NASA Astrophysics Data System (ADS)
Islam, Md. Maidul; Pandya, Prateek; Chowdhury, Sebanti Roy; Kumar, Surat; Kumar, Gopinatha Suresh
2008-11-01
The interaction of two natural protoberberine plant alkaloids berberine and palmatine with tRNA phe was studied using various biophysical techniques and molecular modeling and the data were compared with the binding of the classical DNA intercalator, ethidium. Circular dichroic studies revealed that the tRNA conformation was moderately perturbed on binding of the alkaloids. The cooperative binding of both the alkaloids and ethidium to tRNA was revealed from absorbance and fluorescence studies. Fluorescence quenching studies advanced a conclusion that while berberine and palmatine are partially intercalated, ethidium is fully intercalated on the tRNA molecule. The binding of the alkaloids as well as ethidium stabilized the tRNA melting, and the binding constant evaluated from the averaged optical melting temperature data was in agreement with fluorescence spectral-binding data. Differential scanning calorimetry revealed that the tRNA melting showed three close transitions that were affected on binding of these small molecules. Molecular docking calculations performed showed the preferred regions of binding of these small molecules on the tRNA. Taken together, the results suggest that the binding of the alkaloids berberine and palmatine on the tRNA structure appears to be mostly by partial intercalation while ethidium intercalates fully on the tRNA. These results further advance our knowledge on the molecular aspects on the interaction of these alkaloids to tRNA.
Kleckner, Ian R.; McElroy, Craig A.; Kuzmic, Petr; Gollnick, Paul; Foster, Mark P.
2014-01-01
The trp RNA-binding Attenuation Protein (TRAP) assembles into an 11-fold symmetric ring that regulates transcription and translation of trp-mRNA in bacilli via heterotropic allosteric activation by the amino acid tryptophan (Trp). Whereas nuclear magnetic resonance studies have revealed that Trp-induced activation coincides with both μs-ms rigidification and local structural changes in TRAP, the pathway of binding of the 11 Trp ligands to the TRAP ring remains unclear. Moreover, because each of eleven bound Trp molecules is completely surrounded by protein, its release requires flexibility of Trp-bound (holo) TRAP. Here, we used stopped-flow fluorescence to study the kinetics of Trp binding by Bacillus stearothermophilus TRAP over a range of temperatures and we observed well-separated kinetic steps. These data were analyzed using non-linear least-squares fitting of several two- and three-step models. We found that a model with two binding steps best describes the data, although the structural equivalence of the binding sites in TRAP implies a fundamental change in the time-dependent structure of the TRAP rings upon Trp binding. Application of the two binding step model reveals that Trp binding is much slower than the diffusion limit, suggesting a gating mechanism that depends on the dynamics of apo TRAP. These data also reveal that Trp dissociation from the second binding mode is much slower than after the first Trp binding mode, revealing insight into the mechanism for positive homotropic allostery, or cooperativity. Temperature dependent analyses reveal that both binding modes imbue increases in bondedness and order toward a more compressed active state. These results provide insight into mechanisms of cooperative TRAP activation, and underscore the importance of protein dynamics for ligand binding, ligand release, protein activation, and allostery. PMID:24224873
Roy, Snigdha; Das, Suman
2014-01-01
Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) with single and double stranded form of polyriboadenylic acid (hereafter poly-A) using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A) with high affinity while it does not interact at all with the double stranded (ds) form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na+] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure. PMID:24498422
Pradhan, Ankur Bikash; Haque, Lucy; Roy, Snigdha; Das, Suman
2014-01-01
Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) with single and double stranded form of polyriboadenylic acid (hereafter poly-A) using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A) with high affinity while it does not interact at all with the double stranded (ds) form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.
Mechanical Unfolding Studies on Single-Domain SUMO and Multi-Domain Periplasmic Binding Proteins
NASA Astrophysics Data System (ADS)
Kotamarthi, Hema Chandra; Ainavarapu, Sri Rama Koti
Protein mechanics is a key component of many cellular and sub-cellular processes. The current review focuses on recent studies from our laboratory that probe the effect of sequence on the mechanical stability of structurally similar proteins and the unfolding mechanisms of multi-domain periplasmic binding proteins. Ubiquitin and small ubiquitin-related modifiers (SUMOs) are structurally similar and possess different mechanical stabilities, ubiquitin being stronger than SUMOs as revealed from their unfolding forces. These differences are plausibly due to the variation in number of inter-residue contacts. The unfolding potential widths determined from the pulling speed-dependent studies revealed that SUMOs are mechanically more flexible than ubiquitin. This flexibility of SUMOs plays a role in ligand binding and our single-molecule studies on SUMO interaction with SUMO binding motifs (SBMs) have shown that ligand binding decreases the SUMO flexibility and increases its mechanical stability. Studies on multi-domain periplasmic binding proteins have revealed that the unfolding energy landscape of these proteins is complex and they follow kinetic partitioning between two-state and multiple three-state pathways.
Chatterjee, Sabyasachi; Kumar, Gopinatha Suresh
2016-06-01
The molecular interaction between hemoglobin (HHb), the major human heme protein, and the acridine dyes acridine orange (AO) and 9-aminoacridine (9AA) was studied by various spectroscopic, calorimetric and molecular modeling techniques. The dyes formed stable ground state complex with HHb as revealed from spectroscopic data. Temperature dependent fluorescence data showed the strength of the dye-protein complexation to be inversely proportional to temperature and the fluorescence quenching was static in nature. The binding-induced conformational change in the protein was investigated using circular dichroism, synchronous fluorescence, 3D fluorescence and FTIR spectroscopy results. Circular dichroism data also quantified the α-helicity change in hemoglobin due to the binding of acridine dyes. Calorimetric studies revealed the binding to be endothermic in nature for both AO and 9AA, though the latter had higher affinity, and this was also observed from spectroscopic data. The binding of both dyes was entropy driven. pH dependent fluorescence studies revealed the existence of electrostatic interaction between the protein and dye molecules. Molecular modeling studies specified the binding site and the non-covalent interactions involved in the association. Overall, the results revealed that a small change in the acridine chromophore leads to remarkable alteration in the structural and thermodynamic aspects of binding to HHb. Copyright © 2016 Elsevier B.V. All rights reserved.
Basu, Anirban; Suresh Kumar, Gopinatha
2016-11-15
Interaction of the food colorant tartrazine with human hemoglobin was studied using multispectroscopic and microcalorimetric techniques to gain insights into the binding mechanism and thereby the toxicity aspects. Hemoglobin spectrum showed hypochromic changes in the presence of tartrazine. Quenching of the fluorescence of hemoglobin occurred and the quenching mechanism was through a static mode as revealed from temperature dependent and time-resolved fluorescence studies. According to the FRET theory the distance between β-Trp37 of hemoglobin and bound tartrazine was evaluated to be 3.44nm. Synchronous fluorescence studies showed that tartrazine binding led to alteration of the microenvironment around the tryptophans more in comparison to tyrosines. 3D fluorescence and FTIR data provided evidence for conformational changes in the protein on binding. Circular dichroism studies revealed that the binding led to significant loss in the helicity of hemoglobin. The esterase activity assay further complemented the circular dichroism data. Microcalorimetric study using isothermal titration calorimetry revealed the binding to be exothermic and driven largely by positive entropic contribution. Dissection of the Gibbs energy change proposed the protein-dye complexation to be dominated by non-polyelectrolytic forces. Negative heat capacity change also corroborated the involvement of hydrophobic forces in the binding process. Copyright © 2016 Elsevier B.V. All rights reserved.
Rajesh, Durairaj; Muthukumar, Subramanian; Saibaba, Ganesan; Siva, Durairaj; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman; Archunan, Govindaraju
2016-01-01
Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management. PMID:27782155
Rajesh, Durairaj; Muthukumar, Subramanian; Saibaba, Ganesan; Siva, Durairaj; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman; Archunan, Govindaraju
2016-10-26
Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management.
Wong, Edmond; Vaaje-Kolstad, Gustav; Ghosh, Avishek; Hurtado-Guerrero, Ramon; Konarev, Peter V.; Ibrahim, Adel F. M.; Svergun, Dmitri I.; Eijsink, Vincent G. H.; Chatterjee, Nabendu S.; van Aalten, Daan M. F.
2012-01-01
Vibrio cholerae is a bacterial pathogen that colonizes the chitinous exoskeleton of zooplankton as well as the human gastrointestinal tract. Colonization of these different niches involves an N-acetylglucosamine binding protein (GbpA) that has been reported to mediate bacterial attachment to both marine chitin and mammalian intestinal mucin through an unknown molecular mechanism. We report structural studies that reveal that GbpA possesses an unusual, elongated, four-domain structure, with domains 1 and 4 showing structural homology to chitin binding domains. A glycan screen revealed that GbpA binds to GlcNAc oligosaccharides. Structure-guided GbpA truncation mutants show that domains 1 and 4 of GbpA interact with chitin in vitro, whereas in vivo complementation studies reveal that domain 1 is also crucial for mucin binding and intestinal colonization. Bacterial binding studies show that domains 2 and 3 bind to the V. cholerae surface. Finally, mouse virulence assays show that only the first three domains of GbpA are required for colonization. These results explain how GbpA provides structural/functional modular interactions between V. cholerae, intestinal epithelium and chitinous exoskeletons. PMID:22253590
Li, Guangyao; Zhou, Lei
2013-01-01
Due to the self-propagating nature of the heterochromatic modification H3K27me3, chromatin barrier activities are required to demarcate the boundary and prevent it from encroaching into euchromatic regions. Studies in Drosophila and vertebrate systems have revealed several important chromatin barrier elements and their respective binding factors. However, epigenomic data indicate that the binding of these factors are not exclusive to chromatin boundaries. To gain a comprehensive understanding of facultative heterochromatin boundaries, we developed a two-tiered method to identify the Chromatin Transitional Region (CTR), i.e. the nucleosomal region that shows the greatest transition rate of the H3K27me3 modification as revealed by ChIP-Seq. This approach was applied to identify CTRs in Drosophila S2 cells and human HeLa cells. Although many insulator proteins have been characterized in Drosophila, less than half of the CTRs in S2 cells are associated with known insulator proteins, indicating unknown mechanisms remain to be characterized. Our analysis also revealed that the peak binding of insulator proteins are usually 1–2 nucleosomes away from the CTR. Comparison of CTR-associated insulator protein binding sites vs. those in heterochromatic region revealed that boundary-associated binding sites are distinctively flanked by nucleosome destabilizing sequences, which correlates with significant decreased nucleosome density and increased binding intensities of co-factors. Interestingly, several subgroups of boundaries have enhanced H3.3 incorporation but reduced nucleosome turnover rate. Our genome-wide study reveals that diverse mechanisms are employed to define the boundaries of facultative heterochromatin. In both Drosophila and mammalian systems, only a small fraction of insulator protein binding sites co-localize with H3K27me3 boundaries. However, boundary-associated insulator binding sites are distinctively flanked by nucleosome destabilizing sequences, which correlates with significantly decreased nucleosome density and increased binding of co-factors. PMID:23840609
Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.
2015-01-01
SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000
Protein NMR Studies of Substrate Binding to Human Blood Group A and B Glycosyltransferases.
Grimm, Lena Lisbeth; Weissbach, Sophie; Flügge, Friedemann; Begemann, Nora; Palcic, Monica M; Peters, Thomas
2017-07-04
Donor and acceptor substrate binding to human blood group A and B glycosyltransferases (GTA, GTB) has been studied by a variety of protein NMR experiments. Prior crystallographic studies had shown these enzymes to adopt an open conformation in the absence of substrates. Binding either of the donor substrate UDP-Gal or of UDP induces a semiclosed conformation. In the presence of both donor and acceptor substrates, the enzymes shift towards a closed conformation with ordering of an internal loop and the C-terminal residues, which then completely cover the donor-binding pocket. Chemical-shift titrations of uniformly 2 H, 15 N-labeled GTA or GTB with UDP affected about 20 % of all crosspeaks in 1 H, 15 N TROSY-HSQC spectra, reflecting substantial plasticity of the enzymes. On the other hand, it is this conformational flexibility that impedes NH backbone assignments. Chemical-shift-perturbation experiments with δ1-[ 13 C]methyl-Ile-labeled samples revealed two Ile residues-Ile123 at the bottom of the UDP binding pocket, and Ile192 as part of the internal loop-that were significantly disturbed upon stepwise addition of UDP and H-disaccharide, also revealing long-range perturbations. Finally, methyl TROSY-based relaxation dispersion experiments do not reveal micro- to millisecond timescale motions. Although this study reveals substantial conformational plasticity of GTA and GTB, the matter of how binding of substrates shifts the enzymes into catalytically competent states remains enigmatic. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Vendrell-Criado, Victoria; González-Bello, Concepción; Miranda, Miguel A.; Jiménez, M. Consuelo
2018-06-01
Binding of the immunosuppressive agent mycophenolate mofetil (MMP) and its pharmacologically active metabolite mycophenolic acid (MPA) to human serum albumin (HSA) and α1-acid glycoprotein (HAAG) has been investigated by means of an integrated approach involving selective excitation of the drug fluorophore, following their UV-A triggered fluorescence and docking studies. The formation of the protein/ligand complexes was evidenced by a dramatic enhancement of the fluorescence intensity and a hypsochromic shift of the emission band. In HSA, competitive studies using oleic acid as site I probe revealed site I as the main binding site of the ligands. Binding constants revealed that the affinity of the active metabolite by HSA is four-fold higher than its proactive form. Moreover, the affinity of MMP by HSA is three-fold higher than by HAAG. Docking studies revealed significant molecular binding differences in the binding of MMP and MPA to sub-domain IIA of HSA (site 1). For MPA, the aromatic moiety would be in close contact to Trp214 with the flexible chain pointing to the other end of the sub-domain; on the contrary, for MMP, the carboxylate group of the chain would be fixed nearby Trp214 through electrostatic interactions with residues Arg218 and Arg222.
Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R; Kenniston, Jon A; Mendrola, Jeannine M; Ferguson, Kathryn M; Lemmon, Mark A
2015-02-03
F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.
Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; ...
2015-01-22
F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here in this paper, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound tomore » an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. In conclusion, our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence.« less
Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism
Hughes, Travis S.; Chalmers, Michael J.; Novick, Scott; Kuruvilla, Dana S.; Chang, Mi Ra; Kamenecka, Theodore M.; Rance, Mark; Johnson, Bruce A.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.
2011-01-01
SUMMARY Ligand binding to proteins is not a static process, but rather involves a number of complex dynamic transitions. A flexible ligand can change conformation upon binding its target. The conformation and dynamics of a protein can change to facilitate ligand binding. The conformation of the ligand, however, is generally presumed to have one primary binding mode, shifting the protein conformational ensemble from one state to another. We report solution NMR studies that reveal peroxisome proliferator-activated receptor γ (PPARγ) modulators can sample multiple binding modes manifesting in multiple receptor conformations in slow conformational exchange. Our NMR, hydrogen/deuterium exchange and docking studies reveal that ligand-induced receptor stabilization and binding mode occupancy correlate with the graded agonist response of the ligand. Our results suggest that ligand and receptor dynamics affect the graded transcriptional output of PPARγ modulators. PMID:22244763
Enantioselective binding of L, D-phenylalanine to ct DNA
NASA Astrophysics Data System (ADS)
Zhang, Lijin; Xu, Jianhua; Huang, Yan; Min, Shungeng
2009-10-01
The enantioselective binding of L, D-phenylalanine to calf thymus DNA was studied by absorption, circular dichroism, fluorescence quenching, viscosity, salt effect and emission experiments. The results obtained from absorption, circular dichroism, fluorescence quenching and viscosity experiments excluded the intercalative binding and salt effect experiments did not support electrostatic binding. So the binding of L, D-phenylalanine to ct DNA should be groove binding. Furthermore, the emission spectra revealed that the binding is enantioselective.
Enantioselective binding of L,D-phenylalanine to ct DNA.
Zhang, Lijin; Xu, Jianhua; Huang, Yan; Min, Shungeng
2009-10-15
The enantioselective binding of L,D-phenylalanine to calf thymus DNA was studied by absorption, circular dichroism, fluorescence quenching, viscosity, salt effect and emission experiments. The results obtained from absorption, circular dichroism, fluorescence quenching and viscosity experiments excluded the intercalative binding and salt effect experiments did not support electrostatic binding. So the binding of l,d-phenylalanine to ct DNA should be groove binding. Furthermore, the emission spectra revealed that the binding is enantioselective.
Vendrell-Criado, Victoria; González-Bello, Concepción; Miranda, Miguel A; Jiménez, M Consuelo
2018-06-15
Binding of the immunosuppressive agent mycophenolate mofetil (MMP) and its pharmacologically active metabolite mycophenolic acid (MPA) to human serum albumin (HSA) and α 1 -acid glycoprotein (HAAG) has been investigated by means of an integrated approach involving selective excitation of the drug fluorophore, following their UV-A triggered fluorescence and docking studies. The formation of the protein/ligand complexes was evidenced by a dramatic enhancement of the fluorescence intensity and a hypsochromic shift of the emission band. In HSA, competitive studies using oleic acid as site I probe revealed site I as the main binding site of the ligands. Binding constants revealed that the affinity of the active metabolite by HSA is four-fold higher than its proactive form. Moreover, the affinity of MMP by HSA is three-fold higher than by HAAG. Docking studies revealed significant molecular binding differences in the binding of MMP and MPA to sub-domain IIA of HSA (site 1). For MPA, the aromatic moiety would be in close contact to Trp214 with the flexible chain pointing to the other end of the sub-domain; on the contrary, for MMP, the carboxylate group of the chain would be fixed nearby Trp214 through electrostatic interactions with residues Arg218 and Arg222. Copyright © 2018 Elsevier B.V. All rights reserved.
SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.
Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa
2016-04-07
The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Katrahalli, Umesha; Jaldappagari, Seetharamappa; Kalanur, Shankara S.
2010-01-01
The interaction between human serum albumin (HSA) and fluoxetine hydrochloride (FLX) have been studied by using different spectroscopic techniques viz., fluorescence, UV-vis absorption, circular dichroism and FTIR under simulated physiological conditions. Fluorescence results revealed the presence of static type of quenching mechanism in the binding of FLX to HSA. The values of binding constant, K of FLX-HSA were evaluated at 289, 300 and 310 K and were found to be 1.90 × 10 3, 1.68 × 10 3 and 1.45 × 10 3 M -1, respectively. The number of binding sites, n was noticed to be almost equal to unity thereby indicating the presence of a single class of binding site for FLX on HSA. Based on the thermodynamic parameters, Δ H0 and Δ S0 nature of binding forces operating between HSA and FLX were proposed. Spectral results revealed the conformational changes in protein upon interaction. Displacement studies indicated the site I as the main binding site for FLX on HSA. The effect of common ions on the binding of FLX to HSA was also investigated.
Streptococcus oralis Neuraminidase Modulates Adherence to Multiple Carbohydrates on Platelets.
Singh, Anirudh K; Woodiga, Shireen A; Grau, Margaret A; King, Samantha J
2017-03-01
Adherence to host surfaces is often mediated by bacterial binding to surface carbohydrates. Although it is widely appreciated that some bacterial species express glycosidases, previous studies have not considered whether bacteria bind to multiple carbohydrates within host glycans as they are modified by bacterial glycosidases. Streptococcus oralis is a leading cause of subacute infective endocarditis. Binding to platelets is a critical step in disease; however, the mechanisms utilized by S. oralis remain largely undefined. Studies revealed that S. oralis , like Streptococcus gordonii and Streptococcus sanguinis , binds platelets via terminal sialic acid. However, unlike those organisms, S. oralis produces a neuraminidase, NanA, which cleaves terminal sialic acid. Further studies revealed that following NanA-dependent removal of terminal sialic acid, S. oralis bound exposed β-1,4-linked galactose. Adherence to both these carbohydrates required Fap1, the S. oralis member of the serine-rich repeat protein (SRRP) family of adhesins. Mutation of a conserved residue required for sialic acid binding by other SRRPs significantly reduced platelet binding, supporting the hypothesis that Fap1 binds this carbohydrate. The mechanism by which Fap1 contributes to β-1,4-linked galactose binding remains to be defined; however, binding may occur via additional domains of unknown function within the nonrepeat region, one of which shares some similarity with a carbohydrate binding module. This study is the first demonstration that an SRRP is required to bind β-1,4-linked galactose and the first time that one of these adhesins has been shown to be required for binding of multiple glycan receptors. Copyright © 2017 American Society for Microbiology.
Basu, Anirban; Kumar, Gopinatha Suresh
2016-08-01
Interaction of the food colorant acid red 27 with double stranded DNA was investigated using spectroscopic and calorimetric methods. Absorbance and fluorescence studies suggested an intimate binding interaction between the dye and DNA. The quantum efficiency value testified an effective energy transfer from the DNA base pairs to the dye molecules. Minor groove displacement assay with Hoechst 33258 revealed that the binding occurs in the minor groove of DNA. Circular dichroism studies revealed that acid red 27 induces moderate conformational perturbations in DNA. Results of calorimetric studies suggested that the complexation process was driven largely by positive entropic contribution with a smaller favorable enthalpy contribution. The equilibrium constant of the binding was calculated to be (3.04 ± 0.09) × 10(4) M(-1) at 298.15 K. Negative heat capacity value along with the enthalpy-entropy compensation phenomenon established the involvement of dominant hydrophobic forces in the binding process. Differential scanning calorimetry studies presented evidence for an increased thermal stability of DNA on binding of acid red 27. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, D.; Kern, R; Puthenveedu, M
2009-01-01
Non-visual arrestins play a pivotal role as adaptor proteins in regulating the signaling and trafficking of multiple classes of receptors. Although arrestin interaction with clathrin, AP-2, and phosphoinositides contributes to receptor trafficking, little is known about the configuration and dynamics of these interactions. Here, we identify a novel interface between arrestin2 and clathrin through x-ray diffraction analysis. The intrinsically disordered clathrin binding box of arrestin2 interacts with a groove between blades 1 and 2 in the clathrin {beta}-propeller domain, whereas an 8-amino acid splice loop found solely in the long isoform of arrestin2 (arrestin2L) interacts with a binding pocket formedmore » by blades 4 and 5 in clathrin. The apposition of the two binding sites in arrestin2L suggests that they are exclusive and may function in higher order macromolecular structures. Biochemical analysis demonstrates direct binding of clathrin to the splice loop in arrestin2L, whereas functional analysis reveals that both binding domains contribute to the receptor-dependent redistribution of arrestin2L to clathrin-coated pits. Mutagenesis studies reveal that the clathrin binding motif in the splice loop is (L/I){sub 2}GXL. Taken together, these data provide a framework for understanding the dynamic interactions between arrestin2 and clathrin and reveal an essential role for this interaction in arrestin-mediated endocytosis.« less
NASA Astrophysics Data System (ADS)
Chinnathambi, Shanmugavel; Karthikeyan, Subramani; Velmurugan, Devadasan; Hanagata, Nobutaka; Aruna, Prakasarao; Ganesan, Singaravelu
2015-04-01
In the present study, the interaction of 5-Fluorouracil with herring sperm DNA is reported using spectroscopic and molecular modeling techniques. This binding study of 5-FU with hs-DNA is of paramount importance in understanding chemico-biological interactions for drug design, pharmacy and biochemistry without altering the original structure. The challenge of the study was to find the exact binding mode of the drug 5-Fluorouracil with hs-DNA. From the absorption studies, a hyperchromic effect was observed for the herring sperm DNA in the presence of 5-Fluorouracil and a binding constant of 6.153 × 103 M-1 for 5-Fluorouracil reveals the existence of weak interaction between the 5-Fluorouracil and herring sperm DNA. Ethidium bromide loaded herring sperm DNA showed a quenching in the fluorescence intensity after the addition of 5-Fluorouracil. The binding constants for 5-Fluorouracil stranded DNA and competitive bindings of 5-FU interacting with DNA-EB systems were examined by fluorescence spectra. The Stern-Volmer plots and fluorescence lifetime results confirm the static quenching nature of the drug-DNA complex. The binding constant Kb was 2.5 × 104 L mol-1 and the number of binding sites are 1.17. The 5-FU on DNA system was calculated using double logarithmic plot. From the Forster nonradiative energy transfer study it has been found that the distance of 5-FU from DNA was 4.24 nm. In addition to the spectroscopic results, the molecular modeling studies also revealed the major groove binding as well as the partial intercalation mode of binding between the 5-Fluorouracil and herring sperm DNA. The binding energy and major groove binding as -6.04 kcal mol-1 and -6.31 kcal mol-1 were calculated from the modeling studies. All the testimonies manifested that binding modes between 5-Fluorouracil and DNA were evidenced to be groove binding and in partial intercalative mode.
Perry, Jennifer L; Goldsmith, Michael R; Williams, T Richard; Radack, Kyle P; Christensen, Trine; Gorham, Justin; Pasquinelli, Melissa A; Toone, Eric J; Beratan, David N; Simon, John D
2006-01-01
Sudlow Site I of human serum albumin (HSA) is located in subdomain IIA of the protein and serves as a binding cavity for a variety of ligands. In this study, the binding of warfarin (W) is examined using computational techniques and isothermal titration calorimetry (ITC). The structure of the docked warfarin anion (W-) to Site I is similar to that revealed by X-ray crystallography, with a calculated binding constant of 5.8 x 10(5) M(-1). ITC experiments (pH 7.13 and I = 0.1) carried out in three different buffers (MOPs, phosphate and Tris) reveal binding of W- is accompanied by uptake of 0.30+/-0.02 protons from the solvent. This measurement suggests that the binding of W- is stabilized by an ion-pair interaction between protonated H242 and the phenoxide group of W-.
Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides.
Wu, J W; Cocina, A E; Chai, J; Hay, B A; Shi, Y
2001-07-01
The inhibitor of apoptosis protein DIAP1 suppresses apoptosis in Drosophila, with the second BIR domain (BIR2) playing an important role. Three proteins, Hid, Grim, and Reaper, promote apoptosis, in part by binding to DIAP1 through their conserved N-terminal sequences. The crystal structures of DIAP1-BIR2 by itself and in complex with the N-terminal peptides from Hid and Grim reveal that these peptides bind a surface groove on DIAP1, with the first four amino acids mimicking the binding of the Smac tetrapeptide to XIAP. The next 3 residues also contribute to binding through hydrophobic interactions. Interestingly, peptide binding induces the formation of an additional alpha helix in DIAP1. Our study reveals the structural conservation and diversity necessary for the binding of IAPs by the Drosophila Hid/Grim/Reaper and the mammalian Smac proteins.
2014-01-01
The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP+) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP+) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP+), has been investigated. Optical spectroscopy reveals that these probes are highly sensitive to their chemical microenvironment, responding to variations in polarity with changes in transition energies and responding to changes in viscosity or rotational freedom with emission enhancements. Molecular docking calculations reveal that the probes are able to access the nonpolar and conformationally restrictive binding pocket of SERT. As a result, the probes exhibit previously not identified binding-induced turn-on emission that is spectroscopically distinct from dyes that have accumulated intracellularly. Thus, binding and transport dynamics of SERT ligands can be resolved both spatially and spectroscopically. PMID:24460204
Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA.
Ozdemir, Ayse; Gursaclı, Refiye Tekiner; Tekinay, Turgay
2014-05-01
The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV-Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid-DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54 × 10(4) M(-1). FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations.
Emerman, Amy B; Blower, Michael
2018-06-14
RNA-binding proteins (RBPs) are critical regulators of gene expression. Recent studies have uncovered hundreds of mRNA-binding proteins that do not contain annotated RNA-binding domains and have well-established roles in other cellular processes. Investigation of these nonconventional RBPs is critical for revealing novel RNA-binding domains and may disclose connections between RNA regulation and other aspects of cell biology. Endosomal sorting complex required for transport II (ESCRT-II) is a nonconventional RNA-binding complex that has a canonical role in multivesicular body formation. ESCRT-II previously has been identified as an RNA-binding complex in Drosophila oocytes, but whether its RNA-binding properties extend beyond Drosophila is unknown. In this study, we found that the RNA-binding properties of ESCRT-II are conserved in Xenopus eggs, where ESCRT-II interacted with hundreds of mRNAs. Using a UV-crosslinking approach, we demonstrated that ESCRT-II binds directly to RNA through its subunit Vps25. UV-crosslinking and immunoprecipitation (CLIP)-Seq revealed that Vps25 specifically recognizes a polypurine (i.e. GA-rich) motif in RNA. Using purified components, we could reconstitute the selective Vps25-mediated binding of the polypurine motif in vitro. Our results provide insight into the mechanism by which ESCRT-II selectively binds to mRNAs and also suggest an unexpected link between endosome biology and RNA regulation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Tran, Diem-Trang T.; Le, Ly T.; Truong, Thanh N.
2013-08-01
Drug binding and unbinding are transient processes which are hardly observed by experiment and difficult to analyze by computational techniques. In this paper, we employed a cost-effective method called "pathway docking" in which molecular docking was used to screen ligand-receptor binding free energy surface to reveal possible paths of ligand approaching protein binding pocket. A case study was applied on oseltamivir, the key drug against influenza a virus. The equilibrium pathways identified by this method are found to be similar to those identified in prior studies using highly expensive computational approaches.
2011-01-01
Background Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. Results We analyzed in vitro and in vivo TF-DNA binding data reported in previous large-scale studies to generate a comprehensive, curated resource of DNA binding specificity data for all characterized S. cerevisiae TFs. Our collection comprises DNA binding site motifs and comprehensive in vitro DNA binding specificity data for all possible 8-bp sequences. Investigation of the DNA binding specificities within the basic leucine zipper (bZIP) and VHT1 regulator (VHR) TF families revealed unexpected plasticity in TF-DNA recognition: intriguingly, the VHR TFs, newly characterized by protein binding microarrays in this study, recognize bZIP-like DNA motifs, while the bZIP TF Hac1 recognizes a motif highly similar to the canonical E-box motif of basic helix-loop-helix (bHLH) TFs. We identified several TFs with distinct primary and secondary motifs, which might be associated with different regulatory functions. Finally, integrated analysis of in vivo TF binding data with protein binding microarray data lends further support for indirect DNA binding in vivo by sequence-specific TFs. Conclusions The comprehensive data in this curated collection allow for more accurate analyses of regulatory TF-DNA interactions, in-depth structural studies of TF-DNA specificity determinants, and future experimental investigations of the TFs' predicted target genes and regulatory roles. PMID:22189060
Moreno, Andrew; Froehlig, John R; Bachas, Sharrol; Gunio, Drew; Alexander, Teressa; Vanya, Aaron; Wade, Herschel
2016-08-30
Multidrug resistance (MDR) refers to the acquired ability of cells to tolerate a broad range of toxic compounds. One mechanism cells employ is to increase the level of expression of efflux pumps for the expulsion of xenobiotics. A key feature uniting efflux-related mechanisms is multidrug (MD) recognition, either by efflux pumps themselves or by their transcriptional regulators. However, models describing MD binding by MDR effectors are incomplete, underscoring the importance of studies focused on the recognition elements and key motifs that dictate polyspecific binding. One such motif is the GyrI-like domain, which is found in several MDR proteins and is postulated to have been adapted for small-molecule binding and signaling. Here we report the solution binding properties and crystal structures of two proteins containing GyrI-like domains, SAV2435 and CTR107, bound to various ligands. Furthermore, we provide a comparison with deposited crystal structures of GyrI-like proteins, revealing key features of GyrI-like domains that not only support polyspecific binding but also are conserved among GyrI-like domains. Together, our studies suggest that GyrI-like domains perform evolutionarily conserved functions connected to multidrug binding and highlight the utility of these types of studies for elucidating mechanisms of MDR.
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
Hafner, Markus; Landthaler, Markus; Burger, Lukas; Khorshid, Mohsen; Hausser, Jean; Berninger, Philipp; Rothballer, Andrea; Ascano, Manuel; Jungkamp, Anna-Carina; Munschauer, Mathias; Ulrich, Alexander; Wardle, Greg S.; Dewell, Scott; Zavolan, Mihaela; Tuschl, Thomas
2010-01-01
Summary RNA transcripts are subject to post-transcriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases. PMID:20371350
Free energy calculations of glycosaminoglycan-protein interactions.
Gandhi, Neha S; Mancera, Ricardo L
2009-10-01
Glycosaminoglycans (GAGs) are complex highly charged linear polysaccharides that have a variety of roles in biological processes. We report the first use of molecular dynamics (MD) free energy calculations using the MM/PBSA method to investigate the binding of GAGs to protein molecules, namely the platelet endothelial cell adhesion molecule 1 (PECAM-1) and annexin A2. Calculations of the free energy of the binding of heparin fragments of different sizes reveal the existence of a region of low GAG-binding affinity in domains 5-6 of PECAM-1 and a region of high affinity in domains 2-3, consistent with experimental data and ligand-protein docking studies. A conformational hinge movement between domains 2 and 3 was observed, which allows the binding of heparin fragments of increasing size (pentasaccharides to octasaccharides) with an increasingly higher binding affinity. Similar simulations of the binding of a heparin fragment to annexin A2 reveal the optimization of electrostatic and hydrogen bonding interactions with the protein and protein-bound calcium ions. In general, these free energy calculations reveal that the binding of heparin to protein surfaces is dominated by strong electrostatic interactions for longer fragments, with equally important contributions from van der Waals interactions and vibrational entropy changes, against a large unfavorable desolvation penalty due to the high charge density of these molecules.
Activator Protein-1: redox switch controlling structure and DNA-binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Zhou; Machius, Mischa; Nestler, Eric J.
The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-pointmore » redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.« less
Binding of perlecan to transthyretin in vitro.
Smeland, S; Kolset, S O; Lyon, M; Norum, K R; Blomhoff, R
1997-01-01
Transthyretin is one of two specific proteins involved in the transport of thyroid hormones in plasma; it possesses two binding sites for serum retinol-binding protein. In the present study we demonstrate that transthyretin also interacts in vitro with [35S]sulphate-labelled material from the medium of HepG2 cells. By using the same strategy as for purifying serum retinol-binding protein, [35S]sulphate-labelled medium was specifically eluted from a transthyretin-affinity column. Ion-exchange chromatography showed that the material was highly polyanionic, and its size and alkali susceptibility suggested that it was a proteoglycan. Structural analyses with chondroitinase ABC lyase and nitrous acid revealed that approx. 20% was chondroitin sulphate and 80% heparan sulphate. Immunoprecipitation showed that the [35S]sulphate-labelled material contained perlecan. Further analysis by binding studies revealed specific and saturable binding of 125I-transthyretin to perlecan-enriched Matrigel. Because inhibition of sulphation by treating HepG2 cells with sodium chlorate increased the affinity of the perlecan for transthyretin, and [3H]heparin was not retained by the transthyretin affinity column, the binding is probably mediated by the core protein and is not a protein-glycosaminoglycan interaction. Because perlecan is released from transthyretin in water, the binding might be due to hydrophobic interactions. PMID:9307034
Novel Functional Properties of Drosophila CNS Glutamate Receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Dharkar, Poorva; Han, Tae-Hee
Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation bymore » its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation.« less
Novel Functional Properties of Drosophila CNS Glutamate Receptors.
Li, Yan; Dharkar, Poorva; Han, Tae-Hee; Serpe, Mihaela; Lee, Chi-Hon; Mayer, Mark L
2016-12-07
Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation by its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation. VIDEO ABSTRACT. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad
2018-03-01
DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (Kb) between TMG and DNA was 2.27 × 104 M- 1, that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH < 0 and ΔS < 0) at different temperatures indicated that van der Waals forces and hydrogen bonds were involved in the binding process of TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newberry, K.J.; Huffman, J.L.; Miller, M.C.
2009-05-22
BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets,more » that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.« less
Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.
Sárosi, Menyhárt-Botond
2018-06-05
Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.
Models of metal binding structures in fulvic acid from the Suwannee River, Georgia
Leenheer, J.A.; Brown, G.K.; MacCarthy, P.; Cabaniss, S.E.
1998-01-01
Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The 'metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-1R spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short- chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The `metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.
Gu, Yunlan; Wang, Yanqing; Zhang, Hongmei
2018-05-05
Being exogenous environmental pollutants, nitroanilines (NAs) are highly toxic and have mutagenic and carcinogenic activity. Being lack of studies on interactions between NAs and lysozyme at molecular level, the binding interactions of lysozyme with o-nitroaniline (oNA), m-nitroaniline (mNA) and p-nitroaniline (pNA) were investigated by means of steady-state fluorescence, synchronous fluorescence, UV-vis absorption spectroscopy, as well as molecular modeling. The experimental results revealed that the fluorescence of lysozyme is quenched by oNA and mNA through a static quenching, while the fluorescence quenching triggered by pNA is a combined dynamic and static quenching. The number of binding sites (n) and the binding constant (K b ) corresponding thermodynamic parameters ΔH ⊖ , ΔS ⊖ , ΔG ⊖ at different temperatures were calculated. The reactions between NAs and lysozyme were spontaneous and entropy driven and the binding of NAs to lysozyme induced conformation changes of lysozyme. The difference of the position of -NO 2 group affected the binding and the binding constants K b decreased in the following pattern: K b (pNA) >K b (mNA) >K b (oNA). Molecular docking studies were performed to reveal the most favorable binding sites of NAs on lysozyme. Our recently results could offer mechanistic insights into the nature of the binding interactions between NAs and lysozyme and provide information about the toxicity risk of NAs to human health. Copyright © 2018 Elsevier B.V. All rights reserved.
Determinants of cation transport selectivity: Equilibrium binding and transport kinetics
2015-01-01
The crystal structures of channels and transporters reveal the chemical nature of ion-binding sites and, thereby, constrain mechanistic models for their transport processes. However, these structures, in and of themselves, do not reveal equilibrium selectivity or transport preferences, which can be discerned only from various functional assays. In this Review, I explore the relationship between cation transport protein structures, equilibrium binding measurements, and ion transport selectivity. The primary focus is on K+-selective channels and nonselective cation channels because they have been extensively studied both functionally and structurally, but the principles discussed are relevant to other transport proteins and molecules. PMID:26078056
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Jungki; Perera, Lalith; Krahn, Juno M.
ABSTRACT Glucocorticoid receptor β (GRβ) is associated with glucocorticoid resistance via dominant negative regulation of GRα. To better understand how GRβ functions as a dominant negative inhibitor of GRα at a molecular level, we determined the crystal structure of the ligand binding domain of GRβ complexed with the antagonist RU-486. The structure reveals that GRβ binds RU-486 in the same ligand binding pocket as GRα, and the unique C-terminal amino acids of GRβ are mostly disordered. Binding energy analysis suggests that these C-terminal residues of GRβ do not contribute to RU-486 binding. Intriguingly, the GRβ/RU-486 complex binds corepressor peptide withmore » affinity similar to that of a GRα/RU-486 complex, despite the lack of helix 12. Our biophysical and biochemical analyses reveal that in the presence of RU-486, GRβ is found in a conformation that favors corepressor binding, potentially antagonizing GRα function. This study thus presents an unexpected molecular mechanism by which GRβ could repress transcription.« less
Coll, Sélim Yahia; Ceravolo, Leonardo; Frühholz, Sascha; Grandjean, Didier
2018-05-02
Different parts of our brain code the perceptual features and actions related to an object, causing a binding problem, in which the brain has to integrate information related to an event without any interference regarding the features and actions involved in other concurrently processed events. Using a paradigm similar to Hommel, who revealed perception-action bindings, we showed that emotion could bind with motor actions when relevant, and in specific conditions, irrelevant for the task. By adapting our protocol to a functional Magnetic Resonance Imaging paradigm we investigated, in the present study, the neural bases of the emotion-action binding with task-relevant angry faces. Our results showed that emotion bound with motor responses. This integration revealed increased activity in distributed brain areas involved in: (i) memory, including the hippocampi; (ii) motor actions with the precentral gyri; (iii) and emotion processing with the insula. Interestingly, increased activations in the cingulate gyri and putamen, highlighted their potential key role in the emotion-action binding, due to their involvement in emotion processing, motor actions, and memory. The present study confirmed our previous results and point out for the first time the functional brain activity related to the emotion-action association.
Morphology manipulation of M13 bacteriophage template for nanostructure assembly
NASA Astrophysics Data System (ADS)
Ngo-Duc, Tam-Triet; Zaman, Mohammed S.; Moon, Chung-Hee; Haberer, Elaine D.
2014-08-01
A gold-binding M13 bacteriophage was used as a model system to explore templating of inorganic material on geometrically transformed viruses . Gold-binding filamentous phage were converted to spheroid form with a short chloroform treatment, and the resulting morphology was investigated with electron microscopy. Binding studies revealed that spheroid-shaped gold-binding phage preserved its affinity for gold. Spheroids adhered to a planar substrate assembled clusters or rings of gold nanoparticles. This gold-binding phage served as a demonstration of a highly shape-modifiable viral-template for inorganic materials.
2016-06-14
characterize FVM04 binding to EBOV GP, FVM04 Fab in complex with GP∆Muc was analyzed by negative stain electron microscopy. The binding location of...FVM04 revealed an epitope consistent with the crest region residues derived by mutagenesis studies. The class averages suggest that only one FVM04 Fab ...binds to each GP trimer (Figure 3A-B). It is likely that the binding orientation and proximity to the threefold axis precludes additional FVM04 Fabs
Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija
2018-01-01
The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.
