Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.
Haupt, V Joachim; Daminelli, Simone; Schroeder, Michael
2013-01-01
Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a minor influence.
Stability and Sugar Recognition Ability of Ricin-Like Carbohydrate Binding Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jianzhuang; Nellas, Ricky B; Glover, Mary M
2011-01-01
Lectins are a class of proteins known for their novel binding to saccharides. Understanding this sugar recognition process can be crucial in creating structure-based designs of proteins with various biological roles. We focus on the sugar binding of a particular lectin, ricin, which has two -trefoil carbohydrate-binding domains (CRDs) found in several plant protein toxins. The binding ability of possible sites of ricin-like CRD has been puzzling. The apo and various (multiple) ligand-bound forms of the sugar-binding domains of ricin were studied by molecular dynamics simulations. By evaluating structural stability, hydrogen bond dynamics, flexibility, and binding energy, we obtained amore » detailed picture of the sugar recognition of the ricin-like CRD. Unlike what was previously believed, we found that the binding abilities of the two known sites are not independent of each other. The binding ability of one site is positively affected by the other site. While the mean positions of different binding scenarios are not altered significantly, the flexibility of the binding pockets visibly decreases upon multiple ligand binding. This change in flexibility seems to be the origin of the binding cooperativity. All the hydrogen bonds that are strong in the monoligand state are also strong in the double-ligand complex, although the stability is much higher in the latter form due to cooperativity. These strong hydrogen bonds in a monoligand state are deemed to be the essential hydrogen bonds. Furthermore, by examining the structural correlation matrix, the two domains are structurally one entity. Galactose hydroxyl groups, OH4 and OH3, are the most critical parts in both site 1 and site 2 recognition.« less
Physical signals for protein-DNA recognition
NASA Astrophysics Data System (ADS)
Cao, Xiao-Qin; Zeng, Jia; Yan, Hong
2009-09-01
This paper discovers consensus physical signals around eukaryotic splice sites, transcription start sites, and replication origin start and end sites on a genome-wide scale based on their DNA flexibility profiles calculated by three different flexibility models. These salient physical signals are localized highly rigid and flexible DNAs, which may play important roles in protein-DNA recognition by the sliding search mechanism. The found physical signals lead us to a detailed hypothetical view of the search process in which a DNA-binding protein first finds a genomic region close to the target site from an arbitrary starting location by three-dimensional (3D) hopping and intersegment transfer mechanisms for long distances, and subsequently uses the one-dimensional (1D) sliding mechanism facilitated by the localized highly rigid DNAs to accurately locate the target flexible binding site within 30 bp (base pair) short distances. Guided by these physical signals, DNA-binding proteins rapidly search the entire genome to recognize a specific target site from the 3D to 1D pathway. Our findings also show that current promoter prediction programs (PPPs) based on DNA physical properties may suffer from lots of false positives because other functional sites such as splice sites and replication origins have similar physical signals as promoters do.
Grove, A; Galeone, A; Mayol, L; Geiduschek, E P
1996-07-12
TF1 is a member of the family of type II DNA-binding proteins, which also includes the bacterial HU proteins and the Escherichia coli integration host factor (IHF). Distinctive to TF1, which is encoded by the Bacillus subtilis bacteriophage SPO1, is its preferential binding to DNA in which thymine is replaced by 5-hydroxymethyluracil (hmU), as it is in the phage genome. TF1 binds to preferred sites within the phage genome and generates pronounced DNA bending. The extent to which DNA flexibility contributes to the sequence-specific binding of TF1, and the connection between hmU preference and DNA flexibility has been examined. Model flexible sites, consisting of consecutive mismatches, increase the affinity of thymine-containing DNA for TF1. In particular, tandem mismatches separated by nine base-pairs generate an increase, by orders of magnitude, in the affinity of TF1 for T-containing DNA with the sequence of a preferred TF1 binding site, and fully match the affinity of TF1 for this cognate site in hmU-containing DNA (Kd approximately 3 nM). Other placements of loops generate suboptimal binding. This is consistent with a significant contribution of site-specific DNA flexibility to complex formation. Analysis of complexes with hmU-DNA of decreasing length shows that a major part of the binding affinity is generated within a central 19 bp segment (delta G0 = 41.7 kJ mol-1) with more-distal DNA contributing modestly to the affinity (delta delta G = -0.42 kJ mol-1 bp-1 on increasing duplex length to 37 bp). However, a previously characterised thermostable and more tightly binding mutant TF1, TF1(E15G/T32I), derives most of its extra affinity from interaction with flanking DNA. We propose that inherent but sequence-dependent deformability of hmU-containing DNA underlies the preferential binding of TF1 and that TF1-induced DNA bendings is a result of distortions at two distinct sites separated by 9 bp of duplex DNA.
Neupane, Durga P; Avalos, Dante; Fullam, Stephanie; Roychowdhury, Hridindu; Yukl, Erik T
2017-10-20
Bacteria can acquire the essential metal zinc from extremely zinc-limited environments by using ATP-binding cassette (ABC) transporters. These transporters are critical virulence factors, relying on specific and high-affinity binding of zinc by a periplasmic solute-binding protein (SBP). As such, the mechanisms of zinc binding and release among bacterial SBPs are of considerable interest as antibacterial drug targets. Zinc SBPs are characterized by a flexible loop near the high-affinity zinc-binding site. The function of this structure is not always clear, and its flexibility has thus far prevented structural characterization by X-ray crystallography. Here, we present intact structures for the zinc-specific SBP AztC from the bacterium Paracoccus denitrificans in the zinc-bound and apo-states. A comparison of these structures revealed that zinc loss prompts significant structural rearrangements, mediated by the formation of a sodium-binding site in the apo-structure. We further show that the AztC flexible loop has no impact on zinc-binding affinity, stoichiometry, or protein structure, yet is essential for zinc transfer from the metallochaperone AztD. We also found that 3 His residues in the loop appear to temporarily coordinate zinc and then convey it to the high-affinity binding site. Thus, mutation of any of these residues to Ala abrogated zinc transfer from AztD. Our structural and mechanistic findings conclusively identify a role for the AztC flexible loop in zinc acquisition from the metallochaperone AztD, yielding critical insights into metal binding by AztC from both solution and AztD. These proteins are highly conserved in human pathogens, making this work potentially useful for the development of novel antibiotics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Abou-Zied, Osama K
2015-01-01
Human serum albumin (HSA) is one of the major carrier proteins in the body and constitutes approximately half of the protein found in blood plasma. It plays an important role in lipid metabolism, and its ability to reversibly bind a large variety of pharmaceutical compounds makes it a crucial determinant of drug pharmacokinetics and pharmacodynamics. This review deals with one of the protein's major binding sites "Sudlow I" which includes a binding pocket for the drug warfarin (WAR). The binding nature of this important site can be characterized by measuring the spectroscopic changes when a ligand is bound. Using several drugs, including WAR, and other drug-like molecules as ligands, the results emphasize the nature of Sudlow I as a flexible binding site, capable of binding a variety of ligands by adapting its binding pockets. The high affinity of the WAR pocket for binding versatile molecular structures stems from the flexibility of the amino acids forming the pocket. The binding site is shown to have an ionization ability which is important to consider when using drugs that are known to bind in Sudlow I. Several studies point to the important role of water molecules trapped inside the binding site in molecular recognition and ligand binding. Water inside the protein's cavity is crucial in maintaining the balance between the hydrophobic and hydrophilic nature of the binding site. Upon the unfolding and refolding of HSA, more water molecules are trapped inside the binding site which cause some swelling that prevents a full recovery from the denatured state. Better understanding of the mechanism of binding in macromolecules such as HSA and other proteins can be achieved by combining experimental and theoretical studies which produce significant synergies in studying complex biochemical phenomena.
Size and molecular flexibility affect the binding of ellagitannins to bovine serum albumin.
Dobreva, Marina A; Green, Rebecca J; Mueller-Harvey, Irene; Salminen, Juha-Pekka; Howlin, Brendan J; Frazier, Richard A
2014-09-17
Binding to bovine serum albumin of monomeric (vescalagin and pedunculagin) and dimeric ellagitannins (roburin A, oenothein B, and gemin A) was investigated by isothermal titration calorimetry and fluorescence spectroscopy, which indicated two types of binding sites. Stronger and more specific sites exhibited affinity constants, K1, of 10(4)-10(6) M(-1) and stoichiometries, n1, of 2-13 and dominated at low tannin concentrations. Weaker and less-specific binding sites had K2 constants of 10(3)-10(5) M(-1) and stoichiometries, n2, of 16-30 and dominated at higher tannin concentrations. Binding to stronger sites appeared to be dependent on tannin flexibility and the presence of free galloyl groups. Positive entropies for all but gemin A indicated that hydrophobic interactions dominated during complexation. This was supported by an exponential relationship between the affinity, K1, and the modeled hydrophobic accessible surface area and by a linear relationship between K1 and the Stern-Volmer quenching constant, K(SV).
Kurcinski, Mateusz; Jamroz, Michal; Blaszczyk, Maciej; Kolinski, Andrzej; Kmiecik, Sebastian
2015-01-01
Protein–peptide interactions play a key role in cell functions. Their structural characterization, though challenging, is important for the discovery of new drugs. The CABS-dock web server provides an interface for modeling protein–peptide interactions using a highly efficient protocol for the flexible docking of peptides to proteins. While other docking algorithms require pre-defined localization of the binding site, CABS-dock does not require such knowledge. Given a protein receptor structure and a peptide sequence (and starting from random conformations and positions of the peptide), CABS-dock performs simulation search for the binding site allowing for full flexibility of the peptide and small fluctuations of the receptor backbone. This protocol was extensively tested over the largest dataset of non-redundant protein–peptide interactions available to date (including bound and unbound docking cases). For over 80% of bound and unbound dataset cases, we obtained models with high or medium accuracy (sufficient for practical applications). Additionally, as optional features, CABS-dock can exclude user-selected binding modes from docking search or to increase the level of flexibility for chosen receptor fragments. CABS-dock is freely available as a web server at http://biocomp.chem.uw.edu.pl/CABSdock. PMID:25943545
Binding-Site Assessment by Virtual Fragment Screening
Huang, Niu; Jacobson, Matthew P.
2010-01-01
The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules) would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock ∼11000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors. PMID:20404926
Yang, Yunpeng; Zhang, Lu; Huang, He; Yang, Chen; Yang, Sheng; Gu, Yang; Jiang, Weihong
2017-01-24
Catabolite control protein A (CcpA) is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR) and carbon catabolite activation (CCA), two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt) consensus site that is called a catabolite response element (cre) within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named cre var , has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA). It was found that the length of the intervening spacer of cre var can affect CcpA binding affinity, and moreover, the core palindromic sequence of cre var is the key structure for regulation. Such a variable architecture of cre var shows potential importance for CcpA's diverse and fine regulation. A total of 103 potential cre var sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs), and 30 sites were confirmed to be bound by CcpA. These 30 cre var sites are associated with 27 genes involved in many important pathways. Also of significance, the cre var sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria. In Gram-positive bacteria, the global regulator CcpA controls a large number of important physiological and metabolic processes. Although a typical consensus CcpA-binding site, cre, has been identified, it remains poorly explored for the diversity of CcpA-mediated catabolite regulation. Here, we discovered a novel flexible CcpA-binding site architecture (cre var ) that is highly variable in both length and base composition but follows certain principles, providing new insights into how CcpA can differentially recognize a variety of target genes to form a complicated regulatory network. A comprehensive search further revealed the wide distribution of cre var sites in Gram-positive bacteria, indicating it may have a universal function. This finding is the first to characterize such a highly flexible transcription factor-binding site architecture, which would be valuable for deeper understanding of CcpA-mediated global catabolite regulation in bacteria. Copyright © 2017 Yang et al.
Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P; Burgoyne, Robert D; Mayans, Olga; Derrick, Jeremy P; Lian, Lu-Yun
2015-07-24
Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P.; Burgoyne, Robert D.; Mayans, Olga; Derrick, Jeremy P.; Lian, Lu-Yun
2015-01-01
Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca2+-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca2+/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca2+/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178–Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca2+/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178–Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. PMID:25979333
Kurcinski, Mateusz; Jamroz, Michal; Blaszczyk, Maciej; Kolinski, Andrzej; Kmiecik, Sebastian
2015-07-01
Protein-peptide interactions play a key role in cell functions. Their structural characterization, though challenging, is important for the discovery of new drugs. The CABS-dock web server provides an interface for modeling protein-peptide interactions using a highly efficient protocol for the flexible docking of peptides to proteins. While other docking algorithms require pre-defined localization of the binding site, CABS-dock does not require such knowledge. Given a protein receptor structure and a peptide sequence (and starting from random conformations and positions of the peptide), CABS-dock performs simulation search for the binding site allowing for full flexibility of the peptide and small fluctuations of the receptor backbone. This protocol was extensively tested over the largest dataset of non-redundant protein-peptide interactions available to date (including bound and unbound docking cases). For over 80% of bound and unbound dataset cases, we obtained models with high or medium accuracy (sufficient for practical applications). Additionally, as optional features, CABS-dock can exclude user-selected binding modes from docking search or to increase the level of flexibility for chosen receptor fragments. CABS-dock is freely available as a web server at http://biocomp.chem.uw.edu.pl/CABSdock. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Galzitskaya, Oxana; Deryusheva, Eugenia; Machulin, Andrey; Nemashkalova, Ekaterina; Glyakina, Anna
2018-06-21
High prediction accuracy of flexible loops in different protein families is a challenge because of the crucial functions associated with these regions. Results of the currently available programs for prediction of loops vary from protein to protein. For prediction of flexible regions in the G-domain for 23 representatives of G-proteins with the known 3D structure we have used eight programs. The results of predictions demonstrate that the FoldUnfold program predicts better loop positions than the PONDR, RОNN, DisEMBL, IUPred, GlobPlot 2, FoldIndex, and MobiDB programs. When classifying the predicted loops (rigid/flexible) according to the Debye-Waller fluctuation factors, our data reveal the existing weak correlation between the B-factors and the average number of closed residues according to the FoldUnfold program; the percentage of overlapping characteristics (residue fold/unfold status) of the protein residues from the two methods is about 60-70%. According to the FoldUnfold program, for G-proteins with the posttranslational modifications, the surrounding binding site residues by disordered-promoting glycine and alanine residues conduces to a more flexible position of the binding sites for fatty acid, while methionine, cysteine and isoleucine residues provide more rigid binding sites. Thus, our research demonstrates additional possibilities of the FoldUnfold program for prediction of flexible regions and characteristics of individual residues in a different protein family. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pomponi, Massimo; Bertonati, Claudia; Patamia, Maria; Marta, Maurizio; Derocher, Andrew E; Lydersen, Christian; Kovacs, Kit M; Wiig, Oystein; Bårdgard, Astrid J
2002-11-01
Polar bear (Ursus maritimus) hemoglobin (Hb) shows a low response to 2,3-diphosphoglycerate (2,3-DPG), compared to human Hb A0, even though these proteins have the same 2,3-DPG-binding site. In addition, polar bear Hb shows a high response to chloride and an alkaline Bohr effect (deltalog P50/deltapH) that is significantly greater than that of human Hb A0. The difference in sequence Pro (Hb A0)-->Gly (polar bear Hb) at position A2 in the A helix seems to be critical for reduced binding of 2,3-DPG. Our results also show that the A2 position may influence not only the flexibility of the A helix, but that differences in flexibility of the first turn of the A helix may affect the unloading of oxygen for the intrinsic ligand affinities of the alpha and beta chains. However, preferential binding to either chain can only take place if there is appreciable asymmetric binding of the phosphoric effector. Regarding this point, 31P NMR data suggest a loss of symmetry of the 2,3-DPG-binding site in the deoxyHb-2,3-DPG complex.
Harrell, William A; Vieira, Rebecca C; Ensel, Susan M; Montgomery, Vicki; Guernieri, Rebecca; Eccard, Vanessa S; Campbell, Yvette; Roxas-Duncan, Virginia; Cardellina, John H; Webb, Robert P; Smith, Leonard A
2017-02-01
Our initial discovery of 8-hydroxyquinoline inhibitors of BoNT/A and separation/testing of enantiomers of one of the more active leads indicated considerable flexibility in the binding site. We designed a limited study to investigate this flexibility and probe structure-activity relationships; utilizing the Betti reaction, a 36 compound matrix of quinolinol BoNT/A LC inhibitors was developed using three 8-hydroxyquinolines, three heteroaromatic amines, and four substituted benzaldehydes. This study has revealed some of the most effective quinolinol-based BoNT/A inhibitors to date, with 7 compounds displaying IC 50 values ⩽1μM and 11 effective at ⩽2μM in an ex vivo assay. Published by Elsevier Ltd.
Knowledge-Guided Docking of WW Domain Proteins and Flexible Ligands
NASA Astrophysics Data System (ADS)
Lu, Haiyun; Li, Hao; Banu Bte Sm Rashid, Shamima; Leow, Wee Kheng; Liou, Yih-Cherng
Studies of interactions between protein domains and ligands are important in many aspects such as cellular signaling. We present a knowledge-guided approach for docking protein domains and flexible ligands. The approach is applied to the WW domain, a small protein module mediating signaling complexes which have been implicated in diseases such as muscular dystrophy and Liddle’s syndrome. The first stage of the approach employs a substring search for two binding grooves of WW domains and possible binding motifs of peptide ligands based on known features. The second stage aligns the ligand’s peptide backbone to the two binding grooves using a quasi-Newton constrained optimization algorithm. The backbone-aligned ligands produced serve as good starting points to the third stage which uses any flexible docking algorithm to perform the docking. The experimental results demonstrate that the backbone alignment method in the second stage performs better than conventional rigid superposition given two binding constraints. It is also shown that using the backbone-aligned ligands as initial configurations improves the flexible docking in the third stage. The presented approach can also be applied to other protein domains that involve binding of flexible ligand to two or more binding sites.
Characterizing Solution Surface Loop Conformational Flexibility of the GM2 Activator Protein
2015-01-01
GM2AP has a β-cup topology with numerous X-ray structures showing multiple conformations for some of the surface loops, revealing conformational flexibility that may be related to function, where function is defined as either membrane binding associated with ligand binding and extraction or interaction with other proteins. Here, site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and molecular dynamic (MD) simulations are used to characterize the mobility and conformational flexibility of various structural regions of GM2AP. A series of 10 single cysteine amino acid substitutions were generated, and the constructs were chemically modified with the methanethiosulfonate spin label. Continuous wave (CW) EPR line shapes were obtained and subsequently simulated using the microscopic order macroscopic disorder (MOMD) program. Line shapes for sites that have multiple conformations in the X-ray structures required two spectral components, whereas spectra of the remaining sites were adequately fit with single-component parameters. For spin labeled sites L126C and I66C, spectra were acquired as a function of temperature, and simulations provided for the determination of thermodynamic parameters associated with conformational change. Binding to GM2 ligand did not alter the conformational flexibility of the loops, as evaluated by EPR and NMR spectroscopies. These results confirm that the conformational flexibility observed in the surface loops of GM2AP crystals is present in solution and that the exchange is slow on the EPR time scale (>ns). Furthermore, MD simulation results are presented and agree well with the conformational heterogeneity revealed by SDSL. PMID:25127419
Calmodulin fishing with a structurally disordered bait triggers CyaA catalysis
O’Brien, Darragh P.; Durand, Dominique; Voegele, Alexis; Hourdel, Véronique; Davi, Marilyne; Chamot-Rooke, Julia; Vachette, Patrice; Brier, Sébastien; Ladant, Daniel
2017-01-01
Once translocated into the cytosol of target cells, the catalytic domain (AC) of the adenylate cyclase toxin (CyaA), a major virulence factor of Bordetella pertussis, is potently activated by binding calmodulin (CaM) to produce supraphysiological levels of cAMP, inducing cell death. Using a combination of small-angle X-ray scattering (SAXS), hydrogen/deuterium exchange mass spectrometry (HDX-MS), and synchrotron radiation circular dichroism (SR-CD), we show that, in the absence of CaM, AC exhibits significant structural disorder, and a 75-residue-long stretch within AC undergoes a disorder-to-order transition upon CaM binding. Beyond this local folding, CaM binding induces long-range allosteric effects that stabilize the distant catalytic site, whilst preserving catalytic loop flexibility. We propose that the high enzymatic activity of AC is due to a tight balance between the CaM-induced decrease of structural flexibility around the catalytic site and the preservation of catalytic loop flexibility, allowing for fast substrate binding and product release. The CaM-induced dampening of AC conformational disorder is likely relevant to other CaM-activated enzymes. PMID:29287065
RBind: computational network method to predict RNA binding sites.
Wang, Kaili; Jian, Yiren; Wang, Huiwen; Zeng, Chen; Zhao, Yunjie
2018-04-26
Non-coding RNA molecules play essential roles by interacting with other molecules to perform various biological functions. However, it is difficult to determine RNA structures due to their flexibility. At present, the number of experimentally solved RNA-ligand and RNA-protein structures is still insufficient. Therefore, binding sites prediction of non-coding RNA is required to understand their functions. Current RNA binding site prediction algorithms produce many false positive nucleotides that are distance away from the binding sites. Here, we present a network approach, RBind, to predict the RNA binding sites. We benchmarked RBind in RNA-ligand and RNA-protein datasets. The average accuracy of 0.82 in RNA-ligand and 0.63 in RNA-protein testing showed that this network strategy has a reliable accuracy for binding sites prediction. The codes and datasets are available at https://zhaolab.com.cn/RBind. yjzhaowh@mail.ccnu.edu.cn. Supplementary data are available at Bioinformatics online.
Hari, Sanjay B.; Perera, B. Gayani K.; Ranjitkar, Pratistha; Seeliger, Markus A.; Maly, Dustin J.
2013-01-01
Over the last decade, an increasingly diverse array of potent and selective inhibitors that target the ATP-binding sites of protein kinases have been developed. Many of these inhibitors, like the clinically approved drug imatinib (Gleevec), stabilize a specific catalytically inactive ATP-binding site conformation of their kinases targets. Imatinib is notable in that it is highly selective for its kinase target, Abl, over other closely-related tyrosine kinases, like Src. In addition, imatinib is highly sensitive to the phosphorylation state of Abl's activation loop, which is believed to be a general characteristic of all inhibitors that stabilize a similar inactive ATP-binding site conformation. In this report, we perform a systematic analysis of a diverse series of ATP-competitive inhibitors that stabilize a similar inactive ATP-binding site conformation as imatinib with the tyrosine kinases Src and Abl. In contrast to imatinib, many of these inhibitors have very similar potencies against Src and Abl. Furthermore, only a subset of this class of inhibitors is sensitive to the phosphorylation state of the activation loop of these kinases. In attempting to explain this observation, we have uncovered an unexpected correlation between Abl's activation loop and another flexible active site feature, called the phosphate-binding loop (p-loop). These studies shed light on how imatinib is able to obtain its high target selectivity and reveal how the conformational preference of flexible active site regions can vary between closely related kinases. PMID:24106839
Conformational flexibility of DENV NS2B/NS3pro: from the inhibitor effect to the serotype influence
NASA Astrophysics Data System (ADS)
Piccirillo, Erika; Merget, Benjamin; Sotriffer, Christoph A.; do Amaral, Antonia T.
2016-03-01
The dengue virus (DENV) has four well-known serotypes, namely DENV1 to DENV4, which together cause 50-100 million infections worldwide each year. DENV NS2B/NS3pro is a protease recognized as a valid target for DENV antiviral drug discovery. However, NS2B/NS3pro conformational flexibility, involving in particular the NS2B region, is not yet completely understood and, hence, a big challenge for any virtual screening (VS) campaign. Molecular dynamics (MD) simulations were performed in this study to explore the DENV3 NS2B/NS3pro binding-site flexibility and obtain guidelines for further VS studies. MD simulations were done with and without the Bz-nKRR-H inhibitor, showing that the NS2B region stays close to the NS3pro core even in the ligand-free structure. Binding-site conformational states obtained from the simulations were clustered and further analysed using GRID/PCA, identifying four conformations of potential importance for VS studies. A virtual screening applied to a set of 31 peptide-based DENV NS2B/NS3pro inhibitors, taken from literature, illustrated that selective alternative pharmacophore models can be constructed based on conformations derived from MD simulations. For the first time, the NS2B/NS3pro binding-site flexibility was evaluated for all DENV serotypes using homology models followed by MD simulations. Interestingly, the number of NS2B/NS3pro conformational states differed depending on the serotype. Binding-site differences could be identified that may be crucial to subsequent VS studies.
Giannotti, Marina I; Cabeza de Vaca, Israel; Artés, Juan M; Sanz, Fausto; Guallar, Victor; Gorostiza, Pau
2015-09-10
The structural basis of the low reorganization energy of cupredoxins has long been debated. These proteins reconcile a conformationally heterogeneous and exposed metal-chelating site with the highly rigid copper center required for efficient electron transfer. Here we combine single-molecule mechanical unfolding experiments with statistical analysis and computer simulations to show that the metal-binding region of apo-azurin is mechanically flexible and that high mechanical stability is imparted by copper binding. The unfolding pathway of the metal site depends on the pulling residue and suggests that partial unfolding of the metal-binding site could be facilitated by the physical interaction with certain regions of the redox protein.
Structural Insights into the Role of the Cyclic Backbone in a Squash Trypsin Inhibitor*
Daly, Norelle L.; Thorstholm, Louise; Greenwood, Kathryn P.; King, Gordon J.; Rosengren, K. Johan; Heras, Begoña; Martin, Jennifer L.; Craik, David J.
2013-01-01
MCoTI-II is a head-to-tail cyclic peptide with potent trypsin inhibitory activity and, on the basis of its exceptional proteolytic stability, is a valuable template for the design of novel drug leads. Insights into inhibitor dynamics and interactions with biological targets are critical for drug design studies, particularly for protease targets. Here, we show that the cyclization and active site loops of MCoTI-II are flexible in solution, but when bound to trypsin, the active site loop converges to a single well defined conformation. This finding of reduced flexibility on binding is in contrast to a recent study on the homologous peptide MCoTI-I, which suggested that regions of the peptide are more flexible upon binding to trypsin. We provide a possible explanation for this discrepancy based on degradation of the complex over time. Our study also unexpectedly shows that the cyclization loop, not present in acyclic homologues, facilitates potent trypsin inhibitory activity by engaging in direct binding interactions with trypsin. PMID:24169696
Flexibility and mutagenic resiliency of glycosyltransferases.
Bay, Marie Lund; Cuesta-Seijo, Jose A; Weadge, Joel T; Persson, Mattias; Palcic, Monica M
2014-10-01
The human blood group A and B antigens are synthesized by two highly homologous enzymes, glycosyltransferase A (GTA) and glycosyltransferase B (GTB), respectively. These enzymes catalyze the transfer of either GalNAc or Gal from their corresponding UDP-donors to αFuc1-2βGal-R terminating acceptors. GTA and GTB differ at only four of 354 amino acids (R176G, G235S, L266M, G268A), which alter the donor specificity from UDP-GalNAc to UDP-Gal. Blood type O individuals synthesize truncated or non-functional enzymes. The cloning, crystallization and X-ray structure elucidations for GTA and GTB have revealed key residues responsible for donor discrimination and acceptor binding. Structural studies suggest that numerous conformational changes occur during the catalytic cycle. Over 300 ABO alleles are tabulated in the blood group antigen mutation database (BGMUT) that provides a framework for structure-function studies. Natural mutations are found in all regions of GTA and GTB from the active site, flexible loops, stem region and surfaces remote from the active site. Our characterizations of natural mutants near a flexible loop (V175M), on a remote surface site (P156L), in the metal binding motif (M212V) and near the acceptor binding site (L232P) demonstrate the resiliency of GTA and GTB to mutagenesis.
A flexible docking scheme to explore the binding selectivity of PDZ domains.
Gerek, Z Nevin; Ozkan, S Banu
2010-05-01
Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using ROSETTALIGAND, we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density-95/Dlg/ZO-1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 A. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately.
A flexible docking scheme to explore the binding selectivity of PDZ domains
Gerek, Z Nevin; Ozkan, S Banu
2010-01-01
Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using RosettaLigand, we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density-95/Dlg/ZO-1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 Å. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately. PMID:20196074
Anisotropic energy flow and allosteric ligand binding in albumin
NASA Astrophysics Data System (ADS)
Li, Guifeng; Magana, Donny; Dyer, R. Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Anisotropic energy flow and allosteric ligand binding in albumin.
Li, Guifeng; Magana, Donny; Dyer, R Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Anisotropic energy flow and allosteric ligand binding in albumin
Li, Guifeng; Magana, Donny; Dyer, R. Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. PMID:24445265
Twin hydroxymethyluracil-A base pair steps define the binding site for the DNA-binding protein TF1.
Grove, A; Figueiredo, M L; Galeone, A; Mayol, L; Geiduschek, E P
1997-05-16
The DNA-bending protein TF1 is the Bacillus subtilis bacteriophage SPO1-encoded homolog of the bacterial HU proteins and the Escherichia coli integration host factor. We recently proposed that TF1, which binds with high affinity (Kd was approximately 3 nM) to preferred sites within the hydroxymethyluracil (hmU)-containing phage genome, identifies its binding sites based on sequence-dependent DNA flexibility. Here, we show that two hmU-A base pair steps coinciding with two previously proposed sites of DNA distortion are critical for complex formation. The affinity of TF1 is reduced 10-fold when both of these hmU-A base pair steps are replaced with A-hmU, G-C, or C-G steps; only modest changes in affinity result when substitutions are made at other base pairs of the TF1 binding site. Replacement of all hmU residues with thymine decreases the affinity of TF1 greatly; remarkably, the high affinity is restored when the two hmU-A base pair steps corresponding to previously suggested sites of distortion are reintroduced into otherwise T-containing DNA. T-DNA constructs with 3-base bulges spaced apart by 9 base pairs of duplex also generate nM affinity of TF1. We suggest that twin hmU-A base pair steps located at the proposed sites of distortion are key to target site selection by TF1 and that recognition is based largely, if not entirely, on sequence-dependent DNA flexibility.
Flexible DNA binding of the BTB/POZ-domain protein FBI-1.
Pessler, Frank; Hernandez, Nouria
2003-08-01
POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valley, Cary T.; Porter, Douglas F.; Qiu, Chen
2012-06-28
mRNA control hinges on the specificity and affinity of proteins for their RNA binding sites. Regulatory proteins must bind their own sites and reject even closely related noncognate sites. In the PUF [Pumilio and fem-3 binding factor (FBF)] family of RNA binding proteins, individual proteins discriminate differences in the length and sequence of binding sites, allowing each PUF to bind a distinct battery of mRNAs. Here, we show that despite these differences, the pattern of RNA interactions is conserved among PUF proteins: the two ends of the PUF protein make critical contacts with the two ends of the RNA sites.more » Despite this conserved 'two-handed' pattern of recognition, the RNA sequence is flexible. Among the binding sites of yeast Puf4p, RNA sequence dictates the pattern in which RNA bases are flipped away from the binding surface of the protein. Small differences in RNA sequence allow new modes of control, recruiting Puf5p in addition to Puf4p to a single site. This embedded information adds a new layer of biological meaning to the connections between RNA targets and PUF proteins.« less
Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J
2017-11-01
Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.
NASA Astrophysics Data System (ADS)
Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.
2017-11-01
Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.
Allosteric Ligand Binding and Anisotropic Energy Flow in Albumin
NASA Astrophysics Data System (ADS)
Dyer, Brian
2014-03-01
Protein allostery usually involves propagation of local structural changes through the protein to a remote site. Coupling of structural changes at remote sites is thought to occur through anisotropic energy transport, but the nature of this process is poorly understood. We have studied the relationship between allosteric interactions of remote ligand binding sites of the protein and energy flow through the structure of bovine serum albumin (BSA). We applied ultrafast infrared spectroscopy to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic flow through the protein structure following input of thermal energy into the flexible ligand binding sites. We also observe anisotropic heat flow through the structure, without local heating of the rigid helix bundles that connect these sites. We will discuss the implications of this efficient energy transport mechanism with regard to the allosteric propagation of binding energy through the connecting helix structures.
Subrahmanyam, S; Cronan, J E
1999-01-21
We report an efficient and flexible in vitro method for the isolation of genomic DNA sequences that are the binding targets of a given DNA binding protein. This method takes advantage of the fact that binding of a protein to a DNA molecule generally increases the rate of migration of the protein in nondenaturing gel electrophoresis. By the use of a radioactively labeled DNA-binding protein and nonradioactive DNA coupled with PCR amplification from gel slices, we show that specific binding sites can be isolated from Escherichia coli genomic DNA. We have applied this method to isolate a binding site for FadR, a global regulator of fatty acid metabolism in E. coli. We have also isolated a second binding site for BirA, the biotin operon repressor/biotin ligase, from the E. coli genome that has a very low binding efficiency compared with the bio operator region.
Hilbert, Brendan J.; Hayes, Janelle A.; Stone, Nicholas P.; Xu, Rui-Gang
2017-01-01
Abstract Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA. PMID:28082398
"Reverse fleximers": introduction of a series of 5-substituted carbocyclic uridine analogues.
Sadler, Joshua M; Ojewoye, Olubukola; Seley-Radtke, Katherine L
2008-01-01
Nucleosides are ubiquitous in biological systems and as such, have been a focus of medicinal chemistry research in the search for new and potent therapeutic compounds. There are a number of modified nucleosides on the market, however increasing reports of resistance by mutation of either the enzyme binding site or the pathway that they are designed to interrupt are surfacing. As shown in recent reports, a candidate that can change conformation and still maintain recognition by the target enzyme would be highly desirable, and it is for this reason that flexible substrates have recently been sought as potential therapeutics. With this goal in mind, we have begun investigation into novel flexible scaffolds capable of overcoming viral resistance mechanisms resulting from binding site mutations.
Edwards, Achelle A.; Mason, Jennifer M.; Clinch, Keith; Tyler, Peter C.; Evans, Gary B.; Schramm, Vern L.
2009-01-01
Human purine nucleoside phosphorylase (PNP) belongs to the trimeric class of PNPs and is essential for catabolism of deoxyguanosine. Genetic deficiency of PNP in humans causes a specific T-cell immune deficiency and transition state analogue inhibitors of PNP are in development for treatment of T-cell cancers and autoimmune disorders. Four generations of Immucillins have been developed, each of which contains inhibitors binding with picomolar affinity to human PNP. Full inhibition of PNP occurs upon binding to the first of three subunits and binding to subsequent sites occurs with negative cooperativity. In contrast, substrate analogue and product bind without cooperativity. Titrations of human PNP using isothermal calorimetery indicate that binding of a structurally rigid first-generation Immucillin (K d = 56 pM) is driven by large negative enthalpy values (ΔH = −21.2 kcal/mol) with a substantial entropic (-TΔS) penalty. The tightest-binding inhibitors (K d = 5 to 9 pM) have increased conformational flexibility. Despite their conformational freedom in solution, flexible inhibitors bind with high affinity because of reduced entropic penalties. Entropic penalties are proposed to arise from conformational freezing of the PNP·inhibitor complex with the entropy term dominated by protein dynamics. The conformationally flexible Immucillins reduce the system entropic penalty. Disrupting the ribosyl 5’-hydroxyl interaction of transition state analogues with PNP causes favorable entropy of binding. Tight binding of the seventeen Immucillins is characterized by large enthalpic contributions, emphasizing their similarity to the transition state. By introducing flexibility into the inhibitor structure, the enthalpy-entropy compensation pattern is altered to permit tighter binding. PMID:19425594
Stanic-Vucinic, Dragana; Nikolic, Milan; Milcic, Milos; Cirkovic Velickovic, Tanja
2016-01-01
Phycocyanobilin (PCB) binds with high affinity (2.2 x 106 M-1 at 25°C) to human serum albumin (HSA) at sites located in IB and IIA subdomains. The aim of this study was to examine effects of PCB binding on protein conformation and stability. Using 300 ns molecular dynamics (MD) simulations, UV-VIS spectrophotometry, CD, FT-IR, spectrofluorimetry, thermal denaturation and susceptibility to trypsin digestion, we studied the effects of PCB binding on the stability and rigidity of HSA, as well as the conformational changes in PCB itself upon binding to the protein. MD simulation results demonstrated that HSA with PCB bound at any of the two sites showed greater rigidity and lower overall and individual domain flexibility compared to free HSA. Experimental data demonstrated an increase in the α-helical content of the protein and thermal and proteolytic stability upon ligand binding. PCB bound to HSA undergoes a conformational change to a more elongated conformation in the binding pockets of HSA. PCB binding to HSA stabilizes the structure of this flexible transport protein, making it more thermostable and resistant to proteolysis. The results from this work explain at molecular level, conformational changes and stabilization of HSA structure upon ligand binding. The resultant increased thermal and proteolytic stability of HSA may provide greater longevity to HSA in plasma. PMID:27959940
Chouquet, Anne; Païdassi, Helena; Ling, Wai Li; Frachet, Philippe; Houen, Gunnar; Arlaud, Gérard J.; Gaboriaud, Christine
2011-01-01
In the endoplasmic reticulum, calreticulin acts as a chaperone and a Ca2+-signalling protein. At the cell surface, it mediates numerous important biological effects. The crystal structure of the human calreticulin globular domain was solved at 1.55 Å resolution. Interactions of the flexible N-terminal extension with the edge of the lectin site are consistently observed, revealing a hitherto unidentified peptide-binding site. A calreticulin molecular zipper, observed in all crystal lattices, could further extend this site by creating a binding cavity lined by hydrophobic residues. These data thus provide a first structural insight into the lectin-independent binding properties of calreticulin and suggest new working hypotheses, including that of a multi-molecular mechanism. PMID:21423620
Interference between Triplex and Protein Binding to Distal Sites on Supercoiled DNA.
Noy, Agnes; Maxwell, Anthony; Harris, Sarah A
2017-02-07
We have explored the interdependence of the binding of a DNA triplex and a repressor protein to distal recognition sites on supercoiled DNA minicircles using MD simulations. We observe that the interaction between the two ligands through their influence on their DNA template is determined by a subtle interplay of DNA mechanics and electrostatics, that the changes in flexibility induced by ligand binding play an important role and that supercoiling can instigate additional ligand-DNA contacts that would not be possible in simple linear DNA sequences. Copyright © 2017. Published by Elsevier Inc.
Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.
2013-11-20
Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures ofmore » IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.« less
“Reverse Fleximers”: Introduction of a series of 5-substituted carbocyclic uridine analogues
Sadler, Joshua M.; Ojewoye, Olubukola; Seley-Radtke, Katherine L.
2009-01-01
Nucleosides are ubiquitous in biological systems and as such, have been a focus of medicinal chemistry research in the search for new and potent therapeutic compounds. There are a number of modified nucleosides on the market, however increasing reports of resistance by mutation of either the enzyme binding site or the pathway that they are designed to interrupt are surfacing. As shown in recent reports, a candidate that can change conformation and still maintain recognition by the target enzyme would be highly desirable, and it is for this reason that flexible substrates have recently been sought as potential therapeutics. With this goal in mind, we have begun investigation into novel flexible scaffolds capable of overcoming viral resistance mechanisms resulting from binding site mutations. PMID:18776508
Purohit, Prasad
2011-01-01
The extent to which agonists activate synaptic receptor-channels depends on both the intrinsic tendency of the unliganded receptor to open and the amount of agonist binding energy realized in the channel-opening process. We examined mutations of the nicotinic acetylcholine receptor transmitter binding site (α subunit loop B) with regard to both of these parameters. αGly147 is an “activation” hinge where backbone flexibility maintains high values for intrinsic gating, the affinity of the resting conformation for agonists and net ligand binding energy. αGly153 is a “deactivation” hinge that maintains low values for these parameters. αTrp149 (between these two glycines) serves mainly to provide ligand binding energy for gating. We propose that a concerted motion of the two glycine hinges (plus other structural elements at the binding site) positions αTrp149 so that it provides physiologically optimal binding and gating function at the nerve-muscle synapse. PMID:21115636
Bolia, Ashini; Gerek, Z. Nevin; Ozkan, S. Banu
2016-01-01
Molecular docking serves as an important tool in modeling protein–ligand interactions. However, it is still challenging to incorporate overall receptor flexibility, especially backbone flexibility, in docking due to the large conformational space that needs to be sampled. To overcome this problem, we developed a novel flexible docking approach, BP-Dock (Backbone Perturbation-Dock) that can integrate both backbone and side chain conformational changes induced by ligand binding through a multi-scale approach. In the BP-Dock method, we mimic the nature of binding-induced events as a first-order approximation by perturbing the residues along the protein chain with a small Brownian kick one at a time. The response fluctuation profile of the chain upon these perturbations is computed using the perturbation response scanning method. These response fluctuation profiles are then used to generate binding-induced multiple receptor conformations for ensemble docking. To evaluate the performance of BP-Dock, we applied our approach on a large and diverse data set using unbound structures as receptors. We also compared the BP-Dock results with bound and unbound docking, where overall receptor flexibility was not taken into account. Our results highlight the importance of modeling backbone flexibility in docking for recapitulating the experimental binding affinities, especially when an unbound structure is used. With BP-Dock, we can generate a wide range of binding site conformations realized in nature even in the absence of a ligand that can help us to improve the accuracy of unbound docking. We expect that our fast and efficient flexible docking approach may further aid in our understanding of protein–ligand interactions as well as virtual screening of novel targets for rational drug design. PMID:24380381
PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information
Wu, Hao; Ji, Hongkai
2014-01-01
ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116
NASA Astrophysics Data System (ADS)
Grasselli, Mariano; Cascone, Osvaldo; Anspach, F. Birger; Delfino, Jose M.
2002-12-01
Lactoferrin (Lf) is a non-heme, iron binding protein present in many physiological fluids of vertebrates where its main role is the microbicidal activity. It has been isolated by different methods, including dye-affinity chromatography. Red HE-3B is one of the most common triazinic dyes applied in protein purification, but scant knowledge is available on structural details and on the energetics of its interaction with proteins. In this work we present a computational approach useful for identifying possible binding sites for Red HE-3B in apo and holo forms of Lfs from human and bovine source. A new geometrical description of Red HE-3B is introduced which greatly simplifies the conformational analysis. This approach proved to be of particular advantage for addressing conformational ensembles of highly flexible molecules. Predictions from this analysis were correlated with experimentally observed dye-binding sites, as mapped by protection from proteolysis in Red HE-3B/Lf complexes. This method could bear relevance for the screening of possible dye-binding sites in proteins whose structure is known and as a potential tool for the design of engineered protein variants which could be purified by dye-affinity chromatography.
Grasselli, Mariano; Cascone, Osvaldo; Birger Anspach, F; Delfino, Jose M
2002-12-01
Lactoferrin (Lf) is a non-heme, iron binding protein present in many physiological fluids of vertebrates where its main role is the microbicidal activity. It has been isolated by different methods, including dye-affinity chromatography. Red HE-3B is one of the most common triazinic dyes applied in protein purification, but scant knowledge is available on structural details and on the energetics of its interaction with proteins. In this work we present a computational approach useful for identifying possible binding sites for Red HE-3B in apo and holo forms of Lfs from human and bovine source. A new geometrical description of Red HE-3B is introduced which greatly simplifies the conformational analysis. This approach proved to be of particular advantage for addressing conformational ensembles of highly flexible molecules. Predictions from this analysis were correlated with experimentally observed dye-binding sites, as mapped by protection from proteolysis in Red HE-3B/Lf complexes. This method could bear relevance for the screening of possible dye-binding sites in proteins whose structure is known and as a potential tool for the design of engineered protein variants which could be purified by dye-affinity chromatography.
Mhashal, Anil R; Choudhury, Chandan Kumar; Roy, Sudip
2016-03-01
Helicases are enzymes that unwind double-stranded DNA (dsDNA) into its single-stranded components. It is important to understand the binding and unbinding of ATP from the active sites of helicases, as this knowledge can be used to elucidate the functionality of helicases during the unwinding of dsDNA. In this work, we investigated the unbinding of ATP and its effect on the active-site residues of the helicase PcrA using molecular dynamic simulations. To mimic the unbinding process of ATP from the active site of the helicase, we simulated the application of an external force that pulls ATP from the active site and computed the free-energy change during this process. We estimated an energy cost of ~85 kJ/mol for the transformation of the helicase from the ATP-bound state (1QHH) to the ATP-free state (1PJR). Unbinding led to conformational changes in the residues of the protein at the active site. Some of the residues at the ATP-binding site were significantly reoriented when the ATP was pulled. We observed a clear competition between reorientation of the residues and energy stabilization by hydrogen bonds between the ATP and active-site residues. We also checked the flexibility of the PcrA protein using a principal component analysis of domain motion. We found that the ATP-free state of the helicase is more flexible than the ATP-bound state.
Demir, Özlem; Baronio, Roberta; Salehi, Faezeh; Wassman, Christopher D.; Hall, Linda; Hatfield, G. Wesley; Chamberlin, Richard; Kaiser, Peter; Lathrop, Richard H.; Amaro, Rommie E.
2011-01-01
The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain (“cancer mutants”). Activity can be restored by second-site suppressor mutations (“rescue mutants”). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r2 = 0.77) with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants. PMID:22028641
Laine, Elodie; Martínez, Leandro; Blondel, Arnaud; Malliavin, Thérèse E
2010-10-06
Calmodulin (CaM) is a remarkably flexible protein which can bind multiple targets in response to changes in intracellular calcium concentration. It contains four calcium-binding sites, arranged in two globular domains. The calcium affinity of CaM N-terminal domain (N-CaM) is dramatically reduced when the complex with the edema factor (EF) of Bacillus anthracis is formed. Here, an atomic explanation for this reduced affinity is proposed through molecular dynamics simulations and free energy perturbation calculations of the EF-CaM complex starting from different crystallographic models. The simulations show that electrostatic interactions between CaM and EF disfavor the opening of N-CaM domains usually induced by calcium binding. Relative calcium affinities of the N-CaM binding sites are probed by free energy perturbation, and dissociation probabilities are evaluated with locally enhanced sampling simulations. We show that EF impairs calcium binding on N-CaM through a direct conformational restraint on Site 1, by an indirect destabilization of Site 2, and by reducing the cooperativity between the two sites. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DNA-binding regulates site-specific ubiquitination of IRF-1.
Landré, Vivien; Pion, Emmanuelle; Narayan, Vikram; Xirodimas, Dimitris P; Ball, Kathryn L
2013-02-01
Understanding the determinants for site-specific ubiquitination by E3 ligase components of the ubiquitin machinery is proving to be a challenge. In the present study we investigate the role of an E3 ligase docking site (Mf2 domain) in an intrinsically disordered domain of IRF-1 [IFN (interferon) regulatory factor-1], a short-lived IFNγ-regulated transcription factor, in ubiquitination of the protein. Ubiquitin modification of full-length IRF-1 by E3 ligases such as CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and MDM2 (murine double minute 2), which dock to the Mf2 domain, was specific for lysine residues found predominantly in loop structures that extend from the DNA-binding domain, whereas no modification was detected in the more conformationally flexible C-terminal half of the protein. The E3 docking site was not available when IRF-1 was in its DNA-bound conformation and cognate DNA-binding sequences strongly suppressed ubiquitination, highlighting a strict relationship between ligase binding and site-specific modification at residues in the DNA-binding domain. Hyperubiquitination of a non-DNA-binding mutant supports a mechanism where an active DNA-bound pool of IRF-1 is protected from polyubiquitination and degradation.
Song, Xiufeng; Gurevich, Eugenia V.; Gurevich, Vsevolod V.
2008-01-01
Arrestins are multi-functional regulators of G protein-coupled receptors. Receptor-bound arrestins interact with >30 remarkably diverse proteins and redirect the signaling to G protein-independent pathways. The functions of free arrestins are poorly understood, and the interaction sites of the non-receptor arrestin partners are largely unknown. In this study, we show that cone arrestin, the least studied member of the family, binds c-Jun N-terminal kinase (JNK3) and Mdm2 and regulates their subcellular distribution. Using arrestin mutants with increased or reduced structural flexibility, we demonstrate that arrestin in all conformations binds JNK3 comparably, whereas Mdm2 preferentially binds cone arrestin ‘frozen’ in the basal state. To localize the interaction sites, we expressed separate N- and C-domains of cone and rod arrestins and found that individual domains bind JNK3 and remove it from the nucleus as efficiently as full-length proteins. Thus, the arrestin binding site for JNK3 includes elements in both domains with the affinity of partial sites on individual domains sufficient for JNK3 relocalization. N-domain of rod arrestin binds Mdm2, which localizes its main interaction site to this region. Comparable binding of JNK3 and Mdm2 to four arrestin subtypes allowed us to identify conserved residues likely involved in these interactions. PMID:17680991
Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies
NASA Astrophysics Data System (ADS)
Pang, Yuan-Ping; Kozikowski, Alan P.
1994-12-01
We have performed docking studies with the SYSDOC program on acetylcholinesterase (AChE) to predict the binding sites in AChE of huperzine A (HA), which is a potent and selective, reversible inhibitor of AChE. The unique aspects of our docking studies include the following: (i) Molecular flexibility of the guest and the host is taken into account, which permits both to change their conformations upon binding. (ii) The binding energy is evaluated by a sum of energies of steric, electrostatic and hydrogen bonding interactions. In the energy calculation no grid approximation is used, and all hydrogen atoms of the system are treated explicitly. (iii) The energy of cation-π interactions between the guest and the host, which is important in the binding of AChE, is included in the calculated binding energy. (iv) Docking is performed in all regions of the host's binding cavity. Based on our docking studies and the pharmacological results reported for HA and its analogs, we predict that HA binds to the bottom of the binding cavity of AChE (the gorge) with its ammonium group interacting with Trp84, Phe330, Glu199 and Asp72 (catalytic site). At the the opening of the gorge with its ammonium group partially interacting with Trp279 (peripheral site). At the catalytic site, three partially overlapping subsites of HA were identified which might provide a dynamic view of binding of HA to the catalytic site.
Developing a Dynamic Pharmacophore Model for HIV-1 Integrase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Heather A.; Masukawa, Keven M.; Rubins, Kathleen
2000-05-11
We present the first receptor-based pharmacophore model for HIV-1 integrase. The development of ''dynamic'' pharmacophore models is a new method that accounts for the inherent flexibility of the active site and aims to reduce the entropic penalties associated with binding a ligand. Furthermore, this new drug discovery method overcomes the limitation of an incomplete crystal structure of the target protein. A molecular dynamics (MD) simulation describes the flexibility of the uncomplexed protein. Many conformational models of the protein are saved from the MD simulations and used in a series of multi-unit search for interacting conformers (MUSIC) simulations. MUSIC is amore » multiple-copy minimization method, available in the BOSS program; it is used to determine binding regions for probe molecules containing functional groups that complement the active site. All protein conformations from the MD are overlaid, and conserved binding regions for the probe molecules are identified. Those conserved binding regions define the dynamic pharmacophore model. Here, the dynamic model is compared to known inhibitors of the integrase as well as a three-point, ligand-based pharmacophore model from the literature. Also, a ''static'' pharmacophore model was determined in the standard fashion, using a single crystal structure. Inhibitors thought to bind in the active site of HIV-1 integrase fit the dynamic model but not the static model. Finally, we have identified a set of compounds from the Available Chemicals Directory that fit the dynamic pharmacophore model, and experimental testing of the compounds has confirmed several new inhibitors.« less
Factors governing the substitution of La3+ for Ca2+ and Mg2+ in metalloproteins: a DFT/CDM study.
Dudev, Todor; Chang, Li-Ying; Lim, Carmay
2005-03-23
Trivalent lanthanide cations are extensively being used in biochemical experiments to probe various dication-binding sites in proteins; however, the factors governing the binding specificity of lanthanide cations for these binding sites remain unclear. Hence, we have performed systematic studies to evaluate the interactions between La3+ and model Ca2+ - and Mg2+ -binding sites using density functional theory combined with continuum dielectric methods. The calculations reveal the key factors and corresponding physical bases favoring the substitution of trivalent lanthanides for divalent Ca2+ and Mg2+ in holoproteins. Replacing Ca2+ or Mg2+ with La3+ is facilitated by (1) minimizing the solvent exposure and the flexibility of the metal-binding cavity, (2) freeing both carboxylate oxygen atoms of Asp/Glu side chains in the metal-binding site so that they could bind bidentately to La3+, (3) maximizing the number of metal-bound carboxylate groups in buried sites, but minimizing the number of metal-bound carboxylate groups in solvent-exposed sites, and (4) including an Asn/Gln side chain for sites lined with four Asp/Glu side chains. In proteins bound to both Mg2+ and Ca2+, La3+ would prefer to replace Ca2+, as compared to Mg2+. A second Mg2+-binding site with a net positive charge would hamper the Mg2+ --> La3+ exchange, as compared to the respective mononuclear site, although the La3+ substitution of the first native metal is more favorable than the second one. The findings of this work are in accord with available experimental data.
Bio-inspired network optimization in soft materials — Insights from the plant cell wall
NASA Astrophysics Data System (ADS)
Vincent, R. R.; Cucheval, A.; Hemar, Y.; Williams, M. A. K.
2009-01-01
The dynamic-mechanical responses of ionotropic gels made from the biopolymer pectin have recently been investigated by microrheological experiments and found to exhibit behaviour indicative of semi-flexible polymer networks. In this work we investigate the gelling behaviour of pectin systems in which an enzyme (pectinmethylesterase, PME) is used to liberate ion-binding sites on initially inert polymers, while in the presence of ions. This is in contrast to the previous work, where it was the release of ions (rather than ion-binding groups) that was controlled and the polymers had pre-existing cross-linkable moieties. In stark contrast to the semi-flexible network paradigm of biological gels and the previous work on pectin, the gels studied herein exhibit the properties of chemically cross-linked networks of flexible polymers.
Exploiting protein flexibility to predict the location of allosteric sites
2012-01-01
Background Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. Conclusions We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors. PMID:23095452
Exploiting protein flexibility to predict the location of allosteric sites.
Panjkovich, Alejandro; Daura, Xavier
2012-10-25
Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors.
NASA Astrophysics Data System (ADS)
Jones, Alan M.; Westwood, Isaac M.; Osborne, James D.; Matthews, Thomas P.; Cheeseman, Matthew D.; Rowlands, Martin G.; Jeganathan, Fiona; Burke, Rosemary; Lee, Diane; Kadi, Nadia; Liu, Manjuan; Richards, Meirion; McAndrew, Craig; Yahya, Norhakim; Dobson, Sarah E.; Jones, Keith; Workman, Paul; Collins, Ian; van Montfort, Rob L. M.
2016-10-01
The heat shock protein 70s (HSP70s) are molecular chaperones implicated in many cancers and of significant interest as targets for novel cancer therapies. Several HSP70 inhibitors have been reported, but because the majority have poor physicochemical properties and for many the exact mode of action is poorly understood, more detailed mechanistic and structural insight into ligand-binding to HSP70s is urgently needed. Here we describe the first comprehensive fragment-based inhibitor exploration of an HSP70 enzyme, which yielded an amino-quinazoline fragment that was elaborated to a novel ATP binding site ligand with different physicochemical properties to known adenosine-based HSP70 inhibitors. Crystal structures of amino-quinazoline ligands bound to the different conformational states of the HSP70 nucleotide binding domain highlighted the challenges of a fragment-based approach when applied to this particular flexible enzyme class with an ATP-binding site that changes shape and size during its catalytic cycle. In these studies we showed that Ser275 is a key residue in the selective binding of ATP. Additionally, the structural data revealed a potential functional role for the ATP ribose moiety in priming the protein for the formation of the ATP-bound pre-hydrolysis complex by influencing the conformation of one of the phosphate binding loops.
Nakashima, Keisuke; Nakamura, Takumi; Takeuchi, Satoshi; Shibata, Mikihiro; Demura, Makoto; Tahara, Tahei; Kandori, Hideki
2009-06-18
Halorhodopsin (HR) is a light-driven chloride pump. Cl(-) is bound in the Schiff base region of the retinal chromophore, and unidirectional Cl(-) transport is probably enforced by the specific hydrogen-bonding interaction with the protonated Schiff base and internal water molecules. It is known that HR from Natronobacterium pharaonis (pHR) also pumps NO(3)(-) with similar efficiency, suggesting that NO(3)(-) binds to the Cl(-)-binding site. In the present study, we investigated the properties of the anion-binding site by means of ultrafast pump-probe spectroscopy and low-temperature FTIR spectroscopy. The obtained data were surprisingly similar between pHR-NO(3)(-) and pHR-Cl(-), even though the shapes and sizes of the two anions are quite different. Femtosecond pump-probe spectroscopy showed very similar excited-state dynamics between pHR-NO(3)(-) and pHR-Cl(-). Low-temperature FTIR spectroscopy of unlabeled and [zeta-(15)N]Lys-labeled pHR revealed almost identical hydrogen-bonding strengths of the protonated retinal Schiff base between pHR-NO(3)(-) and pHR-Cl(-), which is similarly strengthened after retinal isomerization. There were spectral variations for water stretching vibrations between pHR-NO(3)(-) and pHR-Cl(-), suggesting that the water molecules hydrate each anion. Nevertheless, the overall spectral features were similar for the two species. These observations strongly suggest that the anion-binding site has a flexible structure and that the interaction between retinal and the anions is weak, despite the presence of an electrostatic interaction. Such a flexible hydrogen-bonding network in the Schiff base region in HR appears to be in remarkable contrast to that in light-driven proton-pumping proteins.
A deep learning framework for modeling structural features of RNA-binding protein targets
Zhang, Sai; Zhou, Jingtian; Hu, Hailin; Gong, Haipeng; Chen, Ligong; Cheng, Chao; Zeng, Jianyang
2016-01-01
RNA-binding proteins (RBPs) play important roles in the post-transcriptional control of RNAs. Identifying RBP binding sites and characterizing RBP binding preferences are key steps toward understanding the basic mechanisms of the post-transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding preferences, discovering a complete structural representation of the RBP targets by integrating their available structural features in all three dimensions is still a challenging task. In this paper, we develop a general and flexible deep learning framework for modeling structural binding preferences and predicting binding sites of RBPs, which takes (predicted) RNA tertiary structural information into account for the first time. Our framework constructs a unified representation that characterizes the structural specificities of RBP targets in all three dimensions, which can be further used to predict novel candidate binding sites and discover potential binding motifs. Through testing on the real CLIP-seq datasets, we have demonstrated that our deep learning framework can automatically extract effective hidden structural features from the encoded raw sequence and structural profiles, and predict accurate RBP binding sites. In addition, we have conducted the first study to show that integrating the additional RNA tertiary structural features can improve the model performance in predicting RBP binding sites, especially for the polypyrimidine tract-binding protein (PTB), which also provides a new evidence to support the view that RBPs may own specific tertiary structural binding preferences. In particular, the tests on the internal ribosome entry site (IRES) segments yield satisfiable results with experimental support from the literature and further demonstrate the necessity of incorporating RNA tertiary structural information into the prediction model. The source code of our approach can be found in https://github.com/thucombio/deepnet-rbp. PMID:26467480
Discovery of Novel Nonactive Site Inhibitors of the Prothrombinase Enzyme Complex.
Kapoor, Karan; McGill, Nicole; Peterson, Cynthia B; Meyers, Harold V; Blackburn, Michael N; Baudry, Jerome
2016-03-28
The risk of serious bleeding is a major liability of anticoagulant drugs that are active-site competitive inhibitors targeting the Factor Xa (FXa) prothrombin (PT) binding site. The present work identifies several new classes of small molecule anticoagulants that can act as nonactive site inhibitors of the prothrombinase (PTase) complex composed of FXa and Factor Va (FVa). These new classes of anticoagulants were identified, using a novel agnostic computational approach to identify previously unrecognized binding pockets at the FXa-FVa interface. From about three million docking calculations of 281,128 compounds in a conformational ensemble of FXa heavy chains identified by molecular dynamics (MD) simulations, 97 compounds and their structural analogues were selected for experimental validation, through a series of inhibition assays. The compound selection was based on their predicted binding affinities to FXa and their ability to successfully bind to multiple protein conformations while showing selectivity for particular binding sites at the FXa/FVa interface. From these, thirty-one (31) compounds were experimentally identified as nonactive site inhibitors. Concentration-based assays further identified 10 compounds represented by four small-molecule families of inhibitors that achieve dose-independent partial inhibition of PTase activity in a nonactive site-dependent and self-limiting mechanism. Several compounds were identified for their ability to bind to protein conformations only seen during MD, highlighting the importance of accounting for protein flexibility in structure-based drug discovery approaches.
Kazazić, Saša; Bertoša, Branimir; Luić, Marija; Mikleušević, Goran; Tarnowski, Krzysztof; Dadlez, Michal; Narczyk, Marta; Bzowska, Agnieszka
2016-01-01
The biologically active form of purine nucleoside phosphorylase (PNP) from Escherichia coli (EC 2.4.2.1) is a homohexamer unit, assembled as a trimer of dimers. Upon binding of phosphate, neighboring monomers adopt different active site conformations, described as open and closed. To get insight into the functions of the two distinctive active site conformations, virtually inactive Arg24Ala mutant is complexed with phosphate; all active sites are found to be in the open conformation. To understand how the sites of neighboring monomers communicate with each other, we have combined H/D exchange (H/DX) experiments with molecular dynamics (MD) simulations. Both methods point to the mobility of the enzyme, associated with a few flexible regions situated at the surface and within the dimer interface. Although H/DX provides an average extent of deuterium uptake for all six hexamer active sites, it was able to indicate the dynamic mechanism of cross-talk between monomers, allostery. Using this technique, it was found that phosphate binding to the wild type (WT) causes arrest of the molecular motion in backbone fragments that are flexible in a ligand-free state. This was not the case for the Arg24Ala mutant. Upon nucleoside substrate/inhibitor binding, some release of the phosphate-induced arrest is observed for the WT, whereas the opposite effects occur for the Arg24Ala mutant. MD simulations confirmed that phosphate is bound tightly in the closed active sites of the WT; conversely, in the open conformation of the active site of the WT phosphate is bound loosely moving towards the exit of the active site. In Arg24Ala mutant binary complex Pi is bound loosely, too.
Fortuna, Sara; Fogolari, Federico; Scoles, Giacinto
2015-01-01
The design of new strong and selective binders is a key step towards the development of new sensing devices and effective drugs. Both affinity and selectivity can be increased through chelation and here we theoretically explore the possibility of coupling two binders through a flexible linker. We prove the enhanced ability of double binders of keeping their target with a simple model where a polymer composed by hard spheres interacts with a spherical macromolecule, such as a protein, through two sticky spots. By Monte Carlo simulations and thermodynamic integration we show the chelating effect to hold for coupling polymers whose radius of gyration is comparable to size of the chelated particle. We show the binding free energy of flexible double binders to be higher than that of two single binders and to be maximized when the binding sites are at distances comparable to the mean free polymer end-to-end distance. The affinity of two coupled binders is therefore predicted to increase non linearly and in turn, by targeting two non-equivalent binding sites, this will lead to higher selectivity. PMID:26496975
Mapping epitopes and antigenicity by site-directed masking
NASA Astrophysics Data System (ADS)
Paus, Didrik; Winter, Greg
2006-06-01
Here we describe a method for mapping the binding of antibodies to the surface of a folded antigen. We first created a panel of mutant antigens (-lactamase) in which single surface-exposed residues were mutated to cysteine. We then chemically tethered the cysteine residues to a solid phase, thereby masking a surface patch centered on each cysteine residue and blocking the binding of antibodies to this region of the surface. By these means we mapped the epitopes of several mAbs directed to -lactamase. Furthermore, by depleting samples of polyclonal antisera to the masked antigens and measuring the binding of each depleted sample of antisera to unmasked antigen, we mapped the antigenicity of 23 different epitopes. After immunization of mice and rabbits with -lactamase in Freund's adjuvant, we found that the antisera reacted with both native and denatured antigen and that the antibody response was mainly directed to an exposed and flexible loop region of the native antigen. By contrast, after immunization in PBS, we found that the antisera reacted only weakly with denatured antigen and that the antibody response was more evenly distributed over the antigenic surface. We suggest that denatured antigen (created during emulsification in Freund's adjuvant) elicits antibodies that bind mainly to the flexible regions of the native protein and that this explains the correlation between antigenicity and backbone flexibility. Denaturation of antigen during vaccination or natural infections would therefore be expected to focus the antibody response to the flexible loops. backbone flexibility | Freund's adjuvant | conformational epitope | antisera
de Waal, Parker W.; Sunden, Kyle F.; Furge, Laura Lowe
2014-01-01
Cytochrome P450 enzymes (CYPs) represent an important enzyme superfamily involved in metabolism of many endogenous and exogenous small molecules. CYP2D6 is responsible for ∼15% of CYP-mediated drug metabolism and exhibits large phenotypic diversity within CYPs with over 100 different allelic variants. Many of these variants lead to functional changes in enzyme activity and substrate selectivity. Herein, a molecular dynamics comparative analysis of four different variants of CYP2D6 was performed. The comparative analysis included simulations with and without SCH 66712, a ligand that is also a mechanism-based inactivator, in order to investigate the possible structural basis of CYP2D6 inactivation. Analysis of protein stability highlighted significantly altered flexibility in both proximal and distal residues from the variant residues. In the absence of SCH 66712, *34, *17-2, and *17-3 displayed more flexibility than *1, and *53 displayed more rigidity. SCH 66712 binding reversed flexibility in *17-2 and *17-3, through *53 remained largely rigid. Throughout simulations with docked SCH 66712, ligand orientation within the heme-binding pocket was consistent with previously identified sites of metabolism and measured binding energies. Subsequent tunnel analysis of substrate access, egress, and solvent channels displayed varied bottle-neck radii. Taken together, our results indicate that SCH 66712 should inactivate these allelic variants, although varied flexibility and substrate binding-pocket accessibility may alter its interaction abilities. PMID:25286176
The Role of Flexibility and Conformational Selection in the Binding Promiscuity of PDZ Domains
Münz, Márton; Hein, Jotun; Biggin, Philip C.
