starus, Anna
In this paper, the X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ~50° and shifts ~10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclearmore » Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a μ-1,3 fashion forming a bis(μ-carboxylato)dizinc(II) core with a Zn–Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ~10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ~10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. Finally, these data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.« less
Nocek, Boguslaw; Reidl, Cory; Starus, Anna; ...
2017-12-22
In this paper, the X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ~50° and shifts ~10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclearmore » Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a μ-1,3 fashion forming a bis(μ-carboxylato)dizinc(II) core with a Zn–Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ~10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ~10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. Finally, these data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.« less
Nocek, Boguslaw; Reidl, Cory; Starus, Anna; Heath, Tahirah; Bienvenue, David; Osipiuk, Jerzy; Jedrzejczak, Robert; Joachimiak, Andrzej; Becker, Daniel P; Holz, Richard C
2018-02-06
The X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ∼50° and shifts ∼10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclear Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a μ-1,3 fashion forming a bis(μ-carboxylato)dizinc(II) core with a Zn-Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ∼10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ∼10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. These data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.
Recovery and separation of rare earth elements using columns loaded with DNA-filter hybrid.
Takahashi, Yoshio; Kondo, Kazuhiro; Miyaji, Asami; Umeo, Miyuki; Honma, Tetsuo; Asaoka, Satoshi
2012-01-01
Given that the supply of several rare earth elements (REEs) is sometimes limited, recycling REEs used in various advanced materials, such as Nd magnets, is important for realizing efficient use of REE resources. In the present work, the feasibility of using DNA for REE recovery and separation was examined, along with the identification of the binding site of REEs in DNA. In particular, a DNA-cellulose filter paper hybrid was prepared so that DNA-based materials can be used for the separation of REEs using columns loaded with DNA. N,N'-Disuccinimidyl was used as a cross-linker reagent for the fixation of DNA onto a fibrous cellulose filter. The results showed that (i) the DNA-filter hybrid has a sufficiently high affinity to adsorb REEs; (ii) the adsorption capacity was 0.182 mg/g for Nd; and (iii) the affinity of REEs for DNA was stronger for REEs with larger atomic numbers. The difference of the affinity among REEs in the third result was compared with the adsorption patterns of REEs discussed in the literature. The comparison suggests that phosphate in the DNA-filter paper hybrid was responsible for REE adsorption onto the hybrid. The results were supported by the Nd, Dy, and Lu L(III)-edge EXAFS; the REE-P shell was identified for the second neighboring atom, showing the importance of the phosphate site as REE binding sites. The difference in the affinity among REEs suggest that group separation of REEs (such as La, Ce, (Pr and Nd), (Ho, Dy, and Er), (Tb and Gd), (Sm, Eu), Tm, Yb, and Lu) is possible, although complete isolation of each REE from a solution containing all REEs may be difficult. For practical applications, Nd and Fe(III) were successfully separated from a synthetic solution of Nd magnet waste using columns loaded with the DNA-filter hybrid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pabisiak, Tomasz; Kiejna, Adam, E-mail: kiejna@ifd.uni.wroc.pl; Winiarski, Maciej J.
2016-01-28
The adsorption of small Au{sub n} (n = 1–4) nanostructures on oxygen terminated α-Fe{sub 2}O{sub 3}(0001) surface was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties were examined for two classes of the adsorbed Au{sub n} nanostructures with vertical and flattened configurations. Similarly to the Fe-terminated α-Fe{sub 2}O{sub 3}(0001) surface considered in Part I, the flattened configurations were found energetically more favored than vertical ones. The binding of Au{sub n} to the O-terminated surface is much stronger thanmore » to the Fe-termination. The adsorption bonding energy of Au{sub n} and the work function of the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems decrease with the increased number of Au atoms in a structure. All of the adsorbed Au{sub n} structures are positively charged. The bonding of CO molecules to the Au{sub n} structures is distinctly stronger than on the Fe-terminated surface; however, it is weaker than the binding to the bare O-terminated surface. The CO molecule binds to the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) system through a peripheral Au atom partly detached from the Au{sub n} structure. The results of this work indicate that the most energetically favored sites for adsorption of a CO molecule on the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems are atoms in the Au{sup 0.5+} oxidation state.« less
LeBlanc, Sharonda; Wilkins, Hunter; Li, Zimeng; Kaur, Parminder; Wang, Hong; Erie, Dorothy A
2017-01-01
Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes. © 2017 Elsevier Inc. All rights reserved.
AFAL: a web service for profiling amino acids surrounding ligands in proteins
NASA Astrophysics Data System (ADS)
Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S.; Quatrini, Raquel
2014-11-01
With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.