Activator Protein-1: redox switch controlling structure and DNA-binding.
Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby
2017-11-02
The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad
2018-03-05
DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (K b ) between TMG and DNA was 2.27×10 4 M -1 , that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH<0 and ΔS<0) at different temperatures indicated that van der Waals forces and hydrogen bonds were involved in the binding process of TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking. Copyright © 2017 Elsevier B.V. All rights reserved.
Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives
NASA Astrophysics Data System (ADS)
War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi
2017-02-01
The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.
Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives.
War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi
2017-02-15
The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues. Copyright © 2016 Elsevier B.V. All rights reserved.
Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes
NASA Astrophysics Data System (ADS)
Rajesh, Jegathalaprathaban; Rajasekaran, Marichamy; Rajagopal, Gurusamy; Athappan, Periakaruppan
2012-11-01
DNA interaction studies of two mononuclear [1:1(1); 1:2(2)] copper(II) complexes of curcumin have been studied. The interaction of these complexes with CT-DNA has been explored by physical methods to propose modes of DNA binding of the complexes. Absorption spectral titrations of complex 1 with CT-DNA shows a red-shift of 3 nm with the DNA binding affinity of Kb, 5.21 × 104 M-1 that are higher than that obtained for 2 (red-shift, 2 nm; Kb, 1.73 × 104 M-1) reveal that the binding occurs in grooves as a result of the interaction is via exterior phosphates. The CD spectra of these Cu(II) complexes show a red shift of 3-10 nm in the positive band with increase in intensities. This spectral change of induced CD due to the hydrophobic interaction of copper complexes with DNA is the characteristic of B to A conformational change. The EB displacement assay also reveals the same trend as observed in UV-Vis spectral titration. The addition of complexes 1 and 2 to the DNA bound ethidium bromide (EB) solutions causes an obvious reduction in emission intensities indicating that these complexes competitively bind to DNA with EB. The positive shift of both the Epc and E0' accompanied by reduction of peak currents in differential pulse voltammogram (DPV), upon adding different concentrations of DNA to the metal complexes, are obviously in favor of strong binding to DNA. The super coiled plasmid pUC18 DNA cleavage ability of Cu(II) complexes in the presence of reducing agent reveals the single strand DNA cleavage (ssDNA) is observed. The hydroxyl radical (HOrad ) and the singlet oxygen are believed to be the reactive species responsible for the cleavage.
Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P
2013-01-01
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.
Pagadala, Nataraj S; Perez-Pineiro, Rolando; Wishart, David S; Tuszynski, Jack A
2015-02-16
To understand the pharmacophore properties of 2-aminothiazoles and design novel inhibitors against the prion protein, a highly predictive 3D quantitative structure-activity relationship (QSAR) has been developed by performing comparative molecular field analysis (CoMFA) and comparative similarity analysis (CoMSIA). Both CoMFA and CoMSIA maps reveal the presence of the oxymethyl groups in meta and para positions on the phenyl ring of compound 17 (N-[4-(3,4-dimethoxyphenyl)-1,3-thiazol-2-yl]quinolin-2-amine), is necessary for activity while electro-negative nitrogen of quinoline is highly favorable to enhance activity. The blind docking results for these compounds show that the compound with quinoline binds with higher affinity than isoquinoline and naphthalene groups. Out of 150 novel compounds retrieved using finger print analysis by pharmacophoric model predicted based on five test sets of compounds, five compounds with diverse scaffolds were selected for biological evaluation as possible PrP inhibitors. Molecular docking combined with fluorescence quenching studies show that these compounds bind to pocket-D of SHaPrP near Trp145. The new antiprion compounds 3 and 6, which bind with the interaction energies of -12.1 and -13.2 kcal/mol, respectively, show fluorescence quenching with binding constant (Kd) values of 15.5 and 44.14 μM, respectively. Further fluorescence binding assays with compound 5, which is similar to 2-aminothiazole as a positive control, also show that the molecule binds to the pocket-D with the binding constant (Kd) value of 84.7 μM. Finally, both molecular docking and a fluorescence binding assay of noscapine as a negative control reveals the same binding site on the surface of pocket-A near a rigid loop between β2 and α2 interacting with Arg164. This high level of correlation between molecular docking and fluorescence quenching studies confirm that these five compounds are likely to act as inhibitors for prion propagation while noscapine might act as a prion accelerator from PrP(C) to PrP(Sc). Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Li, Zixuan; Moniz, Heather; Wang, Shuo; Ramiah, Annapoorani; Zhang, Fuming; Moremen, Kelley W.; Linhardt, Robert J.; Sharp, Joshua S.
2015-01-01
Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes. PMID:25752613
A detailed spectroscopic study on the interaction of Rhodamine 6G with human hemoglobin.
Mandal, Paulami; Bardhan, Munmun; Ganguly, Tapan
2010-05-03
UV-vis, time-resolved fluorescence and circular dichroism spectroscopic investigations have been made to reveal the nature of the interactions between xanthene dye Rhodamine 6G and the well known protein hemoglobin. From the analysis of the steady-state and time-resolved fluorescence quenching of Rhodamine 6G in aqueous solutions in presence of hemoglobin, it is revealed that the quenching is static in nature. The primary binding pattern between Rhodamine and hemoglobin has been interpreted as combined effect of hydrophobic association and electrostatic interaction. The binding constants, number of binding sites and thermodynamic parameters at various pH of the environment have been computed. The binding average distance between the energy donor Rhodamine and acceptor hemoglobin has been determined from the Forster's theory. Copyright 2010 Elsevier B.V. All rights reserved.
Binding Pathway of Opiates to μ-Opioid Receptors Revealed by Machine Learning
NASA Astrophysics Data System (ADS)
Barati Farimani, Amir; Feinberg, Evan; Pande, Vijay
2018-02-01
Many important analgesics relieve pain by binding to the $\\mu$-Opioid Receptor ($\\mu$OR), which makes the $\\mu$OR among the most clinically relevant proteins of the G Protein Coupled Receptor (GPCR) family. Despite previous studies on the activation pathways of the GPCRs, the mechanism of opiate binding and the selectivity of $\\mu$OR are largely unknown. We performed extensive molecular dynamics (MD) simulation and analysis to find the selective allosteric binding sites of the $\\mu$OR and the path opiates take to bind to the orthosteric site. In this study, we predicted that the allosteric site is responsible for the attraction and selection of opiates. Using Markov state models and machine learning, we traced the pathway of opiates in binding to the orthosteric site, the main binding pocket. Our results have important implications in designing novel analgesics.
How Arousal Affects Younger and Older Adults' Memory Binding
Nashiro, Kaoru; Mather, Mara
2009-01-01
A number of recent studies have shown that associative memory for within-item features is enhanced for emotionally arousing items, whereas arousal-enhanced binding is not seen for associations between distinct items (for a review see Mather, 2007). The costs and benefits of arousal in memory binding have been examined for younger adults but not for older adults. The present experiment examined whether arousal would enhance younger and older adults' within-item and between-item memory binding. The results revealed that arousal improved younger adults' within-item memory binding but not that of older adults. Arousal worsened both groups' between-item memory binding. PMID:21240821
How arousal affects younger and older adults' memory binding.
Nashiro, Kaoru; Mather, Mara
2011-01-01
A number of recent studies have shown that associative memory for within-item features is enhanced for emotionally arousing items, whereas arousal-enhanced binding is not seen for associations between distinct items (for a review, see Mather, 2007, Perspectives on Psychological Science, 2, 33-52). The costs and benefits of arousal in memory binding have been examined for younger adults but not for older adults. The present experiment examined whether arousal would enhance younger and older adults' within-item and between-item memory binding. The results revealed that arousal improved younger adults' within-item memory binding but not that of older adults. Arousal worsened both groups' between-item memory binding.
Bello, Martiniano
2014-10-01
The bovine dairy protein β-lactoglobulin (βlg) is a promiscuous protein that has the ability to bind several hydrophobic ligands. In this study, based on known experimental data, the dynamic interaction mechanism between bovine βlg and four fatty acids was investigated by a protocol combining molecular dynamics (MD) simulations and molecular mechanics generalized Born surface area (MMGBSA) binding free energy calculations. Energetic analyses revealed binding free energy trends that corroborated known experimental findings; larger ligand size corresponded to greater binding affinity. Finally, binding free energy decomposition provided detailed information about the key residues stabilizing the complex. © 2014 Wiley Periodicals, Inc.
Shewell, Lucy K.; Harvey, Richard M.; Higgins, Melanie A.; Day, Christopher J.; Hartley-Tassell, Lauren E.; Chen, Austen Y.; Gillen, Christine M.; James, David B. A.; Alonzo, Francis; Torres, Victor J.; Walker, Mark J.; Paton, Adrienne W.; Paton, James C.; Jennings, Michael P.
2014-01-01
The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a Kd of 1.88 × 10−5 M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism. PMID:25422425
Shewell, Lucy K; Harvey, Richard M; Higgins, Melanie A; Day, Christopher J; Hartley-Tassell, Lauren E; Chen, Austen Y; Gillen, Christine M; James, David B A; Alonzo, Francis; Torres, Victor J; Walker, Mark J; Paton, Adrienne W; Paton, James C; Jennings, Michael P
2014-12-09
The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.
The role of aging in intra-item and item-context binding processes in visual working memory.
Peterson, Dwight J; Naveh-Benjamin, Moshe
2016-11-01
Aging is accompanied by declines in both working memory and long-term episodic memory processes. Specifically, important age-related memory deficits are characterized by performance impairments exhibited by older relative to younger adults when binding distinct components into a single integrated representation, despite relatively intact memory for the individual components. While robust patterns of age-related binding deficits are prevalent in studies of long-term episodic memory, observations of such deficits in visual working memory (VWM) may depend on the specific type of binding process being examined. For instance, a number of studies indicate that processes involved in item-context binding of items to occupied spatial locations within visual working memory are impaired in older relative to younger adults. Other findings suggest that intra-item binding of visual surface features (e.g., color, shape), compared to memory for single features, within visual working memory, remains relatively intact. Here, we examined each of these binding processes in younger and older adults under both optimal conditions (i.e., no concurrent load) and concurrent load (e.g., articulatory suppression, backward counting). Experiment 1 revealed an age-related intra-item binding deficit for surface features under no concurrent load but not when articulatory suppression was required. In contrast, in Experiments 2 and 3, we observed an age-related item-context binding deficit regardless of the level of concurrent load. These findings reveal that the influence of concurrent load on distinct binding processes within VWM, potentially those supported by rehearsal, is an important factor mediating the presence or absence of age-related binding deficits within VWM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Specific strychnine binding sites on acrosome-associated membranes of golden hamster spermatozoa.
Llanos, Miguel N; Ronco, Ana M; Aguirre, María C
2003-06-27
This study demonstrates for the first time, that membrane vesicles originated from the hamster sperm head after the occurrence of the acrosome reaction, possess specific strychnine binding sites. [3H]Strychnine binding was saturable and reversible, being displaced by unlabeled strychnine (IC(50)=26.7+/-2.3 microM). Kinetic analysis revealed one binding site with K(d)=120nM and B(max)=142fmol/10(6) spermatozoa. Glycine receptor agonists beta-alanine and taurine inhibited strychnine binding by 20-30%. Surprisingly, glycine stimulated binding by about 40-50%. Results obtained in this study strongly suggest the presence of glycine receptors-with distinctive kinetic properties on the periacrosomal plasma membrane of hamster spermatozoa. Localization of this receptor fits well with its previously proposed role in acrosomal exocytosis during mammalian fertilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjuts, Hanno; Dunstan, Mark S.; Fisher, Karl
2013-08-01
The first crystal structure of the vitamin B12-binding protein from a three-component O-demethylase enzyme system is reported. During O-demethylation methyl groups are transferred from phenyl methyl ethers to tetrahydrofolate via methyl-B12 intermediates. This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar tomore » other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense.« less
Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi; Miyauchi, Yumiko; Hatano, Ken-ichi
2013-01-01
STK_08120 is a member of the thermoacidophile-specific DUF3211 protein family from Sulfolobus tokodaii strain 7. Its molecular function remains obscure, and sequence similarities for obtaining functional remarks are not available. In this study, the crystal structure of STK_08120 was determined at 1.79-Å resolution to predict its probable function using structure similarity searches. The structure adopts an α/β structure of a helix-grip fold, which is found in the START domain proteins with cavities for hydrophobic substrates or ligands. The detailed structural features implied that fatty acids are the primary ligand candidates for STK_08120, and binding assays revealed that the protein bound long-chain saturated fatty acids (>C14) and their trans-unsaturated types with an affinity equal to that for major fatty acid binding proteins in mammals and plants. Moreover, the structure of an STK_08120-myristic acid complex revealed a unique binding mode among fatty acid binding proteins. These results suggest that the thermoacidophile-specific protein family DUF3211 functions as a fatty acid carrier with a novel binding mode. PMID:23836863
Kong, Xiaotian; Sun, Huiyong; Pan, Peichen; Tian, Sheng; Li, Dan; Li, Youyong; Hou, Tingjun
2016-01-21
Due to the high sequence identity of the binding pockets of cyclin-dependent kinases (CDKs), designing highly selective inhibitors towards a specific CDK member remains a big challenge. 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine derivatives are effective inhibitors of CDKs, among which the most promising inhibitor 12u demonstrates high binding affinity to CDK9 and attenuated binding affinity to other homologous kinases, such as CDK2. In this study, in order to rationalize the principle of the binding preference towards CDK9 over CDK2 and to explore crucial information that may aid the design of selective CDK9 inhibitors, MM/GBSA calculations based on conventional molecular dynamics (MD) simulations and enhanced sampling simulations (umbrella sampling and steered MD simulations) were carried out on two representative derivatives (12u and 4). The calculation results show that the binding specificity of 12u to CDK9 is primarily controlled by conformational change of the G-loop and variation of the van der Waals interactions. Furthermore, the enhanced sampling simulations revealed the different reaction coordinates and transient interactions of inhibitors 12u and 4 as they dissociate from the binding pockets of CDK9 and CDK2. The physical principles obtained from this study may facilitate the discovery and rational design of novel and specific inhibitors of CDK9.
Duan, Juan; Hu, Chuncai; Guo, Jiafan; Guo, Lianxian; Sun, Jia; Zhao, Zuguo
2018-02-28
The mechanism of substrate hydrolysis of New Delhi metallo-β-lactamase 1 (NDM-1) has been reported, but the process in which NDM-1 captures and transports the substrate into its active center remains unknown. In this study, we investigated the process of the substrate entry into the NDM-1 activity center through long unguided molecular dynamics simulations using meropenem as the substrate. A total of 550 individual simulations were performed, each of which for 200 ns, and 110 of them showed enzyme-substrate binding events. The results reveal three categories of relatively persistent and noteworthy enzyme-substrate binding configurations, which we call configurations A, B, and C. We performed binding free energy calculations of the enzyme-substrate complexes of different configurations using the molecular mechanics Poisson-Boltzmann surface area method. The role of each residue of the active site in binding the substrate was investigated using energy decomposition analysis. The simulated trajectories provide a continuous atomic-level view of the entire binding process, revealing potentially valuable regions where the enzyme and the substrate interact persistently and five possible pathways of the substrate entering into the active center, which were validated using well-tempered metadynamics. These findings provide important insights into the binding mechanism of meropenem to NDM-1, which may provide new prospects for the design of novel metallo-β-lactamase inhibitors and enzyme-resistant antibiotics.
Structural basis for DNA binding by replication initiator Mcm10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Eric M.; Vaithiyalingam, Sivaraja; Haworth, Justin
2009-06-30
Mcm10 is an essential eukaryotic DNA replication protein required for assembly and progression of the replication fork. The highly conserved internal domain (Mcm10-ID) has been shown to physically interact with single-stranded (ss) DNA, DNA polymerase alpha, and proliferating cell nuclear antigen (PCNA). The crystal structure of Xenopus laevis Mcm10-ID presented here reveals a DNA binding architecture composed of an oligonucleotide/oligosaccharide-fold followed in tandem by a variant and highly basic zinc finger. NMR chemical shift perturbation and mutational studies of DNA binding activity in vitro reveal how Mcm10 uses this unique surface to engage ssDNA. Corresponding mutations in Saccharomyces cerevisiae resultmore » in increased sensitivity to replication stress, demonstrating the functional importance of DNA binding by this region of Mcm10 to replication. In addition, mapping Mcm10 mutations known to disrupt PCNA, polymerase alpha, and DNA interactions onto the crystal structure provides insight into how Mcm10 might coordinate protein and DNA binding within the replisome.« less
Probing protein flexibility reveals a mechanism for selective promiscuity
Pabon, Nicolas A; Camacho, Carlos J
2017-01-01
Many eukaryotic regulatory proteins adopt distinct bound and unbound conformations, and use this structural flexibility to bind specifically to multiple partners. However, we lack an understanding of how an interface can select some ligands, but not others. Here, we present a molecular dynamics approach to identify and quantitatively evaluate the interactions responsible for this selective promiscuity. We apply this approach to the anticancer target PD-1 and its ligands PD-L1 and PD-L2. We discover that while unbound PD-1 exhibits a hard-to-drug hydrophilic interface, conserved specific triggers encoded in the cognate ligands activate a promiscuous binding pathway that reveals a flexible hydrophobic binding cavity. Specificity is then established by additional contacts that stabilize the PD-1 cavity into distinct bound-like modes. Collectively, our studies provide insight into the structural basis and evolution of multiple binding partners, and also suggest a biophysical approach to exploit innate binding pathways to drug seemingly undruggable targets. DOI: http://dx.doi.org/10.7554/eLife.22889.001 PMID:28432789
Schwaighofer, Andreas; Kotlowski, Caroline; Araman, Can; Chu, Nam; Mastrogiacomo, Rosa; Becker, Christian; Pelosi, Paolo; Knoll, Wolfgang; Larisika, Melanie; Nowak, Christoph
2014-03-01
In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.
The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auerbach, Tamar; Mermershtain, Inbal; Davidovich, Chen
2010-04-26
Crystallographic analysis revealed that the 17-member polyketide antibiotic lankacidin produced by Streptomyces rochei binds at the peptidyl transferase center of the eubacterial large ribosomal subunit. Biochemical and functional studies verified this finding and showed interference with peptide bond formation. Chemical probing indicated that the macrolide lankamycin, a second antibiotic produced by the same species, binds at a neighboring site, at the ribosome exit tunnel. These two antibiotics can bind to the ribosome simultaneously and display synergy in inhibiting bacterial growth. The binding site of lankacidin and lankamycin partially overlap with the binding site of another pair of synergistic antibiotics, themore » streptogramins. Thus, at least two pairs of structurally dissimilar compounds have been selected in the course of evolution to act synergistically by targeting neighboring sites in the ribosome. These results underscore the importance of the corresponding ribosomal sites for development of clinically relevant synergistic antibiotics and demonstrate the utility of structural analysis for providing new directions for drug discovery.« less
Israeli, Hadar; Cohen-Dvashi, Hadas; Shulman, Anastasiya; Shimon, Amir; Diskin, Ron
2017-04-01
Cell entry of many enveloped viruses occurs by engagement with cellular receptors, followed by internalization into endocytic compartments and pH-induced membrane fusion. A previously unnoticed step of receptor switching was found to be critical during cell entry of two devastating human pathogens: Ebola and Lassa viruses. Our recent studies revealed the functional role of receptor switching to LAMP1 for triggering membrane fusion by Lassa virus and showed the involvement of conserved histidines in this switching, suggesting that other viruses from this family may also switch to LAMP1. However, when we investigated viruses that are genetically close to Lassa virus, we discovered that they cannot bind LAMP1. A crystal structure of the receptor-binding module from Morogoro virus revealed structural differences that allowed mapping of the LAMP1 binding site to a unique set of Lassa residues not shared by other viruses in its family, illustrating a key difference in the cell-entry mechanism of Lassa virus that may contribute to its pathogenicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akabayov, B.; Akabayov, S; Lee , S
Gene 5 of bacteriophage T7 encodes a DNA polymerase (gp5) responsible for the replication of the phage DNA. Gp5 polymerizes nucleotides with low processivity, dissociating after the incorporation of 1 to 50 nucleotides. Thioredoxin (trx) of Escherichia coli binds tightly (Kd = 5 nM) to a unique segment in the thumb subdomain of gp5 and increases processivity. We have probed the molecular basis for the increase in processivity. A single-molecule experiment reveals differences in rates of enzymatic activity and processivity between gp5 and gp5/trx. Small angle X-ray scattering studies combined with nuclease footprinting reveal two conformations of gp5, one inmore » the free state and one upon binding to trx. Comparative analysis of the DNA binding clefts of DNA polymerases and DNA binding proteins show that the binding surface contains more hydrophobic residues than other DNA binding proteins. The balanced composition between hydrophobic and charged residues of the binding site allows for efficient sliding of gp5/trx on the DNA. We propose a model for trx-induced conformational changes in gp5 that enhance the processivity by increasing the interaction of gp5 with DNA.« less
Cooperativity and complexity in the binding of anions and cations to a tetratopic ion-pair host.
Howe, Ethan N W; Bhadbhade, Mohan; Thordarson, Pall
2014-05-21
Cooperative interactions play a very important role in both natural and synthetic supramolecular systems. We report here on the cooperative binding properties of a tetratopic ion-pair host 1. This host combines two isophthalamide anion recognition sites with two unusual "half-crown/two carbonyl" cation recognition sites as revealed by the combination of single-crystal X-ray analysis of the free host and the 1:2 host:calcium cation complex, together with two-dimensional NMR and computational studies. By systematically comparing all of the binding data to several possible binding models and focusing on four different variants of the 1:2 binding model, it was in most cases possible to quantify these complex cooperative interactions. The data showed strong negative cooperativity (α = 0.01-0.05) of 1 toward chloride and acetate anions, while for cations the results were more variable. Interestingly, in the competitive (CDCl3/CD3OD (9:1, v/v)) solvent, the addition of calcium cations to the tetratopic ion-pair host 1 allosterically switched "on" chloride binding that is otherwise not present in this solvent system. The insight into the complexity of cooperative interactions revealed in this study of the tetratopic ion-pair host 1 can be used to design better cooperative supramolecular systems for information transfer and catalysis.
Peluso, John J; Romak, Jonathan; Liu, Xiufang
2008-02-01
Progesterone (P4) receptor membrane component-1 (PGRMC1) and its binding partner, plasminogen activator inhibitor 1 RNA binding protein (PAIRBP1) are thought to form a complex that functions as membrane receptor for P4. The present investigations confirm PGRMC1's role in this membrane receptor complex by demonstrating that depleting PGMRC1 with PGRMC1 small interfering RNA results in a 60% decline in [(3)H]P4 binding and the loss of P4's antiapoptotic action. Studies conducted on partially purified GFP-PGRMC1 fusion protein indicate that [(3)H]P4 specifically binds to PGRMC1 at a single site with an apparent K(d) of about 35 nm. In addition, experiments using various deletion mutations reveal that the entire PGRMC1 molecule is required for maximal [(3)H]P4 binding and P4 responsiveness. Analysis of the binding data also suggests that the P4 binding site is within a segment of PGRMC1 that is composed of the transmembrane domain and the initial segment of the C terminus. Interestingly, PAIRBP1 appears to bind to the C terminus between amino acids 70-130, which is distal to the putative P4 binding site. Taken together, these data provide compelling evidence that PGRMC1 is the P4 binding protein that mediates P4's antiapoptotic action. Moreover, the deletion mutation studies indicate that each domain of PGRMC1 plays an essential role in modulating PGRMC1's capacity to both bind and respond to P4. Additional studies are required to more precisely delineate the role of each PGRMC1 domain in transducing P4's antiapoptotic action.
The MTA family proteins as novel histone H3 binding proteins.
Wu, Meng; Wang, Lina; Li, Qian; Li, Jiwen; Qin, Jun; Wong, Jiemin
2013-01-03
The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.
The MTA family proteins as novel histone H3 binding proteins
2013-01-01
Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail. PMID:23286669
Root-Bernstein, Robert; Turke, Miah; Subhramanyam, Udaya K Tiruttani; Churchill, Beth; Labahn, Joerg
2018-01-17
Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.
Bose, Debosreeta; Sarkar, Deboleena; Chattopadhyay, Nitin
2010-01-01
In the present investigation, an attempt has been made to study the interaction of phenosafranin (PSF), a cationic phenazinium dye with the transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), employing steady-state and time-resolved fluorometric and circular dichroism (CD) techniques. The photophysical properties of the dye are altered on binding with the serum proteins. An explicit study with respect to the modification of the fluorescence and fluorescence anisotropy upon binding, effect of denaturant, fluorescence lifetime and CD measurements reveal that the dye binds to both BSA and HSA with almost the same affinity. Far-UV CD spectra indicate a decrease in the percentage of alpha-helicity only for BSA upon binding with the probe. Near-UV CD responses indicate an alteration in the tertiary structure of both the transport proteins because of binding.
Tabassum, Sartaj; Ahmad, Musheer; Afzal, Mohd; Zaki, Mehvash; Bharadwaj, Parimal K
2014-11-01
New copper(II) complex with Schiff base ligand 4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid (H₂L) was synthesized and characterized by spectroscopic and analytical and single crystal X-ray diffraction studies which revealed that the complex 1 exist in a distorted octahedral environment. In vitro CT-DNA binding studies were performed by employing different biophysical technique which indicated that the 1 strongly binds to DNA in comparison to ligand via electrostatic binding mode. Complex 1 cleaves pBR322 DNA via hydrolytic pathway and recognizes minor groove of DNA double helix. The HSA binding results showed that ligand and complex 1 has ability to quench the fluorescence emission intensity of Trp 214 residue available in the subdomain IIA of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.
Prakash, Aishwarya; Natarajan, Amarnath; Marky, Luis A.; Ouellette, Michel M.; Borgstahl, Gloria E. O.
2011-01-01
Replication protein A (RPA), a key player in DNA metabolism, has 6 single-stranded DNA-(ssDNA-) binding domains (DBDs) A-F. SELEX experiments with the DBDs-C, -D, and -E retrieve a 20-nt G-quadruplex forming sequence. Binding studies show that RPA-DE binds preferentially to the G-quadruplex DNA, a unique preference not observed with other RPA constructs. Circular dichroism experiments show that RPA-CDE-core can unfold the G-quadruplex while RPA-DE stabilizes it. Binding studies show that RPA-C binds pyrimidine- and purine-rich sequences similarly. This difference between RPA-C and RPA-DE binding was also indicated by the inability of RPA-CDE-core to unfold an oligonucleotide containing a TC-region 5′ to the G-quadruplex. Molecular modeling studies of RPA-DE and telomere-binding proteins Pot1 and Stn1 reveal structural similarities between the proteins and illuminate potential DNA-binding sites for RPA-DE and Stn1. These data indicate that DBDs of RPA have different ssDNA recognition properties. PMID:21772997
Zhao, Ke; Chen, Yu-Hsin; Yan, Wen-Jing; Fu, Xiaolan
2013-01-01
Binding effect refers to the perceptual attraction between an action and an outcome leading to a subjective compression of time. Most studies investigating binding effects exclusively employ the "pressing" action without exploring other types of actions. The present study addresses this issue by introducing another action, releasing action or the voluntary lifting of the finger/wrist, to investigate the differences between voluntary pressing and releasing actions. Results reveal that releasing actions led to robust yet short-lived temporal binding effects, whereas pressing condition had steady temporal binding effects up to super-seconds. The two actions also differ in sensitivity to changes in temporal contiguity and contingency, which could be attributed to the difference in awareness of action. Extending upon current models of "willed action," our results provide insights from a temporal point of view and support the concept of a dual system consisting of predictive motor control and top-down mechanisms.
Cheng, Li-Yang; Fang, Min; Bai, Ai-Min; Ouyang, Yu; Hu, Yan-Jun
2017-08-01
In this study, fluorescence spectroscopy and molecular modeling approaches were employed to investigate the binding of methotrexate to human serum albumin (HSA) under physiological conditions. From the mechanism, it was demonstrated that fluorescence quenching of HSA by methotrexate results from the formation of a methotrexate/HSA complex. Binding parameters calculated using the Stern-Volmer method and the Scatchard method showed that methotrexate binds to HSA with binding affinities in the order 10 4 L·mol -1 . Thermodynamic parameter studies revealed that the binding reaction is spontaneous, and that hydrogen bonds and van der Waals interactions play a major role in the reaction. Site marker competitive displacement experiments and a molecular modeling approach demonstrated that methotrexate binds with appropriate affinity to site I (subdomain IIA) of HSA. Furthermore, we discuss some factors that influence methotrexate binding to HSA. Copyright © 2017 John Wiley & Sons, Ltd.
Cu(I)-mediated Allosteric Switching in a Copper-sensing Operon Repressor (CsoR)*
Chang, Feng-Ming James; Coyne, H. Jerome; Cubillas, Ciro; Vinuesa, Pablo; Fang, Xianyang; Ma, Zhen; Ma, Dejian; Helmann, John D.; García-de los Santos, Alejandro; Wang, Yun-Xing; Dann, Charles E.; Giedroc, David P.
2014-01-01
The copper-sensing operon repressor (CsoR) is representative of a major Cu(I)-sensing family of bacterial metalloregulatory proteins that has evolved to prevent cytoplasmic copper toxicity. It is unknown how Cu(I) binding to tetrameric CsoRs mediates transcriptional derepression of copper resistance genes. A phylogenetic analysis of 227 DUF156 protein members, including biochemically or structurally characterized CsoR/RcnR repressors, reveals that Geobacillus thermodenitrificans (Gt) CsoR characterized here is representative of CsoRs from pathogenic bacilli Listeria monocytogenes and Bacillus anthracis. The 2.56 Å structure of Cu(I)-bound Gt CsoR reveals that Cu(I) binding induces a kink in the α2-helix between two conserved copper-ligating residues and folds an N-terminal tail (residues 12–19) over the Cu(I) binding site. NMR studies of Gt CsoR reveal that this tail is flexible in the apo-state with these dynamics quenched upon Cu(I) binding. Small angle x-ray scattering experiments on an N-terminally truncated Gt CsoR (Δ2–10) reveal that the Cu(I)-bound tetramer is hydrodynamically more compact than is the apo-state. The implications of these findings for the allosteric mechanisms of other CsoR/RcnR repressors are discussed. PMID:24831014
Carbohydrate binding properties of the stinging nettle (Urtica dioica) rhizome lectin.
Shibuya, N; Goldstein, I J; Shafer, J A; Peumans, W J; Broekaert, W F
1986-08-15
The interaction of the stinging nettle rhizome lectin (UDA) with carbohydrates was studied by using the techniques of quantitative precipitation, hapten inhibition, equilibrium dialysis, and uv difference spectroscopy. The Carbohydrate binding site of UDA was determined to be complementary to an N,N',N"-triacetylchitotriose unit and proposed to consist of three subsites, each of which has a slightly different binding specificity. UDA also has a hydrophobic interacting region adjacent to the carbohydrate binding site. Equilibrium dialysis and uv difference spectroscopy revealed that UDA has two carbohydrate binding sites per molecule consisting of a single polypeptide chain. These binding sites either have intrinsically different affinities for ligand molecules, or they may display negative cooperativity toward ligand binding.
Interaction of dihydrofolate reductase with methotrexate: Ensemble and single-molecule kinetics
NASA Astrophysics Data System (ADS)
Rajagopalan, P. T. Ravi; Zhang, Zhiquan; McCourt, Lynn; Dwyer, Mary; Benkovic, Stephen J.; Hammes, Gordon G.
2002-10-01
The thermodynamics and kinetics of the interaction of dihydrofolate reductase (DHFR) with methotrexate have been studied by using fluorescence, stopped-flow, and single-molecule methods. DHFR was modified to permit the covalent addition of a fluorescent molecule, Alexa 488, and a biotin at the N terminus of the molecule. The fluorescent molecule was placed on a protein loop that closes over methotrexate when binding occurs, thus causing a quenching of the fluorescence. The biotin was used to attach the enzyme in an active form to a glass surface for single-molecule studies. The equilibrium dissociation constant for the binding of methotrexate to the enzyme is 9.5 nM. The stopped-flow studies revealed that methotrexate binds to two different conformations of the enzyme, and the association and dissociation rate constants were determined. The single-molecule investigation revealed a conformational change in the enzyme-methotrexate complex that was not observed in the stopped-flow studies. The ensemble averaged rate constants for this conformation change in both directions is about 2-4 s1 and is attributed to the opening and closing of the enzyme loop over the bound methotrexate. Thus the mechanism of methotrexate binding to DHFR involves multiple steps and protein conformational changes.
Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR.
Gater, Deborah L; Saurel, Olivier; Iordanov, Iordan; Liu, Wei; Cherezov, Vadim; Milon, Alain
2014-11-18
Cholesterol binding to G protein-coupled receptors (GPCRs) and modulation of their activities in membranes is a fundamental issue for understanding their function. Despite the identification of cholesterol binding sites in high-resolution x-ray structures of the ?2 adrenergic receptor (β2AR) and other GPCRs, the binding affinity of cholesterol for this receptor and exchange rates between the free and bound cholesterol remain unknown. In this study we report the existence of two classes of cholesterol binding sites in β2AR. By analyzing the β2AR unfolding temperature in lipidic cubic phase (LCP) as a function of cholesterol concentration we observed high-affinity cooperative binding of cholesterol with sub-nM affinity constant. In contrast, saturation transfer difference (STD) NMR experiments revealed the existence of a second class of cholesterol binding sites, in fast exchange on the STD NMR timescale. Titration of the STD signal as a function of cholesterol concentration provided a lower limit of 100 mM for their dissociation constant. However, these binding sites are specific for both cholesterol and β2AR, as shown with control experiments using ergosterol and a control membrane protein (KpOmpA). We postulate that this specificity is mediated by the high-affinity bound cholesterol molecules and propose the formation of transient cholesterol clusters around the high-affinity binding sites.
NASA Astrophysics Data System (ADS)
Chen, Tingting; Cao, Hui; Zhu, Shajun; Lu, Yapeng; Shang, Yanfang; Wang, Miao; Tang, Yanfeng; Zhu, Li
2011-10-01
The studies on the interaction between HSA and drugs have been an interesting research field in life science, chemistry and clinical medicine. There are also many metal ions present in blood plasma, thus the research about the effect of metal ions on the interaction between drugs and plasma proteins is crucial. In this study, the interaction of Salvianolic acid B (Sal B) with human serum albumin (HSA) was investigated by the steady-state, synchronous fluorescence and circular dichroism (CD) spectroscopies. The results showed that Sal B had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching mechanism. Binding parameters calculated showed that Sal B was bound to HSA with the binding affinities of 10 5 L mol -1. The thermodynamic parameters studies revealed that the binding was characterized by positive enthalpy and positive entropy changes, and hydrophobic interactions were the predominant intermolecular forces to stabilize the complex. The specific binding distance r (2.93 nm) between donor (HSA) and acceptor (Sal B) was obtained according to Förster non-radiative resonance energy transfer theory. The synchronous fluorescence experiment revealed that Sal B cannot lead to the microenvironmental changes around the Tyr and Trp residues of HSA, and the binding site of Sal B on HSA is located in hydrophobic cavity of subdomain IIA. The CD spectroscopy indicated the secondary structure of HSA is not changed in the presence of Sal B. Furthermore, The effect of metal ions (e.g. Zn 2+, Cu 2+, Co 2+, Ni 2+, Fe 3+) on the binding constant of Sal B-HSA complex was also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmen Herranz, Ma; Sanchez-Navarro, Jesus-Angel; Sauri, Ana
2005-08-15
The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutantsmore » and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.« less
Carmen Herranz, Ma; Sanchez-Navarro, Jesús-Angel; Saurí, Ana; Mingarro, Ismael; Pallás, Vicente
2005-08-15
The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.
Gokara, Mahesh; Narayana, Vidadala V; Sadarangani, Vineet; Chowdhury, Shatabdi Roy; Varkala, Sreelaxmi; Ramachary, Dhevalapally B; Subramanyam, Rajagopal
2017-08-01
In this study, molecular binding affinity was investigated for Nefopam analogues (NFs), a functionalized benzoxazocine, with human serum albumin (HSA), a major transport protein in the blood. Its binding affinity and concomitant changes in its conformation, binding site and simulations were also studied. Fluorescence data revealed that the fluorescence quenching of HSA upon binding of NFs analogues is based on a static mechanism. The three analogues of NFs binding constants (K A ) are in the order of NF3 > NF2 > NF1 with values of 1.53 ± .057 × 10 4 , 2.16 ± .071 × 10 4 and 3.6 ± .102 × 10 5 M -1 , respectively. Concurrently, thermodynamic parameters indicate that the binding process was spontaneous, and the complexes were stabilized mostly by hydrophobic interactions, except for NF2 has one hydrogen bond stabilizes it along with hydrophobic interactions. Circular dichroism (CD) studies revealed that there is a decrease in α-helix with an increase in β-sheets and random coils signifying partial unfolding of the protein upon binding of NFs, which might be due to the formation of NFs-HSA complexes. Further, molecular docking studies showed that NF1, NF2 and NF3 bound to subdomains IIIA, IB and IIA through hydrophobic interactions. However, NF1 have additionally formed a single hydrogen bond with LYS 413. Furthermore, molecular simulations unveiled that NFs binding was in support with the structural perturbation observed in CD, which is evident from the root mean square deviation and R g fluctuations. We hope our insights will provide ample scope for engineering new drugs based on the resemblances with NFs for enhanced efficacy with HSA.
Characterization of [(3)H]harmane binding to rat whole brain membranes.
Anderson, N J; Robinson, E S J; Husbands, S M; Delagrange, P; Nutt, D J; Hudson, A L
2003-12-01
This study investigates the binding of [(3)H]harmane to rat whole brain homogenates. Saturation studies revealed [(3)H]harmane labels a single, saturable, high-capacity population with high affinity. All the test compounds displaced [(3)H]harmane completely and in an apparently monophasic manner. The displacement profile of the test ligands indicated labeling of MAO-A. Given the high level of MAO-A binding, it is unlikely that a low-capacity I(2) site would be distinguishable from the total [(3)H]harmane population.
2012-01-01
Background Superoxide generated by non-phagocytic NADPH oxidases (NOXs) is of growing importance for physiology and pathobiology. The calcium binding domain (CaBD) of NOX5 contains four EF-hands, each binding one calcium ion. To better understand the metal binding properties of the 1st and 2nd EF-hands, we characterized the N-terminal half of CaBD (NCaBD) and its calcium-binding knockout mutants. Results The isothermal titration calorimetry measurement for NCaBD reveals that the calcium binding of two EF-hands are loosely associated with each other and can be treated as independent binding events. However, the Ca2+ binding studies on NCaBD(E31Q) and NCaBD(E63Q) showed their binding constants to be 6.5 × 105 and 5.0 × 102 M-1 with ΔHs of -14 and -4 kJ/mol, respectively, suggesting that intrinsic calcium binding for the 1st non-canonical EF-hand is largely enhanced by the binding of Ca2+ to the 2nd canonical EF-hand. The fluorescence quenching and CD spectra support a conformational change upon Ca2+ binding, which changes Trp residues toward a more non-polar and exposed environment and also increases its α-helix secondary structure content. All measurements exclude Mg2+-binding in NCaBD. Conclusions We demonstrated that the 1st non-canonical EF-hand of NOX5 has very weak Ca2+ binding affinity compared with the 2nd canonical EF-hand. Both EF-hands interact with each other in a cooperative manner to enhance their Ca2+ binding affinity. Our characterization reveals that the two EF-hands in the N-terminal NOX5 are Ca2+ specific. Graphical abstract PMID:22490336
Object-based attention underlies the rehearsal of feature binding in visual working memory.
Shen, Mowei; Huang, Xiang; Gao, Zaifeng
2015-04-01
Feature binding is a core concept in many research fields, including the study of working memory (WM). Over the past decade, it has been debated whether keeping the feature binding in visual WM consumes more visual attention than the constituent single features. Previous studies have only explored the contribution of domain-general attention or space-based attention in the binding process; no study so far has explored the role of object-based attention in retaining binding in visual WM. We hypothesized that object-based attention underlay the mechanism of rehearsing feature binding in visual WM. Therefore, during the maintenance phase of a visual WM task, we inserted a secondary mental rotation (Experiments 1-3), transparent motion (Experiment 4), or an object-based feature report task (Experiment 5) to consume the object-based attention available for binding. In line with the prediction of the object-based attention hypothesis, Experiments 1-5 revealed a more significant impairment for binding than for constituent single features. However, this selective binding impairment was not observed when inserting a space-based visual search task (Experiment 6). We conclude that object-based attention underlies the rehearsal of binding representation in visual WM. (c) 2015 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Khan, Asma Yasmeen; Saha, Baishakhi; Kumar, Gopinatha Suresh
2014-10-01
A comprehensive study on the binding of phenazinium dyes viz. janus green B, indoine blue, safranine O and phenosafranine with double stranded poly(A) using various spectroscopic and calorimetric techniques is presented. A higher binding of janus green B and indoine blue over safranine O and phenosafranine to poly(A) was observed from all experiments. Intercalative mode of binding of the dyes was inferred from fluorescence polarization anisotropy, iodide quenching and viscosity experiments. Circular dichroism study revealed significant perturbation of the secondary structure of poly(A) on binding of these dyes. Results from isothermal titration calorimetry experiments suggested that the binding was predominantly entropy driven with a minor contribution of enthalpy to the standard molar Gibbs energy. The results presented here may open new opportunities in the application of these dyes as RNA targeted therapeutic agents.