2012-01-01
In molecular recognition, it is often the case that ligand binding is coupled to conformational change in one or both of the binding partners. Two hypotheses describe the limiting cases involved; the first is the induced fit and the second is the conformational selection model. The conformational selection model requires that the protein adopts conformations that are similar to the ligand-bound conformation in the absence of ligand, whilst the induced-fit model predicts that the ligand-bound conformation of the protein is only accessible when the ligand is actually bound. The flexibility of the apo protein clearly plays a major role in these interpretations. For many proteins involved in signaling pathways there is the added complication that they are often promiscuous in that they are capable of binding to different ligand partners. The relationship between protein flexibility and promiscuity is an area of active research and is perhaps best exemplified by the PDZ domain family of proteins. In this study we use molecular dynamics simulations to examine the relationship between flexibility and promiscuity in five PDZ domains: the human Dvl2 (Dishevelled-2) PDZ domain, the human Erbin PDZ domain, the PDZ1 domain of InaD (inactivation no after-potential D protein) from fruit fly, the PDZ7 domain of GRIP1 (glutamate receptor interacting protein 1) from rat and the PDZ2 domain of PTP-BL (protein tyrosine phosphatase) from mouse. We show that despite their high structural similarity, the PDZ binding sites have significantly different dynamics. Importantly, the degree of binding pocket flexibility was found to be closely related to the various characteristics of peptide binding specificity and promiscuity of the five PDZ domains. Our findings suggest that the intrinsic motions of the apo structures play a key role in distinguishing functional properties of different PDZ domains and allow us to make predictions that can be experimentally tested. PMID:23133356
Grasso, Gianvito; Deriu, Marco Agostino; Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea
2017-01-01
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.
Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea
2017-01-01
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine. PMID:29088239
Christensen, Jesper; Cotmore, Susan F.; Tattersall, Peter
2001-01-01
Parvoviral rolling hairpin replication generates palindromic genomic concatemers whose junctions are resolved to give unit-length genomes by a process involving DNA replication initiated at origins derived from each viral telomere. The left-end origin of minute virus of mice (MVM), oriL, contains binding sites for the viral initiator nickase, NS1, and parvovirus initiation factor (PIF), a member of the emerging KDWK family of transcription factors. oriL is generated as an active form, oriLTC, and as an inactive form, oriLGAA, which contains a single additional nucleotide inserted between the NS1 and PIF sites. Here we examined the interactions on oriLTC which lead to activation of NS1 by PIF. The two subunits of PIF, p79 and p96, cooperatively bind two ACGT half-sites, which can be flexibly spaced. When coexpressed from recombinant baculoviruses, the PIF subunits preferentially form heterodimers which, in the presence of ATP, show cooperative binding with NS1 on oriL, but this interaction is preferentially enhanced on oriLTC compared to oriLGAA. Without ATP, NS1 is unable to bind stably to its cognate site, but PIF facilitates this interaction, rendering the NS1 binding site, but not the nick site, resistant to DNase I. Varying the spacing of the PIF half-sites shows that the distance between the NS1 binding site and the NS1-proximal half-site is critical for nickase activation, whereas the position of the distal half-site is unimportant. When expressed separately, both PIF subunits form homodimers that bind site specifically to oriL, but only complexes containing p79 activate the NS1 nickase function. PMID:11435581
Abriata, Luciano A; Vila, Alejandro J; Dal Peraro, Matteo
2014-06-01
Cupredoxins perform copper-mediated long-range electron transfer (ET) in biological systems. Their copper-binding sites have evolved to force copper ions into ET-competent systems with decreased reorganization energy, increased reduction potential, and a distinct electronic structure compared with those of non-ET-competent copper complexes. The entatic or rack-induced state hypothesis explains these special properties in terms of the strain that the protein matrix exerts on the metal ions. This idea is supported by X-ray structures of apocupredoxins displaying "closed" arrangements of the copper ligands like those observed in the holoproteins; however, it implies completely buried copper-binding atoms, conflicting with the notion that they must be exposed for copper loading. On the other hand, a recent work based on NMR showed that the copper-binding regions of apocupredoxins are flexible in solution. We have explored five cupredoxins in their "closed" apo forms through molecular dynamics simulations. We observed that prearranged ligand conformations are not stable as the X-ray data suggest, although they do form part of the dynamic landscape of the apoproteins. This translates into variable flexibility of the copper-binding regions within a rigid fold, accompanied by fluctuations of the hydrogen bonds around the copper ligands. Major conformations with solvent-exposed copper-binding atoms could allow initial binding of the copper ions. An eventual subsequent incursion to the closed state would result in binding of the remaining ligands, trapping the closed conformation thanks to the additional binding energy and the fastening of noncovalent interactions that make up the rack.
Capoferri, Luigi; Leth, Rasmus; ter Haar, Ernst; Mohanty, Arun K; Grootenhuis, Peter D J; Vottero, Eduardo; Commandeur, Jan N M; Vermeulen, Nico P E; Jørgensen, Flemming Steen; Olsen, Lars; Geerke, Daan P
2016-03-01
Cytochrome P450 BM3 (CYP102A1) mutant M11 is able to metabolize a wide range of drugs and drug-like compounds. Among these, M11 was recently found to be able to catalyze formation of human metabolites of mefenamic acid and other nonsteroidal anti-inflammatory drugs (NSAIDs). Interestingly, single active-site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain of the protein mutant M11 was expressed, purified, and crystallized, and its X-ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free-energy calculations to address protein flexibility. In this way, preferred binding modes that are consistent with oxidation at the experimentally observed sites of metabolism (SOMs) were identified. Whereas docking could not be used to retrospectively predict experimental trends in regioselectivity, we were able to rank binding modes in line with the preferred SOMs of mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free-energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active-site mutations. Our findings confirm that use of MD and binding free-energy calculation is useful for studying biocatalysis in those cases in which enzyme binding is a critical event in determining the selective metabolism of a substrate. © 2016 Wiley Periodicals, Inc.
Evaluation of water displacement energetics in protein binding sites with grid cell theory.
Gerogiokas, G; Southey, M W Y; Mazanetz, M P; Heifetz, A; Hefeitz, A; Bodkin, M; Law, R J; Michel, J
2015-04-07
Excess free energies, enthalpies and entropies of water in protein binding sites were computed via classical simulations and Grid Cell Theory (GCT) analyses for three pairs of congeneric ligands in complex with the proteins scytalone dehydratase, p38α MAP kinase and EGFR kinase respectively. Comparative analysis is of interest since the binding modes for each ligand pair differ in the displacement of one binding site water molecule, but significant variations in relative binding affinities are observed. Protocols that vary in their use of restraints on protein and ligand atoms were compared to determine the influence of protein-ligand flexibility on computed water structure and energetics, and to assess protocols for routine analyses of protein-ligand complexes. The GCT-derived binding affinities correctly reproduce experimental trends, but the magnitude of the predicted changes in binding affinities is exaggerated with respect to results from a previous Monte Carlo Free Energy Perturbation study. Breakdown of the GCT water free energies into enthalpic and entropic components indicates that enthalpy changes dominate the observed variations in energetics. In EGFR kinase GCT analyses revealed that replacement of a pyrimidine by a cyanopyridine perturbs water energetics up three hydration shells away from the ligand.
Kölsch, Adrian; Hejazi, Mahdi; Stieger, Kai R; Feifel, Sven C; Kern, Jan F; Müh, Frank; Lisdat, Fred; Lokstein, Heiko; Zouni, Athina
2018-06-08
The binding of photosystem I (PS I) from Thermosynechococcus elongatus to the native cytochrome (cyt) c 6 and cyt c from horse heart (cyt c HH ) was analyzed by oxygen consumption measurements, isothermal titration calorimetry (ITC), and rigid body docking combined with electrostatic computations of binding energies. Although PS I has a higher affinity for cyt c HH than for cyt c 6 , the influence of ionic strength and pH on binding is different in the two cases. ITC and theoretical computations revealed the existence of unspecific binding sites for cyt c HH besides one specific binding site close to P 700 Binding to PS I was found to be the same for reduced and oxidized cyt c HH Based on this information, suitable conditions for cocrystallization of cyt c HH with PS I were found, resulting in crystals with a PS I:cyt c HH ratio of 1:1. A crystal structure at 3.4-Å resolution was obtained, but cyt c HH cannot be identified in the electron density map because of unspecific binding sites and/or high flexibility at the specific binding site. Modeling the binding of cyt c 6 to PS I revealed a specific binding site where the distance and orientation of cyt c 6 relative to P 700 are comparable with cyt c 2 from purple bacteria relative to P 870 This work provides new insights into the binding modes of different cytochromes to PS I, thus facilitating steps toward solving the PS I-cyt c costructure and a more detailed understanding of natural electron transport processes.
Molecular Docking Study on Galantamine Derivatives as Cholinesterase Inhibitors.
Atanasova, Mariyana; Yordanov, Nikola; Dimitrov, Ivan; Berkov, Strahil; Doytchinova, Irini
2015-06-01
A training set of 22 synthetic galantamine derivatives binding to acetylcholinesterase was docked by GOLD and the protocol was optimized in terms of scoring function, rigidity/flexibility of the binding site, presence/absence of a water molecule inside and radius of the binding site. A moderate correlation was found between the affinities of compounds expressed as pIC50 values and their docking scores. The optimized docking protocol was validated by an external test set of 11 natural galantamine derivatives and the correlation coefficient between the docking scores and the pIC50 values was 0.800. The derived relationship was used to analyze the interactions between galantamine derivatives and AChE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pretargeted Molecular Imaging and Radioimmunotherapy
Goldenberg, David M.; Chang, Chien-Hsing; Rossi, Edmund A.; J, William; McBride; Sharkey, Robert M.
2012-01-01
Pretargeting is a multi-step process that first has an unlabeled bispecific antibody (bsMAb) localize within a tumor by virtue of its anti-tumor binding site(s) before administering a small, fast-clearing radiolabeled compound that then attaches to the other portion of the bsMAb. The compound's rapid clearance significantly reduces radiation exposure outside of the tumor and its small size permits speedy delivery to the tumor, creating excellent tumor/nontumor ratios in less than 1 hour. Haptens that bind to an anti-hapten antibody, biotin that binds to streptavidin, or an oligonucleotide binding to a complementary oligonucleotide sequence have all been radiolabeled for use by pretargeting. This review will focus on a highly flexible anti-hapten bsMAb platform that has been used to target a variety of radionuclides to image (SPECT and PET) as well as treat tumors. PMID:22737190
Chakraborty, Srirupa; Zheng, Wenjun
2015-01-27
We have employed molecular dynamics (MD) simulation to investigate, with atomic details, the structural dynamics and energetics of three major ATPase states (ADP, APO, and ATP state) of a human kinesin-1 monomer in complex with a tubulin dimer. Starting from a recently solved crystal structure of ATP-like kinesin-tubulin complex by the Knossow lab, we have used flexible fitting of cryo-electron-microscopy maps to construct new structural models of the kinesin-tubulin complex in APO and ATP state, and then conducted extensive MD simulations (total 400 ns for each state), followed by flexibility analysis, principal component analysis, hydrogen bond analysis, and binding free energy analysis. Our modeling and simulation have revealed key nucleotide-dependent changes in the structure and flexibility of the nucleotide-binding pocket (featuring a highly flexible and open switch I in APO state) and the tubulin-binding site, and allosterically coupled motions driving the APO to ATP transition. In addition, our binding free energy analysis has identified a set of key residues involved in kinesin-tubulin binding. On the basis of our simulation, we have attempted to address several outstanding issues in kinesin study, including the possible roles of β-sheet twist and neck linker docking in regulating nucleotide release and binding, the structural mechanism of ADP release, and possible extension and shortening of α4 helix during the ATPase cycle. This study has provided a comprehensive structural and dynamic picture of kinesin's major ATPase states, and offered promising targets for future mutational and functional studies to investigate the molecular mechanism of kinesin motors.
2013-01-01
The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein–protein interaction prediction and design methods. PMID:24250278
NASA Astrophysics Data System (ADS)
Vendrell-Criado, Victoria; González-Bello, Concepción; Miranda, Miguel A.; Jiménez, M. Consuelo
2018-06-01
Binding of the immunosuppressive agent mycophenolate mofetil (MMP) and its pharmacologically active metabolite mycophenolic acid (MPA) to human serum albumin (HSA) and α1-acid glycoprotein (HAAG) has been investigated by means of an integrated approach involving selective excitation of the drug fluorophore, following their UV-A triggered fluorescence and docking studies. The formation of the protein/ligand complexes was evidenced by a dramatic enhancement of the fluorescence intensity and a hypsochromic shift of the emission band. In HSA, competitive studies using oleic acid as site I probe revealed site I as the main binding site of the ligands. Binding constants revealed that the affinity of the active metabolite by HSA is four-fold higher than its proactive form. Moreover, the affinity of MMP by HSA is three-fold higher than by HAAG. Docking studies revealed significant molecular binding differences in the binding of MMP and MPA to sub-domain IIA of HSA (site 1). For MPA, the aromatic moiety would be in close contact to Trp214 with the flexible chain pointing to the other end of the sub-domain; on the contrary, for MMP, the carboxylate group of the chain would be fixed nearby Trp214 through electrostatic interactions with residues Arg218 and Arg222.
Behera, Pabitra Mohan; Behera, Deepak Kumar; Satpati, Suresh; Agnihotri, Geetanjali; Nayak, Sanghamitra; Padhi, Payodhar; Dixit, Anshuman
2015-04-01
The glucose phosphorylating enzyme glucokinase (GK) is a 50kD monomeric protein having 465 amino acids. It maintains glucose homeostasis inside cells, acts as a glucose sensor in pancreatic β-cells and as a rate controlling enzyme for hepatic glucose clearance and glycogen synthesis. It has two binding sites, one for binding d-glucose and the other for a putative allosteric activator named glucokinase activator (GKA). The GKAs interact with the same region of the GK enzyme that is commonly affected by naturally occurring mutations in humans. However, many GKAs do not bind to GK in the absence of glucose. Recently, it has been reported that GKAs are highly effective in patients with type 2 diabetes mellitus. In this milieu a molecular modeling study has been carried out on three natural variants of GK that lie in the GKA binding site and are known to cause maturity onset diabetes of young (MODY). Additionally, a 10ns molecular dynamics simulation was done on each of the modeled variant in order to explore the flexibility of this site. Subsequently, a systematic virtual screening study was done to identify compounds which can bind with high affinity at GKA binding site of mutant GK. Copyright © 2015 Elsevier Inc. All rights reserved.
Dégut, Clément; Ponchon, Luc; Folly-Klan, Marcia; Barraud, Pierre; Tisné, Carine
2016-03-01
The enzymes of the TrmI family catalyze the formation of the m(1)A58 modification in tRNA. We previously solved the crystal structure of the Thermus thermophilus enzyme and conducted a biophysical study to characterize the interaction between TrmI and tRNA. TrmI enzymes are active as a tetramer and up to two tRNAs can bind to TrmI simultaneously. In this paper, we present the structures of two TrmI mutants (D170A and Y78A). These residues are conserved in the active site of TrmIs and their mutations result in a dramatic alteration of TrmI activity. Both structures of TrmI mutants revealed the flexibility of the N-terminal domain that is probably important to bind tRNA. The structure of TrmI Y78A catalytic domain is unmodified regarding the binding of the SAM co-factor and the conformation of residues potentially interacting with the substrate adenine. This structure reinforces the previously proposed role of Y78, i.e. stabilize the conformation of the A58 ribose needed to hold the adenosine in the active site. The structure of the D170A mutant shows a flexible active site with one loop occupying in part the place of the co-factor and the second loop moving at the entrance to the active site. This structure and recent data confirms the central role of D170 residue binding the amino moiety of SAM and the exocyclic amino group of adenine. Possible mechanisms for methyl transfer are then discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Strecker, Claas; Meyer, Bernd
2018-05-29
Protein flexibility poses a major challenge to docking of potential ligands in that the binding site can adopt different shapes. Docking algorithms usually keep the protein rigid and only allow the ligand to be treated as flexible. However, a wrong assessment of the shape of the binding pocket can prevent a ligand from adapting a correct pose. Ensemble docking is a simple yet promising method to solve this problem: Ligands are docked into multiple structures, and the results are subsequently merged. Selection of protein structures is a significant factor for this approach. In this work we perform a comprehensive and comparative study evaluating the impact of structure selection on ensemble docking. We perform ensemble docking with several crystal structures and with structures derived from molecular dynamics simulations of renin, an attractive target for antihypertensive drugs. Here, 500 ns of MD simulations revealed binding site shapes not found in any available crystal structure. We evaluate the importance of structure selection for ensemble docking by comparing binding pose prediction, ability to rank actives above nonactives (screening utility), and scoring accuracy. As a result, for ensemble definition k-means clustering appears to be better suited than hierarchical clustering with average linkage. The best performing ensemble consists of four crystal structures and is able to reproduce the native ligand poses better than any individual crystal structure. Moreover this ensemble outperforms 88% of all individual crystal structures in terms of screening utility as well as scoring accuracy. Similarly, ensembles of MD-derived structures perform on average better than 75% of any individual crystal structure in terms of scoring accuracy at all inspected ensembles sizes.
Nahar, Musammat F.; Buckle, Ashley M.; Roujeinikova, Anna
2011-01-01
Background The C-terminal domain of MotB (MotB-C) shows high sequence similarity to outer membrane protein A and related peptidoglycan (PG)-binding proteins. It is believed to anchor the power-generating MotA/MotB stator unit of the bacterial flagellar motor to the peptidoglycan layer of the cell wall. We previously reported the first crystal structure of this domain and made a puzzling observation that all conserved residues that are thought to be essential for PG recognition are buried and inaccessible in the crystal structure. In this study, we tested a hypothesis that peptidoglycan binding is preceded by, or accompanied by, some structural reorganization that exposes the key conserved residues. Methodology/Principal Findings We determined the structure of a new crystalline form (Form B) of Helicobacter pylori MotB-C. Comparisons with the existing Form A revealed conformational variations in the petal-like loops around the carbohydrate binding site near one end of the β-sheet. These variations are thought to reflect natural flexibility at this site required for insertion into the peptidoglycan mesh. In order to understand the nature of this flexibility we have performed molecular dynamics simulations of the MotB-C dimer. The results are consistent with the crystallographic data and provide evidence that the three loops move in a concerted fashion, exposing conserved MotB residues that have previously been implicated in binding of the peptide moiety of peptidoglycan. Conclusion/Significance Our structural analysis provides a new insight into the mechanism by which MotB inserts into the peptidoglycan mesh, thus anchoring the power-generating complex to the cell wall. PMID:21533052
NASA Astrophysics Data System (ADS)
Samanta, Sudipta; Mukherjee, Sanchita
2018-01-01
The first hydration shell of a protein exhibits heterogeneous behavior owing to several attributes, majorly local polarity and structural flexibility as revealed by solvation dynamics of secondary structural elements. We attempt to recognize the change in complex water counteraction generated due to substantial alteration in flexibility during protein complex formation. The investigation is carried out with the signaling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, and interacting with SLAM-associated protein (SAP), composed of one SH2 domain. All atom molecular dynamics simulations are employed to the aqueous solutions of free SAP and SLAM-peptide bound SAP. We observed that water dynamics around different secondary structural elements became highly affected as well as nicely correlated with the SLAM-peptide induced change in structural rigidity obtained by thermodynamic quantification. A few instances of contradictory dynamic features of water to the change in structural flexibility are explained by means of occluded polar residues by the peptide. For βD, EFloop, and BGloop, both structural flexibility and solvent accessibility of the residues confirm the obvious contribution. Most importantly, we have quantified enhanced restriction in water dynamics around the second Fyn-binding site of the SAP due to SAP-SLAM complexation, even prior to the presence of Fyn. This observation leads to a novel argument that SLAM induced more restricted water molecules could offer more water entropic contribution during the subsequent Fyn binding and provide enhanced stability to the SAP-Fyn complex in the signaling cascade. Finally, SLAM induced water counteraction around the second binding site of the SAP sheds light on the allosteric property of the SAP, which becomes an integral part of the underlying signal transduction mechanism.
Samanta, Sudipta; Mukherjee, Sanchita
2018-01-28
The first hydration shell of a protein exhibits heterogeneous behavior owing to several attributes, majorly local polarity and structural flexibility as revealed by solvation dynamics of secondary structural elements. We attempt to recognize the change in complex water counteraction generated due to substantial alteration in flexibility during protein complex formation. The investigation is carried out with the signaling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, and interacting with SLAM-associated protein (SAP), composed of one SH2 domain. All atom molecular dynamics simulations are employed to the aqueous solutions of free SAP and SLAM-peptide bound SAP. We observed that water dynamics around different secondary structural elements became highly affected as well as nicely correlated with the SLAM-peptide induced change in structural rigidity obtained by thermodynamic quantification. A few instances of contradictory dynamic features of water to the change in structural flexibility are explained by means of occluded polar residues by the peptide. For βD, EFloop, and BGloop, both structural flexibility and solvent accessibility of the residues confirm the obvious contribution. Most importantly, we have quantified enhanced restriction in water dynamics around the second Fyn-binding site of the SAP due to SAP-SLAM complexation, even prior to the presence of Fyn. This observation leads to a novel argument that SLAM induced more restricted water molecules could offer more water entropic contribution during the subsequent Fyn binding and provide enhanced stability to the SAP-Fyn complex in the signaling cascade. Finally, SLAM induced water counteraction around the second binding site of the SAP sheds light on the allosteric property of the SAP, which becomes an integral part of the underlying signal transduction mechanism.
NASA Astrophysics Data System (ADS)
Kalid, Ori; Toledo Warshaviak, Dora; Shechter, Sharon; Sherman, Woody; Shacham, Sharon
2012-11-01
We present the Consensus Induced Fit Docking (cIFD) approach for adapting a protein binding site to accommodate multiple diverse ligands for virtual screening. This novel approach results in a single binding site structure that can bind diverse chemotypes and is thus highly useful for efficient structure-based virtual screening. We first describe the cIFD method and its validation on three targets that were previously shown to be challenging for docking programs (COX-2, estrogen receptor, and HIV reverse transcriptase). We then demonstrate the application of cIFD to the challenging discovery of irreversible Crm1 inhibitors. We report the identification of 33 novel Crm1 inhibitors, which resulted from the testing of 402 purchased compounds selected from a screening set containing 261,680 compounds. This corresponds to a hit rate of 8.2 %. The novel Crm1 inhibitors reveal diverse chemical structures, validating the utility of the cIFD method in a real-world drug discovery project. This approach offers a pragmatic way to implicitly account for protein flexibility without the additional computational costs of ensemble docking or including full protein flexibility during virtual screening.
Nagy, Gabor; Oostenbrink, Chris; Hritz, Jozef
2017-01-01
The 14-3-3 protein family performs regulatory functions in eukaryotic organisms by binding to a large number of phosphorylated protein partners. Whilst the binding mode of the phosphopeptides within the primary 14-3-3 binding site is well established based on the crystal structures of their complexes, little is known about the binding process itself. We present a computational study of the process by which phosphopeptides bind to the 14-3-3ζ protein. Applying a novel scheme combining Hamiltonian replica exchange molecular dynamics and distancefield restraints allowed us to map and compare the most likely phosphopeptide-binding pathways to the 14-3-3ζ protein. The most important structural changes to the protein and peptides involved in the binding process were identified. In order to bind phosphopeptides to the primary interaction site, the 14-3-3ζ adopted a newly found wide-opened conformation. Based on our findings we additionally propose a secondary interaction site on the inner surface of the 14-3-3ζ dimer, and a direct interference on the binding process by the flexible C-terminal tail. A minimalistic model was designed to allow for the efficient calculation of absolute binding affinities. Binding affinities calculated from the potential of mean force along the binding pathway are in line with the available experimental estimates for two of the studied systems. PMID:28727767
Sakkal, Leon A; Rajkowski, Kyle Z; Armen, Roger S
2017-06-05
Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A 1 R, A 2A R, A 3 R) and muscarinic acetylcholine (M 1 R, M 5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M 1 R PAMs were predicted to bind in the analogous M 2 R PAM LY2119620 binding site. The M 5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Felicori, Liza; Jameson, Katie H.; Roblin, Pierre; Fogg, Mark J.; Garcia-Garcia, Transito; Ventroux, Magali; Cherrier, Mickaël V.; Bazin, Alexandre; Noirot, Philippe; Wilkinson, Anthony J.; Molina, Franck; Terradot, Laurent; Noirot-Gros, Marie-Françoise
2016-01-01
YabA negatively regulates initiation of DNA replication in low-GC Gram-positive bacteria. The protein exerts its control through interactions with the initiator protein DnaA and the sliding clamp DnaN. Here, we combined X-ray crystallography, X-ray scattering (SAXS), modeling and biophysical approaches, with in vivo experimental data to gain insight into YabA function. The crystal structure of the N-terminal domain (NTD) of YabA solved at 2.7 Å resolution reveals an extended α-helix that contributes to an intermolecular four-helix bundle. Homology modeling and biochemical analysis indicates that the C-terminal domain (CTD) of YabA is a small Zn-binding domain. Multi-angle light scattering and SAXS demonstrate that YabA is a tetramer in which the CTDs are independent and connected to the N-terminal four-helix bundle via flexible linkers. While YabA can simultaneously interact with both DnaA and DnaN, we found that an isolated CTD can bind to either DnaA or DnaN, individually. Site-directed mutagenesis and yeast-two hybrid assays identified DnaA and DnaN binding sites on the YabA CTD that partially overlap and point to a mutually exclusive mode of interaction. Our study defines YabA as a novel structural hub and explains how the protein tetramer uses independent CTDs to bind multiple partners to orchestrate replication initiation in the bacterial cell. PMID:26615189
Majoros, William H; Ohler, Uwe
2010-12-16
The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation.
Gilad, Yoav; Pritchard, Jonathan K.; Stephens, Matthew
2015-01-01
Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede. PMID:26406244
Raj, Anil; Shim, Heejung; Gilad, Yoav; Pritchard, Jonathan K; Stephens, Matthew
2015-01-01
Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede.
Zhang, K. Y.; Cascio, D.; Eisenberg, D.
1994-01-01
The crystal structure of unactivated ribulose 1,5-bisphosphate carboxylase/oxygenase from Nicotiana tabacum complexed with a transition state analog, 2-carboxy-D-arabinitol 1,5-bisphosphate, was determined to 2.7 A resolution by X-ray crystallography. The transition state analog binds at the active site in an extended conformation. As compared to the binding of the same analog in the activated enzyme, the analog binds in a reverse orientation. The active site Lys 201 is within hydrogen bonding distance of the carboxyl oxygen of the analog. Loop 6 (residues 330-339) remains open and flexible upon binding of the analog in the unactivated enzyme, in contrast to the closed and ordered loop 6 in the activated enzyme complex. The transition state analog is exposed to solvent due to the open conformation of loop 6. PMID:8142899
Searching for transcription factor binding sites in vector spaces
2012-01-01
Background Computational approaches to transcription factor binding site identification have been actively researched in the past decade. Learning from known binding sites, new binding sites of a transcription factor in unannotated sequences can be identified. A number of search methods have been introduced over the years. However, one can rarely find one single method that performs the best on all the transcription factors. Instead, to identify the best method for a particular transcription factor, one usually has to compare a handful of methods. Hence, it is highly desirable for a method to perform automatic optimization for individual transcription factors. Results We proposed to search for transcription factor binding sites in vector spaces. This framework allows us to identify the best method for each individual transcription factor. We further introduced two novel methods, the negative-to-positive vector (NPV) and optimal discriminating vector (ODV) methods, to construct query vectors to search for binding sites in vector spaces. Extensive cross-validation experiments showed that the proposed methods significantly outperformed the ungapped likelihood under positional background method, a state-of-the-art method, and the widely-used position-specific scoring matrix method. We further demonstrated that motif subtypes of a TF can be readily identified in this framework and two variants called the k NPV and k ODV methods benefited significantly from motif subtype identification. Finally, independent validation on ChIP-seq data showed that the ODV and NPV methods significantly outperformed the other compared methods. Conclusions We conclude that the proposed framework is highly flexible. It enables the two novel methods to automatically identify a TF-specific subspace to search for binding sites. Implementations are available as source code at: http://biogrid.engr.uconn.edu/tfbs_search/. PMID:23244338
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirschner, Austin N.; Sorem, Jessica; Longnecker, Richard
Epstein-Barr virus requires glycoproteins gH/gL, gB, and gp42 to fuse its lipid envelope with B cells. Gp42 is a type II membrane protein consisting of a flexible N-terminal region, which binds gH/gL, and a C-terminal lectin-like domain that binds to the B-cell entry receptor human leukocyte antigen (HLA) class II. Gp42 triggers membrane fusion after HLA binding, a process that requires simultaneous binding to gH/gL and a functional hydrophobic pocket in the lectin domain adjacent to the HLA binding site. Here we present the structure of gp42 in its unbound form. Comparisons to the previously determined structure of a gp42:HLAmore » complex reveals additional N-terminal residues forming part of the gH/gL binding site and structural changes in the receptor binding domain. Although the core of the lectin domain remains similar, significant shifts in two loops and an {alpha} helix bordering the essential hydrophobic pocket suggest a structural mechanism for triggering fusion.« less
Gruschus, James M.; Greene, Lois E.; Eisenberg, Evan; Ferretti, James A.
2004-01-01
A model structure of the Hsc70/auxilin complex has been constructed to gain insight into interprotein substrate transfer and ATP hydrolysis induced conformational changes in the multidomain Hsc70 structure. The Hsc70/auxilin system, which is a member of the Hsp70/Hsp40 chaperone system family, uncoats clathrin-coated vesicles in an ATP hydrolysis-driven process. Incorporating previous results from NMR and mutant binding studies, the auxilin J-domain was docked into the Hsc70 ATPase domain lower cleft using rigid backbone/flexible side chain molecular dynamics, and the Hsc70 substrate binding domain was docked by a similar procedure. For comparison, J-domain and substrate binding domain docking sites were obtained by the rigid-body docking programs DOT and ZDOCK, filtered and ranked by the program ClusPro, and relaxed using the same rigid backbone/flexible side chain dynamics. The substrate binding domain sites were assessed in terms of conserved surface complementarity and feasibility in the context of substrate transfer, both for auxilin and another Hsp40 protein, Hsc20. This assessment favors placement of the substrate binding domain near D152 on the ATPase domain surface adjacent to the J-domain invariant HPD segment, with the Hsc70 interdomain linker in the lower cleft. Examining Hsc70 interdomain energetics, we propose that long-range electrostatic interactions, perhaps due to a difference in the pKa values of bound ATP and ADP, could play a major role in the structural change induced by ATP hydrolysis. Interdomain electrostatic interactions also appear to play a role in stimulation of ATPase activity due to J-domain binding and substrate binding by Hsc70. PMID:15273304
Hohl, Michael; Hürlimann, Lea M; Böhm, Simon; Schöppe, Jendrik; Grütter, Markus G; Bordignon, Enrica; Seeger, Markus A
2014-07-29
ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind tightly, and a consensus site, at which ATP is hydrolyzed in every transport cycle. Whereas the functional phenomenon of cooperativity is well described, its structural basis remains poorly understood. Here, we present the apo structure of the heterodimeric ABC exporter TM287/288 and compare it to the previously solved structure with adenosine 5'-(β,γ-imido)triphosphate (AMP-PNP) bound at the degenerate site. In contrast to other ABC exporter structures, the nucleotide binding domains (NBDs) of TM287/288 remain in molecular contact even in the absence of nucleotides, and the arrangement of the transmembrane domains (TMDs) is not influenced by AMP-PNP binding, a notion confirmed by double electron-electron resonance (DEER) measurements. Nucleotide binding at the degenerate site results in structural rearrangements, which are transmitted to the consensus site via two D-loops located at the NBD interface. These loops owe their name from a highly conserved aspartate and are directly connected to the catalytically important Walker B motif. The D-loop at the degenerate site ties the NBDs together even in the absence of nucleotides and substitution of its aspartate by alanine is well-tolerated. By contrast, the D-loop of the consensus site is flexible and the aspartate to alanine mutation and conformational restriction by cross-linking strongly reduces ATP hydrolysis and substrate transport.
Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun; ...
2015-07-13
Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun
Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less
Vendrell-Criado, Victoria; González-Bello, Concepción; Miranda, Miguel A; Jiménez, M Consuelo
2018-06-15
Binding of the immunosuppressive agent mycophenolate mofetil (MMP) and its pharmacologically active metabolite mycophenolic acid (MPA) to human serum albumin (HSA) and α 1 -acid glycoprotein (HAAG) has been investigated by means of an integrated approach involving selective excitation of the drug fluorophore, following their UV-A triggered fluorescence and docking studies. The formation of the protein/ligand complexes was evidenced by a dramatic enhancement of the fluorescence intensity and a hypsochromic shift of the emission band. In HSA, competitive studies using oleic acid as site I probe revealed site I as the main binding site of the ligands. Binding constants revealed that the affinity of the active metabolite by HSA is four-fold higher than its proactive form. Moreover, the affinity of MMP by HSA is three-fold higher than by HAAG. Docking studies revealed significant molecular binding differences in the binding of MMP and MPA to sub-domain IIA of HSA (site 1). For MPA, the aromatic moiety would be in close contact to Trp214 with the flexible chain pointing to the other end of the sub-domain; on the contrary, for MMP, the carboxylate group of the chain would be fixed nearby Trp214 through electrostatic interactions with residues Arg218 and Arg222. Copyright © 2018 Elsevier B.V. All rights reserved.
Shinohara, Takeshi; Ikawa, Shukuko; Iwasaki, Wakana; Hiraki, Toshiki; Hikima, Takaaki; Mikawa, Tsutomu; Arai, Naoto; Kamiya, Nobuo; Shibata, Takehiko
2015-01-01
In all organisms, RecA-family recombinases catalyze homologous joint formation in homologous genetic recombination, which is essential for genome stability and diversification. In homologous joint formation, ATP-bound RecA/Rad51-recombinases first bind single-stranded DNA at its primary site and then interact with double-stranded DNA at another site. The underlying reason and the regulatory mechanism for this conserved binding order remain unknown. A comparison of the loop L1 structures in a DNA-free RecA crystal that we originally determined and in the reported DNA-bound active RecA crystals suggested that the aspartate at position 161 in loop L1 in DNA-free RecA prevented double-stranded, but not single-stranded, DNA-binding to the primary site. This was confirmed by the effects of the Ala-replacement of Asp-161 (D161A), analyzed directly by gel-mobility shift assays and indirectly by DNA-dependent ATPase activity and SOS repressor cleavage. When RecA/Rad51-recombinases interact with double-stranded DNA before single-stranded DNA, homologous joint-formation is suppressed, likely by forming a dead-end product. We found that the D161A-replacement reduced this suppression, probably by allowing double-stranded DNA to bind preferentially and reversibly to the primary site. Thus, Asp-161 in the flexible loop L1 of wild-type RecA determines the preference for single-stranded DNA-binding to the primary site and regulates the DNA-binding order in RecA-catalyzed recombinase reactions. PMID:25561575
Conformational Response of 30S-bound IF3 to A-Site Binders Streptomycin and Kanamycin
Chulluncuy, Roberto; Espiche, Carlos; Nakamoto, Jose Alberto; Fabbretti, Attilio; Milón, Pohl
2016-01-01
Aminoglycoside antibiotics are widely used to treat infectious diseases. Among them, streptomycin and kanamycin (and derivatives) are of importance to battle multidrug-resistant (MDR) Mycobacterium tuberculosis. Both drugs bind the small ribosomal subunit (30S) and inhibit protein synthesis. Genetic, structural, and biochemical studies indicate that local and long-range conformational rearrangements of the 30S subunit account for this inhibition. Here, we use intramolecular FRET between the C- and N-terminus domains of the flexible IF3 to monitor real-time perturbations of their binding sites on the 30S platform. Steady and pre-steady state binding experiments show that both aminoglycosides bring IF3 domains apart, promoting an elongated state of the factor. Binding of Initiation Factor IF1 triggers closure of IF3 bound to the 30S complex, while both aminoglycosides revert the IF1-dependent conformation. Our results uncover dynamic perturbations across the 30S subunit, from the A-site to the platform, and suggest that both aminoglycosides could interfere with prokaryotic translation initiation by modulating the interaction between IF3 domains with the 30S platform. PMID:27983590
Structural consequences of cutting a binding loop: two circularly permuted variants of streptavidin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Trong, Isolde; University of Washington, Box 357742, Seattle, WA 98195-7742; Chu, Vano
2013-06-01
The crystal structures of two circularly permuted streptavidins probe the role of a flexible loop in the tight binding of biotin. Molecular-dynamics calculations for one of the mutants suggests that increased fluctuations in a hydrogen bond between the protein and biotin are associated with cleavage of the binding loop. Circular permutation of streptavidin was carried out in order to investigate the role of a main-chain amide in stabilizing the high-affinity complex of the protein and biotin. Mutant proteins CP49/48 and CP50/49 were constructed to place new N-termini at residues 49 and 50 in a flexible loop involved in stabilizing themore » biotin complex. Crystal structures of the two mutants show that half of each loop closes over the binding site, as observed in wild-type streptavidin, while the other half adopts the open conformation found in the unliganded state. The structures are consistent with kinetic and thermodynamic data and indicate that the loop plays a role in enthalpic stabilization of the bound state via the Asn49 amide–biotin hydrogen bond. In wild-type streptavidin, the entropic penalties of immobilizing a flexible portion of the protein to enhance binding are kept to a manageable level by using a contiguous loop of medium length (six residues) which is already constrained by its anchorage to strands of the β-barrel protein. A molecular-dynamics simulation for CP50/49 shows that cleavage of the binding loop results in increased structural fluctuations for Ser45 and that these fluctuations destabilize the streptavidin–biotin complex.« less
Yang, Li-Quan; Sang, Peng; Tao, Yan; Fu, Yun-Xin; Zhang, Ke-Qin; Xie, Yue-Hui; Liu, Shu-Qun
2013-01-01
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein's dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth. PMID:23527883
Yang, Li-Quan; Sang, Peng; Tao, Yan; Fu, Yun-Xin; Zhang, Ke-Qin; Xie, Yue-Hui; Liu, Shu-Qun
2014-01-01
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure-function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca(2+) removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca(2+) removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein-ligand binding, including the concept of the free energy landscape (FEL) of the protein-solvent system, how the ruggedness and variability of FEL determine protein's dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.
Meola, Annalisa; Tarr, Alexander W; England, Patrick; Meredith, Luke W; McClure, C Patrick; Foung, Steven K H; McKeating, Jane A; Ball, Jonathan K; Rey, Felix A; Krey, Thomas
2015-02-01
Neutralizing antibodies (NAbs) targeting glycoprotein E2 are important for the control of hepatitis C virus (HCV) infection. One conserved antigenic site (amino acids 412 to 423) is disordered in the reported E2 structure, but a synthetic peptide mimicking this site forms a β-hairpin in complex with three independent NAbs. Our structure of the same peptide in complex with NAb 3/11 demonstrates a strikingly different extended conformation. We also show that residues 412 to 423 are essential for virus entry but not for E2 folding. Together with the neutralizing capacity of the 3/11 Fab fragment, this indicates an unexpected structural flexibility within this epitope. NAbs 3/11 and AP33 (recognizing the extended and β-hairpin conformations, respectively) display similar neutralizing activities despite converse binding kinetics. Our results suggest that HCV utilizes conformational flexibility as an immune evasion strategy, contributing to the limited immunogenicity of this epitope in patients, similar to the conformational flexibility described for other enveloped and nonenveloped viruses. Approximately 180 million people worldwide are infected with hepatitis C virus (HCV), and neutralizing antibodies play an important role in controlling the replication of this major human pathogen. We show here that one of the most conserved antigenic sites within the major glycoprotein E2 (amino acids 412 to 423), which is disordered in the recently reported crystal structure of an E2 core fragment, can adopt different conformations in the context of the infectious virus particle. Recombinant Fab fragments recognizing different conformations of this antigenic site have similar neutralization activities in spite of converse kinetic binding parameters. Of note, an antibody response targeting this antigenic region is less frequent than those targeting other more immunogenic regions in E2. Our results suggest that the observed conformational flexibility in this conserved antigenic region contributes to the evasion of the humoral host immune response, facilitating chronicity and the viral spread of HCV within an infected individual. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
McGillewie, Lara; Soliman, Mahmoud E
2015-09-01
Herein, for the first time, we comparatively report the opening and closing of apo plasmepsin I - V. Plasmepsins belong the aspartic protease family of enzymes, and are expressed during the various stages of the P. falciparum lifecycle, the species responsible for the most lethal and virulent malaria to infect humans. Plasmepsin I, II, IV and HAP degrade hemoglobin from infected red blood cells, whereas plasmepsin V transport proteins crucial to the survival of the malaria parasite across the endoplasmic reticulum. Flap-structures covering the active site of aspartic proteases (such as HIV protease) are crucial to the conformational flexibility and dynamics of the protein, and ultimately control the binding landscape. The flap-structure in plasmepsins is made up of a flip tip in the N-terminal lying perpendicular to the active site, adjacent to the flexible loop region in the C-terminal. Using molecular dynamics, we propose three parameters to better describe the opening and closing of the flap-structure in apo plasmepsins. Namely, the distance, d1, between the flap tip and the flexible region; the dihedral angle, ϕ, to account for the twisting motion; and the TriCα angle, θ1. Simulations have shown that as the flap-structure twists, the flap and flexible region move apart opening the active site, or move toward each other closing the active site. The data from our study indicate that of all the plasmepsins investigated in the present study, Plm IV and V display the highest conformational flexibility and are more dynamic structures versus Plm I, II, and HAP. © 2015 Wiley Periodicals, Inc.
Velmurugu, Yogambigai; Vivas, Paula; Connolly, Mitchell; Kuznetsov, Serguei V; Rice, Phoebe A; Ansari, Anjum
2018-02-28
The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1-10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.
Spyrakis, Francesca; Cavasotto, Claudio N
2015-10-01
Structure-based virtual screening is currently an established tool in drug lead discovery projects. Although in the last years the field saw an impressive progress in terms of algorithm development, computational performance, and retrospective and prospective applications in ligand identification, there are still long-standing challenges where further improvement is needed. In this review, we consider the conceptual frame, state-of-the-art and recent developments of three critical "structural" issues in structure-based drug lead discovery: the use of homology modeling to accurately model the binding site when no experimental structures are available, the necessity of accounting for the dynamics of intrinsically flexible systems as proteins, and the importance of considering active site water molecules in lead identification and optimization campaigns. Copyright © 2015 Elsevier Inc. All rights reserved.
A Quantitative Measure of Conformational Changes in Apo, Holo and Ligand-Bound Forms of Enzymes.
Singh, Satendra; Singh, Atul Kumar; Wadhwa, Gulshan; Singh, Dev Bukhsh; Dwivedi, Seema; Gautam, Budhayash; Ramteke, Pramod W
2016-06-01
Determination of the native geometry of the enzymes and ligand complexes is a key step in the process of structure-based drug designing. Enzymes and ligands show flexibility in structural behavior as they come in contact with each other. When ligand binds with active site of the enzyme, in the presence of cofactor some structural changes are expected to occur in the active site. Motivation behind this study is to determine the nature of conformational changes as well as regions where such changes are more pronounced. To measure the structural changes due to cofactor and ligand complex, enzyme in apo, holo and ligand-bound forms is selected. Enzyme data set was retrieved from protein data bank. Fifteen triplet groups were selected for the analysis of structural changes based on selection criteria. Structural features for selected enzymes were compared at the global as well as local region. Accessible surface area for the enzymes in entire triplet set was calculated, which describes the change in accessible surface area upon binding of cofactor and ligand with the enzyme. It was observed that some structural changes take place during binding of ligand in the presence of cofactor. This study will helps in understanding the level of flexibility in protein-ligand interaction for computer-aided drug designing.
Kuang, Guanglin; Murugan, N Arul; Tu, Yaoquan; Nordberg, Agneta; Ågren, Hans
2015-09-03
Detecting deposits of amyloid β fibrils in the brain is of paramount importance for an early diagnosis of Alzheimer's disease. A number of PET tracers have been developed for amyloid imaging, but many suffer from poor specificity and large signal to background ratio. Design of tracers with specificity and improved binding affinity requires knowledge about various potential binding sites in the amyloid β fibril available for the tracers and the nature of the local microenvironment of these sites. In this study we investigate the local structure of fibrils using two important probes, namely, thioflavin T (a fluorescent probe) and AZD2184 (a PET tracer). The target structures for amyloid-β(1-42) fibril are based on reported NMR solution models. By explicitly considering the effect of fibril flexibility on the available binding sites for all these models, the binding affinity of these probes has been investigated. The binding profiles of AZD2184 and thioflavin T were studied by molecular docking and molecular dynamics simulation methods. The two compounds were found to bind at the same sites of the fibril: three of which are within the fibril, and one is on the two sides of the Met35 residue on the surface. The binding affinity of AZD2184 and thioflavin T is found to be higher at the core sites than on the surface due to more contact residues. The binding affinity of AZD2184 is much higher than that of thioflavin T at every site due to electrostatic interaction and spatial restriction, which is in good agreement with experimental observation. However, the structural change of thioflavin T is much more significant than that of AZD2184, which is the chemical basis for its usage as a fluorescent probe. The ramifications of these results for the design and optimization of PET radioligands and fluorescent probes are briefly discussed.
Docking and scoring with ICM: the benchmarking results and strategies for improvement
Neves, Marco A. C.; Totrov, Maxim; Abagyan, Ruben
2012-01-01
Flexible docking and scoring using the Internal Coordinate Mechanics software (ICM) was benchmarked for ligand binding mode prediction against the 85 co-crystal structures in the modified Astex data set. The ICM virtual ligand screening was tested against the 40 DUD target benchmarks and 11-target WOMBAT sets. The self-docking accuracy was evaluated for the top 1 and top 3 scoring poses at each ligand binding site with near native conformations below 2 Å RMSD found in 91% and 95% of the predictions, respectively. The virtual ligand screening using single rigid pocket conformations provided the median area under the ROC curves equal to 69.4 with 22.0% true positives recovered at 2% false positive rate. Significant improvements up to ROC AUC= 82.2 and ROC(2%)= 45.2 were achieved following our best practices for flexible pocket refinement and out-of-pocket binding rescore. The virtual screening can be further improved by considering multiple conformations of the target. PMID:22569591
Understanding the mechanisms of protein-DNA interactions
NASA Astrophysics Data System (ADS)
Lavery, Richard
2004-03-01
Structural, biochemical and thermodynamic data on protein-DNA interactions show that specific recognition cannot be reduced to a simple set of binary interactions between the partners (such as hydrogen bonds, ion pairs or steric contacts). The mechanical properties of the partners also play a role and, in the case of DNA, variations in both conformation and flexibility as a function of base sequence can be a significant factor in guiding a protein to the correct binding site. All-atom molecular modeling offers a means of analyzing the role of different binding mechanisms within protein-DNA complexes of known structure. This however requires estimating the binding strengths for the full range of sequences with which a given protein can interact. Since this number grows exponentially with the length of the binding site it is necessary to find a method to accelerate the calculations. We have achieved this by using a multi-copy approach (ADAPT) which allows us to build a DNA fragment with a variable base sequence. The results obtained with this method correlate well with experimental consensus binding sequences. They enable us to show that indirect recognition mechanisms involving the sequence dependent properties of DNA play a significant role in many complexes. This approach also offers a means of predicting protein binding sites on the basis of binding energies, which is complementary to conventional lexical techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Weizao, E-mail: chenw3@mail.nih.gov; Feng, Yang; Wang, Yanping
Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibitmore » decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.« less
Chu, Xiakun; Wang, Jin
2014-01-01
Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition. PMID:25144525
Chu, Xiakun; Wang, Jin
2014-08-01
Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.
Insights into substrate binding and catalysis in bacterial type I dehydroquinase.
Maneiro, María; Peón, Antonio; Lence, Emilio; Otero, José M; Van Raaij, Mark J; Thompson, Paul; Hawkins, Alastair R; González-Bello, Concepción
2014-09-15
Structural, biochemical and computational studies to study substrate binding and the role of the conserved residues of the DHQ1 (type I dehydroquinase) enzyme active site are reported in the present paper. The crystal structure of DHQ1 from Salmonella typhi in complex with (2R)-2-methyl-3-dehydroquinic acid, a substrate analogue, was solved at 1.5 Å. The present study reveals a previously unknown key role for conserved Glu46, Phe145 and Met205 and Gln236, Pro234 and Ala233 residues, with the latter three being located in the flexible substrate-covering loop. Gln236 was shown to be responsible for the folding of this loop and for the dramatic reduction of its flexibility, which triggers active site closure. Glu46 was found to be key in bringing the substrate close to the lysine/histidine catalytic pocket to initiate catalysis. The present study could be useful in the rational design of inhibitors of this challenging and recognized target for the development of novel herbicides and antimicrobial agents.
Silveira, Rodrigo L; Skaf, Munir S
2015-07-23
Enzymatic conversion of lignocellulosic biomass into biofuels and chemicals constitutes a potential route for sustainable development. Cellobiohydrolases are key enzymes used in industrial cocktails for depolymerization of crystalline cellulose, and their mechanism of action has been intensely studied in the past several years. Provided with a tunnel-like substrate-binding cavity, cellobiohydrolases possess the ability to processively hydrolyze glycosidic bonds of crystalline cellulose, yielding one molecule of cellobiose per catalytic cycle. As such, cellobiose expulsion from the product binding site is a necessary step in order to allow for the processive hydrolysis mechanism. However, the high-affinity binding of cellobiose to the enzyme impairs the process and causes activity inhibition due to reaction products. Here, we use molecular dynamics simulations to study the binding of cellobiose to the Trichoderma reesei Cel7A (TrCel7A) cellobiohydrolase and the effects of mutations that reduce cellobiose binding, without affecting the structural and dynamical integrities of the enzyme. We observe that the product binding site exhibits an intrinsic flexibility that can sterically hinder cellobiose release. Several point mutations in the product binding site reduce cellobiose-enzyme interactions, but not all modifications are able to maintain the structural integrity of the enzyme. In particular, mutation of charged residues in the TrCel7A product binding site causes perturbations that affect the structure of the loops that form the substrate-binding tunnel of the enzyme and, hence, may affect TrCel7A function in other steps of the hydrolysis mechanism. Our results suggest there is a trade-off between product inhibition and catalytic efficiency, and they provide directions for cellulases engineering.
Nuclear magnetic resonance-based model of a TF1/HmU-DNA complex.
Silva, M V; Pasternack, L B; Kearns, D R
1997-12-15
Transcription factor 1 (TF1), a type II DNA-binding protein encoded by the Bacillus subtilis bacteriophage SPO1, has the capacity for sequence-selective DNA binding and a preference for 5-hydroxymethyl-2'-deoxyuridine (HmU)-containing DNA. In NMR studies of the TF1/HmU-DNA complex, intermolecular NOEs indicate that the flexible beta-ribbon and C-terminal alpha-helix are involved in the DNA-binding site of TF1, placing it in the beta-sheet category of DNA-binding proteins proposed to bind by wrapping two beta-ribbon "arms" around the DNA. Intermolecular and intramolecular NOEs were used to generate an energy-minimized model of the protein-DNA complex in which both DNA bending and protein structure changes are evident.
Di Pietro, Ornella; Laughton, Charles A.
2017-01-01
The critical role of BACE-1 in the formation of neurotoxic ß-amyloid peptides in the brain makes it an attractive target for an efficacious treatment of Alzheimer’s disease. However, the development of clinically useful BACE-1 inhibitors has proven to be extremely challenging. In this study we examine the binding mode of a novel potent inhibitor (compound 1, with IC50 80 nM) designed by synergistic combination of two fragments—huprine and rhein—that individually are endowed with very low activity against BACE-1. Examination of crystal structures reveals no appropriate binding site large enough to accommodate 1. Therefore we have examined the conformational flexibility of BACE-1 through extended molecular dynamics simulations, paying attention to the highly flexible region shaped by loops 8–14, 154–169 and 307–318. The analysis of the protein dynamics, together with studies of pocket druggability, has allowed us to detect the transient formation of a secondary binding site, which contains Arg307 as a key residue for the interaction with small molecules, at the edge of the catalytic cleft. The formation of this druggable “floppy” pocket would enable the binding of multisite inhibitors targeting both catalytic and secondary sites. Molecular dynamics simulations of BACE-1 bound to huprine-rhein hybrid compounds support the feasibility of this hypothesis. The results provide a basis to explain the high inhibitory potency of the two enantiomeric forms of 1, together with the large dependence on the length of the oligomethylenic linker. Furthermore, the multisite hypothesis has allowed us to rationalize the inhibitory potency of a series of tacrine-chromene hybrid compounds, specifically regarding the apparent lack of sensitivity of the inhibition constant to the chemical modifications introduced in the chromene unit. Overall, these findings pave the way for the exploration of novel functionalities in the design of optimized BACE-1 multisite inhibitors. PMID:28505196
Diehl, Carl; Engström, Olof; Delaine, Tamara; Håkansson, Maria; Genheden, Samuel; Modig, Kristofer; Leffler, Hakon; Ryde, Ulf; Nilsson, Ulf J; Akke, Mikael
2010-10-20
Rational drug design is predicated on knowledge of the three-dimensional structure of the protein-ligand complex and the thermodynamics of ligand binding. Despite the fundamental importance of both enthalpy and entropy in driving ligand binding, the role of conformational entropy is rarely addressed in drug design. In this work, we have probed the conformational entropy and its relative contribution to the free energy of ligand binding to the carbohydrate recognition domain of galectin-3. Using a combination of NMR spectroscopy, isothermal titration calorimetry, and X-ray crystallography, we characterized the binding of three ligands with dissociation constants ranging over 2 orders of magnitude. (15)N and (2)H spin relaxation measurements showed that the protein backbone and side chains respond to ligand binding by increased conformational fluctuations, on average, that differ among the three ligand-bound states. Variability in the response to ligand binding is prominent in the hydrophobic core, where a distal cluster of methyl groups becomes more rigid, whereas methyl groups closer to the binding site become more flexible. The results reveal an intricate interplay between structure and conformational fluctuations in the different complexes that fine-tunes the affinity. The estimated change in conformational entropy is comparable in magnitude to the binding enthalpy, demonstrating that it contributes favorably and significantly to ligand binding. We speculate that the relatively weak inherent protein-carbohydrate interactions and limited hydrophobic effect associated with oligosaccharide binding might have exerted evolutionary pressure on carbohydrate-binding proteins to increase the affinity by means of conformational entropy.
Real-Time Ligand Binding Pocket Database Search Using Local Surface Descriptors
Chikhi, Rayan; Sael, Lee; Kihara, Daisuke
2010-01-01
Due to the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of a particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two dimensional pseudo-Zernike moments or the 3D Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark study employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed. PMID:20455259
Freed, Alexander S; Garde, Shekhar; Cramer, Steven M
2011-11-17
Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.
Real-time ligand binding pocket database search using local surface descriptors.
Chikhi, Rayan; Sael, Lee; Kihara, Daisuke
2010-07-01
Because of the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two-dimensional pseudo-Zernike moments or the three-dimensional Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark studies employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed.
Sigala, Paul A.; Kraut, Daniel A.; Caaveiro, Jose M. M.; Pybus, Brandon; Ruben, Eliza A.; Ringe, Dagmar; Petsko, Gregory A.; Herschlag, Daniel
2009-01-01
Enzymes are classically proposed to accelerate reactions by binding substrates within active site environments that are structurally preorganized to optimize binding interactions with reaction transition states rather than ground states. This is a remarkably formidable task considering the limited 0.1 – 1 Å scale of most substrate rearrangements. The flexibility of active site functional groups along the coordinate of substrate rearrangement, the distance scale on which enzymes can distinguish structural rearrangement, and the energetic significance of discrimination on that scale remain open questions that are fundamental to a basic physical understanding of enzyme active sites and catalysis. We bring together high resolution X-ray crystallography, 1H and 19F NMR spectroscopy, quantum mechanical calculations, and transition state analog binding measurements to test the distance scale on which non-covalent forces can constrain side chain and ligand relaxation or translation along a specific coordinate and the energetic consequences of such geometric constraints within the active site of bacterial ketosteroid isomerase (KSI). Our results strongly suggest that packing and binding interactions within the KSI active site can constrain local side chain reorientation and prevent hydrogen bond shortening by 0.1 Å or less. Further, this constraint has substantial energetic effects on ligand binding and stabilization of negative charge within the oxyanion hole. These results provide evidence that subtle geometric effects, indistinguishable in most X-ray crystallographic structures, can have significant energetic consequences and highlight the importance of using synergistic experimental approaches to dissect enzyme function. PMID:18808119
Extreme disorder in an ultrahigh-affinity protein complex
NASA Astrophysics Data System (ADS)
Borgia, Alessandro; Borgia, Madeleine B.; Bugge, Katrine; Kissling, Vera M.; Heidarsson, Pétur O.; Fernandes, Catarina B.; Sottini, Andrea; Soranno, Andrea; Buholzer, Karin J.; Nettels, Daniel; Kragelund, Birthe B.; Best, Robert B.; Schuler, Benjamin
2018-03-01
Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.
Inhibition of Urease by Disulfiram, an FDA-Approved Thiol Reagent Used in Humans.
Díaz-Sánchez, Ángel Gabriel; Alvarez-Parrilla, Emilio; Martínez-Martínez, Alejandro; Aguirre-Reyes, Luis; Orozpe-Olvera, Jesica Aline; Ramos-Soto, Miguel Armando; Núñez-Gastélum, José Alberto; Alvarado-Tenorio, Bonifacio; de la Rosa, Laura Alejandra
2016-11-26
Urease is a nickel-dependent amidohydrolase that catalyses the decomposition of urea into carbamate and ammonia, a reaction that constitutes an important source of nitrogen for bacteria, fungi and plants. It is recognized as a potential antimicrobial target with an impact on medicine, agriculture, and the environment. The list of possible urease inhibitors is continuously increasing, with a special interest in those that interact with and block the flexible active site flap. We show that disulfiram inhibits urease in Citrullus vulgaris (CVU), following a non-competitive mechanism, and may be one of this kind of inhibitors. Disulfiram is a well-known thiol reagent that has been approved by the FDA for treatment of chronic alcoholism. We also found that other thiol reactive compounds (l-captopril and Bithionol) and quercetin inhibits CVU. These inhibitors protect the enzyme against its full inactivation by the thiol-specific reagent Aldrithiol (2,2'-dipyridyl disulphide, DPS), suggesting that the three drugs bind to the same subsite. Enzyme kinetics, competing inhibition experiments, auto-fluorescence binding experiments, and docking suggest that the disulfiram reactive site is Cys592, which has been proposed as a "hinge" located in the flexible active site flap. This study presents the basis for the use of disulfiram as one potential inhibitor to control urease activity.
Omura, Hiroki; Oikawa, Daisuke; Nakane, Takanori; Kato, Megumi; Ishii, Ryohei; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu
2016-01-01
In the innate immune system, pattern recognition receptors (PRRs) specifically recognize ligands derived from bacteria or viruses, to trigger the responsible downstream pathways. DEAD box protein 41 (DDX41) is an intracellular PRR that triggers the downstream pathway involving the adapter STING, the kinase TBK1, and the transcription factor IRF3, to activate the type I interferon response. DDX41 is unique in that it recognizes two different ligands; i.e., double-stranded DNA (dsDNA) and cyclic dinucleotides (CDN), via its DEAD domain. However, the structural basis for the ligand recognition by the DDX41 DEAD domain has remained elusive. Here, we report two crystal structures of the DDX41 DEAD domain in apo forms, at 1.5 and 2.2 Å resolutions. A comparison of the two crystal structures revealed the flexibility in the ATP binding site, suggesting its formation upon ATP binding. Structure-guided functional analyses in vitro and in vivo demonstrated the overlapped binding surface for dsDNA and CDN, which is distinct from the ATP-binding site. We propose that the structural rearrangement of the ATP binding site is crucial for the release of ADP, enabling the fast turnover of DDX41 for the dsDNA/CDN-induced STING activation pathway. PMID:27721487
ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data
2010-01-01
Background Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) or ChIP followed by genome tiling array analysis (ChIP-chip) have become standard technologies for genome-wide identification of DNA-binding protein target sites. A number of algorithms have been developed in parallel that allow identification of binding sites from ChIP-seq or ChIP-chip datasets and subsequent visualization in the University of California Santa Cruz (UCSC) Genome Browser as custom annotation tracks. However, summarizing these tracks can be a daunting task, particularly if there are a large number of binding sites or the binding sites are distributed widely across the genome. Results We have developed ChIPpeakAnno as a Bioconductor package within the statistical programming environment R to facilitate batch annotation of enriched peaks identified from ChIP-seq, ChIP-chip, cap analysis of gene expression (CAGE) or any experiments resulting in a large number of enriched genomic regions. The binding sites annotated with ChIPpeakAnno can be viewed easily as a table, a pie chart or plotted in histogram form, i.e., the distribution of distances to the nearest genes for each set of peaks. In addition, we have implemented functionalities for determining the significance of overlap between replicates or binding sites among transcription factors within a complex, and for drawing Venn diagrams to visualize the extent of the overlap between replicates. Furthermore, the package includes functionalities to retrieve sequences flanking putative binding sites for PCR amplification, cloning, or motif discovery, and to identify Gene Ontology (GO) terms associated with adjacent genes. Conclusions ChIPpeakAnno enables batch annotation of the binding sites identified from ChIP-seq, ChIP-chip, CAGE or any technology that results in a large number of enriched genomic regions within the statistical programming environment R. Allowing users to pass their own annotation data such as a different Chromatin immunoprecipitation (ChIP) preparation and a dataset from literature, or existing annotation packages, such as GenomicFeatures and BSgenome, provides flexibility. Tight integration to the biomaRt package enables up-to-date annotation retrieval from the BioMart database. PMID:20459804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruning, John B.; Murillo, Ana C.; Chacon, Ofelia
D-Alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 {angstrom}. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoinedmore » by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC{sub 50}) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.« less
2013-01-01
Background Herpes viruses are important human pathogens that can cause mild to severe lifelong infections with high morbidity. They remain latent in the host cells and can cause recurrent infections that might prove fatal. These viruses are known to infect the host cells by causing the fusion of viral and host cell membrane proteins. Fusion is achieved with the help of conserved fusion machinery components, glycoproteins gB, heterodimer gH-gL complex along with other non-conserved components. Whereas, another important glycoprotein gD without which viral entry to the cell is not possible, acts as a co-activator for the gB-gH-gL complex formation. Thus, this complex formation interface is the most promising drug target for the development of novel anti-herpes drug candidates. In the present study, we propose a model for binding of gH-gL to gB glycoprotein leading from pre to post conformational changes during gB-gH-gL complex formation and reported the key residues involved in this binding activity along with possible binding site locations. To validate the drug targetability of our proposed binding site, we have repositioned some of the most promising in vitro, in vivo validated anti-herpes molecules onto the proposed binding site of gH-gL complex in a computational approach. Methods Hex 6.3 standalone software was used for protein-protein docking studies. Arguslab 4.0.1 and Accelrys® Discovery Studio 3.1 Visualizer softwares were used for semi-flexible docking studies and visualizing the interactions respectively. Protein receptors and ethno compounds were retrieved from Protein Data Bank (PDB) and Pubchem databases respectively. Lipinski’s Filter, Osiris Property Explorer and Lazar online servers were used to check the pharmaceutical fidelity of the drug candidates. Results Through protein-protein docking studies, it was identified that the amino acid residues VAL342, GLU347, SER349, TYR355, SER388, ASN395, HIS398 and ALA387 of gH-gL complex play an active role in its binding activity with gB. Semi flexible docking analysis of the most promising in vitro, in vivo validated anti-herpes molecules targeting the above mentioned key residues of gH-gL complex showed that all the analyzed ethno medicinal compounds have successfully docked into the proposed binding site of gH-gL glycoprotein with binding energy range between -10.4 to -6.4 K.cal./mol. Conclusions Successful repositioning of the analyzed compounds onto the proposed binding site confirms the drug targetability of gH-gL complex. Based on the free binding energy and pharmacological properties, we propose (3-chloro phenyl) methyl-3,4,5 trihydroxybenzoate as worth a small ethno medicinal lead molecule for further development as potent anti-herpes drug candidate targeting gB-gH-gL complex formation interface. PMID:23587166
Bharadwaj, Vivek S; Dean, Anthony M; Maupin, C Mark
2013-08-21
The fumarate addition reaction, catalyzed by the enzyme benzylsuccinate synthase (BSS), is considered to be one of the most intriguing and energetically challenging reactions in biology. BSS belongs to the glycyl radical enzyme family and catalyzes the fumarate addition reaction, which enables microorganisms to utilize hydrocarbons as an energy source under anaerobic conditions. Unfortunately, the extreme sensitivity of the glycyl radical to oxygen has hampered the structural and kinetic characterization of BSS, thereby limiting our knowledge on this enzyme. To enhance our molecular-level understanding of BSS, a computational approach involving homology modeling, docking studies, and molecular dynamics (MD) simulations has been used to deduce the structure of BSS's catalytic subunit (BSSα) and illuminate the molecular basis for the fumarate addition reaction. We have identified two conserved and distinct binding pockets at the BSSα active site: a hydrophobic pocket for toluene binding and a polar pocket for fumaric acid binding. Subsequent dynamical and energetic evaluations have identified Glu509, Ser827, Leu390, and Phe384 as active site residues critical for substrate binding. The orientation of substrates at the active site observed in MD simulations is consistent with experimental observations of the syn addition of toluene to fumaric acid. It is also found that substrate binding tightens the active site and restricts the conformational flexibility of the thiyl radical, leading to hydrogen transfer distances conducive to the proposed reaction mechanism. The stability of substrates at the active site and the occurrence of feasible radical transfer distances between the thiyl radical, substrates, and the active site glycine indicate a substrate-assisted radical transfer pathway governing fumarate addition.