Warfield, Becka M.
2017-01-01
RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are present the population of binding-competent aptamer states increases more than twofold. This population change, rather than direct interactions between Mg2+ and theophylline, accounts for altered theophylline binding kinetics. PMID:28437473
Pyrrole and Fused Pyrrole Compounds with Bioactivity against Inflammatory Mediators.
Said Fatahala, Samar; Hasabelnaby, Sherifa; Goudah, Ayman; Mahmoud, Ghada I; Helmy Abd-El Hameed, Rania
2017-03-17
A new series of pyrrolopyridines and pyrrolopyridopyrimidines have been synthesized from aminocyanopyrroles. The synthesized compounds have been characterized by FTIR, ¹H-NMR and mass spectroscopy. The final compounds have been screened for in vitro pro-inflammatory cytokine inhibitory and in vivo anti-inflammatory activity. The biological results revealed that among all tested compounds some fused pyrroles, namely the pyrrolopyridines 3i and 3l , show promising activity. A docking study of the active synthesized molecules confirmed the biological results and revealed a new binding pose in the COX-2 binding site.
Biological role and structural mechanism of twinfilin–capping protein interaction
Falck, Sandra; Paavilainen, Ville O; Wear, Martin A; Grossmann, J Günter; Cooper, John A; Lappalainen, Pekka
2004-01-01
Twinfilin and capping protein (CP) are highly conserved actin-binding proteins that regulate cytoskeletal dynamics in organisms from yeast to mammals. Twinfilin binds actin monomer, while CP binds the barbed end of the actin filament. Remarkably, twinfilin and CP also bind directly to each other, but the mechanism and role of this interaction in actin dynamics are not defined. Here, we found that the binding of twinfilin to CP does not affect the binding of either protein to actin. Furthermore, site-directed mutagenesis studies revealed that the CP-binding site resides in the conserved C-terminal tail region of twinfilin. The solution structure of the twinfilin–CP complex supports these conclusions. In vivo, twinfilin's binding to both CP and actin monomer was found to be necessary for twinfilin's role in actin assembly dynamics, based on genetic studies with mutants that have defined biochemical functions. Our results support a novel model for how sequential interactions between actin monomers, twinfilin, CP, and actin filaments promote cytoskeletal dynamics. PMID:15282541
Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D
2016-03-14
Nanoparticles entering the human body instantly become coated with a "protein corona" that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an "organic corona" containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.
Computational analysis of the receptor binding specificity of novel influenza A/H7N9 viruses.
Zhou, Xinrui; Zheng, Jie; Ivan, Fransiskus Xaverius; Yin, Rui; Ranganathan, Shoba; Chow, Vincent T K; Kwoh, Chee-Keong
2018-05-09
Influenza viruses are undergoing continuous and rapid evolution. The fatal influenza A/H7N9 has drawn attention since the first wave of infections in March 2013, and raised more grave concerns with its increased potential to spread among humans. Experimental studies have revealed several host and virulence markers, indicating differential host binding preferences which can help estimate the potential of causing a pandemic. Here we systematically investigate the sequence pattern and structural characteristics of novel influenza A/H7N9 using computational approaches. The sequence analysis highlighted mutations in protein functional domains of influenza viruses. Molecular docking and molecular dynamics simulation revealed that the hemagglutinin (HA) of A/Taiwan/1/2017(H7N9) strain enhanced the binding with both avian and human receptor analogs, compared with the previous A/Shanghai/02/2013(H7N9) strain. The Molecular Mechanics - Poisson Boltzmann Surface Area (MM-PBSA) calculation revealed the change of residue-ligand interaction energy and detected the residues with conspicuous binding preference. The results are novel and specific to the emerging influenza A/Taiwan/1/2017(H7N9) strain compared with A/Shanghai/02/2013(H7N9). Its enhanced ability to bind human receptor analogs, which are abundant in the human upper respiratory tract, may be responsible for the recent outbreak. Residues showing binding preference were detected, which could facilitate monitoring the circulating influenza viruses.
Garrido, Daniel; Kim, Jae Han; German, J. Bruce; Raybould, Helen E.; Mills, David A.
2011-01-01
Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process. PMID:21423604
Variola virus E3L Zα domain, but not its Z-DNA binding activity, is required for PKR inhibition.
Thakur, Meghna; Seo, Eun Joo; Dever, Thomas E
2014-02-01
Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.
Lively, T N; Ferguson, H A; Galasinski, S K; Seto, A G; Goodrich, J A
2001-07-06
c-Jun is an oncoprotein that activates transcription of many genes involved in cell growth and proliferation. We studied the mechanism of transcriptional activation by human c-Jun in a human RNA polymerase II transcription system composed of highly purified recombinant and native transcription factors. Transcriptional activation by c-Jun depends on the TATA-binding protein (TBP)-associated factor (TAF) subunits of transcription factor IID (TFIID). Protein-protein interaction assays revealed that c-Jun binds with high specificity to the largest subunit of human TFIID, TAF(II)250. The region of TAF(II)250 bound by c-Jun lies in the N-terminal 163 amino acids. This same region of TAF(II)250 binds to TBP and represses its interaction with TATA boxes, thereby decreasing DNA binding by TFIID. We hypothesized that c-Jun is capable of derepressing the effect of the TAF(II)250 N terminus on TFIID-driven transcription. In support of this hypothesis, we found that c-Jun increased levels of TFIID-driven transcription in vitro when added at high concentrations to a DNA template lacking activator protein 1 (AP-1) sites. Moreover, c-Jun blocked the repression of TBP DNA binding caused by the N terminus of TAF(II)250. In addition to revealing a mechanism by which c-Jun activates transcription, our studies provide the first evidence that an activator can bind directly to the N terminus of TAF(II)250 to derepress RNA polymerase II transcription in vitro.
USDA-ARS?s Scientific Manuscript database
Transcription activator-like (TAL) effectors found in Xanthomonas spp. promote bacterial growth and plant susceptibility by binding specific DNA sequences or, effector-binding elements (EBEs), and inducing host gene expression. In this study, we have found substantially different transcriptional pro...
Structural And Functional Studies of ALIX Interactions With YPXnL Late Domains of HIV-1 And EIAV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Q.; Fisher, R.D.; Chung, H.-Y.
2009-05-28
Retrovirus budding requires short peptide motifs (late domains) located within the viral Gag protein that function by recruiting cellular factors. The YPX{sub n}L late domains of HIV and other lentiviruses recruit the protein ALIX (also known as AIP1), which also functions in vesicle formation at the multivesicular body and in the abscission stage of cytokinesis. Here, we report the crystal structures of ALIX in complex with the YPX{sub n}L late domains from HIV-1 and EIAV. The two distinct late domains bind at the same site on the ALIX V domain but adopt different conformations that allow them to make equivalentmore » contacts. Binding studies and functional assays verified the importance of key interface residues and revealed that binding affinities are tuned by context-dependent effects. These results reveal how YPX{sub n}L late domains recruit ALIX to facilitate virus budding and how ALIX can bind YPX{sub n}L sequences with both n = 1 and n = 3.« less
NASA Astrophysics Data System (ADS)
Yuchi, Zhiguang; Yuen, Siobhan M. Wong King; Lau, Kelvin; Underhill, Ainsley Q.; Cornea, Razvan L.; Fessenden, James D.; van Petegem, Filip
2015-08-01
Ryanodine receptors (RyRs) form calcium release channels located in the membranes of the sarcoplasmic and endoplasmic reticulum. RyRs play a major role in excitation-contraction coupling and other Ca2+-dependent signalling events, and consist of several globular domains that together form a large assembly. Here we describe the crystal structures of the SPRY1 and tandem-repeat domains at 1.2-1.5 Å resolution, which reveal several structural elements not detected in recent cryo-EM reconstructions of RyRs. The cryo-EM studies disagree on the position of SPRY domains, which had been proposed based on homology modelling. Computational docking of the crystal structures, combined with FRET studies, show that the SPRY1 domain is located next to FK506-binding protein (FKBP). Molecular dynamics flexible fitting and mutagenesis experiments suggest a hydrophobic cluster within SPRY1 that is crucial for FKBP binding. A RyR1 disease mutation, N760D, appears to directly impact FKBP binding through interfering with SPRY1 folding.
Patra, Malay; Mitra, Madhurima; Chakrabarti, Abhijit; Mukhopadhyay, Chaitali
2014-01-01
We have used three polarity-sensitive fluorescence probes, 6-propionyl 2-(N,N-dimethyl-amino) naphthalene (Prodan), pyrene and 8-anilino 1-naphthalene sulphonic acid, to study their binding with erythroid and nonerythroid spectrin, using fluorescence spectroscopy. We have found that both bind to prodan and pyrene with high affinities with apparent dissociation constants (Kd) of .50 and .17 μM, for prodan, and .04 and .02 μM, for pyrene, respectively. The most striking aspect of these bindings have been that the binding stoichiometry have been equal to 1 in erythroid spectrin, both in dimeric and tetrameric form, and in tetrameric nonerythroid spectrin. From an estimate of apparent dielectric constants, the polarity of the binding site in both erythroid and nonerythroid forms have been found to be extremely hydrophobic. Thermodynamic parameters associated with such binding revealed that the binding is favored by positive change in entropy. Molecular docking studies alone indicate that both prodan and pyrene bind to the four major structural domains, following the order in the strength of binding to the Ankyrin binding domain > SH3 domain > Self-association domain > N-terminal domain of α-spectrin of both forms of spectrin. The binding experiments, particularly with the tetrameric nonerythroid spectrin, however, indicate more toward the self association domain in offering the unique binding site, since the binding stoichiometry have been 1 in all forms of dimeric and tetrameric spectrin, so far studied by us. Further studies are needed to characterize the hydrophobic binding sites in both forms of spectrin.
The disorderly conduct of Hsc70 and its interaction with the Alzheimer's related Tau protein.
Taylor, Isabelle R; Ahmad, Atta; Wu, Taia; Nordhues, Bryce A; Bhullar, Anup; Gestwicki, Jason E; Zuiderweg, Erik R P
2018-05-15
Hsp70 chaperones bind to various protein substrates for folding, trafficking, and degradation. Considerable structural information is available about how prokaryotic Hsp70 (DnaK) binds substrates, but less is known about mammalian Hsp70s, of which there are 13 isoforms encoded in the human genome. Here, we report the interaction between the human Hsp70 isoform heat shock cognate 71 KDa protein (Hsc70 or HSPA8) and peptides derived from the microtubule-associated protein tau, which is linked to Alzheimer's disease. For structural studies, we used an Hsc70 construct (called BETA) comprising the substrate-binding domain, but lacking the lid. Importantly, we found that truncating the lid does not significantly impair Hsc70's chaperone activity or allostery in vitro. Using NMR, we show that BETA is partially dynamically disordered in the absence of substrate and that binding of the tau sequence GKVQIINKKG (with a KD = 500 nM) causes dramatic rigidification of BETA. Nuclear Overhauser effect distance measurements revealed that tau binds to the canonical substrate-binding cleft, similar to the binding observed with DnaK. To further develop BETA as a tool for studying Hsc70 interactions, we also measured BETA binding in NMR and fluorescent competition assays to peptides derived from huntingtin, insulin, a second tau-recognition sequence, and a KFERQ-like sequence linked to chaperone-mediated autophagy. We found that the insulin C-peptide binds BETA with high affinity (KD < 100 nM), whereas the others do not (KD > 100 μM). Together, our findings reveal several similarities and differences in how prokaryotic and mammalian Hsp70 isoforms interact with different substrate peptides. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Amacher, Jeanine F; Cushing, Patrick R; Bahl, Christopher D; Beck, Tobias; Madden, Dean R
2013-02-15
PDZ (PSD-95/Dlg/ZO-1) binding domains often serve as cellular traffic engineers, controlling the localization and activity of a wide variety of binding partners. As a result, they play important roles in both physiological and pathological processes. However, PDZ binding specificities overlap, allowing multiple PDZ proteins to mediate distinct effects on shared binding partners. For example, several PDZ domains bind the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), an epithelial ion channel mutated in CF. Among these binding partners, the CFTR-associated ligand (CAL) facilitates post-maturational degradation of the channel and is thus a potential therapeutic target. Using iterative optimization, we previously developed a selective CAL inhibitor peptide (iCAL36). Here, we investigate the stereochemical basis of iCAL36 specificity. The crystal structure of iCAL36 in complex with the CAL PDZ domain reveals stereochemical interactions distributed along the peptide-binding cleft, despite the apparent degeneracy of the CAL binding motif. A critical selectivity determinant that distinguishes CAL from other CFTR-binding PDZ domains is the accommodation of an isoleucine residue at the C-terminal position (P(0)), a characteristic shared with the Tax-interacting protein-1. Comparison of the structures of these two PDZ domains in complex with ligands containing P(0) Leu or Ile residues reveals two distinct modes of accommodation for β-branched C-terminal side chains. Access to each mode is controlled by distinct residues in the carboxylate-binding loop. These studies provide new insights into the primary sequence determinants of binding motifs, which in turn control the scope and evolution of PDZ interactomes.
Xu, Yuqun; Miyakawa, Takuya; Nakamura, Hidemitsu; Nakamura, Akira; Imamura, Yusaku; Asami, Tadao; Tanokura, Masaru
2016-08-10
The perception of two plant germination inducers, karrikins and strigolactones, are mediated by the proteins KAI2 and D14. Recently, KAI2-type proteins from parasitic weeds, which are possibly related to seed germination induced by strigolactone, have been classified into three clades characterized by different responses to karrikin/strigolactone. Here we characterized a karrikin-binding protein in Striga (ShKAI2iB) that belongs to intermediate-evolving KAI2 and provided the structural bases for its karrikin-binding specificity. Binding assays showed that ShKAI2iB bound karrikins but not strigolactone, differing from other KAI2 and D14. The crystal structures of ShKAI2iB and ShKAI2iB-karrikin complex revealed obvious structural differences in a helix located at the entry of its ligand-binding cavity. This results in a smaller closed pocket, which is also the major cause of ShKAI2iB's specificity of binding karrikin. Our structural study also revealed that a few non-conserved amino acids led to the distinct ligand-binding profile of ShKAI2iB, suggesting that the evolution of KAI2 resulted in its diverse functions.
Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding
Ozdilek, Bagdeser A.; Thompson, Valery F.; Ahmed, Nasiha S.; White, Connor I.
2017-01-01
Abstract RGG/RG domains are the second most common RNA binding domain in the human genome, yet their RNA-binding properties remain poorly understood. Here, we report a detailed analysis of the RNA binding characteristics of intrinsically disordered RGG/RG domains from Fused in Sarcoma (FUS), FMRP and hnRNPU. For FUS, previous studies defined RNA binding as mediated by its well-folded domains; however, we show that RGG/RG domains are the primary mediators of binding. RGG/RG domains coupled to adjacent folded domains can achieve affinities approaching that of full-length FUS. Analysis of RGG/RG domains from FUS, FMRP and hnRNPU against a spectrum of contrasting RNAs reveals that each display degenerate binding specificity, while still displaying different degrees of preference for RNA. PMID:28575444
NFI Transcription Factors Interact with FOXA1 to Regulate Prostate-Specific Gene Expression
Elliott, Amicia D.; DeGraff, David J.; Anderson, Philip D.; Anumanthan, Govindaraj; Yamashita, Hironobu; Sun, Qian; Friedman, David B.; Hachey, David L.; Yu, Xiuping; Sheehan, Jonathan H.; Ahn, Jung-Mo; Raj, Ganesh V.; Piston, David W.; Gronostajski, Richard M.; Matusik, Robert J.
2014-01-01
Androgen receptor (AR) action throughout prostate development and in maintenance of the prostatic epithelium is partly controlled by interactions between AR and forkhead box (FOX) transcription factors, particularly FOXA1. We sought to identity additional FOXA1 binding partners that may mediate prostate-specific gene expression. Here we identify the nuclear factor I (NFI) family of transcription factors as novel FOXA1 binding proteins. All four family members (NFIA, NFIB, NFIC, and NFIX) can interact with FOXA1, and knockdown studies in androgen-dependent LNCaP cells determined that modulating expression of NFI family members results in changes in AR target gene expression. This effect is probably mediated by binding of NFI family members to AR target gene promoters, because chromatin immunoprecipitation (ChIP) studies found that NFIB bound to the prostate-specific antigen enhancer. Förster resonance energy transfer studies revealed that FOXA1 is capable of bringing AR and NFIX into proximity, indicating that FOXA1 facilitates the AR and NFI interaction by bridging the complex. To determine the extent to which NFI family members regulate AR/FOXA1 target genes, motif analysis of publicly available data for ChIP followed by sequencing was undertaken. This analysis revealed that 34.4% of peaks bound by AR and FOXA1 contain NFI binding sites. Validation of 8 of these peaks by ChIP revealed that NFI family members can bind 6 of these predicted genomic elements, and 4 of the 8 associated genes undergo gene expression changes as a result of individual NFI knockdown. These observations suggest that NFI regulation of FOXA1/AR action is a frequent event, with individual family members playing distinct roles in AR target gene expression. PMID:24801505
Characterization of Interactions between Heparin/Glycosaminoglycan and Adeno-associated Virus
Zhang, Fuming; Aguilera, Javier; Beaudet, Julie M.; Xie, Qing; Lerch, Thomas F.; Davulcu, Omar; Colón, Wilfredo; Chapman, Michael S.; Linhardt, Robert J.
2013-01-01
Adeno-associated virus (AAV) is a key candidate in the development of gene therapy. In this report, we used surface plasmon resonance spectroscopy to study the interaction between AAV and heparin and other glycosaminoglycans. Surface plasmon resonance results revealed that heparin binds to AAV with extremely high affinity. Solution competition studies shows that AAV binding to heparin is chain length dependent. AAV prefers to bind full chain heparin. All sulfo groups (especially N-sulfo and 6-O-sulfo groups) on heparin are important for the AAV- heparin interaction. Higher levels of sulfo group substitution in GAGs enhance their binding affinities. Atomic force microscopy was also performed to image AAV-2 complexed with heparin. PMID:23952613
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leenheer, J.A.; Brown, G.K.; Cabaniss, S.E.
Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca{sup 2+}, Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca{sup 2+} ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The metal binding fraction was characterized by quantitative {sup 13}C NMR, {sup 1}H NMR, and FT-IR spectrometry andmore » elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca{sup 2+} binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.« less
Dorca-Arévalo, Jonatan; Martín-Satué, Mireia; Blasi, Juan
2012-05-25
Epsilon toxin (ε-toxin), produced by Clostridium perfringens types B and D, causes fatal enterotoxaemia in livestock. In the renal system, the toxin binds to target cells before oligomerization, pore formation and cell death. Still, there is little information about the cellular and molecular mechanism involved in the initial steps of the cytotoxic action of ε-toxin, including the specific binding to the target sensitive cells. In the present report, the binding step of ε-toxin to the MDCK cell line is characterized by means of an ELISA-based binding assay with recombinant ε-toxin-green fluorescence protein (ε-toxin-GFP) and ε-prototoxin-GFP. In addition, different treatments with Pronase E, detergents, N-glycosidase F and beta-elimination on MDCK cells and renal cryosections have been performed to further characterize the ε-toxin binding. The ELISA assays revealed a single binding site with a similar dissociation constant (K(d)) for ε-toxin-GFP and ε-prototoxin-GFP, but a three-fold increase in B(max) levels in the case of ε-toxin-GFP. Double staining on kidney cryoslices with lectins and ε-prototoxin-GFP revealed specific binding to distal and collecting tubule cells. In addition, experiments on kidney and bladder cryoslices demonstrated the specific binding to distal tubule of a range of mammalian renal systems. Pronase E and beta-elimination treatments on kidney cryoslices and MDCK cells revealed that the binding of ε-toxin in renal system is mediated by a O-glycoprotein. Detergent treatments revealed that the integrity of the plasma membrane is required for the binding of ε-toxin to its receptor. Copyright © 2011 Elsevier B.V. All rights reserved.
Lai, Yen-Ting; Cheng, Chao-Sheng; Liu, Yu-Nan; Liu, Yaw-Jen; Lyu, Ping-Chiang
2008-09-01
Plant nonspecific lipid transfer proteins (nsLTPs) are small, basic proteins constituted mainly of alpha-helices and stabilized by four conserved disulfide bridges. They are characterized by the presence of a tunnel-like hydrophobic cavity, capable of transferring various lipid molecules between lipid bilayers in vitro. In this study, molecular dynamics (MD) simulations were performed at room temperature to investigate the effects of lipid binding on the dynamic properties of rice nsLTP1. Rice nsLTP1, either in the free form or complexed with one or two lipids was subjected to MD simulations. The C-terminal loop was very flexible both before and after lipid binding, as revealed by calculating the root-mean-square fluctuation. After lipid binding, the flexibility of some residues that were not in direct contact with lipid molecules increased significantly, indicating an increase of entropy in the region distal from the binding site. Essential dynamics analysis revealed clear differences in motion between unliganded and liganded rice nsLTP1s. In the free form of rice nsLTP1, loop1 exhibited the largest directional motion. This specific essential motion mode diminished after binding one or two lipid molecules. To verify the origin of the essential motion observed in the free form of rice nsLTP1, we performed multiple sequence alignments to probe the intrinsic motion encoded in the primary sequence. We found that the amino acid sequence of loop1 is highly conserved among plant nsLTP1s, thus revealing its functional importance during evolution. Furthermore, the sequence of loop1 is composed mainly of amino acids with short side chains. In this study, we show that MD simulations, together with essential dynamics analysis, can be used to determine structural and dynamic differences of rice nsLTP1 upon lipid binding. 2008 Wiley-Liss, Inc.
Turke, Miah; Subhramanyam, Udaya K. Tiruttani; Churchill, Beth; Labahn, Joerg
2018-01-01
Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists. PMID:29342106
Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P.
2013-01-01
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design. PMID:23844024
Fani, Najmeh; Bordbar, Abdol-Khalegh; Ghayeb, Yousef; Sepehri, Saghi
2015-01-01
In this work, docking tools were utilized in order to study the binding properties of more than five hundred of proline-based 2,5-diketopiperazine in the binding site of αβ-tubulin. Results revealed that 20 compounds among them showed lower binding energies in comparison with Tryprostatin-A, a well known tubulin inhibitor and therefore could be potential inhibitors of tubulin. However, the precise evaluation of binding poses represents the similar binding modes for all of these compounds and Tryprostatin-A. Finally, the best docked complex was subjected to a 25 ns molecular dynamics simulation to further validate the proposed binding mode of this compound.
Wang, Tao; Zhang, Jiahai; Zhang, Xuecheng; Xu, Chao; Tu, Xiaoming
2013-01-01
Streptococcus pneumoniae is a pathogen causing acute respiratory infection, otitis media and some other severe diseases in human. In this study, the solution structure of a bacterial immunoglobulin-like (Big) domain from a putative S. pneumoniae surface protein SP0498 was determined by NMR spectroscopy. SP0498 Big domain adopts an eight-β-strand barrel-like fold, which is different in some aspects from the two-sheet sandwich-like fold of the canonical Ig-like domains. Intriguingly, we identified that the SP0498 Big domain was a Ca2+ binding domain. The structure of the Big domain is different from those of the well known Ca2+ binding domains, therefore revealing a novel Ca2+-binding module. Furthermore, we identified the critical residues responsible for the binding to Ca2+. We are the first to report the interactions between the Big domain and Ca2+ in terms of structure, suggesting an important role of the Big domain in many essential calcium-dependent cellular processes such as pathogenesis. PMID:23326635
Solubilization and purification of melatonin receptors from lizard brain.
Rivkees, S A; Conron, R W; Reppert, S M
1990-09-01
Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.
NASA Astrophysics Data System (ADS)
Vijayabharathi, R.; Sathyadevi, P.; Krishnamoorthy, P.; Senthilraja, D.; Brunthadevi, P.; Sathyabama, S.; Priyadarisini, V. Brindha
2012-04-01
Resistomycin, a secondary metabolite produced by Streptomyces aurantiacus AAA5. The binding interaction of resistomycin with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) was investigated by spectrophotometry, spectrofluorimetry, circular dichroism (CD) and synchronous fluorescence techniques under physiological conditions in vitro. Absorption spectral studies along with the fluorescence competition with ethidium bromide measurements and circular dichroism clearly suggest that the resistomycin bind with CT DNA relatively strong via groove binding. BSA interaction results revealed that the drug was found to quench the fluorescence intensity of the protein through a static quenching mechanism. The number of binding sites 'n' and apparent binding constant 'K' calculated according to the Scatchard equation exhibit a good binding property to bovine serum albumin protein. In addition, the results observed from synchronous fluorescence measurements clearly demonstrate the occurrence of conformational changes of BSA upon addition of the test compound.
2009-01-01
Many studies of RNA folding and catalysis have revealed conformational heterogeneity, metastable folding intermediates, and long-lived states with distinct catalytic activities. We have developed a single-molecule imaging approach for investigating the functional heterogeneity of in vitro-evolved RNA aptamers. Monitoring the association of fluorescently labeled ligands with individual RNA aptamer molecules has allowed us to record binding events over the course of multiple days, thus providing sufficient statistics to quantitatively define the kinetic properties at the single-molecule level. The ligand binding kinetics of the highly optimized RNA aptamer studied here displays a remarkable degree of uniformity and lack of memory. Such homogeneous behavior is quite different from the heterogeneity seen in previous single-molecule studies of naturally derived RNA and protein enzymes. The single-molecule methods we describe may be of use in analyzing the distribution of functional molecules in heterogeneous evolving populations or even in unselected samples of random sequences. PMID:19572753
Combining Crystallography and Hydrogen-Deuterium Exchange to Study Galectin-Ligand Complexes.
Ruiz, Federico M; Gilles, Ulrich; Lindner, Ingo; André, Sabine; Romero, Antonio; Reusch, Dietmar; Gabius, Hans-Joachim
2015-09-21
The physiological significance arising from translating information stored in glycans into cellular effects explains the interest in structurally defining lectin-carbohydrate recognition. The relatively small set of adhesion/growth-regulatory galectins in chicken makes this system attractive to study the origins of specificity and divergence. Cell binding by using glycosylation mutants reveals binding of the N-terminal domain of chicken galectin-8 (CG-8N) to α-2,3-sialylated and galactose-terminated glycan chains. Cocrystals with lactose and its 3'-sialylated derivative disclose Arg58 as a key contact for the carboxylic acid and differences in loop lengths to the three homodimeric chicken galectins. Monitoring hydrogen-deuterium exchange by mass spectrometry revealed an effective reduction of deuteration after ligand binding within the contact area. In addition, evidence for changes in solvent accessibility of amide protons beyond this site was obtained. Their detection, which highlights the sensor capacity of this technique, encourages systematic studies on galectins and beyond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tshabalala, Thabiso N; Tomescu, Mihai-Silviu; Prior, Allan; Balakrishnan, Vijayakumar; Sayed, Yasien; Dirr, Heini W; Achilonu, Ikechukwu
2016-12-01
The energetics of ligand binding to human eukaryotic elongation factor 1 gamma (heEF1γ) was investigated using reduced glutathione (GSH), oxidised glutathione (GSSG), glutathione sulfonate and S-hexylglutathione as ligands. The experiments were conducted using isothermal titration calorimetry, and the findings were supported using computational studies. The data show that the binding of these ligands to heEF1γ is enthalpically favourable and entropically driven (except for the binding of GSSG). The full length heEF1γ binds GSSG with lower affinity (K d = 115 μM), with more hydrogen-bond contacts (ΔH = -73.8 kJ/mol) and unfavourable entropy (-TΔS = 51.7 kJ/mol) compared to the glutathione transferase-like N-terminus domain of heEF1γ, which did not show preference to any specific ligand. Computational free binding energy calculations from the 10 ligand poses show that GSSG and GSH consistently bind heEF1γ, and that both ligands bind at the same site with a folded bioactive conformation. This study reveals the possibility that heEF1γ is a glutathione-binding protein.
Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai
2016-08-01
Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth.
Elfiky, A A; Ismail, A M
2018-05-01
A new Zika virus (ZIKV) outbreak started in 2015. According to the World Health Organization, 84 countries confirmed ZIKV infection. RNA-dependent RNA polymerase (RdRp) was an appealing target for drug designers during the last two decades. Through molecular docking, we screened 16 nucleotide/side inhibitors against ZIKV RdRp. While the mode of interaction with ZIKV is different from that in the hepatitis C virus (HCV), nucleotide/side inhibitors in this study (mostly anti-HCV) showed promising binding affinities (-6.2 to -9.7 kcal/mol calculated by AutoDock Vina) to ZIKV RdRp. Setrobuvir, YAK and, to a lesser extent, IDX-184 reveal promising results compared to other inhibitors in terms of binding ZIKV RdRp. These candidates would be powerful anti-ZIKV drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.
The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is notmore » involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.« less
Kathiravan, P; Goyal, S; Kataria, R S; Mishra, B P; Jayakumar, S; Joshi, B K
2011-01-01
The present study was undertaken to characterize the structure of S100A8 gene and its promoter in water buffalo and yak. Sequence data of 2.067 kb, 2.071 kb, and 2.052 kb with respect to complete S100A8 gene including 5' flanking region was generated in river buffalo, swamp buffalo, and yak, respectively. BLAST analysis of coding DNA sequences (CDS) of S100A8 gene revealed 95% homology of buffalo sequence with cattle, 85% with pig and horse, 83% with dog, 72-73% with murines, and around 79% with primates and humans. Phylogenetic analysis of predicted CDS revealed distinct clustering of murines, primates, and domestic animals with bovines and bubalines forming a subcluster among farm animals. In silico translation of predicted CDS revealed a sequence of 89 amino acids with 7 amino acid changes between cattle and buffalo and 2 changes between cattle and yak. The search for Pfam family revealed the N-terminal calcium binding domain and the noncanonical EF hand domain in the carboxy terminus, with more variations being observed in the N-terminal domain among different species. Two amino acid changes observed in carboxy terminal EF hand domain resulted in altered secondary structure of yak S100A8 protein. Analysis of S100A8 gene promoter revealed 14 putative motifs for transcriptional factor binding sites. Two putative motifs viz. C/EBP and v-Myb were found to be absent in swamp buffalo as compared to river buffalo and cattle. Differences in the structure of S100A8 protein and the transcriptional factor binding sites identified in the present study need to be analyzed further for their functional significance in yak and swamp buffalo respectively. Copyright © Taylor & Francis Group, LLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, E.S.; Bhalla, V.K.
1991-02-01
Rat testicular interstitial cells were separated by three different gradient-density procedures and, with each, two biochemically and morphologically distinct cell fractions were isolated. The lighter density cells in fraction-I bound iodine 125-labeled human chorionic gonadotropin (hCG) with high-affinity (apparent equilibrium dissociation constant, Kd, approximately 10{sup {minus} 10} M) without producing either cyclic adenosine monophosphate or testosterone in response to hormone action. The heavier-density cells displayed morphologic features typical of Leydig cells and produced cyclic adenosine monophosphate and testosterone in the presence of hCG without detectable {sup 125}I-labeled hCG high-affinity binding. These cell fractions were further characterized by studies using deglycosylatedmore » hCG, a known antagonist to hCG action. Cell concentration-dependent studies with purified Leydig cells revealed that maximal testosterone production was achieved when lower cell concentrations (0.5 x 10(6) cells/250 microliters) were used for in vitro hCG stimulation assays. Under these conditions, the {sup 125}I-labeled hCG binding was barely detectable (2.24 fmol; 2,698 sites/cell). Furthermore, these studies revealed that the hCG-specific binding in Leydig cells is overestimated by the classic method for nonspecific binding correction using excess unlabeled hormone. An alternate method is presented.« less
Raza, Muslim; Jiang, Yang; Wei, Yun; Ahmad, Aftab; Khan, Ajmal; Qipeng, Yuan
2017-09-01
The study of molecular interactions of drug-protein are extremely important from the biological aspect in all living organisms, and therefore such type of investigation hold a tremendous significance in rational drug design and discovery. In the present study, the molecular interactions between paromomycin (PAR) and human serum albumin (HSA) have been studied by different biophysical techniques and validated by in-silico approaches. The results obtained from Ultraviolet-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FT-IR) demonstrated a remarkable change upon the complexation of PAR with HSA. Circular Dichroism (CD), Dynamic Light Scattering (DLS) and Resonance Rayleigh scattering (RRS) results revealed a significant secondary structure alteration and reduction of hydrodynamic radii upon the conjugation of PAR with HSA. The fluorescence spectroscopy results also apparently revealed the static quenching mechanism. The number of binding sites, binding constants, and Gibbs free energy values were calculated to illustrate the nature of intermolecular interactions. Similarly, the in-silico docking and molecular dynamics simulation clearly explain the theoretical basis of the binding mechanism of PAR with HSA. The experimental and docking approaches suggested that PAR binds to the hydrophobic cavity site I of HSA. The finding of present investigation will provide binding insight of PAR and associated alterations in the stability and conformation of HSA. Copyright © 2017 Elsevier B.V. All rights reserved.
Spectroscopic and thermodynamic studies on ferulic acid - Alpha-2-macroglobulin interaction
NASA Astrophysics Data System (ADS)
Rehman, Ahmed Abdur; Sarwar, Tarique; Arif, Hussain; Ali, Syed Saqib; Ahsan, Haseeb; Tabish, Mohammad; Khan, Fahim Halim
2017-09-01
Ferulic acid is a major phenolic acid found in numerous plant species in conjugated form. It binds to enzymes and oligomeric proteins and modifies their structure and function. This study was designed to examine the interaction of ferulic acid, an active ingredient of some important medicines, with α2M, a key serum proteinase, under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques such as, UV-visible absorption, fluorescence spectroscopy, circular dichroism along with isothermal titration calorimetry. Fluorescence quenching of α2M by ferulic acid demonstrated the formation of α2M-ferulic acid complex by static quenching mechanism. Binding parameters calculated by Stern-Volmer method showed that ferulic acid binds to α2M with moderate affinity of the order of ∼104 M-1. The thermodynamic signatures reveal that binding was enthalpy driven and hydrogen bonding played a major role in ferulic acid-α2M binding. CD spectra analysis suggests very little conformational changes in α2M on ferulic acid binding.
Spectroscopic characterization of metal bound phytochelatin analogue (Glu-Cys)4-Gly.
Cheng, Yongsheng; Yan, Yong-Bin; Liu, Jinyuan
2005-10-01
The metal ion binding properties of a phytochelatin (PC) analogue, (Glu-Cys)4-Gly (named as EC4), have been studied by a divalent metal ion binding assay monitored by UV-visible spectroscopy, circular dichroism and NMR spectroscopy. Spectro- photometric titration with different divalent metal ions have revealed that the stiochoimetry of metal-bound EC4 was 1:1, and its metal binding affinities with different divalent metal ions in the order of Cd(II)>Cu(II)>Zn(II)>Pb(II)>Ni(II)>Co(II). UV-visible spectroscopic analysis of metal complexes indicated that four sulfur atoms in cysteine residues are attributable to ligand-to-metal charge transfer (LMCT) between divalent metal ions and EC4, and further confirmed by 1D H1 NMR study and Circular Dichroism. In addition, Circular Dichroism spectra of both free and metal-bound forms of EC4 revealed that metal coordination drives the nonapeptide chain to fold into a turned conformation. The comprehensive analysis of spectroscopic properties of the nonapeptide complexed with metal ions not only provides a fundamental description of the metal ion binding properties of PC analogue, but also shows a correlation between metal binding affinity of PC analogue and the induction activity of metal ions.
Mechanism of human antibody-mediated neutralization of Marburg virus.
Flyak, Andrew I; Ilinykh, Philipp A; Murin, Charles D; Garron, Tania; Shen, Xiaoli; Fusco, Marnie L; Hashiguchi, Takao; Bornholdt, Zachary A; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Ward, Andrew B; Saphire, Erica Ollmann; Bukreyev, Alexander; Crowe, James E
2015-02-26
The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably, several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP, but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site, revealing a mechanism of filovirus inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.
Recognition and Binding of Human Telomeric G-Quadruplex DNA by Unfolding Protein 1
2015-01-01
The specific recognition by proteins of G-quadruplex structures provides evidence of a functional role for in vivo G-quadruplex structures. As previously reported, the ribonucleoprotein, hnRNP Al, and it is proteolytic derivative, unwinding protein 1 (UP1), bind to and destabilize G-quadruplex structures formed by the human telomeric repeat d(TTAGGG)n. UP1 has been proposed to be involved in the recruitment of telomerase to telomeres for chain extension. In this study, a detailed thermodynamic characterization of the binding of UP1 to a human telomeric repeat sequence, the d[AGGG(TTAGGG)3] G-quadruplex, is presented and reveals key insights into the UP1-induced unfolding of the G-quadruplex structure. The UP1–G-quadruplex interactions are shown to be enthalpically driven, exhibiting large negative enthalpy changes for the formation of both the Na+ and K+ G-quadruplex–UP1 complexes (ΔH values of −43 and −19 kcal/mol, respectively). These data reveal three distinct enthalpic contributions from the interactions of UP1 with the Na+ form of G-quadruplex DNA. The initial interaction is characterized by a binding affinity of 8.5 × 108 M–1 (strand), 200 times stronger than the binding of UP1 to a single-stranded DNA with a comparable but non-quadruplex-forming sequence [4.1 × 106 M–1 (strand)]. Circular dichroism spectroscopy reveals the Na+ form of the G-quadruplex to be completely unfolded by UP1 at a binding ratio of 2:1 (UP1:G-quadruplex DNA). The data presented here demonstrate that the favorable energetics of the initial binding event are closely coupled with and drive the unfolding of the G-quadruplex structure. PMID:24831962
NASA Astrophysics Data System (ADS)
Maity, Subhajit; Chakraborty, Sandipan; Chakraborti, Abhay Sankar
2017-02-01
The present study demonstrates critical insight into the binding of a bioactive flavanone naringenin with normal human haemoglobin (NHb). Both spectrophotometric and spectrofluorimetric studies reveal that naringenin interacts with NHb. The binding affinity constant and number of binding sites appear to be approximately (1.5 ± 0.2) × 104 M-1 and 1, respectively. Static quenching seems to be an important factor in binding process, as evident from steady-state and time-resolved fluorescence spectroscopic studies. Far UV circular dichroism spectroscopy depicts that binding of naringenin to NHb causes no change in the secondary structure of the protein, which is also evident from Fourier transform infrared spectroscopic study. Free energy change (ΔG0) for naringenin-NHb interaction, determined by spectroscopic and isothermal calorimetric method, appears to be -5.67 kcal/mol and -6.90 kcal/mol, respectively, and is close to the docking energy -6.84 kcal/mol. Molecular docking suggests that naringenin binds near the cavity of the tetrameric heme protein, forming hydrogen bonds with surrounding amino acid residues. The binding site is away from the heme moieties, implicating naringenin binding does not affect the oxygen binding capacity of NHb, which makes the protein a suitable carrier of the flavonoid.
Deciphering the mechanism of interaction of edifenphos with calf thymus DNA
NASA Astrophysics Data System (ADS)
Ahmad, Ajaz; Ahmad, Masood
2018-01-01
Edifenphos is an important organophosphate pesticide with many antifungal and anti-insecticidal properties but it may cause potential hazards to human health. In this work, we have tried to explore the binding mode of action and mechanism of edifenphos to calf thymus DNA (CT-DNA). Several experiments such as ultraviolet-visible absorption spectra and emission spectroscopy showed complex formation between edifenphos and CT-DNA and low binding constant values supporting groove binding mode. These results were further confirmed by circular dichroism (CD), CT-DNA melting studies, viscosity measurements, density functional theory and molecular docking. CD study suggests that edifenphos does not alter native structure of CT-DNA. Isothermal calorimetry reveals that binding of edifenphos with CT-DNA is enthalpy driven process. Competitive binding assay and effect of ionic strength showed that edifenphos binds to CT-DNA via groove binding manner. Hence, edifenphos is a minor groove binder preferably interacting with A-T regions with docking score - 6.84 kJ/mol.
Ciolkowski, Ingo; Wanke, Dierk; Birkenbihl, Rainer P; Somssich, Imre E
2008-09-01
WRKY transcription factors have been shown to play a major role in regulating, both positively and negatively, the plant defense transcriptome. Nearly all studied WRKY factors appear to have a stereotypic binding preference to one DNA element termed the W-box. How specificity for certain promoters is accomplished therefore remains completely unknown. In this study, we tested five distinct Arabidopsis WRKY transcription factor subfamily members for their DNA binding selectivity towards variants of the W-box embedded in neighboring DNA sequences. These studies revealed for the first time differences in their binding site preferences, which are partly dependent on additional adjacent DNA sequences outside of the TTGACY-core motif. A consensus WRKY binding site derived from these studies was used for in silico analysis to identify potential target genes within the Arabidopsis genome. Furthermore, we show that even subtle amino acid substitutions within the DNA binding region of AtWRKY11 strongly impinge on its binding activity. Additionally, all five factors were found localized exclusively to the plant cell nucleus and to be capable of trans-activating expression of a reporter gene construct in vivo.
Translational autocontrol of the Escherichia coli hfq RNA chaperone gene.
Vecerek, Branislav; Moll, Isabella; Bläsi, Udo
2005-06-01
The conserved bacterial RNA chaperone Hfq has been shown to play an important role in post-transcriptional regulation. Here, we demonstrate that Hfq synthesis is autoregulated at the translational level. We have mapped two Hfq binding sites in the 5'-untranslated region of hfq mRNA and show that Hfq binding inhibits formation of the translation initiation complex. In vitro translation and in vivo studies further revealed that Hfq binding to both sites is required for efficient translational repression of hfq mRNA.
NASA Astrophysics Data System (ADS)
Asadi, Zahra; Nasrollahi, Neda; Karbalaei-Heidari, Hamidreza; Eigner, Vaclav; Dusek, Michal; Mobaraki, Nabiallah; Pournejati, Roya
2017-05-01
Two water-soluble mono-nuclear macrocyclic lanthanum(III) complexes of 2,6-diformyl-4-methylphenol with 1,3-diamino-2-propanol (C1) or 1,3-propylenediamine (C2) were synthesized and characterized by UV-Vis, FT-IR, 13C and 1H NMR spectroscopy and elemental analysis. C1 complex was structurally characterized by single-crystal X-ray diffraction, which revealed that the complex was mononuclear and ten-coordinated. The coordination sites around lanthanum(III) were occupied with a five-dentate ligand, two bidentate nitrates, and one water molecule. The interaction of complexes with DNA was studied in buffered aqueous solution at pH 7.4. UV-Vis absorption spectroscopy, emission spectroscopy, circular dichroism (CD) and viscometric measurements provided clear evidence of the intercalation mechanism of binding. The obtained intrinsic binding constants (Kb) 9.3 × 103 and 1.2 × 103 M- 1 for C1 and C2, respectively confirmed that C1 is better intercalator than C2. The DNA docking studies suggested that the complexes bind with DNA in a groove binding mode with the binding affinity of C1 > C2. Moreover, agarose gel electrophoresis study of the DNA-complex for both compounds revealed that the C1 intercalation cause ethidium bromide replacement in a competitive manner which confirms the suggested mechanism of binding. Finally, the anticancer experiments for the treated cancerous cell lines with both synthesized compounds show that these hydrophilic molecules need a suitable carrier to pass through the hydrophobic nature of cell membrane efficiently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanek, Kimberly A.; Patterson-West, Jennifer; Randolph, Peter S.
The host factor Hfq, as the bacterial branch of the Sm family, is an RNA-binding protein involved in the post-transcriptional regulation of mRNA expression and turnover. Hfq facilitates pairing between small regulatory RNAs (sRNAs) and their corresponding mRNA targets by binding both RNAs and bringing them into close proximity. Hfq homologs self-assemble into homo-hexameric rings with at least two distinct surfaces that bind RNA. Recently, another binding site, dubbed the `lateral rim', has been implicated in sRNA·mRNA annealing; the RNA-binding properties of this site appear to be rather subtle, and its degree of evolutionary conservation is unknown. An Hfq homologmore » has been identified in the phylogenetically deep-branching thermophileAquifex aeolicus(Aae), but little is known about the structure and function of Hfq from basal bacterial lineages such as the Aquificae. Therefore,AaeHfq was cloned, overexpressed, purified, crystallized and biochemically characterized. Structures ofAaeHfq were determined in space groupsP1 andP6, both to 1.5 Å resolution, and nanomolar-scale binding affinities for uridine- and adenosine-rich RNAs were discovered. Co-crystallization with U 6RNA reveals that the outer rim of theAaeHfq hexamer features a well defined binding pocket that is selective for uracil. ThisAaeHfq structure, combined with biochemical and biophysical characterization of the homolog, reveals deep evolutionary conservation of the lateral RNA-binding mode, and lays a foundation for further studies of Hfq-associated RNA biology in ancient bacterial phyla.« less
Wu, Wei; Park, Kyung-Tae; Holyoak, Todd; Lutkenhaus, Joe
2011-01-01
Summary The three Min proteins spatially regulate Z ring positioning in E. coli and are dynamically associated with the membrane. MinD binds to vesicles in the presence of ATP and can recruit MinC or MinE. Biochemical and genetic evidence indicate the binding sites for these two proteins on MinD overlap. Here we solved the structure of a hydrolytic-deficient mutant of MinD truncated for the C-terminal amphipathic helix involved in binding to the membrane. The structure solved in the presence of ATP is a dimer and reveals the face of MinD abutting the membrane. Using a combination of random and extensive site-directed mutagenesis additional residues important for MinE and MinC binding were identified. The location of these residues on the MinD structure confirms that the binding sites overlap and reveals that the binding sites are at the dimer interface and exposed to the cytosol. The location of the binding sites at the dimer interface offers a simple explanation for the ATP-dependency of MinC and MinE binding to MinD. PMID:21231967
An alternate binding site for PPARγ ligands
Hughes, Travis S.; Giri, Pankaj Kumar; de Vera, Ian Mitchelle S.; Marciano, David P.; Kuruvilla, Dana S.; Shin, Youseung; Blayo, Anne-Laure; Kamenecka, Theodore M.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.
2014-01-01
PPARγ is a target for insulin sensitizing drugs such as glitazones, which improve plasma glucose maintenance in patients with diabetes. Synthetic ligands have been designed to mimic endogenous ligand binding to a canonical ligand-binding pocket to hyperactivate PPARγ. Here we reveal that synthetic PPARγ ligands also bind to an alternate site, leading to unique receptor conformational changes that impact coregulator binding, transactivation and target gene expression. Using structure-function studies we show that alternate site binding occurs at pharmacologically relevant ligand concentrations, and is neither blocked by covalently bound synthetic antagonists nor by endogenous ligands indicating non-overlapping binding with the canonical pocket. Alternate site binding likely contributes to PPARγ hyperactivation in vivo, perhaps explaining why PPARγ full and partial or weak agonists display similar adverse effects. These findings expand our understanding of PPARγ activation by ligands and suggest that allosteric modulators could be designed to fine tune PPARγ activity without competing with endogenous ligands. PMID:24705063
Anions mediate ligand binding in Adineta vaga glutamate receptor ion channels
Lomash, Suvendu; Chittori, Sagar; Brown, Patrick; Mayer, Mark L.
2014-01-01
SUMMARY AvGluR1, a glutamate receptor ion channel from the primitive eukaryote Adineta vaga, is activated by alanine, cysteine, methionine and phenylalanine which produce lectin-sensitive desensitizing responses like those to glutamate, aspartate and serine. AvGluR1 LBD crystal structures reveal a novel scheme for binding dissimilar ligands that may be utilized by distantly related odorant/chemosensory receptors. Arginine residues in domain 2 coordinate the γ-carboxyl group of glutamate, while in the alanine, methionine and serine complexes a chloride ion acts as a surrogate ligand, replacing the γ-carboxyl group. Removal of Cl− lowers affinity for these ligands, but not for glutamate, aspartate or for phenylalanine which occludes the anion binding site and binds with low affinity. AvGluR1 LBD crystal structures and sedimentation analysis also provide insights into the evolutionary link between prokaryotic and eukaryotic iGluRs and reveal features unique to both classes, emphasizing the need for additional structure based studies on iGluR-ligand interactions. PMID:23434404
Crystal Structure of an LSD-Bound Human Serotonin Receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wacker, Daniel; Wang, Sheng; McCorvy, John D.
The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatlymore » accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors.« less
Artemin Crystal Structure Reveals Insights into Heparan Sulfate Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silvian,L.; Jin, P.; Carmillo, P.
2006-01-01
Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFR{alpha}3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangementmore » characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.« less
Crystal Structure of an LSD-Bound Human Serotonin Receptor.
Wacker, Daniel; Wang, Sheng; McCorvy, John D; Betz, Robin M; Venkatakrishnan, A J; Levit, Anat; Lansu, Katherine; Schools, Zachary L; Che, Tao; Nichols, David E; Shoichet, Brian K; Dror, Ron O; Roth, Bryan L
2017-01-26
The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT 2B . The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT 2B R and 5-HT 2A R-a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.
Winteringham, Louise N; Endersby, Raelene; Kobelke, Simon; McCulloch, Ross K; Williams, James H; Stillitano, Justin; Cornwall, Scott M; Ingley, Evan; Klinken, S Peter
2006-12-15
Myeloid leukemia factor 1 (MLF1) is an oncoprotein associated with hemopoietic lineage commitment and acute myeloid leukemia. Here we show that Mlf1 associated with a novel binding partner, Mlf1-associated nuclear protein (Manp), a new heterogeneous nuclear ribonucleoprotein (hnRNP) family member, related to hnRNP-U. Manp localized exclusively in the nucleus and could redirect Mlf1 from the cytoplasm into the nucleus. The nuclear content of Mlf1 was also regulated by 14-3-3 binding to a canonical 14-3-3 binding motif within the N terminus of Mlf1. Significantly Mlf1 contains a functional nuclear export signal and localized primarily to the nuclei of hemopoietic cells. Mlf1 was capable of binding DNA, and microarray analysis revealed that it affected the expression of several genes, including transcription factors. In summary, this study reveals that Mlf1 translocates between nucleus and cytoplasm, associates with a novel hnRNP, and influences gene expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Amato, R.J.; Largent, B.L.; Snowman, A.M.
1987-07-01
Citalopram is a potent and selective inhibitor of neuronal serotonin uptake. In rat brain membranes (/sup 3/H)citalopram demonstrates saturable and reversible binding with a KD of 0.8 nM and a maximal number of binding sites (Bmax) of 570 fmol/mg of protein. The drug specificity for (/sup 3/H)citalopram binding and synaptosomal serotonin uptake are closely correlated. Inhibition of (/sup 3/H)citalopram binding by both serotonin and imipramine is consistent with a competitive interaction in both equilibrium and kinetic analyses. The autoradiographic pattern of (/sup 3/H)citalopram binding sites closely resembles the distribution of serotonin. By contrast, detailed equilibrium-saturation analysis of (/sup 3/H)imipramine bindingmore » reveals two binding components, i.e., high affinity (KD = 9 nM, Bmax = 420 fmol/mg of protein) and low affinity (KD = 553 nM, Bmax = 8560 fmol/mg of protein) sites. Specific (/sup 3/H)imipramine binding, defined as the binding inhibited by 100 microM desipramine, is displaced only partially by serotonin. Various studies reveal that the serotonin-sensitive portion of binding corresponds to the high affinity sites of (/sup 3/H)imipramine binding whereas the serotonin-insensitive binding corresponds to the low affinity sites. Lesioning of serotonin neurons with p-chloroamphetamine causes a large decrease in (/sup 3/H)citalopram and serotonin-sensitive (/sup 3/H)imipramine binding with only a small effect on serotonin-insensitive (/sup 3/H)imipramine binding. The dissociation rate of (/sup 3/H)imipramine or (/sup 3/H)citalopram is not altered by citalopram, imipramine or serotonin up to concentrations of 10 microM. The regional distribution of serotonin sensitive (/sup 3/H)imipramine high affinity binding sites closely resembles that of (/sup 3/H)citalopram binding.« less
Grot, Stéphanie; Leclerc, Marie-Eve; Luck, David
2018-05-23
We designed an fMRI study to pinpoint the neural correlates of active and passive binding in working memory. Participants were instructed to memorize three words and three spatial locations. In the passive binding condition, words and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were directed to intentionally create associations between them. Our results showed that participants performed better on passive binding relative to active binding. FMRI analysis revealed that both binding conditions induced greater activity within the hippocampus. Additionally, our analyses divulged regions specifically engaged in passive and active binding. Altogether, these data allow us to propose the hippocampus as a central candidate for working memory binding. When needed, a frontal-parietal network can contribute to the rearrangement of information. These findings may inform theories of working memory binding. Copyright © 2018. Published by Elsevier B.V.
Competitive Binding of Natural Amphiphiles with Graphene Derivatives
NASA Astrophysics Data System (ADS)
Radic, Slaven; Geitner, Nicholas K.; Podila, Ramakrishna; Käkinen, Aleksandr; Chen, Pengyu; Ke, Pu Chun; Ding, Feng
2013-07-01
Understanding the transformation of graphene derivatives by natural amphiphiles is essential for elucidating the biological and environmental implications of this emerging class of engineered nanomaterials. Using rapid discrete-molecular-dynamics simulations, we examined the binding of graphene and graphene oxide with peptides, fatty acids, and cellulose, and complemented our simulations by experimental studies of Raman spectroscopy, FTIR, and UV-Vis spectrophotometry. Specifically, we established a connection between the differential binding and the conformational flexibility, molecular geometry, and hydrocarbon content of the amphiphiles. Importantly, our dynamics simulations revealed a Vroman-like competitive binding of the amphiphiles for the graphene oxide substrate. This study provides a mechanistic basis for addressing the transformation, evolution, transport, biocompatibility, and toxicity of graphene derivatives in living systems and the natural environment.
Competitive Binding of Natural Amphiphiles with Graphene Derivatives
Radic, Slaven; Geitner, Nicholas K.; Podila, Ramakrishna; Käkinen, Aleksandr; Chen, Pengyu; Ke, Pu Chun; Ding, Feng
2013-01-01
Understanding the transformation of graphene derivatives by natural amphiphiles is essential for elucidating the biological and environmental implications of this emerging class of engineered nanomaterials. Using rapid discrete-molecular-dynamics simulations, we examined the binding of graphene and graphene oxide with peptides, fatty acids, and cellulose, and complemented our simulations by experimental studies of Raman spectroscopy, FTIR, and UV-Vis spectrophotometry. Specifically, we established a connection between the differential binding and the conformational flexibility, molecular geometry, and hydrocarbon content of the amphiphiles. Importantly, our dynamics simulations revealed a Vroman-like competitive binding of the amphiphiles for the graphene oxide substrate. This study provides a mechanistic basis for addressing the transformation, evolution, transport, biocompatibility, and toxicity of graphene derivatives in living systems and the natural environment. PMID:23881402
NASA Astrophysics Data System (ADS)
Arjmand, Farukh; Sayeed, Fatima
2010-02-01
Heterobimetallic complexes C 6H 24N 4O 6CuSn 2Cl 63, C 6H 24N 4O 6ZnSn 2Cl 64 have been synthesized from their monometallic analogs C 6H 16N 4O 2CuCl 21, C 6H 16N 4O 2ZnCl 22, and were characterized by various spectroscopic and analytical methods. The complexes 1-4 reveal an octahedral geometry for both central metal ions Cu/Zn as well as for Sn metal ion. The interaction of complexes 1-4 with CT-DNA, were investigated by using absorption, emission, cyclic voltammetry, viscometry and DNA cleavage studies. The emission quenching of 3 and 4 by [Fe(CN) 6] 4- depressed greatly when bound to CT-DNA. The results of spectroscopic, viscometric and cyclic voltammetry of complexes 3 and 4 revealed electrostatic mode of binding of the complexes with CT-DNA. These results revealed that 4 bind more avidly in comparison to 3 with CT-DNA. Gel electrophoresis of DNA with complexes 3 and 4 demonstrated that the complexes exhibit excellent cleavage activity under physiological conditions.
Static and kinetic studies of calmodulin and melittin complex.
Itakura, M; Iio, T
1992-08-01
Ca2+ binding to calmodulin triggers conformational change of the protein which induces exposure of hydrophobic surfaces. Melittin has been believed to bind to Ca(2+)-bound calmodulin through the exposed hydrophobic surfaces. However, tryptophan fluorescence measurements and gel chromatography experiments with the melittin-calmodulin system revealed that melittin bound to calmodulin at zero salt concentration even in the absence of Ca2+; addition of salt removed melittin from Ca(2+)-free calmodulin. This means not only the hydrophobic interaction but also the electrostatic interaction contributes to the melittin-calmodulin binding. The fluorescence stopped-flow studies of the dissociation reaction of melittin-calmodulin complex revealed that Ca2+ removal from the complex induced a conformational change of calmodulin, resulting in reduction of the hydrophobic interaction between melittin and calmodulin, but the electrostatic interaction kept melittin still bound to calmodulin for a subsecond lag period, after which melittin dissociated from calmodulin. The fluorescence stopped-flow experiments on the dissociation reaction of complex of melittin and tryptic fragment(s) of calmodulin revealed that the lag period of the melittin dissociation reaction was attributable to the interaction between the C-terminal half of calmodulin and the C-terminal region of melittin.
Coupry, I; Armsby, C C; Alper, S L; Brugnara, C; Parini, A
1996-01-04
In the present report, we investigated the potential involvement of imidazoline I1 and I2 binding sites in the inhibition of the Ca(2+)-activated K+ channel (Gardos channel) by clotrimazole in human red cells. Ca(2+)-activated 86Rb influx was inhibited by clotrimazole and efaroxan but not by the imidazoline binding site ligands clonidine, moxonidine, cirazoline and idazoxan (100 microM). Binding studies with [3H]idazoxan and [3H]p-aminoclonidine did not reveal the expression of I1 and I2 binding sites in erythrocytes. These data indicate that the effects of clotrimazole and efaroxan on the erythrocyte Ca(2+)-activated K+ channel may be mediated by a 'non-I1/non-I2' binding site.
Kwong, Huey Chong; Chidan Kumar, C S; Mah, Siau Hui; Chia, Tze Shyang; Quah, Ching Kheng; Loh, Zi Han; Chandraju, Siddegowda; Lim, Gin Keat
2017-01-01
Biphenyl-based compounds are clinically important for the treatments of hypertension and inflammatory, while many more are under development for pharmaceutical uses. In the present study, a series of 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl benzoates, 2(a-q), and 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl pyridinecarboxylate, 2(r-s) were synthesized by reacting 1-([1,1'-biphenyl]-4-yl)-2-bromoethan-1-one with various carboxylic acids using potassium carbonate in dimethylformamide at ambient temperature. Single-crystal X-ray diffraction studies revealed a more closely packed crystal structure can be produced by introduction of biphenyl moiety. Five of the compounds among the reported series exhibited significant anti-tyrosinase activities, in which 2p, 2r and 2s displayed good inhibitions which are comparable to standard inhibitor kojic acid at concentrations of 100 and 250 μg/mL. The inhibitory effects of these active compounds were further confirmed by computational molecular docking studies and the results revealed the primary binding site is active-site entrance instead of inner copper binding site which acted as the secondary binding site.
Lee, Donald W.; Hsu, Hung-Lun; Bacon, Kaitlyn B.; Daniel, Susan
2016-01-01
With the development of single-particle tracking (SPT) microscopy and host membrane mimics called supported lipid bilayers (SLBs), stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data obtained by assays such as surface plasmon resonance. PMID:27695072
Structural and Physical Basis for Anti-IgE Therapy
NASA Astrophysics Data System (ADS)
Wright, Jon D.; Chu, Hsing-Mao; Huang, Chun-Hsiang; Ma, Che; Wen Chang, Tse; Lim, Carmay
2015-06-01
Omalizumab, an anti-IgE antibody, used to treat severe allergic asthma and chronic idiopathic urticaria, binds to IgE in blood or membrane-bound on B lymphocytes but not to IgE bound to its high (FcɛRI) or low (CD23) affinity receptor. Mutagenesis studies indicate overlapping FcɛRI and omalizumab-binding sites in the Cɛ3 domain, but crystallographic studies show FcɛRI and CD23-binding sites that are far apart, so how can omalizumab block IgE from binding both receptors? We report a 2.42-Å omalizumab-Fab structure, a docked IgE-Fc/omalizumab-Fab structure consistent with available experimental data, and the free energy contributions of IgE residues to binding omalizumab, CD23, and FcɛRI. These results provide a structural and physical basis as to why omalizumab cannot bind receptor-bound IgE and why omalizumab-bound IgE cannot bind to CD23/FcɛRI. They reveal the key IgE residues and their roles in binding omalizumab, CD23, and FcɛRI.
Kanagarajadurai, Karuppiah; Malini, Manoharan; Bhattacharya, Aditi; Panicker, Mitradas M; Sowdhamini, Ramanathan
2009-12-01
The serotonergic system has been implicated in emotional and cognitive function. In particular, 5-HT(2A) (5-hydroxytrytamine receptor 2A) is attributed to a number of disorders like schizophrenia, depression, eating disorders and anxiety. 5-HT(2A), being a GPCR (G-protein coupled receptor), is important in the pharmaceutical industry as a proven target for these disorders. Despite their extensive clinical importance, the structural studies of this protein is lacking due to difficulties in determining its crystal structure. We have performed sequence analysis and molecular modeling of 5-HT(2A) that has revealed a set of conserved residues and motifs considered to play an important role in maintaining structural integrity and function of the receptor. The analysis also revealed a set of residues specific to the receptor which distinguishes them from other members of the subclass and their orthologs. Further, starting from the model structure of human 5-HT(2A) receptor, docking studies were attempted to envisage how it might interact with eight of its ligands (such as serotonin, dopamine, DOI, LSD, haloperidol, ketanserin, risperidone and clozapine). The binding studies of dopamine to 5-HT(2A) receptor can bring up better understanding in the etiology of a number of neurological disorders involving both these two receptors. Our sequence analysis and study of interactions of this receptor with other ligands reveal additional residue hotspots such as Asn 363 and Tyr 370. The function of these residues can be further analyzed by rational design of site-directed mutagenesis. Two distinct binding sites are identified which could play important roles in ligand binding and signaling.
Balmith, Marissa; Soliman, Mahmoud E S
2017-03-01
The first account of the dynamic features of the loop region of VP40 of the Ebola virus was studied using accelerated molecular dynamics simulations and reported herein. Among the proteins of the Ebola virus, the matrix protein (VP40) plays a significant role in the virus lifecycle thereby making it a promising therapeutic target. Of interest is the newly elucidated N-terminal domain loop region of VP40 comprising residues K127, T129, and N130 which when mutated to alanine have demonstrated an unrecognized role for N-terminal domain-plasma membrane interaction for efficient VP40-plasma membrane localization, oligomerization, matrix assembly, and egress. The molecular understanding of the conformational features of VP40 in complex with a known inhibitor still remains elusive. Using accelerated molecular dynamics approaches, we conducted a comparative study on VP40 apo and bound systems to understand the conformational features of VP40 at the molecular level and to determine the effect of inhibitor binding with the aid of a number of post-dynamic analytical tools. Significant features were seen in the presence of an inhibitor as per molecular mechanics/generalized born surface area binding free energy calculations. Results revealed that inhibitor binding to VP40 reduces the flexibility and mobility of the protein as supported by root mean square fluctuation and root mean square deviation calculations. The study revealed a characteristic "twisting" motion and coiling of the loop region of VP40 accompanied by conformational changes in the dimer interface upon inhibitor binding. We believe that results presented in this study will ultimately provide useful insight into the binding landscape of VP40 which could assist researchers in the discovery of potent Ebola virus inhibitors for anti-Ebola therapies.
Structural basis for diversity in the SAM clan of riboswitches.
Trausch, Jeremiah J; Xu, Zhenjiang; Edwards, Andrea L; Reyes, Francis E; Ross, Phillip E; Knight, Rob; Batey, Robert T
2014-05-06
In bacteria, sulfur metabolism is regulated in part by seven known families of riboswitches that bind S-adenosyl-l-methionine (SAM). Direct binding of SAM to these mRNA regulatory elements governs a downstream secondary structural switch that communicates with the transcriptional and/or translational expression machinery. The most widely distributed SAM-binding riboswitches belong to the SAM clan, comprising three families that share a common SAM-binding core but differ radically in their peripheral architecture. Although the structure of the SAM-I member of this clan has been extensively studied, how the alternative peripheral architecture of the other families supports the common SAM-binding core remains unknown. We have therefore solved the X-ray structure of a member of the SAM-I/IV family containing the alternative "PK-2" subdomain shared with the SAM-IV family. This structure reveals that this subdomain forms extensive interactions with the helix housing the SAM-binding pocket, including a highly unusual mode of helix packing in which two helices pack in a perpendicular fashion. Biochemical and genetic analysis of this RNA reveals that SAM binding induces many of these interactions, including stabilization of a pseudoknot that is part of the regulatory switch. Despite strong structural similarity between the cores of SAM-I and SAM-I/IV members, a phylogenetic analysis of sequences does not indicate that they derive from a common ancestor.
Guo, Emily Z.; Xu, Zhaohui
2015-01-01
The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. PMID:25657007
Quest for the binding mode of tetrabromobisphenol A with Calf thymus DNA
NASA Astrophysics Data System (ADS)
Wang, Yan-Qing; Zhang, Hong-Mei; Cao, Jian
2014-10-01
The binding interaction of tetrabromobisphenol A with Calf thymus DNA was studied by multi-spectroscopic and molecular modeling methods. The UV-vis study revealed that an obvious interaction between tetrabromobisphenol A and Calf thymus DNA happened. The π-π∗ transitions and the electron cloud of tetrabromobisphenol A might be changed by entering the groove of Calf thymus DNA. From the fluorescence spectral and thermodynamics studies, it was concluded that the hydrogen bonds and hydrophobic force played a major role in the binding of tetrabromobisphenol A to Calf thymus DNA. The molecular modeling study showed that the possible sites of tetrabromobisphenol A in the groove of DNA. Circular dichroism study also depicted that tetrabromobisphenol A bond to DNA. These above results would further advance our knowledge on the molecular mechanism of the binding interactions of brominated flame-retardants with nucleic acid.
NASA Astrophysics Data System (ADS)
Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D.
2016-03-01
Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08116e
Exploration of the conformational landscape in pregnane X receptor reveals a new binding pocket
Chandran, Aneesh
2016-01-01
Abstract Ligand‐regulated pregnane X receptor (PXR), a member of the nuclear receptor superfamily, plays a central role in xenobiotic metabolism. Despite its critical role in drug metabolism, PXR activation can lead to adverse drug‐drug interactions and early stage metabolism of drugs. Activated PXR can induce cancer drug resistance and enhance the onset of malignancy. Since promiscuity in ligand binding makes it difficult to develop competitive inhibitors targeting PXR ligand binding pocket (LBP), it is essential to identify allosteric sites for effective PXR antagonism. Here, molecular dynamics (MD) simulation studies unravelled the existence of two different conformational states, namely “expanded” and “contracted”, in apo PXR ligand binding domain (LBD). Ligand binding events shifted this conformational equilibrium and locked the LBD in a single “ligand‐adaptable” conformational state. Ensemble‐based computational solvent mapping identified a transiently open potential small molecule binding pocket between α5 and α8 helices, named “α8 pocket”, whose opening‐closing mechanism directly correlated with the conformational shift in LBD. A virtual hit identified through structure‐based virtual screening against α8 pocket locks the pocket in its open conformation. MD simulations further revealed that the presence of small molecule at allosteric site disrupts the LBD dynamics and locks the LBD in a “tightly‐contracted” conformation. The molecular details provided here could guide new structural studies to understand PXR activation and antagonism. PMID:27515410
Computational determination of the binding mode of α-conotoxin to nicotinic acetylcholine receptor
NASA Astrophysics Data System (ADS)
Tabassum, Nargis; Yu, Rilei; Jiang, Tao
2016-12-01
Conotoxins belong to the large families of disulfide-rich peptide toxins from cone snail venom, and can act on a broad spectrum of ion channels and receptors. They are classified into different subtypes based on their targets. The α-conotoxins selectively inhibit the current of the nicotinic acetylcholine receptors. Because of their unique selectivity towards distinct nAChR subtypes, α-conotoxins become valuable tools in nAChR study. In addition to the X-ray structures of α-conotoxins in complex with acetylcholine-binding protein, a homolog of the nAChR ligand-binding domain, the high-resolution crystal structures of the extracellular domain of the α1 and α9 subunits are also obtained. Such structures not only revealed the details of the configuration of nAChR, but also provided higher sequence identity templates for modeling the binding modes of α-conotoxins to nAChR. This mini-review summarizes recent modeling studies for the determination of the binding modes of α-conotoxins to nAChR. As there are not crystal structures of the nAChR in complex with conotoxins, computational modeling in combination of mutagenesis data is expected to reveal the molecular recognition mechanisms that govern the interactions between α-conotoxins and nAChR at molecular level. An accurate determination of the binding modes of α-conotoxins on AChRs allows rational design of α-conotoxin analogues with improved potency or selectivity to nAChRs.
Zaki, Mehvash; Afzal, Mohd; Ahmad, Musheer; Tabassum, Sartaj
2016-08-01
New copper(II)-based complex (1) was synthesized and characterized by analytical, spectroscopic and single crystal X-ray diffraction. The in vitro binding studies of complex 1 with CT DNA and HSA have been investigated by employing biophysical techniques to examine the binding propensity of 1 towards DNA and HSA. The results showed that 1 avidly binds to CT DNA via electrostatic mode along with the hydrogen bonding interaction of NH2 and CN groups of Schiff base ligand with the base pairs of DNA helix, leads to partial unwinding and destabilization of the DNA double helix. Moreover, the CD spectral studies revealed that complex 1 binds through groove binding interaction that stabilizes the right-handed B-form of DNA. Complex 1 showed an impressive photoinduced nuclease activity generating single-strand breaks in comparison with the DNA cleavage activity in presence of visible light. The mechanistic investigation revealed the efficiency of 1 to cleave DNA strands by involving the generation of reactive oxygen species. Furthermore, the time dependent DNA cleavage activity showed that there was gradual increase in the amount of NC DNA on increasing the photoexposure time. However, the interaction of 1 and HSA showed that the change of intrinsic fluorescence intensity of HSA was induced by the microenvironment of Trp residue. Copyright © 2016 Elsevier B.V. All rights reserved.
Specific receptors for epidermal growth factor in rat intestinal microvillus membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.F.
Epidermal growth factor (EGF) is present in high concentrations in milk, salivary, and pancreaticobiliary secretions. EGF, delivered to the intestinal lumen by these fluids, appears to influence intestinal proliferation. Because EGF exerts its mitogenic effect through binding to specific membrane-bound receptors, binding studies of {sup 125}I-labeled EGF to purified microvillus membrane (MVM) preparations fetal, newborn, and adult rat small intestine were performed. Using the membrane filter technique, binding of {sup 125}I-EGF to adult MVM was specific, saturable, and reversible. Adult and fetal MVM binding was rapid and reached a plateau after 30 min at both 20 and 37{degree}C. No bindingmore » was detected at 4{degree}C. Specific binding increased linearly from 0 to 75 {mu}g MVM protein. Scatchard analysis revealed a single class of receptors in fetal and adult MVM with an association constant of 1.0 {+-} 0.35 {times} 10{sup 9} and 2.3 {+-} 1.6 {times} 10{sup 9} M{sup {minus}1}, respectively. Binding capacity was 435.0 {+-} 89 and 97.7 {+-} 41.3 fmol {sup 125}I-EGF bound/mg MVM protein for fetal and adult MVM, respectively. Newborn MVM binding was negligible. After binding, cross-linking utilizing disuccinimidyl suberate, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, autoradiography revealed a 170-kDa receptor. These data demonstrate specific receptors for EGF on MVM of rat small intestine and, thus, suggest a mechanism for the intraluminal regulation of enterocyte proliferation by EGF.« less
Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef
2014-09-01
Performing kinetic studies on protein ligand interactions provides important information on complex formation and dissociation. Beside kinetic parameters such as association rates and residence times, kinetic experiments also reveal insights into reaction mechanisms. Exploiting intrinsic tryptophan fluorescence a parallelized high-throughput Förster resonance energy transfer (FRET)-based reporter displacement assay with very low protein consumption was developed to enable the large-scale kinetic characterization of the binding of ligands to recombinant human histone deacetylases (HDACs) and a bacterial histone deacetylase-like amidohydrolase (HDAH) from Bordetella/Alcaligenes. For the binding of trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), and two other SAHA derivatives to HDAH, two different modes of action, simple one-step binding and a two-step mechanism comprising initial binding and induced fit, were verified. In contrast to HDAH, all compounds bound to human HDAC1, HDAC6, and HDAC8 through a two-step mechanism. A quantitative view on the inhibitor-HDAC systems revealed two types of interaction, fast binding and slow dissociation. We provide arguments for the thesis that the relationship between quantitative kinetic and mechanistic information and chemical structures of compounds will serve as a valuable tool for drug optimization. Copyright © 2014 Elsevier Inc. All rights reserved.
Xu, Yuqun; Miyakawa, Takuya; Nakamura, Hidemitsu; Nakamura, Akira; Imamura, Yusaku; Asami, Tadao; Tanokura, Masaru
2016-01-01
The perception of two plant germination inducers, karrikins and strigolactones, are mediated by the proteins KAI2 and D14. Recently, KAI2-type proteins from parasitic weeds, which are possibly related to seed germination induced by strigolactone, have been classified into three clades characterized by different responses to karrikin/strigolactone. Here we characterized a karrikin-binding protein in Striga (ShKAI2iB) that belongs to intermediate-evolving KAI2 and provided the structural bases for its karrikin-binding specificity. Binding assays showed that ShKAI2iB bound karrikins but not strigolactone, differing from other KAI2 and D14. The crystal structures of ShKAI2iB and ShKAI2iB-karrikin complex revealed obvious structural differences in a helix located at the entry of its ligand-binding cavity. This results in a smaller closed pocket, which is also the major cause of ShKAI2iB’s specificity of binding karrikin. Our structural study also revealed that a few non-conserved amino acids led to the distinct ligand-binding profile of ShKAI2iB, suggesting that the evolution of KAI2 resulted in its diverse functions. PMID:27507097
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shiva; Pioszak, Augen; Zhang, Chenghai
2012-02-21
Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology ofmore » the ECD and a distinct mode of ligand recognition. Here we report a 1.9 {angstrom} crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.« less
Simultaneous Binding of Two Peptidyl Ligands by a Src Homology 2 Domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanyan; Zhang, Jinjin; Yuan, Chunhua
Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing phosphotyrosine (pY)-containing sequences of target proteins. In all of the SH2 domain-pY peptide interactions described to date, the SH2 domain binds to a single pY peptide. Here, determination of the cocrystal structure of the N-terminal SH2 domain of phosphatase SHP-2 bound to a class IV peptide (VIpYFVP) revealed a noncanonical 1:2 (protein-peptide) complex. The first peptide binds in a canonical manner with its pY side chain inserted in the usual binding pocket, while the second pairs up with the first to form two antiparallel {beta}-strands that extend the central {beta}-sheetmore » of the SH2 domain. This unprecedented binding mode was confirmed in the solution phase by NMR experiments and shown to be adopted by pY peptides derived from cellular proteins. Site-directed mutagenesis and surface plasmon resonance studies revealed that the binding of the first peptide is pY-dependent, but phosphorylation is not required for the second peptide. Our findings suggest a potential new function for the SH2 domain as a molecular clamp to promote dimerization of signaling proteins.« less
NASA Astrophysics Data System (ADS)
Singh, Warispreet; Karabencheva-Christova, Tatyana G.; Black, Gary W.; Ainsley, Jon; Dover, Lynn; Christov, Christo Z.
2016-01-01
Heme d1, a vital tetrapyrrol involved in the denitrification processes is synthesized from its precursor molecule precorrin-2 in a chemical reaction catalysed by an S-adenosyl-L-methionine (SAM) dependent Methyltransferase (NirE). The NirE enzyme catalyses the transfer of a methyl group from the SAM to uroporphyrinogen III and serves as a novel potential drug target for the pharmaceutical industry. An important insight into the structure-activity relationships of NirE has been revealed by elucidating its crystal structure, but there is still no understanding about how conformational flexibility influences structure, cofactor and substrate binding by the enzyme as well as the structural effects of mutations of residues involved in binding and catalysis. In order to provide this missing but very important information we performed a comprehensive atomistic molecular dynamics study which revealed that i) the binding of the substrate contributes to the stabilization of the structure of the full complex; ii) conformational changes influence the orientation of the pyrrole rings in the substrate, iii) more open conformation of enzyme active site to accommodate the substrate as an outcome of conformational motions; and iv) the mutations of binding and active site residues lead to sensitive structural changes which influence binding and catalysis.
Dehghani, Hossein; Ghobakhloo, Sepideh; Neishabury, Maryam
2016-08-01
In our previous studies on the Iranian β-thalassemia (β-thal) patients, we identified an association between the severity of the β-thal phenotype and the polymorphic palindromic site at the 5' hypersensitive site 4-locus control region (5'HS4-LCR) of the β-globin gene cluster. Furthermore, a linkage disequilibrium was observed between this region and XmnI-HBG2 in the patient population. Based on this data, it was suggested that the well-recognized phenotype-ameliorating role assigned to positive XmnI could be associated with its linked elements in the LCR. To investigate the functional significance of polymorphisms at the 5'HS4-LCR, we studied its influence on binding of transcription factors. Web-based predictions of transcription factor binding revealed a binding site for runt-related transcription factor 1 (RUNX1), when the allele at the center of the palindrome (TGGGG(A/G)CCCCA) was A but not when it was G. Furthermore, electromobility shift assay (EMSA) presented evidence in support of allele-specific binding of RUNX1 to 5'HS4. Considering that RUNX1 is a well-known regulator of hematopoiesis, these preliminary data suggest the importance of further studies to confirm this interaction and consequently investigate its functional and phenotypical relevance. These studies could help us to understand the molecular mechanism behind the phenotype modifying role of the 5'HS4-LCR polymorphic palindromic region (rs16912979), which has been observed in previous studies.
Giedroc, D P; Chen, X; Pennella, M A; LiWang, A C
2001-11-09
The human metalloregulatory transcription factor, metal-response element (MRE)-binding transcription factor-1 (MTF-1), contains six TFIIIA-type Cys(2)-His(2) motifs, each of which was projected to form well-structured betabetaalpha domains upon Zn(II) binding. In this report, the structure and backbone dynamics of a fragment containing the unusual C-terminal fingers F4-F6 has been investigated. (15)N heteronuclear single quantum coherence (HSQC) spectra of uniformly (15)N-labeled hMTF-zf46 show that Zn(II) induces the folding of hMTF-zf46. Analysis of the secondary structure of Zn(3) hMTF-zf46 determined by (13)Calpha chemical shift indexing and the magnitude of (3)J(Halpha-HN) clearly reveal that zinc fingers F4 and F6 adopt typical betabetaalpha structures. An analysis of the heteronuclear backbone (15)N relaxation dynamics behavior is consistent with this picture and further reveals independent tumbling of the finger domains in solution. Titration of apo-MTF-zf46 with Zn(II) reveals that the F4 domain binds Zn(II) significantly more tightly than do the other two finger domains. In contrast to fingers F4 and F6, the betabetaalpha fold of finger F5 is unstable and only partially populated at substoichiometric Zn(II); a slight molar excess of zinc results in severe conformational exchange broadening of all F5 NH cross-peaks. Finally, although Cd(II) binds to apo-hMTF-zf46 as revealed by intense S(-)-->Cd(II) absorption, a non-native structure results; addition of stoichiometric Zn(II) to the Cd(II) complex results in quantitative refolding of the betabetaalpha structure in F4 and F6. The functional implications of these results are discussed.
Actinomycin D binding mode reveals the basis for its potent HIV-1 and cancer activity
NASA Astrophysics Data System (ADS)
Paramanathan, Thayaparan; Vladescu, Ioana D.; McCauley, Micah J.; Rouzina, Ioulia; Williams, Mark C.
2011-03-01
Actinomycin D (ActD) is one of the most studied antibiotics, which has been used as an anti-cancer agent and also shown to inhibit HIV reverse transcription. Initial studies with ActD established that it intercalates double stranded DNA (dsDNA). However, recent studies have shown that ActD binds with even higher affinity to single stranded DNA (ssDNA). In our studies we use optical tweezers to stretch and hold single dsDNA molecule at constant force in the presence of varying ActD concentrations until the binding reaches equilibrium. The change in dsDNA length upon ActD binding measured as a function of time yields the rate of binding in addition to the equilibrium lengthening of DNA. The results suggest extremely slow kinetics, on the order of several minutes and 0.52 +/- 0.06 μ M binding affinity. Holding DNA at constant force while stretching and relaxing suggests that ActD binds to two single strands that are close to each other rather than to pure dsDNA or ssDNA. This suggests that biological activity of ActD that contributes towards the inhibition of cellular replication is due to its ability to bind at DNA bubbles during RNA transcription, thereby stalling the transcription process.
ERIC Educational Resources Information Center
Riggins, Tracy
2014-01-01
The present study used a cohort-sequential design to examine developmental changes in children's ability to bind items in memory during early and middle childhood. Three cohorts of children (aged 4, 6, or 8 years) were followed longitudinally for 3 years. Each year, children completed a source memory paradigm assessing memory for items and…
Fraiberg, Milana; Borovok, Ilya; Bayer, Edward A.; Weiner, Ronald M.; Lamed, Raphael
2011-01-01
The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium. PMID:21036994
Tailoring charge density and hydrogen bonding of imidazolium copolymers for efficient gene delivery.