On the Modularity of the Intrinsic Flexibility of the µ Opioid Receptor: A Computational Study
Fossépré, Mathieu; Leherte, Laurence; Laaksonen, Aatto; Vercauteren, Daniel P.
2014-01-01
The µ opioid receptor (µOR), the principal target to control pain, belongs to the G protein-coupled receptors (GPCRs) family, one of the most highlighted protein families due to their importance as therapeutic targets. The conformational flexibility of GPCRs is one of their essential characteristics as they take part in ligand recognition and subsequent activation or inactivation mechanisms. It is assessed that the intrinsic mechanical properties of the µOR, more specifically its particular flexibility behavior, would facilitate the accomplishment of specific biological functions, at least in their first steps, even in the absence of a ligand or any chemical species usually present in its biological environment. The study of the mechanical properties of the µOR would thus bring some indications regarding the highly efficient ability of the µOR to transduce cellular message. We therefore investigate the intrinsic flexibility of the µOR in its apo-form using all-atom Molecular Dynamics simulations at the sub-microsecond time scale. We particularly consider the µOR embedded in a simplified membrane model without specific ions, particular lipids, such as cholesterol moieties, or any other chemical species that could affect the flexibility of the µOR. Our analyses highlighted an important local effect due to the various bendability of the helices resulting in a diversity of shape and volume sizes adopted by the µOR binding site. Such property explains why the µOR can interact with ligands presenting highly diverse structural geometry. By investigating the topology of the µOR binding site, a conformational global effect is depicted: the correlation between the motional modes of the extra- and intracellular parts of µOR on one hand, along with a clear rigidity of the central µOR domain on the other hand. Our results show how the modularity of the µOR flexibility is related to its pre-ability to activate and to present a basal activity. PMID:25549261
Koide, Shohei; Sidhu, Sachdev S.
2010-01-01
Summary Combinatorial libraries built with severely restricted chemical diversity have yielded highly functional synthetic binding proteins. Structural analyses of these minimalist binding sites have revealed the dominant role of large tyrosine residues for mediating molecular contacts and of small serine/glycine residues for providing space and flexibility. The concept of using limited residue types to construct optimized binding proteins mirrors findings in the field of small molecule drug development, where it has been proposed that most drugs are built from a limited set of side chains presented by diverse frameworks. The physicochemical properties of tyrosine make it the amino acid that is most effective for mediating molecular recognition, and protein engineers have taken advantage of these characteristics to build tyrosine-rich protein binding sites that outperform natural proteins in terms of affinity and specificity. Knowledge from preceding studies can be used to improve current designs, and thus, synthetic protein libraries will continue to evolve and improve. In the near future, it seems likely that synthetic binding proteins will supersede natural antibodies for most purposes, and moreover, synthetic proteins will enable many new applications beyond the scope of natural proteins. PMID:19298050
Binding-dependent disorder-order transition in PKI alpha: a fluorescence anisotropy study.
Hauer, J A; Taylor, S S; Johnson, D A
1999-05-25
The conformational flexibility of peptidyl ligands may be an essential element of many peptide-macromolecular interactions. Consequently, the alpha-carbonyl backbone flexibility of the 8 kDa protein kinase inhibitor (PKI alpha) peptide of cAMP-dependent protein kinase (cAPK) free in solution and bound to cAPK was assessed by time-resolved fluorescence anisotropy. Specifically, three full-length, single-site PKI alpha mutants (V3C, S28C, and S59C) were prepared, and fluorescein iodoacetamide (FI) was selectively conjugated to the side chains of each substituted cysteine. The time-resolved anisotropy decay profiles of the labeled mutants were well fit to a model-free nonassociative biexponential equation. Free in solution, the three labeled proteins had very similar anisotropy decays arising primarily from local alpha-carbonyl backbone movements. Only a small fraction of the anisotropy decay was associated with slower, whole-body tumbling, confirming that PKI alpha is highly disordered at all three locations. Complexation of the mutants with the catalytic (C) subunit of cAPK decreased the rate of whole-body tumbling for all three mutants. The effects on the rapid decay processes, however, were dependent upon the site of conjugation. The anisotropy decay profiles of both FI-V3C- and FI-S28C-PKI alpha were associated with significantly reduced contributions from the fast decay processes, while that of FI-S59C-PKI alpha was largely unaffected by binding to the C-subunit. The results suggest that the cAPK-binding domain of PKI alpha extends from the its N-terminus to residues beyond Ser28 but does not include the segment around Ser59, which is still part of a highly flexible domain when bound to the C-subunit.
Rühmann, Eggert H; Rupp, Melinda; Betz, Michael; Heine, Andreas; Klebe, Gerhard
2016-02-04
Structural preorganization to fix bioactive conformations at protein binding sites is a popular strategy to enhance binding affinity during late-stage optimization. The rationale for this enhancement relates to entropic advantages assigned to rigidified versus flexible ligands. We analyzed a narrow series of peptidomimetics binding to thrombin. The individual ligands exhibit at P2 a conformationally flexible glycine, more restricted alanine, N-methylglycine, N-methylhomoalanine, and largely rigidified proline moiety. Overall, affinity was found to increase by a factor of 1000, explained partly by an entropic advantage. All ligands adopt the same binding mode with small deviations. The residual mobility of the bound ligands is decreased across the series, and a protein side chain differs in its order/disorder behavior along with changes in the surface-water network pattern established across the newly generated protein-ligand surfaces. The enthalpy/entropy inventory displays a rather complex picture and emphasizes that thermodynamics can only be compared in terms of relative differences within a structurally similar ligand series. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich
2009-01-01
Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740
Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich
2009-03-01
Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.
Zhou, Yue; Zhang, Na; Qi, Xiaoqian; Tang, Shan; Sun, Guohui; Zhao, Lijiao; Zhong, Rugang; Peng, Yongzhen
2018-01-01
Protein kinase is a novel therapeutic target for human diseases. The off-target and side effects of ATP-competitive inhibitors preclude them from the clinically relevant drugs. The compounds targeting the druggable allosteric sites outside the highly conversed ATP binding pocket have been identified as promising alternatives to overcome current barriers of ATP-competitive inhibitors. By simultaneously interacting with the αD region (new allosteric site) and sub-ATP binding pocket, the attractive compound CAM4066 was named as allosteric inhibitor of CK2α. It has been demonstrated that the rigid linker and non-ionizable substituted fragment resulted in significant decreased inhibitory activities of compounds. The molecular dynamics simulations and energy analysis revealed that the appropriate coupling between the linker and pharmacophore fragments were essential for binding of CAM4066 with CK2α. The lower flexible linker of compound 21 lost the capability of coupling fragments A and B to αD region and positive area, respectively, whereas the methyl benzoate of fragment B induced the re-orientated Pre-CAM4066 with the inappropriate polar interactions. Most importantly, the match between the optimized linker and pharmacophore fragments is the challenging work of fragment-linking based drug design. These results provide rational clues to further structural modification and development of highly potent allosteric inhibitors of CK2.
AnchorDock for Blind Flexible Docking of Peptides to Proteins.
Slutzki, Michal; Ben-Shimon, Avraham; Niv, Masha Y
2017-01-01
Due to increasing interest in peptides as signaling modulators and drug candidates, several methods for peptide docking to their target proteins are under active development. The "blind" docking problem, where the peptide-binding site on the protein surface is unknown, presents one of the current challenges in the field. AnchorDock protocol was developed by Ben-Shimon and Niv to address this challenge.This protocol narrows the docking search to the most relevant parts of the conformational space. This is achieved by pre-folding the free peptide and by computationally detecting anchoring spots on the surface of the unbound protein. Multiple flexible simulated annealing molecular dynamics (SAMD) simulations are subsequently carried out, starting from pre-folded peptide conformations, constrained to the various precomputed anchoring spots.Here, AnchorDock is demonstrated using two known protein-peptide complexes. A PDZ-peptide complex provides a relatively easy case due to the relatively small size of the protein, and a typical peptide conformation and binding region; a more challenging example is a complex between USP7 N-term and a p53-derived peptide, where the protein is larger, and the peptide conformation and a binding site are generally assumed to be unknown. AnchorDock returned native-like solutions ranked first and third for the PDZ and USP7 complexes, respectively. We describe the procedure step by step and discuss possible modifications where applicable.
Zhou, Yue; Zhang, Na; Qi, Xiaoqian; Tang, Shan; Zhao, Lijiao; Zhong, Rugang; Peng, Yongzhen
2018-01-01
Protein kinase is a novel therapeutic target for human diseases. The off-target and side effects of ATP-competitive inhibitors preclude them from the clinically relevant drugs. The compounds targeting the druggable allosteric sites outside the highly conversed ATP binding pocket have been identified as promising alternatives to overcome current barriers of ATP-competitive inhibitors. By simultaneously interacting with the αD region (new allosteric site) and sub-ATP binding pocket, the attractive compound CAM4066 was named as allosteric inhibitor of CK2α. It has been demonstrated that the rigid linker and non-ionizable substituted fragment resulted in significant decreased inhibitory activities of compounds. The molecular dynamics simulations and energy analysis revealed that the appropriate coupling between the linker and pharmacophore fragments were essential for binding of CAM4066 with CK2α. The lower flexible linker of compound 21 lost the capability of coupling fragments A and B to αD region and positive area, respectively, whereas the methyl benzoate of fragment B induced the re-orientated Pre-CAM4066 with the inappropriate polar interactions. Most importantly, the match between the optimized linker and pharmacophore fragments is the challenging work of fragment-linking based drug design. These results provide rational clues to further structural modification and development of highly potent allosteric inhibitors of CK2. PMID:29301250
Crystal Structure of the Neutralizing Llama VHH D7 and Its Mode of HIV-1 gp120 Interaction
Hinz, Andreas; Lutje Hulsik, David; Forsman, Anna; Koh, Willie Wee-Lee; Belrhali, Hassan; Gorlani, Andrea; de Haard, Hans; Weiss, Robin A.; Verrips, Theo; Weissenhorn, Winfried
2010-01-01
HIV-1 entry into host cells is mediated by the sequential binding of the envelope glycoprotein gp120 to CD4 and a chemokine receptor. Antibodies binding to epitopes overlapping the CD4-binding site on gp120 are potent inhibitors of HIV entry, such as the llama heavy chain antibody fragment VHH D7, which has cross-clade neutralizing properties and competes with CD4 and mAb b12 for high affinity binding to gp120. We report the crystal structure of the D7 VHH at 1.5 Å resolution, which reveals the molecular details of the complementarity determining regions (CDR) and substantial flexibility of CDR3 that could facilitate an induced fit interaction with gp120. Structural comparison of CDRs from other CD4 binding site antibodies suggests diverse modes of interaction. Mutational analysis identified CDR3 as a key component of gp120 interaction as determined by surface plasmon resonance. A decrease in affinity is directly coupled to the neutralization efficiency since mutations that decrease gp120 interaction increase the IC50 required for HIV-1 IIIB neutralization. Thus the structural study identifies the long CDR3 of D7 as the key determinant of interaction and HIV-1 neutralization. Furthermore, our data confirm that the structural plasticity of gp120 can accommodate multiple modes of antibody binding within the CD4 binding site. PMID:20463957
Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.
Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella
2015-04-01
In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a strategy for its characterization inside human fragile sites.
Global Mapping of DNA Conformational Flexibility on Saccharomyces cerevisiae
Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella
2015-01-01
In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3’UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3’-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a strategy for its characterization inside human fragile sites. PMID:25860149
The flexibility of two tropomyosin mutants, D175N and E180G, that cause hypertrophic cardiomyopathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaochuan; Suphamungmee, Worawit; Janco, Miro
2012-08-03
Highlights: Black-Right-Pointing-Pointer Well-known tropomyosin mutants, D175N and E180G are linked to cardiomyopathies. Black-Right-Pointing-Pointer The structural mechanics of D175N and E180G tropomyosins have been investigated. Black-Right-Pointing-Pointer D175N and E180G mutations increase both local and global tropomyosin flexibility. Black-Right-Pointing-Pointer In muscle, this increased flexibility will enhance myosin interactions on actin. Black-Right-Pointing-Pointer Extra myosin interaction can alter cardiac Ca{sup 2+}-switching, leading to dysfunction. -- Abstract: Point mutations targeting muscle thin filament proteins are the cause of a number of cardiomyopathies. In many cases, biological effects of the mutations are well-documented, whereas their structural and mechanical impact on filament assembly and regulatory function ismore » lacking. In order to elucidate molecular defects leading to cardiac dysfunction, we have examined the structural mechanics of two tropomyosin mutants, E180G and D175N, which are associated with hypertrophic cardiomyopathy (HCM). Tropomyosin is an {alpha}-helical coiled-coil dimer which polymerizes end-to-end to create an elongated superhelix that wraps around F-actin filaments of muscle and non-muscle cells, thus modulating the binding of other actin-binding proteins. Here, we study how flexibility changes in the E180G and D175N mutants might affect tropomyosin binding and regulatory motion on F-actin. Electron microscopy and Molecular Dynamics simulations show that E180G and D175N mutations cause an increase in bending flexibility of tropomyosin both locally and globally. This excess flexibility is likely to increase accessibility of the myosin-binding sites on F-actin, thus destabilizing the low-Ca{sup 2+} relaxed-state of cardiac muscle. The resulting imbalance in the on-off switching mechanism of the mutants will shift the regulatory equilibrium towards Ca{sup 2+}-activation of cardiac muscle, as is observed in affected muscle, accompanied by enhanced systolic activity, diastolic dysfunction, and cardiac compensations associated with HCM and heart failure.« less
Bryant, Derek; Clemens, Lara; Allard, Jun
2017-01-01
Many actin structures are nucleated and assembled by the barbed-end tracking polymerase formin family, including filopodia, focal adhesions, the cytokinetic ring and cell cortex. These structures respond to forces in distinct ways. Formins typically have profilin-actin binding sites embedded in highly flexible disordered FH1 domains, hypothesized to diffusively explore space to rapidly capture actin monomers for delivery to the barbed end. Recent experiments demonstrate that formin-mediated polymerization accelerates when under tension. The acceleration has been attributed to modifying the state of the FH2 domain of formin. Intriguingly, the same acceleration is reported when tension is applied to the FH1 domains, ostensibly pulling monomers away from the barbed end. Here we develop a mesoscale coarse-grain model of formin-mediated actin polymerization, including monomer capture and delivery by FH1, which sterically interacts with actin along its entire length. The binding of actin monomers to their specific sites on FH1 is entropically disfavored by the high disorder. We find that this penalty is attenuated when force is applied to the FH1 domain by revealing the binding site, increasing monomer capture efficiency. Overall polymerization rates can decrease or increase with increasing force, depending on the length of FH1 domain and location of binding site. Our results suggest that the widely varying FH1 lengths and binding site locations found in known formins could be used to differentially respond to force, depending on the actin structure being assembled. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Copper Coordination in the Full-Length, Recombinant Prion Protein†
Burns, Colin S.; Aronoff-Spencer, Eliah; Legname, Giuseppe; Prusiner, Stanley B.; Antholine, William E.; Gerfen, Gary J.; Peisach, Jack; Millhauser, Glenn L.
2010-01-01
The prion protein (PrP) binds divalent copper at physiologically relevant conditions and is believed to participate in copper regulation or act as a copper-dependent enzyme. Ongoing studies aim at determining the molecular features of the copper binding sites. The emerging consensus is that most copper binds in the octarepeat domain, which is composed of four or more copies of the fundamental sequence PHGGGWGQ. Previous work from our laboratory using PrP-derived peptides, in conjunction with EPR and X-ray crystallography, demonstrated that the HGGGW segment constitutes the fundamental binding unit in the octarepeat domain [Burns et al. (2002) Biochemistry 41, 3991–4001; Aronoff-Spencer et al. (2000) Biochemistry 39, 13760–13771]. Copper coordination arises from the His imidazole and sequential deprotonated glycine amides. In this present work, recombinant, full-length Syrian hamster PrP is investigated using EPR methodologies. Four copper ions are taken up in the octarepeat domain, which supports previous findings. However, quantification studies reveal a fifth binding site in the flexible region between the octarepeats and the PrP globular C-terminal domain. A series of PrP peptide constructs show that this site involves His96 in the PrP(92–96) segment GGGTH. Further examination by X-band EPR, S-band EPR, and electron spin–echo envelope spectroscopy, demonstrates coordination by the His96 imidazole and the glycine preceding the threonine. The copper affinity for this type of binding site is highly pH dependent, and EPR studies here show that recombinant PrP loses its affinity for copper below pH 6.0. These studies seem to provide a complete profile of the copper binding sites in PrP and support the hypothesis that PrP function is related to its ability to bind copper in a pH-dependent fashion. PMID:12779334
NASA Astrophysics Data System (ADS)
Pang, Yuan-Ping; Kozikowski, Alan P.
1994-12-01
In the preceding paper we reported on a docking study with the SYSDOC program for predicting the binding sites of huperzine A in acetylcholinesterase (AChE) [Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 669]. Here we present a prediction of the binding sites of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine (E2020) in AChE by the same method. E2020 is one of the most potent and selective reversible inhibitors of AChE, and this molecule has puzzled researchers, partly due to its flexible structure, in understanding how it binds to AChE. Based on the results of docking 1320 different conformers of E2020 into 69 different conformers of AChE and on the pharmacological data reported for E2020 and its analogs, we predict that both the R- and the S-isomer of E2020 span the whole binding cavity of AChE, with the ammonium group interacting mainly with Trp84, Phe330 and Asp72, the phenyl group interacting mainly with Trp84 and Phe330, and the indanone moiety interacting mainly with Tyr70 and Trp279. The topography of the calculated E2020 binding sites provides insights into understanding the high potency of E2020 in the inhibition of AChE and provides hints as to possible structural modifications for identifying improved AChE inhibitors as potential therapeutics for the palliative treatment of Alzheimer's disease.
Allosteric effects of gold nanoparticles on human serum albumin.
Shao, Qing; Hall, Carol K
2017-01-07
The ability of nanoparticles to alter protein structure and dynamics plays an important role in their medical and biological applications. We investigate allosteric effects of gold nanoparticles on human serum albumin protein using molecular simulations. The extent to which bound nanoparticles influence the structure and dynamics of residues distant from the binding site is analyzed. The root mean square deviation, root mean square fluctuation and variation in the secondary structure of individual residues on a human serum albumin protein are calculated for four protein-gold nanoparticle binding complexes. The complexes are identified in a brute-force search process using an implicit-solvent coarse-grained model for proteins and nanoparticles. They are then converted to atomic resolution and their structural and dynamic properties are investigated using explicit-solvent atomistic molecular dynamics simulations. The results show that even though the albumin protein remains in a folded structure, the presence of a gold nanoparticle can cause more than 50% of the residues to decrease their flexibility significantly, and approximately 10% of the residues to change their secondary structure. These affected residues are distributed on the whole protein, even on regions that are distant from the nanoparticle. We analyze the changes in structure and flexibility of amino acid residues on a variety of binding sites on albumin and confirm that nanoparticles could allosterically affect the ability of albumin to bind fatty acids, thyroxin and metals. Our simulations suggest that allosteric effects must be considered when designing and deploying nanoparticles in medical and biological applications that depend on protein-nanoparticle interactions.
Moorman, Veronica R.; Valentine, Kathleen G.; Bédard, Sabrina; Kasinath, Vignesh; Dogan, Jakob; Love, Fiona M.; Wand, A. Joshua
2014-01-01
Human cell division cycle protein 42 (Cdc42Hs) is a small, Rho-type GTPase involved in multiple cellular processes through its interactions with downstream effectors. The binding domain of one such effector, the actin cytoskeleton-regulating p21 activated kinase 3 (PAK3) is known as PBD46. Nitrogen-15 backbone and carbon-13 methyl NMR relaxation were measured to investigate the dynamical changes in activated GMPPCP•Cdc42Hs upon PBD46 binding. Changes in internal motion of the Cdc42Hs, as revealed by methyl axis order parameters, were observed not only near the Cdc42Hs–PBD46 interface but also in remote sites on the Cdc42Hs molecule. The binding-induced changes in side chain dynamics propagate along the long axis of Cdc42Hs away from the site of PBD46 binding with a sharp distance dependence. Overall, the binding of the PBD46 effector domain on the dynamics of methyl bearing side chains of Cdc42Hs results in a modest rigidification, which is estimated to correspond to an unfavorable change in conformational entropy of approximately −10 kcal mol−1 at 298 K. A cluster of methyl probes closest to the nucleotide-binding pocket of Cdc42Hs become more rigid upon binding of PBD46 and is proposed to slow the catalytic hydrolysis of the γ phosphate moiety. An additional cluster of methyl probes surrounding the guanine ring become more flexible on binding of PBD46, presumably facilitating nucleotide exchange mediated by a guanosine exchange factor. In addition, the Rho insert helix, which is located at a site remote from the PBD46 binding interface, shows a significant dynamic response to PBD46 binding. PMID:25109462
Structural determinants of ubiquitin-CXC chemokine receptor 4 interaction.
Saini, Vikas; Marchese, Adriano; Tang, Wei-Jen; Majetschak, Matthias
2011-12-23
Ubiquitin, a post-translational protein modifier inside the cell, functions as a CXC chemokine receptor (CXCR) 4 agonist outside the cell. However, the structural determinants of the interaction between extracellular ubiquitin and CXCR4 remain unknown. Utilizing C-terminal truncated ubiquitin and ubiquitin mutants, in which surface residues that are known to interact with ubiquitin binding domains in interacting proteins are mutated (Phe-4, Leu-8, Ile-44, Asp-58, Val-70), we provide evidence that the ubiquitin-CXCR4 interaction follows a two-site binding mechanism in which the hydrophobic surfaces surrounding Phe-4 and Val-70 are important for receptor binding, whereas the flexible C terminus facilitates receptor activation. Based on these findings and the available crystal structures, we then modeled the ubiquitin-CXCR4 interface with the RosettaDock software followed by small manual adjustments, which were guided by charge complementarity and anticipation of a conformational switch of CXCR4 upon activation. This model suggests three residues of CXCR4 (Phe-29, Phe-189, Lys-271) as potential interaction sites. Binding studies with HEK293 cells overexpressing wild type and CXCR4 after site-directed mutagenesis confirm that these residues are important for ubiquitin binding but that they do not contribute to the binding of stromal cell-derived factor 1α. Our findings suggest that the structural determinants of the CXCR4 agonist activity of ubiquitin mimic the typical structure-function relationship of chemokines. Furthermore, we provide evidence for separate and specific ligand binding sites on CXCR4. As exogenous ubiquitin has been shown to possess therapeutic potential, our findings are expected to facilitate the structure-based design of new compounds with ubiquitin-mimetic actions on CXCR4.
Guo, Jin-Hua; Jiang, Ren-Wang; Andersen, Jacob Lauwring; Esmann, Mikael; Fedosova, Natalya U
2018-04-24
The information obtained from crystallized complexes of the Na + ,K + -ATPase with cardiotonic steroids (CTS) is not sufficient to explain differences in the inhibitory properties of CTS such as stereoselectivity of CTS binding or effect of glycosylation on the preference to enzyme isoforms. The uncertainty is related to the spatial organization of the hydrophilic cavity at the entrance of the CTS-binding site. Therefore, there is a need to supplement the crystallographic description with data obtained in aqueous solution, where molecules have significant degree of flexibility. This work addresses the applicability of the electron paramagnetic resonance (EPR) method for the purpose. We have designed and synthesized spin-labeled compounds based on the cinobufagin steroid core. The length of the spacer arms between the steroid core and the nitroxide group determines the position of the reporting group (N-O) confined to the binding site. High affinity to Na + ,K + -ATPase is inferred from their ability to inhibit enzymatic activity. The differences between the EPR spectra in the absence and presence of high ouabain concentrations identify the signature peaks originating from the fraction of the spin labels bound within the ouabain site. The degree of perturbations of the EPR spectra depends on the length of the spacer arm. Docking of the compounds into the CTS site suggests which elements of the protein structure might be responsible for interference with the spin label (e.g., steric clashes or immobilization). Thus, the method is suitable for gathering information on the cavity leading to the CTS-binding site in Na + ,K + -ATPase in all conformations with high affinity to CTS. © 2018 Federation of European Biochemical Societies.
Jungheim, L N; Boyd, D B; Indelicato, J M; Pasini, C E; Preston, D A; Alborn, W E
1991-05-01
Bicyclic tetrahydropyridazinones, such as 13, where X are strongly electron-withdrawing groups, were synthesized to investigate their antibacterial activity. These delta-lactams are homologues of bicyclic pyrazolidinones 15, which were the first non-beta-lactam containing compounds reported to bind to penicillin-binding proteins (PBPs). The delta-lactam compounds exhibit poor antibacterial activity despite having reactivity comparable to the gamma-lactams. Molecular modeling based on semiempirical molecular orbital calculations on a Cray X-MP supercomputer, predicted that the reason for the inactivity is steric bulk hindering high affinity of the compounds to PBPs, as well as high conformational flexibility of the tetrahydropyridazinone ring hampering effective alignment of the molecule in the active site. Subsequent PBP binding experiments confirmed that this class of compound does not bind to PBPs.
Ababou, Abdessamad; Rostkova, Elena; Mistry, Shreena; Le Masurier, Clare; Gautel, Mathias; Pfuhl, Mark
2008-12-19
Myosin binding protein C (MyBP-C) is a thick filament protein involved in the regulation of muscle contraction. Mutations in the gene for MyBP-C are the second most frequent cause of hypertrophic cardiomyopathy. MyBP-C binds to myosin with two binding sites, one at its C-terminus and another at its N-terminus. The N-terminal binding site, consisting of immunoglobulin domains C1 and C2 connected by a flexible linker, interacts with the S2 segment of myosin in a phosphorylation-regulated manner. It is assumed that the function of MyBP-C is to act as a tether that fixes the S1 heads in a resting position and that phosphorylation releases the S1 heads into an active state. Here, we report the structure and binding properties of domain C1. Using a combination of site-directed mutagenesis and NMR interaction experiments, we identified the binding site of domain C1 in the immediate vicinity of the S1-S2 hinge, very close to the light chains. In addition, we identified a zinc binding site on domain C1 in close proximity to the S2 binding site. Its zinc binding affinity (K(d) of approximately 10-20 microM) might not be sufficient for a physiological effect. However, the familial hypertrophic cardiomyopathy-related mutation of one of the zinc ligands, glutamine 210 to histidine, will significantly increase the binding affinity, suggesting that this mutation may affect S2 binding. The close proximity of the C1 binding site to the hinge, the light chains and the S1 heads also provides an explanation for recent observations that (a) shorter fragments of MyBP-C unable to act as a tether still have an effect on the actomyosin ATPase and (b) as to why the myosin head positions in phosphorylated wild-type mice and MyBP-C knockout mice are so different: Domain C1 bound to the S1-S2 hinge is able to manipulate S1 head positions, thus influencing force generation without tether. The potentially extensive extra interactions of C1 are expected to keep it in place, while phosphorylation dislodges the C1-C2 linker and domain C2. As a result, the myosin heads would always be attached to a tether that has phosphorylation-dependent length regulation.
Ababou, Abdessamad; Rostkova, Elena; Mistry, Shreena; Masurier, Clare Le; Gautel, Mathias; Pfuhl, Mark
2008-01-01
Myosin binding protein C (MyBP-C) is a thick filament protein involved in the regulation of muscle contraction. Mutations in the gene for MyBP-C are the second most frequent cause of hypertrophic cardiomyopathy. MyBP-C binds to myosin with two binding sites, one at its C-terminus and another at its N-terminus. The N-terminal binding site, consisting of immunoglobulin domains C1 and C2 connected by a flexible linker, interacts with the S2 segment of myosin in a phosphorylation-regulated manner. It is assumed that the function of MyBP-C is to act as a tether that fixes the S1 heads in a resting position and that phosphorylation releases the S1 heads into an active state. Here, we report the structure and binding properties of domain C1. Using a combination of site-directed mutagenesis and NMR interaction experiments, we identified the binding site of domain C1 in the immediate vicinity of the S1–S2 hinge, very close to the light chains. In addition, we identified a zinc binding site on domain C1 in close proximity to the S2 binding site. Its zinc binding affinity (Kd of approximately 10–20 μM) might not be sufficient for a physiological effect. However, the familial hypertrophic cardiomyopathy-related mutation of one of the zinc ligands, glutamine 210 to histidine, will significantly increase the binding affinity, suggesting that this mutation may affect S2 binding. The close proximity of the C1 binding site to the hinge, the light chains and the S1 heads also provides an explanation for recent observations that (a) shorter fragments of MyBP-C unable to act as a tether still have an effect on the actomyosin ATPase and (b) as to why the myosin head positions in phosphorylated wild-type mice and MyBP-C knockout mice are so different: Domain C1 bound to the S1–S2 hinge is able to manipulate S1 head positions, thus influencing force generation without tether. The potentially extensive extra interactions of C1 are expected to keep it in place, while phosphorylation dislodges the C1–C2 linker and domain C2. As a result, the myosin heads would always be attached to a tether that has phosphorylation-dependent length regulation. PMID:18926831
Structural correlates of affinity in fetal versus adult endplate nicotinic receptors
NASA Astrophysics Data System (ADS)
Nayak, Tapan Kumar; Chakraborty, Srirupa; Zheng, Wenjun; Auerbach, Anthony
2016-04-01
Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although all agonist binding sites have the same core of five aromatic amino acids, the fetal site has ~30-fold higher affinity for the neurotransmitter ACh. Here we use molecular dynamics simulations of adult versus fetal homology models to identify complementary-subunit residues near the core that influence affinity, and use single-channel electrophysiology to corroborate the results. Four residues in combination determine adult versus fetal affinity. Simulations suggest that at lower-affinity sites, one of these unsettles the core directly and the others (in loop E) increase backbone flexibility to unlock a key, complementary tryptophan from the core. Swapping only four amino acids is necessary and sufficient to exchange function between adult and fetal AChRs.
Ghatak, Arindam; Bharatham, Nagakumar; Shanbhag, Anirudh P; Datta, Santanu; Venkatraman, Janani
2017-01-01
Short-chain dehydrogenase reductases (SDRs) have been utilized for catalyzing the reduction of many aromatic/aliphatic prochiral ketones to their respective alcohols. However, there is a paucity of data that elucidates their innate biological role and diverse substrate space. In this study, we executed an in-depth biochemical characterization and substrate space mapping (with 278 prochiral ketones) of an unannotated SDR (DHK) from Debaryomyces hansenii and compared it with structurally and functionally characterized SDR Synechococcus elongatus. PCC 7942 FabG to delineate its industrial significance. It was observed that DHK was significantly more efficient than FabG, reducing a diverse set of ketones albeit at higher conversion rates. Comparison of the FabG structure with a homology model of DHK and a docking of substrate to both structures revealed the presence of additional flexible loops near the substrate binding site of DHK. The comparative elasticity of the cofactor and substrate binding site of FabG and DHK was experimentally substantiated using differential scanning fluorimetry. It is postulated that the loop flexibility may account for the superior catalytic efficiency of DHK although the positioning of the catalytic triad is conserved.
Ghatak, Arindam; Bharatham, Nagakumar; Shanbhag, Anirudh P.; Datta, Santanu; Venkatraman, Janani
2017-01-01
Short-chain dehydrogenase reductases (SDRs) have been utilized for catalyzing the reduction of many aromatic/aliphatic prochiral ketones to their respective alcohols. However, there is a paucity of data that elucidates their innate biological role and diverse substrate space. In this study, we executed an in-depth biochemical characterization and substrate space mapping (with 278 prochiral ketones) of an unannotated SDR (DHK) from Debaryomyces hansenii and compared it with structurally and functionally characterized SDR Synechococcus elongatus. PCC 7942 FabG to delineate its industrial significance. It was observed that DHK was significantly more efficient than FabG, reducing a diverse set of ketones albeit at higher conversion rates. Comparison of the FabG structure with a homology model of DHK and a docking of substrate to both structures revealed the presence of additional flexible loops near the substrate binding site of DHK. The comparative elasticity of the cofactor and substrate binding site of FabG and DHK was experimentally substantiated using differential scanning fluorimetry. It is postulated that the loop flexibility may account for the superior catalytic efficiency of DHK although the positioning of the catalytic triad is conserved. PMID:28107498
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher
Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in Mycobacterium tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of apoenzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured the second-order acylation rate constantsmore » for the antibiotics imipenem, penicillin G, and ceftriaxone. Of these, imipenem, which has demonstrable anti-tubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined, and all show conformational differences in the β5–α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5–α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that penicillin-binding proteins in apo form can occupy different conformational states.« less
Nguyen, Thi Quynh Ngoc; Lim, Kah Wai; Phan, Anh Tuân
2017-09-20
Small-molecule ligands targeting nucleic acids have been explored as potential therapeutic agents. Duplex groove-binding ligands have been shown to recognize DNA in a sequence-specific manner. On the other hand, quadruplex-binding ligands exhibit high selectivity between quadruplex and duplex, but show limited discrimination between different quadruplex structures. Here we propose a dual-specific approach through the simultaneous application of duplex- and quadruplex-binders. We demonstrated that a quadruplex-specific ligand and a duplex-specific ligand can simultaneously interact at two separate binding sites of a quadruplex-duplex hybrid harbouring both quadruplex and duplex structural elements. Such a dual-specific targeting strategy would combine the sequence specificity of duplex-binders and the strong binding affinity of quadruplex-binders, potentially allowing the specific targeting of unique quadruplex structures. Future research can be directed towards the development of conjugated compounds targeting specific genomic quadruplex-duplex sites, for which the linker would be highly context-dependent in terms of length and flexibility, as well as the attachment points onto both ligands.
Protein surface roughness accounts for binding free energy of Plasmepsin II-ligand complexes.
Valdés-Tresanco, Mario E; Valdés-Tresanco, Mario S; Valiente, Pedro A; Cocho, Germinal; Mansilla, Ricardo; Nieto-Villar, J M
2018-01-01
The calculation of absolute binding affinities for protein-inhibitor complexes remains as one of the main challenges in computational structure-based ligand design. The present work explored the calculations of surface fractal dimension (as a measure of surface roughness) and the relationship with experimental binding free energies of Plasmepsin II complexes. Plasmepsin II is an attractive target for novel therapeutic compounds to treat malaria. However, the structural flexibility of this enzyme is a drawback when searching for specific inhibitors. Concerning that, we performed separate explicitly solvated molecular dynamics simulations using the available high-resolution crystal structures of different Plasmepsin II complexes. Molecular dynamics simulations allowed a better approximation to systems dynamics and, therefore, a more reliable estimation of surface roughness. This constitutes a novel approximation in order to obtain more realistic values of fractal dimension, because previous works considered only x-ray structures. Binding site fractal dimension was calculated considering the ensemble of structures generated at different simulation times. A linear relationship between binding site fractal dimension and experimental binding free energies of the complexes was observed within 20 ns. Previous studies of the subject did not uncover this relationship. Regression model, coined FD model, was built to estimate binding free energies from binding site fractal dimension values. Leave-one-out cross-validation showed that our model reproduced accurately the absolute binding free energies for our training set (R 2 = 0.76; <|error|> =0.55 kcal/mol; SD error = 0.19 kcal/mol). The fact that such a simple model may be applied raises some questions that are addressed in the article. Copyright © 2017 John Wiley & Sons, Ltd.
X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel.
Nury, Hugues; Van Renterghem, Catherine; Weng, Yun; Tran, Alphonso; Baaden, Marc; Dufresne, Virginie; Changeux, Jean-Pierre; Sonner, James M; Delarue, Marc; Corringer, Pierre-Jean
2011-01-20
General anaesthetics have enjoyed long and widespread use but their molecular mechanism of action remains poorly understood. There is good evidence that their principal targets are pentameric ligand-gated ion channels (pLGICs) such as inhibitory GABA(A) (γ-aminobutyric acid) receptors and excitatory nicotinic acetylcholine receptors, which are respectively potentiated and inhibited by general anaesthetics. The bacterial homologue from Gloeobacter violaceus (GLIC), whose X-ray structure was recently solved, is also sensitive to clinical concentrations of general anaesthetics. Here we describe the crystal structures of the complexes propofol/GLIC and desflurane/GLIC. These reveal a common general-anaesthetic binding site, which pre-exists in the apo-structure in the upper part of the transmembrane domain of each protomer. Both molecules establish van der Waals interactions with the protein; propofol binds at the entrance of the cavity whereas the smaller, more flexible, desflurane binds deeper inside. Mutations of some amino acids lining the binding site profoundly alter the ionic response of GLIC to protons, and affect its general-anaesthetic pharmacology. Molecular dynamics simulations, performed on the wild type (WT) and two GLIC mutants, highlight differences in mobility of propofol in its binding site and help to explain these effects. These data provide a novel structural framework for the design of general anaesthetics and of allosteric modulators of brain pLGICs.
Kozakov, Dima; Grove, Laurie E.; Hall, David R.; Bohnuud, Tanggis; Mottarella, Scott; Luo, Lingqi; Xia, Bing; Beglov, Dmitri; Vajda, Sandor
2016-01-01
FTMap is a computational mapping server that identifies binding hot spots of macromolecules, i.e., regions of the surface with major contributions to the ligand binding free energy. To use FTMap, users submit a protein, DNA, or RNA structure in PDB format. FTMap samples billions of positions of small organic molecules used as probes and scores the probe poses using a detailed energy expression. Regions that bind clusters of multiple probe types identify the binding hot spots, in good agreement with experimental data. FTMap serves as basis for other servers, namely FTSite to predict ligand binding sites, FTFlex to account for side chain flexibility, FTMap/param to parameterize additional probes, and FTDyn to map ensembles of protein structures. Applications include determining druggability of proteins, identifying ligand moieties that are most important for binding, finding the most bound-like conformation in ensembles of unliganded protein structures, and providing input for fragment based drug design. FTMap is more accurate than classical mapping methods such as GRID and MCSS, and is much faster than the more recent approaches to protein mapping based on mixed molecular dynamics. Using 16 probe molecules, the FTMap server finds the hot spots of an average size protein in less than an hour. Since FTFlex performs mapping for all low energy conformers of side chains in the binding site, its completion time is proportionately longer. PMID:25855957
Song, Wei; Guo, Jun-Tao
2015-01-01
Transcription factors regulate gene expression through binding to specific DNA sequences. How transcription factors achieve high binding specificity is still not well understood. In this paper, we investigated the role of protein flexibility in protein-DNA-binding specificity by comparative molecular dynamics (MD) simulations. Protein flexibility has been considered as a key factor in molecular recognition, which is intrinsically a dynamic process involving fine structural fitting between binding components. In this study, we performed comparative MD simulations on wild-type and F10V mutant P22 Arc repressor in both free and complex conformations. The F10V mutant has lower DNA-binding specificity though both the bound and unbound main-chain structures between the wild-type and F10V mutant Arc are highly similar. We found that the DNA-binding motif of wild-type Arc is structurally more flexible than the F10V mutant in the unbound state, especially for the six DNA base-contacting residues in each dimer. We demonstrated that the flexible side chains of wild-type Arc lead to a higher DNA-binding specificity through forming more hydrogen bonds with DNA bases upon binding. Our simulations also showed a possible conformational selection mechanism for Arc-DNA binding. These results indicate the important roles of protein flexibility and dynamic properties in protein-DNA-binding specificity.
Martínez, Leandro; Malliavin, Thérèse E; Blondel, Arnaud
2011-05-01
The anthrax edema factor is a toxin overproducing damaging levels of cyclic adenosine monophosphate (cAMP) and pyrophosphate (PPi) from ATP. Here, mechanisms of dissociation of ATP and products (cAMP, PPi) from the active site are studied using locally enhanced sampling (LES) and steered molecular dynamics simulations. Various substrate conformations and ionic binding modes found in crystallographic structures are considered. LES simulations show that PPi and cAMP dissociate through different solvent accessible channels, while ATP dissociation requires significant active site exposure to solvent. The ionic content of the active site directly affects the dissociation of ATP and products. Only one ion dissociates along with ATP in the two-Mg(2+) binding site, suggesting that the other ion binds EF prior to ATP association. Dissociation of reaction products cAMP and PPi is impaired by direct electrostatic interactions between products and Mg(2+) ions. This provides an explanation for the inhibitory effect of high Mg(2+) concentrations on EF enzymatic activity. Breaking of electrostatic interactions is dependent on a competitive binding of water molecules to the ions, and thus on the solvent accessibility of the active site. Consequently, product dissociation seems to be a two-step process. First, ligands are progressively solvated while preserving the most important electrostatic interactions, in a process that is dependent on the flexibility of the active site. Second, breakage of the electrostatic bonds follows, and ligands diffuse into solvent. In agreement with this mechanism, product protonation facilitates dissociation.
Binding ligand prediction for proteins using partial matching of local surface patches.
Sael, Lee; Kihara, Daisuke
2010-01-01
Functional elucidation of uncharacterized protein structures is an important task in bioinformatics. We report our new approach for structure-based function prediction which captures local surface features of ligand binding pockets. Function of proteins, specifically, binding ligands of proteins, can be predicted by finding similar local surface regions of known proteins. To enable partial comparison of binding sites in proteins, a weighted bipartite matching algorithm is used to match pairs of surface patches. The surface patches are encoded with the 3D Zernike descriptors. Unlike the existing methods which compare global characteristics of the protein fold or the global pocket shape, the local surface patch method can find functional similarity between non-homologous proteins and binding pockets for flexible ligand molecules. The proposed method improves prediction results over global pocket shape-based method which was previously developed by our group.
Binding Ligand Prediction for Proteins Using Partial Matching of Local Surface Patches
Sael, Lee; Kihara, Daisuke
2010-01-01
Functional elucidation of uncharacterized protein structures is an important task in bioinformatics. We report our new approach for structure-based function prediction which captures local surface features of ligand binding pockets. Function of proteins, specifically, binding ligands of proteins, can be predicted by finding similar local surface regions of known proteins. To enable partial comparison of binding sites in proteins, a weighted bipartite matching algorithm is used to match pairs of surface patches. The surface patches are encoded with the 3D Zernike descriptors. Unlike the existing methods which compare global characteristics of the protein fold or the global pocket shape, the local surface patch method can find functional similarity between non-homologous proteins and binding pockets for flexible ligand molecules. The proposed method improves prediction results over global pocket shape-based method which was previously developed by our group. PMID:21614188
Interactions of 2’-O-methyl oligoribonucleotides with the RNA models of the 30S subunit A-site
Jasiński, Maciej; Kulik, Marta; Wojciechowska, Monika; Stolarski, Ryszard
2018-01-01
Synthetic oligonucleotides targeting functional regions of the prokaryotic rRNA could be promising antimicrobial agents. Indeed, such oligonucleotides were proven to inhibit bacterial growth. 2’-O-methylated (2’-O-Me) oligoribonucleotides with a sequence complementary to the decoding site in 16S rRNA were reported as inhibitors of bacterial translation. However, the binding mode and structures of the formed complexes, as well as the level of selectivity of the oligonucleotides between the prokaryotic and eukaryotic target, were not determined. We have analyzed three 2’-O-Me oligoribonucleotides designed to hybridize with the models of the prokaryotic rRNA containing two neighboring aminoglycoside binding pockets. One pocket is the paromomycin/kanamycin binding site corresponding to the decoding site in the small ribosomal subunit and the other one is the close-by hygromycin B binding site whose dynamics has not been previously reported. Molecular dynamics (MD) simulations, as well as isothermal titration calorimetry, gel electrophoresis and spectroscopic studies have shown that the eukaryotic rRNA model is less conformationally stable (in terms of hydrogen bonds and stacking interactions) than the corresponding prokaryotic one. In MD simulations of the eukaryotic construct, the nucleotide U1498, which plays an important role in correct positioning of mRNA during translation, is flexible and spontaneously flips out into the solvent. In solution studies, the 2’-O-Me oligoribonucleotides did not interact with the double stranded rRNA models but all formed stable complexes with the single-stranded prokaryotic target. 2’-O-Me oligoribonucleotides with one and two mismatches bound less tightly to the eukaryotic target. This shows that at least three mismatches between the 2’-O-Me oligoribonucleotide and eukaryotic rRNA are required to ensure target selectivity. The results also suggest that, in the ribosome environment, the strand invasion is the preferred binding mode of 2’-O-Me oligoribonucleotides targeting the aminoglycoside binding sites in 16S rRNA. PMID:29351348
Structural insights into binding of small molecule inhibitors to Enhancer of Zeste Homolog 2
NASA Astrophysics Data System (ADS)
Kalinić, Marko; Zloh, Mire; Erić, Slavica
2014-11-01
Enhancer of Zeste Homolog 2 (EZH2) is a SET domain protein lysine methyltransferase (PKMT) which has recently emerged as a chemically tractable and therapeutically promising epigenetic target, evidenced by the discovery and characterization of potent and highly selective EZH2 inhibitors. However, no experimental structures of the inhibitors co-crystallized to EZH2 have been resolved, and the structural basis for their activity and selectivity remains unknown. Considering the need to minimize cross-reactivity between prospective PKMT inhibitors, much can be learned from understanding the molecular basis for selective inhibition of EZH2. Thus, to elucidate the binding of small-molecule inhibitors to EZH2, we have developed a model of its fully-formed cofactor binding site and used it to carry out molecular dynamics simulations of protein-ligand complexes, followed by molecular mechanics/generalized born surface area calculations. The obtained results are in good agreement with biochemical inhibition data and reflect the structure-activity relationships of known ligands. Our findings suggest that the variable and flexible post-SET domain plays an important role in inhibitor binding, allowing possibly distinct binding modes of inhibitors with only small variations in their structure. Insights from this study present a good basis for design of novel and optimization of existing compounds targeting the cofactor binding site of EZH2.
NASA Astrophysics Data System (ADS)
Singh, Warispreet; Karabencheva-Christova, Tatyana G.; Black, Gary W.; Ainsley, Jon; Dover, Lynn; Christov, Christo Z.
2016-01-01
Heme d1, a vital tetrapyrrol involved in the denitrification processes is synthesized from its precursor molecule precorrin-2 in a chemical reaction catalysed by an S-adenosyl-L-methionine (SAM) dependent Methyltransferase (NirE). The NirE enzyme catalyses the transfer of a methyl group from the SAM to uroporphyrinogen III and serves as a novel potential drug target for the pharmaceutical industry. An important insight into the structure-activity relationships of NirE has been revealed by elucidating its crystal structure, but there is still no understanding about how conformational flexibility influences structure, cofactor and substrate binding by the enzyme as well as the structural effects of mutations of residues involved in binding and catalysis. In order to provide this missing but very important information we performed a comprehensive atomistic molecular dynamics study which revealed that i) the binding of the substrate contributes to the stabilization of the structure of the full complex; ii) conformational changes influence the orientation of the pyrrole rings in the substrate, iii) more open conformation of enzyme active site to accommodate the substrate as an outcome of conformational motions; and iv) the mutations of binding and active site residues lead to sensitive structural changes which influence binding and catalysis.
Lee, Ting-Wai; Cherney, Maia M; Liu, Jie; James, Karen Ellis; Powers, James C; Eltis, Lindsay D; James, Michael N G
2007-02-23
The SARS coronavirus main peptidase (SARS-CoV M(pro)) plays an essential role in the life-cycle of the virus and is a primary target for the development of anti-SARS agents. Here, we report the crystal structure of M(pro) at a resolution of 1.82 Angstroms, in space group P2(1) at pH 6.0. In contrast to the previously reported structure of M(pro) in the same space group at the same pH, the active sites and the S1 specificity pockets of both protomers in the structure of M(pro) reported here are in the catalytically competent conformation, suggesting their conformational flexibility. We report two crystal structures of M(pro) having an additional Ala at the N terminus of each protomer (M(+A(-1))(pro)), both at a resolution of 2.00 Angstroms, in space group P4(3)2(1)2: one unbound and one bound by a substrate-like aza-peptide epoxide (APE). In the unbound form, the active sites and the S1 specificity pockets of both protomers of M(+A(-1))(pro) are observed in a collapsed (catalytically incompetent) conformation; whereas they are in an open (catalytically competent) conformation in the APE-bound form. The observed conformational flexibility of the active sites and the S1 specificity pockets suggests that these parts of M(pro) exist in dynamic equilibrium. The structural data further suggest that the binding of APE to M(pro) follows an induced-fit model. The substrate likely also binds in an induced-fit manner in a process that may help drive the catalytic cycle.
Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase.
Fecker, Tobias; Galaz-Davison, Pablo; Engelberger, Felipe; Narui, Yoshie; Sotomayor, Marcos; Parra, Loreto P; Ramírez-Sarmiento, César A
2018-03-27
Polyethylene terephthalate (PET) is one of the most-consumed synthetic polymers, with an annual production of 50 million tons. Unfortunately, PET accumulates as waste and is highly resistant to biodegradation. Recently, fungal and bacterial thermophilic hydrolases were found to catalyze PET hydrolysis with optimal activities at high temperatures. Strikingly, an enzyme from Ideonella sakaiensis, termed PETase, was described to efficiently degrade PET at room temperature, but the molecular basis of its activity is not currently understood. Here, a crystal structure of PETase was determined at 2.02 Å resolution and employed in molecular dynamics simulations showing that the active site of PETase has higher flexibility at room temperature than its thermophilic counterparts. This flexibility is controlled by a novel disulfide bond in its active site, with its removal leading to destabilization of the catalytic triad and reduction of the hydrolase activity. Molecular docking of a model substrate predicts that PET binds to PETase in a unique and energetically favorable conformation facilitated by several residue substitutions within its active site when compared to other enzymes. These computational predictions are in excellent agreement with recent mutagenesis and PET film degradation analyses. Finally, we rationalize the increased catalytic activity of PETase at room temperature through molecular dynamics simulations of enzyme-ligand complexes for PETase and other thermophilic PET-degrading enzymes at 298, 323, and 353 K. Our results reveal that both the binding pose and residue substitutions within PETase favor proximity between the catalytic residues and the labile carbonyl of the substrate at room temperature, suggesting a more favorable hydrolytic reaction. These results are valuable for enabling detailed evolutionary analysis of PET-degrading enzymes and for rational design endeavors aiming at increasing the efficiency of PETase and similar enzymes toward plastic degradation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Loving, Kathryn A.; Lin, Andy; Cheng, Alan C.
2014-01-01
Advances reported over the last few years and the increasing availability of protein crystal structure data have greatly improved structure-based druggability approaches. However, in practice, nearly all druggability estimation methods are applied to protein crystal structures as rigid proteins, with protein flexibility often not directly addressed. The inclusion of protein flexibility is important in correctly identifying the druggability of pockets that would be missed by methods based solely on the rigid crystal structure. These include cryptic pockets and flexible pockets often found at protein-protein interaction interfaces. Here, we apply an approach that uses protein modeling in concert with druggability estimation to account for light protein backbone movement and protein side-chain flexibility in protein binding sites. We assess the advantages and limitations of this approach on widely-used protein druggability sets. Applying the approach to all mammalian protein crystal structures in the PDB results in identification of 69 proteins with potential druggable cryptic pockets. PMID:25079060
Substrate uptake and protein stability relationship in mammalian histidine decarboxylase.
Pino-Angeles, A; Morreale, A; Negri, A; Sánchez-Jiménez, F; Moya-García, A A
2010-01-01
There is some evidence linking the substrate entrance in the active site of mammalian histidine decarboxylase and an increased stability against proteolytic degradation. In this work, we study the basis of this relationship by means of protein structure network analysis and molecular dynamics simulations. We find that the substrate binding to the active site influences the conformation of a flexible region sensible to proteolytic degradation and observe how formation of the Michaelis-Menten complex increases stability in the conformation of this region. (c) 2009 Wiley-Liss, Inc.
Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis
NASA Astrophysics Data System (ADS)
Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; de Proft, Frank; Huang, Jingjing; van Breusegem, Frank; Messens, Joris
2017-02-01
Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release.
Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis
Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; De Proft, Frank; Huang, Jingjing; Van Breusegem, Frank; Messens, Joris
2017-01-01
Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release. PMID:28195196
Target DNA bending by the Mu transpososome promotes careful transposition and prevents its reversal
Fuller, James R; Rice, Phoebe A
2017-01-01
The transposition of bacteriophage Mu serves as a model system for understanding DDE transposases and integrases. All available structures of these enzymes at the end of the transposition reaction, including Mu, exhibit significant bends in the transposition target site DNA. Here we use Mu to investigate the ramifications of target DNA bending on the transposition reaction. Enhancing the flexibility of the target DNA or prebending it increases its affinity for transpososomes by over an order of magnitude and increases the overall reaction rate. This and FRET confirm that flexibility is interrogated early during the interaction between the transposase and a potential target site, which may be how other DNA binding proteins can steer selection of advantageous target sites. We also find that the conformation of the target DNA after strand transfer is involved in preventing accidental catalysis of the reverse reaction, as conditions that destabilize this conformation also trigger reversal. DOI: http://dx.doi.org/10.7554/eLife.21777.001 PMID:28177285
The role of ω-subunit of Escherichia coli RNA polymerase in stress response.
Bhardwaj, Neerupma; Syal, Kirtimaan; Chatterji, Dipankar
2018-05-01
ppGpp, an alarmone for stringent response, plays an important role in the reprogramming of the transcription complex at the time of stress. In Escherichia coli, ppGpp mediates its action by binding to at least two different sites on RNA polymerase (RNAP). One of the sites to which ppGpp binds to RNAP is at the β'-ω interface; however, the underlying molecular mechanism and the physiological relevance of ppGpp binding to this site remain unclear. In this study, we have performed UV cross-linking experiments using 32 P azido-labeled ppGpp to probe its association with RNAP in the absence and presence of ω, and observed weaker binding of ppGpp to the RNAP without ω. Furthermore, we followed the binding kinetics of ppGpp to RNAP with and without ω by isothermal titration calorimetry and found it to be concurrent with the cross-linking results. Native ω is intrinsically disordered, and we have used a previously characterized structured mutant of ω, which affects the plasticity of the active site of RNAP. Results show that the flexibility conferred by the unstructured ω is a prerequisite for ppGpp binding to RNAP. We have analyzed the stress-associated phenotypes in an E. coli strain devoid of ω (∆rpoZ). ppGpp levels in ∆rpoZ strain were found to be similar to that of the wild-type strain. Interestingly, when the ∆rpoZ strain of E. coli was transferred after nutritional stress to an enriched media, the recovery of growth was compromised. We have identified a new phenotype of ∆rpoZ strain corresponding to defect in biofilm formation in minimal media. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Kiefer, Jonathan D.; Srinivas, Raja R.; Lobner, Elisabeth; Tisdale, Alison W.; Mehta, Naveen K.; Yang, Nicole J.; Tidor, Bruce; Wittrup, K. Dane
2016-01-01
The Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus is an attractive binding scaffold because of its small size (7 kDa), high thermal stability (Tm of 98 °C), and absence of cysteines and glycosylation sites. However, as a DNA-binding protein, Sso7d is highly positively charged, introducing a strong specificity constraint for binding epitopes and leading to nonspecific interaction with mammalian cell membranes. In the present study, we report charge-neutralized variants of Sso7d that maintain high thermal stability. Yeast-displayed libraries that were based on this reduced charge Sso7d (rcSso7d) scaffold yielded binders with low nanomolar affinities against mouse serum albumin and several epitopes on human epidermal growth factor receptor. Importantly, starting from a charge-neutralized scaffold facilitated evolutionary adaptation of binders to differentially charged epitopes on mouse serum albumin and human epidermal growth factor receptor, respectively. Interestingly, the distribution of amino acids in the small and rigid binding surface of enriched rcSso7d-based binders is very different from that generally found in more flexible antibody complementarity-determining region loops but resembles the composition of antibody-binding energetic hot spots. Particularly striking was a strong enrichment of the aromatic residues Trp, Tyr, and Phe in rcSso7d-based binders. This suggests that the rigidity and small size of this scaffold determines the unusual amino acid composition of its binding sites, mimicking the energetic core of antibody paratopes. Despite the high frequency of aromatic residues, these rcSso7d-based binders are highly expressed, thermostable, and monomeric, suggesting that the hyperstability of the starting scaffold and the rigidness of the binding surface confer a high tolerance to mutation. PMID:27582495
Li, Qian; Zhang, Tianlong; Bian, Liujiao
2016-03-01
Serum albumins are the most abundant carrier proteins in blood plasma and participate in the binding and transportation of various exogenous and endogenous compounds in the body. This work was designed to investigate the recognition and binding of three typical β-lactam antibiotics including penicillin G (Pen G), penicillin V (Pen V) and cefalexin (Cef) with bovine serum albumin (BSA) by frontal affinity chromatography in combination with UV-vis absorption spectra, fluorescence emission spectra, binding site marker competitive experiment and molecular docking under simulated physiological conditions. The results showed that a BSA only bound with one antibiotic molecule in the binding process, and the binding constants for Pen G-BSA, Pen V-BSA and Cef-BSA complexes were 4.22×10(1), 4.86×10(2) and 3.32×10(3) (L/mol), respectively. All the three β-lactam antibiotics were mainly inserted into the subdomain IIA (binding site 1) of BSA by hydrogen bonds and Van der Waals forces. The binding capacity between the antibiotics and BSA was closely related to the functional groups and flexibility of side chains in antibiotics. This study provided an important insight into the molecular recognition and binding interaction of BSA with β-lactam antibiotics, which may be a useful guideline for the innovative clinical medications and new antibiotic designs with effective pharmacological properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Sael, Lee; Kihara, Daisuke
2012-01-01
Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations. PMID:22275074
Sael, Lee; Kihara, Daisuke
2012-04-01
Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations. Copyright © 2011 Wiley Periodicals, Inc.
AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility
Ravindranath, Pradeep Anand; Forli, Stefano; Goodsell, David S.; Olson, Arthur J.; Sanner, Michel F.
2015-01-01
Automated docking of drug-like molecules into receptors is an essential tool in structure-based drug design. While modeling receptor flexibility is important for correctly predicting ligand binding, it still remains challenging. This work focuses on an approach in which receptor flexibility is modeled by explicitly specifying a set of receptor side-chains a-priori. The challenges of this approach include the: 1) exponential growth of the search space, demanding more efficient search methods; and 2) increased number of false positives, calling for scoring functions tailored for flexible receptor docking. We present AutoDockFR–AutoDock for Flexible Receptors (ADFR), a new docking engine based on the AutoDock4 scoring function, which addresses the aforementioned challenges with a new Genetic Algorithm (GA) and customized scoring function. We validate ADFR using the Astex Diverse Set, demonstrating an increase in efficiency and reliability of its GA over the one implemented in AutoDock4. We demonstrate greatly increased success rates when cross-docking ligands into apo receptors that require side-chain conformational changes for ligand binding. These cross-docking experiments are based on two datasets: 1) SEQ17 –a receptor diversity set containing 17 pairs of apo-holo structures; and 2) CDK2 –a ligand diversity set composed of one CDK2 apo structure and 52 known bound inhibitors. We show that, when cross-docking ligands into the apo conformation of the receptors with up to 14 flexible side-chains, ADFR reports more correctly cross-docked ligands than AutoDock Vina on both datasets with solutions found for 70.6% vs. 35.3% systems on SEQ17, and 76.9% vs. 61.5% on CDK2. ADFR also outperforms AutoDock Vina in number of top ranking solutions on both datasets. Furthermore, we show that correctly docked CDK2 complexes re-create on average 79.8% of all pairwise atomic interactions between the ligand and moving receptor atoms in the holo complexes. Finally, we show that down-weighting the receptor internal energy improves the ranking of correctly docked poses and that runtime for AutoDockFR scales linearly when side-chain flexibility is added. PMID:26629955
Structural basis for the antibody neutralization of Herpes simplex virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Cheng-Chung; Lin, Li-Ling; Academia Sinica, Taipei 115, Taiwan
2013-10-01
The gD–E317-Fab complex crystal revealed the conformational epitope of human mAb E317 on HSV gD, providing a molecular basis for understanding the viral neutralization mechanism. Glycoprotein D (gD) of Herpes simplex virus (HSV) binds to a host cell surface receptor, which is required to trigger membrane fusion for virion entry into the host cell. gD has become a validated anti-HSV target for therapeutic antibody development. The highly inhibitory human monoclonal antibody E317 (mAb E317) was previously raised against HSV gD for viral neutralization. To understand the structural basis of antibody neutralization, crystals of the gD ectodomain bound to the E317more » Fab domain were obtained. The structure of the complex reveals that E317 interacts with gD mainly through the heavy chain, which covers a large area for epitope recognition on gD, with a flexible N-terminal and C-terminal conformation. The epitope core structure maps to the external surface of gD, corresponding to the binding sites of two receptors, herpesvirus entry mediator (HVEM) and nectin-1, which mediate HSV infection. E317 directly recognizes the gD–nectin-1 interface and occludes the HVEM contact site of gD to block its binding to either receptor. The binding of E317 to gD also prohibits the formation of the N-terminal hairpin of gD for HVEM recognition. The major E317-binding site on gD overlaps with either the nectin-1-binding residues or the neutralizing antigenic sites identified thus far (Tyr38, Asp215, Arg222 and Phe223). The epitopes of gD for E317 binding are highly conserved between two types of human herpesvirus (HSV-1 and HSV-2). This study enables the virus-neutralizing epitopes to be correlated with the receptor-binding regions. The results further strengthen the previously demonstrated therapeutic and diagnostic potential of the E317 antibody.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Rong; Pineda, Marco; Ajamian, Eunice
2009-01-15
Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+},more » which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.« less
Structure of the ACF7 EF-Hand-GAR Module and Delineation of Microtubule Binding Determinants.