Allen, Michael H; Green, Matthew D; Getaneh, Hiwote K; Miller, Kevin M; Long, Timothy E
2011-06-13
Conventional free radical polymerization with subsequent postpolymerization modification afforded imidazolium copolymers with controlled charge density and side chain hydroxyl number. Novel imidazolium-containing copolymers where each permanent cation contained one or two adjacent hydroxyls allowed precise structure-transfection efficiency studies. The degree of polymerization was identical for all copolymers to eliminate the influence of molecular weight on transfection efficiency. DNA binding, cytotoxicity, and in vitro gene transfection in African green monkey COS-7 cells revealed structure-property-transfection relationships for the copolymers. DNA gel shift assays indicated that higher charge densities and hydroxyl concentrations increased DNA binding. As the charge density of the copolymers increased, toxicity of the copolymers also increased; however, as hydroxyl concentration increased, cytotoxicity remained constant. Changing both charge density and hydroxyl levels in a systematic fashion revealed a dramatic influence on transfection efficiency. Dynamic light scattering of the polyplexes, which were composed of copolymer concentrations required for the highest luciferase expression, showed an intermediate DNA-copolymer binding affinity. Our studies supported the conclusion that cationic copolymer binding affinity significantly impacts overall transfection efficiency of DNA delivery vehicles, and the incorporation of hydroxyl sites offers a less toxic and effective alternative to more conventional highly charged copolymers.
Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z
2016-10-01
The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.
Senga, Shogo; Kobayashi, Narumi; Kawaguchi, Koichiro; Ando, Akira; Fujii, Hiroshi
2018-06-12
Fatty acid-binding proteins (FABPs) are involved in binding and storing hydrophobic ligands such as long-chain fatty acids, as well as transporting them to the appropriate compartments in the cell. Epidermal fatty acid-binding protein (FABP5) is an intracellular lipid-binding protein that is abundantly expressed in adipocytes and macrophages. Previous studies have revealed that the FABP5 expression level is closely related to malignancy in various types of cancer. However, its precise functions in the metabolisms of cancer cells remain unclear. Here, we revealed that FABP5 knockdown significantly induced downregulation of the genes expression, such as hormone-sensitive lipase (HSL), monoacylglycerol lipase (MAGL), elongation of long-chain fatty acid member 6 (Elovl6), and acyl-CoA synthetase long-chain family member 1 (ACSL1), which are involved in altered lipid metabolism, lipolysis, and de novo FA synthesis in highly aggressive prostate and breast cancer cells. Moreover, we demonstrated that FABP5 induced inflammation and cytokine production through the nuclear factor-kappa B signaling pathway activated by reactive oxygen species and protein kinase C in PC-3 and MDA-MB-231 cells. Thus, FABP5 might regulate lipid quality and/or quantity to promote aggressiveness such as cell growth, invasiveness, survival, and inflammation in prostate and breast cancer cells. In the present study, we have revealed for the first time that high expression of FABP5 plays a critical role in alterations of lipid metabolism, leading to cancer development and metastasis in highly aggressive prostate and breast cancer cells. Copyright © 2018. Published by Elsevier B.V.
Qian, Kevin; Wang, Lian; Cywin, Charles L; Farmer, Bennett T; Hickey, Eugene; Homon, Carol; Jakes, Scott; Kashem, Mohammed A; Lee, George; Leonard, Scott; Li, Jun; Magboo, Ronald; Mao, Wang; Pack, Edward; Peng, Charlene; Prokopowicz, Anthony; Welzel, Morgan; Wolak, John; Morwick, Tina
2009-04-09
A series of inhibitors of Pim-2 kinase identified by high-throughput screening is described. Details of the hit validation and lead generation process and structure-activity relationship (SAR) studies are presented. Disclosure of an unconventional binding mode for 1, as revealed by X-ray crystallography using the highly homologous Pim-1 protein, is also presented, and observed binding features are shown to correlate with the Pim-2 SAR. While highly selective within the kinase family, the series shows similar potency for both Pim-1 and Pim-2, which was expected on the basis of homology, but unusual in light of reports in the literature documenting a bias for Pim-1. A rationale for these observations based on Pim-1 and Pim-2 K(M(ATP)) values is suggested. Some interesting cross reactivity with casein kinase-2 was also identified, and structural features which may contribute to the association are discussed.
Sequence-selective binding of C8-conjugated pyrrolobenzodiazepines (PBDs) to DNA.
Basher, Mohammad A; Rahman, Khondaker Miraz; Jackson, Paul J M; Thurston, David E; Fox, Keith R
2017-11-01
DNA footprinting and melting experiments have been used to examine the sequence-specific binding of C8-conjugates of pyrrolobenzodiazepines (PBDs) and benzofused rings including benzothiophene and benzofuran, which are attached using pyrrole- or imidazole-containing linkers. The conjugates modulate the covalent attachment points of the PBDs, so that they bind best to guanines flanked by A/T-rich sequences on either the 5'- or 3'-side. The linker affects the binding, and pyrrole produces larger changes than imidazole. Melting studies with 14-mer oligonucleotide duplexes confirm covalent attachment of the conjugates, which show a different selectivity to anthramycin and reveal that more than one ligand molecule can bind to each duplex. Copyright © 2017 Elsevier B.V. All rights reserved.
Baugh, Loren; Le Trong, Isolde; Cerutti, David S; Gülich, Susanne; Stayton, Patrick S; Stenkamp, Ronald E; Lybrand, Terry P
2010-06-08
We have identified a distal point mutation in streptavidin that causes a 1000-fold reduction in biotin binding affinity without disrupting the equilibrium complex structure. The F130L mutation creates a small cavity occupied by a water molecule; however, all neighboring side chain positions are preserved, and protein-biotin hydrogen bonds are unperturbed. Molecular dynamics simulations reveal a reduced mobility of biotin binding residues but no observable destabilization of protein-ligand interactions. Our combined structural and computational studies suggest that the additional water molecule may affect binding affinity through an electronic polarization effect that impacts the highly cooperative hydrogen bonding network in the biotin binding pocket.
NASA Astrophysics Data System (ADS)
Zhang, Yuanzhao; Jimenez-Cruz, Camilo A.; Wang, Jian; Zhou, Bo; Yang, Zaixing; Zhou, Ruhong
2014-11-01
Here, we report computational studies of the SH3 protein domain interacting with various single-walled carbon nanotubes (SWCNT) either bare or functionalized by mimicking the proline-rich motif (PRM) ligand (PPPVPPRR) and compare it to the SH3-PRM complex binding. With prolines or a single arginine attached, the SWCNT gained slightly on specificity when compared with the bare control, whereas with multi-arginine systems the specificity dropped dramatically to our surprise. Although the electrostatic interaction provided by arginines is crucial in the recognition between PRM and SH3 domain, our results suggest that attaching multiple arginines to the SWCNT has a detrimental effect on the binding affinity. Detailed analysis of the MD trajectories found two main factors that modulate the specificity of the binding: the existence of competing acidic patches at the surface of SH3 that leads to ``trapping and clamping'' by the arginines, and the rigidity of the SWCNT introducing entropic penalties in the proper binding. Further investigation revealed that the same ``clamping'' phenomenon exits in the PRM-SH3 system, which has not been reported in previous literature. The competing effects between nanoparticle and its functionalization components revealed by our model system should be of value to current and future nanomedicine designs.
Zhang, Yuanzhao; Jimenez-Cruz, Camilo A.; Wang, Jian; Zhou, Bo; Yang, Zaixing; Zhou, Ruhong
2014-01-01
Here, we report computational studies of the SH3 protein domain interacting with various single-walled carbon nanotubes (SWCNT) either bare or functionalized by mimicking the proline-rich motif (PRM) ligand (PPPVPPRR) and compare it to the SH3-PRM complex binding. With prolines or a single arginine attached, the SWCNT gained slightly on specificity when compared with the bare control, whereas with multi-arginine systems the specificity dropped dramatically to our surprise. Although the electrostatic interaction provided by arginines is crucial in the recognition between PRM and SH3 domain, our results suggest that attaching multiple arginines to the SWCNT has a detrimental effect on the binding affinity. Detailed analysis of the MD trajectories found two main factors that modulate the specificity of the binding: the existence of competing acidic patches at the surface of SH3 that leads to “trapping and clamping” by the arginines, and the rigidity of the SWCNT introducing entropic penalties in the proper binding. Further investigation revealed that the same “clamping” phenomenon exits in the PRM-SH3 system, which has not been reported in previous literature. The competing effects between nanoparticle and its functionalization components revealed by our model system should be of value to current and future nanomedicine designs. PMID:25427563
Massive GGAAs in genomic repetitive sequences serve as a nuclear reservoir of NF-κB.
Wu, Jian; Wang, Qiao; Dai, Wei; Wang, Wei; Yue, Ming; Wang, Jinke
2018-04-13
Nuclear factor κB (NF-κB) is a DNA-binding transcription factor. Characterizing its genomic binding sites is crucial for understanding its gene regulatory function and mechanism in cells. This study characterized the binding sites of NF-κB RelA/p65 in the tumor neurosis factor-α (TNFα) stimulated HeLa cells by a precise chromatin immunoprecipitation-sequencing (ChIP-seq). The results revealed that NF-κB binds nontraditional motifs (nt-motifs) containing conserved GGAA quadruplet. Moreover, nt-motifs mainly distribute in the peaks nearby centromeres that contain a larger number of repetitive elements such as satellite, simple repeats and short interspersed nuclear elements (SINEs). This intracellular binding pattern was then confirmed by the in vitro detection, indicating that NF-κB dimers can bind the nontraditional κB (nt-κB) sites with low affinity. However, this binding hardly activates transcription. This study thus deduced that NF-κB binding nt-motifs may realize functions other than gene regulation as NF-κB binding traditional motifs (t-motifs). To testify the deduction, many ChIP-seq data of other cell lines were then analyzed. The results indicate that NF-κB binding nt-motifs is also widely present in other cells. The ChIP-seq data analysis also revealed that nt-motifs more widely distribute in the peaks with low-fold enrichment. Importantly, it was also found that NF-κB binding nt-motifs is mainly present in the resting cells, whereas NF-κB binding t-motifs is mainly present in the stimulated cells. Astonishingly, no known function was enriched by the gene annotation of nt-motif peaks. Based on these results, this study proposed that the nt-κB sites that extensively distribute in larger numbers of repeat elements function as a nuclear reservoir of NF-κB. The nuclear NF-κB proteins stored at nt-κB sites in the resting cells may be recruited to the t-κB sites for regulating its target genes upon stimulation. Copyright © 2018 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimoto, Arata, E-mail: anishimo@yamaguchi-u.ac.jp; Kugimiya, Naruji; Hosoyama, Toru
2013-08-30
Highlights: •JAB1 interacted with unphosphorylated STAT3 in the nucleus. •JAB1 knockdown tended to increase nuclear STAT3 expression. •JAB1 knockdown significantly decreased unphosphorylated STAT3 DNA-binding activity. •JAB1 knockdown significantly decreased MDR1, NANOG, and VEGF expressions. •Nuclear JAB1, but not nuclear STAT3, correlated with STAT3 DNA-binding activity. -- Abstract: Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are themore » critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3 target genes. Furthermore, the expression level of nuclear JAB1, but not nuclear STAT3, correlated with unphosphorylated STAT3 DNA-binding activity between COLO205 and LoVo cells. Taken together, these results suggest that nuclear JAB1 positively regulates unphosphorylated STAT3 DNA-binding activity through protein–protein interaction in human colon cancer cell line COLO205.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, Sean W.; Horn, James R.
2014-03-05
Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while themore » crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.« less
Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.
2012-01-01
Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924
Empty conformers of HLA-B preferentially bind CD8 and regulate CD8+ T cell function.
Geng, Jie; Altman, John D; Krishnakumar, Sujatha; Raghavan, Malini
2018-05-09
When complexed with antigenic peptides, human leukocyte antigen (HLA) class I (HLA-I) molecules initiate CD8 + T cell responses via interaction with the T cell receptor (TCR) and co-receptor CD8. Peptides are generally critical for the stable cell surface expression of HLA-I molecules. However, for HLA-I alleles such as HLA-B*35:01, peptide-deficient (empty) heterodimers are thermostable and detectable on the cell surface. Additionally, peptide-deficient HLA-B*35:01 tetramers preferentially bind CD8 and to a majority of blood-derived CD8 + T cells via a CD8-dependent binding mode. Further functional studies reveal that peptide-deficient conformers of HLA-B*35:01 do not directly activate CD8 + T cells, but accumulate at the immunological synapse in antigen-induced responses, and enhance cognate peptide-induced cell adhesion and CD8 + T cell activation. Together, these findings indicate that HLA-I peptide occupancy influences CD8 binding affinity, and reveal a new set of regulators of CD8 + T cell activation, mediated by the binding of empty HLA-I to CD8. © 2018, Geng et al.
Solubilization and purification of melatonin receptors from lizard brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.
Melatonin receptors in lizard brain were identified and characterized using {sup 125}I-labeled melatonin (({sup 125}I)MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resultedmore » in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.« less
CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.
Xia, Heng; Chen, Dong; Wu, Qijia; Wu, Gang; Zhou, Yanhong; Zhang, Yi; Zhang, Libin
2017-09-01
The current RIP-seq approach has been developed for the identification of genome-wide interaction between RNA binding protein (RBP) and the bound RNA transcripts, but still rarely for identifying its binding sites. In this study, we performed RIP-seq experiments in HeLa cells using a monoclonal antibody against CELF1. Mapping of the RIP-seq reads showed a biased distribution at the 3'UTR and intronic regions. A total of 15,285 and 1384 CELF1-specific sense and antisense peaks were identified using the ABLIRC software tool. Our bioinformatics analyses revealed that 5' and 3' splice site motifs and GU-rich motifs were highly enriched in the CELF1-bound peaks. Furthermore, transcriptome analyses revealed that alternative splicing was globally regulated by CELF1 in HeLa cells. For example, the inclusion of exon 16 of LMO7 gene, a marker gene of breast cancer, is positively regulated by CELF1. Taken together, we have shown that RIP-seq data can be used to decipher RBP binding sites and reveal an unexpected landscape of the genome-wide CELF1-RNA interactions in HeLa cells. In addition, we found that CELF1 globally regulates the alternative splicing by binding the exon-intron boundary in HeLa cells, which will deepen our understanding of the regulatory roles of CELF1 in the pre-mRNA splicing process. Copyright © 2017 Elsevier B.V. All rights reserved.
Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies.
Smolensky Koganov, Elena; Leitus, Gregory; Rozin, Rinat; Weiner, Lev; Friedman, Noga; Sheves, Mordechai
2017-05-04
Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn 2+ and Ca 2+ , to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn 2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn 2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn 2+ cations to xR is due to the formation of Mn 2+ clusters. Our data demonstrate that Ca 2+ cations bind to DI-xR with a lower affinity than Mn 2+ , supporting the assumption that binding of Mn 2+ occurs through cluster formation, because Ca 2+ cations cannot form clusters in contrast to Mn 2+ .
Maurya, Neha; Maurya, Jitendra Kumar; Kumari, Meena; Khan, Abbul Bashar; Dohare, Ravins; Patel, Rajan
2017-05-01
Herein, we have explored the interaction between amitriptyline hydrochloride (AMT) and hemoglobin (Hb), using steady-state and time-resolved fluorescence spectroscopy, UV-visible spectroscopy, and circular dichroism spectroscopy, in combination with molecular docking and molecular dynamic (MD) simulation methods. The steady-state fluorescence reveals the static quenching mechanism in the interaction system, which was further confirmed by UV-visible and time-resolved fluorescence spectroscopy. The binding constant, number of binding sites, and thermodynamic parameters viz. ΔG, ΔH, ΔS are also considered; result confirms that the binding of the AMT with Hb is a spontaneous process, involving hydrogen bonding and van der Waals interactions with a single binding site, as also confirmed by molecular docking study. Synchronous fluorescence, CD data, and MD simulation results contribute toward understanding the effect of AMT on Hb to interpret the conformational change in Hb upon binding in aqueous solution.
Zhan, Minzhong; Guo, Ming; Jiang, Yanke; Wang, Xiaomeng
2015-01-01
The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA. PMID:26140374
Zhan, Minzhong; Guo, Ming; Jiang, Yanke; Wang, Xiaomeng
2015-07-01
The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA.
Yang, Sihai; Ramirez-Cuesta, Anibal J.; Newby, Ruth; ...
2014-12-01
Supramolecular interactions are fundamental to host–guest binding in many chemical and biological processes. Direct visualization of such supramolecular interactions within host–guest systems is extremely challenging, but crucial to understanding their function. Within this paper, we report a comprehensive study that combines neutron scattering, synchrotron X-ray and neutron diffraction, and computational modelling to define the detailed binding at a molecular level of acetylene, ethylene and ethane within the porous host NOTT-300. This study reveals simultaneous and cooperative hydrogen-bonding, π···π stacking interactions and intermolecular dipole interactions in the binding of acetylene and ethylene to give up to 12 individual weak supramolecular interactionsmore » aligned within the host to form an optimal geometry for the selective binding of hydrocarbons. In addition, we also report the cooperative binding of a mixture of acetylene and ethylene within the porous host, together with the corresponding breakthrough experiments and analysis of adsorption isotherms of gas mixtures.« less
Yatabe, K; Kawai, M
1997-08-01
Ulex europaeus agglutinin I (UEA I) binding was studied in 83 patients with various neuromuscular disorders. UEA I labelled endomysial capillaries and endothelial cells of perimysial blood vessels in all the examined muscles. There was no UEA I binding to muscle fibres except for all (9) cases of distal myopathy with rimmed vacuole formation (DMRV), 1 of 5 cases of inclusion body myositis and 1 of 36 cases of inflammatory myopathies. The UEA I binding was completely eliminated by preincubation of UEA I solution with L-fucose. Using electron microscopy, the UEA I binding was localized to sarcolemma and intrasarco-plasmic membranous organelles other than mitochondria. Myosatellite cells were not labelled. These findings revealed the existence of fucosylated proteins or lipids in a subset of skeletal muscles suffering from DMRV. Biochemical identification of the fucosylated substance and further detailed study on subcellular localization of UEA I binding may yield important clues to the unknown pathogenesis of DMRV.
De Simone, Giuseppina; Langella, Emma; Esposito, Davide; Supuran, Claudiu T; Monti, Simona Maria; Winum, Jean-Yves; Alterio, Vincenzo
2017-12-01
Sulphamate and sulphamide derivatives have been largely investigated as carbonic anhydrase inhibitors (CAIs) by means of different experimental techniques. However, the structural determinants responsible for their different binding mode to the enzyme active site were not clearly defined so far. In this paper, we report the X-ray crystal structure of hCA II in complex with a sulphamate inhibitor incorporating a nitroimidazole moiety. The comparison with the structure of hCA II in complex with its sulphamide analogue revealed that the two inhibitors adopt a completely different binding mode within the hCA II active site. Starting from these results, we performed a theoretical study on sulphamate and sulphamide derivatives, demonstrating that electrostatic interactions with residues within the enzyme active site play a key role in determining their binding conformation. These findings open new perspectives in the design of effective CAIs using the sulphamate and sulphamide zinc binding groups as lead compounds.
Schlecht, Ulrich; Erb, Ionas; Demougin, Philippe; Robine, Nicolas; Borde, Valérie; van Nimwegen, Erik; Nicolas, Alain
2008-01-01
The autonomously replicating sequence binding factor 1 (Abf1) was initially identified as an essential DNA replication factor and later shown to be a component of the regulatory network controlling mitotic and meiotic cell cycle progression in budding yeast. The protein is thought to exert its functions via specific interaction with its target site as part of distinct protein complexes, but its roles during mitotic growth and meiotic development are only partially understood. Here, we report a comprehensive approach aiming at the identification of direct Abf1-target genes expressed during fermentation, respiration, and sporulation. Computational prediction of the protein's target sites was integrated with a genome-wide DNA binding assay in growing and sporulating cells. The resulting data were combined with the output of expression profiling studies using wild-type versus temperature-sensitive alleles. This work identified 434 protein-coding loci as being transcriptionally dependent on Abf1. More than 60% of their putative promoter regions contained a computationally predicted Abf1 binding site and/or were bound by Abf1 in vivo, identifying them as direct targets. The present study revealed numerous loci previously unknown to be under Abf1 control, and it yielded evidence for the protein's variable DNA binding pattern during mitotic growth and meiotic development. PMID:18305101
Duan, Ming-Rui; Nan, Jie; Liang, Yu-He; Mao, Peng; Lu, Lu; Li, Lanfen; Wei, Chunhong; Lai, Luhua; Li, Yi; Su, Xiao-Dong
2007-01-01
WRKY proteins, defined by the conserved WRKYGQK sequence, are comprised of a large superfamily of transcription factors identified specifically from the plant kingdom. This superfamily plays important roles in plant disease resistance, abiotic stress, senescence as well as in some developmental processes. In this study, the Arabidopsis WRKY1 was shown to be involved in the salicylic acid signaling pathway and partially dependent on NPR1; a C-terminal domain of WRKY1, AtWRKY1-C, was constructed for structural studies. Previous investigations showed that DNA binding of the WRKY proteins was localized at the WRKY domains and these domains may define novel zinc-binding motifs. The crystal structure of the AtWRKY1-C determined at 1.6 Å resolution has revealed that this domain is composed of a globular structure with five β strands, forming an antiparallel β-sheet. A novel zinc-binding site is situated at one end of the β-sheet, between strands β4 and β5. Based on this high-resolution crystal structure and site-directed mutagenesis, we have defined and confirmed that the DNA-binding residues of AtWRKY1-C are located at β2 and β3 strands. These results provided us with structural information to understand the mechanism of transcriptional control and signal transduction events of the WRKY proteins. PMID:17264121
Structural basis of gene regulation by the Grainyhead/CP2 transcription factor family
Ming, Qianqian; Roske, Yvette; Schuetz, Anja; Walentin, Katharina; Ibraimi, Ibraim; Schmidt-Ott, Kai M
2018-01-01
Abstract Grainyhead (Grh)/CP2 transcription factors are highly conserved in multicellular organisms as key regulators of epithelial differentiation, organ development and skin barrier formation. In addition, they have been implicated as being tumor suppressors in a variety of human cancers. Despite their physiological importance, little is known about their structure and DNA binding mode. Here, we report the first structural study of mammalian Grh/CP2 factors. Crystal structures of the DNA-binding domains of grainyhead-like (Grhl) 1 and Grhl2 reveal a closely similar conformation with immunoglobulin-like core. Both share a common fold with the tumor suppressor p53, but differ in important structural features. The Grhl1 DNA-binding domain binds duplex DNA containing the consensus recognition element in a dimeric arrangement, supporting parsimonious target-sequence selection through two conserved arginine residues. We elucidate the molecular basis of a cancer-related mutation in Grhl1 involving one of these arginines, which completely abrogates DNA binding in biochemical assays and transcriptional activation of a reporter gene in a human cell line. Thus, our studies establish the structural basis of DNA target-site recognition by Grh transcription factors and reveal how tumor-associated mutations inactivate Grhl proteins. They may serve as points of departure for the structure-based development of Grh/CP2 inhibitors for therapeutic applications. PMID:29309642
Fu, Qing-Long; He, Jian-Zhou; Blaney, Lee; Zhou, Dong-Mei
2016-07-01
The fate and transport of roxarsone (ROX), a widely used organoarsenic feed additive, in soil is significantly influenced by the ubiquitous presence of soil-derived dissolved organic matter (DOM). In this study, fluorescence quenching titration and two-dimensional correlation spectroscopy (2D-COS) were employed to study ROX binding to DOM. Binding mechanisms were revealed by fluorescence lifetime measurement and Fourier transform infrared spectroscopy (FTIR). Humic- and protein-like fluorophores were identified in the excitation-emission matrix and synchronous fluorescence spectra of DOM. The conditional stability constant (log KC) for ROX binding to DOM was found to be 5.06, indicating that ROX was strongly bound to DOM. The binding order of ROX to DOM fluorophores revealed by 2D-COS followed the sequence of protein-like fluorophore ≈ the longer wavelength excited humic-like (L-humic-like) fluorophore > the shorter wavelength excited humic-like (S-humic-like) fluorophore. 2D-COS resolved issues with peak overlapping and allowed further exploration of the interaction between ROX and DOM. Results of fluorescence lifetime and FTIR spectra demonstrated that ROX interacted with DOM through the hydroxyl, amide II, carboxyl, aliphatic CH, and NO2 groups, yielding stable DOM-ROX complexes. The strong interaction between ROX and DOM implies that DOM plays an important role in the environmental fate of ROX in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Park, Young Ha; Um, Si Hyeon; Song, Saemee; Seok, Yeong Jae; Ha, Nam Chul
2015-10-01
Histidine-containing phosphocarrier protein (HPr) is a general component of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) involved in the phosphorylation-coupled transport of numerous sugars called PTS sugars. HPr mainly exists in a dephosphorylated form in the presence of PTS sugars in the medium, while its phosphorylation increases in the absence of PTS sugars. A recent study revealed that the dephosphorylated form of HPr binds and antagonizes the function of the antisigma factor Rsd. This anti-sigma factor sequesters the housekeeping sigma factor σ(70) to facilitate switching of the sigma subunit on RNA polymerase from σ(70) to the stress-responsive sigma factor σ(S) in stationary-phase cells. In this study, the structure of the complex of Rsd and HPr was determined at 2.1 Å resolution and revealed that the binding site for HPr on the surface of Rsd partly overlaps with that for σ(70). The localization of the phosphorylation site on HPr at the binding interface for Rsd explains why phosphorylation of HPr abolishes its binding to Rsd. The mutation of crucial residues involved in the HPr-Rsd interaction significantly influenced the competition between HPr and σ(70) for binding to Rsd both in vitro and in vivo. The results provide a structural basis for the linkage of global gene regulation to nutrient availability in the external environment.
The iron uptake repressor Fep1 in the fission yeast binds Fe-S cluster through conserved cysteines.
Kim, Hyo-Jin; Lee, Kang-Lok; Kim, Kyoung-Dong; Roe, Jung-Hye
2016-09-09
Iron homeostasis is tightly regulated since iron is an essential but toxic element in the cell. The GATA-type transcription factor Fep1 and its orthologs contribute to iron homeostasis in many fungi by repressing genes for iron uptake when intracellular iron is high. Even though the function and interaction partners of Fep1 have been elucidated extensively In Schizosaccharomyces pombe, the mechanism behind iron-sensing by Fep1 remains elusive. It has been reported that Fep1 interacts with Fe-S-containing monothiol glutaredoxin Grx4 and Grx4-Fra2 complex. In this study, we demonstrate that Fep1 also binds iron, in the form of Fe-S cluster. Spectroscopic and biochemical analyses of as isolated and reconstituted Fep1 suggest that the dimeric Fep1 binds Fe-S clusters. The mutation study revealed that the cluster-binding depended on the conserved cysteines located between the two zinc fingers in the DNA binding domain. EPR analyses revealed [Fe-S]-specific peaks indicative of mixed presence of [2Fe-2S], [3Fe-4S], or [4Fe-4S]. The finding that Fep1 is an Fe-S protein fits nicely with the model that the Fe-S-trafficking Grx4 senses intracellular iron environment and modulates the activity of Fep1. Copyright © 2016 Elsevier Inc. All rights reserved.
Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza; Benyhe, Sándor; Gaspar, Robert; Matifas, Audrey; Kieffer, Brigitte L; Metaxas, Athanasios; Kitchen, Ian; Bailey, Alexis
2017-03-16
Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear. This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [ 3 H]oxymorphone revealed high affinity binding sites in mouse brain displaying Kd of 1.7nM and Bmax of 147fmol/mg. Furthermore, we performed quantitative autoradiography binding studies using [ 3 H]oxymorphone in mouse brain. The distribution of [ 3 H]oxymorphone binding sites was found to be similar to the selective MOP agonist [ 3 H]DAMGO in the mouse brain. [ 3 H]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [ 3 H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP, and not the DOP or the KOP is the main high affinity binding target for oxymorphone. Copyright © 2017 Elsevier B.V. All rights reserved.
Translational autocontrol of the Escherichia coli hfq RNA chaperone gene
VEČEREK, BRANISLAV; MOLL, ISABELLA; BLÄSI, UDO
2005-01-01
The conserved bacterial RNA chaperone Hfq has been shown to play an important role in post-transcriptional regulation. Here, we demonstrate that Hfq synthesis is autoregulated at the translational level. We have mapped two Hfq binding sites in the 5′-untranslated region of hfq mRNA and show that Hfq binding inhibits formation of the translation initiation complex. In vitro translation and in vivo studies further revealed that Hfq binding to both sites is required for efficient translational repression of hfq mRNA. PMID:15872186
Wang, Ying; Wen, Zhang Guang; Kim, Kwang Sik
2004-12-01
Bacterial binding to host cell surface is considered an important initial step in the pathogenesis of many infectious diseases including meningitis. Previous studies using a laboratory Escherichia coli (E. coli) strain HB101 possessing a recombinant plasmid carrying the cloned S fimbriae gene cluster have shown that S fimbriae are the major contributor to binding to bovine brain microvascular endothelial cells (BMEC) for HB101. Our present study, however, revealed that S fimbriae did not play a major role for E. coli K1's binding to human BMEC in vitro and crossing of the blood-brain barrier in vivo. This was shown by our demonstration that E. coli K1 strain and its S fimbriae-operon deletion mutant exhibited similar rates of binding to human BMEC and similar rates of penetration into the central nervous system in the experimental hematogenous meningitis model. Studies are needed to identify major determinants of E. coli K1 contributing to BMEC binding and subsequent crossing of the blood-brain barrier in vivo.
Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference
Wang, Fei; Qi, Jianxun; Bi, Yuhai; Zhang, Wei; Wang, Min; Zhang, Baorong; Wang, Ming; Liu, Jinhua; Yan, Jinghua; Shi, Yi; Gao, George F
2015-01-01
The receptor-binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor-binding properties of Taiwan-isolated H6 HAs from 1972 to 2013. We propose that the receptor-binding properties of Taiwan-isolated H6 HAs have undergone three major stages: initially avian receptor-binding preference, secondarily obtaining human receptor-binding capacity, and recently human receptor-binding preference, which has been confirmed by receptor-binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor-binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor-binding site of HA determines the receptor-binding preference change. We conclude that the human-infecting H6N1 evolved into a human receptor preference. PMID:25940072
[Derivative spectrophotometric and NMR spectroscopic study in pharmaceutical science].
Kitamura, Keisuke
2007-10-01
This review starts with an introduction of derivative spectrophotometry followed by a description on the construction of a personal computer-assisted derivative spectrophotometric (DS) system. An acquisition system for inputting digitalized absorption spectra into personal computers and a BASIC program for calculating derivative spectra were developed. Then, applications of the system to drug analyses that are difficult with traditional absorption methods are described. Following this, studies on the interactions of drugs with biological macromolecules by the DS and NMR methods were discussed. An (1)H NMR study elucidated that the small unilamellar vesicle (SUV) has a single membrane made of a phosphatidylcholine bilayer, and that chlorpromazine interacts with both the outer and inner layers. (13)C NMR revealed a reduction of the dissociation constants of phenothiazine drugs due to their interaction with SUV. The partition coefficients of phenothiazine, benzodiazepine and steroid drugs in an SUV-water system and the effects of cholesterol or amino lipids content on these partition coefficients were examined by the DS method. The binding constants of phenothiazine drugs to bovine serum albumin (BSA) and the influence of Na(+), K(+), Cl(-), Br(-), and I(-) on these binding constants were determined by DS. It was found that I(-), Br(-), Cl(-) reduce the binding constants in this order, and that Na(+) and K(+) have no effect. A (19)F NMR study revealed that triflupromazine binds to BSA and human serum albumin in two regions including Site II with different populations, and that a nonsteroidal anti-inflammatory drug, niflumic acid, binds Sites Ia and Ib.
Boda, Sathish Kumar; Pishka, Vasantha; Lakshmi, P V Anantha; Chinde, Srinivas; Grover, Paramjit
2018-06-01
A series of novel ethyl 2,7-dimethyl-4-oxo-3-[(1-phenyl-1H-1,2,3-triazol-4-yl)methyl]-4,5-dihydro-3H-pyrano[2,3-d]pyrimidine-6-carboxylate derivatives 7a - 7m were efficiently synthesized employing click chemistry approach and evaluated for in vitro cytotoxic activity against four tumor cell lines: A549 (human lung adenocarcinoma cell line), HepG2 (human hematoma), MCF-7 (human breast adenocarcinoma), and SKOV3 (human ovarian carcinoma cell line). Among the compounds tested, the compounds 7a, 7b, 7f, 7l, and 7m have shown potential and selective activity against human lung adenocarcinoma cell line (A549) with IC 50 ranging from 0.69 to 6.74 μm. Molecular docking studies revealed that the compounds 7a, 7b, 7f, 7l, and 7m are potent inhibitors of human DNA topoisomerase-II and also showed compliance with stranded parameters of drug likeness. The calculated binding constants, k b , from UV/VIS absorptional binding studies of 7a and 7l with CT-DNA were 10.77 × 10 4 , 6.48 × 10 4 , respectively. Viscosity measurements revealed that the binding could be surface binding mainly due to groove binding. DNA cleavage study showed that 7a and 7l have the potential to cleave pBR322 plasmid DNA without any external agents. © 2018 Wiley-VHCA AG, Zurich, Switzerland.
NASA Astrophysics Data System (ADS)
Thimaradka, Vikram; Pangannaya, Srikala; Mohan, Makesh; Trivedi, Darshak R.
2018-03-01
A series of new receptors PDZ1-3 based on 2-(arylidenehydrazinyl)pyridines have been designed and synthesized for the detection of biologically and environmentally important ions. The colorimetric detection of CO32 - using neutral organic receptor PDZ-1 has been achieved with characteristic visual colour change from yellow to green accompanied by a large redshift of 215 nm in absorption maxima. UV-Vis spectroscopic and cyclic voltammetric studies reveal the stoichiometry of binding and electrochemistry of host-guest complex formation. The binding constant was found to be 0.77 × 104 M- 2. In addition, electrochemical studies provide an insight into the stability of the complex. DFT studies performed on the PDZ-1 and PDZ-1 - CO32 - complex reveal the binding mechanism involved in the anion detection process. PDZ-1 is highly selective for carbonate and does not show any colorimetric response towards any other anions or cations, while PDZ-2 and PDZ-3 remain inactive in the ion detection process. The limit of detection (LOD) and limit of quantification (LOQ) of PDZ-1 for carbonate was found to be 0.11 mM and 0.36 mM respectively. Considerable binding constant and limit of detection make PDZ-1 to be used as a real time sensor for the detection of carbonate in environmental and biological samples.
Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes
NASA Astrophysics Data System (ADS)
Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan
2014-10-01
Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.
Interaction of D-LSD with binding sites in brain: a study in vivo and in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebersole, B.L.J.
The localization of (/sup 3/H)-d-lysergic acid diethylamide ((/sup 3/H)LSD) binding sites in the mouse brain was compared in vivo and in vitro. Radioautography of brain sections incubated with (/sup 3/H)LSD in vitro revealed substantial specific (/sup 3/H)LSD binding in cortical layers III-IV and areas CA1 and dentate gyrus in hippocampus. In contrast, in brain sections from animals that received (/sup 3/H)LSD in vivo, binding in hippocampus was scant and diffuse, although the pattern of labeling in cortex was similar to that seen in vitro. The low specific binding in hippocampus relative to cortex was confirmed by homogenate filtration studies ofmore » brain areas from mice that received injections of (/sup 3/H)LSD. Time-course studies established that peak specific binding at ten minutes was the same in cortex and hippocampus. At all times, binding in hippocampus was about one-third of that in cortex; in contrast, the concentration of free (/sup 3/H)LSD did not vary between regions. This finding was unexpected, because binding studies in vitro in membrane preparations indicated that the density and affinity of (/sup 3/H)LSD binding sites were similar in both brain regions. Saturation binding studies in vivo showed that the lower amount of (/sup 3/H)LSD binding in hippocampus was attributable to a lower density of sites labeled by (/sup 3/H)LSD. The pharmacological identify of (/sub 3/H)LSD binding sites in vivo may be relevant to the hallucinogenic properties of LSD and of other related hallucinogens.« less
Naklua, Wanpen; Suedee, Roongnapa; Lieberzeit, Peter A
2016-07-15
Molecularly imprinted polymers (MIPs) have been successfully applied as selective materials for assessing the binding activity of agonist and antagonist of dopamine D1 receptor (D1R) by using quartz crystal microbalance (QCM). In this study, D1R derived from rat hypothalamus was used as a template and thus self-organized on stamps. Those were pressed into an oligomer film consisting of acrylic acid: N-vinylpyrrolidone: N,N'-(1,2-dihydroxyethylene) bis-acrylamide in a ratio of 2:3:12 spin coated onto a dual electrode QCM. Such we obtained one D1R-MIP-QCM electrode, whereas the other electrode carried the non-imprinted control polymer (NIP) that had remained untreated. Successful imprinting of D1R was confirmed by AFM. The polymer can re-incorporate D1R leading to frequency responses of 100-1200Hz in a concentration range of 5.9-47.2µM. In a further step such frequency changes proved inherently useful for examining the binding properties of test ligands to D1R. The resulting mass-sensitive measurements revealed Kd of dopamine∙HCl, haloperidol, and (+)-SCH23390 at 0.874, 25.6, and 0.004nM, respectively. These results correlate well with the values determined in radio ligand binding assays. Our experiments revealed that D1R-MIP sensors are useful for estimating the strength of ligand binding to the active single site. Therefore, we have developed a biomimetic surface imprinting strategy for QCM studies of D1R-ligand binding and presented a new method to ligand binding assay for D1R. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermodynamics of Aryl-Dihydroxyphenyl-Thiadiazole Binding to Human Hsp90
Kazlauskas, Egidijus; Petrikaitė, Vilma; Michailovienė, Vilma; Revuckienė, Jurgita; Matulienė, Jurgita; Grinius, Leonas; Matulis, Daumantas
2012-01-01
The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic Kd approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors. PMID:22655030
Distinct p53 genomic binding patterns in normal and cancer-derived human cells
McCorkle, Sean R; McCombie, WR; Dunn, John J
2011-01-01
Here, we report genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIP-seq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells. PMID:22127205
NASA Astrophysics Data System (ADS)
Dumitraşcu, Loredana; Ursache, Florentina Mihaela; Stănciuc, Nicoleta; Aprodu, Iuliana
2016-12-01
Sea buckthorn is a natural food ingredient rich in bioactive compounds such as carotenoids, tocopherols, sterols, flavonoids, lipids, vitamins, tannins and minerals. Herein, fluorescence and UV-vis techniques were used to study the interaction of heat treated α-lactalbumin (α-LA) with carotenoids from sea buckthorn berries extract (CSB) and β-carotene. Further atomic level details on the interaction between α-LA and β-carotene were obtained by means of molecular modelling techniques. The quenching rate constants, binding constants, and number of binding sites were calculated in the presence of CSB. The emission spectral studies revealed that, CSB have the ability to bind α-LA and form a ground state complex via static quenching process. Maximum degree of quenching was reached at 100 °C, where β-carotene and CSB quenched the Trp fluorescence of α-LA by 56% and 47%, respectively. In order to reveal the interaction between CSB and α-LA, the thermodynamic parameters were determined from the van't Hoff plot based on the temperature dependence of the binding constant. In agreement with the in silico observations, the thermodynamic parameters enabled us to consider that the association between α-LA and β-carotene is a spontaneous process driven by enthalpy, dominated mainly by the van der Waals interaction, but hydrophobic interactions might also be considered. The interaction between CSB and α-LA was further confirmed by UV-vis absorption spectra, where a blue shift of position was noticed at higher temperature suggesting the complex formation. The results provided here supply a better understanding of the binding of CSB to α-LA, which can be further exploited in designing new healthy food applications.
2013-01-01
The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein–protein interaction prediction and design methods. PMID:24250278
Salceda, Rocío; Aguirre-Ramirez, Marisela
2005-03-01
We studied 3H-glycine and 3H-strychnine specific binding to glycine receptor (GlyR) in intact isolated frog retinas. To avoid glycine binding to glycine uptake sites, experiments were performed at low ligand concentrations in a sodium-free medium. The binding of both radiolabeled ligands was saturated. Scatchard analysis of bound glycine and strychnine revealed a KD of 2.5 and 2.0 microM, respectively. Specific binding of glycine was displaced by beta-alanine, sarcosine, and strychnine. Strychnine binding was displaced 50% by glycine, and sarcosine. Properties of the strychnine-binding site in the GlyR were modified by sarcosine. Binding of both radioligands was considerably reduced by compounds that inhibit or activate adenylate cyclase and increased cAMP levels. A phorbol ester activator of PKC remarkably decreased glycine and strychnine binding. These results suggest modulation of GlyR in response to endogenous activation of protein kinases A and C, as well as protein phosphorylation modulating GlyR function in retina.