Lane, Thomas R; Fuchs, Elaine; Slep, Kevin C
2017-07-05
Spectraplakins are large molecules that cross-link F-actin and microtubules (MTs). Mutations in spectraplakins yield defective cell polarization, aberrant focal adhesion dynamics, and dystonia. We present the 2.8 Å crystal structure of the hACF7 EF1-EF2-GAR MT-binding module and delineate the GAR residues critical for MT binding. The EF1-EF2 and GAR domains are autonomous domains connected by a flexible linker. The EF1-EF2 domain is an EFβ-scaffold with two bound Ca 2+ ions that straddle an N-terminal α helix. The GAR domain has a unique α/β sandwich fold that coordinates Zn 2+ . While the EF1-EF2 domain is not sufficient for MT binding, the GAR domain is and likely enhances EF1-EF2-MT engagement. Residues in a conserved basic patch, distal to the GAR domain's Zn 2+ -binding site, mediate MT binding. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utschig, L. M.; Dalosto, S. D.; Thurnauer, M. C.
Metal ion binding to a surface site on photosynthetic reaction centers (RCs) modulates light-induced electron and proton transfer events in the RC. Whereas many studies have elucidated aspects of metal ion modulation events in Rhodobacter sphaeroides RCs, much less is understood about the surface site in Blastochloris viridis (Blc. viridis) RCs. Interestingly, electron paramagnetic resonance studies revealed two spectroscopically distinct Cu{sup 2+} surface site environments in Blc. viridis RCs. Herein, Cu{sup 2+} has been used to spectroscopically probe the structure of these Cu{sup 2+} site(s) in response to freezing conditions, temperature, and charge separation. One Cu{sup 2+} environment in Blc.more » viridis RCs, termed CuA, exhibits temperature-dependent conformational flexibility. Different conformation states of the CuA{sup 2+} site are trapped when the RC is frozen in the dark either by fast-freeze or slow-freeze procedure. The second Cu{sup 2+} environment, termed CuB, is structurally invariant to different freezing conditions and shows resolved hyperfine coupling to three nitrogen atoms. Cu{sup 2+} is most likely binding at the same location on the RC, but in different coordination environments which may reflect two distinct conformational states of the isolated Blc. viridis RC protein.« less
Nanobody Binding to a Conserved Epitope Promotes Norovirus Particle Disassembly
Koromyslova, Anna D.
2014-01-01
ABSTRACT Human noroviruses are icosahedral single-stranded RNA viruses. The capsid protein is divided into shell (S) and protruding (P) domains, which are connected by a flexible hinge region. There are numerous genetically and antigenically distinct noroviruses, and the dominant strains evolve every other year. Vaccine and antiviral development is hampered by the difficulties in growing human norovirus in cell culture and the continually evolving strains. Here, we show the X-ray crystal structures of human norovirus P domains in complex with two different nanobodies. One nanobody, Nano-85, was broadly reactive, while the other, Nano-25, was strain specific. We showed that both nanobodies bound to the lower region on the P domain and had nanomolar affinities. The Nano-85 binding site mainly comprised highly conserved amino acids among the genetically distinct genogroup II noroviruses. Several of the conserved residues also were recognized by a broadly reactive monoclonal antibody, which suggested this region contained a dominant epitope. Superposition of the P domain nanobody complex structures into a cryoelectron microscopy particle structure revealed that both nanobodies bound at occluded sites on the particles. The flexible hinge region, which contained ∼10 to 12 amino acids, likely permitted a certain degree of P domain movement on the particles in order to accommodate the nanobodies. Interestingly, the Nano-85 binding interaction with intact particles caused the particles to disassemble in vitro. Altogether, these results suggested that the highly conserved Nano-85 binding epitope contained a trigger mechanism for particle disassembly. Principally, this epitope represents a potential site of norovirus vulnerability. IMPORTANCE We characterized two different nanobodies (Nano-85 and Nano-25) that bind to human noroviruses. Both nanobodies bound with high affinities to the lower region of the P domain, which was occluded on intact particles. Nano-25 was specific for GII.10, whereas Nano-85 bound several different GII genotypes, including GII.4, GII.10, and GII.12. We showed that Nano-85 was able to detect norovirus virions in clinical stool specimens using a sandwich enzyme-linked immunosorbent assay. Importantly, we found that Nano-85 binding to intact particles caused the particles to disassemble. We believe that with further testing, Nano-85 not only will work as a diagnostic reagent in norovirus detection systems but also could function as a broadly reactive GII norovirus antiviral. PMID:25520510
Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR
NASA Astrophysics Data System (ADS)
Lange, Adam; Giller, Karin; Hornig, Sönke; Martin-Eauclaire, Marie-France; Pongs, Olaf; Becker, Stefan; Baldus, Marc
2006-04-01
The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane-similar to the catalytic function of the active site of an enzyme-and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.
Lee, Donghan; Walsh, Joseph D; Yu, Ping; Markus, Michelle A; Choli-Papadopoulou, Theodora; Schwieters, Charles D; Krueger, Susan; Draper, David E; Wang, Yun-Xing
2007-04-06
The L11 binding site is one of the most important functional sites in the ribosome. The N-terminal domain of L11 has been implicated as a "reversible switch" in facilitating the coordinated movements associated with EF-G-driven GTP hydrolysis. The reversible switch mechanism has been hypothesized to require conformational flexibility involving re-orientation and re-positioning of the two L11 domains, and warrants a close examination of the structure and dynamics of L11. Here we report the solution structure of free L11, and relaxation studies of free L11, L11 complexed to its 58 nt RNA recognition site, and L11 in a ternary complex with the RNA and thiostrepton antibiotic. The binding site of thiostrepton on L11 was also defined by analysis of structural and dynamics data and chemical shift mapping. The conclusions of this work are as follows: first, the binding of L11 to RNA leads to sizable conformation changes in the regions flanking the linker and in the hinge area that links a beta-sheet and a 3(10)-helix-turn-helix element in the N terminus. Concurrently, the change in the relative orientation may lead to re-positioning of the N terminus, as implied by a decrease of radius of gyration from 18.5 A to 16.2 A. Second, the regions, which undergo large conformation changes, exhibit motions on milliseconds-microseconds or nanoseconds-picoseconds time scales. Third, binding of thiostrepton results in more rigid conformations near the linker (Thr71) and near its putative binding site (Leu12). Lastly, conformational changes in the putative thiostrepton binding site are implicated by the re-emergence of cross-correlation peaks in the spectrum of the ternary complex, which were missing in that of the binary complex. Our combined analysis of both the chemical shift perturbation and dynamics data clearly indicates that thiostrepton binds to a pocket involving residues in the 3(10)-helix in L11.
Lee, Donghan; Walsh, Joseph D.; Yu, Ping; Markus, Michelle A.; Choli-Papadopoulou, Theodora; Schwieters, Charles D.; Krueger, Susan; Draper, David E.; Wang, Yun-Xing
2007-01-01
Summary The L11 binding site is one of the most important functional sites in the ribosome. The N-terminal domain of L11 has been implicated as a “reversible switch” in facilitating the coordinated movements associated with EF-G–driven GTP hydrolysis. The “reversible switch” mechanism has been hypothesized to require conformational flexibility involving re-orientation and re-positioning of the two L11 domains, and warrants a close examination of the structure and dynamics of L11. Here we report the solution structure of free L11, and relaxation studies of free L11, L11complexed to its 58 nt RNA recognition site, and L11 in a ternary complex with the RNA and thiostrepton antibiotic. The binding site of thiostrepton on L11 was also defined by analysis of structural and dynamics data and chemical shift mapping. The conclusions of this work are as follows: First, the binding of L11 to RNA leads to sizable conformation changes in the regions flanking the linker and in the hinge area that links a β-sheets and a 310-helix-turn-helix element in the N-terminus. Concurrently, the change in the relative orientation may lead to re-positioning of the N-terminus, as implied by a decrease of radius of gyration from 18.5 Å to 16.2 Å. Second, the regions, which undergo large conformation changes, exhibit motions on ms-μs or ns-ps time scales. Third, binding of thiostrepton results in more rigid conformations near the linker (Thr71) and near its putative binding site (Leu12). Lastly, conformational changes in the putative thiostrepton binding site are implicated by the re-emergence of cross-correlation peaks in the spectrum of the ternary complex, which were missing in that of the binary complex. Our combined analysis of both the chemical shift perturbation and dynamics data clearly indicates that thiostrepton binds to a pocket involving residues in the 310-helix in L11. PMID:17292917
Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.
Shibata, Mikihiro; Nishimasu, Hiroshi; Kodera, Noriyuki; Hirano, Seiichi; Ando, Toshio; Uchihashi, Takayuki; Nureki, Osamu
2017-11-10
The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.
Koh, Junseock; Shkel, Irina; Saecker, Ruth M.; Record, M. Thomas
2011-01-01
Previous ITC and FRET studies demonstrated that Escherichia coli HUαβ binds nonspecifically to duplex DNA in three different binding modes: a tighter-binding 34 bp mode which interacts with DNA in large (>34 bp) gaps between bound proteins, reversibly bending it 140° and thereby increasing its flexibility, and two weaker, modestly cooperative small-site-size modes (10 bp, 6 bp) useful for filling gaps between bound proteins shorter than 34 bp. Here we use ITC to determine the thermodynamics of these binding modes as a function of salt concentration, and deduce that DNA in the 34 bp mode is bent around but not wrapped on the body of HU, in contrast to specific binding of IHF. Analyses of binding isotherms (8, 15, 34 bp DNA) and initial binding heats (34, 38, 160 bp DNA) reveal that all three modes have similar log-log salt concentration derivatives of the binding constants (Ski) even though their binding site sizes differ greatly; most probable values of Ski on 34 bp or larger DNA are − 7.5 ± 0.5. From the similarity of Ski values, we conclude that binding interfaces of all three modes involve the same region of the arms and saddle of HU. All modes are entropy-driven, as expected for nonspecific binding driven by the polyelectrolyte effect. The bent-DNA 34 bp mode is most endothermic, presumably because of the cost of HU-induced DNA bending, while the 6 bp mode is modestly exothermic at all salt concentrations examined. Structural models consistent with the observed Ski values are proposed. PMID:21513716
Shi, Jie-Hua; Wang, Qi; Pan, Dong-Qi; Liu, Ting-Ting; Jiang, Min
2017-05-01
The binding interactions of simvastatin (SIM), pravastatin (PRA), fluvastatin (FLU), and pitavastatin (PIT) with bovine serum albumin (BSA) were investigated for determining the affinity of four statins with BSA through multiple spectroscopic and molecular docking methods. The experimental results showed that SIM, PRA, FLU, and PIT statins quenched the intrinsic fluorescence of BSA through a static quenching process and the stable stains-BSA complexes with the binding constants in the order of 10 4 M -1 at 298 K were formed through intermolecular nonbond interaction. The values of ΔH 0 , ΔS 0 and ΔG 0 in the binding process of SIM, PRA, FLU, and PIT with BSA were negative at the studied temperature range, suggesting that the binding process of four statins and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen-bonding interactions. Moreover, the binding of four statins with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°| under the studied temperature range. From the results of site marker competitive experiments and molecular docking, subdomain IIIA (site II) was the primary binding site for SIM, PRA, FLU, and PIT on BSA. The results of UV-vis absorption, synchronous fluorescence, 3D fluorescence and FT-IR spectra proved that the slight change in the conformation of BSA, while the significant changes in the conformation of SIM, PRA, FLU, and PIT drug in statin-BSA complexes, indicating that the flexibility of statin molecules plays an important role in increasing the stability of statin-BSA complexes.
NASA Astrophysics Data System (ADS)
Gresh, Nohad; Perrée-fauvet, Martine
1999-03-01
On the basis of theoretical computations, we have recently synthesised [Perrée-Fauvet, M. and Gresh, N., Tetrahedron Lett., 36 (1995) 4227] a bisarginyl conjugate of a tricationic porphyrin (BAP), designed to target, in the major groove of DNA, the d(GGC GCC)2 sequence which is part of the primary binding site of the HIV-1 retrovirus site [Wain-Hobson, S. et al., Cell, 40 (1985) 9]. In the theoretical model, the chromophore intercalates at the central d(CpG)2 step and each of the arginyl arms targets O6/N7belonging to guanine bases flanking the intercalation site. Recent IR and UV-visible spectroscopic studies have confirmed the essential features of these theoretical predictions [Mohammadi, S. et al., Biochemistry, 37 (1998) 6165]. In the present study, we compare the energies of competing intercalation modes of BAP to several double-stranded oligonucleotides, according to whether one, two or three N- methylpyridinium rings project into the major groove. Correspondingly, three minor groove binding modes were considered, the arginyl arms now targeting N3, O2 sites belonging to the purine or pyrimidine bases flanking the intercalation site. This investigation has shown that: (i) in both the major and minor grooves, the best-bound complexes have the three N-methylpyridinium rings in the groove opposite to that of the phenyl group bearing the arginyl arms; (ii) major groove binding is preferred over minor groove binding by a significant energy (29 kcal/mol); and (iii) the best-bound sequence in the major groove is d(GGC GCC)2 with two successive guanines upstream from the intercalation. On the other hand, due to the flexibility of the arginyl arms, other GC-rich sequences have close binding energies, two of them being less stable than it by less than 8 kcal/mol. These results serve as the basis for the design of derivatives of BAP with enhanced sequence selectivities in the major groove.
Differential Binding Models for Direct and Reverse Isothermal Titration Calorimetry.
Herrera, Isaac; Winnik, Mitchell A
2016-03-10
Isothermal titration calorimetry (ITC) is a technique to measure the stoichiometry and thermodynamics from binding experiments. Identifying an appropriate mathematical model to evaluate titration curves of receptors with multiple sites is challenging, particularly when the stoichiometry or binding mechanism is not available. In a recent theoretical study, we presented a differential binding model (DBM) to study calorimetry titrations independently of the interaction among the binding sites (Herrera, I.; Winnik, M. A. J. Phys. Chem. B 2013, 117, 8659-8672). Here, we build upon our DBM and show its practical application to evaluate calorimetry titrations of receptors with multiple sites independently of the titration direction. Specifically, we present a set of ordinary differential equations (ODEs) with the general form d[S]/dV that can be integrated numerically to calculate the equilibrium concentrations of free and bound species S at every injection step and, subsequently, to evaluate the volume-normalized heat signal (δQ(V) = δq/dV) of direct and reverse calorimetry titrations. Additionally, we identify factors that influence the shape of the titration curve and can be used to optimize the initial concentrations of titrant and analyte. We demonstrate the flexibility of our updated DBM by applying these differentials and a global regression analysis to direct and reverse calorimetric titrations of gadolinium ions with multidentate ligands of increasing denticity, namely, diglycolic acid (DGA), citric acid (CIT), and nitrilotriacetic acid (NTA), and use statistical tests to validate the stoichiometries for the metal-ligand pairs studied.
Chen, Kai; Duan, Wenxiu; Han, Qianqian; Sun, Xuan; Li, Wenqian; Hu, Shuangyun; Wan, Jiajia; Wu, Jiang; Ge, Yushu; Liu, Dan
2018-03-08
Protein kinase monopolar spindle 1 plays an important role in spindle assembly checkpoint at the onset of mitosis. Over expression of MPS1 correlated with a wide range of human tumors makes it an attractive target for finding an effective and specific inhibitor. In this work, we performed molecular dynamics simulations of protein MPS1 itself as well as protein bound systems with the inhibitor and natural substrate based on crystal structures. The reported orally bioavailable 1 h-pyrrolo [3,2-c] pyridine inhibitors of MPS1 maintained stable binding in the catalytic site, while natural substrate ATP could not stay. Comparative study of stability and flexibility of three systems reveals position shifting of β-sheet region within the catalytic site, which indicates inhibition mechanism was through stabilizing the β-sheet region. Binding free energies calculated with MM-GB/PBSA method shows different binding affinity for inhibitor and ATP. Finally, interactions between protein and inhibitor during molecular dynamic simulations were measured and counted. Residue Gly605 and Leu654 were suggested as important hot spots for stable binding of inhibitor by molecular dynamic simulation. Our results reveal an important position shifting within catalytic site for non-inhibited proteins. Together with hot spots found by molecular dynamic simulation, the results provide important information of inhibition mechanism and will be referenced for designing novel inhibitors.
Molecular principles behind Boceprevir resistance due to mutations in hepatitis C NS3/4A protease.
Nagpal, Neha; Goyal, Sukriti; Wahi, Divya; Jain, Ritu; Jamal, Salma; Singh, Aditi; Rana, Preeti; Grover, Abhinav
2015-10-01
The hepatitis C virus (HCV) infection is a primary cause of chronic hepatitis which eventually progresses to cirrhosis and in some instances might advance to hepatocellular carcinoma. According to the WHO report, HCV infects 130-150 million people globally and every year 350,000 to 500,000 people die from hepatitis C virus infection. Great achievement has been made in viral treatment evolution, after the development of HCV NS3/4A protease inhibitor (Boceprevir). However, efficacy of Boceprevir is compromised by the emergence of drug resistant variants. The molecular principle behind drug resistance of the protease mutants such as (V36M, T54S and R155K) is still poorly understood. Therefore in this study, we employed a series of computational strategies to analyze the binding of antiviral drug, Boceprevir to HCV NS3/4A protease mutants. Our results clearly demonstrate that the point mutations (V36M, T54S and R155K) in protease are associated with lowering of its binding affinity with Boceprevir. Exhaustive analysis of the simulated Boceprevir-bound wild and mutant complexes revealed variations in hydrophobic interactions, hydrogen bond occupancy and salt bridge interactions. Also, substrate envelope analysis scrutinized that the studied mutations reside outside the substrate envelope which may affect the Boceprevir affinity towards HCV protease but not the protease enzymatic activity. Furthermore, structural analyses of the binding site volume and flexibility show impairment in flexibility and stability of the binding site residues in mutant structures. In order to combat Boceprevir resistance, renovation of binding interactions between the drug and protease may be valuable. The structural insight from this study reveals the mechanism of the Boceprevir resistance and the results can be valuable for the design of new PIs with improved efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.
Yamanaka, Yuki; Winardhi, Ricksen S; Yamauchi, Erika; Nishiyama, So-Ichiro; Sowa, Yoshiyuki; Yan, Jie; Kawagishi, Ikuro; Ishihama, Akira; Yamamoto, Kaneyoshi
2018-06-15
The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Protein-ligand docking using fitness learning-based artificial bee colony with proximity stimuli.
Uehara, Shota; Fujimoto, Kazuhiro J; Tanaka, Shigenori
2015-07-07
Protein-ligand docking is an optimization problem, which aims to identify the binding pose of a ligand with the lowest energy in the active site of a target protein. In this study, we employed a novel optimization algorithm called fitness learning-based artificial bee colony with proximity stimuli (FlABCps) for docking. Simulation results revealed that FlABCps improved the success rate of docking, compared to four state-of-the-art algorithms. The present results also showed superior docking performance of FlABCps, in particular for dealing with highly flexible ligands and proteins with a wide and shallow binding pocket.
Schmitt, Kyle C; Mamidyala, Sreeman; Biswas, Swati; Dutta, Aloke K; Reith, Maarten E A
2010-03-01
Bivalent ligands--compounds incorporating two receptor-interacting moieties linked by a flexible chain--often exhibit profoundly enhanced binding affinity compared with their monovalent components, implying concurrent binding to multiple sites on the target protein. It is generally assumed that neurotransmitter sodium symporter (NSS) proteins, such as the dopamine transporter (DAT), contain a single domain responsible for recognition of substrate molecules. In this report, we show that molecules possessing two substrate-like phenylalkylamine moieties linked by a progressively longer aliphatic spacer act as progressively more potent DAT inhibitors (rather than substrates). One compound bearing two dopamine (DA)-like pharmacophoric 'heads' separated by an 8-carbon linker achieved an 82-fold gain in inhibition of [(3)H] 2beta-carbomethoxy-3beta-(4-fluorophenyl)-tropane (CFT) binding compared with DA itself; bivalent compounds with a 6-carbon linker and heterologous combinations of DA-, amphetamine- and beta-phenethylamine-like heads all resulted in considerable and comparable gains in DAT affinity. A series of short-chain bivalent-like compounds with a single N-linkage was also identified, the most potent of which displayed a 74-fold gain in binding affinity. Computational modelling of the DAT protein and docking of the two most potent bivalent (-like) ligands suggested simultaneous occupancy of two discrete substrate-binding domains. Assays with the DAT mutants W84L and D313N--previously employed by our laboratory to probe conformation-specific binding of different structural classes of DAT inhibitors--indicated a bias of the bivalent ligands for inward-facing transporters. Our results strongly indicate the existence of multiple DAT substrate-interaction sites, implying that it is possible to design novel types of DAT inhibitors based upon the 'multivalent ligand' strategy.
Ligand-based virtual screening under partial shape constraints.
von Behren, Mathias M; Rarey, Matthias
2017-04-01
Ligand-based virtual screening has proven to be a viable technology during the search for new lead structures in drug discovery. Despite the rapidly increasing number of published methods, meaningful shape matching as well as ligand and target flexibility still remain open challenges. In this work, we analyze the influence of knowledge-based sterical constraints on the performance of the recently published ligand-based virtual screening method mRAISE. We introduce the concept of partial shape matching enabling a more differentiated view on chemical structure. The new method is integrated into the LBVS tool mRAISE providing multiple options for such constraints. The applied constraints can either be derived automatically from a protein-ligand complex structure or by manual selection of ligand atoms. In this way, the descriptor directly encodes the fit of a ligand into the binding site. Furthermore, the conservation of close contacts between the binding site surface and the query ligand can be enforced. We validated our new method on the DUD and DUD-E datasets. Although the statistical performance remains on the same level, detailed analysis reveal that for certain and especially very flexible targets a significant improvement can be achieved. This is further highlighted looking at the quality of calculated molecular alignments using the recently introduced mRAISE dataset. The new partial shape constraints improved the overall quality of molecular alignments especially for difficult targets with highly flexible or different sized molecules. The software tool mRAISE is freely available on Linux operating systems for evaluation purposes and academic use (see http://www.zbh.uni-hamburg.de/raise ).
Ligand-based virtual screening under partial shape constraints
NASA Astrophysics Data System (ADS)
von Behren, Mathias M.; Rarey, Matthias
2017-04-01
Ligand-based virtual screening has proven to be a viable technology during the search for new lead structures in drug discovery. Despite the rapidly increasing number of published methods, meaningful shape matching as well as ligand and target flexibility still remain open challenges. In this work, we analyze the influence of knowledge-based sterical constraints on the performance of the recently published ligand-based virtual screening method mRAISE. We introduce the concept of partial shape matching enabling a more differentiated view on chemical structure. The new method is integrated into the LBVS tool mRAISE providing multiple options for such constraints. The applied constraints can either be derived automatically from a protein-ligand complex structure or by manual selection of ligand atoms. In this way, the descriptor directly encodes the fit of a ligand into the binding site. Furthermore, the conservation of close contacts between the binding site surface and the query ligand can be enforced. We validated our new method on the DUD and DUD-E datasets. Although the statistical performance remains on the same level, detailed analysis reveal that for certain and especially very flexible targets a significant improvement can be achieved. This is further highlighted looking at the quality of calculated molecular alignments using the recently introduced mRAISE dataset. The new partial shape constraints improved the overall quality of molecular alignments especially for difficult targets with highly flexible or different sized molecules. The software tool mRAISE is freely available on Linux operating systems for evaluation purposes and academic use (see http://www.zbh.uni-hamburg.de/raise).
Zheng, Wenjun; Hitchcock-DeGregori, Sarah E; Barua, Bipasha
2016-10-01
Tropomyosin (Tpm) is a two-chained α-helical coiled-coil protein that binds to filamentous actin (F-actin), and regulates its interactions with myosin by occupying three average positions on F-actin (blocked, closed, and open). Mutations in the Tpm are linked to heart diseases including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). To elucidate the molecular mechanisms of Tpm mutations (including DCM mutation E54K, HCM mutations E62Q, A63V, K70T, V95A, D175N, E180G, L185R, E192K, and a designed synthetic mutation D137L) in terms of their effects on Tpm flexibility and its interactions with F-actin, we conducted extensive molecular dynamics simulations for the wild-type and mutant Tpm in complex with F-actin (total simulation time 160 ns per mutant). The mutants exhibited distinct changes (i.e., increase or decrease) in the overall and local flexibility of the Tpm coiled-coil, with each mutation causing both local and long-range modifications of the Tpm flexibility. In addition, our binding calculations revealed weakened Tpm-F-actin interactions (except for L185R, D137L and A63V) involving five periods of Tpm, which correlate with elevated fluctuation of Tpm relative to the blocked position on F-actin that may lead to easier activation and increased Ca 2+ -sensitivity. We also simulated the αβ/βα-Tpm heterodimer in comparison with the αα-Tpm homodimer, which revealed greater flexibility and weaker actin binding in the heterodimer. Our findings are consistent with a complex mechanism underlying how different Tpm mutations perturb the Tpm function in distinct ways (e.g., by affecting specific sites of Tpm), which bear no simple links to the disease phenotypes (e.g., HCM vs. DCM).
Bottomley, Matthew J.; Lo Surdo, Paola; Di Giovine, Paolo; Cirillo, Agostino; Scarpelli, Rita; Ferrigno, Federica; Jones, Philip; Neddermann, Petra; De Francesco, Raffaele; Steinkühler, Christian; Gallinari, Paola; Carfí, Andrea
2008-01-01
Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR·HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions. PMID:18614528
Uhl, Juli D.; Cook, Tiffany A.; Gebelein, Brian
2010-01-01
Hox transcription factors specify numerous cell fates along the anterior-posterior axis by regulating the expression of downstream target genes. While expression analysis has uncovered large numbers of de-regulated genes in cells with altered Hox activity, determining which are direct versus indirect targets has remained a significant challenge. Here, we characterize the DNA binding activity of Hox transcription factor complexes on eight experimentally verified cis-regulatory elements. Hox factors regulate the activity of each element by forming protein complexes with two cofactor proteins, Extradenticle (Exd) and Homothorax (Hth). Using comparative DNA binding assays, we found that a number of flexible arrangements of Hox, Exd, and Hth binding sites mediate cooperative transcription factor complexes. Moreover, analysis of a Distal-less regulatory element (DMXR) that is repressed by abdominal Hox factors revealed that suboptimal binding sites can be combined to form high affinity transcription complexes. Lastly, we determined that the anterior Hox factors are more dependent upon Exd and Hth for complex formation than posterior Hox factors. Based upon these findings, we suggest a general set of guidelines to serve as a basis for designing bioinformatics algorithms aimed at identifying Hox regulatory elements using the wealth of recently sequenced genomes. PMID:20398649
Bottomley, Matthew J; Lo Surdo, Paola; Di Giovine, Paolo; Cirillo, Agostino; Scarpelli, Rita; Ferrigno, Federica; Jones, Philip; Neddermann, Petra; De Francesco, Raffaele; Steinkühler, Christian; Gallinari, Paola; Carfí, Andrea
2008-09-26
Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR.HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions.
Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P
2016-04-08
The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior - a key element for the transport selectivity of the NPC - was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface.
Anisotropy of fluctuation dynamics of proteins with an elastic network model.
Atilgan, A R; Durell, S R; Jernigan, R L; Demirel, M C; Keskin, O; Bahar, I
2001-01-01
Fluctuations about the native conformation of proteins have proven to be suitably reproduced with a simple elastic network model, which has shown excellent agreement with a number of different properties for a wide variety of proteins. This scalar model simply investigates the magnitudes of motion of individual residues in the structure. To use the elastic model approach further for developing the details of protein mechanisms, it becomes essential to expand this model to include the added details of the directions of individual residue fluctuations. In this paper a new tool is presented for this purpose and applied to the retinol-binding protein, which indicates enhanced flexibility in the region of entry to the ligand binding site and for the portion of the protein binding to its carrier protein. PMID:11159421
Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, G.; Kirouac, K.; Shin, Y.J.
2009-09-16
DNA polymerases are co-ordinated by sliding clamps (PCNA/{beta}-clamp) in translesion synthesis. It is unclear how these enzymes assemble on PCNA with geometric and functional compatibility. We report the crystal structure of a full-length Y-family polymerase, Dpo4, in complex with heterodimeric PCNA1-PCNA2 at 2.05 {angstrom} resolution. Dpo4 exhibits an extended conformation that differs from the Dpo4 structures in apo- or DNA-bound form. Two hinges have been identified in Dpo4, which render the multidomain polymerase flexible conformations and orientations relative to PCNA. Dpo4 binds specifically to PCNA1 on the conserved ligand binding site. The C-terminal peptide of Dpo4 becomes structured with amore » 3{sub 10} helix and dominates the specific binding. The Y-family polymerase also contacts PCNA1 with its finger, thumb and little finger domains, which are conformation-dependent protein-protein interactions that diversify the binding mode of Dpo4 on PCNA. The structure reveals a molecular model in which substrate/partner binding-coupled multiple conformations of a Y-family polymerase facilitate its recruitment and co-ordination on the sliding clamp. The conformational flexibility would turn the error-prone Y-family polymerase off when more efficient high-fidelity DNA polymerases work on undamaged DNA and turn it onto DNA templates to perform translesion synthesis when replication forks are stalled by DNA lesions.« less
A photoaffinity scan maps regions of the p85 SH2 domain involved in phosphoprotein binding.
Williams, K P; Shoelson, S E
1993-03-15
Src homology 2 (SH2) domains are modular phosphotyrosine binding pockets found within a wide variety of cytoplasmic signaling molecules. Here we develop a new approach to analyzing protein-protein interfaces termed photoaffinity scanning, and apply the method to map regions of the phosphatidylinositol 3-kinase p85 SH2 domain that participate in phospho-protein binding. Each residue except phosphotyrosine (pY) within a tightly binding, IRS-1-derived phosphopeptide (GNGDpYMPMSPKS) was substituted with the photoactive amino acid, benzoylphenylalanine (Bpa). Whereas most substitutions had little effect on binding affinity, Bpa substitution of either Met (+1 and +3 with respect to pY) reduced affinity 50-100-fold to confirm their importance in the pYMXM recognition motif. In three cases photolysis of SH2 domain/Bpa phosphopeptide complexes led to cross-linking of > 50% of the SH2 domain; cross-link positions were identified by microsequence, amino acid composition, and electrospray mass spectrometric analyses. Bpa-1 cross-links within alpha-helix I, whereas Bpa+1 and Bpa+4 cross-link the SH2 domain within the flexible loop C-terminal to alpha-helix II. Moreover, cross-linking at any position prevents SH2 domain cleavage at a trypsin-sensitive site within the flexible loop between beta-strands 1 and 2. Therefore, at least three distinct SH2 regions in addition to the beta-sheet participate in phosphoprotein binding; the loop cross-linked by phosphopeptide residues C-terminal to pY appears to confer specificity to the phosphoprotein/SH2 domain interaction.
Greives, Nicholas; Zhou, Huan-Xiang
2012-01-01
A method developed by Northrup [J. Chem. Phys. 80, 1517 (1984)]10.1063/1.446900 for calculating protein-ligand binding rate constants (ka) from Brownian dynamics (BD) simulations has been widely used for rigid molecules. Application to flexible molecules is limited by the formidable computational cost to treat conformational fluctuations during the long BD simulations necessary for ka calculation. Here, we propose a new method called BDflex for ka calculation that circumvents this problem. The basic idea is to separate the whole space into an outer region and an inner region, and formulate ka as the product of kE and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\bar \\eta _{\\rm d}\\end{equation*} \\end{document}η¯d, which are obtained by separately solving exterior and interior problems. kE is the diffusion-controlled rate constant for the ligand in the outer region to reach the dividing surface between the outer and inner regions; in this exterior problem conformational fluctuations can be neglected. \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\bar \\eta _{\\rm d}\\end{equation*} \\end{document}η¯d is the probability that the ligand, starting from the dividing surface, will react at the binding site rather than escape to infinity. The crucial step in reducing the determination of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\bar \\eta _{\\rm d}\\end{equation*} \\end{document}η¯d to a problem confined to the inner region is a radiation boundary condition imposed on the dividing surface; the reactivity on this boundary is proportional to kE. By confining the ligand to the inner region and imposing the radiation boundary condition, we avoid multiple-crossing of the dividing surface before reaction at the binding site and hence dramatically cut down the total simulation time, making the treatment of conformational fluctuations affordable. BDflex is expected to have wide applications in problems where conformational fluctuations of the molecules are crucial for productive ligand binding, such as in cases where transient widening of a bottleneck allows the ligand to access the binding pocket, or the binding site is properly formed only after ligand entrance induces the closure of a lid. PMID:23039617
Dynamics of the EAG1 K+ channel selectivity filter assessed by molecular dynamics simulations.
Bernsteiner, Harald; Bründl, Michael; Stary-Weinzinger, Anna
2017-02-26
EAG1 channels belong to the KCNH family of voltage gated potassium channels. They are expressed in several brain regions and increased expression is linked to certain cancer types. Recent cryo-EM structure determination finally revealed the structure of these channels in atomic detail, allowing computational investigations. In this study, we performed molecular dynamics simulations to investigate the ion binding sites and the dynamical behavior of the selectivity filter. Our simulations suggest that sites S2 and S4 form stable ion binding sites, while ions placed at sites S1 and S3 rapidly switched to sites S2 and S4. Further, ions tended to dissociate away from S0 within less than 20 ns, due to increased filter flexibility. This was followed by water influx from the extracellular side, leading to a widening of the filter in this region, and likely non-conductive filter configurations. Simulations with the inactivation-enhancing mutant Y464A or Na + ions lead to trapped water molecules behind the SF, suggesting that these simulations captured early conformational changes linked to C-type inactivation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
A Cyclic Peptidic Serine Protease Inhibitor: Increasing Affinity by Increasing Peptide Flexibility
Jiang, Longguang; Paaske, Berit; Kromann-Hansen, Tobias; Jensen, Jan K.; Sørensen, Hans Peter; Liu, Zhuo; Nielsen, Jakob T.; Christensen, Anni; Hosseini, Masood; Sørensen, Kasper K.; Nielsen, Niels Christian; Jensen, Knud J.; Huang, Mingdong; Andreasen, Peter A.
2014-01-01
Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden. PMID:25545505
NASA Astrophysics Data System (ADS)
Ling, Irene; Taha, Mohamed; Al-Sharji, Nada A.; Abou-Zied, Osama K.
2018-04-01
The ability of human serum albumin (HSA) to bind medium-sized hydrophobic molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, the interaction between pyrene, a hydrophobic fluorescent probe, and HSA was thoroughly investigated using steady-state and time-resolved fluorescence techniques, ligand docking, and molecular dynamics (MD) simulations. A slight quenching of the fluorescence signal from Trp214 (the sole tryptophan residue in the protein) in the presence of pyrene was used to determine the ligand binding site in the protein, using Förster's resonance energy transfer (FRET) theory. The estimated FRET apparent distance between pyrene and Trp214 was 27 Å, which was closely reproduced by the docking analysis (29 Å) and MD simulation (32 Å). The highest affinity site for pyrene was found to be in subdomain IB from the docking results. The calculated equilibrium structure of the complex using MD simulation shows that the ligand is largely stabilized by hydrophobic interaction with Phe165, Phe127, and the nonpolar moieties of Tyr138 and Tyr161. The fluorescence vibronic peak ratio I1/I3 of bound pyrene inside HSA indicates the presence of polar effect in the local environment of pyrene which is less than that of free pyrene in buffer. This was clarified by the MD simulation results in which an average of 5.7 water molecules were found within 0.5 nm of pyrene in the binding site. Comparing the fluorescence signals and lifetimes of pyrene inside HSA to that free in buffer, the high tendency of pyrene to form dimer was almost completely suppressed inside HSA, indicating a high selectivity of the binding pocket toward pyrene monomer. The current results emphasize the ability of HSA, as a major carrier of several drugs and ligands in blood, to bind hydrophobic molecules in cavities other than subdomain IIA which is known to bind most hydrophobic drugs. This ability stems from the nature of the amino acids forming the binding sites of the protein that can easily adapt their shape to accommodate a variety of molecular structures.
Leger, J. F.; Robert, J.; Bourdieu, L.; Chatenay, D.; Marko, J. F.
1998-01-01
Most genetic regulatory mechanisms involve protein–DNA interactions. In these processes, the classical Watson–Crick DNA structure sometimes is distorted severely, which in turn enables the precise recognition of the specific sites by the protein. Despite its key importance, very little is known about such deformation processes. To address this general question, we have studied a model system, namely, RecA binding to double-stranded DNA. Results from micromanipulation experiments indicate that RecA binds strongly to stretched DNA; based on this observation, we propose that spontaneous thermal stretching fluctuations may play a role in the binding of RecA to DNA. This has fundamental implications for the protein–DNA binding mechanism, which must therefore rely in part on a combination of flexibility and thermal fluctuations of the DNA structure. We also show that this mechanism is sequence sensitive. Theoretical simulations support this interpretation of our experimental results, and it is argued that this is of broad relevance to DNA–protein interactions. PMID:9770480
Structure-based Understanding of Binding Affinity and Mode ...
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab
Essono, Sosthène; Mondielli, Grégoire; Lamourette, Patricia; Boquet, Didier; Grassi, Jacques; Marchot, Pascale
2013-01-01
The inhibition properties and target sites of monoclonal antibodies (mAbs) Elec403, Elec408 and Elec410, generated against Electrophorus electricus acetylcholinesterase (AChE), have been defined previously using biochemical and mutagenesis approaches. Elec403 and Elec410, which bind competitively with each other and with the peptidic toxin inhibitor fasciculin, are directed toward distinctive albeit overlapping epitopes located at the AChE peripheral anionic site, which surrounds the entrance of the active site gorge. Elec408, which is not competitive with the other two mAbs nor fasciculin, targets a second epitope located in the backdoor region, distant from the gorge entrance. To characterize the molecular determinants dictating their binding site specificity, we cloned and sequenced the mAbs; generated antigen-binding fragments (Fab) retaining the parental inhibition properties; and explored their structure-function relationships using complementary x-ray crystallography, homology modeling and flexible docking approaches. Hypermutation of one Elec403 complementarity-determining region suggests occurrence of antigen-driven selection towards recognition of the AChE peripheral site. Comparative analysis of the 1.9Å-resolution structure of Fab408 and of theoretical models of its Fab403 and Fab410 congeners evidences distinctive surface topographies and anisotropic repartitions of charges, consistent with their respective target sites and inhibition properties. Finally, a validated, data-driven docking model of the Fab403-AChE complex suggests a mode of binding at the PAS that fully correlates with the functional data. This comprehensive study documents the molecular peculiarities of Fab403 and Fab410, as the largest peptidic inhibitors directed towards the peripheral site, and those of Fab408, as the first inhibitor directed toward the backdoor region of an AChE and a unique template for the design of new, specific modulators of AChE catalysis. PMID:24146971
Chetty, Sarentha; Bhakat, Soumendranath; Martin, Alberto J M; Soliman, Mahmoud E S
2016-01-01
The PR20 HIV-1 protease, a variant with 20 mutations, exhibits high levels of multi-drug resistance; however, to date, there has been no report detailing the impact of these 20 mutations on the conformational and drug binding landscape at a molecular level. In this report, we demonstrate the first account of a comprehensive study designed to elaborate on the impact of these mutations on the dynamic features as well as drug binding and resistance profile, using extensive molecular dynamics analyses. Comparative MD simulations for the wild-type and PR20 HIV proteases, starting from bound and unbound conformations in each case, were performed. Results showed that the apo conformation of the PR20 variant of the HIV protease displayed a tendency to remain in the open conformation for a longer period of time when compared to the wild type. This led to a phenomena in which the inhibitor seated at the active site of PR20 tends to diffuse away from the binding site leading to a significant change in inhibitor-protein association. Calculating the per-residue fluctuation (RMSF) and radius of gyration, further validated these findings. MM/GBSA showed that the occurrence of 20 mutations led to a drop in the calculated binding free energies (ΔGbind) by ~25.17 kcal/mol and ~5 kcal/mol for p2-NC, a natural peptide substrate, and darunavir, respectively, when compared to wild type. Furthermore, the residue interaction network showed a diminished inter-residue hydrogen bond network and changes in inter-residue connections as a result of these mutations. The increased conformational flexibility in PR20 as a result of loss of intra- and inter-molecular hydrogen bond interactions and other prominent binding forces led to a loss of protease grip on ligand. It is interesting to note that the difference in conformational flexibility between PR20 and WT conformations was much higher in the case of substrate-bound conformation as compared to DRV. Thus, developing analogues of DRV by retaining its key pharmacophore features will be the way forward in the search for novel protease inhibitors against multi-drug resistant strains.
Qin, Lingyun; Liu, Huili; Chen, Rong; Zhou, Jingjing; Cheng, Xiyao; Chen, Yao; Huang, Yongqi; Su, Zhengding
2017-11-07
The oncoprotein MdmX (mouse double minute X) is highly homologous to Mdm2 (mouse double minute 2) in terms of their amino acid sequences and three-dimensional conformations, but Mdm2 inhibitors exhibit very weak affinity for MdmX, providing an excellent model for exploring how protein conformation distinguishes and alters inhibitor binding. The intrinsic conformation flexibility of proteins plays pivotal roles in determining and predicting the binding properties and the design of inhibitors. Although the molecular dynamics simulation approach enables us to understand protein-ligand interactions, the mechanism underlying how a flexible binding pocket adapts an inhibitor has been less explored experimentally. In this work, we have investigated how the intrinsic flexible regions of the N-terminal domain of MdmX (N-MdmX) affect the affinity of the Mdm2 inhibitor nutlin-3a using protein engineering. Guided by heteronuclear nuclear Overhauser effect measurements, we identified the flexible regions that affect inhibitor binding affinity around the ligand-binding pocket on N-MdmX. A disulfide engineering mutant, N-MdmX C25-C110/C76-C88 , which incorporated two staples to rigidify the ligand-binding pocket, allowed an affinity for nutlin-3a higher than that of wild-type N-MdmX (K d ∼ 0.48 vs K d ∼ 20.3 μM). Therefore, this mutant provides not only an effective protein model for screening and designing of MdmX inhibitors but also a valuable clue for enhancing the intermolecular interactions of the pharmacophores of a ligand with pronounced flexible regions. In addition, our results revealed an allosteric ligand-binding mechanism of N-MdmX in which the ligand initially interacts with a compact core, followed by augmenting intermolecular interactions with intrinsic flexible regions. This strategy should also be applicable to many other protein targets to accelerate drug discovery.
Grewal, Baljinder K; Bhat, Jyotsna; Sobhia, Masilamani Elizabeth
2015-01-01
PKCβII is a potential target for therapeutic intervention against pandemic diabetic complications. Present study probes the molecular interactions of PKCβII with its clinically important ligands, viz. ruboxistaurin, enzastaurin and co-crystallized ligand, 2-methyl-1H-indol-3-yl-BIM-1. The essentials of PKCβII-ligand interaction, crystal water-induced alterations in these interactions and key interacting flexible residues are analyzed. Computational methodologies, viz. molecular docking and molecular simulation coupled with molecular mechanics-Poisson-Boltzmann surface area and generalized born surface area (MM-PB[GB]SA) are employed. The structural changes in the presence and absence of crystal water molecules in PKCβII ATP binding site residues, and its interaction with bound ligand, are identified. Difference in interaction of selective and nonselective ligand with ATP binding site residues of PKCβII is reported. The study showed that the nonbonding interactions contribute significantly in PKCβII-ligand binding and presence of crystal water molecules affects the interactions. The findings of present work may integrate the new aspects in the drug design process of PKCβII inhibitors.
Subramanian, Sundar Raman; Singam, Ettayapuram Ramaprasad Azhagiya; Berinski, Michael; Subramanian, Venkatesan; Wade, Rebecca C
2016-08-25
Sequence-specific cleavage of collagen by mammalian collagenase plays a pivotal role in cell function. Collagenases are matrix metalloproteinases that cleave the peptide bond at a specific position on fibrillar collagen. The collagenase Hemopexin-like (HPX) domain has been proposed to be responsible for substrate recognition, but the mechanism by which collagenases identify the cleavage site on fibrillar collagen is not clearly understood. In this study, Brownian dynamics simulations coupled with atomic-detail and coarse-grained molecular dynamics simulations were performed to dock matrix metalloproteinase-1 (MMP-1) on a collagen IIIα1 triple helical peptide. We find that the HPX domain recognizes the collagen triple helix at a conserved R-X11-R motif C-terminal to the cleavage site to which the HPX domain of collagen is guided electrostatically. The binding of the HPX domain between the two arginine residues is energetically stabilized by hydrophobic contacts with collagen. From the simulations and analysis of the sequences and structural flexibility of collagen and collagenase, a mechanistic scheme by which MMP-1 can recognize and bind collagen for proteolysis is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Bhumika S., E-mail: bhumika.shah@mq.edu.au; Tetu, Sasha G.; Harrop, Stephen J.
2014-09-25
The structure of a short-chain dehydrogenase encoded within genomic islands of A. baumannii strains has been solved to 2.4 Å resolution. This classical SDR incorporates a flexible helical subdomain. The NADP-binding site and catalytic side chains are identified. Over 15% of the genome of an Australian clinical isolate of Acinetobacter baumannii occurs within genomic islands. An uncharacterized protein encoded within one island feature common to this and other International Clone II strains has been studied by X-ray crystallography. The 2.4 Å resolution structure of SDR-WM99c reveals it to be a new member of the classical short-chain dehydrogenase/reductase (SDR) superfamily. Themore » enzyme contains a nucleotide-binding domain and, like many other SDRs, is tetrameric in form. The active site contains a catalytic tetrad (Asn117, Ser146, Tyr159 and Lys163) and water molecules occupying the presumed NADP cofactor-binding pocket. An adjacent cleft is capped by a relatively mobile helical subdomain, which is well positioned to control substrate access.« less
Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol
Manna, Moutusi; Niemelä, Miia; Tynkkynen, Joona; Javanainen, Matti; Kulig, Waldemar; Müller, Daniel J; Rog, Tomasz; Vattulainen, Ilpo
2016-01-01
There is evidence that lipids can be allosteric regulators of membrane protein structure and activation. However, there are no data showing how exactly the regulation emerges from specific lipid-protein interactions. Here we show in atomistic detail how the human β2-adrenergic receptor (β2AR) – a prototypical G protein-coupled receptor – is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates β2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located near the transmembrane helices 5–7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions. DOI: http://dx.doi.org/10.7554/eLife.18432.001 PMID:27897972
Harper, Thomas M; June, Cynthia M; Taracila, Magdalena A; Bonomo, Robert A; Powers, Rachel A; Leonard, David A
2018-01-11
OXA-239 is a class D carbapenemase isolated from an Acinetobacter baumannii strain found in Mexico. This enzyme is a variant of OXA-23 with three amino acid substitutions in or near the active site. These substitutions cause OXA-239 to hydrolyze late-generation cephalosporins and the monobactam aztreonam with greater efficiency than OXA-23. OXA-239 activity against the carbapenems doripenem and imipenem is reduced ∼3-fold and 20-fold, respectively. Further analysis demonstrated that two of the substitutions (P225S and D222N) are largely responsible for the observed alteration of kinetic parameters, while the third (S109L) may serve to stabilize the protein. Structures of OXA-239 with cefotaxime, doripenem and imipenem bound as acyl-intermediates were determined. These structures reveal that OXA-239 has increased flexibility in a loop that contains P225S and D222N. When carbapenems are bound, the conformation of this loop is essentially identical with that observed previously for OXA-23, with a narrow active site that makes extensive contacts to the ligand. When cefotaxime is bound, the loop can adopt a different conformation that widens the active site to allow binding of that bulky drug. This alternate conformation is made possible by P225S and further stabilized by D222N. Taken together, these results suggest that the three substitutions were selected to expand the substrate specificity profile of OXA-23 to cephalosporins and monobactams. The loss of activity against imipenem, however, suggests that there may be limits to the plasticity of class D enzymes with regard to evolving active sites that can effectively bind multiple classes of β-lactam drugs. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
NASA Astrophysics Data System (ADS)
Nakajima, Nobuyuki; Higo, Junichi; Kidera, Akinori; Nakamura, Haruki
1997-10-01
A new method for flexible docking by multicanonical molecular dynamics simulation is presented. The method was applied to the binding of a short proline-rich peptide to a Src homology 3 (SH3) domain. The peptide and the side-chains at the ligand binding cleft of SH3 were completely flexible and the large number of possible conformations and dispositions of the peptide were sampled. The reweighted canonical resemble at 300 K resulted in only a few predominant binding modes, one of which was similar to the complex crystal structure. The inverted peptide orientation was also observed in the other binding modes.
Secundo, Francesco; Russo, Consiglia; Giordano, Antonietta; Carrea, Giacomo; Rossi, Mosè; Raia, Carlo A
2005-08-23
A combination of hydrogen/deuterium exchange, fluorescence quenching, and kinetic studies was used to acquire experimental evidence for the crystallographically hypothesized increase in local flexibility which occurs in thermophilic NAD(+)-dependent Sulfolobus solfataricus alcohol dehydrogenase (SsADH) upon substitution Asn249Tyr. The substitution, located at the adenine-binding site, proved to decrease the affinity for both coenzyme and substrate, rendering the mutant enzyme 6-fold more active when compared to the wild-type enzyme [Esposito et al. (2003) FEBS Lett. 539, 14-18]. The amide H/D exchange data show that the wild-type and mutant enzymes have similar global flexibility at 22 and 60 degrees C. However, the temperature dependence of the Stern-Volmer constant determined by acrylamide quenching shows that the increase in temperature affects the local flexibility differently, since the K(SV) increment is significantly higher for the wild-type than for the mutant enzyme over the range 18-45 degrees C. Interestingly, the corresponding van't Hoff plot (log K(SV) vs 1/T) proves nonlinear for the apo and holo wild-type and apo mutant enzymes, with a break at approximately 45 degrees C in all three cases due to a conformational change affecting the tryptophan microenvironment experienced by the quencher molecules. The Arrhenius and van't Hoff plots derived from the k(cat) and K(M) thermodependence measured with cyclohexanol and NAD(+) at different temperatures display an abrupt change of slope at 45-50 degrees C. This proves more pronounced in the case of the mutant enzyme compared to the wild-type enzyme due to a conformational change in the structure rather than to an overlapping of two or more rate-limiting reaction steps with different temperature dependencies of their rate constants. Three-dimensional analysis indicates that the observed conformational change induced by temperature is associated with the flexible loops directly involved in the substrate and coenzyme binding.
Mechanism of substrate specificity in 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidases
Siu, Karen K.W.; Asmus, Kyle; Zhang, Allison N.; Horvatin, Cathy; Li, Sheng; Liu, Tong; Moffatt, Barbara; Woods, Virgil L.; Howell, P. Lynne
2010-01-01
5′-Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN) plays a key role in the methionine-recycling pathway of bacteria and plants. Despite extensive structural and biochemical studies, the molecular mechanism of substrate specificity for MTAN remains an outstanding question. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while the plant enzymes select preferentially for MTA, with either no or significantly reduced activity towards SAH. Bacterial and plant MTANs show significant conservation in the overall structure, and the adenine- and ribose-binding sites. The observation of a more constricted 5′-alkylthio binding site in Arabidopsis thaliana AtM-TAN1 and AtMTAN2, two plant MTAN homologues, led to the hypothesis that steric hindrance may play a role in substrate selection in plant MTANs. We show using isothermal titration calorimetry that SAH binds to both Escherichia coli MTAN (EcMTAN) and AtMTAN1 with comparable micromolar affinity. To understand why AtMTAN1 can bind but not hydrolyze SAH, we determined the structure of the protein–SAH complex at 2.2 Å resolution. The lack of catalytic activity appears to be related to the enzyme’s inability to bind the substrate in a catalytically competent manner. The role of dynamics in substrate selection was also examined by probing the amide proton exchange rates of EcMTAN and AtMTAN1 via deuterium–hydrogen exchange coupled mass spectrometry. These results correlate with the B factors of available structures and the thermodynamic parameters associated with substrate binding, and suggest a higher level of conformational flexibility in the active site of EcMTAN. Our results implicate dynamics as an important factor in substrate selection in MTAN. PMID:20554051
2017-01-01
Biological chelating molecules called siderophores are used to sequester iron and maintain its ferric state. Bacterial substrate-binding proteins (SBPs) bind iron–siderophore complexes and deliver these complexes to ATP-binding cassette (ABC) transporters for import into the cytoplasm, where the iron can be transferred from the siderophore to catalytic enzymes. In Yersinia pestis, the causative agent of plague, the Yersinia iron-uptake (Yiu) ABC transporter has been shown to improve iron acquisition under iron-chelated conditions. The Yiu transporter has been proposed to be an iron–siderophore transporter; however, the precise siderophore substrate is unknown. Therefore, the precise role of the Yiu transporter in Y. pestis survival remains uncharacterized. To better understand the function of the Yiu transporter, the crystal structure of YiuA (YPO1310/y2875), an SBP which functions to present the iron–siderophore substrate to the transporter for import into the cytoplasm, was determined. The 2.20 and 1.77 Å resolution X-ray crystal structures reveal a basic triad binding motif at the YiuA canonical substrate-binding site, indicative of a metal-chelate binding site. Structural alignment and computational docking studies support the function of YiuA in binding chelated metal. Additionally, YiuA contains two mobile helices, helix 5 and helix 10, that undergo 2–3 Å shifts across crystal forms and demonstrate structural breathing of the c-clamp architecture. The flexibility in both c-clamp lobes suggest that YiuA substrate transfer resembles the Venus flytrap mechanism that has been proposed for other SBPs. PMID:29095164
Lipid binding by the Unique and SH3 domains of c-Src suggests a new regulatory mechanism
Pérez, Yolanda; Maffei, Mariano; Igea, Ana; Amata, Irene; Gairí, Margarida; Nebreda, Angel R.; Bernadó, Pau; Pons, Miquel
2013-01-01
c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase, SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation. PMID:23416516
Fuchs, Julian E; von Grafenstein, Susanne; Huber, Roland G; Wallnoefer, Hannes G; Liedl, Klaus R
2014-04-01
Proteases are prototypes of multispecific protein-protein interfaces. Proteases recognize and cleave protein and peptide substrates at a well-defined position in a substrate binding groove and a plethora of experimental techniques provide insights into their substrate recognition. We investigate the caspase family of cysteine proteases playing a key role in programmed cell death and inflammation, turning caspases into interesting drug targets. Specific ligand binding to one particular caspase is difficult to achieve, as substrate specificities of caspase isoforms are highly similar. In an effort to rationalize substrate specificity of two closely related caspases, we investigate the substrate promiscuity of the effector Caspases 3 and 7 by data mining (cleavage entropy) and by molecular dynamics simulations. We find a strong correlation between binding site rigidity and substrate readout for individual caspase subpockets explaining more stringent substrate readout of Caspase 7 via its narrower conformational space. Caspase 3 subpockets S3 and S4 show elevated local flexibility explaining the more unspecific substrate readout of that isoform in comparison to Caspase 7. We show by in silico exchange mutations in the S3 pocket of the proteases that a proline residue in Caspase 7 contributes to the narrowed conformational space of the binding site. These findings explain the substrate specificities of caspases via a mechanism of conformational selection and highlight the crucial importance of binding site local dynamics in substrate recognition of proteases. Proteins 2014; 82:546-555. © 2013 Wiley Periodicals, Inc. Copyright © 2013 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radka, Christopher D.; DeLucas, Lawrence J.; Wilson, Landon S.
2017-06-30
Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. InYersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA ismore » polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.« less
Wang, J; Froeyen, M; Hendrix, C; Andrei, G; Snoeck, R; De Clercq, E; Herdewijn, P
2000-02-24
Both enantiomers of cyclohexenylguanine were synthesized in a stereospecific way starting from the same starting material: R-(-)-carvone. Both compounds showed potent and selective anti-herpesvirus activity (HSV-1, HSV-2, VZV, CMV). The binding of both cyclohexene nucleosides in the active site of HSV-1 thymidine kinase was investigated, and a model for the binding of both enantiomers is proposed. The amino acids involved in binding of the optical antipodes are the same, but the interaction energy of both enantiomers is slightly different. This may be attributed to the interaction of the secondary hydroxyl function of the nucleoside analogues with Glu-225. Structural analysis has demonstrated the flexibility of the cyclohexenyl system, and this may be considered as an important conformational characteristic explaining the potent antiviral activity.
Traxlmayr, Michael W; Kiefer, Jonathan D; Srinivas, Raja R; Lobner, Elisabeth; Tisdale, Alison W; Mehta, Naveen K; Yang, Nicole J; Tidor, Bruce; Wittrup, K Dane
2016-10-21
The Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus is an attractive binding scaffold because of its small size (7 kDa), high thermal stability (T m of 98 °C), and absence of cysteines and glycosylation sites. However, as a DNA-binding protein, Sso7d is highly positively charged, introducing a strong specificity constraint for binding epitopes and leading to nonspecific interaction with mammalian cell membranes. In the present study, we report charge-neutralized variants of Sso7d that maintain high thermal stability. Yeast-displayed libraries that were based on this reduced charge Sso7d (rcSso7d) scaffold yielded binders with low nanomolar affinities against mouse serum albumin and several epitopes on human epidermal growth factor receptor. Importantly, starting from a charge-neutralized scaffold facilitated evolutionary adaptation of binders to differentially charged epitopes on mouse serum albumin and human epidermal growth factor receptor, respectively. Interestingly, the distribution of amino acids in the small and rigid binding surface of enriched rcSso7d-based binders is very different from that generally found in more flexible antibody complementarity-determining region loops but resembles the composition of antibody-binding energetic hot spots. Particularly striking was a strong enrichment of the aromatic residues Trp, Tyr, and Phe in rcSso7d-based binders. This suggests that the rigidity and small size of this scaffold determines the unusual amino acid composition of its binding sites, mimicking the energetic core of antibody paratopes. Despite the high frequency of aromatic residues, these rcSso7d-based binders are highly expressed, thermostable, and monomeric, suggesting that the hyperstability of the starting scaffold and the rigidness of the binding surface confer a high tolerance to mutation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Brockett, Adam T; Kane, Gary A; Monari, Patrick K; Briones, Brandy A; Vigneron, Pierre-Antoine; Barber, Gabriela A; Bermudez, Andres; Dieffenbach, Uma; Kloth, Alexander D; Buschman, Timothy J; Gould, Elizabeth
2018-01-01
The medial prefrontal cortex (mPFC) is important for cognitive flexibility, the ability to switch between two task-relevant dimensions. Changes in neuronal oscillations and alterations in the coupling across frequency ranges have been correlated with attention and cognitive flexibility. Here we show that astrocytes in the mPFC of adult male Sprague Dawley rats, participate in cognitive flexibility through the astrocyte-specific Ca2+ binding protein S100β, which improves cognitive flexibility and increases phase amplitude coupling between theta and gamma oscillations. We further show that reduction of astrocyte number in the mPFC impairs cognitive flexibility and diminishes delta, alpha and gamma power. Conversely, chemogenetic activation of astrocytic intracellular Ca2+ signaling in the mPFC enhances cognitive flexibility, while inactivation of endogenous S100β among chemogenetically activated astrocytes in the mPFC prevents this improvement. Collectively, our work suggests that astrocytes make important contributions to cognitive flexibility and that they do so by releasing a Ca2+ binding protein which in turn enhances coordinated neuronal oscillations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serer, María I.; Bonomi, Hernán R.; Guimarães, Beatriz G.
This work reports crystal structures of trimeric riboflavin synthase from the pathogen B. abortus both as the apo protein and in complex with several ligands of interest. It is shown that ligand binding drives the assembly of the unique active site of the trimer, and these findings are complemented by a detailed kinetic study on this enzyme, in which marked inhibition by substrate and product was observed. Riboflavin synthase (RS) catalyzes the last step of riboflavin biosynthesis in microorganisms and plants, which corresponds to the dismutation of two molecules of 6,7-dimethyl-8-ribityllumazine to yield one molecule of riboflavin and one moleculemore » of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. Owing to the absence of this enzyme in animals and the fact that most pathogenic bacteria show a strict dependence on riboflavin biosynthesis, RS has been proposed as a potential target for antimicrobial drug development. Eubacterial, fungal and plant RSs assemble as homotrimers lacking C{sub 3} symmetry. Each monomer can bind two substrate molecules, yet there is only one active site for the whole enzyme, which is located at the interface between two neighbouring chains. This work reports the crystallographic structure of RS from the pathogenic bacterium Brucella abortus (the aetiological agent of the disease brucellosis) in its apo form, in complex with riboflavin and in complex with two different product analogues, being the first time that the structure of an intact RS trimer with bound ligands has been solved. These crystal models support the hypothesis of enhanced flexibility in the particle and also highlight the role of the ligands in assembling the unique active site. Kinetic and binding studies were also performed to complement these findings. The structural and biochemical information generated may be useful for the rational design of novel RS inhibitors with antimicrobial activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Qiaozhen; Krug, Robert M.; Tao, Yizhi Jane
Influenza A viruses pose a serious threat to world public health, particularly the currently circulating avian H5N1 viruses. The influenza viral nucleoprotein forms the protein scaffold of the helical genomic ribonucleoprotein complexes, and has a critical role in viral RNA replication. Here we report a 3.2 Angstrom crystal structure of this nucleoprotein, the overall shape of which resembles a crescent with a head and a body domain, with a protein fold different compared with that of the rhabdovirus nucleoprotein. Oligomerization of the influenza virus nucleoprotein is mediated by a flexible tail loop that is inserted inside a neighboring molecule. Thismore » flexibility in the tail loop enables the nucleoprotein to form loose polymers as well as rigid helices, both of which are important for nucleoprotein functions. Single residue mutations in the tail loop result in the complete loss of nucleoprotein oligomerization. An RNA-binding groove, which is found between the head and body domains at the exterior of the nucleoprotein oligomer, is lined with highly conserved basic residues widely distributed in the primary sequence. The nucleoprotein structure shows that only one of two proposed nuclear localization signals are accessible, and suggests that the body domain of nucleoprotein contains the binding site for the viral polymerase. Our results identify the tail loop binding pocket as a potential target for antiviral development.« less
Calculations of proton-binding thermodynamics in proteins.
Beroza, P; Case, D A
1998-01-01
Computational models of proton binding can range from the chemically complex and statistically simple (as in the quantum calculations) to the chemically simple and statistically complex. Much progress has been made in the multiple-site titration problem. Calculations have improved with the inclusion of more flexibility in regard to both the geometry of the proton binding and the larger scale protein motions associated with titration. This article concentrated on the principles of current calculations, but did not attempt to survey their quantitative performance. This is (1) because such comparisons are given in the cited papers and (2) because continued developments in understanding conformational flexibility and interaction energies will be needed to develop robust methods with strong predictive power. Nevertheless, the advances achieved over the past few years should not be underestimated: serious calculations of protonation behavior and its coupling to conformational change can now be confidently pursued against a backdrop of increasing understanding of the strengths and limitations of such models. It is hoped that such theoretical advances will also spur renewed experimental interest in measuring both overall titration curves and individual pKa values or pKa shifts. Exploration of the shapes of individual titration curves (as measured by Hill coefficients and other parameters) would also be useful in assessing the accuracy of computations and in drawing connections to functional behavior.
The arrestin-1 finger loop interacts with two distinct conformations of active rhodopsin.
Elgeti, Matthias; Kazmin, Roman; Rose, Alexander S; Szczepek, Michal; Hildebrand, Peter W; Bartl, Franz J; Scheerer, Patrick; Hofmann, Klaus Peter
2018-03-23
Signaling of the prototypical G protein-coupled receptor (GPCR) rhodopsin through its cognate G protein transducin (G t ) is quenched when arrestin binds to the activated receptor. Although the overall architecture of the rhodopsin/arrestin complex is known, many questions regarding its specificity remain unresolved. Here, using FTIR difference spectroscopy and a dual pH/peptide titration assay, we show that rhodopsin maintains certain flexibility upon binding the "finger loop" of visual arrestin (prepared as synthetic peptide ArrFL-1). We found that two distinct complexes can be stabilized depending on the protonation state of E3.49 in the conserved (D)ERY motif. Both complexes exhibit different interaction modes and affinities of ArrFL-1 binding. The plasticity of the receptor within the rhodopsin/ArrFL-1 complex stands in contrast to the complex with the C terminus of the G t α-subunit (GαCT), which stabilizes only one specific substate out of the conformational ensemble. However, G t α-subunit binding and both ArrFL-1-binding modes involve a direct interaction to conserved R3.50, as determined by site-directed mutagenesis. Our findings highlight the importance of receptor conformational flexibility and cytoplasmic proton uptake for modulation of rhodopsin signaling and thereby extend the picture provided by crystal structures of the rhodopsin/arrestin and rhodopsin/ArrFL-1 complexes. Furthermore, the two binding modes of ArrFL-1 identified here involve motifs of conserved amino acids, which indicates that our results may have elucidated a common modulation mechanism of class A GPCR-G protein/-arrestin signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Di Marino, Daniele; Achsel, Tilmann; Lacoux, Caroline; Falconi, Mattia; Bagni, Claudia
2014-01-01
Mutations or deletions of FMRP, involved in the regulation of mRNA metabolism in brain, lead to the Fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. A severe manifestation of the disease has been associated with the Ile304Asn mutation, located on the KH2 domain of the protein. Several hypotheses have been proposed to explain the possible molecular mechanism responsible for the drastic effect of this mutation in humans. Here, we performed a molecular dynamics simulation and show that the Ile304Asn mutation destabilizes the hydrophobic core producing a partial unfolding of two α-helices and a displacement of a third one. The affected regions show increased residue flexibility and motion. Molecular docking analysis revealed strongly reduced binding to a model single-stranded nucleic acid in agreement with known data that the two partially unfolded helices form the RNA-binding surface. The third helix, which we show here to be also affected, is involved in the PAK1 protein interaction. These two functional binding sites on the KH2 domain do not overlap spatially, and therefore, they can simultaneously bind their targets. Since the Ile304Asn mutation affects both binding sites, this may justify the severe clinical manifestation observed in the patient in which both mRNA metabolism activity and cytoskeleton remodeling would be affected.
Bridging Enzymatic Structure Function via Mechanics: A Coarse-Grain Approach.
Sacquin-Mora, S
2016-01-01
Flexibility is a central aspect of protein function, and ligand binding in enzymes involves a wide range of structural changes, ranging from large-scale domain movements to small loop or side-chain rearrangements. In order to understand how the mechanical properties of enzymes, and the mechanical variations that are induced by ligand binding, relate to enzymatic activity, we carried out coarse-grain Brownian dynamics simulations on a set of enzymes whose structures in the unbound and ligand-bound forms are available in the Protein Data Bank. Our results show that enzymes are remarkably heterogeneous objects from a mechanical point of view and that the local rigidity of individual residues is tightly connected to their part in the protein's overall structure and function. The systematic comparison of the rigidity of enzymes in their unbound and bound forms highlights the fact that small conformational changes can induce large mechanical effects, leading to either more or less flexibility depending on the enzyme's architecture and the location of its ligand-biding site. These mechanical variations target a limited number of specific residues that occupy key locations for enzymatic activity, and our approach thus offers a mean to detect perturbation-sensitive sites in enzymes, where the addition or removal of a few interactions will lead to important changes in the proteins internal dynamics. © 2016 Elsevier Inc. All rights reserved.
Human adenosine A2A receptor binds calmodulin with high affinity in a calcium-dependent manner.
Piirainen, Henni; Hellman, Maarit; Tossavainen, Helena; Permi, Perttu; Kursula, Petri; Jaakola, Veli-Pekka
2015-02-17
Understanding how ligands bind to G-protein-coupled receptors and how binding changes receptor structure to affect signaling is critical for developing a complete picture of the signal transduction process. The adenosine A2A receptor (A2AR) is a particularly interesting example, as it has an exceptionally long intracellular carboxyl terminus, which is predicted to be mainly disordered. Experimental data on the structure of the A2AR C-terminus is lacking, because published structures of A2AR do not include the C-terminus. Calmodulin has been reported to bind to the A2AR C-terminus, with a possible binding site on helix 8, next to the membrane. The biological meaning of the interaction as well as its calcium dependence, thermodynamic parameters, and organization of the proteins in the complex are unclear. Here, we characterized the structure of the A2AR C-terminus and the A2AR C-terminus-calmodulin complex using different biophysical methods, including native gel and analytical gel filtration, isothermal titration calorimetry, NMR spectroscopy, and small-angle X-ray scattering. We found that the C-terminus is disordered and flexible, and it binds with high affinity (Kd = 98 nM) to calmodulin without major conformational changes in the domain. Calmodulin binds to helix 8 of the A2AR in a calcium-dependent manner that can displace binding of A2AR to lipid vesicles. We also predicted and classified putative calmodulin-binding sites in a larger group of G-protein-coupled receptors. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.
Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter
2015-01-01
Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.
Sarmady, Mahdi; Dampier, William; Tozeren, Aydin
2011-01-01
Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk. PMID:21738584
Lou, Yan-Yue; Zhou, Kai-Li; Pan, Dong-Qi; Shen, Jia-Le; Shi, Jie-Hua
2017-02-01
Clonazepam, a type of benzodiazepine, is a classical drug used to prevent and treat seizures, panic disorder, movement disorder, among others. For further clarifying the distribution of clonazepam in vivo and the pharmacodynamic and pharmacokinetic mechanisms, the binding interaction between clonazepam and bovine serum albumin (BSA) was investigated using ultraviolet spectroscopy (UV), steady-state fluorescence spectroscopy, synchronous fluorescence spectroscopy, three-dimensional (3D) fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and molecular docking methods. The results well confirmed that clonazepam bound on the subdomain III A (Site II) of BSA through van der Waals force and hydrogen bonding interaction, and quenched the intrinsic fluorescence of BSA through a static quenching process. The number of binding sites (n) and binding constant (K b ) of clonazepam-BSA complex were about 1 and 7.94×10 4 M -1 at 308K, respectively. The binding process of clonazepam with BSA was spontaneous and enthalpy-driven process due to ΔG 0 <0 and|ΔH 0 |>T|ΔS 0 | over the studied temperature range. Meanwhile, the binding interaction of clonazepam with BSA resulted in the slight change in the conformation of BSA and the obvious change in the conformation of clonazepam, implying that the flexibility of clonazepam also played an important role in increasing the stability of the clonazepam-BSA complex. Copyright © 2016 Elsevier B.V. All rights reserved.
Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVore, Natasha M.; Meneely, Kathleen M.; Bart, Aaron G.
2013-11-20
Human xenobiotic-metabolizing cytochrome P450 (CYP) enzymes can each bind and monooxygenate a diverse set of substrates, including drugs, often producing a variety of metabolites. Additionally, a single ligand can interact with multiple CYP enzymes, but often the protein structural similarities and differences that mediate such overlapping selectivity are not well understood. Even though the CYP superfamily has a highly canonical global protein fold, there are large variations in the active site size, topology, and conformational flexibility. We have determined how a related set of three human CYP enzymes bind and interact with a common inhibitor, the muscarinic receptor agonist drugmore » pilocarpine. Pilocarpine binds and inhibits the hepatic CYP2A6 and respiratory CYP2A13 enzymes much more efficiently than the hepatic CYP2E1 enzyme. To elucidate key residues involved in pilocarpine binding, crystal structures of CYP2A6 (2.4 {angstrom}), CYP2A13 (3.0 {angstrom}), CYP2E1 (2.35 {angstrom}), and the CYP2A6 mutant enzyme, CYP2A6 I208S/I300F/G301A/S369G (2.1 {angstrom}) have been determined with pilocarpine in the active site. In all four structures, pilocarpine coordinates to the heme iron, but comparisons reveal how individual residues lining the active sites of these three distinct human enzymes interact differently with the inhibitor pilocarpine.« less
Structural characterization of nonactive site, TrkA-selective kinase inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Hua-Poo; Rickert, Keith; Burlein, Christine
Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residuesmore » from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of—but adjacent to—the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.« less
Exploration of multiple Sortase A protein conformations in virtual screening
NASA Astrophysics Data System (ADS)
Gao, Chunxia; Uzelac, Ivana; Gottfries, Johan; Eriksson, Leif A.
2016-02-01
Methicillin resistant Staphylococcus aureus (MRSA) has become a major health concern which has brought about an urgent need for new therapeutic agents. As the S. aureus Sortase A (SrtA) enzyme contributes to the adherence of the bacteria to the host cells, inhibition thereof by small molecules could be employed as potential antivirulence agents, also towards resistant strains. Albeit several virtual docking SrtA campaigns have been reported, no strongly inhibitatory non-covalent binders have as yet emerged therefrom. In order to better understand the binding modes of small molecules, and the effect of different receptor structures employed in the screening, we herein report on an exploratory study employing 10 known binders and 500 decoys on 100 SrtA structures generated from regular or steered molecular dynamics simulations on four different SrtA crystal/NMR structures. The results suggest a correlation between the protein structural flexibility and the virtual screening performance, and confirm the noted immobilization of the β6/β7 loop upon substrate binding. The NMR structures reported appear to perform slightly better than the Xray-crystal structures, but the binding modes fluctuate tremendously, and it might be suspected that the catalytic site is not necessarily the preferred site of binding for some of the reported active compounds.
Exploration of multiple Sortase A protein conformations in virtual screening
Gao, Chunxia; Uzelac, Ivana; Gottfries, Johan; Eriksson, Leif A.
2016-01-01
Methicillin resistant Staphylococcus aureus (MRSA) has become a major health concern which has brought about an urgent need for new therapeutic agents. As the S. aureus Sortase A (SrtA) enzyme contributes to the adherence of the bacteria to the host cells, inhibition thereof by small molecules could be employed as potential antivirulence agents, also towards resistant strains. Albeit several virtual docking SrtA campaigns have been reported, no strongly inhibitatory non-covalent binders have as yet emerged therefrom. In order to better understand the binding modes of small molecules, and the effect of different receptor structures employed in the screening, we herein report on an exploratory study employing 10 known binders and 500 decoys on 100 SrtA structures generated from regular or steered molecular dynamics simulations on four different SrtA crystal/NMR structures. The results suggest a correlation between the protein structural flexibility and the virtual screening performance, and confirm the noted immobilization of the β6/β7 loop upon substrate binding. The NMR structures reported appear to perform slightly better than the Xray-crystal structures, but the binding modes fluctuate tremendously, and it might be suspected that the catalytic site is not necessarily the preferred site of binding for some of the reported active compounds. PMID:26846342
FRET analysis of CP12 structural interplay by GAPDH and PRK.
Moparthi, Satish Babu; Thieulin-Pardo, Gabriel; de Torres, Juan; Ghenuche, Petru; Gontero, Brigitte; Wenger, Jérôme
2015-03-13
CP12 is an intrinsically disordered protein playing a key role in the regulation of the Benson-Calvin cycle. Due to the high intrinsic flexibility of CP12, it is essential to consider its structural modulation induced upon binding to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) enzymes. Here, we report for the first time detailed structural modulation about the wild-type CP12 and its site-specific N-terminal and C-terminal disulfide bridge mutants upon interaction with GAPDH and PRK by Förster resonance energy transfer (FRET). Our results indicate an increase in CP12 compactness when the complex is formed with GAPDH or PRK. In addition, the distributions in FRET histograms show the elasticity and conformational flexibility of CP12 in all supra molecular complexes. Contrarily to previous beliefs, our FRET results importantly reveal that both N-terminal and C-terminal site-specific CP12 mutants are able to form the monomeric (GAPDH-CP12-PRK) complex. Copyright © 2015 Elsevier Inc. All rights reserved.
Aftabi, Younes; Colagar, Abasalt Hosseinzadeh; Mehrnejad, Faramarz
2016-03-21
Aryl hydrocarbon receptor (AhR) acts as an enhancer binding ligand-activated intracellular receptor. Chromatin remodeling components and general transcription factors such as TATA-binding protein (TBP) are evoked on AhR-target genes by interaction with its flexible transactivation domain (TAD). AhR-G1661A single nucleotide polymorphism (SNP: rs2066853) causes an arginine to lysine substitution in the acidic sub-domain of TAD at position 554 (R554K). Although, numerous studies associate the SNP with some abnormalities such as cancer, other reliable investigations refuse the associations. Consequently, the interpretation of the phenotypic results of G1661A-transition has been controversial. In this study, an in silico analysis were performed to investigate the possible effects of the transition on AhR-mRNA, protein structure, interaction properties and modifications. The analysis revealed that the R554K substitution affects secondary structure and solvent accessibility of adjacent residues. Also, it causes to decreasing of the AhR stability; altering the hydropathy features of the local sequence and changing the pattern of the residues at the binding site of the TAD-acidic sub-domain. Generating of new sites for ubiquitination and acetylation for AhR-K554 variant respectively at positions 544 and 560 was predicted. Our findings intensify the idea that the AhR-G1661A transition may affects AhR-TAD interactions, especially with the TBP, which influence AhR-target genes expression. However, the previously reported flexibility of the modular TAD could act as an intervening factor, moderate the SNP effects and causes distinct outcomes in different individuals and tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structural Basis for Antagonism by Suramin of Heparin Binding to Vaccinia Complement Protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, Vannakambadi K.; Muthuvel, Suresh Kumar; Smith, Scott A.
2010-07-19
Suramin is a competitive inhibitor of heparin binding to many proteins, including viral envelope proteins, protein tyrosine phosphatases, and fibroblast growth factors (FGFs). It has been clinically evaluated as a potential therapeutic in treatment of cancers caused by unregulated angiogenesis, triggered by FGFs. Although it has shown clinical promise in treatment of several cancers, suramin has many undesirable side effects. There is currently no experimental structure that reveals the molecular interactions responsible for suramin inhibition of heparin binding, which could be of potential use in structure-assisted design of improved analogues of suramin. We report the structure of suramin, in complexmore » with the heparin-binding site of vaccinia virus complement control protein (VCP), which interacts with heparin in a geometrically similar manner to many FGFs. The larger than anticipated flexibility of suramin manifested in this structure, and other details of VCP-suramin interactions, might provide useful structural information for interpreting interactions of suramin with many proteins.« less
Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P
2016-01-01
The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior – a key element for the transport selectivity of the NPC – was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface. DOI: http://dx.doi.org/10.7554/eLife.14119.001 PMID:27058170
Cheng, Cheng; Kamiya, Motoshi; Uchida, Yoshihiro; Hayashi, Shigehiko
2015-10-21
Color variants of human cellular retinol binding protein II (hCRBPII) created by protein engineering were recently shown to exhibit anomalously wide photoabsorption spectral shifts over ∼200 nm across the visible region. The remarkable phenomenon provides a unique opportunity to gain insight into the molecular basis of the color tuning of retinal binding proteins for understanding of color vision as well as for engineering of novel color variants of retinal binding photoreceptor proteins employed in optogenetics. Here, we report a theoretical investigation of the molecular mechanism underlying the anomalously wide spectral shifts of the color variants of hCRBPII. Computational modeling of the color variants with hybrid molecular simulations of free energy geometry optimization succeeded in reproducing the experimentally observed wide spectral shifts, and revealed that protein flexibility, through which the active site structure of the protein and bound water molecules is altered by remote mutations, plays a significant role in inducing the large spectral shifts.
Structural Analysis of the Phenol-Responsive Sensory Domain of the Transcription Activator PoxR.
Patil, Vinod Vikas; Park, Kwang-Hyun; Lee, Seung-Goo; Woo, Euijeon
2016-04-05
Positive phenol-degradative gene regulator (PoxR) is a σ(54)-dependent AAA+ ATPase transcription activator that regulates the catabolism of phenols. The PoxR sensory domain detects phenols and relays signals for the activation of transcription. Here we report the first structure of the phenol sensory domain bound to phenol and five derivatives. It exists as a tightly intertwined homodimer with a phenol-binding pocket buried inside, placing two C termini on the same side of the dimer. His102 and Trp130 interact with the hydroxyl group of the phenol in a cavity surrounded by rigid hydrophobic residues on one side and a flexible region on the other. Each monomer has a V4R fold with a unique zinc-binding site. A shift at the C-terminal helix suggests that there is a possible conformational change upon ligand binding. The results provide a structural basis of chemical effector binding for transcriptional regulation with broad implications for protein engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.
Miao, Yinglong; McCammon, J Andrew
2018-03-20
Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.
Structural insight into TPX2-stimulated microtubule assembly
2017-01-01
During mitosis and meiosis, microtubule (MT) assembly is locally upregulated by the chromatin-dependent Ran-GTP pathway. One of its key targets is the MT-associated spindle assembly factor TPX2. The molecular mechanism of how TPX2 stimulates MT assembly remains unknown because structural information about the interaction of TPX2 with MTs is lacking. Here, we determine the cryo-electron microscopy structure of a central region of TPX2 bound to the MT surface. TPX2 uses two flexibly linked elements (’ridge’ and ‘wedge’) in a novel interaction mode to simultaneously bind across longitudinal and lateral tubulin interfaces. These MT-interacting elements overlap with the binding site of importins on TPX2. Fluorescence microscopy-based in vitro reconstitution assays reveal that this interaction mode is critical for MT binding and facilitates MT nucleation. Together, our results suggest a molecular mechanism of how the Ran-GTP gradient can regulate TPX2-dependent MT formation. PMID:29120325
Effect of PDGF-B aptamer on PDGFRβ/PDGF-B interaction: Molecular dynamics study.
Vu, Cong Quang; Rotkrua, Pichayanoot; Soontornworajit, Boonchoy; Tantirungrotechai, Yuthana
2018-06-01
PDGFRβ/PDGF-B interaction plays a role in angiogenesis, and is mandatory in wound healing and cancer treatment. It has been reported that the PDGF-B aptamer was able to bind to PDGF-B, thus regulating the angiogenesis. However, the binding interaction between the aptamer and the growth factor, including the binding sites, has not been well investigated. This study applied a molecular dynamics (MD) simulation to investigate the aptamer-growth factor interaction in the presence or absence of a receptor (PDGFRβ). Characterization of the structure of an aptamer-growth factor complex revealed binding sites from each section in the complex. Upon the complex formation, PDGF-B and its aptamer exhibited less flexibility in their molecular movement, as indicated by the minimum values of RMSD, RMSF, loop-to-loop distance, and the summation of PCA eigenvalues. Our study of residue pairwise interaction demonstrated that the binding interaction was mainly contributed by electrostatic interaction between the positively-charged amino acid and the negatively-charged phosphate backbone. The role of the PDGF-B aptamer in PDGFRβ/PDGF-B interaction was also investigated. We demonstrated that the stability of the Apt-PDGF-B complex could prevent the presence of a competitor, of PDGFRβ, interrupting the binding process. Because the aptamer was capable of binding with PDGF-B, and blocking the growth factor from the PDGFRβ, it could down regulate the consequent signaling pathway. We provide evidence that the PDGF-BB aptamer is a promising molecule for regulation of angiogenesis. The MD study provides a molecular understanding to modification of the aptamer binding interaction, which could be used in a number of medical applications. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Böhm, Hans-Joachim
1998-07-01
A dataset of 82 protein-ligand complexes of known 3D structure and binding constant Ki was analysed to elucidate the important factors that determine the strength of protein-ligand interactions. The following parameters were investigated: the number and geometry of hydrogen bonds and ionic interactions between the protein and the ligand, the size of the lipophilic contact surface, the flexibility of the ligand, the electrostatic potential in the binding site, water molecules in the binding site, cavities along the protein-ligand interface and specific interactions between aromatic rings. Based on these parameters, a new empirical scoring function is presented that estimates the free energy of binding for a protein-ligand complex of known 3D structure. The function distinguishes between buried and solvent accessible hydrogen bonds. It tolerates deviations in the hydrogen bond geometry of up to 0.25 Å in the length and up to 30 °Cs in the hydrogen bond angle without penalizing the score. The new energy function reproduces the binding constants (ranging from 3.7 × 10-2 M to 1 × 10-14 M, corresponding to binding energies between -8 and -80 kJ/mol) of the dataset with a standard deviation of 7.3 kJ/mol corresponding to 1.3 orders of magnitude in binding affinity. The function can be evaluated very fast and is therefore also suitable for the application in a 3D database search or de novo ligand design program such as LUDI. The physical significance of the individual contributions is discussed.
English, Charles A; Sherman, Woody; Meng, Wenli; Gierasch, Lila M
2017-09-08
Hsp70 molecular chaperones play key roles in cellular protein homeostasis by binding to exposed hydrophobic regions of incompletely folded or aggregated proteins. This crucial Hsp70 function relies on allosteric communication between two well-structured domains: an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD), which are tethered by an interdomain linker. ATP or ADP binding to the NBD alters the substrate-binding affinity of the SBD, triggering functionally essential cycles of substrate binding and release. The interdomain linker is a well-structured participant in the interdomain interface in ATP-bound Hsp70s. By contrast, in the ADP-bound state, exemplified by the Escherichia coli Hsp70 DnaK, the interdomain linker is flexible. Hsp70 interdomain linker sequences are highly conserved; moreover, mutations in this region compromise interdomain allostery. To better understand the role of this region in Hsp70 allostery, we used molecular dynamics simulations to explore the conformational landscape of the interdomain linker in ADP-bound DnaK and supported our simulations by strategic experimental data. We found that while the interdomain linker samples many conformations, it behaves as three relatively ordered segments connected by hinges. As a consequence, the distances and orientations between the NBD and SBD are limited. Additionally, the C-terminal region of the linker forms previously unreported, transient interactions with the SBD, and the predominant linker-docking site is available in only one allosteric state, that with high affinity for substrate. This preferential binding implicates the interdomain linker as a dynamic allosteric switch. The linker-binding site on the SBD is a potential target for small molecule modulators of the Hsp70 allosteric cycle. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Zheng, Zhong; Dutton, P. Leslie; Gunner, M. R.
2010-01-01
Quinones play important roles in mitochondrial and photosynthetic energy conversion acting as intramembrane, mobile electron and proton carriers between catalytic sites in various electron transfer proteins. They display different affinity, selectivity, functionality and exchange dynamics in different binding sites. The computational analysis of quinone binding sheds light on the requirements for quinone affinity and specificity. The affinities of ten oxidized, neutral benzoquinones (BQs) were measured for the high affinity QA site in the detergent solubilized Rhodobacter sphaeroides bacterial photosynthetic reaction center. Multi-Conformation Continuum Electrostatics (MCCE) was then used to calculate their relative binding free energies by Grand Canonical Monte Carlo sampling with a rigid protein backbone, flexible ligand and side chain positions and protonation states. Van der Waals and torsion energies, Poisson-Boltzmann continuum electrostatics and accessible surface area dependent ligand-solvent interactions are considered. An initial, single cycle of GROMACS backbone optimization improves the match with experiment as do coupled ligand and side chain motions. The calculations match experiment with an RMSD of 2.29 and a slope of 1.28. The affinities are dominated by favorable protein-ligand van der Waals rather than electrostatic interactions. Each quinone appears in a closely clustered set of positions. Methyl and methoxy groups move into the same positions as found for the native quinone. Difficulties putting methyls into methoxy sites are observed. Calculations using an SAS dependent implicit van der Waals interaction smoothed out small clashes, providing a better match to experiment with a RMSD of 0.77 and a slope of 0.97. PMID:20607696
On the intrinsic flexibility of the opioid receptor through multiscale modeling approaches
NASA Astrophysics Data System (ADS)
Vercauteren, Daniel; FosséPré, Mathieu; Leherte, Laurence; Laaksonen, Aatto
Numerous releases of G protein-coupled receptors crystalline structures created the opportunity for computational methods to widely explore their dynamics. Here, we study the biological implication of the intrinsic flexibility properties of opioid receptor OR. First, one performed classical all-atom (AA) Molecular Dynamics (MD) simulations of OR in its apo-form. We highlighted that the various degrees of bendability of the α-helices present important consequences on the plasticity of the binding site. Hence, this latter adopts a wide diversity of shape and volume, explaining why OR interacts with very diverse ligands. Then, one introduces a new strategy for parameterizing purely mechanical but precise coarse-grained (CG) elastic network models (ENMs). The CG ENMs reproduced in a high accurate way the flexibility properties of OR versus the AA simulations. At last, one uses network modularization to design multi-grained (MG) models. They represent a novel type of low resolution models, different in nature versus CG models as being true multi-resolution models, i . e ., each MG grouping a different number of residues. The three parts constitute hierarchical and multiscale approach for tackling the flexibility of OR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprenger, Janina; Lund University, SE-221 84 Lund; Svensson, Bo
In this work, X-ray crystallography was used to examine ligand complexes of spermidine synthase from the malaria parasite Plasmodium falciparum (PfSpdS). The enzymes of the polyamine-biosynthesis pathway have been proposed to be promising drug targets in the treatment of malaria. Spermidine synthase (SpdS; putrescine aminopropyltransferase) catalyzes the transfer of the aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine, leading to the formation of spermidine and 5′-methylthioadenosine (MTA). In this work, X-ray crystallography was used to examine ligand complexes of SpdS from the malaria parasite Plasmodium falciparum (PfSpdS). Five crystal structures were determined of PfSpdS in complex with MTA and the substratemore » putrescine, with MTA and spermidine, which was obtained as a result of the enzymatic reaction taking place within the crystals, with dcAdoMet and the inhibitor 4-methylaniline, with MTA and 4-aminomethylaniline, and with a compound predicted in earlier in silico screening to bind to the active site of the enzyme, benzimidazol-(2-yl)pentan-1-amine (BIPA). In contrast to the other inhibitors tested, the complex with BIPA was obtained without any ligand bound to the dcAdoMet-binding site of the enzyme. The complexes with the aniline compounds and BIPA revealed a new mode of ligand binding to PfSpdS. The observed binding mode of the ligands, and the interplay between the two substrate-binding sites and the flexible gatekeeper loop, can be used in the design of new approaches in the search for new inhibitors of SpdS.« less
Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase.
Poranen, Minna M; Salgado, Paula S; Koivunen, Minni R L; Wright, Sam; Bamford, Dennis H; Stuart, David I; Grimes, Jonathan M
2008-11-01
The biological role of manganese (Mn(2+)) has been a long-standing puzzle, since at low concentrations it activates several polymerases whilst at higher concentrations it inhibits. Viral RNA polymerases possess a common architecture, reminiscent of a closed right hand. The RNA-dependent RNA polymerase (RdRp) of bacteriophage 6 is one of the best understood examples of this important class of polymerases. We have probed the role of Mn(2+) by biochemical, biophysical and structural analyses of the wild-type enzyme and of a mutant form with an altered Mn(2+)-binding site (E491 to Q). The E491Q mutant has much reduced affinity for Mn(2+), reduced RNA binding and a compromised elongation rate. Loss of Mn(2+) binding structurally stabilizes the enzyme. These data and a re-examination of the structures of other viral RNA polymerases clarify the role of manganese in the activation of polymerization: Mn(2+) coordination of a catalytic aspartate is necessary to allow the active site to properly engage with the triphosphates of the incoming NTPs. The structural flexibility caused by Mn(2+) is also important for the enzyme dynamics, explaining the requirement for manganese throughout RNA polymerization.
Biswas, Ambarish; Brown, Chris M
2014-06-08
Gene expression in vertebrate cells may be controlled post-transcriptionally through regulatory elements in mRNAs. These are usually located in the untranslated regions (UTRs) of mRNA sequences, particularly the 3'UTRs. Scan for Motifs (SFM) simplifies the process of identifying a wide range of regulatory elements on alignments of vertebrate 3'UTRs. SFM includes identification of both RNA Binding Protein (RBP) sites and targets of miRNAs. In addition to searching pre-computed alignments, the tool provides users the flexibility to search their own sequences or alignments. The regulatory elements may be filtered by expected value cutoffs and are cross-referenced back to their respective sources and literature. The output is an interactive graphical representation, highlighting potential regulatory elements and overlaps between them. The output also provides simple statistics and links to related resources for complementary analyses. The overall process is intuitive and fast. As SFM is a free web-application, the user does not need to install any software or databases. Visualisation of the binding sites of different classes of effectors that bind to 3'UTRs will facilitate the study of regulatory elements in 3' UTRs.
Hooks, David O; Rehm, Bernd H A
2015-10-01
The polyhydroxyalkanoate (PHA) synthase catalyzes the synthesis of PHA and remains attached to the hydrophobic PHA inclusions it creates. Although this feature is actively exploited to generate functionalized biobeads via protein engineering, little is known about the structure of the PHA synthase. Here, the surface topology of Ralstonia eutropha PHA synthase was probed to inform rational protein engineering toward the production of functionalized PHA beads. Surface-exposed residues were detected by conjugating biotin to inclusion-bound PHA synthase and identifying the biotin-conjugated lysine and cysteine residues using peptide fingerprinting analysis. The identified sites (K77, K90, K139, C382, C459, and K518) were investigated as insertion sites for the generation of new protein fusions. Insertions of FLAG epitopes into exposed sites K77, K90, K139, and K518 were tolerated, retaining >65 % of in vivo activity. Sites K90, K139, and K518 were also tested by insertion of the immunoglobulin G (IgG)-binding domain (ZZ), successfully producing PHA inclusions able to bind human IgG in vitro. Although simultaneous insertions of the ZZ domain into two sites was permissive, insertion at all three lysine sites inactivated the synthase. The K90/K139 double ZZ insertion had the optimum IgG-binding capacity of 16 mg IgG/g wet PHA beads and could selectively purify the IgG fraction from human serum. Overall, this study identified surface-exposed flexible regions of the PHA synthase which either tolerate protein/peptide insertions or are critical for protein function. This further elucidates the structure and function of PHA synthase and provides new opportunities for generating functionalized PHA biobeads.
Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase
Garcin, Elsa D.; Arvai, Andrew S.; Rosenfeld, Robin J.; Kroeger, Matt D.; Crane, Brian R.; Andersson, Gunilla; Andrews, Glen; Hamley, Peter J.; Mallinder, Philip R.; Nicholls, David J.; St-Gallay, Stephen A.; Tinker, Alan C.; Gensmantel, Nigel P.; Mete, Antonio; Cheshire, David R.; Connolly, Stephen; Stuehr, Dennis J.; Åberg, Anders; Wallace, Alan V.; Tainer, John A.; Getzoff, Elizabeth D.
2008-01-01
Nitric oxide synthase (NOS) enzymes synthesize nitric oxide, a signal for vasodilatation and neurotransmission at low levels, and a defensive cytotoxin at higher levels. The high active-site conservation among all three NOS isozymes hinders the design of selective NOS inhibitors to treat inflammation, arthritis, stroke, septic shock, and cancer. Our structural and mutagenesis results identified an isozyme-specific induced-fit binding mode linking a cascade of conformational changes to a novel specificity pocket. Plasticity of an isozyme-specific triad of distant second- and third-shell residues modulates conformational changes of invariant first-shell residues to determine inhibitor selectivity. To design potent and selective NOS inhibitors, we developed the anchored plasticity approach: anchor an inhibitor core in a conserved binding pocket, then extend rigid bulky substituents towards remote specificity pockets, accessible upon conformational changes of flexible residues. This approach exemplifies general principles for the design of selective enzyme inhibitors that overcome strong active-site conservation. PMID:18849972
Human HOX Proteins Use Diverse and Context-Dependent Motifs to Interact with TALE Class Cofactors.
Dard, Amélie; Reboulet, Jonathan; Jia, Yunlong; Bleicher, Françoise; Duffraisse, Marilyne; Vanaker, Jean-Marc; Forcet, Christelle; Merabet, Samir
2018-03-13
HOX proteins achieve numerous functions by interacting with the TALE class PBX and MEIS cofactors. In contrast to this established partnership in development and disease, how HOX proteins could interact with PBX and MEIS remains unclear. Here, we present a systematic analysis of HOX/PBX/MEIS interaction properties, scanning all paralog groups with human and mouse HOX proteins in vitro and in live cells. We demonstrate that a previously characterized HOX protein motif known to be critical for HOX-PBX interactions becomes dispensable in the presence of MEIS in all except the two most anterior paralog groups. We further identify paralog-specific TALE-binding sites that are used in a highly context-dependent manner. One of these binding sites is involved in the proliferative activity of HOXA7 in breast cancer cells. Together these findings reveal an extraordinary level of interaction flexibility between HOX proteins and their major class of developmental cofactors. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Sagong, Hye-Young; Kim, Kyung-Jin
2017-01-01
Lysine decarboxylase (LDC) catalyzes the decarboxylation of l-lysine to produce cadaverine, an important industrial platform chemical for bio-based polyamides. However, due to high flexibility at the pyridoxal 5-phosphate (PLP) binding site, use of the enzyme for cadaverine production requires continuous supplement of large amounts of PLP. In order to develop an LDC enzyme from Selenomonas ruminantium (SrLDC) with an enhanced affinity for PLP, we introduced an internal disulfide bond between Ala225 and Thr302 residues with a desire to retain the PLP binding site in a closed conformation. The SrLDCA225C/T302C mutant showed a yellow color and the characteristic UV/Vis absorption peaks for enzymes with bound PLP, and exhibited three-fold enhanced PLP affinity compared with the wild-type SrLDC. The mutant also exhibited a dramatically enhanced LDC activity and cadaverine conversion particularly under no or low PLP concentrations. Moreover, introduction of the disulfide bond rendered SrLDC more resistant to high pH and temperature. The formation of the introduced disulfide bond and the maintenance of the PLP binding site in the closed conformation were confirmed by determination of the crystal structure of the mutant. This study shows that disulfide bond-mediated spatial reconstitution can be a platform technology for development of enzymes with enhanced PLP affinity.
Lai, Balder; Hasenhindl, Christoph; Obinger, Christian; Oostenbrink, Chris
2014-01-01
An interesting format in the development of therapeutic monoclonal antibodies uses the crystallizable fragment of IgG1 as starting scaffold. Engineering of its structural loops allows generation of an antigen binding site. However, this might impair the molecule’s conformational stability, which can be overcome by introducing stabilizing point mutations in the CH3 domains. These point mutations often affect the stability and unfolding behavior of both the CH2 and CH3 domains. In order to understand this cross-talk, molecular dynamics simulations of the domains of the Fc fragment of human IgG1 are reported. The structure of human IgG1-Fc obtained from X-ray crystallography is used as a starting point for simulations of the wild-type protein at two different pH values. The stabilizing effect of a single point mutation in the CH3 domain as well as the impact of the hinge region and the glycan tree structure connected to the CH2 domains is investigated. Regions of high local flexibility were identified as potential sites for engineering antigen binding sites. Obtained data are discussed with respect to the available X-ray structure of IgG1-Fc, directed evolution approaches that screen for stability and use of the scaffold IgG1-Fc in the design of antigen binding Fc proteins. PMID:24451126
Exosites in the substrate specificity of blood coagulation reactions.
Bock, P E; Panizzi, P; Verhamme, I M A
2007-07-01
The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.
Lai, Yen-Ting; Cheng, Chao-Sheng; Liu, Yu-Nan; Liu, Yaw-Jen; Lyu, Ping-Chiang
2008-09-01
Plant nonspecific lipid transfer proteins (nsLTPs) are small, basic proteins constituted mainly of alpha-helices and stabilized by four conserved disulfide bridges. They are characterized by the presence of a tunnel-like hydrophobic cavity, capable of transferring various lipid molecules between lipid bilayers in vitro. In this study, molecular dynamics (MD) simulations were performed at room temperature to investigate the effects of lipid binding on the dynamic properties of rice nsLTP1. Rice nsLTP1, either in the free form or complexed with one or two lipids was subjected to MD simulations. The C-terminal loop was very flexible both before and after lipid binding, as revealed by calculating the root-mean-square fluctuation. After lipid binding, the flexibility of some residues that were not in direct contact with lipid molecules increased significantly, indicating an increase of entropy in the region distal from the binding site. Essential dynamics analysis revealed clear differences in motion between unliganded and liganded rice nsLTP1s. In the free form of rice nsLTP1, loop1 exhibited the largest directional motion. This specific essential motion mode diminished after binding one or two lipid molecules. To verify the origin of the essential motion observed in the free form of rice nsLTP1, we performed multiple sequence alignments to probe the intrinsic motion encoded in the primary sequence. We found that the amino acid sequence of loop1 is highly conserved among plant nsLTP1s, thus revealing its functional importance during evolution. Furthermore, the sequence of loop1 is composed mainly of amino acids with short side chains. In this study, we show that MD simulations, together with essential dynamics analysis, can be used to determine structural and dynamic differences of rice nsLTP1 upon lipid binding. 2008 Wiley-Liss, Inc.
Zhang, Tong; Mu, Yuguang
2012-01-01
Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III) Hexamine ions or Mg2+ ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III) Hexamine ions were found to bind stronger with the loop than Mg2+ ions with binding free energy −7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg2+ ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III) Hexamine ions on CorA ions transportation. PMID:22952795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Han; Shin, Ok-Ho; Machius, Mischa
The neuronal protein synaptotagmin 1 functions as a Ca{sup 2+} sensor in exocytosis via two Ca{sup 2+}-binding C{sub 2} domains. The very similar synaptotagmin 4, which includes all the predicted Ca{sup 2+}-binding residues in the C{sub 2}B domain but not in the C{sub 2}A domain, is also thought to function as a neuronal Ca{sup 2+} sensor. Here we show that, unexpectedly, both C{sub 2} domains of fly synaptotagmin 4 exhibit Ca{sup 2+}-dependent phospholipid binding, whereas neither C{sub 2} domain of rat synaptotagmin 4 binds Ca{sup 2+} or phospholipids efficiently. Crystallography reveals that changes in the orientations of critical Ca{sup 2+}more » ligands, and perhaps their flexibility, render the rat synaptotagmin 4 C{sub 2}B domain unable to form full Ca{sup 2+}-binding sites. These results indicate that synaptotagmin 4 is a Ca{sup 2+} sensor in the fly but not in the rat, that the Ca{sup 2+}-binding properties of C{sub 2} domains cannot be reliably predicted from sequence analyses, and that proteins clearly identified as orthologs may nevertheless have markedly different functional properties.« less
Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake.
Yildiz, Ozkan; Kalthoff, Christoph; Raunser, Stefan; Kühlbrandt, Werner
2007-01-24
A binary complex of the ammonia channel Amt1 from Methanococcus jannaschii and its cognate P(II) signalling protein GlnK1 has been produced and characterized. Complex formation is prevented specifically by the effector molecules Mg-ATP and 2-ketoglutarate. Single-particle electron microscopy of the complex shows that GlnK1 binds on the cytoplasmic side of Amt1. Three high-resolution X-ray structures of GlnK1 indicate that the functionally important T-loop has an extended, flexible conformation in the absence of Mg-ATP, but assumes a compact, tightly folded conformation upon Mg-ATP binding, which in turn creates a 2-ketoglutarate-binding site. We propose a regulatory mechanism by which nitrogen uptake is controlled by the binding of both effector molecules to GlnK1. At normal effector levels, a 2-ketoglutarate molecule binding at the apex of the compact T-loop would prevent complex formation, ensuring uninhibited ammonia uptake. At low levels of Mg-ATP, the extended loops would seal the ammonia channels in the complex. Binding of both effector molecules to P(II) signalling proteins may thus represent an effective feedback mechanism for regulating ammonium uptake through the membrane.
The Agrobacterium tumefaciens Transcription Factor BlcR Is Regulated via Oligomerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Yi; Fiscus, Valena; Meng, Wuyi
2012-02-08
The Agrobacterium tumefaciens BlcR is a member of the emerging isocitrate lyase transcription regulators that negatively regulates metabolism of {gamma}-butyrolactone, and its repressing function is relieved by succinate semialdehyde (SSA). Our crystal structure showed that BlcR folded into the DNA- and SSA-binding domains and dimerized via the DNA-binding domains. Mutational analysis identified residues, including Phe{sup 147}, that are important for SSA association; BlcR{sup F147A} existed as tetramer. Two BlcR dimers bound to target DNA and in a cooperative manner, and the distance between the two BlcR-binding sequences in DNA was critical for BlcR-DNA association. Tetrameric BlcR{sup F147A} retained DNA bindingmore » activity, and importantly, this activity was not affected by the distance separating the BlcR-binding sequences in DNA. SSA did not dissociate tetrameric BlcR{sup F147A} or BlcR{sup F147A}-DNA. As well as in the SSA-binding site, Phe{sup 147} is located in a structurally flexible loop that may be involved in BlcR oligomerization. We propose that SSA regulates BlcR DNA-binding function via oligomerization.« less
NASA Astrophysics Data System (ADS)
Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E.; Rigby, Neil M.; Mackie, Alan R.; Dhaliwal, Balvinder; Mills, E. N. Clare
2016-07-01
Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39-40, 56-57 and 79-80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. Such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.
Quarles, Kaycee A; Chadalavada, Durga; Showalter, Scott A
2015-06-01
The prevalence of double-stranded RNA (dsRNA) in eukaryotic cells has only recently been appreciated. Of interest here, RNA silencing begins with dsRNA substrates that are bound by the dsRNA-binding domains (dsRBDs) of their processing proteins. Specifically, processing of microRNA (miRNA) in the nucleus minimally requires the enzyme Drosha and its dsRBD-containing cofactor protein, DGCR8. The smallest recombinant construct of DGCR8 that is sufficient for in vitro dsRNA binding, referred to as DGCR8-Core, consists of its two dsRBDs and a C-terminal tail. As dsRBDs rarely recognize the nucleotide sequence of dsRNA, it is reasonable to hypothesize that DGCR8 function is dependent on the recognition of specific structural features in the miRNA precursor. Previously, we demonstrated that noncanonical structural elements that promote RNA flexibility within the stem of miRNA precursors are necessary for efficient in vitro cleavage by reconstituted Microprocessor complexes. Here, we combine gel shift assays with in vitro processing assays to demonstrate that neither the N-terminal dsRBD of DGCR8 in isolation nor the DGCR8-Core construct is sensitive to the presence of noncanonical structural elements within the stem of miRNA precursors, or to single-stranded segments flanking the stem. Extending DGCR8-Core to include an N-terminal heme-binding region does not change our conclusions. Thus, our data suggest that although the DGCR8-Core region is necessary for dsRNA binding and recruitment to the Microprocessor, it is not sufficient to establish the previously observed connection between RNA flexibility and processing efficiency. © 2015 Wiley Periodicals, Inc.
Zhou, Huan-Xiang
2006-11-01
Flexible linkers are often found to tether binding sequence motifs or connect protein domains. Here we analyze three usages of flexible linkers: 1), intramolecular binding of proline-rich peptides (PRPs) to SH3 domains for kinase regulation; 2), intramolecular binding of PRP for increasing the folding stability of SH3 domains; and 3), covalent linking of PRPs and other ligands for high-affinity bivalent binding. The basis of these analyses is a quantitative relation between intermolecular and intramolecular binding constants. This relation has the form K(i) = K(e0)p for intramolecular binding and K(e) = K(e01)K(e02)p for bivalent binding. The effective concentration p depends on the length of the linker and the distance between the linker attachment points in the bound state. Several applications illustrate the usefulness of the quantitative relation. These include intramolecular binding to the Itk SH3 domain by an internal PRP and to a circular permutant of the alpha-spectrin SH3 domain by a designed PRP, and bivalent binding to the two SH3 domains of Grb2 by two linked PRPs. These and other examples suggest that flexible linkers and sequence motifs tethered to them, like folded protein domains, are also subject to tight control during evolution.
Structure and dynamics of calmodulin in solution.
Wriggers, W; Mehler, E; Pitici, F; Weinstein, H; Schulten, K
1998-01-01
To characterize the dynamic behavior of calmodulin in solution, we have carried out molecular dynamics (MD) simulations of the Ca2+-loaded structure. The crystal structure of calmodulin was placed in a solvent sphere of radius 44 A, and 6 Cl- and 22 Na+ ions were included to neutralize the system and to model a 150 mM salt concentration. The total number of atoms was 32,867. During the 3-ns simulation, the structure exhibits large conformational changes on the nanosecond time scale. The central alpha-helix, which has been shown to unwind locally upon binding of calmodulin to target proteins, bends and unwinds near residue Arg74. We interpret this result as a preparative step in the more extensive structural transition observed in the "flexible linker" region 74-82 of the central helix upon complex formation. The major structural change is a reorientation of the two Ca2+-binding domains with respect to each other and a rearrangement of alpha-helices in the N-terminus domain that makes the hydrophobic target peptide binding site more accessible. This structural rearrangement brings the domains to a more favorable position for target binding, poised to achieve the orientation observed in the complex of calmodulin with myosin light-chain kinase. Analysis of solvent structure reveals an inhomogeneity in the mobility of water in the vicinity of the protein, which is attributable to the hydrophobic effect exerted by calmodulin's binding sites for target peptides. PMID:9545028
Fay, Jonathan F.; Farrens, David L.
2015-01-01
G protein-coupled receptors (GPCRs) are surprisingly flexible molecules that can do much more than simply turn on G proteins. Some even exhibit biased signaling, wherein the same receptor preferentially activates different G-protein or arrestin signaling pathways depending on the type of ligand bound. Why this behavior occurs is still unclear, but it can happen with both traditional ligands and ligands that bind allosterically outside the orthosteric receptor binding pocket. Here, we looked for structural mechanisms underlying these phenomena in the marijuana receptor CB1. Our work focused on the allosteric ligand Org 27569, which has an unusual effect on CB1—it simultaneously increases agonist binding, decreases G-protein activation, and induces biased signaling. Using classical pharmacological binding studies, we find that Org 27569 binds to a unique allosteric site on CB1 and show that it can act alone (without need for agonist cobinding). Through mutagenesis studies, we find that the ability of Org 27569 to bind is related to how much receptor is in an active conformation that can couple with G protein. Using these data, we estimated the energy differences between the inactive and active states. Finally, site-directed fluorescence labeling studies show the CB1 structure stabilized by Org 27569 is different and unique from that stabilized by antagonist or agonist. Specifically, transmembrane helix 6 (TM6) movements associated with G-protein activation are blocked, but at the same time, helix 8/TM7 movements are enhanced, suggesting a possible mechanism for the ability of Org 27569 to induce biased signaling. PMID:26100912
Ramírez-Escudero, Mercedes; Gimeno-Pérez, María; González, Beatriz; Linde, Dolores; Merdzo, Zoran; Fernández-Lobato, María; Sanz-Aparicio, Julia
2016-01-01
Xanthophyllomyces dendrorhous β-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria in human gut. In contrast to most fructosylating enzymes, XdINV produces neo-FOS, which makes it an interesting biotechnology target. We present here its three-dimensional structure, which shows the expected bimodular arrangement and also a long extension of its C terminus that together with an N-linked glycan mediate the formation of an unusual dimer. The two active sites of the dimer are connected by a long crevice, which might indicate its potential ability to accommodate branched fructans. This arrangement could be representative of a group of GH32 yeast enzymes having the traits observed in XdINV. The inactive D80A mutant was used to obtain complexes with relevant substrates and products, with their crystals structures showing at least four binding subsites at each active site. Moreover, two different positions are observed from subsite +2 depending on the substrate, and thus, a flexible loop (Glu-334–His-343) is essential in binding sucrose and β(2–1)-linked oligosaccharides. Conversely, β(2–6) and neo-type substrates are accommodated mainly by stacking to Trp-105, explaining the production of neokestose and the efficient fructosylating activity of XdINV on α-glucosides. The role of relevant residues has been investigated by mutagenesis and kinetics measurements, and a model for the transfructosylating reaction has been proposed. The plasticity of its active site makes XdINV a valuable and flexible biocatalyst to produce novel bioconjugates. PMID:26823463
Ramírez-Escudero, Mercedes; Gimeno-Pérez, María; González, Beatriz; Linde, Dolores; Merdzo, Zoran; Fernández-Lobato, María; Sanz-Aparicio, Julia
2016-03-25
Xanthophyllomyces dendrorhousβ-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria in human gut. In contrast to most fructosylating enzymes, XdINV produces neo-FOS, which makes it an interesting biotechnology target. We present here its three-dimensional structure, which shows the expected bimodular arrangement and also a long extension of its C terminus that together with anN-linked glycan mediate the formation of an unusual dimer. The two active sites of the dimer are connected by a long crevice, which might indicate its potential ability to accommodate branched fructans. This arrangement could be representative of a group of GH32 yeast enzymes having the traits observed in XdINV. The inactive D80A mutant was used to obtain complexes with relevant substrates and products, with their crystals structures showing at least four binding subsites at each active site. Moreover, two different positions are observed from subsite +2 depending on the substrate, and thus, a flexible loop (Glu-334-His-343) is essential in binding sucrose and β(2-1)-linked oligosaccharides. Conversely, β(2-6) and neo-type substrates are accommodated mainly by stacking to Trp-105, explaining the production of neokestose and the efficient fructosylating activity of XdINV on α-glucosides. The role of relevant residues has been investigated by mutagenesis and kinetics measurements, and a model for the transfructosylating reaction has been proposed. The plasticity of its active site makes XdINV a valuable and flexible biocatalyst to produce novel bioconjugates. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Atomic model of a cell-wall cross-linking enzyme in complex with an intact bacterial peptidoglycan.
Schanda, Paul; Triboulet, Sébastien; Laguri, Cédric; Bougault, Catherine M; Ayala, Isabel; Callon, Morgane; Arthur, Michel; Simorre, Jean-Pierre
2014-12-24
The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillus subtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains-the catalytic domain as well as the proposed peptidoglycan recognition domain-are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis.
Hildebrandt, P; Greinert, R; Stier, A; Taniguchi, H
1989-12-08
The isozymes 2 and 4 of rabbit microsomal cytochrome P-450 (LM2, LM4) have been studied by resonance Raman spectroscopy. Based on high quality spectra, a vibrational assignment of the porphyrin modes in the frequency range between 100-1700 cm-1 is presented for different ferric states of cytochrome P-450 LM2 and LM4. The resonance Raman spectra are interpreted in terms of the spin and ligation state of the heme iron and of heme-protein interactions. While in cytochrome P-450 LM2 the six-coordinated low-spin configuration is predominantly occupied, in the isozyme LM4 the five-coordinated high-spin form is the most stable state. The different stability of these two spin configurations in LM2 and LM4 can be attributed to the structures of the active sites. In the low-spin form of the isozymes LM4 the protein matrix forces the heme into a more rigid conformation than in LM2. These steric constraints are removed upon dissociation of the sixth ligand leading to a more flexible structure of the active site in the high-spin form of the isozyme LM4. The vibrational modes of the vinyl groups were found to be characteristic markers for the specific structures of the heme pockets in both isozymes. They also respond sensitively to type-I substrate binding. While in cytochrome P-450 LM4 the occupation of the substrate-binding pocket induces conformational changes of the vinyl groups, as reflected by frequency shifts of the vinyl modes, in the LM2 isozyme the ground-state conformation of these substituents remain unaffected, suggesting that the more flexible heme pocket can accommodate substrates without imposing steric constraints on the porphyrin. The resonance Raman technique makes structural changes visible which are induced by substrate binding in addition and independent of the changes associated with the shift of the spin state equilibrium: the high-spin states in the substrate-bound and substrate-free enzyme are structurally different. The formation of the inactive form, P-420, involves a severe structural rearrangement in the heme binding pocket leading to drastic changes of the vinyl group conformations. The conformational differences of the active sites in cytochromes P-450 LM2 and LM4 observed in this work contribute to the understanding of the structural basis accounting for substrate and product specificity of cytochrome P-450 isozymes.
Stegemann, Björn; Klebe, Gerhard
2012-02-01
Small molecules are recognized in protein-binding pockets through surface-exposed physicochemical properties. To optimize binding, they have to adopt a conformation corresponding to a local energy minimum within the formed protein-ligand complex. However, their conformational flexibility makes them competent to bind not only to homologous proteins of the same family but also to proteins of remote similarity with respect to the shape of the binding pockets and folding pattern. Considering drug action, such observations can give rise to unexpected and undesired cross reactivity. In this study, datasets of six different cofactors (ADP, ATP, NAD(P)(H), FAD, and acetyl CoA, sharing an adenosine diphosphate moiety as common substructure), observed in multiple crystal structures of protein-cofactor complexes exhibiting sequence identity below 25%, have been analyzed for the conformational properties of the bound ligands, the distribution of physicochemical properties in the accommodating protein-binding pockets, and the local folding patterns next to the cofactor-binding site. State-of-the-art clustering techniques have been applied to group the different protein-cofactor complexes in the different spaces. Interestingly, clustering in cavity (Cavbase) and fold space (DALI) reveals virtually the same data structuring. Remarkable relationships can be found among the different spaces. They provide information on how conformations are conserved across the host proteins and which distinct local cavity and fold motifs recognize the different portions of the cofactors. In those cases, where different cofactors are found to be accommodated in a similar fashion to the same fold motifs, only a commonly shared substructure of the cofactors is used for the recognition process. Copyright © 2011 Wiley Periodicals, Inc.
Parasuraman, Ponnusamy; Murugan, Veeramani; Selvin, Jeyasigamani F A; Gromiha, M Michael; Fukui, Kazuhiko; Veluraja, Kasinadar
2014-08-01
Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.
Jensen, Jan K.; Malmendal, Anders; Schiøtt, Birgit; Skeldal, Sune; Pedersen, Katrine E.; Celik, Leyla; Nielsen, Niels Chr.; Andreasen, Peter A.; Wind, Troels
2006-01-01
The functions of the serpin PAI-1 (plasminogen activator inhibitor-1) are based on molecular interactions with its target proteases uPA and tPA (urokinase-type and tissue-type plasminogen activator respectively), with vitronectin and with endocytosis receptors of the low-density-lipoprotein family. Understanding the significance of these interactions would be facilitated by the ability to block them individually. Using phage display, we have identified the disulfide-constrained peptide motif CFGWC with affinity for natural human PAI-1. The three-dimensional structure of a peptide containing this motif (DVPCFGWCQDA) was determined by liquid-state NMR spectroscopy. A binding site in the so-called flexible joint region of PAI-1 was suggested by molecular modelling and validated through binding studies with various competitors and site-directed mutagenesis of PAI-1. The peptide with an N-terminal biotin inhibited the binding of the uPA–PAI-1 complex to the endocytosis receptors low-density-lipoprotein-receptor-related protein 1A (LRP-1A) and very-low-density-lipoprotein receptor (VLDLR) in vitro and inhibited endocytosis of the uPA–PAI-1 complex in U937 cells. We conclude that the isolated peptide represents a novel approach to pharmacological interference with the functions of PAI-1 based on inhibition of one specific molecular interaction. PMID:16813566
Integrity of N- and C-termini is important for E. coli Hsp31 chaperone activity
Sastry, M S R; Zhou, Weibin; Baneyx, François
2009-01-01
Hsp31 is a stress-inducible molecular chaperone involved in the management of protein misfolding at high temperatures and in the development of acid resistance in starved E. coli. Each subunit of the Hsp31 homodimer consists of two structural domains connected by a flexible linker that sits atop a continuous tract of nonpolar residues adjacent to a hydrophobic bowl defined by the dimerization interface. Previously, we proposed that while the bowl serves as a binding site for partially folded species at physiological temperatures, chaperone function under heat shock conditions requires that folding intermediates further anneal to high-affinity binding sites that become uncovered upon thermally induced motion of the linker. In support of a mechanism requiring that client proteins first bind to the bowl, we show here that fusion of a 20-residue-long hexahistidine tag to the N-termini of Hsp31 abolishes chaperone activity at all temperatures by inducing reversible structural changes that interfere with substrate binding. We further demonstrate that extending the C-termini of Hsp31 with short His tags selectively suppresses chaperone function at high temperatures by interfering with linker movement. The structural and functional sensitivity of Hsp31 to lengthening is consistent with the high degree of conservation of class I Hsp31 orthologs and will serve as a cautionary tale on the implications of affinity tagging. PMID:19517531
Modeling the effects of flexibility on the binding of environmental estrogens to the estrogen receptor
There are many reports of environmental endocrine disruption in the literature, yet it has been difficult to identify the specific chemicals responsible for these effects. ...
De novo active sites for resurrected Precambrian enzymes
NASA Astrophysics Data System (ADS)
Risso, Valeria A.; Martinez-Rodriguez, Sergio; Candel, Adela M.; Krüger, Dennis M.; Pantoja-Uceda, David; Ortega-Muñoz, Mariano; Santoyo-Gonzalez, Francisco; Gaucher, Eric A.; Kamerlin, Shina C. L.; Bruix, Marta; Gavira, Jose A.; Sanchez-Ruiz, Jose M.
2017-07-01
Protein engineering studies often suggest the emergence of completely new enzyme functionalities to be highly improbable. However, enzymes likely catalysed many different reactions already in the last universal common ancestor. Mechanisms for the emergence of completely new active sites must therefore either plausibly exist or at least have existed at the primordial protein stage. Here, we use resurrected Precambrian proteins as scaffolds for protein engineering and demonstrate that a new active site can be generated through a single hydrophobic-to-ionizable amino acid replacement that generates a partially buried group with perturbed physico-chemical properties. We provide experimental and computational evidence that conformational flexibility can assist the emergence and subsequent evolution of new active sites by improving substrate and transition-state binding, through the sampling of many potentially productive conformations. Our results suggest a mechanism for the emergence of primordial enzymes and highlight the potential of ancestral reconstruction as a tool for protein engineering.
Rajasekaran, M.; Abirami, Santhanam; Chen, Chinpan
2011-01-01
Background Arylamine N-acetyltransferase 2 (NAT2) is an important catalytic enzyme that metabolizes the carcinogenic arylamines, hydrazine drugs and chemicals. This enzyme is highly polymorphic in different human populations. Several polymorphisms of NAT2, including the single amino acid substitutions R64Q, I114T, D122N, L137F, Q145P, R197Q, and G286E, are classified as slow acetylators, whereas the wild-type NAT2 is classified as a fast acetylator. The slow acetylators are often associated with drug toxicity and efficacy as well as cancer susceptibility. The biological functions of these 7 mutations have previously been characterized, but the structural basis behind the reduced catalytic activity and reduced protein level is not clear. Methodology/Principal Findings We performed multiple molecular dynamics simulations of these mutants as well as NAT2 to investigate the structural and dynamical effects throughout the protein structure, specifically the catalytic triad, cofactor binding site, and the substrate binding pocket. None of these mutations induced unfolding; instead, their effects were confined to the inter-domain, domain 3 and 17-residue insert region, where the flexibility was significantly reduced relative to the wild-type. Structural effects of these mutations propagate through space and cause a change in catalytic triad conformation, cofactor binding site, substrate binding pocket size/shape and electrostatic potential. Conclusions/Significance Our results showed that the dynamical properties of all the mutant structures, especially in inter-domain, domain 3 and 17-residue insert region were affected in the same manner. Similarly, the electrostatic potential of all the mutants were altered and also the functionally important regions such as catalytic triad, cofactor binding site, and substrate binding pocket adopted different orientation and/or conformation relative to the wild-type that may affect the functions of the mutants. Overall, our study may provide the structural basis for reduced catalytic activity and protein level, as was experimentally observed for these polymorphisms. PMID:21980537
Bazeley, Peter S; Prithivi, Sridevi; Struble, Craig A; Povinelli, Richard J; Sem, Daniel S
2006-01-01
Cytochrome P450 2D6 (CYP2D6) is used to develop an approach for predicting affinity and relevant binding conformation(s) for highly flexible binding sites. The approach combines the use of docking scores and compound properties as attributes in building a neural network (NN) model. It begins by identifying segments of CYP2D6 that are important for binding specificity, based on structural variability among diverse CYP enzymes. A family of distinct, low-energy conformations of CYP2D6 are generated using simulated annealing (SA) and a collection of 82 compounds with known CYP2D6 affinities are docked. Interestingly, docking poses are observed on the backside of the heme as well as in the known active site. Docking scores for the active site binders, along with compound-specific attributes, are used to train a neural network model to properly bin compounds as strong binders, moderate binders, or nonbinders. Attribute selection is used to preselect the most important scores and compound-specific attributes for the model. A prediction accuracy of 85+/-6% is achieved. Dominant attributes include docking scores for three of the 20 conformations in the ensemble as well as the compound's formal charge, number of aromatic rings, and AlogP. Although compound properties were highly predictive attributes (12% improvement over baseline) in the NN-based prediction of CYP2D6 binders, their combined use with docking score attributes is synergistic (net increase of 23% above baseline). Beyond prediction of affinity, attribute selection provides a way to identify the most relevant protein conformation(s), in terms of binding competence. In the case of CYP2D6, three out of the ensemble of 20 SA-generated structures are found to be the most predictive for binding.
Discovery of 12-mer peptides that bind to wood lignin
Yamaguchi, Asako; Isozaki, Katsuhiro; Nakamura, Masaharu; Takaya, Hikaru; Watanabe, Takashi
2016-01-01
Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin. PMID:26903196
Mathelier, Anthony; Fornes, Oriol; Arenillas, David J.; Chen, Chih-yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W.; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W.
2016-01-01
JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release. PMID:26531826
Different modes of interaction by TIAR and HuR with target RNA and DNA
Kim, Henry S.; Wilce, Matthew C. J.; Yoga, Yano M. K.; Pendini, Nicole R.; Gunzburg, Menachem J.; Cowieson, Nathan P.; Wilson, Gerald M.; Williams, Bryan R. G.; Gorospe, Myriam; Wilce, Jacqueline A.
2011-01-01
TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA. However, the higher affinity for U–rich sequences is mainly due to faster association with U-rich RNA, which we propose is a reflection of the higher probability of association. Differences between TIAR and HuR are observed in their modes of binding to RNA. TIAR is able to bind deoxy-oligonucleotides with nanomolar affinity, whereas HuR affinity is reduced to a micromolar level. Studies with U-rich DNA reveal that TIAR binding depends less on the 2′-hydroxyl group of RNA than HuR binding. Finally we show that SAXS data, recorded for the first two domains of TIAR in complex with RNA, are more consistent with a flexible, elongated shape and not the compact shape that the first two domains of Hu proteins adopt upon binding to RNA. We thus propose that these triple-RRM proteins, which compete for the same binding sites in cells, interact with their targets in fundamentally different ways. PMID:21233170
Different modes of interaction by TIAR and HuR with target RNA and DNA.
Kim, Henry S; Wilce, Matthew C J; Yoga, Yano M K; Pendini, Nicole R; Gunzburg, Menachem J; Cowieson, Nathan P; Wilson, Gerald M; Williams, Bryan R G; Gorospe, Myriam; Wilce, Jacqueline A
2011-02-01
TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA. However, the higher affinity for U-rich sequences is mainly due to faster association with U-rich RNA, which we propose is a reflection of the higher probability of association. Differences between TIAR and HuR are observed in their modes of binding to RNA. TIAR is able to bind deoxy-oligonucleotides with nanomolar affinity, whereas HuR affinity is reduced to a micromolar level. Studies with U-rich DNA reveal that TIAR binding depends less on the 2'-hydroxyl group of RNA than HuR binding. Finally we show that SAXS data, recorded for the first two domains of TIAR in complex with RNA, are more consistent with a flexible, elongated shape and not the compact shape that the first two domains of Hu proteins adopt upon binding to RNA. We thus propose that these triple-RRM proteins, which compete for the same binding sites in cells, interact with their targets in fundamentally different ways.
Structure and mechanism of Cu- and Ni-substituted analogs of metallo-β-lactamase L1
Hu, Zhenxin; Spadafora, Lauren J.; Hajdin, Christine E.; Bennett, Brian; Crowder, Michael W.