Gruber, Andreas; Lell, Claudia P; Speth, Cornelia; Stoiber, Heribert; Lass-Flörl, Cornelia; Sonneborn, Anja; Ernst, Joachim F; Dierich, Manfred P; Würzner, Reinhard
2001-01-01
Tat, the human immunodeficiency virus type 1 (HIV-1) transactivating protein, binds through its RGD-motif to human integrin receptors. Candida albicans, the commonest cause of mucosal candidiasis in subjects infected with HIV-1, also possesses RGD-binding capacity. The present study reveals that Tat binds to C. albicans but not to C. tropicalis. Tat binding was markedly reduced by laminin and to a lesser extent by a complement C3 peptide containing the RGD motif, but not by a control peptide. The outgrowth of C. albicans was accelerated following binding of Tat, but phagocytosis of opsonized C. albicans was also increased after Tat binding. Thus, Tat binding promotes fungal virulence by inducing hyphae but may also reduce it by augmenting phagocytosis. The net effect of Tat in vivo is difficult to judge but in view of the many disease-promoting effects of Tat we propose that accelerating the formation of hyphae dominates over the augmentation of phagocytosis. PMID:11899432
NASA Astrophysics Data System (ADS)
Fani, Najmeh; Sattarinezhad, Elham; Bordbar, Abdol-Khalegh
2017-06-01
In the first part of this paper, docking method was employed in order to study the binding mechanism of breast cancer resistance protein (BCRP) with a group of previously synthesized TPS-A derivatives which known as potent inhibitors of this protein to get insight into drug binding site of BCRP and to explore structure-activity relationship of these compounds. Molecular docking results showed that most of these compounds bind in the binding site of BCRP at the interface between the membrane and outer environment. In the second part, a group of designed TPS-A derivatives which showed good binding energies in the binding site of αβ-tubulin in the previous study were chosen to study their binding energies in the binding site of BCRP to investigate their simultaneous inhibitory effect on both αβ-tubulin and BCRP. The results showed that all of these compounds bind to the binding site of BCRP with relatively suitable binding energies and therefore could be potential inhibitors of both αβ-tubulin and BCRP proteins. Finally, virtual consensus docking method was utilized with the aim of design of new 2,5-diketopiperazine derivatives with significant inhibitory effect on both αβ-tubulin and BCRP proteins. For this purpose binding energies of a library of 2,5-diketopiperazine derivatives in the binding sites of αβ-tubulin and BCRP was investigated by using AutoDock and AutoDock vina tools. Molecular docking results revealed that a group of 36 compounds among them exhibit strong anti-tubulin and anti-BCRP activity.
Specific Roles of NMDA Receptor Subunits in Mental Disorders.
Yamamoto, H; Hagino, Y; Kasai, S; Ikeda, K
2015-01-01
N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed.
NASA Astrophysics Data System (ADS)
Drwal, Malgorzata N.; Agama, Keli; Pommier, Yves; Griffith, Renate
2013-12-01
Purely structure-based pharmacophores (SBPs) are an alternative method to ligand-based approaches and have the advantage of describing the entire interaction capability of a binding pocket. Here, we present the development of SBPs for topoisomerase I, an anticancer target with an unusual ligand binding pocket consisting of protein and DNA atoms. Different approaches to cluster and select pharmacophore features are investigated, including hierarchical clustering and energy calculations. In addition, the performance of SBPs is evaluated retrospectively and compared to the performance of ligand- and complex-based pharmacophores. SBPs emerge as a valid method in virtual screening and a complementary approach to ligand-focussed methods. The study further reveals that the choice of pharmacophore feature clustering and selection methods has a large impact on the virtual screening hit lists. A prospective application of the SBPs in virtual screening reveals that they can be used successfully to identify novel topoisomerase inhibitors.
A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR.
Sgourakis, Nikolaos G; May, Nathan A; Boyd, Lisa F; Ying, Jinfa; Bax, Ad; Margulies, David H
2015-11-27
As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40 as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent Ig-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full-length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)," consisting of only the α1α2 platform domain. Mini-H2-L(d) refolded in vitro with a high affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the β2-microglobulin interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and β2-microglobulin-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the picosecond-nanosecond dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Yang, Rui-Nan; Li, Dong-Zhen; Yu, Guangqiang; Yi, Shan-Cheng; Zhang, Yinan; Kong, De-Xin; Wang, Man-Qun
2017-12-01
In light of reverse chemical ecology, the fluorescence competitive binding assays of functional odorant binding proteins (OBPs) is a recent advanced approach for screening behaviorally active compounds of insects. Previous research on Dastareus helophoroides identified a minus-C OBP, DhelOBP21, which preferably binds to several ligands. In this study, only (+)-β-pinene proved attractive to unmated adult beetles. To obtain a more in-depth explanation of the lack of behavioral activity of other ligands we selected compounds with high (camphor) and low (β-caryophyllene) binding affinities. The structural transformation of OBPs was investigated using well-established approaches for studying binding processes, such as fluorescent quenching assays, circular dichroism, and molecular dynamics. The dynamic binding process revealed that the flexibility of DhelOBP21 seems conducive to binding specific ligands, as opposed to broad substrate binding. The compound (+)-β-pinene and DhelOBP21 formed a stable complex through a secondary structural transformation of DhelOBP21, in which its amino-terminus transformed from random coil to an α-helix to cover the binding pocket. On the other hand, camphor could not efficiently induce a stable structural transformation, and its high binding affinities were due to strong hydrogen-bonding, compromising the structure of the protein. The other compound, β-caryophyllene, only collided with DhelOBP21 and could not be positioned in the binding pocket. Studying structural transformation of these proteins through examining the dynamic binding process rather than using approaches that just measure binding affinities such as fluorescence competitive binding assays can provide a more efficient and reliable approach for screening behaviorally active compounds.
2015-01-01
Numerous kinetic, structural, and theoretical studies have established that DNA polymerases adjust their domain structures to enclose nucleotides in their active sites and then rearrange critical active site residues and substrates for catalysis, with the latter conformational change acting to kinetically limit the correct nucleotide incorporation rate. Additionally, structural studies have revealed a large conformational change between the apoprotein and the DNA–protein binary state for Y-family DNA polymerases. In previous studies [Xu, C., Maxwell, B. A., Brown, J. A., Zhang, L., and Suo, Z. (2009) PLoS Biol.7, e1000225], a real-time Förster resonance energy transfer (FRET) method was developed to monitor the global conformational transitions of DNA polymerase IV from Sulfolobus solfataricus (Dpo4), a prototype Y-family enzyme, during nucleotide binding and incorporation by measuring changes in distance between locations on the enzyme and the DNA substrate. To elucidate further details of the conformational transitions of Dpo4 during substrate binding and catalysis, in this study, the real-time FRET technique was used to monitor changes in distance between various pairs of locations in the protein itself. In addition to providing new insight into the conformational changes as revealed in previous studies, the results here show that the previously described conformational change between the apo and DNA-bound states of Dpo4 occurs in a mechanistic step distinct from initial formation or dissociation of the binary complex of Dpo4 and DNA. PMID:24568554
Binding and thermodynamics of REV peptide-ctDNA interaction.
Upadhyay, Santosh Kumar
2017-03-01
The thermodynamics of DNA-ligand binding is important as it provides useful information to understand the details of binding processes. HIV-1 REV response element (RRE) located in the env coding region of the viral genome is reported to be well conserved across different HIV-1 isolates. In this study, the binding characteristics of Calf thymus DNA (ctDNA) and REV peptide from HIV-1 were investigated using spectroscopic (UV-visible, fluorescence, and circular dichroism (CD)) and isothermal titration calorimetric (ITC) techniques. Thermal stability and ligand binding properties of the ctDNA revealed that native ctDNA had a T m of 75.5 °C, whereas the ctDNA-REV peptide complex exhibited an incremental shift in the T m by 8 °C, indicating thermal stability of the complex. CD data indicated increased ellipticity due to large conformational changes in ctDNA molecule upon binding with REV peptide and two binding stoichiometric modes are apparent. The ctDNA experienced condensation due to large conformational changes in the presence of REV peptide and positive B→Ψ transition was observed at higher molar charge ratios. Fluorescence studies performed at several ligand concentrations revealed a gradual decrease in the fluorescence intensity of EtBr-bound ctDNA in response to increasing ligand concentrations. The fluorescence data further confirmed two stoichiometric modes of binding for ctDNA-REV peptide complex as previously observed with CD studies. The binding enthalpies were determined using ITC in the temperature range of 293 K-308 K. The ITC binding isotherm was exothermic at all temperatures examined, with low ΔH values indicating that the ctDNA-REV peptide interaction is driven largely by entropy. The heat capacity change (ΔC p ) was insignificant, an unusual finding in the area of DNA-peptide interaction studies. The variation in the values obtained for ΔH, ΔS, and ΔG with temperature further suggests that ctDNA-REV peptide interaction is entropically driven. ITC based analysis of salt dependence of binding constant gave a charge value (Z) = +4.01, as determined for the δlnK/δln[Na + ] parameter, suggesting the participation of only 3-4 Arg out of 11 Arg charge from REV peptide. The stoichiometry observed for the complex was three molar charge of REV peptide binding per molar charge of ctDNA. ITC based analysis further confirmed that the binding between ctDNA and REV peptide is governed by electrostatic interaction. Molecular interactions including H-bonding, van der Waals forces, and solvent molecules rearrangement, underlie the binding of REV peptide to ctDNA. © 2016 Wiley Periodicals, Inc.
Edwards, Marcus J; Williams, Mark A; Maxwell, Anthony; McKay, Adam R
2011-05-03
DNA topoisomerases are enzymes that control DNA topology and are vital targets for antimicrobial and anticancer drugs. Here we present a mass spectrometry study of complexes formed between the A subunit of the topoisomerase DNA gyrase and the bifunctional inhibitor simocyclinone D8 (SD8), an antibiotic isolated from Streptomyces. These studies show that, in an alternative mode of interaction to that found by X-ray crystallography, each subunit binds a single bifunctional inhibitor with separate binding pockets for the two ends of SD8. The gyrase subunits form constitutive dimers, and fractional occupancies of inhibitor-bound states show that there is strong allosteric cooperativity in the binding of two bifunctional ligands to the dimer. We show that the mass spectrometry data can be fitted to a general model of cooperative binding via an extension of the "tight-binding" approach, providing a rigorous determination of the dissociation constants and degree of cooperativity. This general approach will be applicable to other systems with multiple binding sites and highlights mass spectrometry's role as a powerful emerging tool for unraveling the complexities of biomolecular interactions.
Malmirchegini, G. Reza; Sjodt, Megan; Shnitkind, Sergey; Sawaya, Michael R.; Rosinski, Justin; Newton, Salete M.; Klebba, Phillip E.; Clubb, Robert T.
2014-01-01
Iron is an essential nutrient that is required for the growth of the bacterial pathogen Listeria monocytogenes. In cell cultures, this microbe secretes hemin/hemoglobin-binding protein 2 (Hbp2; Lmo2185) protein, which has been proposed to function as a hemophore that scavenges heme from the environment. Based on its primary sequence, Hbp2 contains three NEAr transporter (NEAT) domains of unknown function. Here we show that each of these domains mediates high affinity binding to ferric heme (hemin) and that its N- and C-terminal domains interact with hemoglobin (Hb). The results of hemin transfer experiments are consistent with Hbp2 functioning as an Hb-binding hemophore that delivers hemin to other Hbp2 proteins that are attached to the cell wall. Surprisingly, our work reveals that the central NEAT domain in Hbp2 binds hemin even though its primary sequence lacks a highly conserved YXXXY motif that is used by all other previously characterized NEAT domains to coordinate iron in the hemin molecule. To elucidate the mechanism of hemin binding by Hbp2, we determined crystal structures of its central NEAT domain (Hbp2N2; residues 183–303) in its free and hemin-bound states. The structures reveal an unprecedented mechanism of hemin binding in which Hbp2N2 undergoes a major conformational rearrangement that facilitates metal coordination by a non-canonical tyrosine residue. These studies highlight previously unrecognized plasticity in the hemin binding mechanism of NEAT domains and provide insight into how L. monocytogenes captures heme iron. PMID:25315777
2017-01-01
Biological chelating molecules called siderophores are used to sequester iron and maintain its ferric state. Bacterial substrate-binding proteins (SBPs) bind iron–siderophore complexes and deliver these complexes to ATP-binding cassette (ABC) transporters for import into the cytoplasm, where the iron can be transferred from the siderophore to catalytic enzymes. In Yersinia pestis, the causative agent of plague, the Yersinia iron-uptake (Yiu) ABC transporter has been shown to improve iron acquisition under iron-chelated conditions. The Yiu transporter has been proposed to be an iron–siderophore transporter; however, the precise siderophore substrate is unknown. Therefore, the precise role of the Yiu transporter in Y. pestis survival remains uncharacterized. To better understand the function of the Yiu transporter, the crystal structure of YiuA (YPO1310/y2875), an SBP which functions to present the iron–siderophore substrate to the transporter for import into the cytoplasm, was determined. The 2.20 and 1.77 Å resolution X-ray crystal structures reveal a basic triad binding motif at the YiuA canonical substrate-binding site, indicative of a metal-chelate binding site. Structural alignment and computational docking studies support the function of YiuA in binding chelated metal. Additionally, YiuA contains two mobile helices, helix 5 and helix 10, that undergo 2–3 Å shifts across crystal forms and demonstrate structural breathing of the c-clamp architecture. The flexibility in both c-clamp lobes suggest that YiuA substrate transfer resembles the Venus flytrap mechanism that has been proposed for other SBPs. PMID:29095164
Guo, Emily Z; Xu, Zhaohui
2015-03-27
The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Guo, Emily Z.; Xu, Zhaohui
2015-02-05
The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). In this paper, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed thatmore » IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. Finally, these observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.« less
NASA Astrophysics Data System (ADS)
Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi
2018-03-01
Molecular interaction of darunavir (DRV), a HIV protease inhibitor with calf thymus deoxyribonucleic acid (ct-DNA) was studied in physiological buffer (pH 7.4) by multi-spectroscopic approaches hand in hand with viscosity measurements and molecular docking technique. The UV absorption and fluorescence results together revealed the formation of a DRV-ct-DNA complex having binding affinities of the order of 103 M- 1, which was more in keeping with the groove binding. The results that DRV bound to ct-DNA via groove binding mode was further evidenced by KI quenching studies, viscosity measurements, competitive binding investigations with EB and Rhodamine B and CD spectral analysis. The effect of ionic strength indicated the negligible involvement of electrostatic interaction between DRV and ct-DNA. The thermodynamic parameters regarding the binding interaction of DRV with ct-DNA in terms of enthalpy change (ΔH0) and entropy change (ΔS0) were - 63.19 kJ mol- 1 and - 141.92 J mol- 1 K- 1, indicating that hydrogen bonds and van der Waals forces played a predominant role in the binding process. Furthermore, molecular simulation studies suggested that DRV molecule was prone to bind in the A-T rich region of the minor groove of DNA.
FEROZ, Shevin R.; SUMI, Rumana A.; MALEK, Sri N.A.; TAYYAB, Saad
2014-01-01
The interaction of pinostrobin (PS), a multitherapeutic agent with serum albumins of various mammalian species namely, goat, bovine, human, porcine, rabbit, sheep and dog was investigated using fluorescence quench titration and competitive drug displacement experiments. Analysis of the intrinsic fluorescence quenching data revealed values of the association constant, Ka in the range of 1.49 – 6.12 × 104 M−1, with 1:1 binding stoichiometry. Based on the PS–albumin binding characteristics, these albumins were grouped into two classes. Ligand displacement studies using warfarin as the site I marker ligand correlated well with the binding data. Albumins from goat and bovine were found to be closely similar to human albumin on the basis of PS binding characteristics. PMID:25519455
Mabrouk, T; Lemay, G
1994-01-01
It has been demonstrated that the sigma 3 protein of reovirus harbors a zinc-binding domain in its amino-terminal portion. A putative zinc finger in the CCHH form is located in this domain and was considered to be a good candidate for the zinc-binding motif. We performed site-directed mutagenesis to substitute amino acids in this region and demonstrated that many of these mutants, although expressed in COS cells, were unstable compared with the wild-type protein. Further analysis revealed that zinc-binding capability, as measured by retention on a zinc chelate affinity adsorbent, correlates with stability. These studies also allowed us to identify a CCHC box as the most probable zinc-binding motif. Images PMID:8035527
Sachleben, Joseph R.; McElroy, Craig A.; Gollnick, Paul; Foster, Mark P.
2010-01-01
Anti-TRAP (AT) is a small zinc-binding protein that regulates tryptophan biosynthesis in Bacillus subtilis by binding to tryptophan-bound trp RNA-binding attenuation protein (TRAP), thereby preventing it from binding RNA, and allowing transcription and translation of the trpEDCFBA operon. Crystallographic and sedimentation studies have shown that AT can homooligomerize to form a dodecamer, AT12, composed of a tetramer of trimers, AT3. Structural and biochemical studies suggest that only trimeric AT is active for binding to TRAP. Our chromatographic and spectroscopic data revealed that a large fraction of recombinantly overexpressed AT retains the N-formyl group (fAT), presumably due to incomplete N-formyl-methionine processing by peptide deformylase. Hydrodynamic parameters from NMR relaxation and diffusion measurements showed that fAT is exclusively trimeric (AT3), while (deformylated) AT exhibits slow exchange between both trimeric and dodecameric forms. We examined this equilibrium using NMR spectroscopy and found that oligomerization of active AT3 to form inactive AT12 is linked to protonation of the amino terminus. Global analysis of the pH dependence of the trimer-dodecamer equilibrium revealed a near physiological pKa for the N-terminal amine of AT and yielded a pH-dependent oligomerization equilibrium constant. Estimates of excluded volume effects due to molecular crowding suggest the oligomerization equilibrium may be physiologically important. Because deprotonation favors “active” trimeric AT and protonation favors “inactive” dodecameric AT, our findings illuminate a possible mechanism for sensing and responding to changes in cellular pH. PMID:20713740
Exopolysaccharides regulate calcium flow in cariogenic biofilms
Varenganayil, Muth M.; Decho, Alan W.
2017-01-01
Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS) provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya’s agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC) by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR) spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC). Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries. PMID:29023506
Shamsi, Anas; Ahmed, Azaj; Khan, Mohd Shahnawaz; Husain, Fohad Mabood; Amani, Samreen; Bano, Bilqees
2018-05-16
In our present study, binding between an important anti renal cancer drug temsirolimus and human transferrin (hTF) was investigated employing spectroscopic and molecular docking approach. In the presence of temsirolimus, hyper chromaticity is observed in hTF in UV spectroscopy suggestive of complex formation between hTF and temsirolimus. Fluorescence spectroscopy revealed the occurrence of quenching in hTF in the presence of temsirolimus implying complex formation taking place between hTF and temsirolimus. Further, the mode of interaction between hTF and temsirolimus was revealed to be static by fluorescence quenching analysis at 3 different temperatures. Binding constant values obtained employing fluorescence spectroscopy depicts strong interaction between hTF and temsirolimus; temsirolimus binds to hTF at 298 K with a binding constant of .32 × 10 4 M -1 implying the strength of this interaction. The negative Gibbs free energy obtained through quenching experiments is evident of the fact that the binding is spontaneous. CD spectra of hTF also showed a downward shift in the presence of temsirolimus as compared with free hTF implying complex formation between hTF and temsirolimus. Molecular docking was performed with a view to find out which residues are key players in this interaction. The importance of our study stems from the fact it will provide an insight into binding pattern of commonly administered renal cancer drug with an important protein that plays a pivotal role in many physiological processes. Copyright © 2018 John Wiley & Sons, Ltd.
Fedele, Laura; Newcombe, Joseph; Topf, Maya; Gibb, Alasdair; Harvey, Robert J; Smart, Trevor G
2018-03-06
Genetic and bioinformatic analyses have identified missense mutations in GRIN2B encoding the NMDA receptor GluN2B subunit in autism, intellectual disability, Lennox Gastaut and West Syndromes. Here, we investigated several such mutations using a near-complete, hybrid 3D model of the human NMDAR and studied their consequences with kinetic modelling and electrophysiology. The mutants revealed reductions in glutamate potency; increased receptor desensitisation; and ablation of voltage-dependent Mg 2+ block. In addition, we provide new views on Mg 2+ and NMDA channel blocker binding sites. We demonstrate that these mutants have significant impact on excitatory transmission in developing neurons, revealing profound changes that could underlie their associated neurological disorders. Of note, the NMDAR channel mutant GluN2B V618G unusually allowed Mg 2+ permeation, whereas nearby N615I reduced Ca 2+ permeability. By identifying the binding site for an NMDAR antagonist that is used in the clinic to rescue gain-of-function phenotypes, we show that drug binding may be modified by some GluN2B disease-causing mutations.
Anions mediate ligand binding in Adineta vaga glutamate receptor ion channels.
Lomash, Suvendu; Chittori, Sagar; Brown, Patrick; Mayer, Mark L
2013-03-05
AvGluR1, a glutamate receptor ion channel from the primitive eukaryote Adineta vaga, is activated by alanine, cysteine, methionine, and phenylalanine, which produce lectin-sensitive desensitizing responses like those to glutamate, aspartate, and serine. AvGluR1 LBD crystal structures reveal an unusual scheme for binding dissimilar ligands that may be utilized by distantly related odorant/chemosensory receptors. Arginine residues in domain 2 coordinate the γ-carboxyl group of glutamate, whereas in the alanine, methionine, and serine complexes a chloride ion acts as a surrogate ligand, replacing the γ-carboxyl group. Removal of Cl(-) lowers affinity for these ligands but not for glutamate or aspartate nor for phenylalanine, which occludes the anion binding site and binds with low affinity. AvGluR1 LBD crystal structures and sedimentation analysis also provide insights into the evolutionary link between prokaryotic and eukaryotic iGluRs and reveal features unique to both classes, emphasizing the need for additional structure-based studies on iGluR-ligand interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lane-Serff, Harriet; MacGregor, Paula; Lowe, Edward D; Carrington, Mark; Higgins, Matthew K
2014-12-12
The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50° kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface.
NASA Astrophysics Data System (ADS)
Vanderlinden, Willem; Lipfert, Jan; Demeulemeester, Jonas; Debyser, Zeger; de Feyter, Steven
2014-04-01
LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study - based on scanning force microscopy (SFM) imaging - is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease.LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study - based on scanning force microscopy (SFM) imaging - is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease. Electronic supplementary information (ESI) available: SFM topographs of phage lambda DNA in situ, in the absence and presence of LEDGF/p75; model-independent tests for DNA chain equilibration in 2D; SFM topographs of plasmid DNA substrates I-IV in the absence of LEDGF/p75; proof-of-principle of bend angle determination on supercoiled plasmid DNA-EcoRV binding to cognate and non-cognate sites in pBR322 plasmid DNA. See DOI: 10.1039/c4nr00022f
Deciphering structure-activity relationships in a series of Tat/TAR inhibitors.
Pascale, Lise; González, Alejandro López; Di Giorgio, Audrey; Gaysinski, Marc; Teixido Closa, Jordi; Tejedor, Roger Estrada; Azoulay, Stéphane; Patino, Nadia
2016-11-01
A series of pentameric "Polyamide Amino Acids" (PAAs) compounds derived from the same trimeric precursor have been synthesized and investigated as HIV TAR RNA ligands, in the absence and in the presence of a Tat fragment. All PAAs bind TAR with similar sub-micromolar affinities but their ability to compete efficiently with the Tat fragment strongly differs, IC50 ranging from 35 nM to >2 μM. While NMR and CD studies reveal that all PAA interact with TAR at the same site and induce globally the same RNA conformational change upon binding, a comparative thermodynamic study of PAA/TAR equilibria highlights distinct TAR binding modes for Tat competitor and non-competitor PAAs. This led us to suggest two distinct interaction modes that have been further validated by molecular modeling studies. While the binding of Tat competitor PAAs induces a contraction at the TAR bulge region, the binding of non-competitor ones widens it. This could account for the distinct PAA ability to compete with Tat fragment. Our work illustrates how comparative thermodynamic studies of a series of RNA ligands of same chemical family are of value for understanding their binding modes and for rationalizing structure-activity relationships.
NASA Astrophysics Data System (ADS)
Qi, Yulin; Geib, Timon; Volmer, Dietrich A.
2015-07-01
Cyclodextrins (CDs) are a group of cyclic oligosaccharides, which readily form inclusion complexes with hydrophobic compounds to increase bioavailability, thus making CDs ideal drug excipients. Recent studies have also shown that CDs exhibit a wide range of protective effects, preventing proteins from aggregation, degradation, and folding. These effects strongly depend on the binding sites on the protein surface. CDs only exhibit weak interactions with amino acids, however; conventional analytical techniques therefore usually fail to reveal the exact location of the binding sites. Moreover, some studies even suggest that CD inclusion complexes are merely electrostatic adducts. Here, electron capture dissociation (ECD) was applied in this proof-of-concept study to examine the exact nature of the CD/peptide complexes, and CD binding sites were unambiguously located for the first time via Fourier-transform ion cyclotron resonance (FTICR) tandem mass spectrometry.
Characterizing multiple metal ion binding sites within a ribozyme by cadmium-induced EPR silencing
Kisseleva, Natalia; Kraut, Stefanie; Jäschke, Andres; Schiemann, Olav
2007-01-01
In ribozyme catalysis, metal ions are generally known to make structural and∕or mechanistic contributions. The catalytic activity of a previously described Diels-Alderase ribozyme was found to depend on the concentration of divalent metal ions, and crystallographic data revealed multiple binding sites. Here, we elucidate the interactions of this ribozyme with divalent metal ions in solution using electron paramagnetic resonance (EPR) spectroscopy. Manganese ion titrations revealed five high-affinity Mn2+ binding sites with an upper Kd of 0.6±0.2 μM. In order to characterize each binding site individually, EPR-silent Cd2+ ions were used to saturate the other binding sites. This cadmium-induced EPR silencing showed that the Mn2+ binding sites possess different affinities. In addition, these binding sites could be assigned to three different types, including innersphere, outersphere, and a Mn2+ dimer. Based on simulations, the Mn2+-Mn2+ distance within the dimer was found to be ∼6 Å, which is in good agreement with crystallographic data. The EPR-spectroscopic characterization reveals no structural changes upon addition of a Diels-Alder product, supporting the concept of a preorganized catalytic pocket in the Diels-Alder ribozyme and the structural role of these ions. PMID:19404418
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhongchuan; Xie, Tian; Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of
2016-03-24
The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) in a hole motif has been solved; this novel binding site could be a potential structure-based target for protein engineering of CotA laccase. The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature ofmore » CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases.« less
Rational design and validation of a vanilloid-sensitive TRPV2 ion channel.
Yang, Fan; Vu, Simon; Yarov-Yarovoy, Vladimir; Zheng, Jie
2016-06-28
Vanilloids activation of TRPV1 represents an excellent model system of ligand-gated ion channels. Recent studies using cryo-electron microcopy (cryo-EM), computational analysis, and functional quantification revealed the location of capsaicin-binding site and critical residues mediating ligand-binding and channel activation. Based on these new findings, here we have successfully introduced high-affinity binding of capsaicin and resiniferatoxin to the vanilloid-insensitive TRPV2 channel, using a rationally designed minimal set of four point mutations (F467S-S498F-L505T-Q525E, termed TRPV2_Quad). We found that binding of resiniferatoxin activates TRPV2_Quad but the ligand-induced open state is relatively unstable, whereas binding of capsaicin to TRPV2_Quad antagonizes resiniferatoxin-induced activation likely through competition for the same binding sites. Using Rosetta-based molecular docking, we observed a common structural mechanism underlying vanilloids activation of TRPV1 and TRPV2_Quad, where the ligand serves as molecular "glue" that bridges the S4-S5 linker to the S1-S4 domain to open these channels. Our analysis revealed that capsaicin failed to activate TRPV2_Quad likely due to structural constraints preventing such bridge formation. These results not only validate our current working model for capsaicin activation of TRPV1 but also should help guide the design of drug candidate compounds for this important pain sensor.
The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.
Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E
2017-12-05
Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tight-binding calculation studies of vacancy and adatom defects in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing
2016-02-19
Computational studies of complex defects in graphene usually need to deal with a larger number of atoms than the current first-principles methods can handle. We show a recently developed three-center tight-binding potential for carbon is very efficient for large scale atomistic simulations and can accurately describe the structures and energies of various defects in graphene. Using the three-center tight-binding potential, we have systematically studied the stable structures and formation energies of vacancy and embedded-atom defects of various sizes up to 4 vacancies and 4 embedded atoms in graphene. In conclusion, our calculations reveal low-energy defect structures and provide a moremore » comprehensive understanding of the structures and stability of defects in graphene.« less
Nagy, Gabor; Oostenbrink, Chris; Hritz, Jozef
2017-01-01
The 14-3-3 protein family performs regulatory functions in eukaryotic organisms by binding to a large number of phosphorylated protein partners. Whilst the binding mode of the phosphopeptides within the primary 14-3-3 binding site is well established based on the crystal structures of their complexes, little is known about the binding process itself. We present a computational study of the process by which phosphopeptides bind to the 14-3-3ζ protein. Applying a novel scheme combining Hamiltonian replica exchange molecular dynamics and distancefield restraints allowed us to map and compare the most likely phosphopeptide-binding pathways to the 14-3-3ζ protein. The most important structural changes to the protein and peptides involved in the binding process were identified. In order to bind phosphopeptides to the primary interaction site, the 14-3-3ζ adopted a newly found wide-opened conformation. Based on our findings we additionally propose a secondary interaction site on the inner surface of the 14-3-3ζ dimer, and a direct interference on the binding process by the flexible C-terminal tail. A minimalistic model was designed to allow for the efficient calculation of absolute binding affinities. Binding affinities calculated from the potential of mean force along the binding pathway are in line with the available experimental estimates for two of the studied systems. PMID:28727767
Fungal toxins bind to the URF13 protein in maize mitochondria and Escherichia coli.
Braun, C J; Siedow, J N; Levings, C S
1990-01-01
Expression of the maize mitochondrial T-urf13 gene results in a sensitivity to a family of fungal pathotoxins and to methomyl, a structurally unrelated systemic insecticide. Similar effects of pathotoxins and methomyl are observed when T-urf13 is cloned and expressed in Escherichia coli. An interaction between these compounds and the membrane-bound URF13 protein permeabilizes the inner mitochondrial and bacterial plasma membranes. To understand the toxin-URF13 effects, we have investigated whether toxin specifically binds to the URF13 protein. Our studies indicate that toxin binds to the URF13 protein in maize mitochondria and in E. coli expressing URF13. Binding analysis in E. coli reveals cooperative toxin binding. A low level of specific toxin binding is also demonstrated in cms-T and cms-T-restored mitochondria; however, binding does not appear to be cooperative in maize mitochondria. Competition and displacement studies in E. coli demonstrate that toxin binding is reversible and that the toxins and methomyl compete for the same, or for overlapping, binding sites. Two toxin-insensitive URF13 mutants display a diminished capability to bind toxin in E. coli, which identifies residues of URF13 important in toxin binding. A third toxin-insensitive URF13 mutant shows considerable toxin binding in E. coli, demonstrating that toxin binding can occur without causing membrane permeabilization. Our results indicate that toxin-mediated membrane permeabilization only occurs when toxin or methomyl is bound to URF13. PMID:2136632
Comparison and correlation of binding mode of ATP in the kinase domains of Hexokinase family
Kumar, Yellapu Nanda; Kumar, Pasupuleti Santhosh; Sowjenya, Gopal; Rao, Valasani Koteswara; Yeswanth, Sthanikam; Prasad, Uppu Venkateswara; Pradeepkiran, Jangampalli Adi; Sarma, PVGK; Bhaskar, Matcha
2012-01-01
Hexokinases (HKs) are the enzymes that catalyses the ATP dependent phosphorylation of Hexose sugars to Hexose-6-Phosphate (Hex-6-P). There exist four different forms of HKs namely HK-I, HK-II, HK-III and HK-IV and all of them share a common ATP binding site core surrounded by more variable sequence that determine substrate affinities. Although they share a common binding site but they differ in their kinetic functions, hence the present study is aimed to analyze the binding mode of ATP. The analysis revealed that the four ATP binding domains are showing 13 identical, 7 similar and 6 dissimilar residues with similar structural conformation. Molecular docking of ATP into the kinase domains using Molecular Operating Environment (MOE) soft ware tool clearly showed the variation in the binding mode of ATP with variable docking scores. This probably explains the variable phosphorylation rates among hexokinases family. PMID:22829728
Tanwar, Neetu; Munde, Manoj
2018-06-01
Studying interaction of IgG with bacterial proteins such as proA (Protein A) and proG is essential for development in the areas of drug discovery and biotechnology. Some solution studies in the past have hinted at the possibility of variable binding ratios for IgG with proA and proG. Since earlier crystallographic studies focussed mostly on monomeric complexes, the knowledge about the binding interfaces and protein conformational changes involved in multimeric complexes is scarce. In this paper, we observed that single proA molecule was able to bind to three IgG molecules (1:3, proA:IgG) in ITC accentuating the presence of conformational flexibility in proA, corroborated also by CD results. By contrast, proG binds with 1:1 stoichiometry to IgG, which also involves key structural rearrangement within the binding interface of IgG-proG complex, confirmed by fluorescence KI quenching study. It is implicit from CD and fluorescence results that IgG does not undergo any significant conformational changes, which further suggests that proA and proG dictate the phenomenon of recognition in antibody complexes. ANS as a hydrophobic probe helped in revealing the distinctive antibody binding mechanism of proA and proG. Additionally, the binding competition experiments using ITC established that proA and proG cannot bind IgG concurrently. Copyright © 2018. Published by Elsevier B.V.
Das, Pratyusa; Chaudhari, Sunil Kumar; Das, Asmita; Kundu, Somashree; Saha, Chabita
2018-04-24
Binding affinities of flavonols namely quercetin, myricetin, and kaempferol to human serum albumin (HSA) were determined fluorimetrically and the order was observed to be myricetin > quercetin > kaempferol demonstrating structure-activity relationship. Quercetin-coated silver nanoparticles (AgNPs) show higher binding affinity to HSA compared to free quercetin with binding constants 6.04 × 10 7 M -1 and 4.2 × 10 6 M -1 , respectively. Using site-specific markers it is concluded that free quercetin and that coated on AgNPs bind at different sites. Significant structural changes in circular dichroism (CD) spectra of HSA were recorded with quercetin-coated AgNPs compared to free quercetin. These results were further substantiated by time-resolved fluorescence spectroscopy where fluorescence life time of the tryptophan residue in HSA-quercetin-coated AgNPs complex decreased to 3.63 ns from 4.22 ns in HSA-quercetin complex. Isothermal calorimetric studies reveal two binding modes for quercetin-coated AgNPs and also higher binding constants compared to free quercetin. These higher binding affinities are attributed to altered properties of quercetin when coated on AgNPs enabling it to reach the binding sites other than site II where free quercetin mainly binds.
Kirby, Thomas W.; Gassman, Natalie R.; Smith, Cassandra E.; ...
2015-08-25
We have characterized the nuclear localization signal (NLS) of XRCC1 structurally using X-ray crystallography and functionally using fluorescence imaging. Crystallography and binding studies confirm the bipartite nature of the XRCC1 NLS interaction with Importin α (Impα) in which the major and minor binding motifs are separated by >20 residues, and resolve previous inconsistent determinations. Binding studies of peptides corresponding to the bipartite NLS, as well as its major and minor binding motifs, to both wild-type and mutated forms of Impα reveal pronounced cooperative binding behavior that is generated by the proximity effect of the tethered major and minor motifs ofmore » the NLS. The cooperativity stems from the increased local concentration of the second motif near its cognate binding site that is a consequence of the stepwise binding behavior of the bipartite NLS. We predict that the stepwise dissociation of the NLS from Impα facilitates unloading by providing a partially complexed intermediate that is available for competitive binding by Nup50 or the Importin β binding domain. This behavior gives a basis for meeting the intrinsically conflicting high affinity and high flux requirements of an efficient nuclear transport system.« less
Penicillin-binding proteins in Haemophilus influenzae.
Makover, S D; Wright, R; Telep, E
1981-01-01
The penicillin-binding proteins (PBPs) of Haemophilus influenzae were studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Eight major PBPs, ranging in molecular weights from 90,000 to 27,000, were detected. The pattern of molecular weights was different from that determined fro Escherichia coli or Pseudomonas aeruginosa. A study on the binding of several beta-lactam antibodies to the PBPs at their minimal inhibitory concentrations and at lower and higher concentrations revealed that all had highest affinity for PBP 2. Amdinocillin (mecillinam) was an exception; it had highest affinity for PBP 3. The morphological effects of several penicillins, cephalosporins, and amdinocillin on H. influenzae were similar to those reported for E. coli. Images PMID:6972731
Evidence for a single class of somatostatin receptors in ground squirrel cerebral cortex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krantic, S.; Petrovic, V.M.; Quirion, R.
1989-01-01
In the present study we characterized high-affinity somatostatin (SRIF) binding sites (Kd = 2.06 +/- 0.32 nM and Bmax = 295 +/- 28 fmol/mg protein) in cerebral cortex membrane preparations of European ground squirrel using /sup 125/I-(Tyr0-D-Trp8)-SRIF14 as a radioligand. The inhibition of radioligand specific binding by SRIF14, as well as by its agonists (SRIF28, Tyr0-D-Trp8-SRIF14, SMS 201 995) was complete and monophasic, thus revealing a single population of somatostatinergic binding sites. Radioautographic analysis of /sup 125/I-(Tyr0-D-Trp8)-SRIF14 labeled brain sections confirmed the results of our biochemical study. The homogeneity of SRIF binding sites in the ground squirrel neocortex was notmore » dependent on the animal's life-cycle phase.« less
ERIC Educational Resources Information Center
Perovic, Alexandra; Wexler, Ken
2018-01-01
This study investigates the knowledge of binding in 21 English-speaking children with SLI, aged 6;08-16;05, compared to 21 children with WS, language- and age-matched, and 21 language-matched control children, aged 4-7;10. Our results demonstrate no difficulties in the interpretation of reflexive or personal pronouns in SLI, revealing an intact…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Liu, Yang; Zu, Xiangyang
Highlights: {yields} Successfully selected specific PreS1-interacting peptides by using phage displayed library. {yields} Alignment of the positive phage clones revealed a consensus PreS1 binding motif. {yields} A highly enriched peptide named P7 had a strong binding ability for PreS1. {yields} P7 could block PreS1 attachment. -- Abstract: The PreS1 protein is present on the outermost part of the hepatitis B virus (HBV) surface and has been shown to have a pivotal function in viral infectivity and assembly. The development of reagents with high affinity and specificity for PreS1 is of great significance for early diagnosis and treatment of HBV infection.more » A phage display library of dodecapeptide was screened for interactions with purified PreS1 protein. Alignment of the positive phage clones revealed a putative consensus PreS1 binding motif of HX{sub n}HX{sub m}HP/R. Moreover, a peptide named P7 (KHMHWHPPALNT) was highly enriched and occurred with a surprisingly high frequency of 72%. A thermodynamic study revealed that P7 has a higher binding affinity to PreS1 than the other peptides. Furthermore, P7 was able to abrogate the binding of HBV virions to the PreS1 antibody, suggesting that P7 covers key functional sites on the native PreS1 protein. This newly isolated peptide may, therefore, be a new therapeutic candidate for the treatment of HBV. The consensus motif could be modified to deliver imaging, diagnostic, and therapeutic agents to tissues affected by HBV.« less
Neelakanta, G; Sultana, H; Sonenshine, D E; Andersen, J F
2018-04-01
Lipocalins are low molecular weight membrane transporters that are abundantly expressed in the salivary glands and other tissues of ticks. In this study, we identified a lipocalin-like molecule, designated as otlip, from the soft ticks Ornithodoros turicata, the vector for the relapsing fever causing spirochete Borrelia turicatae. We noted that the expression of otlip was developmentally regulated, with adult ticks expressing significantly higher levels in comparison to the larvae or nymphal ticks. Expression of otlip was evident in both fed and unfed O. turicata ticks, with significantly increased expression in the salivary glands in comparison to the midgut or ovary tissues. High conservation of the biogenic amine-binding motif was evident in the deduced primary amino acid sequence of Otlip. Protein modelling of Otlip revealed conservation of most of the residues involved in binding histamine or serotonin ligand. In vitro assays demonstrated binding of recombinant Otlip with histamine. Furthermore, prediction of post-translational modifications revealed that Otlip contained phosphorylation and myristoylation sites. Taken together, our study not only provides evidence for the presence of a lipocalin-like molecule in O. turicata ticks but also suggests a role for this molecule in the salivary glands of this medically important vector. © 2017 The Royal Entomological Society.
Atkinson, Sarah C; Dogovski, Con; Downton, Matthew T; Czabotar, Peter E; Dobson, Renwick C J; Gerrard, Juliet A; Wagner, John; Perugini, Matthew A
2013-03-01
Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raths, S.K.