2009-01-01
In an effort to further probe metal binding to metallo-β-lactamase L1 (mβl L1), Cu- (Cu-L1) and Ni-substituted (Ni-L1) L1 were prepared and characterized by kinetic and spectroscopic studies. Cu-L1 bound 1.7 equivalents of Cu and small amounts of Zn(II) and Fe. The EPR spectrum of Cu-L1 exhibited two overlapping, axial signals, indicative of type 2 sites with distinct affinities for Cu(II). Both signals indicated multiple nitrogen ligands. Despite the expected proximity of the Cu(II) ions, however, only indirect evidence was found for spin-spin coupling. Cu-L1 exhibited higher kcat (96 s−1) and Km (224 μM) values, as compared to the values of dinuclear Zn(II)-containing L1, when nitrocefin was used as substrate. The Ni-L1 bound 1 equivalent of Ni and 0.3 equivalents of Zn(II). Ni-L1 was EPR-silent, suggesting that the oxidation state of nickel was +2; this suggestion was confirmed by 1H NMR spectra, which showed relatively sharp proton resonances. Stopped-flow kinetic studies showed that ZnNi-L1 stabilized significant amounts of the nitrocefin-derived intermediate and that the decay of intermediate is rate-limiting. 1H NMR spectra demonstrate that Ni(II) binds in the Zn2 site and that the ring-opened product coordinates Ni(II). Both Cu-L1 and ZnNi-L1 hydrolyze cephalosporins and carbapenems, but not penicillins, suggesting that the Zn2 site modulates substrate preference in mβ1 L1. These studies demonstrate that the Zn2 site in L1 is very flexible and can accommodate a number of different transition metal ions; this flexibility could possibly offer an organism that produces L1 an evolutionary advantage when challenged with β-lactam containing antibiotics. PMID:19228020
Zheng, Wenjun
2017-02-01
In the adaptive immune systems of many bacteria and archaea, the Cas9 endonuclease forms a complex with specific guide/scaffold RNA to identify and cleave complementary target sequences in foreign DNA. This DNA targeting machinery has been exploited in numerous applications of genome editing and transcription control. However, the molecular mechanism of the Cas9 system is still obscure. Recently, high-resolution structures have been solved for Cas9 in different structural forms (e.g., unbound forms, RNA-bound binary complexes, and RNA-DNA-bound tertiary complexes, corresponding to an inactive state, a pre-target-bound state, and a cleavage-competent or product state), which offered key structural insights to the Cas9 mechanism. To further probe the structural dynamics of Cas9 interacting with RNA and DNA at the amino-acid level of details, we have performed systematic coarse-grained modeling using an elastic network model and related analyses. Our normal mode analysis predicted a few key modes of collective motions that capture the observed conformational changes featuring large domain motions triggered by binding of RNA and DNA. Our flexibility analysis identified specific regions with high or low flexibility that coincide with key functional sites (such as DNA/RNA-binding sites, nuclease cleavage sites, and key hinges). We also identified a small set of hotspot residues that control the energetics of functional motions, which overlap with known functional sites and offer promising targets for future mutagenesis efforts to improve the specificity of Cas9. Finally, we modeled the conformational transitions of Cas9 from the unbound form to the binary complex and then the tertiary complex, and predicted a distinct sequence of domain motions. In sum, our findings have offered rich structural and dynamic details relevant to the Cas9 machinery, and will guide future investigation and engineering of the Cas9 systems. Proteins 2017; 85:342-353. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ozyurt, A Sinem; Selby, Thomas L
2008-07-01
This study describes a method to computationally assess the function of homologous enzymes through small molecule binding interaction energy. Three experimentally determined X-ray structures and four enzyme models from ornithine cyclo-deaminase, alanine dehydrogenase, and mu-crystallin were used in combination with nine small molecules to derive a function score (FS) for each enzyme-model combination. While energy values varied for a single molecule-enzyme combination due to differences in the active sites, we observe that the binding energies for the entire pathway were proportional for each set of small molecules investigated. This proportionality of energies for a reaction pathway appears to be dependent on the amino acids in the active site and their direct interactions with the small molecules, which allows a function score (FS) to be calculated to assess the specificity of each enzyme. Potential of mean force (PMF) calculations were used to obtain the energies, and the resulting FS values demonstrate that a measurement of function may be obtained using differences between these PMF values. Additionally, limitations of this method are discussed based on: (a) larger substrates with significant conformational flexibility; (b) low homology enzymes; and (c) open active sites. This method should be useful in accurately predicting specificity for single enzymes that have multiple steps in their reactions and in high throughput computational methods to accurately annotate uncharacterized proteins based on active site interaction analysis. 2008 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shishova,E.; Di Costanzo, L.; Cane, D.
2007-01-01
Aristolochene synthase from Aspergillus terreus catalyzes the cyclization of the universal sesquiterpene precursor, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. The 2.2 {angstrom} resolution X-ray crystal structure of aristolochene synthase reveals a tetrameric quaternary structure in which each subunit adopts the {alpha}-helical class I terpene synthase fold with the active site in the 'open', solvent-exposed conformation. Intriguingly, the 2.15 {angstrom} resolution crystal structure of the complex with Mg{sup 2+}{sub 3}-pyrophosphate reveals ligand binding only to tetramer subunit D, which is stabilized in the 'closed' conformation required for catalysis. Tetramer assembly may hinder conformational changes required for the transition frommore » the inactive open conformation to the active closed conformation, thereby accounting for the attenuation of catalytic activity with an increase in enzyme concentration. In both conformations, but especially in the closed conformation, the active site contour is highly complementary in shape to that of aristolochene, and a catalytic function is proposed for the pyrophosphate anion based on its orientation with regard to the presumed binding mode of aristolochene. A similar active site contour is conserved in aristolochene synthase from Penicillium roqueforti despite the substantial divergent evolution of these two enzymes, while strikingly different active site contours are found in the sesquiterpene cyclases 5-epi-aristolochene synthase and trichodiene synthase. Thus, the terpenoid cyclase active site plays a critical role as a template in binding the flexible polyisoprenoid substrate in the proper conformation for catalysis. Across the greater family of terpenoid cyclases, this template is highly evolvable within a conserved {alpha}-helical fold for the synthesis of terpene natural products of diverse structure and stereochemistry.« less
The crystal structure of choline kinase reveals a eukaryotic protein kinase fold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peisach, D.; Gee, P.; Kent, K.
2010-03-08
Choline kinase catalyzes the ATP-dependent phosphorylation of choline, the first committed step in the CDP-choline pathway for the biosynthesis of phosphatidylcholine. The 2.0 {angstrom} crystal structure of a choline kinase from C. elegans (CKA-2) reveals that the enzyme is a homodimeric protein with each monomer organized into a two-domain fold. The structure is remarkably similar to those of protein kinases and aminoglycoside phosphotransferases, despite no significant similarity in amino acid sequence. Comparisons to the structures of other kinases suggest that ATP binds to CKA-2 in a pocket formed by highly conserved and catalytically important residues. In addition, a choline bindingmore » site is proposed to be near the ATP binding pocket and formed by several structurally flexible loops.« less
Crystal structures of ASK1-inhibtor complexes provide a platform for structure-based drug design
Singh, Onkar; Shillings, Anthony; Craggs, Peter; Wall, Ian; Rowland, Paul; Skarzynski, Tadeusz; Hobbs, Clare I; Hardwick, Phil; Tanner, Rob; Blunt, Michelle; Witty, David R; Smith, Kathrine J
2013-01-01
ASK1, a member of the MAPK Kinase Kinase family of proteins has been shown to play a key role in cancer, neurodegeneration and cardiovascular diseases and is emerging as a possible drug target. Here we describe a ‘replacement-soaking’ method that has enabled the high-throughput X-ray structure determination of ASK1/ligand complexes. Comparison of the X-ray structures of five ASK1/ligand complexes from 3 different chemotypes illustrates that the ASK1 ATP binding site is able to accommodate a range of chemical diversity and different binding modes. The replacement-soaking system is also able to tolerate some protein flexibility. This crystal system provides a robust platform for ASK1/ligand structure determination and future structure based drug design. PMID:23776076
Discrimination against RNA Backbones by a ssDNA Binding Protein.
Lloyd, Neil R; Wuttke, Deborah S
2018-05-01
Pot1 is the shelterin component responsible for the protection of the single-stranded DNA (ssDNA) overhang at telomeres in nearly all eukaryotic organisms. The C-terminal domain of the DNA-binding domain, Pot1pC, exhibits non-specific ssDNA recognition, achieved through thermodynamically equivalent alternative binding conformations. Given this flexibility, it is unclear how specificity for ssDNA over RNA, an activity required for biological function, is achieved. Examination of the ribose-position specificity of Pot1pC shows that ssDNA specificity is additive but not uniformly distributed across the ligand. High-resolution structures of several Pot1pC complexes with RNA-DNA chimeric ligands reveal Pot1pC discriminates against RNA by utilizing non-compensatory binding modes that feature significant rearrangement of the binding interface. These alternative conformations, accessed through both ligand and protein flexibility, recover much, but not all, of the binding energy, leading to the observed reduction in affinities. These findings suggest that intermolecular interfaces are remarkably sophisticated in their tuning of specificity toward flexible ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mechanical Unfolding Studies on Single-Domain SUMO and Multi-Domain Periplasmic Binding Proteins
NASA Astrophysics Data System (ADS)
Kotamarthi, Hema Chandra; Ainavarapu, Sri Rama Koti
Protein mechanics is a key component of many cellular and sub-cellular processes. The current review focuses on recent studies from our laboratory that probe the effect of sequence on the mechanical stability of structurally similar proteins and the unfolding mechanisms of multi-domain periplasmic binding proteins. Ubiquitin and small ubiquitin-related modifiers (SUMOs) are structurally similar and possess different mechanical stabilities, ubiquitin being stronger than SUMOs as revealed from their unfolding forces. These differences are plausibly due to the variation in number of inter-residue contacts. The unfolding potential widths determined from the pulling speed-dependent studies revealed that SUMOs are mechanically more flexible than ubiquitin. This flexibility of SUMOs plays a role in ligand binding and our single-molecule studies on SUMO interaction with SUMO binding motifs (SBMs) have shown that ligand binding decreases the SUMO flexibility and increases its mechanical stability. Studies on multi-domain periplasmic binding proteins have revealed that the unfolding energy landscape of these proteins is complex and they follow kinetic partitioning between two-state and multiple three-state pathways.
NASA Astrophysics Data System (ADS)
Oyarzún, Bernardo; Mognetti, Bortolo Matteo
2018-03-01
We present a new simulation technique to study systems of polymers functionalized by reactive sites that bind/unbind forming reversible linkages. Functionalized polymers feature self-assembly and responsive properties that are unmatched by the systems lacking selective interactions. The scales at which the functional properties of these materials emerge are difficult to model, especially in the reversible regime where such properties result from many binding/unbinding events. This difficulty is related to large entropic barriers associated with the formation of intra-molecular loops. In this work, we present a simulation scheme that sidesteps configurational costs by dedicated Monte Carlo moves capable of binding/unbinding reactive sites in a single step. Cross-linking reactions are implemented by trial moves that reconstruct chain sections attempting, at the same time, a dimerization reaction between pairs of reactive sites. The model is parametrized by the reaction equilibrium constant of the reactive species free in solution. This quantity can be obtained by means of experiments or atomistic/quantum simulations. We use the proposed methodology to study the self-assembly of single-chain polymeric nanoparticles, starting from flexible precursors carrying regularly or randomly distributed reactive sites. We focus on understanding differences in the morphology of chain nanoparticles when linkages are reversible as compared to the well-studied case of irreversible reactions. Intriguingly, we find that the size of regularly functionalized chains, in good solvent conditions, is non-monotonous as a function of the degree of functionalization. We clarify how this result follows from excluded volume interactions and is peculiar of reversible linkages and regular functionalizations.
Quiroz-Valenzuela, Soledad; Sukuru, Sai Chetan K.; Hausinger, Robert P.; Kuhn, Leslie A.; Heller, William T.
2008-01-01
Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC)3 induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle x-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complex that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD)3, and (UreABC-UreDF)3 confirm that UreD and UreF bind near UreB at the periphery of the (UreAC)3 structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF)3 allows CO2 and nickel ions to gain access to the nascent active site. PMID:18823937
Probing protein flexibility reveals a mechanism for selective promiscuity
Pabon, Nicolas A; Camacho, Carlos J
2017-01-01
Many eukaryotic regulatory proteins adopt distinct bound and unbound conformations, and use this structural flexibility to bind specifically to multiple partners. However, we lack an understanding of how an interface can select some ligands, but not others. Here, we present a molecular dynamics approach to identify and quantitatively evaluate the interactions responsible for this selective promiscuity. We apply this approach to the anticancer target PD-1 and its ligands PD-L1 and PD-L2. We discover that while unbound PD-1 exhibits a hard-to-drug hydrophilic interface, conserved specific triggers encoded in the cognate ligands activate a promiscuous binding pathway that reveals a flexible hydrophobic binding cavity. Specificity is then established by additional contacts that stabilize the PD-1 cavity into distinct bound-like modes. Collectively, our studies provide insight into the structural basis and evolution of multiple binding partners, and also suggest a biophysical approach to exploit innate binding pathways to drug seemingly undruggable targets. DOI: http://dx.doi.org/10.7554/eLife.22889.001 PMID:28432789
NASA Astrophysics Data System (ADS)
Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär
2018-01-01
Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.
Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär
2018-01-01
Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.
Buckle, A M; Schreiber, G; Fersht, A R
1994-08-02
We have solved, refined, and analyzed the 2.0-å resolution crystal structure of a 1:1 complex between the bacterial ribonuclease, barnase, and a Cys-->Ala(40,82) double mutant of its intracellular polypeptide inhibitor, barstar. Barstar inhibits barnase by sterically blocking the active site with a helix and adjacent loop segment. Almost half of the 14 hydrogen bonds between barnase and barstar involve two charged residues, and a third involve one charged partner. The electrostatic contribution to the overall binding energy is considerably greater than for other protein-protein interactions. Consequently, the very high rate constant for the barnase-barstar association (10(8) s-1 M-1) is most likely due to electrostatic steering effects. The barnase active-site residue His102 is located in a pocket on the surface of barstar, and its hydrogen bonds with Asp39 and Gly31 residues of barstar are directly responsible for the pH dependence of barnase-barstar binding. There is a high degree of complementarity both of the shape and of the charge of the interacting surfaces, but neither is perfect. The surface complementarity is slightly poorer than in protease-inhibitor complexes but a little better than in antibody-antigen interactions. However, since the burial of solvent in the barnase-barstar interface improves the fit significantly by filling in the majority of gaps, as well as stabilizing unfavorable electrostatic interactions, its role seems to be more important than in other protein-protein complexes. The electrostatic interactions between barnase and barstar are very similar to those between barnase and the tetranucleotide d(CGAC). In the barnase-barstar complex, the two phosphate-binding sites in the barnase active site are occupied by Asp39 and Gly43 of barstar. However, barstar has no equivalent for a guanine base of an RNA substrate, resulting in the occupation of the guanine recognition site in the barnase-barstar complex by nine ordered water molecules. Upon barnase-barstar binding, entropy losses resulting from the immobilization of segments of the protein chain and the energetic costs of conformational changes are minimized due to the essentially preformed active site of barnase. However, a certain degree of flexibility within the barnase active site is required to allow for the structural differences between barnase-barstar binding and barnase-RNA binding. A comparison between the bound and the free barstar structure shows that the overall structural response to barnase-binding is significant. This response can be best described as outwardly oriented, rigid-body movements of the four alpha-helices of barstar, resulting in the structure of bound barstar being somewhat expanded.
Protein flexibility in the light of structural alphabets
Craveur, Pierrick; Joseph, Agnel P.; Esque, Jeremy; Narwani, Tarun J.; Noël, Floriane; Shinada, Nicolas; Goguet, Matthieu; Leonard, Sylvain; Poulain, Pierre; Bertrand, Olivier; Faure, Guilhem; Rebehmed, Joseph; Ghozlane, Amine; Swapna, Lakshmipuram S.; Bhaskara, Ramachandra M.; Barnoud, Jonathan; Téletchéa, Stéphane; Jallu, Vincent; Cerny, Jiri; Schneider, Bohdan; Etchebest, Catherine; Srinivasan, Narayanaswamy; Gelly, Jean-Christophe; de Brevern, Alexandre G.
2015-01-01
Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases. PMID:26075209
Saravanan, Kandasamy; Kalaiarasi, Chinnasamy; Kumaradhas, Poomani
2017-12-01
Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.
Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin.
Mallon, Madeleine; Dutt, Som; Schrader, Thomas; Crowley, Peter B
2016-04-15
Progress in the field of bio-supramolecular chemistry, the bottom-up assembly of protein-ligand systems, relies on a detailed knowledge of molecular recognition. To address this issue, we have characterised complex formation between human ubiquitin (HUb) and four supramolecular anions. The ligands were: pyrenetetrasulfonic acid (4PSA), p-sulfonato-calix[4]arene (SCLX4), bisphosphate tweezers (CLR01) and meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS), which vary in net charge, size, shape and hydrophobicity. All four ligands induced significant changes in the HSQC spectrum of HUb. Chemical shift perturbations and line-broadening effects were used to identify binding sites and to quantify affinities. Supporting data were obtained from docking simulations. It was found that these weakly interacting ligands bind to extensive surface patches on HUb. A comparison of the data suggests some general indicators for the protein-binding specificity of supramolecular anions. Differences in binding were observed between the cavity-containing and planar ligands. The former had a preference for the arginine-rich, flexible C terminus of HUb. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics.
Campbell, Zachary T; Baldwin, Thomas O; Miyashita, Osamu
2010-12-15
Bacterial luciferase contains an extended 29-residue mobile loop. Movements of this loop are governed by binding of either flavin mononucleotide (FMNH2) or polyvalent anions. To understand this process, loop dynamics were investigated using replica-exchange molecular dynamics that yielded conformational ensembles in either the presence or absence of FMNH2. The resulting data were analyzed using clustering and network analysis. We observed the closed conformations that are visited only in the simulations with the ligand. Yet the mobile loop is intrinsically flexible, and FMNH2 binding modifies the relative populations of conformations. This model provides unique information regarding the function of a crystallographically disordered segment of the loop near the binding site. Structures at or near the fringe of this network were compatible with flavin binding or release. Finally, we demonstrate that the crystallographically observed conformation of the mobile loop bound to oxidized flavin was influenced by crystal packing. Thus, our study has revealed what we believe are novel conformations of the mobile loop and additional context for experimentally determined structures. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A combinatorial approach to protein docking with flexible side chains.
Althaus, Ernst; Kohlbacher, Oliver; Lenhof, Hans-Peter; Müller, Peter
2002-01-01
Rigid-body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side chains while keeping the protein backbone rigid. Starting from candidates created by a rigid-docking algorithm, we demangle the side chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side chain demangling. Both approaches are based on a discrete representation of the side chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem, we propose a fast heuristic approach and an exact, albeit slower, method that uses branch-and-cut techniques. As a test set, we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples, the highest-ranking conformation produced was a good approximation of the true complex structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Pan; High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, 230031; Li, Dong
2013-08-02
Highlights: •The loop between S0 and S1 of BK channel was overexpressed and purified in DPC. •NMR studies indicated BK-IS1 contained two helices connected by a flexible loop. •Mg{sup 2+} titration of BK-IS1 indicated two possible binding sites of divalent ions. -- Abstract: The BK channel, a tetrameric potassium channel with very high conductance, has a central role in numerous physiological functions. The BK channel can be activated by intracellular Ca{sup 2+} and Mg{sup 2+}, as well as by membrane depolarization. Unlike other tetrameric potassium channels, the BK channel has seven transmembrane helices (S0–S6) including an extra helix S0. Themore » intracellular segment between S0 and S1 (BK-IS1) is essential to BK channel functions and Asp99 in BK-IS1 is reported to be responsible for Mg{sup 2+} coordination. In this study, BK-IS1 (44–113) was over-expressed using a bacterial system and purified in the presence of detergent micelles for multidimensional heteronuclear nuclear magnetic resonance (NMR) structural studies. Backbone resonance assignment and secondary structure analysis showed that BK-IS1 contains two amphipathic helices connected by a 36-residue loop. Amide {sup 1}H–{sup 15}N heteronuclear NOE analysis indicated that the loop is very flexible, while the two amphipathic helices are possibly stabilized through interaction with the membrane. A solution NMR-based titration assay of BK-IS1 was performed with various concentrations of Mg{sup 2+}. Two residues (Thr45 and Leu46) with chemical shift changes were observed but no, or very minor, chemical shift difference was observed for Asp99, indicating a possible site for binding divalent ions or other modulation partners.« less
Molecular basis of a novel renal amyloidosis due to N184K gelsolin variant
Bonì, Francesco; Milani, Mario; Porcari, Riccardo; Barbiroli, Alberto; Ricagno, Stefano; de Rosa, Matteo
2016-01-01
Mutations in gelsolin are responsible for a systemic amyloidosis first described in 1969. Until recently, the disease was associated with two substitutions of the same residue, leading to the loss of the calcium binding site. Novel interest arose in 2014 when the N184K variant of the protein was identified as the etiological agent of a novel kidney-localized amyloidosis. Here we provide a first rationale for N184K pathogenicity. We show that the mutation induces a destabilization of gelsolin second domain, without compromising its calcium binding capacity. X-ray data combined with molecular dynamics simulations demonstrates that the primary source of the destabilization is a loss of connectivity in proximity of the metal. Such rearrangement of the H-bond network does not have a major impact on the overall fold of the domain, nevertheless, it increases the flexibility of a stretch of the protein, which is consequently processed by furin protease. Overall our data suggest that the N184K variant is subjected to the same aberrant proteolytic events responsible for the formation of amyloidogenic fragments in the previously characterized mutants. At the same time our data suggest that a broader number of mutations, unrelated to the metal binding site, can lead to a pathogenic phenotype. PMID:27633054
Molecular basis of a novel renal amyloidosis due to N184K gelsolin variant
NASA Astrophysics Data System (ADS)
Bonì, Francesco; Milani, Mario; Porcari, Riccardo; Barbiroli, Alberto; Ricagno, Stefano; De Rosa, Matteo
2016-09-01
Mutations in gelsolin are responsible for a systemic amyloidosis first described in 1969. Until recently, the disease was associated with two substitutions of the same residue, leading to the loss of the calcium binding site. Novel interest arose in 2014 when the N184K variant of the protein was identified as the etiological agent of a novel kidney-localized amyloidosis. Here we provide a first rationale for N184K pathogenicity. We show that the mutation induces a destabilization of gelsolin second domain, without compromising its calcium binding capacity. X-ray data combined with molecular dynamics simulations demonstrates that the primary source of the destabilization is a loss of connectivity in proximity of the metal. Such rearrangement of the H-bond network does not have a major impact on the overall fold of the domain, nevertheless, it increases the flexibility of a stretch of the protein, which is consequently processed by furin protease. Overall our data suggest that the N184K variant is subjected to the same aberrant proteolytic events responsible for the formation of amyloidogenic fragments in the previously characterized mutants. At the same time our data suggest that a broader number of mutations, unrelated to the metal binding site, can lead to a pathogenic phenotype.
In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.
Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E
2018-01-01
DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.
Zeng, Qinghong; Langereis, Martijn A.; van Vliet, Arno L. W.; Huizinga, Eric G.; de Groot, Raoul J.
2008-01-01
The hemagglutinin-esterases (HEs) are a family of viral envelope glycoproteins that mediate reversible attachment to O-acetylated sialic acids by acting both as lectins and as receptor-destroying enzymes (RDEs). Related HEs occur in influenza C, toro-, and coronaviruses, apparently as a result of relatively recent lateral gene transfer events. Here, we report the crystal structure of a coronavirus (CoV) HE in complex with its receptor. We show that CoV HE arose from an influenza C-like HE fusion protein (HEF). In the process, HE was transformed from a trimer into a dimer, whereas remnants of the fusion domain were adapted to establish novel monomer–monomer contacts. Whereas the structural design of the RDE-acetylesterase domain remained unaltered, the HE receptor-binding domain underwent remodeling to such extent that the ligand is now bound in opposite orientation. This is surprising, because the architecture of the HEF site was preserved in influenza A HA over a much larger evolutionary distance, a switch in receptor specificity and extensive antigenic variation notwithstanding. Apparently, HA and HEF are under more stringent selective constraints than HE, limiting their exploration of alternative binding-site topologies. We attribute the plasticity of the CoV HE receptor-binding site to evolutionary flexibility conferred by functional redundancy between HE and its companion spike protein S. Our findings offer unique insights into the structural and functional consequences of independent protein evolution after interviral gene exchange and open potential avenues to broad-spectrum antiviral drug design. PMID:18550812
McInnes, C; Hoyt, D W; Harkins, R N; Pagila, R N; Debanne, M T; O'Connor-McCourt, M; Sykes, B D
1996-12-13
The study of human transforming growth factor-alpha (TGF-alpha) in complex with the epidermal growth factor (EGF) receptor extracellular domain has been undertaken in order to generate information on the interactions of these molecules. Analysis of 1H NMR transferred nuclear Overhauser enhancement data for titration of the ligand with the receptor has yielded specific data on the residues of the growth factor involved in contact with the larger protein. Significant increases and decreases in nuclear Overhauser enhancement cross-peak intensity occur upon complexation, and interpretation of these changes indicates that residues of the A- and C-loops of TGF-alpha form the major binding interface, while the B-loop provides a structural scaffold for this site. These results corroborate the conclusions from NMR relaxation studies (Hoyt, D. W., Harkins, R. N., Debanne, M. T., O'Connor-McCourt, M., and Sykes, B. D. (1994) Biochemistry 33, 15283-15292), which suggest that the C-terminal residues of the polypeptide are immobilized upon receptor binding, while the N terminus of the molecule retains considerable flexibility, and are consistent with structure-function studies of the TGF-alpha/EGF system indicating a multidomain binding model. These results give a visualization, for the first time, of native TGF-alpha in complex with the EGF receptor and generate a picture of the ligand-binding site based upon the intact molecule. This will undoubtedly be of utility in the structure-based design of TGF-alpha/EGF agonists and/or antagonists.
Becker, Matthias M. M.; Lapouge, Karine; Segnitz, Bernd; Wild, Klemens; Sinning, Irmgard
2017-01-01
Co-translational protein targeting and membrane protein insertion is a fundamental process and depends on the signal recognition particle (SRP). In mammals, SRP is composed of the SRP RNA crucial for SRP assembly and function and six proteins. The two largest proteins SRP68 and SRP72 form a heterodimer and bind to a regulatory site of the SRP RNA. Despite their essential roles in the SRP pathway, structural information has been available only for the SRP68 RNA-binding domain (RBD). Here we present the crystal structures of the SRP68 protein-binding domain (PBD) in complex with SRP72-PBD and of the SRP72-RBD bound to the SRP S domain (SRP RNA, SRP19 and SRP68) detailing all interactions of SRP72 within SRP. The SRP72-PBD is a tetratricopeptide repeat, which binds an extended linear motif of SRP68 with high affinity. The SRP72-RBD is a flexible peptide crawling along the 5e- and 5f-loops of SRP RNA. A conserved tryptophan inserts into the 5e-loop forming a novel type of RNA kink-turn stabilized by a potassium ion, which we define as K+-turn. In addition, SRP72-RBD remodels the 5f-loop involved in ribosome binding and visualizes SRP RNA plasticity. Docking of the S domain structure into cryo-electron microscopy density maps reveals multiple contact sites between SRP68/72 and the ribosome, and explains the role of SRP72 in the SRP pathway. PMID:27899666
Aza-Bambusurils En Route to Anion Transporters.
Singh, Mandeep; Solel, Ephrath; Keinan, Ehud; Reany, Ofer
2016-06-20
Previous calculations of anion binding with various bambusuril analogs predicted that the replacement of oxygen by nitrogen atoms to produce semiaza-bambus[6]urils would award these new cavitands with multiple anion binding properties. This study validates the hypothesis by efficient synthesis, crystallography, thermogravimetric analysis and calorimetry. These unique host molecules are easily accessible from the corresponding semithio-bambusurils in a one-pot reaction, which converts a single anion receptor into a potential anion channel. Solid-state structures exhibit simultaneous accommodation of three anions, linearly positioned within the cavity along the main symmetry axis. The ability to hold anions at a short distance of about 4 Å is reminiscent of natural chloride channels in E. coli, which exhibit similar distances between their adjacent anion binding sites. The calculated transition-state energy for double-anion movement through the channel suggests that although these host-guest complexes are thermodynamically stable they enjoy high kinetic flexibility to render them efficient anion channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydration Changes upon DNA Folding Studied by Osmotic Stress Experiments
Nakano, Shu-ichi; Yamaguchi, Daisuke; Tateishi-Karimata, Hisae; Miyoshi, Daisuke; Sugimoto, Naoki
2012-01-01
The thermal stability of nucleic acid structures is perturbed under the conditions that mimic the intracellular environment, typically rich in inert components and under osmotic stress. We now describe the thermodynamic stability of DNA oligonucleotide structures in the presence of high background concentrations of neutral cosolutes. Small cosolutes destabilize the basepair structures, and the DNA structures consisting of the same nearest-neighbor composition show similar thermodynamic parameters in the presence of various types of cosolutes. The osmotic stress experiments reveal that water binding to flexible loops, unstable mismatches, and an abasic site upon DNA folding are almost negligible, whereas the binding to stable mismatch pairs is significant. The studies using the basepair-mimic nucleosides and the peptide nucleic acid suggest that the sugar-phosphate backbone and the integrity of the basepair conformation make important contributions to the binding of water molecules to the DNA bases and helical grooves. The study of the DNA hydration provides the basis for understanding and predicting nucleic acid structures in nonaqueous solvent systems. PMID:22735531
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E.
Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residuesmore » 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. As a result, such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.« less
Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E.; ...
2016-07-26
Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residuesmore » 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. As a result, such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.« less
Rigidification of the autolysis loop enhances Na[superscript +] binding to thrombin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozzi, Nicola; Chen, Raymond; Chen, Zhiwei
2011-09-20
Binding of Na{sup +} to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na{sup +} is weak due to large heat capacity and enthalpy changes associated with binding, and the K{sub d} = 80 mM ensures only 64% saturation of the site at the concentration of Na{sup +} in the blood (140 mM). Residues controlling Na{sup +} binding and activation have been identified. Yet, attempts to improve the interaction of Na{sup +} with thrombin and possibly increase catalyticmore » activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na{sup +} affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na{sup +} binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mileni, Mauro; Garfunkle, Joie; DeMartino, Jessica K.
The cocrystal X-ray structures of two isomeric {alpha}-ketooxazole inhibitors (1 (OL-135) and 2) bound to fatty acid amide hydrolase (FAAH), a key enzymatic regulator of endocannabinoid signaling, are disclosed. The active site catalytic Ser241 is covalently bound to the inhibitors electrophilic carbonyl groups, providing the first structures of FAAH bound to an inhibitor as a deprotonated hemiketal mimicking the enzymatic tetrahedral intermediate. The work also offers a detailed view of the oxyanion hole and an exceptional 'in-action' depiction of the unusual Ser-Ser-Lys catalytic triad. These structures capture the first picture of inhibitors that span the active site into the cytosolicmore » port providing new insights that help to explain FAAH's interaction with substrate leaving groups and their role in modulating inhibitor potency and selectivity. The role for the activating central heterocycle is clearly defined and distinguished from that observed in prior applications with serine proteases, reconciling the large electronic effect of attached substituents found unique to this class of inhibitors with FAAH. Additional striking active site flexibility is seen upon binding of the inhibitors, providing insights into the existence of a now well-defined membrane access channel with the disappearance of a spatially independent portion of the acyl chain-binding pocket. Finally, comparison of the structures of OL-135 (1) and its isomer 2 indicates that they bind identically to FAAH, albeit with reversed orientations of the central activating heterocycle, revealing that the terminal 2-pyridyl substituent and the acyl chain phenyl group provide key anchoring interactions and confirming the distinguishing role of the activating oxazole.« less
Czudnochowski, Nadine; Wang, Amy Liya; Finer-Moore, Janet; Stroud, Robert M
2013-10-23
Human pseudouridine (Ψ) synthase Pus1 (hPus1) modifies specific uridine residues in several non-coding RNAs: tRNA, U2 spliceosomal RNA, and steroid receptor activator RNA. We report three structures of the catalytic core domain of hPus1 from two crystal forms, at 1.8Å resolution. The structures are the first of a mammalian Ψ synthase from the set of five Ψ synthase families common to all kingdoms of life. hPus1 adopts a fold similar to bacterial Ψ synthases, with a central antiparallel β-sheet flanked by helices and loops. A flexible hinge at the base of the sheet allows the enzyme to open and close around an electropositive active-site cleft. In one crystal form, a molecule of Mes [2-(N-morpholino)ethane sulfonic acid] mimics the target uridine of an RNA substrate. A positively charged electrostatic surface extends from the active site towards the N-terminus of the catalytic domain, suggesting an extensive binding site specific for target RNAs. Two α-helices C-terminal to the core domain, but unique to hPus1, extend along the back and top of the central β-sheet and form the walls of the RNA binding surface. Docking of tRNA to hPus1 in a productive orientation requires only minor conformational changes to enzyme and tRNA. The docked tRNA is bound by the electropositive surface of the protein employing a completely different binding mode than that seen for the tRNA complex of the Escherichia coli homologue TruA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kang, CongBao; Bharatham, Nagakumar; Chia, Joel; Mu, Yuguang; Baek, Kwanghee; Yoon, Ho Sup
2012-01-01
Bcl-2 plays a central role in the regulation of apoptosis. Structural studies of Bcl-2 revealed the presence of a flexible and natively disordered loop that bridges the Bcl-2 homology motifs, BH3 and BH4. This loop is phosphorylated on multiple sites in response to a variety of external stimuli, including the microtubule-targeting drugs, paclitaxel and colchicine. Currently, the underlying molecular mechanism of Bcl-2 phosphorylation and its biological significance remain elusive. In this study, we investigated the molecular characteristics of this anti-apoptotic protein. To this end, we generated synthetic peptides derived from the Bcl-2 loop, and multiple Bcl-2 loop truncation mutants that include the phosphorylation sites. Our results demonstrate that S87 in the flexible loop of Bcl-2 is the primary phosphorylation site for JNK and ERK2, suggesting some sequence or structural specificity for the phosphorylation by these kinases. Our NMR studies and molecular dynamics simulation studies support indicate that phosphorylation of S87 induces a conformational change in the peptide. Finally, we show that the phosphorylated peptides of the Bcl-2 loop can bind Pin1, further substantiating the phosphorylation-mediated conformation change of Bcl-2. PMID:23272207
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonardi, Roberta; Zhang, Yong-Mei; Yun, Mi-Kyung
2010-09-27
Pantothenate kinase (PanK) catalyzes the rate-controlling step in coenzyme A (CoA) biosynthesis. PanK3 is stringently regulated by acetyl-CoA and uses an ordered kinetic mechanism with ATP as the leading substrate. Biochemical analysis of site-directed mutants indicates that pantothenate binds in a tunnel adjacent to the active site that is occupied by the pantothenate moiety of the acetyl-CoA regulator in the PanK3 acetyl-CoA binary complex. A high-throughput screen for PanK3 inhibitors and activators was applied to a bioactive compound library. Thiazolidinediones, sulfonylureas and steroids were inhibitors, and fatty acyl-amides and tamoxifen were activators. The PanK3 activators and inhibitors either stimulated ormore » repressed CoA biosynthesis in HepG2/C3A cells. The flexible allosteric acetyl-CoA regulatory domain of PanK3 also binds the substrates, pantothenate and pantetheine, and small molecule inhibitors and activators to modulate PanK3 activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, Kanchan; Palaninathan, Satheesh; Alcantara, Joanna Maria Ortiz
2008-03-31
The severe acute respiratory syndrome (SARS) coronavirus encodes several RNA-processing enzymes that are unusual for RNA viruses, including Nsp15 (nonstructural protein 15), a hexameric endoribonuclease that preferentially cleaves 3' of uridines. We solved the structure of a catalytically inactive mutant version of Nsp15, which was crystallized as a hexamer. The structure contains unreported flexibility in the active site of each subunit. Substitutions in the active site residues serine 293 and proline 343 allowed Nsp15 to cleave at cytidylate, whereas mutation of leucine 345 rendered Nsp15 able to cleave at purines as well as pyrimidines. Mutations that targeted the residues involvedmore » in subunit interactions generally resulted in the formation of catalytically inactive monomers. The RNA-binding residues were mapped by a method linking reversible cross-linking, RNA affinity purification, and peptide fingerprinting. Alanine substitution of several residues in the RNA-contacting portion of Nsp15 did not affect hexamer formation but decreased the affinity of RNA binding and reduced endonuclease activity. This suggests a model for Nsp15 hexamer interaction with RNA.« less
Dynamic Conformational Changes in MUNC18 Prevent Syntaxin Binding
Bar-On, Dana; Nachliel, Esther; Gutman, Menachem; Ashery, Uri
2011-01-01
The Sec1/munc18 protein family is essential for vesicle fusion in eukaryotic cells via binding to SNARE proteins. Protein kinase C modulates these interactions by phosphorylating munc18a thereby reducing its affinity to one of the central SNARE members, syntaxin-1a. The established hypothesis is that the reduced affinity of the phosphorylated munc18a to syntaxin-1a is a result of local electrostatic repulsion between the two proteins, which interferes with their compatibility. The current study challenges this paradigm and offers a novel mechanistic explanation by revealing a syntaxin-non-binding conformation of munc18a that is induced by the phosphomimetic mutations. In the present study, using molecular dynamics simulations, we explored the dynamics of the wild-type munc18a versus phosphomimetic mutant munc18a. We focused on the structural changes that occur in the cavity between domains 3a and 1, which serves as the main syntaxin-binding site. The results of the simulations suggest that the free wild-type munc18a exhibits a dynamic equilibrium between several conformations differing in the size of its cavity (the main syntaxin-binding site). The flexibility of the cavity's size might facilitate the binding or unbinding of syntaxin. In silico insertion of phosphomimetic mutations into the munc18a structure induces the formation of a conformation where the syntaxin-binding area is rigid and blocked as a result of interactions between residues located on both sides of the cavity. Therefore, we suggest that the reduced affinity of the phosphomimetic mutant/phosphorylated munc18a is a result of the closed-cavity conformation, which makes syntaxin binding energetically and sterically unfavorable. The current study demonstrates the potential of phosphoryalation, an essential biological process, to serve as a driving force for dramatic conformational changes of proteins modulating their affinity to target proteins. PMID:21390273
Computational study of hydrocarbon adsorption in metal-organic framework Ni2(dhtp).
Sun, Xiuquan; Wick, Collin D; Thallapally, Praveen K; McGrail, B Peter; Dang, Liem X
2011-03-31
Enhancing the efficiency of the Rankine cycle, which is utilized for multiple renewable energy sources, requires the use of a working fluid with a high latent heat of vaporization. To further enhance its latent heat, a working fluid can be placed in a metal organic heat carrier (MOHC) with a high heat of adsorption. One such material is Ni\\DOBDC, in which linear alkanes have a higher heat of adsorption than cyclic alkanes. We carried out molecular dynamics simulations to investigate the structural, diffusive, and adsorption properties of n-hexane and cyclohexane in Ni\\DOBDC. The strong binding for both n-hexane and cyclohexane with Ni\\DOBDC is attributed to the increase of the heat of adsorption observed in experiments. Our structural results indicate the organic linkers in Ni\\DOBDC are the primary binding sites for both n-hexane and cyclohexane molecules. However, at all temperatures and loadings examined in present work, n-hexane clearly showed stronger binding with Ni\\DOBDC than cyclohexane. This was found to be the result of the ability of n-hexane to reconfigure its structure to a greater degree than cyclohexane to gain more contacts between adsorbates and adsorbents. The geometry and flexibility of guest molecules were also related to their diffusivity in Ni\\DOBDC, with higher diffusion for flexible molecules. Because of the large pore sizes in Ni\\DOBDC, energetic effects were the dominant force for alkane adsorption and selectivity.
Xie, Bing; Nguyen, Trung Hai; Minh, David D. L.
2017-01-01
We demonstrate the feasibility of estimating protein-ligand binding free energies using multiple rigid receptor configurations. Based on T4 lysozyme snapshots extracted from six alchemical binding free energy calculations with a flexible receptor, binding free energies were estimated for a total of 141 ligands. For 24 ligands, the calculations reproduced flexible-receptor estimates with a correlation coefficient of 0.90 and a root mean square error of 1.59 kcal/mol. The accuracy of calculations based on Poisson-Boltzmann/Surface Area implicit solvent was comparable to previously reported free energy calculations. PMID:28430432
Mou, Linkai; Cui, Tongwei; Liu, Weiguang; Zhang, Hong; Cai, Zhanxiu; Lu, Shaoyong; Gao, Guojun
2017-05-01
Akt is a serine/threonine protein kinase, a critical mediator of growth factor-induced survival in key cellular pathways. Allosteric signaling between protein intramolecular domains requires long-range communication mediated by hotspot residues, often triggered by ligand binding. Here, based on extensive 3 μs explicit solvent molecular dynamics (MD) simulations of Akt1 kinase domain in the unbound (apo) and ATP-competitive inhibitor, GDC-0068-bound states, we propose a molecular mechanism for allosteric regulation of Akt1 kinase phosphorylation by GDC-0068 binding to the ATP-binding site. MD simulations revealed that the apo Akt1 is flexible with two disengaged N- and C-lobes, equilibrated between the open and closed conformations. GDC-0068 occupancy of the ATP-binding site shifts the conformational equilibrium of Akt1 from the open conformation toward the closed conformation and stabilizes the closed state. This effect enables allosteric signal propagation from the GDC-0068 to the phosphorylated T308 (pT308) in the activation loop and restrains phosphatase access to pT308, thereby protecting the pT308 in the GDC-0068-bound Akt1. Importantly, functional hotspots involved in the allosteric communication from the GDC-0068 to the pT308 are identified. Our analysis of GDC-0068-induced allosteric protection of Akt kinase phosphorylation yields important new insights into the molecular mechanism of allosteric regulation of Akt kinase activity. © 2016 John Wiley & Sons A/S.
Springer, Tzvia I; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L
2014-10-10
Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD's β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD's β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (Rh) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin's role in stabilizing interactions between CyaA-ACD and N-CaM. Copyright © 2014 Elsevier Inc. All rights reserved.
40 CFR 63.8782 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations... you own or operate a flexible polyurethane foam fabrication plant site that operates a flame... flexible polyurethane foam fabrication plant site is a plant site where pieces of flexible polyurethane...
40 CFR 63.8782 - Am I subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations... you own or operate a flexible polyurethane foam fabrication plant site that operates a flame... flexible polyurethane foam fabrication plant site is a plant site where pieces of flexible polyurethane...
40 CFR 63.8782 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations... you own or operate a flexible polyurethane foam fabrication plant site that operates a flame... flexible polyurethane foam fabrication plant site is a plant site where pieces of flexible polyurethane...
40 CFR 63.8782 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations... you own or operate a flexible polyurethane foam fabrication plant site that operates a flame... flexible polyurethane foam fabrication plant site is a plant site where pieces of flexible polyurethane...
40 CFR 63.8782 - Am I subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations... you own or operate a flexible polyurethane foam fabrication plant site that operates a flame... flexible polyurethane foam fabrication plant site is a plant site where pieces of flexible polyurethane...
Mathelier, Anthony; Fornes, Oriol; Arenillas, David J; Chen, Chih-Yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W
2016-01-04
JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Hawse, William F.; Gloor, Brian E.; Ayres, Cory M.; Kho, Kevin; Nuter, Elizabeth; Baker, Brian M.
2013-01-01
T cells use the αβ T cell receptor (TCR) to recognize antigenic peptides presented by class I major histocompatibility complex proteins (pMHCs) on the surfaces of antigen-presenting cells. Flexibility in both TCRs and peptides plays an important role in antigen recognition and discrimination. Less clear is the role of flexibility in the MHC protein; although recent observations have indicated that mobility in the MHC can impact TCR recognition in a peptide-dependent fashion, the extent of this behavior is unknown. Here, using hydrogen/deuterium exchange, fluorescence anisotropy, and structural analyses, we show that the flexibility of the peptide binding groove of the class I MHC protein HLA-A*0201 varies significantly with different peptides. The variations extend throughout the binding groove, impacting regions contacted by TCRs as well as other activating and inhibitory receptors of the immune system. Our results are consistent with statistical mechanical models of protein structure and dynamics, in which the binding of different peptides alters the populations and exchange kinetics of substates in the MHC conformational ensemble. Altered MHC flexibility will influence receptor engagement, impacting conformational adaptations, entropic penalties associated with receptor recognition, and the populations of binding-competent states. Our results highlight a previously unrecognized aspect of the “altered self” mechanism of immune recognition and have implications for specificity, cross-reactivity, and antigenicity in cellular immunity. PMID:23836912
Lee, Hui Sun; Jo, Sunhwan; Lim, Hyun-Suk; Im, Wonpil
2012-07-23
Molecular docking is widely used to obtain binding modes and binding affinities of a molecule to a given target protein. Despite considerable efforts, however, prediction of both properties by docking remains challenging mainly due to protein's structural flexibility and inaccuracy of scoring functions. Here, an integrated approach has been developed to improve the accuracy of binding mode and affinity prediction and tested for small molecule MDM2 and MDMX antagonists. In this approach, initial candidate models selected from docking are subjected to equilibration MD simulations to further filter the models. Free energy perturbation molecular dynamics (FEP/MD) simulations are then applied to the filtered ligand models to enhance the ability in predicting the near-native ligand conformation. The calculated binding free energies for MDM2 complexes are overestimated compared to experimental measurements mainly due to the difficulties in sampling highly flexible apo-MDM2. Nonetheless, the FEP/MD binding free energy calculations are more promising for discriminating binders from nonbinders than docking scores. In particular, the comparison between the MDM2 and MDMX results suggests that apo-MDMX has lower flexibility than apo-MDM2. In addition, the FEP/MD calculations provide detailed information on the different energetic contributions to ligand binding, leading to a better understanding of the sensitivity and specificity of protein-ligand interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulfer, Stacie L.; Scott, Erin M.; Couture, Jean-François
2010-01-12
Homocitrate synthase (HCS) catalyzes the first and committed step in lysine biosynthesis in many fungi and certain Archaea and is a potential target for antifungal drugs. Here we report the crystal structure of the HCS apoenzyme from Schizosaccharomyces pombe and two distinct structures of the enzyme in complex with the substrate 2-oxoglutarate (2-OG). The structures reveal that HCS forms an intertwined homodimer stabilized by domain-swapping between the N- and C-terminal domains of each monomer. The N-terminal catalytic domain is composed of a TIM barrel fold in which 2-OG binds via hydrogen bonds and coordination to the active site divalent metalmore » ion, whereas the C-terminal domain is composed of mixed {alpha}/{beta} topology. In the structures of the HCS apoenzyme and one of the 2-OG binary complexes, a lid motif from the C-terminal domain occludes the entrance to the active site of the neighboring monomer, whereas in the second 2-OG complex the lid is disordered, suggesting that it regulates substrate access to the active site through its apparent flexibility. Mutations of the active site residues involved in 2-OG binding or implicated in acid-base catalysis impair or abolish activity in vitro and in vivo. Together, these results yield new insights into the structure and catalytic mechanism of HCSs and furnish a platform for developing HCS-selective inhibitors.« less
Tong, Junsen; Manik, Mohammad Kawsar; Im, Young Jun
2018-01-30
Membrane contact sites (MCSs) in eukaryotic cells are hotspots for lipid exchange, which is essential for many biological functions, including regulation of membrane properties and protein trafficking. Lipid transfer proteins anchored at membrane contact sites (LAMs) contain sterol-specific lipid transfer domains [StARkin domain (SD)] and multiple targeting modules to specific membrane organelles. Elucidating the structural mechanisms of targeting and ligand recognition by LAMs is important for understanding the interorganelle communication and exchange at MCSs. Here, we determined the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like domain and the SDs of Lam2 and Lam4 in the apo form and in complex with ergosterol. The Lam6 PH-like domain displays a unique PH domain fold with a conserved N-terminal α-helix. The Lam6 PH-like domain lacks the basic surface for phosphoinositide binding, but contains hydrophobic patches on its surface, which are critical for targeting to endoplasmic reticulum (ER)-mitochondrial contacts. Structures of the LAM SDs display a helix-grip fold with a hydrophobic cavity and a flexible Ω1-loop as a lid. Ergosterol is bound to the pocket in a head-down orientation, with its hydrophobic acyl group located in the tunnel entrance. The Ω1-loop in an open conformation is essential for ergosterol binding by direct hydrophobic interaction. Structural comparison suggested that the sterol binding mode of the Lam2 SD2 is likely conserved among the sterol transfer proteins of the StARkin superfamily. Structural models of full-length Lam2 correlated with the sterol transport function at the membrane contact sites.
Surface salt bridges modulate DNA wrapping by the type II DNA-binding protein TF1.
Grove, Anne
2003-07-29
The histone-like protein HU is involved in compaction of the bacterial genome. Up to 37 bp of DNA may be wrapped about some HU homologues in a process that has been proposed to depend on a linked disruption of surface salt bridges that liberates cationic side chains for interaction with the DNA. Despite significant sequence conservation between HU homologues, binding sites from 9 to 37 bp have been reported. TF1, an HU homologue that is encoded by Bacillus subtilis bacteriophage SPO1, has nM affinity for 37 bp preferred sites in DNA with 5-hydroxymethyluracil (hmU) in place of thymine. On the basis of electrophoretic mobility shift assays, we show that TF1-DNA complex formation is associated with a net release of only approximately 0.5 cations. The structure of TF1 suggests that Asp13 can form a dehydrated surface salt bridge with Lys23; substitution of Asp13 with Ala increases the net release of cations to approximately 1. These data are consistent with complex formation linked to disruption of surface salt bridges. Substitution of Glu90 with Ala, which would expose Lys87 predicted to contact DNA immediately distal to a proline-mediated DNA kink, causes an increase in affinity and an abrogation of the preference for hmU-containing DNA. We propose that hmU preference is due to finely tuned interactions at the sites of kinking that expose a differential flexibility of hmU- and T-containing DNA. Our data further suggest that the difference in binding site size for HU homologues is based on a differential ability to stabilize the DNA kinks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilbur, Jeremy D., E-mail: jwilbur@msg.ucsf.edu; Hwang, Peter K.; Brodsky, Frances M.
2010-03-01
Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coilmore » domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.« less
Fast antibody fragment motion: flexible linkers act as entropic spring
Stingaciu, Laura R.; Ivanova, Oxana; Ohl, Michael; Biehl, Ralf; Richter, Dieter
2016-01-01
A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unbound state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. The Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function. PMID:27020739
Fast antibody fragment motion: flexible linkers act as entropic spring
Stingaciu, Laura R.; Ivanova, Oxana; Ohl, Michael; ...
2016-03-29
A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unboundmore » state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. In conclusion, the Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function.« less
Zhao, Xin; Hayner, Cary M; Kung, Mayfair C; Kung, Harold H
2011-11-22
The unique combination of high surface area, high electrical conductivity and robust mechanical integrity has attracted great interest in the use of graphene sheets for future electronics applications. Their potential applications for high-power energy storage devices, however, are restricted by the accessible volume, which may be only a fraction of the physical volume, a consequence of the compact geometry of the stack and the ion mobility. Here we demonstrated that remarkably enhanced power delivery can be realized in graphene papers for the use in Li-ion batteries by controlled generation of in-plane porosity via a mechanical cavitation-chemical oxidation approach. These flexible, holey graphene papers, created via facile microscopic engineering, possess abundant ion binding sites, enhanced ion diffusion kinetics, and excellent high-rate lithium-ion storage capabilities, and are suitable for high-performance energy storage devices. © 2011 American Chemical Society
Fast antibody fragment motion: flexible linkers act as entropic spring.
Stingaciu, Laura R; Ivanova, Oxana; Ohl, Michael; Biehl, Ralf; Richter, Dieter
2016-03-29
A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unbound state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. The Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function.
Searching target sites on DNA by proteins: Role of DNA dynamics under confinement
Mondal, Anupam; Bhattacherjee, Arnab
2015-01-01
DNA-binding proteins (DBPs) rapidly search and specifically bind to their target sites on genomic DNA in order to trigger many cellular regulatory processes. It has been suggested that the facilitation of search dynamics is achieved by combining 3D diffusion with one-dimensional sliding and hopping dynamics of interacting proteins. Although, recent studies have advanced the knowledge of molecular determinants that affect one-dimensional search efficiency, the role of DNA molecule is poorly understood. In this study, by using coarse-grained simulations, we propose that dynamics of DNA molecule and its degree of confinement due to cellular crowding concertedly regulate its groove geometry and modulate the inter-communication with DBPs. Under weak confinement, DNA dynamics promotes many short, rotation-decoupled sliding events interspersed by hopping dynamics. While this results in faster 1D diffusion, associated probability of missing targets by jumping over them increases. In contrast, strong confinement favours rotation-coupled sliding to locate targets but lacks structural flexibility to achieve desired specificity. By testing under physiological crowding, our study provides a plausible mechanism on how DNA molecule may help in maintaining an optimal balance between fast hopping and rotation-coupled sliding dynamics, to locate target sites rapidly and form specific complexes precisely. PMID:26400158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Cheng; Wang, Shutong; Wu, Jayne
This work presents an aptamer-based, highly sensitive and specific sensor for atto- to femtomolar level detection of bisphenol A (BPA). Because of its widespread use in numerous products, BPA enters surface water from effluent discharges during its manufacture, use, and from waste landfill sites throughout the world. On-site measurement of BPA concentrations in water is important for evaluating compliance with water quality standards or environmental risk levels of the harmful compound in the environment. The sensor in this work is porous, conducting, interdigitated electrodes that are formed by laser-induced carbonization of flexible polyimide sheets. BPA-specific aptamer is immobilized on themore » electrodes as the probe, and its binding with BPA at the electrode surface is detected by capacitive sensing. The binding process is aided by ac electroosmotic effect that accelerates the transport of BPA molecules to the nanoporous graphene-like structured electrodes. The sensor achieved a limit of detection of 58.28 aM with a response time of 20 s. The sensor is further applied for recovery analysis of BPA spiked in surface water. In conclusion, this work provides an affordable platform for highly sensitive, real time, and field-deployable BPA surveillance critical to the evaluation of the ecological impact of BPA exposure.« less
Cheng, Cheng; Wang, Shutong; Wu, Jayne; ...
2016-06-28
This work presents an aptamer-based, highly sensitive and specific sensor for atto- to femtomolar level detection of bisphenol A (BPA). Because of its widespread use in numerous products, BPA enters surface water from effluent discharges during its manufacture, use, and from waste landfill sites throughout the world. On-site measurement of BPA concentrations in water is important for evaluating compliance with water quality standards or environmental risk levels of the harmful compound in the environment. The sensor in this work is porous, conducting, interdigitated electrodes that are formed by laser-induced carbonization of flexible polyimide sheets. BPA-specific aptamer is immobilized on themore » electrodes as the probe, and its binding with BPA at the electrode surface is detected by capacitive sensing. The binding process is aided by ac electroosmotic effect that accelerates the transport of BPA molecules to the nanoporous graphene-like structured electrodes. The sensor achieved a limit of detection of 58.28 aM with a response time of 20 s. The sensor is further applied for recovery analysis of BPA spiked in surface water. In conclusion, this work provides an affordable platform for highly sensitive, real time, and field-deployable BPA surveillance critical to the evaluation of the ecological impact of BPA exposure.« less
Zhang, Jing; Yang, Lifeng; Anand, Ganesh Srinivasan; Ho, Bow; Ding, Jeak Ling
2011-10-01
Although homeostatic disturbance of the blood pH and calcium in the vicinity of tissue injury/malignancy/local infection seems subtle, it can cause substantial pathophysiological consequences, a phenomenon which has remained largely unexplored. The fibrinogen-related proteins (FREPs) containing fibrinogen-like domain (FBG) represent a conserved protein family with a common calcium-binding region, implying the presence of elements responsive to physiological perturbation. Here, we studied the molecular interaction between a representative FREP, the M-ficolin, and an acute phase blood protein, the C-reactive protein (CRP), both of which are known to trigger and control seminal pathways in infection and injury. Using hydrogen-deuterium exchange mass spectrometry, we showed that the C-terminal region of M-ficolin FBG underwent dramatic conformational change upon pH and calcium perturbations. Biochemical and biophysical assays showed that under defined pathophysiological condition (pH 6.5, 2.0 mM calcium), the FBG:CRP interaction occurred more strongly compared to that under physiological condition (pH 7.4, 2.5 mM calcium). We identified the binding interface between CRP and FBG, locating it to the pH- and calcium-sensitive C-terminal region of FBG. By site-directed mutagenesis, we determined H284 in the N-acetylglucosamine (GlcNAc)-binding pocket of the FBG, to be the critical CRP-binding residue. This conformational switch involving H284, explains how the pathophysiologically-driven FBG:CRP interaction diverts the M-ficolin away from GlcNAc/pathogen-recognition to host protein-protein interaction, thus enabling the host to regain homeostatic control. Our elucidation of the binding interface at the flexible FBG domain provides insights into the bioactive centre of the M-ficolin, and possibly other FREPs, which might aid future development of immunomodulators. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
7TM X-ray structures for class C GPCRs as new drug-discovery tools. 1. mGluR5.
Topiol, Sid; Sabio, Michael
2016-01-15
We illustrate, with a focus on mGluR5, how the recently published, first X-ray structures of mGluR 7TM domains, specifically those of mGluR1 and mGluR5 complexed with negative allosteric modulators (NAMs), will begin to influence ligand- (e.g., drug- or sweetener-) discovery efforts involving class C GPCRs. With an extensive docking study allowing full ligand flexibility and full side chain flexibility of all residues in the ligand-binding cavity, we have predicted and analyzed the binding modes of a variety of structurally diverse mGluR5 NAM ligands, showing how the X-ray structures serve to effectively rationalize each ligand's binding characteristics. We demonstrated that the features that are inherent in our earlier overlay model are preserved in the protein structure-based docking models. We identified structurally diverse compounds, which potentially act as mGluR NAMs, and revealed binding-site differences by performing high-throughput docking using a database of approximately six million structures of commercially available compounds and the mGluR1 and mGluR5 X-ray structures. By comparing the 7TM domains of the mGluR5 and mGluR1 X-rays structures, we identified selectivity factors within group I of the mGluRs. Similarly, using homology models that we built for mGluR2 and mGluR4, we have identified the factors leading to the selectivity between group I and groups II and III for ligands occupying the deepest portion of the mGluR5 binding cavity. Finally, we have proposed a structure-based explanation of the pharmacological switching within a set of positive allosteric modulators (PAMs) and their corresponding, very close NAM analogs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sheng, Chunquan; Ji, Haitao; Miao, Zhenyuan; Che, Xiaoyin; Yao, Jianzhong; Wang, Wenya; Dong, Guoqiang; Guo, Wei; Lü, Jiaguo; Zhang, Wannian
2009-06-01
Myristoyl-CoA:protein N-myristoyltransferase (NMT) is a cytosolic monomeric enzyme that catalyzes the transfer of the myristoyl group from myristoyl-CoA to the N-terminal glycine of a number of eukaryotic cellular and viral proteins. Recent experimental data suggest NMT from parasites could be a promising new target for the design of novel antiparasitic agents with new mode of action. However, the active site topology and inhibitor specificity of these enzymes remain unclear. In this study, three-dimensional models of NMT from Plasmodium falciparum (PfNMT), Leishmania major (LmNMT) and Trypanosoma brucei (TbNMT) were constructed on the basis of the crystal structures of fungal NMTs using homology modeling method. The models were further refined by energy minimization and molecular dynamics simulations. The active sites of PfNMT, LmNMT and TbNMT were characterized by multiple copy simultaneous search (MCSS). MCSS functional maps reveal that PfNMT, LmNMT and TbNMT share a similar active site topology, which is defined by two hydrophobic pockets, a hydrogen-bonding (HB) pocket, a negatively-charged HB pocket and a positively-charged HB pocket. Flexible docking approaches were then employed to dock known inhibitors into the active site of PfNMT. The binding mode, structure-activity relationships and selectivity of inhibitors were investigated in detail. From the results of molecular modeling, the active site architecture and certain key residues responsible for inhibitor binding were identified, which provided insights for the design of novel inhibitors of parasitic NMTs.
Krol, Marcin; Roterman, Irena; Drozd, Anna; Konieczny, Leszek; Piekarska, Barbara; Rybarska, Janina; Spolnik, Paweł; Stopa, Barbara
2006-02-01
The dye Congo red and related self-assembling compounds were found to stabilize immune complexes by binding to antibodies currently engaged in complexation to antigen. In our simulations, it was shown that the site that becomes accessible for binding the supramolecular dye ligand is located in the V domain, and is normally occupied by the N-terminal polypeptide chain fragment. The binding of the ligand disrupts the beta-structure in the domain, increasing the plasticity of the antigen-binding site. The higher fluctuation of CDR-bearing loops enhances antigen binding, and allows even low-affinity antibodies to be engaged in immune complexes. Experimental observations of the enhancement effect were supported by theoretical studies using L lambda chain (4BJL-PDB identification) and the L chain from the complex of IgM-rheumatoid factor bound to the CH3 domain of the Fc fragment (1ADQ-PDB identification) as the initial structures for theoretical studies of dye-induced changes. Commercial IgM-type rheumatoid factor (human) and sheep red blood cells with coupled IgG (human) were used for experimental tests aimed to reveal the dye-enhancement effect in this system. The specificity of antigen-antibody interaction enhanced by dye binding was studied using rabbit anti-sheep red cell antibodies to agglutinate red cells of different species. Red blood cells of hoofed mammals (horse, goat) showed weak enhancement of agglutination in the presence of Congo red. Neither agglutination nor enhancement were observed in the case of human red cells. The dye-enhancement capability in the SRBC-antiSRBC system was lost after pepsin-digestion of antibodies producing (Fab)2 fragments still agglutinating red cells. Monoclonal (myeloma) IgG, L lambda chain and ovoalbumin failed to agglutinate red cells, as expected, and showed no enhancement effect. This indicates that the enhancement effect is specific.
Gárriz, Andrés; Qiu, Hongfang; Dey, Madhusudan; Seo, Eun-Joo; Dever, Thomas E.; Hinnebusch, Alan G.
2009-01-01
Kinase Gcn2 is activated by amino acid starvation and downregulates translation initiation by phosphorylating the α subunit of translation initiation factor 2 (eIF2α). The Gcn2 kinase domain (KD) is inert and must be activated by tRNA binding to the adjacent regulatory domain. Previous work indicated that Saccharomyces cerevisiae Gcn2 latency results from inflexibility of the hinge connecting the N and C lobes and a partially obstructed ATP-binding site in the KD. Here, we provide strong evidence that a network of hydrophobic interactions centered on Leu-856 also promotes latency by constraining helix αC rotation in the KD in a manner relieved during amino acid starvation by tRNA binding and autophosphorylation of Thr-882 in the activation loop. Thus, we show that mutationally disrupting the hydrophobic network in various ways constitutively activates eIF2α phosphorylation in vivo and bypasses the requirement for a key tRNA binding motif (m2) and Thr-882 in Gcn2. In particular, replacing Leu-856 with any nonhydrophobic residue activates Gcn2, while substitutions with various hydrophobic residues maintain kinase latency. We further provide strong evidence that parallel, back-to-back dimerization of the KD is a step on the Gcn2 activation pathway promoted by tRNA binding and autophosphorylation. Remarkably, mutations that disrupt the L856 hydrophobic network or enhance hinge flexibility eliminate the need for the conserved salt bridge at the parallel dimer interface, implying that KD dimerization facilitates the reorientation of αC and remodeling of the active site for enhanced ATP binding and catalysis. We propose that hinge remodeling, parallel dimerization, and reorientation of αC are mutually reinforcing conformational transitions stimulated by tRNA binding and secured by the ensuing autophosphorylation of T882 for stable kinase activation. PMID:19114556
Gárriz, Andrés; Qiu, Hongfang; Dey, Madhusudan; Seo, Eun-Joo; Dever, Thomas E; Hinnebusch, Alan G
2009-03-01
Kinase Gcn2 is activated by amino acid starvation and downregulates translation initiation by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). The Gcn2 kinase domain (KD) is inert and must be activated by tRNA binding to the adjacent regulatory domain. Previous work indicated that Saccharomyces cerevisiae Gcn2 latency results from inflexibility of the hinge connecting the N and C lobes and a partially obstructed ATP-binding site in the KD. Here, we provide strong evidence that a network of hydrophobic interactions centered on Leu-856 also promotes latency by constraining helix alphaC rotation in the KD in a manner relieved during amino acid starvation by tRNA binding and autophosphorylation of Thr-882 in the activation loop. Thus, we show that mutationally disrupting the hydrophobic network in various ways constitutively activates eIF2alpha phosphorylation in vivo and bypasses the requirement for a key tRNA binding motif (m2) and Thr-882 in Gcn2. In particular, replacing Leu-856 with any nonhydrophobic residue activates Gcn2, while substitutions with various hydrophobic residues maintain kinase latency. We further provide strong evidence that parallel, back-to-back dimerization of the KD is a step on the Gcn2 activation pathway promoted by tRNA binding and autophosphorylation. Remarkably, mutations that disrupt the L856 hydrophobic network or enhance hinge flexibility eliminate the need for the conserved salt bridge at the parallel dimer interface, implying that KD dimerization facilitates the reorientation of alphaC and remodeling of the active site for enhanced ATP binding and catalysis. We propose that hinge remodeling, parallel dimerization, and reorientation of alphaC are mutually reinforcing conformational transitions stimulated by tRNA binding and secured by the ensuing autophosphorylation of T882 for stable kinase activation.