1987-01-01
Alpha-factor is a peptide of thirteen amino acids which is required for mating between the haploid mating types, a and ..cap alpha.., in Saccharomyces cerevisiae. An analogue of alpha-factor, DHP/sup 8/ DHP/sup 11/ Nle/sup 12/ tridecapeptide, was catalytically reduced in the presence of /sup 3/H gas for production of a radiolabeled pheromone suitable for use in binding studies. Incorporation of tritium resulted in /sup 3/H-alpha-factor with high specific activity, purity, biological activity and long shelf-life. Binding studies revealed that alpha-factor interacts with its receptor via a simple, reversible process which obeys the law of mass action. Association and dissociation kineticsmore » indicate values of 2.92 x 10/sup 6/ M/sup /minus/1/ min/sup -1/ for k/sub 1/ and between 4 and 7 x 10/sup /minus/2/ min/sup /minus/1/ for k/sub /minus/1/. Saturation binding studies reveal an equilibrium dissociation constant equal to 2.32 x 10/sup /minus/8/ M which approximate the kinetically-derived K/sub D/ of 2.12 x 10/sup /minus/8/ M. Scatchard and Hill analyses as well as dissociation behavior in the presence of excess unlabeled ligand indicate alpha-factor interacts with a homogeneous population of binding sites which do not interact and exhibit one affinity for the alpha-factor pheromone.« less
Devi, Sundru Manjulata; Archer, Ann Catherine; Halami, Prakash M
2015-09-01
The present work aimed to identify probiotic bacteria from healthy human infant faecal and dairy samples. Subsequently, an assay was developed to evaluate the probiotic properties using comparative genetic approach for marker genes involved in adhesion to the intestinal epithelial layer. Several in vitro properties including tolerance to biological barriers (such as acid and bile), antimicrobial spectrum, resistance to simulated digestive fluids and cellular hydrophobicity were assessed. The potential probiotic cultures were rapidly characterized by morphological, physiological and molecular-based methods [such as RFLP, ITS, RAPD and (GTG)5]. Further analysis by 16S rDNA sequencing revealed that the selected isolates belong to Lactobacillus, Pediococcus and Enterococcus species. Two cultures of non-lactic, non-pathogenic Staphylococcus spp. were also isolated. The native isolates were able to survive under acidic, bile and simulated intestinal conditions. In addition, these cultures inhibited the growth of tested bacterial pathogens. Further, no correlation was observed between hydrophobicity and adhesion ability. Sequencing of probiotic marker genes such as bile salt hydrolase (bsh), fibronectin-binding protein (fbp) and mucin-binding protein (mub) for selected isolates revealed nucleotide variation. The probiotic binding domains were detected by several bioinformatic tools. The approach used in the study enabled the identification of potential probiotic domains responsible for adhesion of bacteria to intestinal epithelial layer, which may further assist in screening of novel probiotic bacteria. The rapid detection of binding domains will help in revealing the beneficial properties of the probiotic cultures. Further, studies will be performed to develop a novel probiotic product which will contribute in food and feed industry.
Nemmi, Federico; Saint-Aubert, Laure; Adel, Djilali; Salabert, Anne-Sophie; Pariente, Jérémie; Barbeau, Emmanuel; Payoux, Pierre; Péran, Patrice
2014-01-01
Purpose AV-45 amyloid biomarker is known to show uptake in white matter in patients with Alzheimer’s disease (AD) but also in healthy population. This binding; thought to be of a non-specific lipophilic nature has not yet been investigated. The aim of this study was to determine the differential pattern of AV-45 binding in healthy and pathological populations in white matter. Methods We recruited 24 patients presenting with AD at early stage and 17 matched, healthy subjects. We used an optimized PET-MRI registration method and an approach based on intensity histogram using several indexes. We compared the results of the intensity histogram analyses with a more canonical approach based on target-to-cerebellum Standard Uptake Value (SUVr) in white and grey matters using MANOVA and discriminant analyses. A cluster analysis on white and grey matter histograms was also performed. Results White matter histogram analysis revealed significant differences between AD and healthy subjects, which were not revealed by SUVr analysis. However, white matter histograms was not decisive to discriminate groups, and indexes based on grey matter only showed better discriminative power than SUVr. The cluster analysis divided our sample in two clusters, showing different uptakes in grey but also in white matter. Conclusion These results demonstrate that AV-45 binding in white matter conveys subtle information not detectable using SUVr approach. Although it is not better than standard SUVr to discriminate AD patients from healthy subjects, this information could reveal white matter modifications. PMID:24573658
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maley, F.; Maley, G.F.
1983-01-01
It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A preventsmore » the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.
2012-11-01
The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF{sup FBW7} complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains themore » basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.« less
Computational design of an endo-1,4-[beta]-xylanase ligand binding site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morin, Andrew; Kaufmann, Kristian W.; Fortenberry, Carie
2012-09-05
The field of computational protein design has experienced important recent success. However, the de novo computational design of high-affinity protein-ligand interfaces is still largely an open challenge. Using the Rosetta program, we attempted the in silico design of a high-affinity protein interface to a small peptide ligand. We chose the thermophilic endo-1,4-{beta}-xylanase from Nonomuraea flexuosa as the protein scaffold on which to perform our designs. Over the course of the study, 12 proteins derived from this scaffold were produced and assayed for binding to the target ligand. Unfortunately, none of the designed proteins displayed evidence of high-affinity binding. Structural characterizationmore » of four designed proteins revealed that although the predicted structure of the protein model was highly accurate, this structural accuracy did not translate into accurate prediction of binding affinity. Crystallographic analyses indicate that the lack of binding affinity is possibly due to unaccounted for protein dynamics in the 'thumb' region of our design scaffold intrinsic to the family 11 {beta}-xylanase fold. Further computational analysis revealed two specific, single amino acid substitutions responsible for an observed change in backbone conformation, and decreased dynamic stability of the catalytic cleft. These findings offer new insight into the dynamic and structural determinants of the {beta}-xylanase proteins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, Marina E.; Fletcher, Georgina C.; O’Reilly, Nicola
2015-03-01
This study characterizes the interaction between the carboxy-terminal (ERLI) motif of the essential polarity protein Crb and the Pals1/Stardust PDZ-domain protein. Structures of human Pals1 PDZ with and without a Crb peptide are described, explaining the highly conserved nature of the ERLI motif and revealing a sterically blocked peptide-binding groove in the absence of ligand. Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member ofmore » the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction.« less
Ivie, Susan E; McClain, Mark S
2012-09-25
Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsilon toxin important for this cell interaction. Site-specific mutagenesis was used to investigate the role of a surface-accessible cluster of aromatic amino acids, and purified mutant proteins were tested in a series of cell-culture assays to assess cytotoxic activity and cell binding. When added to cells, four mutant proteins (Etx-Y29E, Etx-Y30E, Etx-Y36E and Etx-Y196E) were severely impaired in their ability to not only kill host cells, but also in their ability to permeabilize the plasma membrane. Circular dichroism spectroscopy and thermal stability studies revealed that the wild-type and mutant proteins were similarly folded. Additional experiments revealed that these mutant proteins were defective in binding to host cells and to HAVCR1. These data indicate that an amino acid motif including Y29, Y30, Y36, and Y196 is important for the ability of epsilon toxin to interact with cells and HAVCR1.
Ivie, Susan E.; McClain, Mark S.
2012-01-01
Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsilon toxin important for this cell interaction. Site-specific mutagenesis was used to investigate the role of a surface-accessible cluster of aromatic amino acids, and purified mutant proteins were tested in a series of cell-culture assays to assess cytotoxic activity and cell binding. When added to cells, four mutant proteins (Etx-Y29E, Etx-Y30E, Etx-Y36E and Etx-Y196E) were severely impaired in their ability to not only kill host cells, but also in their ability to permeabilize the plasma membrane. Circular dichroism spectroscopy and thermal stability studies revealed that the wild-type and mutant proteins were similarly folded. Additional experiments revealed that these mutant proteins were defective in binding to host cells and to HAVCR1. These data indicate that an amino acid motif including Y29, Y30, Y36, and Y196 is important for the ability of epsilon toxin to interact with cells and HAVCR1. PMID:22938730
Zhang, Zhenyi; Akyildiz, Senem; Xiao, Yafei; Gai, Zhongchao; An, Ying; Behrens, Jürgen; Wu, Geng
2015-01-01
The tumor suppressor APC employs its conserved armadillo repeat (ARM) domain to recognize many of its binding partners, including Amer1/WTX, which is mutated in Wilms' tumor and bone overgrowth syndrome. The APC–Amer1 complex has important roles in regulating Wnt signaling and cell adhesion. Three sites A1, A2, and A3 of Amer1 have been reported to mediate its interaction with APC-ARM. In this study, crystal structures of APC–ARM in complexes with Amer1-A1, -A2, and -A4, which is newly identified in this work, were determined. Combined with our GST pull-down, yeast two-hybrid, and isothermal titration calorimetry (ITC) assay results using mutants of APC and Amer1 interface residues, our structures demonstrate that Amer1-A1, -A2, and -A4, as well as other APC-binding proteins such as Asef and Sam68, all employ a common recognition pattern to associate with APC–ARM. In contrast, Amer1-A3 binds to the C-terminal side of APC–ARM through a bipartite interaction mode. Composite mutations on either APC or Amer1 disrupting all four interfaces abrogated their association in cultured cells and impaired the membrane recruitment of APC by Amer1. Our study thus comprehensively elucidated the recognition mechanism between APC and Amer1, and revealed a consensus recognition sequence employed by various APC–ARM binding partners. PMID:27462415
Zhang, Zhenyi; Akyildiz, Senem; Xiao, Yafei; Gai, Zhongchao; An, Ying; Behrens, Jürgen; Wu, Geng
2015-01-01
The tumor suppressor APC employs its conserved armadillo repeat (ARM) domain to recognize many of its binding partners, including Amer1/WTX, which is mutated in Wilms' tumor and bone overgrowth syndrome. The APC-Amer1 complex has important roles in regulating Wnt signaling and cell adhesion. Three sites A1, A2, and A3 of Amer1 have been reported to mediate its interaction with APC-ARM. In this study, crystal structures of APC-ARM in complexes with Amer1-A1, -A2, and -A4, which is newly identified in this work, were determined. Combined with our GST pull-down, yeast two-hybrid, and isothermal titration calorimetry (ITC) assay results using mutants of APC and Amer1 interface residues, our structures demonstrate that Amer1-A1, -A2, and -A4, as well as other APC-binding proteins such as Asef and Sam68, all employ a common recognition pattern to associate with APC-ARM. In contrast, Amer1-A3 binds to the C-terminal side of APC-ARM through a bipartite interaction mode. Composite mutations on either APC or Amer1 disrupting all four interfaces abrogated their association in cultured cells and impaired the membrane recruitment of APC by Amer1. Our study thus comprehensively elucidated the recognition mechanism between APC and Amer1, and revealed a consensus recognition sequence employed by various APC-ARM binding partners.
NASA Astrophysics Data System (ADS)
Xi, Lei; Wang, Yu; He, Qing; Zhang, Qingyan; Du, Linfang
2016-12-01
The binding of epigallocatechin-3-gallate (EGCG) to wild type Pin1 in solution was studied by spectroscopic methods and molecular dynamics simulations in this research to explore the binding mode and inhibition mechanism. The binding constants and number of binding sites per Pin1 for EGCG were calculated through the Stern-Volmer equation. The values of binding free energy and thermodynamic parameters were calculated and indicated that hydrogen bonds, electrostatic interaction and Van der Waals interaction played the major role in the binding process. The alterations of Pin1 secondary structure in the presence of EGCG were confirmed by far-UV circular dichroism spectra. The binding model at atomic-level revealed that EGCG was bound to the Glu12, Lys13, Arg14, Met15 and Arg17 in WW domain. Furthermore, EGCG could also interact with Arg69, Asp112, Cys113 and Ser114 in PPIase domain.
[Glutamate-binding membrane proteins from human platelets].
Gurevich, V S; Popov, Iu G; Gorodinskiĭ, A I; Dambinova, S A
1991-09-01
Solubilization of the total membrane fraction of human platelets in a 2% solution of sodium deoxycholate and subsequent affinity chromatography on glutamate agarose resulted in two protein fractions possessing a glutamate-binding activity. As can be evidenced from radioligand binding data, the first fraction contains two types of binding sites (Kd1 = 1 microM, Bmax 1 = 100 pmol/mg of protein; Kd2 = 9.3 microMm Bmax2 = 395 pmol/mg of protein). The second fraction has only one type of binding sites (Kd = 1 microM, Bmax = = 110 pmol/mg of protein). SDS-PAAG electrophoresis revealed the presence in the first fraction of proteins with Mr of 14, 24, 56 and 155 kDa, whereas the second fraction was found to contain 14, 46, 71 and 155 kDa proteins. Solid phase immunoenzymatic analysis using poly- and monoclonal specific antibodies against mammalian brain glutamate-binding proteins revealed a marked immunochemical similarity of the isolated protein fractions with human brain synaptic membrane glutamate-binding proteins.
NASA Astrophysics Data System (ADS)
Pragna Lakshmi, T.; Mondal, Moumita; Ramadas, Krishna; Natarajan, Sakthivel
2017-08-01
Drug molecule interaction with human serum albumin (HSA) affects the distribution and elimination of the drug. The compound, 2,4-diacetylphloroglucinol (DAPG) has been known for its antimicrobial, antiviral, antihelminthic and anticancer properties. However, its interaction with HSA is not yet reported. In this study, the interaction between HSA and DAPG was investigated through steady-state fluorescence, time-resolved fluorescence (TRF), circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, isothermal titration calorimetry (ITC), molecular docking and molecular dynamics simulation (MDS). Fluorescence spectroscopy results showed the strong quenching of intrinsic fluorescence of HSA due to interaction with DAPG, through dynamic quenching mechanism. The compound bound to HSA with reversible and moderate affinity which explained its easy diffusion from circulatory system to target tissue. The thermodynamic parameters from fluorescence spectroscopic data clearly revealed the contribution of hydrophobic forces but, the role of hydrogen bonds was not negligible according to the ITC studies. The interaction was exothermic and spontaneous in nature. Binding with DAPG reduced the helical content of protein suggesting the unfolding of HSA. Site marker fluorescence experiments revealed the change in binding constant of DAPG in the presence of site I (warfarin) but not site II marker (ibuprofen) which confirmed that the DAPG bound to site I. ITC experiments also supported this as site I marker could not bind to HSA-DAPG complex while site II marker was accommodated in the complex. In silico studies further showed the lowest binding affinity and more stability of DAPG in site I than in site II. Thus the data presented in this study confirms the binding of DAPG to the site I of HSA which may help in further understanding of pharmacokinetic properties of DAPG.
The role of the DNA sliding clamp in Okazaki fragment maturation in archaea and eukaryotes.
Beattie, Thomas R; Bell, Stephen D
2011-01-01
Efficient processing of Okazaki fragments generated during discontinuous lagging-strand DNA replication is critical for the maintenance of genome integrity. In eukaryotes, a number of enzymes co-ordinate to ensure the removal of initiating primers from the 5'-end of each fragment and the generation of a covalently linked daughter strand. Studies in eukaryotic systems have revealed that the co-ordination of DNA polymerase δ and FEN-1 (Flap Endonuclease 1) is sufficient to remove the majority of primers. Other pathways such as that involving Dna2 also operate under certain conditions, although, notably, Dna2 is not universally conserved between eukaryotes and archaea, unlike the other core factors. In addition to the catalytic components, the DNA sliding clamp, PCNA (proliferating-cell nuclear antigen), plays a pivotal role in binding and co-ordinating these enzymes at sites of lagging-strand replication. Structural studies in eukaryotic and archaeal systems have revealed that PCNA-binding proteins can adopt different conformations when binding PCNA. This conformational malleability may be key to the co-ordination of these enzymes' activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spicer, Timothy P.; Jiang, Jianwen; Taylor, Alexander B.
Matrix metalloproteinase 13 (MMP-13) has been shown to be the main collagenase responsible for degradation of articular cartilage during osteoarthritis and therefore represents a target for drug development. Here, as a result of high-throughput screening and structure$-$activity relationship studies, we identified a novel, highly selective class of MMP-13 inhibitors (compounds 1 (Q), 2 (Q1), and 3 (Q2)). Mechanistic characterization revealed a noncompetitive nature of these inhibitors with binding constants in the low micromolar range. Crystallographic analyses revealed two binding modes for compound 2 in the MMP-13 S 1' subsite and in an S 1/S 2* subsite. Type II collagen- andmore » cartilage-protective effects exhibited by compounds 1, 2, and 3 suggested that these compounds might be efficacious in future in vivo studies. Lastly, these compounds were also highly selective when tested against a panel of 30 proteases, which, in combination with a good CYP inhibition profile, suggested low off-target toxicity and drug$-$drug interactions in humans.« less
Carbachol dimers as homobivalent modulators of muscarinic receptors.
Matucci, Rosanna; Nesi, Marta; Martino, Maria Vittoria; Bellucci, Cristina; Manetti, Dina; Ciuti, Elisa; Mazzolari, Angelica; Dei, Silvia; Guandalini, Luca; Teodori, Elisabetta; Vistoli, Giulio; Romanelli, Maria Novella
2016-05-15
A series of homodimers of the well-known cholinergic agonist carbachol have been synthesized, showing the two agonist units symmetrically connected through a methylene chain of variable length. The new compounds have been tested on the five cloned muscarinic receptors (hM1-5) expressed in CHO cells by means of equilibrium binding studies, showing an increase in affinity by rising the number of methylene units up to 7 and 9. Functional experiments on guinea-pig ileum and assessment of ERK1/2 phosphorylation on hM1, hM2 and hM3 on CHO cells have shown that the new compounds are endowed with muscarinic antagonistic properties. Kinetic binding studies have revealed that some of the tested compounds are able to slow the rate of dissociation of NMS, suggesting a bitopic behavior. Docking simulations, performed on the hM1 and hM2 receptors, give a sound rationalization of the experimental data revealing how these compounds are able to interact with both orthosteric and allosteric binding sites depending on the length of their connecting chain. Copyright © 2016 Elsevier Inc. All rights reserved.
Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg
2013-05-01
Objectives : GTF2I and GTF2IRD1 genes located in Williams-Beuren syndrome (WBS) critical region encode TFII-I family transcription factors. The aim of this study was to map genomic sites bound by these proteins across promoter regions of developmental regulators associated with craniofacial development. Design : Chromatin was isolated from human neural crest progenitor cells and the DNA-binding profile was generated using the human RefSeq tiling promoter ChIP-chip arrays. Results : TFII-I transcription factors are recruited to the promoters of SEC23A, CFDP1, and NSD1 previously defined as TFII-I target genes. Moreover, our analysis revealed additional binding elements that contain E-boxes and initiator-like motifs. Conclusions : Genome-wide promoter binding studies revealed SEC23A, CFDP1, and NSD1 linked to craniofacial or dental development as direct TFII-I targets. Developmental regulation of these genes by TFII-I factors could contribute to the WBS-specific facial dysmorphism.
Spicer, Timothy P.; Jiang, Jianwen; Taylor, Alexander B.; ...
2014-10-20
Matrix metalloproteinase 13 (MMP-13) has been shown to be the main collagenase responsible for degradation of articular cartilage during osteoarthritis and therefore represents a target for drug development. Here, as a result of high-throughput screening and structure$-$activity relationship studies, we identified a novel, highly selective class of MMP-13 inhibitors (compounds 1 (Q), 2 (Q1), and 3 (Q2)). Mechanistic characterization revealed a noncompetitive nature of these inhibitors with binding constants in the low micromolar range. Crystallographic analyses revealed two binding modes for compound 2 in the MMP-13 S 1' subsite and in an S 1/S 2* subsite. Type II collagen- andmore » cartilage-protective effects exhibited by compounds 1, 2, and 3 suggested that these compounds might be efficacious in future in vivo studies. Lastly, these compounds were also highly selective when tested against a panel of 30 proteases, which, in combination with a good CYP inhibition profile, suggested low off-target toxicity and drug$-$drug interactions in humans.« less
Grot, Stéphanie; Légaré, Virginie Petel; Lipp, Olivier; Soulières, Isabelle; Dolcos, Florin; Luck, David
2017-10-01
Working memory deficits have been widely reported in schizophrenia, and may result from inefficient binding processes. These processes, and their neural correlates, remain understudied in schizophrenia. Thus, we designed an FMRI study aimed at investigating the neural correlates of both passive and active binding in working memory in schizophrenia. Nineteen patients with schizophrenia and 23 matched controls were recruited to perform a working memory binding task, in which they were instructed to memorize three letters and three spatial locations. In the passive binding condition, letters and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were instructed to intentionally create associations between them. Patients exhibited a similar performance to the controls for the passive binding condition, but a significantly lower performance for the active binding. FMRI analyses revealed that this active binding deficit was related to aberrant activity in the posterior parietal cortex and the ventrolateral prefrontal cortex. This study provides initial evidence of a specific deficit for actively binding information in schizophrenia, which is linked to dysfunctions in the neural networks underlying attention, manipulation of information, and encoding strategies. Together, our results suggest that all these dysfunctions may be targets for neuromodulation interventions known to improve cognitive deficits in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.
Spectroscopic Study of the Binding of Netropsin and Hoechst 33258 to Nucleic Acids
NASA Astrophysics Data System (ADS)
Vardevanyan, P. O.; Parsadanyan, M. A.; Antonyan, A. P.; Sahakyan, V. G.
2018-05-01
The interaction of groove binding compounds — peptide antibiotic (polyamide) netropsin and fluorescent dye (bisbenzimidazole) Hoechst 33258 — with the double-stranded DNA and synthetic double-stranded polynucleotide poly(rA)-poly(rU) has been studied by spectrophotometry. Absorption spectra of these ligand complexes with nucleic acids have been obtained. Spectral changes at the complexation of individual ligands with the mentioned nucleic acids reveal the similarity of binding of each of these ligands with both DNA and RNA. Based on the spectroscopic measurements, the binding parameters of netropsin and Hoechst 33258 binding to DNA and poly(rA)-poly(rU) - K and n, as well as the thermodynamic parameters ΔS, ΔG, and ΔH have been determined. It was found that the binding of Hoechst 33258 to both nucleic acids is accompanied by a positive change in enthalpy, while in the case of netropsin the change in enthalpy is negative. Moreover, the contribution of entropy to the formation of the complexes is more pronounced in the case of Hoechst 33258.
NASA Astrophysics Data System (ADS)
Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre
2016-06-01
START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.
NASA Astrophysics Data System (ADS)
Khan, Asma Yasmeen; Suresh Kumar, Gopinatha
2016-01-01
This manuscript presents spectroscopic characterization of the interaction of two phenothiazinium dyes, azure A and azure B with double stranded (ds) ribonucleic acids, poly(A).poly(U), poly(C).poly(G) and poly(I).poly(C). Absorbance and fluorescence studies revealed that these dyes bind to the RNAs with binding affinities of the order 106 M-1 to poly(A).poly(U), and 105 M-1 to poly(C).poly(G) and poly(I).poly(C), respectively. Fluorescence quenching and viscosity data gave conclusive evidence for the intercalation of the dyes to these RNA duplexes. Circular dichroism results suggested that the conformation of the RNAs was perturbed on interaction and the dyes acquired strong induced optical activity on binding. Azure B bound to all the three RNAs stronger than azure A and the binding affinity varied as poly(A).poly(U) > poly(C).poly(G) > poly(I).poly(C) for both dyes.
Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands.
Salter, Jason D; Smith, Harold C
2018-05-23
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei
2017-09-01
Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.
Jaber, Basem M; Gao, Tong; Huang, Luping; Karmakar, Sudipan; Smith, Carolyn L
2006-11-01
Estrogen receptor-alpha (ERalpha) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. Abundant evidence demonstrates that ERalpha agonists promote, whereas antagonists inhibit, receptor binding to coactivators. In this report we demonstrate that binding of the ICI 182,780 (ICI) pure antiestrogen to ERalpha promotes its interaction with the cAMP response element-binding protein-binding protein (CBP)/p300 but not the p160 family of coactivators, demonstrating the specificity of this interaction. Amino acid mutations within the coactivator binding surface of the ERalpha ligand-binding domain revealed that CBP binds to this region of the ICI-liganded receptor. The carboxy-terminal cysteine-histidine rich domain 3 of CBP, rather than its amino-terminal nuclear interacting domain, shown previously to mediate agonist-dependent interactions of CBP with nuclear receptors, is required for binding to ICI-liganded ERalpha. Chromatin immunoprecipitation assays revealed that ICI but not the partial agonist/antagonist 4-hydroxytamoxifen is able to recruit CBP to the pS2 promoter, and this distinguishes ICI from this class of antiestrogens. Chromatin immunoprecipitation assays for pS2 and cytochrome P450 1B1 promoter regions revealed that ICI-dependent recruitment of CBP, but not receptor, to ERalpha targets is gene specific. ICI treatment did not recruit the steroid receptor coactivator 1 to the pS2 promoter, and it failed to induce the expression of this gene. Taken together, these data indicate that recruitment of the CBP coactivator/cointegrator without steroid receptor coactivator 1 to ERalpha is insufficient to promote transcription of ERalpha target genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Matthew T.; Higgin, Joshua J.; Hall, Traci M.Tanaka
2008-06-06
Pumilio/FBF (PUF) family proteins are found in eukaryotic organisms and regulate gene expression post-transcriptionally by binding to sequences in the 3' untranslated region of target transcripts. PUF proteins contain an RNA binding domain that typically comprises eight {alpha}-helical repeats, each of which recognizes one RNA base. Some PUF proteins, including yeast Puf4p, have altered RNA binding specificity and use their eight repeats to bind to RNA sequences with nine or ten bases. Here we report the crystal structures of Puf4p alone and in complex with a 9-nucleotide (nt) target RNA sequence, revealing that Puf4p accommodates an 'extra' nucleotide by modestmore » adaptations allowing one base to be turned away from the RNA binding surface. Using structural information and sequence comparisons, we created a mutant Puf4p protein that preferentially binds to an 8-nt target RNA sequence over a 9-nt sequence and restores binding of each protein repeat to one RNA base.« less
Kinetic Measurements Reveal Enhanced Protein-Protein Interactions at Intercellular Junctions
Shashikanth, Nitesh; Kisting, Meridith A.; Leckband, Deborah E.
2016-01-01
The binding properties of adhesion proteins are typically quantified from measurements with soluble fragments, under conditions that differ radically from the confined microenvironment of membrane bound proteins in adhesion zones. Using classical cadherin as a model adhesion protein, we tested the postulate that confinement within quasi two-dimensional intercellular gaps exposes weak protein interactions that are not detected in solution binding assays. Micropipette-based measurements of cadherin-mediated, cell-cell binding kinetics identified a unique kinetic signature that reflects both adhesive (trans) bonds between cadherins on opposing cells and lateral (cis) interactions between cadherins on the same cell. In solution, proposed lateral interactions were not detected, even at high cadherin concentrations. Mutations postulated to disrupt lateral cadherin association altered the kinetic signatures, but did not affect the adhesive (trans) binding affinity. Perturbed kinetics further coincided with altered cadherin distributions at junctions, wound healing dynamics, and paracellular permeability. Intercellular binding kinetics thus revealed cadherin interactions that occur within confined, intermembrane gaps but not in solution. Findings further demonstrate the impact of these revealed interactions on the organization and function of intercellular junctions. PMID:27009566
NASA Astrophysics Data System (ADS)
Tang, Jing; Yang, Chao; Zhou, Lin; Ma, Fei; Liu, Shuchao; Wei, Shaohua; Zhou, Jiahong; Zhou, Yanhuai
2012-10-01
In this article, the interaction mechanism of prodigiosin (PG) with bovine hemoglobin (BHb) is studied in detail using various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the quenching mechanism of fluorescence of BHb by PG is a static quenching procedure, and the hydrophobic interactions play a major role in binding of PG to BHb. Furthermore, synchronous fluorescence studies, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra reveal that the conformation of BHb is changed after conjugation with PG.
Spectrophotometric studies on the interaction between (-)-epigallocatechin gallate and lysozyme
NASA Astrophysics Data System (ADS)
Ghosh, Kalyan Sundar; Sahoo, Bijaya Ketan; Dasgupta, Swagata
2008-02-01
Various reported antibacterial activities of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea prompted us to study its binding with lysozyme. This has been investigated by fluorescence, circular dichroism (CD) and protein-ligand docking. The binding parameters were determined using a modified Stern-Volmer equation. The thermodynamic parameters are indicative of an initial hydrophobic association. The complex is, however, held together predominantly by van der Waals interactions and hydrogen bonding. CD studies do not indicate any significant changes in the secondary structure of lysozyme. Docking studies revealed that specific interactions are observed with residues Trp 62 and Trp 63.
Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl−/H+ Exchanger ClC-ec1
Jiang, Tao; Han, Wei; Maduke, Merritt; Tajkhorshid, Emad
2016-01-01
Cl−/H+ transporters of the CLC superfamily form a ubiquitous class of membrane proteins that catalyze stoichiometrically coupled exchange of Cl− and H+ across biological membranes. CLC transporters exchange H+ for halides and certain polyatomic anions, but exclude cations, F−, and larger physiological anions, such as PO43− and SO42−. Despite comparable transport rates of different anions, the H+ coupling in CLC transporters varies significantly depending on the chemical nature of the transported anion. Although the molecular mechanism of exchange remains unknown, studies on bacterial ClC-ec1 transporter revealed that Cl− binding to the central anion-binding site (Scen) is crucial for the anion-coupled H+ transport. Here, we show that Cl−, F−, NO3−, and SCN− display distinct binding coordinations at the Scen site and are hydrated in different manners. Consistent with the observation of differential bindings, ClC-ec1 exhibits markedly variable ability to support the formation of the transient water wires, which are necessary to support the connection of the two H+ transfer sites (Gluin and Gluex), in the presence of different anions. While continuous water wires are frequently observed in the presence of physiologically transported Cl−, binding of F− or NO3− leads to the formation of pseudo-water-wires that are substantially different from the wires formed with Cl−. Binding of SCN−, however, eliminates the water wires altogether. These findings provide structural details of anion binding in ClC-ec1 and reveal a putative atomic-level mechanism for the decoupling of H+ transport to the transport of anions other than Cl−. PMID:26880377
Distinct [18F]THK5351 binding patterns in primary progressive aphasia variants.
Schaeverbeke, Jolien; Evenepoel, Charlotte; Declercq, Lieven; Gabel, Silvy; Meersmans, Karen; Bruffaerts, Rose; Adamczuk, Kate; Dries, Eva; Van Bouwel, Karen; Sieben, Anne; Pijnenburg, Yolande; Peeters, Ronald; Bormans, Guy; Van Laere, Koen; Koole, Michel; Dupont, Patrick; Vandenberghe, Rik
2018-06-26
To assess the binding of the PET tracer [ 18 F]THK5351 in patients with different primary progressive aphasia (PPA) variants and its correlation with clinical deficits. The majority of patients with nonfluent variant (NFV) and logopenic variant (LV) PPA have underlying tauopathy of the frontotemporal lobar or Alzheimer disease type, respectively, while patients with the semantic variant (SV) have predominantly transactive response DNA binding protein 43-kDa pathology. The study included 20 PPA patients consecutively recruited through a memory clinic (12 NFV, 5 SV, 3 LV), and 20 healthy controls. All participants received an extensive neurolinguistic assessment, magnetic resonance imaging and amyloid biomarker tests. [ 18 F]THK5351 binding patterns were assessed on standardized uptake value ratio (SUVR) images with the cerebellar grey matter as the reference using statistical parametric mapping. Whole-brain voxel-wise regression analysis was performed to evaluate the association between [ 18 F]THK5351 SUVR images and neurolinguistic scores. Analyses were performed with and without partial volume correction. Patients with NFV showed increased binding in the supplementary motor area, left premotor cortex, thalamus, basal ganglia and midbrain compared with controls and patients with SV. Patients with SV had increased binding in the temporal lobes bilaterally and in the right ventromedial frontal cortex compared with controls and patients with NFV. The whole-brain voxel-wise regression analysis revealed a correlation between agrammatism and motor speech impairment, and [ 18 F]THK5351 binding in the left supplementary motor area and left postcentral gyrus. Analysis of [ 18 F]THK5351 scans without partial volume correction revealed similar results. [ 18 F]THK5351 imaging shows a topography closely matching the anatomical distribution of predicted underlying pathology characteristic of NFV and SV PPA. [ 18 F]THK5351 binding correlates with the severity of clinical impairment.
Chang, Wei-Chieh; Liu, Kai-Lun; Hsu, Fang-Ciao; Jeng, Shih-Tong; Cheng, Yi-Sheng
2012-01-01
Many proteins are induced in the plant defense response to biotic stress or mechanical wounding. One group is lectins. Ipomoelin (IPO) is one of the wound-inducible proteins of sweet potato (Ipomoea batatas cv. Tainung 57) and is a Jacalin-related lectin (JRL). In this study, we resolved the crystal structures of IPO in its apo form and in complex with carbohydrates such as methyl α-D-mannopyranoside (Me-Man), methyl α-D-glucopyranoside (Me-Glc), and methyl α-D-galactopyranoside (Me-Gal) in different space groups. The packing diagrams indicated that IPO might represent a compact tetrameric association in the JRL family. The protomer of IPO showed a canonical β-prism fold with 12 strands of β-sheets but with 2 additional short β-strands at the N terminus. A truncated IPO (ΔN10IPO) by removing the 2 short β-strands of the N terminus was used to reveal its role in a tetrameric association. Gel filtration chromatography confirmed IPO as a tetrameric form in solution. Isothermal titration calorimetry determined the binding constants (KA) of IPO and ΔN10IPO against various carbohydrates. IPO could bind to Me-Man, Me-Glc, and Me-Gal with similar binding constants. In contrast, ΔN10IPO showed high binding ability to Me-Man and Me-Glc but could not bind to Me-Gal. Our structural and functional analysis of IPO revealed that its compact tetrameric association and carbohydrate binding polyspecificity could be regulated by the 2 additional N-terminal β-strands. The versatile carbohydrate binding properties of IPO might play a role in plant defense. PMID:22808208
Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus.
Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji
2012-01-01
Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β(2)-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus.
Koo, Bon-Kyung; Park, Chin-Ju; Fernandez, Cesar F.; Chim, Nicholas; Ding, Yi; Chanfreau, Guillaume; Feigon, Juli
2011-01-01
H/ACA small nucleolar and Cajal body ribonucleoproteins (RNPs) function in site-specific pseudouridylation of eukaryotic rRNA and snRNA, rRNA processing, and vertebrate telomerase biogenesis. Nhp2, one of four essential protein components of eukaryotic H/ACA RNPs, forms a core trimer with the pseudouridylase Cbf5 and Nop10 that specifically binds to H/ACA RNAs. Crystal structures of archaeal H/ACA RNPs have revealed how the protein components interact with each other and with the H/ACA RNA. However, in place of Nhp2p, archaeal H/ACA RNPs contain L7Ae, which binds specifically to an RNA K-loop motif absent in eukaryotic H/ACA RNPs, while Nhp2 binds a broader range of RNA structures. We report solution NMR studies of S. cerevisiae Nhp2 (Nhp2p), which reveal that Nhp2p exhibits two major conformations in solution due to cis/trans isomerization of the evolutionarily conserved Pro83. The equivalent proline is in the cis conformation in all reported structures of L7Ae and other homologous proteins. Nhp2p has the expected α-β-α fold, but the solution structures of the major conformation of Nhp2p with trans Pro83 and of Nhp2p-S82W with cis Pro83 reveal that Pro83 cis/trans isomerization affects the positions of numerous residues at the Nop10- and RNA-binding interface. An S82W substitution, which stabilizes the cis conformation, also stabilizes the association of Nhp2p with H/ACA snoRNPs in vivo. We propose that Pro83 plays a key role in the assembly of the eukaryotic H/ACA RNP, with the cis conformation locking in a stable Cbf5-Nop10-Nhp2 ternary complex and positioning the protein backbone to interact with the H/ACA RNA. PMID:21708174
Campeotto, Ivan; Zhang, Yong; Mladenov, Miroslav G.; Freemont, Paul S.; Gründling, Angelika
2015-01-01
Signaling nucleotides are integral parts of signal transduction systems allowing bacteria to cope with and rapidly respond to changes in the environment. The Staphylococcus aureus PII-like signal transduction protein PstA was recently identified as a cyclic diadenylate monophosphate (c-di-AMP)-binding protein. Here, we present the crystal structures of the apo- and c-di-AMP-bound PstA protein, which is trimeric in solution as well as in the crystals. The structures combined with detailed bioinformatics analysis revealed that the protein belongs to a new family of proteins with a similar core fold but with distinct features to classical PII proteins, which usually function in nitrogen metabolism pathways in bacteria. The complex structure revealed three identical c-di-AMP-binding sites per trimer with each binding site at a monomer-monomer interface. Although distinctly different from other cyclic-di-nucleotide-binding sites, as the half-binding sites are not symmetrical, the complex structure also highlighted common features for c-di-AMP-binding sites. A comparison between the apo and complex structures revealed a series of conformational changes that result in the ordering of two anti-parallel β-strands that protrude from each monomer and allowed us to propose a mechanism on how the PstA protein functions as a signaling transduction protein. PMID:25505271
Structural basis of rifampin inactivation by rifampin phosphotransferase
Qi, Xiaofeng; Lin, Wei; Ma, Miaolian; Wang, Chengyuan; He, Yang; He, Nisha; Gao, Jing; Zhou, Hu; Xiao, Youli; Wang, Yong
2016-01-01
Rifampin (RIF) is a first-line drug used for the treatment of tuberculosis and other bacterial infections. Various RIF resistance mechanisms have been reported, and recently an RIF-inactivation enzyme, RIF phosphotransferase (RPH), was reported to phosphorylate RIF at its C21 hydroxyl at the cost of ATP. However, the underlying molecular mechanism remained unknown. Here, we solve the structures of RPH from Listeria monocytogenes (LmRPH) in different conformations. LmRPH comprises three domains: an ATP-binding domain (AD), an RIF-binding domain (RD), and a catalytic His-containing domain (HD). Structural analyses reveal that the C-terminal HD can swing between the AD and RD, like a toggle switch, to transfer phosphate. In addition to its catalytic role, the HD can bind to the AD and induce conformational changes that stabilize ATP binding, and the binding of the HD to the RD is required for the formation of the RIF-binding pocket. A line of hydrophobic residues forms the RIF-binding pocket and interacts with the 1-amino, 2-naphthol, 4-sulfonic acid and naphthol moieties of RIF. The R group of RIF points toward the outside of the pocket, explaining the low substrate selectivity of RPH. Four residues near the C21 hydroxyl of RIF, His825, Arg666, Lys670, and Gln337, were found to play essential roles in the phosphorylation of RIF; among these the His825 residue may function as the phosphate acceptor and donor. Our study reveals the molecular mechanism of RIF phosphorylation catalyzed by RPH and will guide the development of a new generation of rifamycins. PMID:27001859
Davis, Matthew R.; Dougherty, Dennis A.
2015-01-01
Cation-π interactions are common in biological systems, and many structural studies have revealed the aromatic box as a common motif. With the aim of understanding the nature of the aromatic box, several computational methods were evaluated for their ability to reproduce experimental cation-π binding energies. We find the DFT method M06 with the 6-31G(d,p) basis set performs best of several methods tested. The binding of benzene to a number of different cations (sodium, potassium, ammonium, tetramethylammonium, and guanidinium) was studied. In addition, the binding of the organic cations NH4+ and NMe4+ to ab initio generated aromatic boxes as well as examples of aromatic boxes from protein crystal structures were investigated. These data, along with a study of the distance dependence of the cation-π interaction, indicate that multiple aromatic residues can meaningfully contribute to cation binding, even with displacements of more than an angstrom from the optimal cation-π interaction. Progressive fluorination of benzene and indole was studied as well, and binding energies obtained were used to reaffirm the validity of the “fluorination strategy” to study cation-π interactions in vivo. PMID:26467787
Davis, Matthew R; Dougherty, Dennis A
2015-11-21
Cation-π interactions are common in biological systems, and many structural studies have revealed the aromatic box as a common motif. With the aim of understanding the nature of the aromatic box, several computational methods were evaluated for their ability to reproduce experimental cation-π binding energies. We find the DFT method M06 with the 6-31G(d,p) basis set performs best of several methods tested. The binding of benzene to a number of different cations (sodium, potassium, ammonium, tetramethylammonium, and guanidinium) was studied. In addition, the binding of the organic cations NH4(+) and NMe4(+) to ab initio generated aromatic boxes as well as examples of aromatic boxes from protein crystal structures were investigated. These data, along with a study of the distance dependence of the cation-π interaction, indicate that multiple aromatic residues can meaningfully contribute to cation binding, even with displacements of more than an angstrom from the optimal cation-π interaction. Progressive fluorination of benzene and indole was studied as well, and binding energies obtained were used to reaffirm the validity of the "fluorination strategy" to study cation-π interactions in vivo.
Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein
Hicar, Mark D.; Chen, Xuemin; Sulli, Chidananda; Barnes, Trevor; Goodman, Jason; Sojar, Hakimuddin; Briney, Bryan; Willis, Jordan; Chukwuma, Valentine U.; Kalams, Spyros A.; Doranz, Benjamin J.; Spearman, Paul; Crowe, James E.