Kumar, Ashish; Kaur, Harmeet; Jain, Abha; Nair, Deepak T; Salunke, Dinakar M
2018-01-12
Sequence and structural homology suggests that MP-4 protein from Mucuna pruriens belongs to Kunitz-type protease inhibitor family. However, biochemical assays showed that this protein is a poor inhibitor of trypsin. To understand the basis of observed poor inhibition, thermodynamics and molecular dynamics (MD) simulation studies on binding of MP-4 to trypsin were carried out. Molecular dynamics simulations revealed that temperature influences the spectrum of conformations adopted by the loop regions in the MP-4 structure. At an optimal temperature, MP-4 achieves maximal binding while above and below the optimum temperature, its functional activity is hampered due to unfavourable flexibility and relative rigidity, respectively. The low activity at normal temperature is due to the widening of the conformational spectrum of the Reactive Site Loop (RSL) that reduces the probability of formation of stabilizing contacts with trypsin. The unique sequence of the RSL enhances flexibility at ambient temperature and thus reduces its ability to inhibit trypsin. This study shows that temperature influences the function of a protein through modulation in the structure of functional domain of the protein. Modulation of function through appearance of new sequences that are more sensitive to temperature may be a general strategy for evolution of new proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiroz, Soledad; Sukuru, Sai Chetan K.; Hausinger, Robert P.
2008-01-01
Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC){sub 3} induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle X-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complexmore » that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD){sub 3}, and (UreABC-UreDF){sub 3} confirm that UreD and UreF bind near UreB at the periphery of the (UreAC){sub 3} structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF){sub 3} allows CO{sub 2} and nickel ions to gain access to the nascent active site.« less
Mikkelsen, Lise Munch; Hernáiz, María José; Martín-Pastor, M; Skrydstrup, Troels; Jiménez-Barbero, Jesús
2002-12-18
The conformational properties of the C-glycosyl analogue of the core trisaccharide alpha-D-Man-(1 --> 3)-[alpha-D-Man-(1 --> 6)]-D-Man in solution have been carefully analyzed by a combination of NMR spectroscopy and time-averaged restrained molecular dynamics. It has been found that both the alpha-1,3- and the alpha-1,6-glycosidic linkages show a major conformational averaging. Unusual Phi ca. 60 degrees orientations for both Phi torsion angles are found. Moreover, a major conformational distinction between the natural compound and the glycomimetic affects to the behavior of the omega(16) torsion angle around the alpha-1 --> 6-linkage. Despite this increased flexibility, the C-glycosyl analogue is recognized by three mannose binding lectins, as shown by NMR (line broadening, TR-NOE, and STD) and surface plasmon resonance (SPR) methods. Moreover, a process of conformational selection takes place, so that these lectins probably bind the glycomimetic similarly to the way they recognize the natural analogue. Depending upon the architecture and extension of the binding site of the lectin, loss or gain of binding affinity with respect to the natural analogue is found.
Papior, Peer; Arteaga-Salas, José M.; Günther, Thomas; Grundhoff, Adam
2012-01-01
Whether or not metazoan replication initiates at random or specific but flexible sites is an unsolved question. The lack of sequence specificity in origin recognition complex (ORC) DNA binding complicates genome-scale chromatin immunoprecipitation (ChIP)-based studies. Epstein-Barr virus (EBV) persists as chromatinized minichromosomes that are replicated by the host replication machinery. We used EBV to investigate the link between zones of pre-replication complex (pre-RC) assembly, replication initiation, and micrococcal nuclease (MNase) sensitivity at different cell cycle stages in a genome-wide fashion. The dyad symmetry element (DS) of EBV’s latent origin, a well-established and very efficient pre-RC assembly region, served as an internal control. We identified 64 pre-RC zones that correlate spatially with 57 short nascent strand (SNS) zones. MNase experiments revealed that pre-RC and SNS zones were linked to regions of increased MNase sensitivity, which is a marker of origin strength. Interestingly, although spatially correlated, pre-RC and SNS zones were characterized by different features. We propose that pre-RCs are formed at flexible but distinct sites, from which only a few are activated per single genome and cell cycle. PMID:22891264
Bowden, Thomas A.; Crispin, Max; Harvey, David J.; Jones, E. Yvonne; Stuart, David I.
2010-01-01
Hendra virus is a negative-sense single-stranded RNA virus within the Paramyxoviridae family which, together with Nipah virus, forms the Henipavirus genus. Infection with bat-borne Hendra virus leads to a disease with high mortality rates in humans. We determined the crystal structure of the unliganded six-bladed β-propeller domain and compared it to the previously reported structure of Hendra virus attachment glycoprotein (HeV-G) in complex with its cellular receptor, ephrin-B2. As observed for the related unliganded Nipah virus structure, there is plasticity in the Glu579-Pro590 and Lys236-Ala245 ephrin-binding loops prior to receptor engagement. These data reveal that henipaviral attachment glycoproteins undergo common structural transitions upon receptor binding and further define the structural template for antihenipaviral drug design. Our analysis also provides experimental evidence for a dimeric arrangement of HeV-G that exhibits striking similarity to those observed in crystal structures of related paramyxovirus receptor-binding glycoproteins. The biological relevance of this dimer is further supported by the positional analysis of glycosylation sites from across the paramyxoviruses. In HeV-G, the sites lie away from the putative dimer interface and remain accessible to α-mannosidase processing on oligomerization. We therefore propose that the overall mode of dimer assembly is conserved for all paramyxoviruses; however, while the geometry of dimerization is rather closely similar for those viruses that bind flexible glycan receptors, significant (up to 60°) and different reconfigurations of the subunit packing (associated with a significant decrease in the size of the dimer interface) have accompanied the independent switching to high-affinity protein receptor binding in Hendra and measles viruses. PMID:20375167
Ross, Breyan; Krapp, Stephan; Augustin, Martin; Kierfersauer, Reiner; Arciniega, Marcelino; Geiss-Friedlander, Ruth; Huber, Robert
2018-02-13
Dipeptidyl peptidases 8 and 9 are intracellular N-terminal dipeptidyl peptidases (preferentially postproline) associated with pathophysiological roles in immune response and cancer biology. While the DPP family member DPP4 is extensively characterized in molecular terms as a validated therapeutic target of type II diabetes, experimental 3D structures and ligand-/substrate-binding modes of DPP8 and DPP9 have not been reported. In this study we describe crystal and molecular structures of human DPP8 (2.5 Å) and DPP9 (3.0 Å) unliganded and complexed with a noncanonical substrate and a small molecule inhibitor, respectively. Similar to DPP4, DPP8 and DPP9 molecules consist of one β-propeller and α/β hydrolase domain, forming a functional homodimer. However, they differ extensively in the ligand binding site structure. In intriguing contrast to DPP4, where liganded and unliganded forms are closely similar, ligand binding to DPP8/9 induces an extensive rearrangement at the active site through a disorder-order transition of a 26-residue loop segment, which partially folds into an α-helix (R-helix), including R160/133, a key residue for substrate binding. As vestiges of this helix are also seen in one of the copies of the unliganded form, conformational selection may contributes to ligand binding. Molecular dynamics simulations support increased flexibility of the R-helix in the unliganded state. Consistently, enzyme kinetics assays reveal a cooperative allosteric mechanism. DPP8 and DPP9 are closely similar and display few opportunities for targeted ligand design. However, extensive differences from DPP4 provide multiple cues for specific inhibitor design and development of the DPP family members as therapeutic targets or antitargets.
Huenges, M; Rölz, C; Gschwind, R; Peteranderl, R; Berglechner, F; Richter, G; Bacher, A; Kessler, H; Gemmecker, G
1998-01-01
The NusB protein of Escherichia coli is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. In cooperation with several other proteins, it binds to a dodecamer motif designated rrn boxA on the nascent rRNA. The antitermination proteins of E.coli are recruited in the replication cycle of bacteriophage lambda, where they play an important role in switching from the lysogenic to the lytic cycle. Multidimensional heteronuclear NMR experiments were performed with recombinant NusB protein labelled with 13C, 15N and 2H. The three-dimensional structure of the protein was solved from 1926 NMR-derived distances and 80 torsion angle restraints. The protein folds into an alpha/alpha-helical topology consisting of six helices; the arginine-rich N-terminus appears to be disordered. Complexation of the protein with an RNA dodecamer equivalent to the rrn boxA site results in chemical shift changes of numerous amide signals. The overall packing of the protein appears to be conserved, but the flexible N-terminus adopts a more rigid structure upon RNA binding, indicating that the N-terminus functions as an arginine-rich RNA-binding motif (ARM). PMID:9670024
Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability.
Tahara, Maino; Bürckert, Jean-Philippe; Kanou, Kazuhiko; Maenaka, Katsumi; Muller, Claude P; Takeda, Makoto
2016-08-02
Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors.
Chloroquine Binding Reveals Flavin Redox Switch Function of Quinone Reductase 2*
Leung, Kevin K. K.; Shilton, Brian H.
2013-01-01
Quinone reductase 2 (NQO2) is an FAD-linked enzyme and the only known human target of two antimalarial drugs, primaquine (PQ) and chloroquine (CQ). The structural differences between oxidized and reduced NQO2 and the structural basis for inhibition by PQ and CQ were investigated by x-ray crystallography. Structures of oxidized NQO2 in complex with PQ and CQ were solved at 1.4 Å resolution. CQ binds preferentially to reduced NQO2, and upon reduction of NQO2-CQ crystals, the space group changed from P212121 to P21, with 1-Å decreases in all three unit cell dimensions. The change in crystal packing originated in the negative charge and 4–5º bend in the reduced isoalloxazine ring of FAD, which resulted in a new mode of CQ binding and closure of a flexible loop (Phe126–Leu136) over the active site. This first structure of a reduced quinone reductase shows that reduction of the FAD cofactor and binding of a specific inhibitor lead to global changes in NQO2 structure and is consistent with a functional role for NQO2 as a flavin redox switch. PMID:23471972
Ybe, Joel A; Clegg, Mary E; Illingworth, Melissa; Gonzalez, Claire; Niu, Qian
2009-01-01
The interaction between HIP family proteins (HIP1 and HIP12/1R) and clathrin is fundamental to endocytosis. We used circular dichroism (CD) to study the stability of an HIP1 subfragment (aa468-530) that is splayed open. CD thermal melts show HIP1 468-530 is only stable at low temperatures, but this HIP1 fragment contains a structural unit that does not melt out even at 83°C. We then created HIP1 mutants to probe our hypothesis that a short hydrophobic path in the opened region is the binding site for clathrin light chain. We found that the binding of hub/LCb was sensitive to mutating two distantly separated basic residues (K474 and K494). The basic patches marked by K474 and K494 are conserved in HIP12/1R. The lack of conservation in sla2p (S. cerevisiae), HIP1 from D. melanogaster, and HIP1 homolog ZK370.3 from C. elegans implies the binding of HIP1 and HIP1 homologs to clathrin light chain may be different in these organisms.
Ybe, Joel A.; Clegg, Mary E.; Illingworth, Melissa; Gonzalez, Claire; Niu, Qian
2009-01-01
The interaction between HIP family proteins (HIP1 and HIP12/1R) and clathrin is fundamental to endocytosis. We used circular dichroism (CD) to study the stability of an HIP1 subfragment (aa468-530) that is splayed open. CD thermal melts show HIP1 468-530 is only stable at low temperatures, but this HIP1 fragment contains a structural unit that does not melt out even at 83°C. We then created HIP1 mutants to probe our hypothesis that a short hydrophobic path in the opened region is the binding site for clathrin light chain. We found that the binding of hub/LCb was sensitive to mutating two distantly separated basic residues (K474 and K494). The basic patches marked by K474 and K494 are conserved in HIP12/1R. The lack of conservation in sla2p (S. cerevisiae), HIP1 from D. melanogaster, and HIP1 homolog ZK370.3 from C. elegans implies the binding of HIP1 and HIP1 homologs to clathrin light chain may be different in these organisms. PMID:22820750
Doucet, Nicolas; Watt, Eric D; Loria, J Patrick
2009-08-04
The role of the flexible loop 1 in protein conformational motion and in the dissociation of enzymatic product from ribonuclease A (RNase A) was investigated by creation of a chimeric enzyme in which a 6-residue loop 1 from the RNase A homologue, eosinophil cationic protein (ECP), replaced the 12-residue loop 1 in RNase A. The chimera (RNase A(ECP)) experiences only local perturbations in NMR backbone chemical shifts compared to WT RNase A. Many of the flexible residues that were previously identified in WT as involved in an important conformational change now experience no NMR-detected millisecond motions in the chimera. Likewise, binding of the product analogue, 3'-CMP, to RNase A(ECP) results in only minor chemical shift changes in the enzyme similar to what is observed for the H48A mutant of RNase A and in contrast to WT enzyme. For both RNase A(ECP) and H48A there is a 10-fold decrease in the product release rate constant, k(off), compared to WT, in agreement with previous studies indicating the importance of flexibility in RNase A in the overall rate-limiting product release step. Together, these NMR and biochemical experiments provide additional insight into the mechanism of millisecond motions in the RNase A catalytic cycle.
Kleckner, Ian R.; McElroy, Craig A.; Kuzmic, Petr; Gollnick, Paul; Foster, Mark P.
2014-01-01
The trp RNA-binding Attenuation Protein (TRAP) assembles into an 11-fold symmetric ring that regulates transcription and translation of trp-mRNA in bacilli via heterotropic allosteric activation by the amino acid tryptophan (Trp). Whereas nuclear magnetic resonance studies have revealed that Trp-induced activation coincides with both μs-ms rigidification and local structural changes in TRAP, the pathway of binding of the 11 Trp ligands to the TRAP ring remains unclear. Moreover, because each of eleven bound Trp molecules is completely surrounded by protein, its release requires flexibility of Trp-bound (holo) TRAP. Here, we used stopped-flow fluorescence to study the kinetics of Trp binding by Bacillus stearothermophilus TRAP over a range of temperatures and we observed well-separated kinetic steps. These data were analyzed using non-linear least-squares fitting of several two- and three-step models. We found that a model with two binding steps best describes the data, although the structural equivalence of the binding sites in TRAP implies a fundamental change in the time-dependent structure of the TRAP rings upon Trp binding. Application of the two binding step model reveals that Trp binding is much slower than the diffusion limit, suggesting a gating mechanism that depends on the dynamics of apo TRAP. These data also reveal that Trp dissociation from the second binding mode is much slower than after the first Trp binding mode, revealing insight into the mechanism for positive homotropic allostery, or cooperativity. Temperature dependent analyses reveal that both binding modes imbue increases in bondedness and order toward a more compressed active state. These results provide insight into mechanisms of cooperative TRAP activation, and underscore the importance of protein dynamics for ligand binding, ligand release, protein activation, and allostery. PMID:24224873
Ensemble-based virtual screening reveals dual-inhibitors for the p53-MDM2/MDMX interactions.
Barakat, Khaled; Mane, Jonathan; Friesen, Douglas; Tuszynski, Jack
2010-02-26
The p53 protein, a guardian of the genome, is inactivated by mutations or deletions in approximately half of human tumors. While in the rest of human tumors, p53 is expressed in wild-type form, yet it is inhibited by over-expression of its cellular regulators MDM2 and MDMX proteins. Although the p53-binding sites within the MDMX and MDM2 proteins are closely related, known MDM2 small-molecule inhibitors have been shown experimentally not to bind to its homolog, MDMX. As a result, the activity of these inhibitors including Nutlin3 is compromised in tumor cells over-expressing MDMX, preventing these compounds from fully activating the p53 protein. Here, we applied the relaxed complex scheme (RCS) to allow for the full receptor flexibility in screening for dual-inhibitors that can mutually antagonize the two p53-regulator proteins. First, we filtered the NCI diversity set, DrugBank compounds and a derivative library for MDM2-inhibitors against 28 dominant MDM2-conformations. Then, we screened the MDM2 top hits against the binding site of p53 within the MDMX target. Results described herein identify a set of compounds that have been computationally predicted to ultimately activate the p53 pathway in tumor cells retaining the wild-type protein. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.
Analysis of Structural Flexibility of Damaged DNA Using Thiol-Tethered Oligonucleotide Duplexes
Fujita, Masashi; Watanabe, Shun; Yoshizawa, Mariko; Yamamoto, Junpei; Iwai, Shigenori
2015-01-01
Bent structures are formed in DNA by the binding of small molecules or proteins. We developed a chemical method to detect bent DNA structures. Oligonucleotide duplexes in which two mercaptoalkyl groups were attached to the positions facing each other across the major groove were prepared. When the duplex contained the cisplatin adduct, which was proved to induce static helix bending, interstrand disulfide bond formation under an oxygen atmosphere was detected by HPLC analyses, but not in the non-adducted duplex, when the two thiol-tethered nucleosides were separated by six base pairs. When the insert was five and seven base pairs, the disulfide bond was formed and was not formed, respectively, regardless of the cisplatin adduct formation. The same reaction was observed in the duplexes containing an abasic site analog and the (6–4) photoproduct. Compared with the cisplatin case, the disulfide bond formation was slower in these duplexes, but the reaction rate was nearly independent of the linker length. These results indicate that dynamic structural changes of the abasic site- and (6–4) photoproduct-containing duplexes could be detected by our method. It is strongly suggested that the UV-damaged DNA-binding protein, which specifically binds these duplexes and functions at the first step of global-genome nucleotide excision repair, recognizes the easily bendable nature of damaged DNA. PMID:25679955
Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji
2015-12-01
Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.
Tu, Chao; Tan, Yu-Hong; Shaw, Gary; Zhou, Zheng; Bai, Yawen; Luo, Ray; Ji, Xinhua
2008-01-01
Tumor suppressor p53 is a sequence-specific DNA-binding protein and its central DNA-binding domain (DBD) harbors six hotspots (Arg175, Gly245, Arg248, Arg249, Arg273 and Arg282) for human cancers. Here, the crystal structure of a low-frequency hotspot mutant, p53DBD(R282Q), is reported at 1.54 Å resolution together with the results of molecular-dynamics simulations on the basis of the structure. In addition to eliminating a salt bridge, the R282Q mutation has a significant impact on the properties of two DNA-binding loops (L1 and L3). The L1 loop is flexible in the wild type, but it is not flexible in the mutant. The L3 loop of the wild type is not flexible, whereas it assumes two conformations in the mutant. Molecular-dynamics simulations indicated that both conformations of the L3 loop are accessible under biological conditions. It is predicted that the elimination of the salt bridge and the inversion of the flexibility of L1 and L3 are directly or indirectly responsible for deactivating the tumor suppressor p53. PMID:18453682
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...
Fragment Screening and HIV Therapeutics
Bauman, Joseph D.; Patel, Disha; Arnold, Eddy
2013-01-01
Fragment screening has proven to be a powerful alternative to traditional methods for drug discovery. Biophysical methods, such as X-ray crystallography, NMR spectroscopy, and surface plasmon resonance, are used to screen a diverse library of small molecule compounds. Although compounds identified via this approach have relatively weak affinity, they provide a good platform for lead development and are highly efficient binders with respect to their size. Fragment screening has been utilized for a wide-range of targets, including HIV-1 proteins. Here, we review the fragment screening studies targeting HIV-1 proteins using X-ray crystallography or surface plasmon resonance. These studies have successfully detected binding of novel fragments to either previously established or new sites on HIV-1 protease and reverse transcriptase. In addition, fragment screening against HIV-1 reverse transcriptase has been used as a tool to better understand the complex nature of ligand binding to a flexible target. PMID:21972022
Clinical pharmacokinetics and pharmacodynamics of repaglinide.
Hatorp, Vibeke
2002-01-01
Repaglinide is a novel, fast-acting prandial oral hypoglycaemic agent developed for the treatment of patients with type 2 diabetes whose disease cannot be controlled by diet and exercise alone. Although repaglinide binds to the sulphonylurea binding sites on pancreatic beta-cells and has a similar mechanism of action, repaglinide exhibits distinct pharmacological properties compared with these agents. Following administration, repaglinide is absorbed rapidly and has a fast onset of dose-dependent blood-glucose lowering effect. The drug is eliminated rapidly via the biliary route, without accumulation in the plasma after multiple doses. Repaglinide is well tolerated in patients with type 2 diabetes, including elderly patients and patients with hepatic or renal impairment. The pharmacokinetic profile of repaglinide and the improvements in post-prandial hyperglycaemia and overall glycaemic control make repaglinide suitable for administration preprandially, with the opportunity for flexible meal arrangements, including skipped meals, without the risk of hypoglycaemia.
Stoisser, Thomas; Brunsteiner, Michael; Wilson, David K; Nidetzky, Bernd
2016-06-15
L-Lactate oxidase (LOX) belongs to a large family of flavoenzymes that catalyze oxidation of α-hydroxy acids. How in these enzymes the protein structure controls reactivity presents an important but elusive problem. LOX contains a prominent tyrosine in the substrate binding pocket (Tyr(215) in Aerococcus viridans LOX) that is partially responsible for securing a flexible loop which sequesters the active site. To characterize the role of Tyr(215), effects of substitutions of the tyrosine (Y215F, Y215H) were analyzed kinetically, crystallographically and by molecular dynamics simulations. Enzyme variants showed slowed flavin reduction and oxidation by up to 33-fold. Pyruvate release was also decelerated and in Y215F, it was the slowest step overall. A 2.6-Å crystal structure of Y215F in complex with pyruvate shows the hydrogen bond between the phenolic hydroxyl and the keto oxygen in pyruvate is replaced with a potentially stronger hydrophobic interaction between the phenylalanine and the methyl group of pyruvate. Residues 200 through 215 or 216 appear to be disordered in two of the eight monomers in the asymmetric unit suggesting that they function as a lid controlling substrate entry and product exit from the active site. Substitutions of Tyr(215) can thus lead to a kinetic bottleneck in product release.
Cele, Favourite N; Kumalo, Hezekiel; Soliman, Mahmoud E S
2016-09-01
Heat shock protein (Hsp) 90 an emerging and attracting target in the anti-HIV drug discovery process due to the key role it plays in the pathogenicity of HIV-1 virus. In this research study, long-range all-atom molecular dynamics simulations were engaged for the bound and the unbound proteins to enhance the understanding of the molecular mechanisms of the Hsp90 dimerization and inhibition. Results evidently showed that coumermycin A1 (C-A1), a recently discovered Hsp90 inhibitor, binds at the dimer's active site of the Hsp90 protein and leads to a substantial parting between dimeric opposed residues, which include Arg591.B, Lys594.A, Ser663.A, Thr653.B, Ala665.A, Thr649.B, Leu646.B and Asn669.A. Significant differences in magnitudes were observed in radius of gyration, root-mean-square deviation and root-mean-square fluctuation, which confirms a reasonably more flexible state in the apo conformation associated with it dimerization. In contrast, the bound conformer of Hsp90 showed less flexibility. This visibly highpoints the inhibition process resulting from the binding of the ligand. These findings were further validated by principal component analysis. We believe that the detailed dynamic analyses of Hsp90 presented in this study, would give an imperative insight and better understanding to the function and mechanisms of inhibition. Furthermore, information obtained from the binding mode of the inhibitor would be of great assistance in the design of more potent inhibitors against the HIV target Hsp90.
Barros-Álvarez, Ximena; Kerchner, Keshia M; Koh, Cho Yeow; Turley, Stewart; Pardon, Els; Steyaert, Jan; Ranade, Ranae M; Gillespie, J Robert; Zhang, Zhongsheng; Verlinde, Christophe L M J; Fan, Erkang; Buckner, Frederick S; Hol, Wim G J
2017-07-01
The crystal structure of Leishmania donovani tyrosyl-tRNA synthetase (LdTyrRS) in complex with a nanobody and the tyrosyl adenylate analog TyrSA was determined at 2.75 Å resolution. Nanobodies are the variable domains of camelid heavy chain-only antibodies. The nanobody makes numerous crystal contacts and in addition reduces the flexibility of a loop of LdTyrRS. TyrSA is engaged in many interactions with active site residues occupying the tyrosine and adenine binding pockets. The LdTyrRS polypeptide chain consists of two pseudo-monomers, each consisting of two domains. Comparing the two independent chains in the asymmetric unit reveals that the two pseudo-monomers of LdTyrRS can bend with respect to each other essentially as rigid bodies. This flexibility might be useful in the positioning of tRNA for catalysis since both pseudo-monomers in the LdTyrRS chain are needed for charging tRNA Tyr . An "extra pocket" (EP) appears to be present near the adenine binding region of LdTyrRS. Since this pocket is absent in the two human homologous enzymes, the EP provides interesting opportunities for obtaining selective drugs for treating infections caused by L. donovani, a unicellular parasite causing visceral leishmaniasis, or kala azar, which claims 20,000 to 30,000 deaths per year. Sequence and structural comparisons indicate that the EP is a characteristic which also occurs in the active site of several other important pathogenic protozoa. Therefore, the structure of LdTyrRS could inspire the design of compounds useful for treating several different parasitic diseases. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Diestel, Uschi; Resch, Marcus; Meinhardt, Kathrin; Weiler, Sigrid; Hellmann, Tina V.; Mueller, Thomas D.; Nickel, Joachim; Eichler, Jutta; Muller, Yves A.
2013-01-01
The zona pellucida (ZP) domain is present in extracellular proteins such as the zona pellucida proteins and tectorins and participates in the formation of polymeric protein networks. However, the ZP domain also occurs in the cytokine signaling co-receptor transforming growth factor β (TGF-β) receptor type 3 (TGFR-3, also known as betaglycan) where it contributes to cytokine ligand recognition. Currently it is unclear how the ZP domain architecture enables this dual functionality. Here, we identify a novel major TGF-β-binding site in the FG loop of the C-terminal subdomain of the murine TGFR-3 ZP domain (ZP-C) using protein crystallography, limited proteolysis experiments, surface plasmon resonance measurements and synthetic peptides. In the murine 2.7 Å crystal structure that we are presenting here, the FG-loop is disordered, however, well-ordered in a recently reported homologous rat ZP-C structure. Surprisingly, the adjacent external hydrophobic patch (EHP) segment is registered differently in the rat and murine structures suggesting that this segment only loosely associates with the remaining ZP-C fold. Such a flexible and temporarily-modulated association of the EHP segment with the ZP domain has been proposed to control the polymerization of ZP domain-containing proteins. Our findings suggest that this flexibility also extends to the ZP domain of TGFR-3 and might facilitate co-receptor ligand interaction and presentation via the adjacent FG-loop. This hints that a similar C-terminal region of the ZP domain architecture possibly regulates both the polymerization of extracellular matrix proteins and cytokine ligand recognition of TGFR-3. PMID:23826237
Venken, Tom; Daelemans, Dirk; De Maeyer, Marc; Voet, Arnout
2012-06-01
The HIV Rev protein mediates the nuclear export of viral mRNA, and is thereby essential for the production of late viral proteins in the replication cycle. Rev forms a large organized multimeric protein-protein complex for proper functioning. Recently, the three-dimensional structures of a Rev dimer and tetramer have been resolved and provide the basis for a thorough structural analysis of the binding interaction. Here, molecular dynamics (MD) and binding free energy calculations were performed to elucidate the forces thriving dimerization and higher order multimerization of the Rev protein. It is found that despite the structural differences between each crystal structure, both display a similar behavior according to our calculations. Our analysis based on a molecular mechanics-generalized Born surface area (MM/GBSA) and a configurational entropy approach demonstrates that the higher order multimerization site is much weaker than the dimerization site. In addition, a quantitative hot spot analysis combined with a mutational analysis reveals the most contributing amino acid residues for protein interactions in agreement with experimental results. Additional residues were found in each interface, which are important for the protein interaction. The investigation of the thermodynamics of the Rev multimerization interactions performed here could be a further step in the development of novel antiretrovirals using structure based drug design. Moreover, the variability of the angle between each Rev monomer as measured during the MD simulations suggests a role of the Rev protein in allowing flexibility of the arginine rich domain (ARM) to accommodate RNA binding. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tsvetkov, Vladimir B.; Serbin, Alexander V.
2014-06-01
In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 ( HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [ HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics ( MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.
Binding Interactions of Agents That Alter α-Synuclein Aggregation
Sivanesam, K.; Byrne, A.; Bisaglia, M.; Bubacco, L.
2015-01-01
Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. 15N HSQC spectra of α-synuclein provided new mechanistic details. The time course of 15N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in 15N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor. PMID:25705374
Binding Interactions of Agents That Alter α-Synuclein Aggregation.
Sivanesam, K; Byrne, A; Bisaglia, M; Bubacco, L; Andersen, N
Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. 15 N HSQC spectra of α-synuclein provided new mechanistic details. The time course of 15 N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in 15 N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor.
Niu, Qian; Ybe, Joel A.
2008-01-01
Summary Huntington’s disease is a genetic neurological disorder that is triggered by the dissociation of the huntingtin protein (htt) from its obligate interaction partner Huntingtin-interacting protein 1 (HIP1). The release of htt permits HIP-protein interactor (HIPPI) to bind to its recognition site on HIP1 to form a HIPPI/HIP1 complex that recruits Procaspase-8 to begin the process of apoptosis. The interaction module between HIPPI and HIP1 was predicted to resemble a death-effector domain (DED). Our 2.8 Å crystal structure of the HIP1 371-481 sub-fragment that includes F432 and K474 important for HIPPI binding is not a DED, but is a partially opened coiled-coil. The HIP1 371-481 model reveals a basic surface we hypothesize is suitable for binding HIPPI. There is an opened region next to the putative HIPPI site that is highly negatively charged. The acidic residues in this region are highly conserved in HIP1 and a related protein, HIP1R from different organisms, but are not conserved in the yeast homolog of HIP1, sla2p. We have modeled ∼85% of the coiled-coil domain by joining our new HIP1 371-481 structure to the HIP1 482-586 model (PDB code: 2NO2). Finally, the middle of this coiled-coil domain may be intrinsically flexible and suggests a new interaction model where HIPPI binds to a “U” shaped HIP1 molecule. PMID:18155047
Site-specific photoconjugation of antibodies using chemically synthesized IgG-binding domains.
Perols, Anna; Karlström, Amelie Eriksson
2014-03-19
Site-specific labeling of antibodies can be performed using the immunoglobulin-binding Z domain, derived from staphylococcal protein A (SpA), which has a well-characterized binding site in the Fc region of antibodies. By introducing a photoactivable probe in the Z domain, a covalent bond can be formed between the Z domain and the antibody by irradiation with UV light. The aim of this study was to improve the conjugation yield for labeling of different subclasses of IgG having different sequence composition, using a photoactivated Z domain variant. Four different variants of the Z domain (Z5BPA, Z5BBA, Z32BPA, and Z32BBA) were synthesized to investigate the influence of the position of the photoactivable probe and the presence of a flexible linker between the probe and the protein. For two of the variants, the photoreactive benzophenone group was introduced as part of an amino acid side chain by incorporation of the unnatural amino acid benzoylphenylalanine (BPA) during peptide synthesis. For the other two variants, the photoreactive benzophenone group was attached via a flexible linker by coupling of benzoylbenzoic acid (BBA) to the ε-amino group of a selectively deprotected lysine residue. Photoconjugation experiments using human IgG1, mouse IgG1, and mouse IgG2A demonstrated efficient conjugation for all antibodies. It was shown that differences in linker length had a large impact on the conjugation efficiency for labeling of mouse IgG1, whereas the positioning of the photoactivable probe in the sequence of the protein had a larger effect for mouse IgG2A. Conjugation to human IgG1 was only to a minor extent affected by position or linker length. For each subclass of antibody, the best variant tested using a standard conjugation protocol resulted in conjugation efficiencies of 41-66%, which corresponds to on average approximately one Z domain attached to each antibody. As a combination of the two best performing variants, Z5BBA and Z32BPA, a Z domain variant with two photoactivable probes (Z5BBA32BPA) was also synthesized with the aim of targeting a wider panel of antibody subclasses and species. This new reagent could efficiently couple to all antibody subclasses that were targeted by the single benzophenone-labeled Z domain variants, with conjugation efficiencies of 26-41%.
Armen, Roger S; Chen, Jianhan; Brooks, Charles L
2009-10-13
Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.
Armen, Roger S.; Chen, Jianhan; Brooks, Charles L.
2009-01-01
Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and “noise” that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds. PMID:20160879
Controllable activation of nanoscale dynamics in a disordered protein alters binding kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callaway, David J. E.; Matsui, Tsutomu; Weiss, Thomas
The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The “tip of the whip” that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the bindingmore » of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. Furthermore NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.« less
Structural basis of arrestin-3 activation and signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiuyan; Perry, Nicole A.; Vishnivetskiy, Sergey A.
A unique aspect of arrestin-3 is its ability to support both receptor-dependent and receptor-independent signaling. Here, we show that inositol hexakisphosphate (IP6) is a non-receptor activator of arrestin-3 and report the structure of IP6-activated arrestin-3 at 2.4-Å resolution. IP6-activated arrestin-3 exhibits an inter-domain twist and a displaced C-tail, hallmarks of active arrestin. IP6 binds to the arrestin phosphate sensor, and is stabilized by trimerization. Analysis of the trimerization surface, which is also the receptor-binding surface, suggests a feature called the finger loop as a key region of the activation sensor. We show that finger loop helicity and flexibility may underliemore » coupling to hundreds of diverse receptors and also promote arrestin-3 activation by IP6. Importantly, we show that effector-binding sites on arrestins have distinct conformations in the basal and activated states, acting as switch regions. These switch regions may work with the inter-domain twist to initiate and direct arrestin-mediated signaling.« less
Controllable activation of nanoscale dynamics in a disordered protein alters binding kinetics
Callaway, David J. E.; Matsui, Tsutomu; Weiss, Thomas; ...
2017-03-08
The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The “tip of the whip” that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the bindingmore » of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. Furthermore NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.« less
Abualrous, Esam T; Fritzsche, Susanne; Hein, Zeynep; Al-Balushi, Mohammed S; Reinink, Peter; Boyle, Louise H; Wellbrock, Ursula; Antoniou, Antony N; Springer, Sebastian
2015-04-01
The human MHC class I protein HLA-B*27:05 is statistically associated with ankylosing spondylitis, unlike HLA-B*27:09, which differs in a single amino acid in the F pocket of the peptide-binding groove. To understand how this unique amino acid difference leads to a different behavior of the proteins in the cell, we have investigated the conformational stability of both proteins using a combination of in silico and experimental approaches. Here, we show that the binding site of B*27:05 is conformationally disordered in the absence of peptide due to a charge repulsion at the bottom of the F pocket. In agreement with this, B*27:05 requires the chaperone protein tapasin to a greater extent than the conformationally stable B*27:09 in order to remain structured and to bind peptide. Taken together, our data demonstrate a method to predict tapasin dependence and physiological behavior from the sequence and crystal structure of a particular class I allotype. Also watch the Video Abstract. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Popovic, Matija; Wienk, Hans; Coglievina, Maristella; Boelens, Rolf; Pongor, Sándor; Pintar, Alessandro
2014-04-01
Hairy and enhancer of split 1, one of the main downstream effectors in Notch signaling, is a transcriptional repressor of the basic helix-loop-helix (bHLH) family. Using nuclear magnetic resonance methods, we have determined the structure and dynamics of a recombinant protein, H1H, which includes an N-terminal segment, b1, containing functionally important phosphorylation sites, the basic region b2, required for binding to DNA, and the HLH domain. We show that a proline residue in the sequence divides the protein in two parts, a flexible and disordered N-terminal region including b1 and a structured, mainly helical region comprising b2 and the HLH domain. Binding of H1H to a double strand DNA oligonucleotide was monitored through the chemical shift perturbation of backbone amide resonances, and showed that the interaction surface involves not only the b2 segment but also several residues in the b1 and HLH regions. Copyright © 2014 Wiley Periodicals, Inc.
Troeppner, Oliver; Lippert, Rainer; Shubina, Tatyana E; Zahl, Achim; Jux, Norbert; Ivanović-Burmazović, Ivana
2014-10-20
By design of a heme model complex with a binding pocket of appropriate size and flexibility, and by elucidating its kinetics and thermodynamics under elevated pressures, some of the pressure effects are demonstrated relevant for operation of heme-proteins under deep-sea conditions. Opposite from classical paradigms of the spin-crossover and reaction kinetics, a pressure increase can cause deceleration of the small-molecule binding to the vacant coordination site of the heme-center in a confined space and stabilize a high-spin state of its Fe center. This reverse high-pressure behavior can be achieved only if the volume changes related to the conformational transformation of the cavity can offset the volume changes caused by the substrate binding. It is speculated that based on these criteria nature could make a selection of structures of heme pockets that assist in reducing metabolic activity and enzymatic side reactions under extreme pressure conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wilbur, Jeremy D; Hwang, Peter K; Brodsky, Frances M; Fletterick, Robert J
2010-03-01
Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington's disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.
Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.
1991-01-01
Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligandmore » spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.« less
NASA Astrophysics Data System (ADS)
Lengyel, Iván M.; Morelli, Luis G.
2017-04-01
Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.
Coupling between Catalytic Loop Motions and Enzyme Global Dynamics
Kurkcuoglu, Zeynep; Bakan, Ahmet; Kocaman, Duygu; Bahar, Ivet; Doruker, Pemra
2012-01-01
Catalytic loop motions facilitate substrate recognition and binding in many enzymes. While these motions appear to be highly flexible, their functional significance suggests that structure-encoded preferences may play a role in selecting particular mechanisms of motions. We performed an extensive study on a set of enzymes to assess whether the collective/global dynamics, as predicted by elastic network models (ENMs), facilitates or even defines the local motions undergone by functional loops. Our dataset includes a total of 117 crystal structures for ten enzymes of different sizes and oligomerization states. Each enzyme contains a specific functional/catalytic loop (10–21 residues long) that closes over the active site during catalysis. Principal component analysis (PCA) of the available crystal structures (including apo and ligand-bound forms) for each enzyme revealed the dominant conformational changes taking place in these loops upon substrate binding. These experimentally observed loop reconfigurations are shown to be predominantly driven by energetically favored modes of motion intrinsically accessible to the enzyme in the absence of its substrate. The analysis suggests that robust global modes cooperatively defined by the overall enzyme architecture also entail local components that assist in suitable opening/closure of the catalytic loop over the active site. PMID:23028297
Tran, Hai L; Lexa, Katrina W; Julien, Olivier; Young, Travis S; Walsh, Christopher T; Jacobson, Matthew P; Wells, James A
2017-02-22
Macrocycles are appealing drug candidates due to their high affinity, specificity, and favorable pharmacological properties. In this study, we explored the effects of chemical modifications to a natural product macrocycle upon its activity, 3D geometry, and conformational entropy. We chose thiocillin as a model system, a thiopeptide in the ribosomally encoded family of natural products that exhibits potent antimicrobial effects against Gram-positive bacteria. Since thiocillin is derived from a genetically encoded peptide scaffold, site-directed mutagenesis allows for rapid generation of analogues. To understand thiocillin's structure-activity relationship, we generated a site-saturation mutagenesis library covering each position along thiocillin's macrocyclic ring. We report the identification of eight unique compounds more potent than wild-type thiocillin, the best having an 8-fold improvement in potency. Computational modeling of thiocillin's macrocyclic structure revealed a striking requirement for a low-entropy macrocycle for activity. The populated ensembles of the active mutants showed a rigid structure with few adoptable conformations while inactive mutants showed a more flexible macrocycle which is unfavorable for binding. This finding highlights the importance of macrocyclization in combination with rigidifying post-translational modifications to achieve high-potency binding.
Daley, Margaret E.; Sykes, Brian D.
2003-01-01
Two-dimensional nuclear magnetic resonance spectroscopy was used to investigate the flexibility of the threonine side chains in the β-helical Tenebrio molitor antifreeze protein (TmAFP) at low temperatures. From measurement of the 3Jαβ 1H-1H scalar coupling constants, the χ1 angles and preferred rotamer populations can be calculated. It was determined that the threonines on the ice-binding face of the protein adopt a preferred rotameric conformation at near freezing temperatures, whereas the threonines not on the ice-binding face sample many rotameric states. This suggests that TmAFP maintains a preformed ice-binding conformation in solution, wherein the rigid array of threonines that form the AFP-ice interface matches the ice crystal lattice. A key factor in binding to the ice surface and inhibition of ice crystal growth appears to be the close surface-to-surface complementarity between the AFP and crystalline ice, and the lack of an entropic penalty associated with freezing out motions in a flexible ligand. PMID:12824479
Vinci, Floriana; Couprie, Joël; Pucci, Piero; Quéméneur, Eric; Moutiez, Mireille
2002-01-01
This paper provides a description of the surface topography of DsbA, the bacterial disulfide-bond forming enzyme, in the different phases of its catalytic cycle. Three representative states, that is, oxidized and reduced protein and a covalent complex mimicking the DsbA-substrate disulfide intermediate, have been investigated by a combination of limited proteolysis experiments and mass spectrometry methodologies. Protease-accessible sites are largely distributed in the oxidized form with a small predominance inside the thioredoxin domain. Proteolysis occurs even in secondary structure elements, revealing a significant mobility of the protein. Many cleavage sites disappear in the reduced form and most of the remaining ones appear with strongly reduced kinetics. The protein within the complex shows an intermediate behavior. This variation of flexibility in DsbA is probably the determining factor for the course of its catalytic cycle. In particular, the great mobility of the oxidized protein might facilitate the accommodation of its various substrates, whereas the increasing rigidity from the complexed to the reduced form could help the release of oxidized products. The formation of the complex between PID peptide and DsbA does not significantly protect the enzyme against proteolysis, reinforcing the results previously obtained by calorimetry concerning the weakness of their interaction. The few cleavage sites observed, however, are in favor of the presence of the peptide in the binding site postulated from crystallographic studies. As for the peptide itself, the proteolytic pattern and the protection effect exerted by DsbA could be explained by a preferential orientation within the binding site. PMID:12070313
Bahira, Meriem; McCauley, Micah J; Almaqwashi, Ali A; Lincoln, Per; Westerlund, Fredrik; Rouzina, Ioulia; Williams, Mark C
2015-10-15
Several multi-component DNA intercalating small molecules have been designed around ruthenium-based intercalating monomers to optimize DNA binding properties for therapeutic use. Here we probe the DNA binding ligand [μ-C4(cpdppz)2(phen)4Ru2](4+), which consists of two Ru(phen)2dppz(2+) moieties joined by a flexible linker. To quantify ligand binding, double-stranded DNA is stretched with optical tweezers and exposed to ligand under constant applied force. In contrast to other bis-intercalators, we find that ligand association is described by a two-step process, which consists of fast bimolecular intercalation of the first dppz moiety followed by ∼10-fold slower intercalation of the second dppz moiety. The second step is rate-limited by the requirement for a DNA-ligand conformational change that allows the flexible linker to pass through the DNA duplex. Based on our measured force-dependent binding rates and ligand-induced DNA elongation measurements, we are able to map out the energy landscape and structural dynamics for both ligand binding steps. In addition, we find that at zero force the overall binding process involves fast association (∼10 s), slow dissociation (∼300 s), and very high affinity (Kd ∼10 nM). The methodology developed in this work will be useful for studying the mechanism of DNA binding by other multi-step intercalating ligands and proteins. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Bidlingmaier, Scott; Ha, Kevin; Lee, Nam-Kyung; Su, Yang; Liu, Bin
2016-04-01
Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition
Chu, Xiakun; Gan, Linfeng; Wang, Erkang; Wang, Jin
2013-01-01
Biomolecular functions are determined by their interactions with other molecules. Biomolecular recognition is often flexible and associated with large conformational changes involving both binding and folding. However, the global and physical understanding for the process is still challenging. Here, we quantified the intrinsic energy landscapes of flexible biomolecular recognition in terms of binding–folding dynamics for 15 homodimers by exploring the underlying density of states, using a structure-based model both with and without considering energetic roughness. By quantifying three individual effective intrinsic energy landscapes (one for interfacial binding, two for monomeric folding), the association mechanisms for flexible recognition of 15 homodimers can be classified into two-state cooperative “coupled binding–folding” and three-state noncooperative “folding prior to binding” scenarios. We found that the association mechanism of flexible biomolecular recognition relies on the interplay between the underlying effective intrinsic binding and folding energy landscapes. By quantifying the whole global intrinsic binding–folding energy landscapes, we found strong correlations between the landscape topography measure Λ (dimensionless ratio of energy gap versus roughness modulated by the configurational entropy) and the ratio of the thermodynamic stable temperature versus trapping temperature, as well as between Λ and binding kinetics. Therefore, the global energy landscape topography determines the binding–folding thermodynamics and kinetics, crucial for the feasibility and efficiency of realizing biomolecular function. We also found “U-shape” temperature-dependent kinetic behavior and a dynamical cross-over temperature for dividing exponential and nonexponential kinetics for two-state homodimers. Our study provides a unique way to bridge the gap between theory and experiments. PMID:23754431
Zhang, Xirui; Daaboul, George G; Spuhler, Philipp S; Dröge, Peter; Ünlü, M Selim
2016-03-14
DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.
Madani, Ali; Garakani, Kiavash
2017-01-01
Bacterial adhesion to collagen, the most abundant protein in humans, is a critical step in the initiation and persistence of numerous bacterial infections. In this study, we explore the collagen binding mechanism of the multi-modular cell wall anchored collagen adhesin (CNA) in Staphylococcus aureus and examine how applied mechanical forces can modulate adhesion ability. The common structural-functional elements and domain organization of CNA are present across over 50 genera of bacteria. Through the use of molecular dynamics models and normal mode analysis, we shed light on the CNA’s structural and conformational dynamics and its interactions with collagen that lead to collagen binding. Our results suggest that the linker region, CNA165-173, acts as a hinge exhibiting bending, extensional, and torsional modes of structural flexibility and its residues are key in the interaction of the CNA-collagen complex. Steered molecular dynamics simulations were conducted with umbrella sampling. During the course of these simulations, the ‘locking’ latch from the CNA N2 domain was dissociated from its groove in the CNA N1 domain, implying the importance of the latch for effective ligand binding. Finally, we observed that the binding efficiency of the CNA N1-N2 domains to collagen decreases greatly with increasing tensile force application to the collagen peptides. Thus, CNA and similar adhesins might preferentially bind to sites in which collagen fibers are cleaved, such as in wounded, injured, or inflamed tissues, or in which the collagenous tissue is less mature. As alternative techniques for control of bacterial infection are in-demand due to the rise of bacterial antibiotic resistance, results from our computational studies with respect to the mechanoregulation of the collagen binding site may inspire new therapeutics and engineering solutions by mechanically preventing colonization and/or further pathogenesis. PMID:28665944
Zhang, Li Feng; Chin, Wei Xin; Muschin, Tegshi; Heinig, Lars; Suzuki, Youichi; Nanjundappa, Haraprasad; Yoshinaka, Yoshiyuki; Ryo, Akihide; Nomura, Nobuo; Ooi, Eng Eong; Vasudevan, Subhash G.; Yoshida, Takashi; Yamamoto, Naoki
2013-01-01
Curdlan sulfate (CRDS), a sulfated 1→3-β-D glucan, previously shown to be a potent HIV entry inhibitor, is characterized in this study as a potent inhibitor of the Dengue virus (DENV). CRDS was identified by in silico blind docking studies to exhibit binding potential to the envelope (E) protein of the DENV. CRDS was shown to inhibit the DENV replication very efficiently in different cells in vitro. Minimal effective concentration of CRDS was as low as 0.1 µg/mL in LLC-MK2 cells, and toxicity was observed only at concentrations over 10 mg/mL. CRDS can also inhibit DENV-1, 3, and 4 efficiently. CRDS did not inhibit the replication of DENV subgenomic replicon. Time of addition experiments demonstrated that the compound not only inhibited viral infection at the host cell binding step, but also at an early post-attachment step of entry (membrane fusion). The direct binding of CRDS to DENV was suggested by an evident reduction in the viral titers after interaction of the virus with CRDS following an ultrafiltration device separation, as well as after virus adsorption to an alkyl CRDS-coated membrane filter. The electron microscopic features also showed that CRDS interacted directly with the viral envelope, and caused changes to the viral surface. CRDS also potently inhibited DENV infection in DC-SIGN expressing cells as well as the antibody-dependent enhancement of DENV-2 infection. Based on these data, a probable binding model of CRDS to DENV E protein was constructed by a flexible receptor and ligand docking study. The binding site of CRDS was predicted to be at the interface between domains II and III of E protein dimer, which is unique to this compound, and is apparently different from the β-OG binding site. Since CRDS has already been tested in humans without serious side effects, its clinical application can be considered. PMID:23658845
Silvaroli, Josie A; Arne, Jason M; Chelstowska, Sylwia; Kiser, Philip D; Banerjee, Surajit; Golczak, Marcin
2016-04-15
Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan, J.W.
1984-01-01
These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) havemore » been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.« less
Jensen, Pernille Foged; Larraillet, Vincent; Schlothauer, Tilman; Kettenberger, Hubert; Hilger, Maximiliane; Rand, Kasper D.
2015-01-01
The recycling of immunoglobulins by the neonatal Fc receptor (FcRn) is of crucial importance in the maintenance of antibody levels in plasma and is responsible for the long half-lives of endogenous and recombinant monoclonal antibodies. From a therapeutic point of view there is great interest in understanding and modulating the IgG–FcRn interaction to optimize antibody pharmacokinetics and ultimately improve efficacy and safety. Here we studied the interaction between a full-length human IgG1 and human FcRn via hydrogen/deuterium exchange mass spectrometry and targeted electron transfer dissociation to map sites perturbed by binding on both partners of the IgG–FcRn complex. Several regions in the antibody Fc region and the FcRn were protected from exchange upon complex formation, in good agreement with previous crystallographic studies of FcRn in complex with the Fc fragment. Interestingly, we found that several regions in the IgG Fab region also showed reduced deuterium uptake. Our findings indicate the presence of hitherto unknown FcRn interaction sites in the Fab region or a possible conformational link between the IgG Fc and Fab regions upon FcRn binding. Further, we investigated the role of IgG glycosylation in the conformational response of the IgG–FcRn interaction. Removal of antibody glycans increased the flexibility of the FcRn binding site in the Fc region. Consequently, FcRn binding did not induce a similar conformational stabilization of deglycosylated IgG as observed for the wild-type glycosylated IgG. Our results provide new molecular insight into the IgG–FcRn interaction and illustrate the capability of hydrogen/deuterium exchange mass spectrometry to advance structural proteomics by providing detailed information on the conformation and dynamics of large protein complexes in solution. PMID:25378534
NASA Astrophysics Data System (ADS)
Polgár, Tímea; Menyhárd, Dóra K.; Keserű, György M.
2007-09-01
An effective virtual screening protocol was developed against an extended active site of CYP2C9, which was derived from X-ray structures complexed with flubiprofen and S-warfarin. Virtual screening has been effectively supported by our structure-based pharmacophore model. Importance of hot residues identified by mutation data and structural analysis was first estimated in an enrichment study. Key role of Arg108 and Phe114 in ligand binding was also underlined. Our screening protocol successfully identified 76% of known CYP2C9 ligands in the top 1% of the ranked database resulting 76-fold enrichment relative to random situation. Relevance of the protocol was further confirmed in selectivity studies, when 89% of CYP2C9 ligands were retrieved from a mixture of CYP2C9 and CYP2C8 ligands, while only 22% of CYP2C8 ligands were found applying the structure-based pharmacophore constraints. Moderate discrimination of CYP2C9 ligands from CYP2C18 and CYP2C19 ligands could also be achieved extending the application domain of our virtual screening protocol for the entire CYP2C family. Our findings further demonstrate the existence of an active site comprising of at least two binding pockets and strengthens the need of involvement of protein flexibility in virtual screening.
Structure and Sequence Search on Aptamer-Protein Docking
NASA Astrophysics Data System (ADS)
Xiao, Jiajie; Bonin, Keith; Guthold, Martin; Salsbury, Freddie
2015-03-01
Interactions between proteins and deoxyribonucleic acid (DNA) play a significant role in the living systems, especially through gene regulation. However, short nucleic acids sequences (aptamers) with specific binding affinity to specific proteins exhibit clinical potential as therapeutics. Our capillary and gel electrophoresis selection experiments show that specific sequences of aptamers can be selected that bind specific proteins. Computationally, given the experimentally-determined structure and sequence of a thrombin-binding aptamer, we can successfully dock the aptamer onto thrombin in agreement with experimental structures of the complex. In order to further study the conformational flexibility of this thrombin-binding aptamer and to potentially develop a predictive computational model of aptamer-binding, we use GPU-enabled molecular dynamics simulations to both examine the conformational flexibility of the aptamer in the absence of binding to thrombin, and to determine our ability to fold an aptamer. This study should help further de-novo predictions of aptamer sequences by enabling the study of structural and sequence-dependent effects on aptamer-protein docking specificity.
Candel, Adela M; van Nuland, Nico A J; Martin-Sierra, Francisco M; Martinez, Jose C; Conejero-Lara, Francisco
2008-03-14
A complete understanding of the thermodynamic determinants of binding between SH3 domains and proline-rich peptides is crucial to the development of rational strategies for designing ligands for these important domains. Recently we engineered a single-chain chimeric protein by fusing the alpha-spectrin Src homology region 3 (SH3) domain to the decapeptide APSYSPPPPP (p41). This chimera mimics the structural and energetic features of the interaction between SH3 domains and proline-rich peptides. Here we show that analysing the unfolding thermodynamics of single-point mutants of this chimeric fusion protein constitutes a very useful approach to deciphering the thermodynamics of SH3-ligand interactions. To this end, we investigated the contribution of each proline residue of the ligand sequence to the SH3-peptide interaction by producing six single Pro-Ala mutants of the chimeric protein and analysing their unfolding thermodynamics by differential scanning calorimetry (DSC). Structural analyses of the mutant chimeras by circular dichroism, fluorescence and NMR together with NMR-relaxation measurements indicate conformational flexibility at the binding interface, which is strongly affected by the different Pro-Ala mutations. An analysis of the DSC thermograms on the basis of a three-state unfolding model has allowed us to distinguish and separate the thermodynamic magnitudes of the interaction at the binding interface. The model assumes equilibrium between the "unbound" and "bound" states at the SH3-peptide binding interface. The resulting thermodynamic magnitudes classify the different proline residues according to their importance in the interaction as P2 approximately P7 approximately P10>P9 approximately P6>P8, which agrees well with Lim's model for the interaction between SH3 domains and proline-rich peptides. In addition, the thermodynamic signature of the interaction is the same as that usually found for this type of binding, with a strong enthalpy-entropy compensation for all the mutants. This compensation appears to derive from an increase in conformational flexibility concomitant to the weakening of the interactions at the binding interface. We conclude that our approach, based on DSC and site-directed mutagenesis analysis of chimeric fusion proteins, may serve as a suitable tool to analyse the energetics of weak biomolecular interactions such as those involving SH3 domains.
Clifford, Jacob; Adami, Christoph
2015-09-02
Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.
Poonsiri, Thanalai; Wright, Gareth S A; Diamond, Michael S; Turtle, Lance; Solomon, Tom; Antonyuk, Svetlana V
2018-04-01
Japanese encephalitis virus (JEV) is a mosquito-transmitted flavivirus that is closely related to other emerging viral pathogens, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV). JEV infection can result in meningitis and encephalitis, which in severe cases cause permanent brain damage and death. JEV occurs predominantly in rural areas throughout Southeast Asia, the Pacific Islands, and the Far East, causing around 68,000 cases of infection worldwide each year. In this report, we present a 2.1-Å-resolution crystal structure of the C-terminal β-ladder domain of JEV nonstructural protein 1 (NS1-C). The surface charge distribution of JEV NS1-C is similar to those of WNV and ZIKV but differs from that of DENV. Analysis of the JEV NS1-C structure, with in silico molecular dynamics simulation and experimental solution small-angle X-ray scattering, indicates extensive loop flexibility on the exterior of the protein. This, together with the surface charge distribution, indicates that flexibility influences the protein-protein interactions that govern pathogenicity. These factors also affect the interaction of NS1 with the 22NS1 monoclonal antibody, which is protective against West Nile virus infection. Liposome and heparin binding assays indicate that only the N-terminal region of NS1 mediates interaction with membranes and that sulfate binding sites common to NS1 structures are not glycosaminoglycan binding interfaces. This report highlights several differences between flavivirus NS1 proteins and contributes to our understanding of their structure-pathogenic function relationships. IMPORTANCE JEV is a major cause of viral encephalitis in Asia. Despite extensive vaccination, epidemics still occur. Nonstructural protein 1 (NS1) plays a role in viral replication, and, because it is secreted, it can exhibit a wide range of interactions with host proteins. NS1 sequence and protein folds are conserved within the Flavivirus genus, but variations in NS1 protein-protein interactions among viruses likely contribute to differences in pathogenesis. Here, we compared characteristics of the C-terminal β-ladder domain of NS1 between flaviviruses, including surface charge, loop flexibility, epitope cross-reactivity, membrane adherence, and glycosaminoglycan binding. These structural features are central to NS1 functionality and may provide insight into the development of diagnostic tests and therapeutics. Copyright © 2018 American Society for Microbiology.
Lemieux, M Joanne; Mark, Brian L; Cherney, Maia M; Withers, Stephen G; Mahuran, Don J; James, Michael N G
2006-06-16
Lysosomal beta-hexosaminidase A (Hex A) is essential for the degradation of GM2 gangliosides in the central and peripheral nervous system. Accumulation of GM2 leads to severely debilitating neurodegeneration associated with Tay-Sachs disease (TSD), Sandoff disease (SD) and AB variant. Here, we present the X-ray crystallographic structure of Hex A to 2.8 A resolution and the structure of Hex A in complex with NAG-thiazoline, (NGT) to 3.25 A resolution. NGT, a mechanism-based inhibitor, has been shown to act as a chemical chaperone that, to some extent, prevents misfolding of a Hex A mutant associated with adult onset Tay Sachs disease and, as a result, increases the residual activity of Hex A to a level above the critical threshold for disease. The crystal structure of Hex A reveals an alphabeta heterodimer, with each subunit having a functional active site. Only the alpha-subunit active site can hydrolyze GM2 gangliosides due to a flexible loop structure that is removed post-translationally from beta, and to the presence of alphaAsn423 and alphaArg424. The loop structure is involved in binding the GM2 activator protein, while alphaArg424 is critical for binding the carboxylate group of the N-acetyl-neuraminic acid residue of GM2. The beta-subunit lacks these key residues and has betaAsp452 and betaLeu453 in their place; the beta-subunit therefore cleaves only neutral substrates efficiently. Mutations in the alpha-subunit, associated with TSD, and those in the beta-subunit, associated with SD are discussed. The effect of NGT binding in the active site of a mutant Hex A and its effect on protein function is discussed.
The cyanobacterial cytochrome b6f subunit PetP adopts an SH3 fold in solution.
Veit, Sebastian; Nagadoi, Aritaka; Rögner, Matthias; Rexroth, Sascha; Stoll, Raphael; Ikegami, Takahisa
2016-06-01
PetP is a peripheral subunit of the cytochrome b(6)f complex (b(6)f) present in both, cyanobacteria and red algae. It is bound to the cytoplasmic surface of this membrane protein complex where it greatly affects the efficiency of the linear photosynthetic electron flow although it is not directly involved in the electron transfer reactions. Despite the crystal structures of the b(6)f core complex, structural information for the transient regulatory b(6)f subunits is still missing. Here we present the first structure of PetP at atomic resolution as determined by solution NMR. The protein adopts an SH3 fold, which is a common protein motif in eukaryotes but comparatively rare in prokaryotes. The structure of PetP enabled the identification of the potential interaction site for b(6)f binding by conservation mapping. The interaction surface is mainly formed by two large loop regions and one short 310 helix which also exhibit an increased flexibility as indicated by heteronuclear steady-state {(1)H}-(15)N NOE and random coil index parameters. The properties of this potential b(6)f binding site greatly differ from the canonical peptide binding site which is highly conserved in eukaryotic SH3 domains. Interestingly, three other proteins of the photosynthetic electron transport chain share this SH3 fold with PetP: NdhS of the photosynthetic NADH dehydrogenase-like complex (NDH-1), PsaE of the photosystem 1 and subunit α of the ferredoxin-thioredoxin reductase have, similar to PetP, a great impact on the photosynthetic electron transport. Finally, a model is presented to illustrate how SH3 domains modulate the photosynthetic electron transport processes in cyanobacteria. Copyright © 2016 Elsevier B.V. All rights reserved.
Stiffening of flexible SUMO1 protein upon peptide-binding: Analysis with anisotropic network model.
Sarkar, Ranja
2018-01-01
SUMO (small ubiquitin-like modifier) proteins interact with a large number of target proteins via a key regulatory event called sumoylation that encompasses activation, conjugation and ligation of SUMO proteins through specific E1, E2, and E3-type enzymes respectively. Single-molecule atomic force microscopic (AFM) experiments performed to unravel bound SUMO1 along its NC termini direction reveal that E3-ligases (in the form of small peptides) increase mechanical stability (along the axis) of the flexible protein upon binding. The experimental results are expected to correlate with the intrinsic flexibility of bound SUMO1 protein in the native state i.e., the bound conformation of SUMO1 without the binding peptide. The native protein flexibility/stiffness can be measured as a spring constant by normal mode analysis. In the present study, protein normal modes are computed from the protein structural data (as input from protein databank) via a simple anisotropic network model (ANM). ANM is computationally inexpensive and hence, can be explored to investigate and compare the native conformational dynamics of unbound and bound (without the binding partner) structures, if the corresponding structural data (NMR/X-ray) are available. The paper illustrates that SUMO1 stiffens (native flexibility decreases) along the NC termini (end-to-end) direction of the protein upon binding to small peptides; however, the degree of stiffening is peptide sequence-specific. The theoretical results are demonstrated for NMR structures of unbound SUMO1 and that bound to two peptides having short amino acid motifs and of similar size, one being an M-IR2 peptide derived from RanBP2 protein and the other one derived from PIASX protein. The peptide derived from PIASX stiffens SUMO1 remarkably which is evident from an atomic-level normal mode analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein*
Kacirova, Miroslava; Kosek, Dalibor; Kadek, Alan; Man, Petr; Vecer, Jaroslav; Herman, Petr; Obsilova, Veronika; Obsil, Tomas
2015-01-01
Phosducin (Pdc), a highly conserved phosphoprotein involved in the regulation of retinal phototransduction cascade, transcriptional control, and modulation of blood pressure, is controlled in a phosphorylation-dependent manner, including the binding to the 14-3-3 protein. However, the molecular mechanism of this regulation is largely unknown. Here, the solution structure of Pdc and its interaction with the 14-3-3 protein were investigated using small angle x-ray scattering, time-resolved fluorescence spectroscopy, and hydrogen-deuterium exchange coupled to mass spectrometry. The 14-3-3 protein dimer interacts with Pdc using surfaces both inside and outside its central channel. The N-terminal domain of Pdc, where both phosphorylation sites and the 14-3-3-binding motifs are located, is an intrinsically disordered protein that reduces its flexibility in several regions without undergoing dramatic disorder-to-order transition upon binding to 14-3-3. Our data also indicate that the C-terminal domain of Pdc interacts with the outside surface of the 14-3-3 dimer through the region involved in Gtβγ binding. In conclusion, we show that the 14-3-3 protein interacts with and sterically occludes both the N- and C-terminal Gtβγ binding interfaces of phosphorylated Pdc, thus providing a mechanistic explanation for the 14-3-3-dependent inhibition of Pdc function. PMID:25971962
Local functional descriptors for surface comparison based binding prediction
2012-01-01
Background Molecular recognition in proteins occurs due to appropriate arrangements of physical, chemical, and geometric properties of an atomic surface. Similar surface regions should create similar binding interfaces. Effective methods for comparing surface regions can be used in identifying similar regions, and to predict interactions without regard to the underlying structural scaffold that creates the surface. Results We present a new descriptor for protein functional surfaces and algorithms for using these descriptors to compare protein surface regions to identify ligand binding interfaces. Our approach uses descriptors of local regions of the surface, and assembles collections of matches to compare larger regions. Our approach uses a variety of physical, chemical, and geometric properties, adaptively weighting these properties as appropriate for different regions of the interface. Our approach builds a classifier based on a training corpus of examples of binding sites of the target ligand. The constructed classifiers can be applied to a query protein providing a probability for each position on the protein that the position is part of a binding interface. We demonstrate the effectiveness of the approach on a number of benchmarks, demonstrating performance that is comparable to the state-of-the-art, with an approach with more generality than these prior methods. Conclusions Local functional descriptors offer a new method for protein surface comparison that is sufficiently flexible to serve in a variety of applications. PMID:23176080
Mukherjee, Goutam; Pal, Arumay; Levy, Yaakov
2017-11-21
In prokaryotes, the RecA protein catalyzes the repair and strand exchange of double-stranded DNA. RecA binds to single-stranded DNA (ssDNA) and forms a presynaptic complex in which the protein polymerizes around the ssDNA to form a right-handed helical nucleoprotein filament structure. In the present work, the mechanism for the formation of the RecA-ssDNA filament structure is modeled using coarse-grained molecular dynamics simulations. Information from the X-ray structure was used to model the protein itself but not its interactions; the interactions between the protein and the ssDNA were modeled solely by electrostatic, aromatic, and repulsive energies. For the present study, the monomeric, dimeric, and trimeric units of RecA and 4, 8, and 11 NT-long ssDNA, respectively, were studied. Our results indicate that monomeric RecA is not sufficient for nucleoprotein filament formation; rather, dimeric RecA is the elementary binding unit, with higher multimeric units of RecA facilitating filament formation. Our results reveal that loop region flexibility at the primary binding site of RecA is essential for it to bind the incoming ssDNA, that the aromatic residues present in the loop region play an important role in ssDNA binding, and that ATP may play a role in guiding the ssDNA by changing the electrostatic potential of the RecA protein.
Long, Katherine S; Poehlsgaard, Jacob; Hansen, Lykke H; Hobbie, Sven N; Böttger, Erik C; Vester, Birte
2009-03-01
Tiamulin and valnemulin target the peptidyl transferase centre (PTC) on the bacterial ribosome. They are used in veterinary medicine to treat infections caused by a variety of bacterial pathogens, including the intestinal spirochetes Brachyspira spp. Mutations in ribosomal protein L3 and 23S rRNA have previously been associated with tiamulin resistance in Brachyspira spp. isolates, but as multiple mutations were isolated together, the roles of the individual mutations are unclear. In this work, individual 23S rRNA mutations associated with pleuromutilin resistance at positions 2055, 2447, 2504 and 2572 (Escherichia coli numbering) are introduced into a Mycobacterium smegmatis strain with a single rRNA operon. The single mutations each confer a significant and similar degree of valnemulin resistance and those at 2447 and 2504 also confer cross-resistance to other antibiotics that bind to the PTC in M. smegmatis. Antibiotic footprinting experiments on mutant ribosomes show that the introduced mutations cause structural perturbations at the PTC and reduced binding of pleuromutilin antibiotics. This work underscores the fact that mutations at nucleotides distant from the pleuromutilin binding site can confer the same level of valnemulin resistance as those at nucleotides abutting the bound drug, and suggests that the former function indirectly by altering local structure and flexibility at the drug binding pocket.
Abe, Yoshito; Fujisaki, Naoki; Miyoshi, Takanori; Watanabe, Noriko; Katayama, Tsutomu; Ueda, Tadashi
2016-01-01
DnaAcos, a mutant of the initiator DnaA, causes overinitiation of chromosome replication in Escherichia coli, resulting in inhibition of cell division. CedA was found to be a multi-copy suppressor which represses the dnaAcos inhibition of cell division. However, functional mechanism of CedA remains elusive except for previously indicated possibilities in binding to DNA and RNA polymerase. In this study, we searched for the specific sites of CedA in binding of DNA and RNA polymerase and in repression of cell division inhibition. First, DNA sequence to which CedA preferentially binds was determined. Next, the several residues and β4 region in CedA C-terminal domain was suggested to specifically interact with the DNA. Moreover, we found that the flexible N-terminal region was required for tight binding to longer DNA as well as interaction with RNA polymerase. Based on these results, several cedA mutants were examined in ability for repressing dnaAcos cell division inhibition. We found that the N-terminal region was dispensable and that Glu32 in the C-terminal domain was required for the repression. These results suggest that CedA has multiple roles and residues with different functions are positioned in the two regions. PMID:26400504
Boschert, V.; Frisch, C.; Back, J. W.; van Pee, K.; Weidauer, S. E.; Muth, E.-M.; Schmieder, P.; Beerbaum, M.; Knappik, A.; Timmerman, P.
2016-01-01
The glycoprotein sclerostin has been identified as a negative regulator of bone growth. It exerts its function by interacting with the Wnt co-receptor LRP5/6, blocks the binding of Wnt factors and thereby inhibits Wnt signalling. Neutralizing anti-sclerostin antibodies are able to restore Wnt activity and enhance bone growth thereby presenting a new osteoanabolic therapy approach for diseases such as osteoporosis. We have generated various Fab antibodies against human and murine sclerostin using a phage display set-up. Biochemical analyses have identified one Fab developed against murine sclerostin, AbD09097 that efficiently neutralizes sclerostin's Wnt inhibitory activity. In vitro interaction analysis using sclerostin variants revealed that this neutralizing Fab binds to sclerostin's flexible second loop, which has been shown to harbour the LRP5/6 binding motif. Affinity maturation was then applied to AbD09097, providing a set of improved neutralizing Fab antibodies which particularly bind human sclerostin with enhanced affinity. Determining the crystal structure of AbD09097 provides first insights into how this antibody might recognize and neutralize sclerostin. Together with the structure–function relationship derived from affinity maturation these new data will foster the rational design of new and highly efficient anti-sclerostin antibodies for the therapy of bone loss diseases such as osteoporosis. PMID:27558933
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Xiaoyi; Gujjar, Ramesh; El Mazouni, Farah
Malaria remains a major global health burden and current drug therapies are compromised by resistance. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) was validated as a new drug target through the identification of potent and selective triazolopyrimidine-based DHODH inhibitors with anti-malarial activity in vivo. Here we report x-ray structure determination of PfDHODH bound to three inhibitors from this series, representing the first of the enzyme bound to malaria specific inhibitors. We demonstrate that conformational flexibility results in an unexpected binding mode identifying a new hydrophobic pocket on the enzyme. Importantly this plasticity allows PfDHODH to bind inhibitors from different chemical classes andmore » to accommodate inhibitor modifications during lead optimization, increasing the value of PfDHODH as a drug target. A second discovery, based on small molecule crystallography, is that the triazolopyrimidines populate a resonance form that promotes charge separation. These intrinsic dipoles allow formation of energetically favorable H-bond interactions with the enzyme. The importance of delocalization to binding affinity was supported by site-directed mutagenesis and the demonstration that triazolopyrimidine analogs that lack this intrinsic dipole are inactive. Finally, the PfDHODH-triazolopyrimidine bound structures provide considerable new insight into species-selective inhibitor binding in this enzyme family. Together, these studies will directly impact efforts to exploit PfDHODH for the development of anti-malarial chemotherapy.« less
Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing
Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric
2017-01-01
AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457
Rajeshwar T, Rajitha; Krishnan, Marimuthu
2017-05-25
A novel approach to accurately determine residue-specific noncovalent interaction strengths (ξ) of proteins from NMR-measured fast side chain motional parameters (O axis 2 ) is presented. By probing the environmental sensitivity of side chain conformational energy surfaces of individual residues of a diverse set of proteins, the microscopic connections between ξ, O axis 2 , conformational entropy (S conf ), conformational barriers, and rotamer stabilities established here are found to be universal among proteins. The results reveal that side chain flexibility and conformational entropy of each residue decrease with increasing ξ and that for each residue type there exists a critical range of ξ, determined primarily by the mean side chain conformational barriers, within which flexibility of any residue can be reversibly tuned from highly flexible (with O axis 2 ∼ 0) to highly restricted (with O axis 2 ∼ 1) by increasing ξ by ∼3 kcal/mol. Beyond this critical range of ξ, both side chain flexibility and conformational entropy are insensitive to ξ. The interrelationships between conformational dynamics, conformational entropy, and noncovalent interactions of protein side chains established here open up new avenues to probe perturbation-induced (for example, ligand-binding, temperature, pressure) changes in fast side chain dynamics and thermodynamics of proteins by comparing their conformational energy surfaces in the native and perturbed states.
Haider, Kamran; Cruz, Anthony; Ramsey, Steven; Gilson, Michael K; Kurtzman, Tom
2018-01-09
We have developed SSTMap, a software package for mapping structural and thermodynamic water properties in molecular dynamics trajectories. The package introduces automated analysis and mapping of local measures of frustration and enhancement of water structure. The thermodynamic calculations are based on Inhomogeneous Fluid Solvation Theory (IST), which is implemented using both site-based and grid-based approaches. The package also extends the applicability of solvation analysis calculations to multiple molecular dynamics (MD) simulation programs by using existing cross-platform tools for parsing MD parameter and trajectory files. SSTMap is implemented in Python and contains both command-line tools and a Python module to facilitate flexibility in setting up calculations and for automated generation of large data sets involving analysis of multiple solutes. Output is generated in formats compatible with popular Python data science packages. This tool will be used by the molecular modeling community for computational analysis of water in problems of biophysical interest such as ligand binding and protein function.
Polyaniline modified flexible conducting paper for cancer detection
NASA Astrophysics Data System (ADS)
Kumar, Saurabh; Sen, Anindita; Kumar, Suveen; Augustine, Shine; Yadav, Birendra K.; Mishra, Sandeep; Malhotra, Bansi D.
2016-05-01
We report results of studies relating to the fabrication of a flexible, disposable, and label free biosensing platform for detection of the cancer biomarker (carcinoembryonic antigen, CEA). Polyaniline (PANI) has been electrochemically deposited over gold sputtered paper (Au@paper) for covalent immobilization of monoclonal carcinoembryonic antibodies (anti-CEA). The bovine serum albumin (BSA) has been used for blocking nonspecific binding sites at the anti-CEA conjugated PANI/Au@Paper. The PANI/Au@Paper, anti-CEA/PANI/Au@Paper, and BSA/anti-CEA/PANI/Au@Paper platforms have been characterized using scanning electron microscopy, X-ray diffraction, Fourier transmission infrared spectroscopy, chronoamperometry, and electrochemical impedance techniques. The results of the electrochemical response studies indicate that this BSA/anti-CEA/PANI/Au@paper electrode has sensitivity of 13.9 μA ng-1 ml cm2, shelf life of 22 days, and can be used to estimate CEA in the range of 2-20 ng ml-1. This paper sensor has been validated by detection of CEA in serum samples of cancer patients via immunoassay technique.
NASA Astrophysics Data System (ADS)
Montanari, C. A.; Tute, M. S.; Beezer, A. E.; Mitchell, J. C.
1996-02-01
Results are presented for a QSAR analysis of bisamidines, using a similarity index as descriptor. The method allows for differences in conformation of bisamidines at the receptor site to be taken into consideration. In particular, it has been suggested by others that pentamidine binds in the minor groove of DNA in a so-called isohelical conformation, and our QSAR supports this suggestion. The molecular similarity index for comparison of molecules can be used as a parameter for correlating and hence rationalising the activity as well as suggesting the design of bioactive molecules. The studied compounds had been evaluated for potency against Leishmania mexicana amazonensis, and this potency was used as a dependent variable in a series of QSAR analyses. For the calculation of similarity indexes, each analogue was in turn superimposed on a chosen lead compound in a reference conformation, either extended or isohelical, maximising overlap and hence similarity by flexible fitting.
NASA Astrophysics Data System (ADS)
Zhang, Xirui; Daaboul, George G.; Spuhler, Philipp S.; Dröge, Peter; Ünlü, M. Selim
2016-03-01
DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions. Electronic supplementary information (ESI) available: DNA sequences and nomenclature (Table 1S); SDS-PAGE assay of IHF stock solution (Fig. 1S); determination of the concentration of IHF stock solution by Bradford assay (Fig. 2S); equilibrium binding isotherm fitting results of other DNA sequences (Table 2S); calculation of dissociation constants (Fig. 3S, 4S; Table 2S); geometric model for quantitation of DNA bending angle induced by specific IHF binding (Fig. 4S); customized flow cell assembly (Fig. 5S); real-time measurement of average fluorophore height change by SSFM (Fig. 6S); summary of binding parameters obtained from additive isotherm model fitting (Table 3S); average surface densities of 10 dsDNA spots and bound IHF at equilibrium (Table 4S); effects of surface densities on the binding and bending of dsDNA (Tables 5S, 6S and Fig. 7S-10S). See DOI: 10.1039/c5nr06785e
An Electrostatic Funnel in the GABA-Binding Pathway
Lightstone, Felice C.
2016-01-01
The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953
Cu(I)-mediated Allosteric Switching in a Copper-sensing Operon Repressor (CsoR)*
Chang, Feng-Ming James; Coyne, H. Jerome; Cubillas, Ciro; Vinuesa, Pablo; Fang, Xianyang; Ma, Zhen; Ma, Dejian; Helmann, John D.; García-de los Santos, Alejandro; Wang, Yun-Xing; Dann, Charles E.; Giedroc, David P.
2014-01-01
The copper-sensing operon repressor (CsoR) is representative of a major Cu(I)-sensing family of bacterial metalloregulatory proteins that has evolved to prevent cytoplasmic copper toxicity. It is unknown how Cu(I) binding to tetrameric CsoRs mediates transcriptional derepression of copper resistance genes. A phylogenetic analysis of 227 DUF156 protein members, including biochemically or structurally characterized CsoR/RcnR repressors, reveals that Geobacillus thermodenitrificans (Gt) CsoR characterized here is representative of CsoRs from pathogenic bacilli Listeria monocytogenes and Bacillus anthracis. The 2.56 Å structure of Cu(I)-bound Gt CsoR reveals that Cu(I) binding induces a kink in the α2-helix between two conserved copper-ligating residues and folds an N-terminal tail (residues 12–19) over the Cu(I) binding site. NMR studies of Gt CsoR reveal that this tail is flexible in the apo-state with these dynamics quenched upon Cu(I) binding. Small angle x-ray scattering experiments on an N-terminally truncated Gt CsoR (Δ2–10) reveal that the Cu(I)-bound tetramer is hydrodynamically more compact than is the apo-state. The implications of these findings for the allosteric mechanisms of other CsoR/RcnR repressors are discussed. PMID:24831014
Allosteric regulation in NMDA receptors revealed by the genetically encoded photo-cross-linkers
Tian, Meilin; Ye, Shixin
2016-01-01
Allostery is essential to neuronal receptor function, but its transient nature poses a challenge for characterization. The N-terminal domains (NTDs) distinct from ligand binding domains are a major locus for allosteric regulation of NMDA receptors (NMDARs), where different modulatory binding sites have been observed. The inhibitor ifenprodil, and related phenylethanoamine compounds specifically targeting GluN1/GluN2B NMDARs have neuroprotective activity. However, whether they use differential structural pathways than the endogenous inhibitor Zn2+ for regulation is unknown. We applied genetically encoded unnatural amino acids (Uaas) and monitored the functional changes in living cells with photo-cross-linkers specifically incorporated at the ifenprodil binding interface between GluN1 and GluN2B subunits. We report constraining the NTD domain movement, by a light induced crosslinking bond that introduces minimal perturbation to the ligand binding, specifically impedes the transduction of ifenprodil but not Zn2+ inhibition. Subtle distance changes reveal interfacial flexibility and NTD rearrangements in the presence of modulators. Our results present a much richer dynamic picture of allostery than conventional approaches targeting the same interface, and highlight key residues that determine functional and subtype specificity of NMDARs. The light-sensitive mutant neuronal receptors provide complementary tools to the photo-switchable ligands for opto-neuropharmacology. PMID:27713495
Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability
Tahara, Maino; Bürckert, Jean-Philippe; Kanou, Kazuhiko; Maenaka, Katsumi; Muller, Claude P.; Takeda, Makoto
2016-01-01
Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors. PMID:27490564
Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.
2013-01-01
Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283
Saunders, Marissa G; Voth, Gregory A
2011-10-14
In the monomeric actin crystal structure, the positions of a highly organized network of waters are clearly visible within the active site. However, the recently proposed models of filamentous actin (F-actin) did not extend to including these waters. Since the water network is important for ATP hydrolysis, information about water position is critical to understanding the increased rate of catalysis upon filament formation. Here, we show that waters in the active site are essential for intersubdomain rotational flexibility and that they organize the active-site structure. Including the crystal structure waters during simulation setup allows us to observe distinct changes in the active-site structure upon the flattening of the actin subunit, as proposed in the Oda model for F-actin. We identify changes in both protein position and water position relative to the phosphate tail that suggest a mechanism for accelerating the rate of nucleotide hydrolysis in F-actin by stabilizing charge on the β-phosphate and by facilitating deprotonation of catalytic water. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pang, Jie; Zhang, Ziping; Jin, Haizhu
2016-03-15
Electrochemical aptamer-based (E-AB) sensors employing electrode-immobilized, redox-tagged aptamer probes have emerged as a promising platform for the sensitive and quick detection of target analytes ranging from small molecules to proteins. Signal generation in this class of sensor is linked to change in electron transfer efficiency upon binding-induced change in flexibility/conformation of the aptamer probe. Because of this signaling mechanism, signal gains of these sensors can be improved by employing a displacement-based recognition system, which links target binding with a large-scale flexibility/conformation shift from the aptamer-DNA duplex to the single-stranded DNA or the native aptamer. Despite the relatively large number of displacement-based E-AB sensor samples, little attention has been paid to the structure variation of the aptamer-DNA duplex probe. Here we detail the effects of complementary length and position of the aptamer-DNA duplex probe on the performance of a model displacement-based E-AB sensor for ATP. We find that, greater background suppression and signal gain are observed with longer complementary length of the aptamer-DNA duplex probe. However, sensor equilibration time slows monotonically with increasing complementary length; and with too many target binding sites in aptamer sequence being occupied by the complementary DNA, the aptamer-target binding does not occur and no signal gain observed. We also demonstrate that signal gain of the displacement-based E-AB sensor is strongly dependent on the complementary position of the aptamer-DNA duplex probe, with complementary position located at the electrode-attached or redox-tagged end of the duplex probe, larger background suppression and signal increase than that of the middle position are observed. These results highlight the importance of rational structure design of the aptamer-DNA duplex probe and provide new insights into the optimization of displacement-based E-AB sensors. Copyright © 2015 Elsevier B.V. All rights reserved.
Colussi, Timothy; Parsonage, Derek; Boles, William; Matsuoka, Takeshi; Mallett, T Conn; Karplus, P Andrew; Claiborne, Al
2008-01-22
The FAD-dependent alpha-glycerophosphate oxidase (GlpO) from Enterococcus casseliflavus and Streptococcus sp. was originally studied as a soluble flavoprotein oxidase; surprisingly, the GlpO sequence is 30-43% identical to those of the alpha-glycerophosphate dehydrogenases (GlpDs) from mitochondrial and bacterial sources. The structure of a deletion mutant of Streptococcus sp. GlpO (GlpODelta, lacking a 50-residue insert that includes a flexible surface region) has been determined using multiwavelength anomalous dispersion data and refined at 2.3 A resolution. Using the GlpODelta structure as a search model, we have also determined the intact GlpO structure, as refined at 2.4 A resolution. The first two domains of the GlpO fold are most closely related to those of the flavoprotein glycine oxidase, where they function in FAD binding and substrate binding, respectively; the GlpO C-terminal domain consists of two helix bundles and is not closely related to any known structure. The flexible surface region in intact GlpO corresponds to a segment of missing electron density that links the substrate-binding domain to a betabetaalpha element of the FAD-binding domain. In accordance with earlier biochemical studies (stabilizations of the covalent FAD-N5-sulfite adduct and p-quinonoid form of 8-mercapto-FAD), Ile430-N, Thr431-N, and Thr431-OG are hydrogen bonded to FAD-O2alpha in GlpODelta, stabilizing the negative charge in these two modified flavins and facilitating transfer of a hydride to FAD-N5 (from Glp) as well. Active-site overlays with the glycine oxidase-N-acetylglycine and d-amino acid oxidase-d-alanine complexes demonstrate that Arg346 of GlpODelta is structurally equivalent to Arg302 and Arg285, respectively; in both cases, these residues interact directly with the amino acid substrate or inhibitor carboxylate. The structural and functional divergence between GlpO and the bacterial and mitochondrial GlpDs is also discussed.
A tool for calculating binding-site residues on proteins from PDB structures.
Hu, Jing; Yan, Changhui
2009-08-03
In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB) that consists of the protein of interest and its interacting partner(s) and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. The developed tool is very useful for the research on protein binding site analysis and prediction.
Ryden, T A; de Mars, M; Beemon, K
1993-01-01
Several C/EBP binding sites within the Rous sarcoma virus (RSV) long terminal repeat (LTR) and gag enhancers were mutated, and the effect of these mutations on viral gene expression was assessed. Minimal site-specific mutations in each of three adjacent C/EBP binding sites in the LTR reduced steady-state viral RNA levels. Double mutation of the two 5' proximal LTR binding sites resulted in production of 30% of wild-type levels of virus. DNase I footprinting analysis of mutant DNAs indicated that the mutations blocked C/EBP binding at the affected sites. Additional C/EBP binding sites were identified upstream of the 3' LTR and within the 5' end of the LTRs. Point mutations in the RSV gag intragenic enhancer region, which blocked binding of C/EBP at two of three adjacent C/EBP sites, also reduced virus production significantly. Nuclear extracts prepared from both chicken embryo fibroblasts (CEFs) and chicken muscle contained proteins binding to the same RSV DNA sites as did C/EBP, and mutations that prevented C/EBP binding also blocked binding of these chicken proteins. It appears that CEFs and chicken muscle contain distinct proteins binding to these RSV DNA sites; the CEF binding protein was heat stable, as is C/EBP, while the chicken muscle protein was heat sensitive. Images PMID:8386280
The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes.
Atambayeva, Shara; Niyazova, Raigul; Ivashchenko, Anatoliy; Pyrkova, Anna; Pinsky, Ilya; Akimniyazova, Aigul; Labeit, Siegfried
2017-06-01
Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one mRNA can be the target of many miRNAs. This significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications. The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. For the binding sites of the miR-619-5p the hybridization free energy of the bonds was equal to 100% of the maximum potential free energy. The mRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3'UTR (214 sites), CDS (3 sites), and 5'UTR (4 sites). The mRNAs of CATAD1, ICA1L, GK5, POLH, and PRR11 genes have six miR-619-5p binding sites, and the mRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these miR-619-5p binding sites are located in the 3'UTRs. The miR-619-5p binding site in the 5'UTR of mRNA of human USP29 gene is found in the mRNAs of orthologous genes of primates. Binding sites of miR-619-5p in the coding regions of mRNAs of C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is present in the orthologous proteins. Binding sites of miR-619-5p in the mRNAs of transcription factor genes ZNF429 and ZNF429 encode the AHACNP oligopeptide in another reading frame. Binding sites of miR-619-5p in the 3'UTRs of all human target genes are also present in the 3'UTRs of orthologous genes of mammals. The completely complementary binding sites for miR-619-5p are conservative in the orthologous mammalian genes. The majority of miR-619-5p binding sites are located in the 3'UTRs but some genes have miRNA binding sites in the 5'UTRs of mRNAs. Several genes have binding sites for miRNAs in the CDSs that are read in different open reading frames. Identical nucleotide sequences of binding sites encode different amino acids in different proteins. The binding sites of miR-619-5p in 3'UTRs, 5'UTRs and CDSs are conservative in the orthologous mammalian genes.
Cox, Robert M; Krumm, Stefanie A; Thakkar, Vidhi D; Sohn, Maximilian; Plemper, Richard K
2017-02-01
The paramyxovirus RNA-dependent RNA-polymerase (RdRp) complex loads onto the nucleocapsid protein (N)-encapsidated viral N:RNA genome for RNA synthesis. Binding of the RdRp of measles virus (MeV), a paramyxovirus archetype, is mediated through interaction with a molecular recognition element (MoRE) located near the end of the carboxyl-terminal Ntail domain. The structurally disordered central Ntail section is thought to add positional flexibility to MoRE, but the functional importance of this Ntail region for RNA polymerization is unclear. To address this question, we dissected functional elements of Ntail by relocating MoRE into the RNA-encapsidating Ncore domain. Linker-scanning mutagenesis identified a microdomain in Ncore that tolerates insertions. MoRE relocated to Ncore supported efficient interaction with N, MoRE-deficient Ntails had a dominant-negative effect on bioactivity that was alleviated by insertion of MoRE into Ncore, and recombinant MeV encoding N with relocated MoRE grew efficiently and remained capable of mRNA editing. MoRE in Ncore also restored viability of a recombinant lacking the disordered central Ntail section, but this recombinant was temperature-sensitive, with reduced RdRp loading efficiency and a flattened transcription gradient. These results demonstrate that virus replication requires high-affinity RdRp binding sites in N:RNA, but productive RdRp binding is independent of positional flexibility of MoRE and cis-acting elements in Ntail. Rather, the disordered central Ntail section independent of the presence of MoRE in Ntail steepens the paramyxovirus transcription gradient by promoting RdRp loading and preventing the formation of nonproductive polycistronic viral mRNAs. Disordered Ntails may have evolved as a regulatory element to adjust paramyxovirus gene expression.
2015-01-01
A hallmark of penicillin-binding protein 2 (PBP2) from penicillin-resistant strains of Neisseria gonorrhoeae is insertion of an aspartate after position 345. The insertion resides on a loop near the active site and is immediately adjacent to an existing aspartate (Asp346) that forms a functionally important hydrogen bond with Ser363 of the SxN conserved motif. Insertion of other amino acids, including Glu and Asn, can also lower the rate of acylation by penicillin, but these insertions abolish transpeptidase function. Although the kinetic consequences of the Asp insertion are well-established, how it impacts the structure of PBP2 is unknown. Here, we report the 2.2 Å resolution crystal structure of a truncated construct of PBP2 containing all five mutations present in PBP2 from the penicillin-resistant strain 6140, including the Asp insertion. Commensurate with the strict specificity for the Asp insertion over similar amino acids, the insertion does not cause disordering of the structure, but rather induces localized flexibility in the β2c−β2d loop. The crystal structure resolves the ambiguity of whether the insertion is Asp345a or Asp346a (due to the adjacent Asp) because the hydrogen bond between Asp346 and Ser362 is preserved and the insertion is therefore Asp346a. The side chain of Asp346a projects directly toward the β-lactam-binding site near Asn364 of the SxN motif. The Asp insertion may lower the rate of acylation by sterically impeding binding of the antibiotic or by hindering breakage of the β-lactam ring during acylation because of the negative charge of its side chain. PMID:25403720
Fedarovich, Alena; Cook, Edward; Tomberg, Joshua; Nicholas, Robert A; Davies, Christopher
2014-12-09
A hallmark of penicillin-binding protein 2 (PBP2) from penicillin-resistant strains of Neisseria gonorrhoeae is insertion of an aspartate after position 345. The insertion resides on a loop near the active site and is immediately adjacent to an existing aspartate (Asp346) that forms a functionally important hydrogen bond with Ser363 of the SxN conserved motif. Insertion of other amino acids, including Glu and Asn, can also lower the rate of acylation by penicillin, but these insertions abolish transpeptidase function. Although the kinetic consequences of the Asp insertion are well-established, how it impacts the structure of PBP2 is unknown. Here, we report the 2.2 Å resolution crystal structure of a truncated construct of PBP2 containing all five mutations present in PBP2 from the penicillin-resistant strain 6140, including the Asp insertion. Commensurate with the strict specificity for the Asp insertion over similar amino acids, the insertion does not cause disordering of the structure, but rather induces localized flexibility in the β2c-β2d loop. The crystal structure resolves the ambiguity of whether the insertion is Asp345a or Asp346a (due to the adjacent Asp) because the hydrogen bond between Asp346 and Ser362 is preserved and the insertion is therefore Asp346a. The side chain of Asp346a projects directly toward the β-lactam-binding site near Asn364 of the SxN motif. The Asp insertion may lower the rate of acylation by sterically impeding binding of the antibiotic or by hindering breakage of the β-lactam ring during acylation because of the negative charge of its side chain.
González-Andrade, Martin; Rodríguez-Sotres, Rogelio; Madariaga-Mazón, Abraham; Rivera-Chávez, José; Mata, Rachel; Sosa-Peinado, Alejandro; Del Pozo-Yauner, Luis; Arias-Olguín, Imilla I
2016-01-01
In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca(2+)-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the "open" and "closed" conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM's inhibitors correlated well with available experimental data as the r(2) obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca(2+)-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca(2+)-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca(2+)-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs.
Tsvetkov, Vladimir B; Serbin, Alexander V
2014-06-01
In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 (HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics (MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.
Marcu, Orly; Dodson, Emma-Joy; Alam, Nawsad; Sperber, Michal; Kozakov, Dima; Lensink, Marc F; Schueler-Furman, Ora
2017-03-01
CAPRI rounds 28 and 29 included, for the first time, peptide-receptor targets of three different systems, reflecting increased appreciation of the importance of peptide-protein interactions. The CAPRI rounds allowed us to objectively assess the performance of Rosetta FlexPepDock, one of the first protocols to explicitly include peptide flexibility in docking, accounting for peptide conformational changes upon binding. We discuss here successes and challenges in modeling these targets: we obtain top-performing, high-resolution models of the peptide motif for cases with known binding sites but there is a need for better modeling of flanking regions, as well as better selection criteria, in particular for unknown binding sites. These rounds have also provided us the opportunity to reassess the success criteria, to better reflect the quality of a peptide-protein complex model. Using all models submitted to CAPRI, we analyze the correlation between current classification criteria and the ability to retrieve critical interface features, such as hydrogen bonds and hotspots. We find that loosening the backbone (and ligand) RMSD threshold, together with a restriction on the side chain RMSD measure, allows us to improve the selection of high-accuracy models. We also suggest a new measure to assess interface hydrogen bond recovery, which is not assessed by the current CAPRI criteria. Finally, we find that surprisingly much can be learned from rather inaccurate models about binding hotspots, suggesting that the current status of peptide-protein docking methods, as reflected by the submitted CAPRI models, can already have a significant impact on our understanding of protein interactions. Proteins 2017; 85:445-462. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Di Scala, Coralie; Fantini, Jacques; Yahi, Nouara; Barrantes, Francisco J; Chahinian, Henri
2018-05-22
Anandamide is a lipid neurotransmitter derived from arachidonic acid, a polyunsaturated fatty acid. The chemical differences between anandamide and arachidonic acid result in a slightly enhanced solubility in water and absence of an ionisable group for the neurotransmitter compared with the fatty acid. In this review, we first analyze the conformational flexibility of anandamide in aqueous and membrane phases. We next study the interaction of the neurotransmitter with membrane lipids and discuss the molecular basis of the unexpected selectivity of anandamide for cholesterol and ceramide from among other membrane lipids. We show that cholesterol behaves as a binding partner for anandamide, and that following an initial interaction mediated by the establishment of a hydrogen bond, anandamide is attracted towards the membrane interior, where it forms a molecular complex with cholesterol after a functional conformation adaptation to the apolar membrane milieu. The complex is then directed to the anandamide cannabinoid receptor (CB1) which displays a high affinity binding pocket for anandamide. We propose that cholesterol may regulate the entry and exit of anandamide in and out of CB1 by interacting with low affinity cholesterol recognition sites (CARC and CRAC) located in transmembrane helices. The mirror topology of cholesterol binding sites in the seventh transmembrane domain is consistent with the delivery, extraction and flip-flop of anandamide through a coordinated cholesterol-dependent mechanism. The binding of anandamide to ceramide illustrates another key function of membrane lipids which may occur independently of protein receptors. Interestingly, ceramide forms a tight complex with anandamide which blocks the degradation pathway of both lipids and could be exploited for anti-cancer therapies.
Niu, Qian; Ybe, Joel A
2008-02-01
Huntington's disease is a genetic neurological disorder that is triggered by the dissociation of the huntingtin protein (htt) from its obligate interaction partner Huntingtin-interacting protein 1 (HIP1). The release of the huntingtin protein permits HIP1 protein interactor (HIPPI) to bind to its recognition site on HIP1 to form a HIPPI/HIP1 complex that recruits procaspase-8 to begin the process of apoptosis. The interaction module between HIPPI and HIP1 was predicted to resemble a death-effector domain. Our 2.8-A crystal structure of the HIP1 371-481 subfragment that includes F432 and K474, which is important for HIPPI binding, is not a death-effector domain but is a partially opened coiled coil. The HIP1 371-481 model reveals a basic surface that we hypothesize to be suitable for binding HIPPI. There is an opened region next to the putative HIPPI site that is highly negatively charged. The acidic residues in this region are highly conserved in HIP1 and a related protein, HIP1R, from different organisms but are not conserved in the yeast homologue of HIP1, sla2p. We have modeled approximately 85% of the coiled-coil domain by joining our new HIP1 371-481 structure to the HIP1 482-586 model (Protein Data Bank code: 2NO2). Finally, the middle of this coiled-coil domain may be intrinsically flexible and suggests a new interaction model where HIPPI binds to a U-shaped HIP1 molecule.
Hoffer, Laurent; Renaud, Jean-Paul; Horvath, Dragos
2013-04-22
This paper describes the use and validation of S4MPLE in Fragment-Based Drug Design (FBDD)--a strategy to build drug-like ligands starting from small compounds called fragments. S4MPLE is a conformational sampling tool based on a hybrid genetic algorithm that is able to simulate one (conformer enumeration) or more molecules (docking). The goal of the current paper is to show that due to the judicious design of genetic operators, S4MPLE may be used without any specific adaptation as an in silico FBDD tool. Such fragment-to-lead evolution involves either growing of one or linking of several fragment-like binder(s). The native ability to specifically "dock" a substructure that is covalently anchored to its target (here, some prepositioned fragment formally part of the binding site) enables it to act like dedicated de novo builders and differentiates it from most classical docking tools, which may only cope with non-covalent interactions. Besides, S4MPLE may address growing/linking scenarios involving protein site flexibility, and it might also suggest "growth" moves by bridging the ligand to the site via water-mediated interactions if H2O molecules are simply appended to the input files. Therefore, the only development overhead required to build a virtual fragment→ligand growing/linking strategy based on S4MPLE were two chemoinformatics programs meant to provide a minimalistic management of the linker library. The first creates a duplicate-free library by fragmenting a compound database, whereas the second builds new compounds, attaching chemically compatible linkers to the starting fragments. S4MPLE is subsequently used to probe the optimal placement of the linkers within the binding site, with initial restraints on atoms from initial fragments, followed by an optimization of all kept poses after restraint removal. Ranking is mainly based on two criteria: force-field potential energy and RMSD shifts of the original fragment moieties. This strategy was applied to several examples from the FBDD literature with good results over several monitored criteria: ability to generate the optimized ligand (or close analogs), good ranking of analogs among decoy compounds, and accurate predictions of expected binding modes of reference ligands. Simulations included "classical" covalent growing/linking, more challenging ones involving binding site conformational changes, and growth with optional recognition of putatively favorable water-mediated interactions.
Conformation-controlled binding kinetics of antibodies
NASA Astrophysics Data System (ADS)
Galanti, Marta; Fanelli, Duccio; Piazza, Francesco
2016-01-01
Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines.
Mandic, Robert; Fackler, Oliver T.; Geyer, Matthias; Linnemann, Thomas; Zheng, Yong-Hui; Peterlin, B. Matija
2001-01-01
The accessory protein negative factor (Nef) from human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is required for optimal viral infectivity and the progression to acquired immunodeficiency syndrome (AIDS). Nef interacts with the endocytic machinery, resulting in the down-regulation of cluster of differentiation antigen 4 (CD4) and major histocompatibility complex class I (MHCI) molecules on the surface of infected cells. Mutations in the C-terminal flexible loop of Nef result in a lower rate of internalization by this viral protein. However, no loop-dependent binding of Nef to adaptor protein-2 (AP-2), which is the adaptor protein complex that is required for the internalization of proteins from the plasma membrane, could be demonstrated. In this study we investigated the relevance of different motifs in Nef from SIVmac239 for its internalization, CD4 down-regulation, binding to components of the trafficking machinery, and viral infectivity. Our data suggest that the binding of Nef to the catalytic subunit H of the vacuolar membrane ATPase (V-ATPase) facilitates its internalization. This binding depends on the integrity of the whole flexible loop. Subsequent studies on Nef mutant viruses revealed that the flexible loop is essential for optimal viral infectivity. Therefore, our data demonstrate how Nef contacts the endocytic machinery in the absence of its direct binding to AP-2 and suggest an important role for subunit H of the V-ATPase in viral infectivity. PMID:11179428
Super Spy variants implicate flexibility in chaperone action.
Quan, Shu; Wang, Lili; Petrotchenko, Evgeniy V; Makepeace, Karl At; Horowitz, Scott; Yang, Jianyi; Zhang, Yang; Borchers, Christoph H; Bardwell, James Ca
2014-01-01
Experimental study of the role of disorder in protein function is challenging. It has been proposed that proteins utilize disordered regions in the adaptive recognition of their various binding partners. However apart from a few exceptions, defining the importance of disorder in promiscuous binding interactions has proven to be difficult. In this paper, we have utilized a genetic selection that links protein stability to antibiotic resistance to isolate variants of the newly discovered chaperone Spy that show an up to 7 fold improved chaperone activity against a variety of substrates. These "Super Spy" variants show tighter binding to client proteins and are generally more unstable than is wild type Spy and show increases in apparent flexibility. We establish a good relationship between the degree of their instability and the improvement they show in their chaperone activity. Our results provide evidence for the importance of disorder and flexibility in chaperone function. DOI: http://dx.doi.org/10.7554/eLife.01584.001.
Super Spy variants implicate flexibility in chaperone action
Quan, Shu; Wang, Lili; Petrotchenko, Evgeniy V; Makepeace, Karl AT; Horowitz, Scott; Yang, Jianyi; Zhang, Yang; Borchers, Christoph H; Bardwell, James CA
2014-01-01
Experimental study of the role of disorder in protein function is challenging. It has been proposed that proteins utilize disordered regions in the adaptive recognition of their various binding partners. However apart from a few exceptions, defining the importance of disorder in promiscuous binding interactions has proven to be difficult. In this paper, we have utilized a genetic selection that links protein stability to antibiotic resistance to isolate variants of the newly discovered chaperone Spy that show an up to 7 fold improved chaperone activity against a variety of substrates. These “Super Spy” variants show tighter binding to client proteins and are generally more unstable than is wild type Spy and show increases in apparent flexibility. We establish a good relationship between the degree of their instability and the improvement they show in their chaperone activity. Our results provide evidence for the importance of disorder and flexibility in chaperone function. DOI: http://dx.doi.org/10.7554/eLife.01584.001 PMID:24497545
NASA Technical Reports Server (NTRS)
Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.
2000-01-01
Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.
New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase
NASA Astrophysics Data System (ADS)
Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian
2016-08-01
Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2‧,3‧-O-(2,4,6-trinitrophenyl)adenosine 5‧-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase.
New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase.
Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian
2016-08-05
Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR
NASA Astrophysics Data System (ADS)
D'Aquino, J. Alejandro; Ringe, Dagmar
2006-08-01
The diphtheria toxin repressor, DtxR, is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear (1 - 3). Calorimetric techniques have demonstrated that while binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 × 10-7, binding site 2 (primary) is a low affinity binding site with a binding constant of 6.3 × 10-4. These two binding sites act independently and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here and the previously reported DtxR(H79A) (4) has allowed us to propose a mechanism of metal ion activation for DtxR.
Allosteric binding sites in Rab11 for potential drug candidates
2018-01-01
Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously. PMID:29874286
Conformational Heterogeneity of Unbound Proteins Enhances Recognition in Protein-Protein Encounters.
Pallara, Chiara; Rueda, Manuel; Abagyan, Ruben; Fernández-Recio, Juan
2016-07-12
To understand cellular processes at the molecular level we need to improve our knowledge of protein-protein interactions, from a structural, mechanistic, and energetic point of view. Current theoretical studies and computational docking simulations show that protein dynamics plays a key role in protein association and support the need for including protein flexibility in modeling protein interactions. Assuming the conformational selection binding mechanism, in which the unbound state can sample bound conformers, one possible strategy to include flexibility in docking predictions would be the use of conformational ensembles originated from unbound protein structures. Here we present an exhaustive computational study about the use of precomputed unbound ensembles in the context of protein docking, performed on a set of 124 cases of the Protein-Protein Docking Benchmark 3.0. Conformational ensembles were generated by conformational optimization and refinement with MODELLER and by short molecular dynamics trajectories with AMBER. We identified those conformers providing optimal binding and investigated the role of protein conformational heterogeneity in protein-protein recognition. Our results show that a restricted conformational refinement can generate conformers with better binding properties and improve docking encounters in medium-flexible cases. For more flexible cases, a more extended conformational sampling based on Normal Mode Analysis was proven helpful. We found that successful conformers provide better energetic complementarity to the docking partners, which is compatible with recent views of binding association. In addition to the mechanistic considerations, these findings could be exploited for practical docking predictions of improved efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosier, A.M.; Vandesande, F.; Orban, G.A.
1991-03-08
The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of ({sup 125}I)-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites,more » while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed.« less
Crystal Structure Analyses of the Fosmidomycin-Target Enzyme from Plasmodium Falciparum
NASA Astrophysics Data System (ADS)
Umeda, Tomonobu; Kusakabe, Yoshio; Tanaka, Nobutada
The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people each year. Fosmidomycin has proved to be efficient in the treatment of P. falciparum malaria through the inhibition of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), an enzyme of the non-mevalonate pathway of isoprenoid biosynthesis, which is absent in humans. Crystal structure analyses of P. falciparum DXR (PfDXR) revealed that (i) an intrinsic flexibility of the PfDXR molecule accounts for the induced-fit movement to accommodate the bound inhibitor in the active site, and (ii) a cis arrangement of the oxygen atoms of the hydroxamate group of the bound inhibitor is essential for tight binding of the inhibitor to the active site metal. We believe that our study will serve as a useful guide to develop more potent PfDXR inhibitors.
NASA Astrophysics Data System (ADS)
Hurley, Margaret M.; Sellers, Michael S.
2013-05-01
As software and methodology develop, key aspects of molecular interactions such as detailed energetics and flexibility are continuously better represented in docking simulations. In the latest iteration of the XPairIt API and Docking Protocol, we perform a blind dock of a peptide into the cleavage site of the Anthrax lethal factor (LF) metalloprotein. Molecular structures are prepared from RCSB:1JKY and we demonstrate a reasonably accurate docked peptide through analysis of protein motion and, using NCI Plot, visualize and characterize the forces leading to binding. We compare our docked structure to the 1JKY crystal structure and the more recent 1PWV structure, and discuss both captured and overlooked interactions. Our results offer a more detailed look at secondary contact and show that both van der Waals and electrostatic interactions from peptide residues further from the enzyme's catalytic site are significant.
Hansen, M R; Simorre, J P; Hanson, P; Mokler, V; Bellon, L; Beigelman, L; Pardi, A
1999-01-01
A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids. PMID:10445883
Accelerated Disassembly of IgE:Receptor Complexes by a Disruptive Macromolecular Inhibitor
Kim, Beomkyu; Eggel, Alexander; Tarchevskaya, Svetlana S.; Vogel, Monique; Prinz, Heino; Jardetzky, Theodore S.
2012-01-01
IgE antibodies bind the high affinity IgE Fc receptor (FcεRI), found primarily on mast cells and basophils, and trigger inflammatory cascades of the allergic response1,2. Inhibitors of IgE:FcεRI binding have been identified and an anti-IgE therapeutic antibody (omalizumab) is used to treat severe allergic asthma3,4. However, preformed IgE:FcεRI complexes that prime cells prior to allergen exposure dissociate extremely slowly5 and cannot be disrupted by strictly competitive inhibitors. IgE-Fc conformational flexibility indicated that inhibition could be mediated by allosteric or other non-classical mechanisms6–8. Here we demonstrate that an engineered protein inhibitor, DARPin E2_799–11, acts through a non-classical inhibition mechanism, not only blocking IgE:FcεRI interactions, but actively stimulating the dissociation of preformed ligand-receptor complexes. The structure of the E2_79:IgE-Fc3-4 complex predicts the presence of two non-equivalent E2_79 sites in the asymmetric IgE:FcεRI complex, with Site 1 distant from the receptor and Site 2 exhibiting partial steric overlap. While the structure is suggestive of an allosteric inhibition mechanism, mutational studies and quantitative kinetic modeling indicate that E2_79 acts through a facilitated dissociation mechanism at Site 2 alone. These results demonstrate that high affinity IgE:FcεRI complexes can be actively dissociated to block the allergic response and suggest that protein:protein complexes may be more generally amenable to active disruption by macromolecular inhibitors. PMID:23103871
Using the fast fourier transform in binding free energy calculations.
Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L
2018-04-30
According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.
2013-01-01
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Wei; Leal, Walter S.
Pheromone-binding proteins (PBPs) are involved in the uptake of pheromones from pores on the antennae, transport through an aqueous environment surrounding the olfactory receptor neurons, and fast delivery to pheromone receptors. We tested the hypothesis that a C-terminal segment and a flexible loop are involved in the release of pheromones to membrane-bound receptors. We expressed in Escherichia coli 11 mutants of the PBP from the silkworm moth, BmorPBP, taking into consideration structural differences between the forms with high and low binding affinity. The N-terminus was truncated and His-69, His-70 and His-95 at the base of a flexible loop, and amore » cluster of acidic residues at the C-terminus were mutated. Binding assays and circular dichroism analyses support a mechanism involving protonation of acidic residues Asp-132 and Glu-141 at the C-terminus and histidines, His-70 and His-95, in the base of a loop covering the binding pocket. The former leads to the formation of a new {alpha}-helix, which competes with pheromone for the binding pocket, whereas positive charge repulsion of the histidines opens the opposite side of the binding pocket.« less
Solution structure, mutagenesis, and NH exchange studies of the MutT enzyme-Mg 2+-8-oxo-dGMP complex
NASA Astrophysics Data System (ADS)
Massiah, M. A.; Saraswat, V.; Azurmendi, H. F.; Mildvan, A. S.
2004-08-01
The MutT pyrophosphohydrolase from E. coli (129 residues) catalyzes the hydrolysis of nucleoside triphosphates (NTP), including 8-oxo-dGTP, by substitution at Pβ, to yield NMP and pyrophosphate. The product, 8-oxo-dGMP is an unusually tight binding, slowly exchanging inhibitor with a KD=52 nM, (Δ G°=-9.8 kcal/mol) which is 6.1 kcal/mol tighter than the binding of dGMP (Δ G°=-3.7 kcal/mol). The higher affinity for 8-oxo-dGMP results from a more favorable Δ Hbinding (-32 kcal/mol) despite an unfavorable - TΔ S° binding (+22 kcal/mol). The solution structure of the MutT-Mg 2+-8-oxo-dGMP complex shows a narrowed, hydrophobic nucleotide-binding cleft with Asn-119 and Arg-78 among the few polar residues. The N119A, N119D, R78K and R78A single mutations, and the R78K+N119A double mutant all showed largely intact active sites, on the basis of small changes in the kinetic parameters of dGTP hydrolysis and in 1H- 15N HSQC spectra. However, the N119A mutation profoundly weakened the active site binding of 8-oxo-dGMP by 4.3 kcal/mol (1650-fold). The N119D mutation also weakened 8-oxo-dGMP binding but only by 2.1 kcal/mol (37-fold), suggesting that Asn-119 functioned both as a hydrogen bond donor to C8O, and a hydrogen bond acceptor from N7H of 8-oxo-dGMP, while aspartate at position -119 functioned as an acceptor of a single hydrogen bond. Much smaller weakening effects (0.3-0.4 kcal/mol) on the binding of dGMP and dAMP were found, indicating specific hydrogen bonding of Asn-119 to 8-oxo-dGMP. While formation of the wild type MutT-Mg 2+-8-oxo-dGMP complex slowed the backbone NH exchange rates of 45 residues distributed throughout the protein, the same complex of the N119A mutant slowed the exchange rates of only 11 residues at or near the active site, indicating an increase in conformational flexibility of the N119A mutant. The R78K and R78A mutations weakened the binding of 8-oxo-dGMP by 1.7 and 1.1 kcal/mol, respectively, indicating a lesser role of Arg-78 than of Asn-119 in the selective binding of 8-oxo-dGMP, likely donating a single hydrogen bond to its C6O. The R78K+N119A double mutant weakened the binding of 8-oxo-dGMP ( KIslope=3.1 mM) by 6.5±0.2 kcal/mol which overlaps, within error with the sum of the effects of the two single mutants (6.0±0.3 kcal/mol). Such additive effects of the two single mutants in the double mutant are most simply explained by the independent functioning of Asn-119 and Arg-78 in the binding of 8-oxo-dGMP. Independent functioning of these two residues in nucleotide binding is consistent with their locations in the MutT-Mg 2+-8-oxo-dGMP complex, on opposite sides of the active site cleft, with a distance of 8.4±0.5 Å between their side chain nitrogens.
Chromatin-Specific Regulation of Mammalian rDNA Transcription by Clustered TTF-I Binding Sites
Diermeier, Sarah D.; Németh, Attila; Rehli, Michael; Grummt, Ingrid; Längst, Gernot
2013-01-01
Enhancers and promoters often contain multiple binding sites for the same transcription factor, suggesting that homotypic clustering of binding sites may serve a role in transcription regulation. Here we show that clustering of binding sites for the transcription termination factor TTF-I downstream of the pre-rRNA coding region specifies transcription termination, increases the efficiency of transcription initiation and affects the three-dimensional structure of rRNA genes. On chromatin templates, but not on free rDNA, clustered binding sites promote cooperative binding of TTF-I, loading TTF-I to the downstream terminators before it binds to the rDNA promoter. Interaction of TTF-I with target sites upstream and downstream of the rDNA transcription unit connects these distal DNA elements by forming a chromatin loop between the rDNA promoter and the terminators. The results imply that clustered binding sites increase the binding affinity of transcription factors in chromatin, thus influencing the timing and strength of DNA-dependent processes. PMID:24068958
Chakraborty, Sandeep
2014-01-01
The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already 'plastic' binding site. Thus, DOCLASP presents a method for 'soft docking' ligands to proteins with low computational requirements.
Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand
DeLuca, Samuel; Khar, Karen; Meiler, Jens
2015-01-01
RosettaLigand has been successfully used to predict binding poses in protein-small molecule complexes. However, the RosettaLigand docking protocol is comparatively slow in identifying an initial starting pose for the small molecule (ligand) making it unfeasible for use in virtual High Throughput Screening (vHTS). To overcome this limitation, we developed a new sampling approach for placing the ligand in the protein binding site during the initial ‘low-resolution’ docking step. It combines the translational and rotational adjustments to the ligand pose in a single transformation step. The new algorithm is both more accurate and more time-efficient. The docking success rate is improved by 10–15% in a benchmark set of 43 protein/ligand complexes, reducing the number of models that typically need to be generated from 1000 to 150. The average time to generate a model is reduced from 50 seconds to 10 seconds. As a result we observe an effective 30-fold speed increase, making RosettaLigand appropriate for docking medium sized ligand libraries. We demonstrate that this improved initial placement of the ligand is critical for successful prediction of an accurate binding position in the ‘high-resolution’ full atom refinement step. PMID:26207742
Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching
2016-01-01
Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951
Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J P; Chen, Yu-Ching
2016-06-13
Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes.
Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.
Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A; Tomkinson, Alan E; Ellenberger, Tom
2010-07-27
Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.
Dynamic allostery of protein alpha helical coiled-coils
Hawkins, Rhoda J; McLeish, Tom C.B
2005-01-01
Alpha helical coiled-coils appear in many important allosteric proteins such as the dynein molecular motor and bacteria chemotaxis transmembrane receptors. As a mechanism for transmitting the information of ligand binding to a distant site across an allosteric protein, an alternative to conformational change in the mean static structure is an induced change in the pattern of the internal dynamics of the protein. We explore how ligand binding may change the intramolecular vibrational free energy of a coiled-coil, using parameterized coarse-grained models, treating the case of dynein in detail. The models predict that coupling of slide, bend and twist modes of the coiled-coil transmits an allosteric free energy of ∼2kBT, consistent with experimental results. A further prediction is a quantitative increase in the effective stiffness of the coiled-coil without any change in inherent flexibility of the individual helices. The model provides a possible and experimentally testable mechanism for transmission of information through the alpha helical coiled-coil of dynein. PMID:16849225
The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain.
Shi, Hang; Rojas, Raul; Bonifacino, Juan S; Hurley, James H
2006-06-01
The mammalian retromer complex consists of SNX1, SNX2, Vps26, Vps29 and Vps35, and retrieves lysosomal enzyme receptors from endosomes to the trans-Golgi network. The structure of human Vps26A at 2.1-A resolution reveals two curved beta-sandwich domains connected by a polar core and a flexible linker. Vps26 has an unpredicted structural relationship to arrestins. The Vps35-binding site on Vps26 maps to a mobile loop spanning residues 235-246, near the tip of the C-terminal domain. The loop is phylogenetically conserved and provides a mechanism for Vps26 integration into the complex that leaves the rest of the structure free for engagements with membranes and for conformational changes. Hydrophobic residues and a glycine in this loop are required for integration into the retromer complex and endosomal localization of human Vps26, and for the function of yeast Vps26 in carboxypeptidase Y sorting.
de Beer, Stephanie B A; van Bergen, Laura A H; Keijzer, Karlijn; Rea, Vanina; Venkataraman, Harini; Guerra, Celia Fonseca; Bickelhaupt, F Matthias; Vermeulen, Nico P E; Commandeur, Jan N M; Geerke, Daan P
2012-02-01
Recently, it was found that mutations in the binding cavity of drug-metabolizing Cytochrome P450 BM3 mutants can result in major changes in regioselectivity in testosterone (TES) hydroxylation. In the current work, we report the intrinsic reactivity of TES' C-H bonds and our attempts to rationalize experimentally observed changes in TES hydroxylation using a protein structure-based in silico approach, by setting up and employing a combined Molecular Dynamics (MD) and ligand docking approach to account for the flexibility and plasticity of BM3 mutants. Using this approach, about 100,000 TES binding poses were obtained per mutant. The predicted regioselectivity in TES hydroxylation by the mutants was found to be in disagreement with experiment. As revealed in a detailed structural analysis of the obtained docking poses, this disagreement is due to limitations in correctly scoring hydrogen-bonding and steric interactions with specific active-site residues, which could explain the experimentally observed trends in regioselectivity in TES hydroxylation.
Dna2 nuclease-helicase structure, mechanism and regulation by Rpa.
Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P
2015-11-02
The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5' end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5' but not 3' end, explaining how Rpa regulates cleavage polarity.
A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-delta1.
Essen, L O; Perisic, O; Lynch, D E; Katan, M; Williams, R L
1997-03-11
We have determined the crystal structures of complexes of phosphoinositide-specific phospholipase C-delta1 from rat with calcium, barium, and lanthanum at 2.5-2.6 A resolution. Binding of these metal ions is observed in the active site of the catalytic TIM barrel and in the calcium binding region (CBR) of the C2 domain. The C2 domain of PLC-delta1 is a circularly permuted topological variant (P-variant) of the synaptotagmin I C2A domain (S-variant). On the basis of sequence analysis, we propose that both the S-variant and P-variant topologies are present among other C2 domains. Multiple adjacent binding sites in the C2 domain were observed for calcium and the other metal/enzyme complexes. The maximum number of binding sites observed was for the calcium analogue lanthanum. This complex shows an array-like binding of three lanthanum ions (sites I-III) in a crevice on one end of the C2 beta-sandwich. Residues involved in metal binding are contained in three loops, CBR1, CBR2, and CBR3. Sites I and II are maintained in the calcium and barium complexes, whereas sites II and III coincide with a binary calcium binding site in the C2A domain of synaptotagmin I. Several conformers for CBR1 are observed. The conformation of CBR1 does not appear to be strictly dependent on metal binding; however, metal binding may stabilize certain conformers. No significant structural changes are observed for CBR2 or CBR3. The surface of this ternary binding site provides a cluster of freely accessible liganding positions for putative phospholipid ligands of the C2 domain. It may be that the ternary metal binding site is also a feature of calcium-dependent phospholipid binding in solution. A ternary metal binding site might be a conserved feature among C2 domains that contain the critical calcium ligands in their CBR's. The high cooperativity of calcium-mediated lipid binding by C2 domains described previously is explained by this novel type of calcium binding site.
Srivastava, Gaurava; Tripathi, Shubhandra; Kumar, Akhil; Sharma, Ashok
2017-07-01
Multi drug resistant tuberculosis is a major threat for mankind. Resistance against Isoniazid (INH), targeting MtKatG protein, is one of the most commonly occurring resistances in MDR TB strains. S315T-MtKatG mutation is widely reported for INH resistance. Despite having knowledge about the mechanism of INH, exact binding site of INH to MtKatG is still uncertain and proposed to have three presumable binding sites (site-1, site-2, and site-3). In the current study docking, molecular dynamics simulation, binding free energy estimation, principal component analysis and free energy landscape analysis were performed to get molecular level details of INH binding site on MtKatG, and to probe the effect of S315T mutation on INH binding. Molecular docking and MD analysis suggested site-1 as active binding site of INH, where the effects of S315T mutation were observed on both access tunnel as well as molecular interaction between INH and its neighboring residues. MMPBSA also supported site-1 as potential binding site with lowest binding energy of -44.201 kJ/mol. Moreover, PCA and FEL revealed that S315T mutation not only reduces the dimension of heme access tunnel but also showed that extra methyl group at 315 position altered heme cavity, enforcing heme group distantly from INH, and thus preventing INH activation. The present study not only investigated the active binding site of INH but also provides a new insight about the conformational changes in the binding site of S315T-MtKatG. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Aquino,J.; Tetenbaum-Novatt, J.; White, A.
2005-01-01
The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with amore » binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.« less
Zoltowski, Brian D.; Nash, Abigail I.; Gardner, Kevin H.
2011-01-01
Light Oxygen Voltage (LOV) domains utilize a conserved blue light-dependent mechanism to control a diverse array of effector domains in biological and engineered proteins. Variations in the kinetics and efficiency of LOV photochemistry fine tune various aspects of the photic response. Characterization of the kinetics of a key aspect of this photochemical mechanism in EL222, a blue-light responsive DNA binding protein from Erythrobacter litoralis HTCC2594, reveals unique non-Arrhenius behavior in the rate of dark state cleavage of the photochemically-generated adduct. Sequence analysis and mutagenesis studies establish that this effect stems from a Gln to Ala mutation unique to EL222 and homologous proteins from marine bacteria. Kinetic and spectroscopic analyses reveal that hydrogen bonding interactions between the FMN N1, O2 and ribityl hydroxyls with the surrounding protein regulate photocycle kinetics and stabilize the LOV active site from temperature-induced alteration in local structure. Substitution of residues interacting with the N1-O2 locus modulates adduct stability, structural flexibility and sequestration of the active site from bulk solvent without perturbation of light-activated DNA binding. Together, these variants link non-Arrhenius behavior to specific alteration of an H-bonding network, while affording tunability of photocycle kinetics. PMID:21923139
Redesigning the specificity of protein-DNA interactions with Rosetta.
Thyme, Summer; Baker, David
2014-01-01
Building protein tools that can selectively bind or cleave specific DNA sequences requires efficient technologies for modifying protein-DNA interactions. Computational design is one method for accomplishing this goal. In this chapter, we present the current state of protein-DNA interface design with the Rosetta macromolecular modeling program. The LAGLIDADG endonuclease family of DNA-cleaving enzymes, under study as potential gene therapy reagents, has been the main testing ground for these in silico protocols. At this time, the computational methods are most useful for designing endonuclease variants that can accommodate small numbers of target site substitutions. Attempts to engineer for more extensive interface changes will likely benefit from an approach that uses the computational design results in conjunction with a high-throughput directed evolution or screening procedure. The family of enzymes presents an engineering challenge because their interfaces are highly integrated and there is significant coordination between the binding and catalysis events. Future developments in the computational algorithms depend on experimental feedback to improve understanding and modeling of these complex enzymatic features. This chapter presents both the basic method of design that has been successfully used to modulate specificity and more advanced procedures that incorporate DNA flexibility and other properties that are likely necessary for reliable modeling of more extensive target site changes.
Cheng, Cheng; Wang, Shutong; Wu, Jayne; Yu, Yongchao; Li, Ruozhou; Eda, Shigetoshi; Chen, Jiangang; Feng, Guoying; Lawrie, Benjamin; Hu, Anming
2016-07-20
This work presents an aptamer-based, highly sensitive and specific sensor for atto- to femtomolar level detection of bisphenol A (BPA). Because of its widespread use in numerous products, BPA enters surface water from effluent discharges during its manufacture, use, and from waste landfill sites throughout the world. On-site measurement of BPA concentrations in water is important for evaluating compliance with water quality standards or environmental risk levels of the harmful compound in the environment. The sensor in this work is porous, conducting, interdigitated electrodes that are formed by laser-induced carbonization of flexible polyimide sheets. BPA-specific aptamer is immobilized on the electrodes as the probe, and its binding with BPA at the electrode surface is detected by capacitive sensing. The binding process is aided by ac electroosmotic effect that accelerates the transport of BPA molecules to the nanoporous graphene-like structured electrodes. The sensor achieved a limit of detection of 58.28 aM with a response time of 20 s. The sensor is further applied for recovery analysis of BPA spiked in surface water. This work provides an affordable platform for highly sensitive, real time, and field-deployable BPA surveillance critical to the evaluation of the ecological impact of BPA exposure.
Albumin (BSA) adsorption onto graphite stepped surfaces
NASA Astrophysics Data System (ADS)
Rubio-Pereda, Pamela; Vilhena, J. G.; Takeuchi, Noboru; Serena, Pedro A.; Pérez, Rubén
2017-06-01
Nanomaterials are good candidates for the design of novel components with biomedical applications. For example, nano-patterned substrates may be used to immobilize protein molecules in order to integrate them in biosensing units. Here, we perform long MD simulations (up to 200 ns) using an explicit solvent and physiological ion concentrations to characterize the adsorption of bovine serum albumin (BSA) onto a nano-patterned graphite substrate. We have studied the effect of the orientation and step size on the protein adsorption and final conformation. Our results show that the protein is stable, with small changes in the protein secondary structure that are confined to the contact area and reveal the influence of nano-structuring on the spontaneous adsorption, protein-surface binding energies, and protein mobility. Although van der Waals (vdW) interactions play a dominant role, our simulations reveal the important role played by the hydrophobic lipid-binding sites of the BSA molecule in the adsorption process. The complex structure of these sites, that incorporate residues with different hydrophobic character, and their flexibility are crucial to understand the influence of the ion concentration and protein orientation in the different steps of the adsorption process. Our study provides useful information for the molecular engineering of components that require the immobilization of biomolecules and the preservation of their biological activity.
Membrane Transporters: Structure, Function and Targets for Drug Design
NASA Astrophysics Data System (ADS)
Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt
Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.
Zoltowski, Brian D; Nash, Abigail I; Gardner, Kevin H
2011-10-18
Light, oxygen, voltage (LOV) domains utilize a conserved blue light-dependent mechanism to control a diverse array of effector domains in biological and engineered proteins. Variations in the kinetics and efficiency of LOV photochemistry fine-tune various aspects of the photic response. Characterization of the kinetics of a key aspect of this photochemical mechanism in EL222, a blue light responsive DNA binding protein from Erythrobacter litoralis HTCC2594, reveals unique non-Arrhenius behavior in the rate of dark-state cleavage of the photochemically generated adduct. Sequence analysis and mutagenesis studies establish that this effect stems from a Gln to Ala mutation unique to EL222 and homologous proteins from marine bacteria. Kinetic and spectroscopic analyses reveal that hydrogen bonding interactions between the FMN N1, O2, and ribityl hydroxyls and the surrounding protein regulate photocycle kinetics and stabilize the LOV active site from temperature-induced alteration in local structure. Substitution of residues interacting with the N1-O2 locus modulates adduct stability, structural flexibility, and sequestration of the active site from bulk solvent without perturbation of light-activated DNA binding. Together, these variants link non-Arrhenius behavior to specific alteration of an H-bonding network, while affording tunability of photocycle kinetics. © 2011 American Chemical Society