2016-01-01
Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection. PMID:27411063
Alzbutas, Gediminas; Kaniusaite, Milda; Lagunavicius, Arunas
2016-01-01
In our previous work we showed that DNaseI-like protein from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix retained its activity at salt concentrations as high as 4 M NaCl and the key factor allowing this was the C-terminal DNA-binding domain, which comprised two HhH (helix-hairpin-helix) motifs. The further investigations revealed that this domain originated from proteins related to bacterial competence ComEA/ComE proteins. It is likely that in the course of evolution the DNA-binding domain from these proteins was fused to a metallo-β-lactamase superfamily domain. Very likely such domain organization having proteins subsequently “donated” the DNA-binding domain to bacterial DNases. In this study we have mimicked this evolutionary step by fusing bovine DNaseI and DNA-binding domains. We have created two fusions: one harboring the DNA-binding domain of DNaseI-like protein from Thioalkalivibrio sp. K90mix and the second one harboring the DNA-binding domain of bacterial competence protein ComEA from Bacillus subtilis. Both domains enhanced salt tolerance of DNaseI, albeit to different extent. Molecular modeling revealed the essential differences between their interaction with DNA shedding some light on the differences in salt tolerance. In this study we have enhanced salt tolerance of bovine DNaseI; thus, we successfully mimicked the Nature’s evolutionary engineering that created the extremely halotolerant bacterial DNase. We have demonstrated that the newly engineered DNaseI variants can be successfully used in applications where activity of the wild type bovine DNaseI is impeded by buffers used. PMID:26939122
Choudhury, Swarup Roy; Roy, Sujit; Saha, Progya Paramita; Singh, Sanjay Kumar; Sengupta, Dibyendu N
2008-07-01
MA-ACS1 and MA-ACO1 are the two major ripening genes in banana and play crucial role in the regulation of ethylene production during ripening. Here, we report a comparative ripening pattern in five different naturally occurring banana cultivars namely Cavendish (AAA), Rasthali (AAB), Kanthali (AB), Poovan (AAB) and Monthan (ABB), which have distinct genome composition. We found a distinct variation in the climacteric ethylene production and in-vivo ACC oxidase activity level during the ripening stages in the five cultivars. We identified the cDNAs for MA-ACS1 and MA-ACO1 from the five cultivars and studied the transcript accumulation patterns of the two genes, which correlated well with the differential timing in the expression of these two genes during ripening. The GCC-box is one of the ethylene-responsive elements (EREs) found in the promoters of many ethylene-inducible genes. We have identified a GCC-box motif (putative ERE) in the promoters of MA-ACS1 and MA-ACO1 in banana cultivars. DNA-protein interaction studies revealed the presence of a GCC-box-specific DNA-binding activity in the fruit nuclear extract and such DNA-binding activity was enhanced following ethylene treatment. South-Western blotting revealed a 25-kDa nuclear protein that binds specifically to GCC-box DNA in the climacteric banana fruit. Together, these results indicate the probable involvement of the GCC-box motif as the cis-acting ERE in the regulation of MA-ACS1 and MA-ACO1 during ripening in banana fruits via binding of specific ERE-binding protein.
Forsberg, Zarah; Nelson, Cassandra E.; Dalhus, Bjørn; Mekasha, Sophanit; Loose, Jennifer S. M.; Crouch, Lucy I.; Røhr, Åsmund K.; Gardner, Jeffrey G.; Eijsink, Vincent G. H.; Vaaje-Kolstad, Gustav
2016-01-01
Cellvibrio japonicus is a Gram-negative soil bacterium that is primarily known for its ability to degrade plant cell wall polysaccharides through utilization of an extensive repertoire of carbohydrate-active enzymes. Several putative chitin-degrading enzymes are also found among these carbohydrate-active enzymes, such as chitinases, chitobiases, and lytic polysaccharide monooxygenases (LPMOs). In this study, we have characterized the chitin-active LPMO, CjLPMO10A, a tri-modular enzyme containing a catalytic family AA10 LPMO module, a family 5 chitin-binding module, and a C-terminal unclassified module of unknown function. Characterization of the latter module revealed tight and specific binding to chitin, thereby unraveling a new family of chitin-binding modules (classified as CBM73). X-ray crystallographic elucidation of the CjLPMO10A catalytic module revealed that the active site of the enzyme combines structural features previously only observed in either cellulose or chitin-active LPMO10s. Analysis of the copper-binding site by EPR showed a signal signature more similar to those observed for cellulose-cleaving LPMOs. The full-length LPMO shows no activity toward cellulose but is able to bind and cleave both α- and β-chitin. Removal of the chitin-binding modules reduced LPMO activity toward α-chitin compared with the full-length enzyme. Interestingly, the full-length enzyme and the individual catalytic LPMO module boosted the activity of an endochitinase equally well, also yielding similar amounts of oxidized products. Finally, gene deletion studies show that CjLPMO10A is needed by C. japonicus to obtain efficient growth on both purified chitin and crab shell particles. PMID:26858252
Forsberg, Zarah; Nelson, Cassandra E; Dalhus, Bjørn; Mekasha, Sophanit; Loose, Jennifer S M; Crouch, Lucy I; Røhr, Åsmund K; Gardner, Jeffrey G; Eijsink, Vincent G H; Vaaje-Kolstad, Gustav
2016-04-01
Cellvibrio japonicusis a Gram-negative soil bacterium that is primarily known for its ability to degrade plant cell wall polysaccharides through utilization of an extensive repertoire of carbohydrate-active enzymes. Several putative chitin-degrading enzymes are also found among these carbohydrate-active enzymes, such as chitinases, chitobiases, and lytic polysaccharide monooxygenases (LPMOs). In this study, we have characterized the chitin-active LPMO,CjLPMO10A, a tri-modular enzyme containing a catalytic family AA10 LPMO module, a family 5 chitin-binding module, and a C-terminal unclassified module of unknown function. Characterization of the latter module revealed tight and specific binding to chitin, thereby unraveling a new family of chitin-binding modules (classified as CBM73). X-ray crystallographic elucidation of theCjLPMO10A catalytic module revealed that the active site of the enzyme combines structural features previously only observed in either cellulose or chitin-active LPMO10s. Analysis of the copper-binding site by EPR showed a signal signature more similar to those observed for cellulose-cleaving LPMOs. The full-length LPMO shows no activity toward cellulose but is able to bind and cleave both α- and β-chitin. Removal of the chitin-binding modules reduced LPMO activity toward α-chitin compared with the full-length enzyme. Interestingly, the full-length enzyme and the individual catalytic LPMO module boosted the activity of an endochitinase equally well, also yielding similar amounts of oxidized products. Finally, gene deletion studies show thatCjLPMO10A is needed byC. japonicusto obtain efficient growth on both purified chitin and crab shell particles. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Almenar-Queralt, Angels; Kim, Sonia N; Benner, Christopher; Herrera, Cheryl M; Kang, David E; Garcia-Bassets, Ivan; Goldstein, Lawrence S B
2013-12-06
Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.
Almenar-Queralt, Angels; Kim, Sonia N.; Benner, Christopher; Herrera, Cheryl M.; Kang, David E.; Garcia-Bassets, Ivan; Goldstein, Lawrence S. B.
2013-01-01
Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment. PMID:24145027
Choudhury, Nila Roy; Heikel, Gregory; Trubitsyna, Maryia; Kubik, Peter; Nowak, Jakub Stanislaw; Webb, Shaun; Granneman, Sander; Spanos, Christos; Rappsilber, Juri; Castello, Alfredo; Michlewski, Gracjan
2017-11-08
TRIM25 is a novel RNA-binding protein and a member of the Tripartite Motif (TRIM) family of E3 ubiquitin ligases, which plays a pivotal role in the innate immune response. However, there is scarce knowledge about its RNA-related roles in cell biology. Furthermore, its RNA-binding domain has not been characterized. Here, we reveal that the RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain, which we postulate to be a novel RNA-binding domain. Using CLIP-seq and SILAC-based co-immunoprecipitation assays, we uncover TRIM25's endogenous RNA targets and protein binding partners. We demonstrate that TRIM25 controls the levels of Zinc Finger Antiviral Protein (ZAP). Finally, we show that the RNA-binding activity of TRIM25 is important for its ubiquitin ligase activity towards itself (autoubiquitination) and its physiologically relevant target ZAP. Our results suggest that many other proteins with the PRY/SPRY domain could have yet uncharacterized RNA-binding potential. Together, our data reveal new insights into the molecular roles and characteristics of RNA-binding E3 ubiquitin ligases and demonstrate that RNA could be an essential factor in their enzymatic activity.
Parasuraman, Ponnusamy; Murugan, Veeramani; Selvin, Jeyasigamani F A; Gromiha, M Michael; Fukui, Kazuhiko; Veluraja, Kasinadar
2014-08-01
Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.
Ananda, Hanumappa; Sharath Kumar, Kothanahally S; Sudhanva, Muddenahalli S; Rangappa, Shobith; Rangappa, Kanchugarakoppal S
2018-05-18
Aberrant expression of estrogen receptor alpha (ER-α) is observed in many pathological complications like breast cancer, endometrial cancer, and in osteoporosis. ER-α plays a vital role in the initiation and progression of breast cancer and confers chemo and radioresistance to the cancer cells by upregulating expression of anti-apoptotic proteins. The synthetic pyrazole derivative 3-(1-(4-bromophenyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (compound 5d) displays significant cytotoxicity against mammary carcinoma cells. Molecular docking studies revealed that compound 5d binds to ligand binding domain of (ER-α). In vivo studies were carried out to investigate ER-α expression by immunohistochemistry and quantitative RT-PCR, which revealed reduction of ER-α in tumor cells upon treatment with compound 5d indicating its ER-α antagonistic effect. Our study ascertains compound 5d as a potent inhibitor of mammary carcinoma cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.
1984-10-01
The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portionmore » of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.« less
Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi
2018-03-15
Molecular interaction of darunavir (DRV), a HIV protease inhibitor with calf thymus deoxyribonucleic acid (ct-DNA) was studied in physiological buffer (pH7.4) by multi-spectroscopic approaches hand in hand with viscosity measurements and molecular docking technique. The UV absorption and fluorescence results together revealed the formation of a DRV-ct-DNA complex having binding affinities of the order of 10 3 M -1 , which was more in keeping with the groove binding. The results that DRV bound to ct-DNA via groove binding mode was further evidenced by KI quenching studies, viscosity measurements, competitive binding investigations with EB and Rhodamine B and CD spectral analysis. The effect of ionic strength indicated the negligible involvement of electrostatic interaction between DRV and ct-DNA. The thermodynamic parameters regarding the binding interaction of DRV with ct-DNA in terms of enthalpy change (ΔH 0 ) and entropy change (ΔS 0 ) were -63.19kJ mol -1 and -141.92J mol -1 K -1 , indicating that hydrogen bonds and van der Waals forces played a predominant role in the binding process. Furthermore, molecular simulation studies suggested that DRV molecule was prone to bind in the A-T rich region of the minor groove of DNA. Copyright © 2017 Elsevier B.V. All rights reserved.
Trifluoperazine Regulation of Calmodulin Binding to Fas: A Computational Study
Pan, Di; Yan, Qi; Chen, Yabing; McDonald, Jay M; Song, Yuhua
2011-01-01
Death-inducing signaling complex (DISC) formation is a critical step in Fas-mediated signaling for apoptosis. Previous experiments have demonstrated that the calmodulin (CaM) antagonist, trifluoperazine (TFP) regulates CaM-Fas binding and affects Fas-mediated DISC formation. In this study, we investigated the anti-cooperative characteristics of TFP binding to CaM and the effect of TFP on the CaM-Fas interaction from both structural and thermodynamic perspectives using combined molecular dynamics simulations and binding free energy analyses. We studied the interactions of different numbers of TFP molecules with CaM and explored the effects of the resulting conformational changes in CaM on CaM-Fas binding. Results from these analyses showed that the number of TFP molecules bound to CaM directly influenced α-helix formation and hydrogen bond occupancy within the α-helices of CaM, contributing to the conformational and motion changes in CaM. These changes affected CaM binding to Fas, resulting in secondary structural changes in Fas and conformational and motion changes of Fas in CaM-Fas complexes, potentially perturbing the recruitment of Fas-associated death domain (FADD) for DISC formation. The computational results from this study reveal the structural and molecular mechanisms that underlie the role of the CaM antagonist, TFP, in regulation of CaM-Fas binding and Fas-mediated DISC formation in a concentration-dependent manner. PMID:21656570
Structural and functional analysis of the YAP-binding domain of human TEAD2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Wei; Yu, Jianzhong; Tomchick, Diana R.
2010-06-15
The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like {beta}-sandwich fold with two extra helix-turn-helixmore » inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.« less
Isolation and characterization of target sequences of the chicken CdxA homeobox gene.
Margalit, Y; Yarus, S; Shapira, E; Gruenbaum, Y; Fainsod, A
1993-01-01
The DNA binding specificity of the chicken homeodomain protein CDXA was studied. Using a CDXA-glutathione-S-transferase fusion protein, DNA fragments containing the binding site for this protein were isolated. The sources of DNA were oligonucleotides with random sequence and chicken genomic DNA. The DNA fragments isolated were sequenced and tested in DNA binding assays. Sequencing revealed that most DNA fragments are AT rich which is a common feature of homeodomain binding sites. By electrophoretic mobility shift assays it was shown that the different target sequences isolated bind to the CDXA protein with different affinities. The specific sequences bound by the CDXA protein in the genomic fragments isolated, were determined by DNase I footprinting. From the footprinted sequences, the CDXA consensus binding site was determined. The CDXA protein binds the consensus sequence A, A/T, T, A/T, A, T, A/G. The CAUDAL binding site in the ftz promoter is also included in this consensus sequence. When tested, some of the genomic target sequences were capable of enhancing the transcriptional activity of reporter plasmids when introduced into CDXA expressing cells. This study determined the DNA sequence specificity of the CDXA protein and it also shows that this protein can further activate transcription in cells in culture. Images PMID:7909943
Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.
Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T
2003-01-01
The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.
NASA Astrophysics Data System (ADS)
Cholko, Timothy; Chen, Wei; Tang, Zhiye; Chang, Chia-en A.
2018-05-01
Abnormal activity of cyclin-dependent kinase 8 (CDK8) along with its partner protein cyclin C (CycC) is a common feature of many diseases including colorectal cancer. Using molecular dynamics (MD) simulations, this study determined the dynamics of the CDK8-CycC system and we obtained detailed breakdowns of binding energy contributions for four type-I and five type-II CDK8 inhibitors. We revealed system motions and conformational changes that will affect ligand binding, confirmed the essentialness of CycC for inclusion in future computational studies, and provide guidance in development of CDK8 binders. We employed unbiased all-atom MD simulations for 500 ns on twelve CDK8-CycC systems, including apoproteins and protein-ligand complexes, then performed principal component analysis (PCA) and measured the RMSF of key regions to identify protein dynamics. Binding pocket volume analysis identified conformational changes that accompany ligand binding. Next, H-bond analysis, residue-wise interaction calculations, and MM/PBSA were performed to characterize protein-ligand interactions and find the binding energy. We discovered that CycC is vital for maintaining a proper conformation of CDK8 to facilitate ligand binding and that the system exhibits motion that should be carefully considered in future computational work. Surprisingly, we found that motion of the activation loop did not affect ligand binding. Type-I and type-II ligand binding is driven by van der Waals interactions, but electrostatic energy and entropic penalties affect type-II binding as well. Binding of both ligand types affects protein flexibility. Based on this we provide suggestions for development of tighter-binding CDK8 inhibitors and offer insight that can aid future computational studies.
Human blood-brain barrier insulin-like growth factor receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.
1988-02-01
Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefoldmore » greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of /sup 125/I-IGF-1, /sup 125/I-IGF-2, and /sup 125/I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin.« less
Shahabadi, Nahid; Fili, Soraya Moradi; Kheirdoosh, Fahimeh
2013-11-05
The interaction of CT-DNA with the drug mesalamine (5-ASA) at physiological pH has been investigated by absorption, emission, circular dichroism (CD), cyclic voltammetry (CV), viscosity studies and molecular modeling. Thermodynamic parameters (ΔH>0 and ΔS<0) indicated that hydrogen bond and van der Waals play main roles in the binding of 5-ASA to CT-DNA. Ethidium bromide (EB) displacement studies revealed that 5-ASA did not have any effect on ethidium bromide (EB) bound DNA which is indicative of groove binding. The results obtained from experimental and molecular modeling showed that 5-ASA is a minor groove binder of DNA and preferentially binds to GC rich regions. Copyright © 2013 Elsevier B.V. All rights reserved.
Mirchi, Ali; Sizochenko, Natalia; Dinadayalane, Tandabany; Leszczynski, Jerzy
2017-11-22
The effect of substitution of phenyl and naphthyl rings to benzene was examined to elucidate the cation-π interactions involving alkali metal ions with 1,3,5-tri(phenyl)benzene (TPB) and 1,3,5-tri(naphthyl)benzene (TNB). Benzene, TPB, and four TNB isomers (with ααα, ααβ, αββ, and βββ types of fusion) and their complexes with Li + , Na + , K + , Rb + , and Cs + were optimized using DFT approach with B3LYP and M06-2X functionals in conjunction with the def2-QZVP basis set. Higher relative stability of β,β,β-TNB over α,α,α-TNB can be attributed to peri repulsion, which is defined as the nonbonding repulsive interaction between substituents in the 1- and the 8-positions on the naphthalene core. Binding energies, distances between ring centroid and the metal ions, and the distance to metal ions from the center of other six-membered rings were compared for all complexes. Our computational study reveals that the binding affinity of alkali metal cations increases significantly with the 1,3,5-trisubstitution of phenyl and naphthyl rings to benzene. The detailed computational analyses of geometries, partial charges, binding energies, and ligand organization energies reveal the possibility of favorable C-H···M + interactions when a α-naphthyl group exists in complexes of TNB structures. Like benzene-alkali metal ion complexes, the binding affinity of metal ions follows the order: Li + > Na + > K + > Rb + > Cs + for any considered 1,3,5-trisubstituted benzene systems. In case of TNB, we found that the strength of interactions increases as the fusion point changes from α to β position of naphthalene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.
Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T.more » maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of {beta}(1 {yields} 4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.« less
Deciphering Cryptic Binding Sites on Proteins by Mixed-Solvent Molecular Dynamics.
Kimura, S Roy; Hu, Hai Peng; Ruvinsky, Anatoly M; Sherman, Woody; Favia, Angelo D
2017-06-26
In recent years, molecular dynamics simulations of proteins in explicit mixed solvents have been applied to various problems in protein biophysics and drug discovery, including protein folding, protein surface characterization, fragment screening, allostery, and druggability assessment. In this study, we perform a systematic study on how mixtures of organic solvent probes in water can reveal cryptic ligand binding pockets that are not evident in crystal structures of apo proteins. We examine a diverse set of eight PDB proteins that show pocket opening induced by ligand binding and investigate whether solvent MD simulations on the apo structures can induce the binding site observed in the holo structures. The cosolvent simulations were found to induce conformational changes on the protein surface, which were characterized and compared with the holo structures. Analyses of the biological systems, choice of probes and concentrations, druggability of the resulting induced pockets, and application to drug discovery are discussed here.
Hu, Wanhui; Wu, Huiwen; Zhang, Hong; Gong, Weibin; Perrett, Sarah
2015-10-01
Hsp70 chaperone proteins play crucial roles in the cell. Extensive structural and functional studies have been performed for bacterial and mammalian Hsp70s. Ssa1 from Saccharomyces cerevisiae is a member of the Hsp70 family. In vivo and biochemical studies on Ssa1 have revealed that it regulates prion propagation and the cell cycle. However, no structural data has been obtained for Ssa1 up to now. Here we report the almost complete (96 %) (1)H, (13)C, (15)N backbone and side chain NMR assignment of the 18.8 kDa Ssa1 substrate binding domain. The construct includes residues 382-554, which corresponds to the entire substrate binding domain and two following α-helices in homologous structures. The secondary structure predicted from the assigned chemical shifts is consistent with that of homologous Hsp70 substrate binding domains.
Yong, Kelvin J; Vaid, Tasneem M; Shilling, Patrick J; Wu, Feng-Jie; Williams, Lisa M; Deluigi, Mattia; Plückthun, Andreas; Bathgate, Ross A D; Gooley, Paul R; Scott, Daniel J
2018-04-20
α 1A - and α 1B -adrenoceptors (α 1A -AR and α 1B -AR) are closely related G protein-coupled receptors (GPCRs) that modulate the cardiovascular and nervous systems in response to binding epinephrine and norepinephrine. The GPCR gene superfamily is made up of numerous subfamilies that, like α 1A -AR and α 1B -AR, are activated by the same endogenous agonists but may modulate different physiological processes. A major challenge in GPCR research and drug discovery is determining how compounds interact with receptors at the molecular level, especially to assist in the optimization of drug leads. Nuclear magnetic resonance spectroscopy (NMR) can provide great insight into ligand-binding epitopes, modes, and kinetics. Ideally, ligand-based NMR methods require purified, well-behaved protein samples. The instability of GPCRs upon purification in detergents, however, makes the application of NMR to study ligand binding challenging. Here, stabilized α 1A -AR and α 1B -AR variants were engineered using Cellular High-throughput Encapsulation, Solubilization, and Screening (CHESS), allowing the analysis of ligand binding with Saturation Transfer Difference NMR (STD NMR). STD NMR was used to map the binding epitopes of epinephrine and A-61603 to both receptors, revealing the molecular determinants for the selectivity of A-61603 for α 1A -AR over α 1B -AR. The use of stabilized GPCRs for ligand-observed NMR experiments will lead to a deeper understanding of binding processes and assist structure-based drug design.
Hari, Sanjay B.; Perera, B. Gayani K.; Ranjitkar, Pratistha; Seeliger, Markus A.; Maly, Dustin J.
2013-01-01
Over the last decade, an increasingly diverse array of potent and selective inhibitors that target the ATP-binding sites of protein kinases have been developed. Many of these inhibitors, like the clinically approved drug imatinib (Gleevec), stabilize a specific catalytically inactive ATP-binding site conformation of their kinases targets. Imatinib is notable in that it is highly selective for its kinase target, Abl, over other closely-related tyrosine kinases, like Src. In addition, imatinib is highly sensitive to the phosphorylation state of Abl's activation loop, which is believed to be a general characteristic of all inhibitors that stabilize a similar inactive ATP-binding site conformation. In this report, we perform a systematic analysis of a diverse series of ATP-competitive inhibitors that stabilize a similar inactive ATP-binding site conformation as imatinib with the tyrosine kinases Src and Abl. In contrast to imatinib, many of these inhibitors have very similar potencies against Src and Abl. Furthermore, only a subset of this class of inhibitors is sensitive to the phosphorylation state of the activation loop of these kinases. In attempting to explain this observation, we have uncovered an unexpected correlation between Abl's activation loop and another flexible active site feature, called the phosphate-binding loop (p-loop). These studies shed light on how imatinib is able to obtain its high target selectivity and reveal how the conformational preference of flexible active site regions can vary between closely related kinases. PMID:24106839
Participation of cysteine-rich secretory proteins (CRISP) in mammalian sperm-egg interaction.
Cohen, Débora J; Busso, Dolores; Da Ros, Vanina; Ellerman, Diego A; Maldera, Julieta A; Goldweic, Nadia; Cuasnicu, Patricia S
2008-01-01
Mammalian fertilization is a complex multi-step process mediated by different molecules present on both gametes. CRISP1 (cysteine-rich secretory protein 1) is an epididymal protein thought to participate in gamete fusion through its binding to egg-complementary sites. Structure-function studies using recombinant fragments of CRISP1 as well as synthetic peptides reveal that its egg-binding ability resides in a 12 amino acid region corresponding to an evolutionary conserved motif of the CRISP family, named Signature 2 (S2). Further experiments analyzing both the ability of other CRISP proteins to bind to the rat egg and the amino acid sequence of their S2 regions show that the amino acid sequence of the S2 is needed for CRISP1 to interact with the egg. CRISP1 appears to be involved in the first step of sperm binding to the zona pellucida, identifying a novel role for this protein in fertilization. The observation that sperm testicular CRISP2 is also able to bind to the egg surface suggests a role for this protein in gamete fusion. Subsequent experiments confirmed the participation of CRISP2 in this step of fertilization and revealed that CRISP1 and CRISP2 interact with common egg surface binding sites. Together, these results suggest a functional cooperation between CRISP1 and CRISP2 to ensure the success of fertilization. These observations contribute to a better understanding of the molecular mechanisms underlying mammalian fertilization.
Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm
2015-07-27
VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Rosenberg, Jonathan; Müller, Peter; Lentes, Sabine; Thiele, Martin J; Zeigler, Daniel R; Tödter, Dominik; Paulus, Henry; Brantl, Sabine; Stülke, Jörg; Commichau, Fabian M
2016-09-01
The threonine dehydratase IlvA is part of the isoleucine biosynthesis pathway in the Gram-positive model bacterium Bacillus subtilis. Consequently, deletion of ilvA causes isoleucine auxotrophy. It has been reported that ilvA pseudo-revertants having a derepressed hom-thrCB operon appear in the presence of threonine. Here we have characterized two classes of ilvA pseudo-revertants. In the first class the hom-thrCB operon was derepressed unmasking the threonine dehydratase activity of the threonine synthase ThrC. In the second class of mutants, threonine biosynthesis was more broadly affected. The first class of ilvA pseudo-revertants had a mutation in the Phom promoter (P*hom ), resulting in constitutive expression of the hom-thrCB operon. In the second class of ilvA pseudo-revertants, the thrR gene encoding a putative DNA-binding protein was inactivated, also resulting in constitutive expression of the hom-thrCB operon. Here we demonstrate that ThrR is indeed a DNA-binding transcription factor that regulates the hom-thrCB operon and the thrD aspartokinase gene. DNA binding assays uncovered the DNA-binding site of ThrR and revealed that the repressor competes with the RNA polymerase for DNA binding. This study also revealed that ThrR orthologs are ubiquitous in genomes from the Gram-positive phylum Firmicutes and in some Gram-negative bacteria. © 2016 John Wiley & Sons Ltd.
Rational design and validation of a vanilloid-sensitive TRPV2 ion channel
Yang, Fan; Vu, Simon; Yarov-Yarovoy, Vladimir; Zheng, Jie
2016-01-01
Vanilloids activation of TRPV1 represents an excellent model system of ligand-gated ion channels. Recent studies using cryo-electron microcopy (cryo-EM), computational analysis, and functional quantification revealed the location of capsaicin-binding site and critical residues mediating ligand-binding and channel activation. Based on these new findings, here we have successfully introduced high-affinity binding of capsaicin and resiniferatoxin to the vanilloid-insensitive TRPV2 channel, using a rationally designed minimal set of four point mutations (F467S–S498F–L505T–Q525E, termed TRPV2_Quad). We found that binding of resiniferatoxin activates TRPV2_Quad but the ligand-induced open state is relatively unstable, whereas binding of capsaicin to TRPV2_Quad antagonizes resiniferatoxin-induced activation likely through competition for the same binding sites. Using Rosetta-based molecular docking, we observed a common structural mechanism underlying vanilloids activation of TRPV1 and TRPV2_Quad, where the ligand serves as molecular “glue” that bridges the S4–S5 linker to the S1–S4 domain to open these channels. Our analysis revealed that capsaicin failed to activate TRPV2_Quad likely due to structural constraints preventing such bridge formation. These results not only validate our current working model for capsaicin activation of TRPV1 but also should help guide the design of drug candidate compounds for this important pain sensor. PMID:27298359
Marques, Alexandra T; Antunes, Agostinho; Fernandes, Pedro A; Ramos, Maria J
2006-01-01
Background The Aβ-binding alcohol dehydrogenase/17β-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10) is an enzyme involved in pivotal metabolic processes and in the mitochondrial dysfunction seen in the Alzheimer's disease. Here we use comparative genomic analyses to study the evolution of the HADH2 gene encoding ABAD/HSD10 across several eukaryotic species. Results Both vertebrate and nematode HADH2 genes showed a six-exon/five-intron organization while those of the insects had a reduced and varied number of exons (two to three). Eutherian mammal HADH2 genes revealed some highly conserved noncoding regions, which may indicate the presence of functional elements, namely in the upstream region about 1 kb of the transcription start site and in the first part of intron 1. These regions were also conserved between Tetraodon and Fugu fishes. We identified a conserved alternative splicing event between human and dog, which have a nine amino acid deletion, causing the removal of the strand βF. This strand is one of the seven strands that compose the core β-sheet of the Rossman fold dinucleotide-binding motif characteristic of the short chain dehydrogenase/reductase (SDR) family members. However, the fact that the substrate binding cleft residues are retained and the existence of a shared variant between human and dog suggest that it might be functional. Molecular adaptation analyses across eutherian mammal orthologues revealed the existence of sites under positive selection, some of which being localized in the substrate-binding cleft and in the insertion 1 region on loop D (an important region for the Aβ-binding to the enzyme). Interestingly, a higher than expected number of nonsynonymous substitutions were observed between human/chimpanzee and orangutan, with six out of the seven amino acid replacements being under molecular adaptation (including three in loop D and one in the substrate binding loop). Conclusion Our study revealed that HADH2 genes maintained a reasonable conserved organization across a large evolutionary distance. The conserved noncoding regions identified among mammals and between pufferfishes, the evidence of an alternative splicing variant conserved between human and dog, and the detection of positive selection across eutherian mammals, may be of importance for further research on ABAD/HSD10 function and its implication in the Alzheimer's disease. PMID:16899120
Wood, Kathleen H; Johnson, Brian S; Welsh, Sarah A; Lee, Jun Y; Cui, Yue; Krizman, Elizabeth; Brodkin, Edward S; Blendy, Julie A; Robinson, Michael B; Bartolomei, Marisa S; Zhou, Zhaolan
2016-04-01
DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.
In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites
Grey, Corinne; Clément, Julie A.J.; Buard, Jérôme; Leblanc, Benjamin; Gut, Ivo; Gut, Marta; Duret, Laurent
2017-01-01
In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis. PMID:28336543
Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes
Alberstein, Robert; Grey, Richard; Zimmet, Austin; ...
2015-10-12
Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysismore » reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. In this paper, we hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and finally suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.« less
Vadloori, Bharadwaja; Sharath, A K; Prabhu, N Prakash; Maurya, Radheshyam
2018-04-16
Present in silico study was carried out to explore the mode of inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase (Ld DHFR-TS) enzyme by Withaferin-A, a withanolide isolated from Withania somnifera. Withaferin-A (WA) is known for its profound multifaceted properties, but its antileishmanial activity is not well understood. The parasite's DHFR-TS enzyme is diverse from its mammalian host and could be a potential drug target in parasites. A 3D model of Ld DHFR-TS enzyme was built and verified using Ramachandran plot and SAVES tools. The protein was docked with WA-the ligand, methotrexate (MTX)-competitive inhibitor of DHFR, and dihydrofolic acid (DHFA)-substrate for DHFR-TS. Molecular docking studies reveal that WA competes for active sites of both Hu DHFR and TS enzymes whereas it binds to a site other than active site in Ld DHFR-TS. Moreover, Lys 173 residue of DHFR-TS forms a H-bond with WA and has higher binding affinity to Ld DHFR-TS than Hu DHFR and Hu TS. The MD simulations confirmed the H-bonding interactions were stable. The binding energies of WA with Ld DHFR-TS were calculated using MM-PBSA. Homology modelling, molecular docking and MD simulations of Ld DHFR-TS revealed that WA could be a potential anti-leishmanial drug.
Amyloid tracers detect multiple binding sites in Alzheimer's disease brain tissue.
Ni, Ruiqing; Gillberg, Per-Göran; Bergfors, Assar; Marutle, Amelia; Nordberg, Agneta
2013-07-01
Imaging fibrillar amyloid-β deposition in the human brain in vivo by positron emission tomography has improved our understanding of the time course of amyloid-β pathology in Alzheimer's disease. The most widely used amyloid-β imaging tracer so far is (11)C-Pittsburgh compound B, a thioflavin derivative but other (11)C- and (18)F-labelled amyloid-β tracers have been studied in patients with Alzheimer's disease and cognitively normal control subjects. However, it has not yet been established whether different amyloid tracers bind to identical sites on amyloid-β fibrils, offering the same ability to detect the regional amyloid-β burden in the brains. In this study, we characterized (3)H-Pittsburgh compound B binding in autopsied brain regions from 23 patients with Alzheimer's disease and 20 control subjects (aged 50 to 88 years). The binding properties of the amyloid tracers FDDNP, AV-45, AV-1 and BF-227 were also compared with those of (3)H-Pittsburgh compound B in the frontal cortices of patients with Alzheimer's disease. Saturation binding studies revealed the presence of high- and low-affinity (3)H-Pittsburgh compound B binding sites in the frontal cortex (K(d1): 3.5 ± 1.6 nM; K(d2): 133 ± 30 nM) and hippocampus (K(d1):5.6 ± 2.2 nM; K(d2): 181 ± 132 nM) of Alzheimer's disease brains. The relative proportion of high-affinity to low-affinity sites was 6:1 in the frontal cortex and 3:1 in the hippocampus. One control showed both high- and low-affinity (3)H-Pittsburgh compound B binding sites (K(d1): 1.6 nM; K(d2): 330 nM) in the cortex while the others only had a low-affinity site (K(d2): 191 ± 70 nM). (3)H-Pittsburgh compound B binding in Alzheimer's disease brains was higher in the frontal and parietal cortices than in the caudate nucleus and hippocampus, and negligible in the cerebellum. Competitive binding studies with (3)H-Pittsburgh compound B in the frontal cortices of Alzheimer's disease brains revealed high- and low-affinity binding sites for BTA-1 (Ki: 0.2 nM, 70 nM), florbetapir (1.8 nM, 53 nM) and florbetaben (1.0 nM, 65 nM). BF-227 displaced 83% of (3)H-Pittsburgh compound B binding, mainly at a low-affinity site (311 nM), whereas FDDNP only partly displaced (40%). We propose a multiple binding site model for the amyloid tracers (binding sites 1, 2 and 3), where AV-45 (florbetapir), AV-1 (florbetaben), and Pittsburgh compound B, all show nanomolar affinity for the high-affinity site (binding site 1), as visualized by positron emission tomography. BF-227 shows mainly binding to site 3 and FDDNP shows only some binding to site 2. Different amyloid tracers may provide new insight into the pathophysiological mechanisms in the progression of Alzheimer's disease.
Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.
Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte
2016-01-01
Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data.
Xu, Huacheng; Zhong, Jicheng; Yu, Guanghui; Wu, Jun; Jiang, Helong; Yang, Liuyan
2014-01-01
Information on metal binding with fluorescent substances has been widely studied. By contrast, information on metal binding with non-fluorescent substances remains lacking despite the dominance of these substances in aquatic systems. In this study, the metal binding properties of both fluorescent and non-fluorescent substances were investigated by using metal titration combined with two-dimensional correlation spectroscopy (2D–COS) analysis. The organic matters in the eutrophic algae-rich lake, including natural organic matters (NOM) and algae-induced extracellular polymeric substances (EPS), both contained fluorescent and non-fluorescent substances. The peaks in the one-dimensional spectra strongly overlapped, while 2D–COS can decompose the overlapped peaks and thus enhanced the spectral resolution. Moreover, 2D FTIR COS demonstrated that the binding susceptibility of organic ligands in both NOM and algal EPS matrices followed the order: 3400>1380>1650 cm−1, indicative the significant contribution of non-fluorescent ligands in metal binding. The modified Stern-Volmer equation also revealed a substantial metal binding potential for the non-fluorescent substances (logKM: 3.57∼4.92). As for the effects of organic ligands on metal binding, EPS was characterized with higher binding ability than NOM for both fluorescent and non-fluorescent ligands. Algae-induced EPS and the non-fluorescent substances in eutrophic algae-rich lakes should not be overlooked because of their high metal binding potential. PMID:25380246
Englert, L; Biela, A; Zayed, M; Heine, A; Hangauer, D; Klebe, G
2010-11-01
Prerequisite for the design of tight binding protein inhibitors and prediction of their properties is an in-depth understanding of the structural and thermodynamic details of the binding process. A series of closely related phosphonamidates was studied to elucidate the forces underlying their binding affinity to thermolysin. The investigated inhibitors are identical except for the parts penetrating into the hydrophobic S₁'-pocket. A correlation of structural, kinetic and thermodynamic data was carried out by X-ray crystallography, kinetic inhibition assay and isothermal titration calorimetry. Binding affinity increases with larger ligand hydrophobic P₁'-moieties accommodating the S₁'-pocket. Surprisingly, larger P₁'-side chain modifications are accompanied by an increase in the enthalpic contribution to binding. In agreement with other studies, it is suggested that the release of largely disordered waters from an imperfectly hydrated pocket results in an enthalpically favourable integration of these water molecules into bulk water upon inhibitor binding. This enthalpically favourable process contributes more strongly to the binding energetics than the entropy increase resulting from the release of water molecules from the S₁'-pocket or the formation of apolar interactions between protein and inhibitor. Displacement of highly disordered water molecules from a rather imperfectly hydrated and hydrophobic specificity pocket can reveal an enthalpic signature of inhibitor binding. Copyright © 2010 Elsevier B.V. All rights reserved.
Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes
Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte
2016-01-01
Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624
Klimyte, Edita M.; Smith, Stacy E.; Oreste, Pasqua; Lembo, David
2016-01-01
ABSTRACT Human metapneumovirus (HMPV), a recently discovered paramyxovirus, infects nearly 100% of the world population and causes severe respiratory disease in infants, the elderly, and immunocompromised patients. We previously showed that HMPV binds heparan sulfate proteoglycans (HSPGs) and that HMPV binding requires only the viral fusion (F) protein. To characterize the features of this interaction critical for HMPV binding and the role of this interaction in infection in relevant models, we utilized sulfated polysaccharides, heparan sulfate mimetics, and occluding compounds. Iota-carrageenan demonstrated potent anti-HMPV activity by inhibiting binding to lung cells mediated by the F protein. Furthermore, analysis of a minilibrary of variably sulfated derivatives of Escherichia coli K5 polysaccharide mimicking the HS structure revealed that the highly O-sulfated K5 polysaccharides inhibited HMPV infection, identifying a potential feature of HS critical for HMPV binding. The peptide dendrimer SB105-A10, which binds HS, reduced binding and infection in an F-dependent manner, suggesting that occlusion of HS at the target cell surface is sufficient to prevent infection. HMPV infection was also inhibited by these compounds during apical infection of polarized airway tissues, suggesting that these interactions take place during HMPV infection in a physiologically relevant model. These results reveal key features of the interaction between HMPV and HS, supporting the hypothesis that apical HS in the airway serves as a binding factor during infection, and HS modulating compounds may serve as a platform for potential antiviral development. IMPORTANCE Human metapneumovirus (HMPV) is a paramyxovirus that causes respiratory disease worldwide. It has been previously shown that HMPV requires binding to heparan sulfate on the surfaces of target cells for attachment and infection. In this study, we characterize the key features of this binding interaction using heparan sulfate mimetics, identify an important sulfate modification, and demonstrate that these interactions occur at the apical surface of polarized airway tissues. These findings provide insights into the initial binding step of HMPV infection that has potential for antiviral development. PMID:27489270
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridwell-Rabb, Jennifer; Winn, Andrew M; Barondeau, David P
2012-08-01
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-Smore » cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a k cat/K M higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest k cat/K M of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahms, Sven O., E-mail: sdahms@fli-leibniz.de; Mayer, Magnus C.; Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow
2015-03-01
Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects variousmore » (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.« less
Shrivastava, Indira; LaLonde, Judith M.
2012-01-01
HIV infection is initiated by binding of the viral glycoprotein gp120, to the cellular receptor CD4. Upon CD4 binding, gp120 undergoes conformational change, permitting binding to the chemokine receptor. Crystal structures of gp120 ternary complex reveal the CD4 bound conformation of gp120. We report here the application of Gaussian Network Model (GNM) to the crystal structures of gp120 bound to CD4 or CD4 mimic and 17b, to study the collective motions of the gp120 core and determine the communication propensities of the residue network. The GNM fluctuation profiles identify residues in the inner domain and outer domain that may facilitate conformational change or stability, respectively. Communication propensities delineate a residue network that is topologically suited for signal propagation from the Phe43 cavity throughout the gp120 outer domain. . These results provide a new context for interpreting gp120 core envelope structure-function relationships. PMID:20718047
Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition
NASA Astrophysics Data System (ADS)
Brem, Jürgen; van Berkel, Sander S.; Aik, Weishen; Rydzik, Anna M.; Avison, Matthew B.; Pettinati, Ilaria; Umland, Klaus-Daniel; Kawamura, Akane; Spencer, James; Claridge, Timothy D. W.; McDonough, Michael A.; Schofield, Christopher J.
2014-12-01
The use of β-lactam antibiotics is compromised by resistance, which is provided by β-lactamases belonging to both metallo (MBL)- and serine (SBL)-β-lactamase subfamilies. The rhodanines are one of very few compound classes that inhibit penicillin-binding proteins (PBPs), SBLs and, as recently reported, MBLs. Here, we describe crystallographic analyses of the mechanism of inhibition of the clinically relevant VIM-2 MBL by a rhodanine, which reveal that the rhodanine ring undergoes hydrolysis to give a thioenolate. The thioenolate is found to bind via di-zinc chelation, mimicking the binding of intermediates in β-lactam hydrolysis. Crystallization of VIM-2 in the presence of the intact rhodanine led to observation of a ternary complex of MBL, a thioenolate fragment and rhodanine. The crystallographic observations are supported by kinetic and biophysical studies, including 19F NMR analyses, which reveal the rhodanine-derived thioenolate to be a potent broad-spectrum MBL inhibitor and a lead structure for the development of new types of clinically useful MBL inhibitors.
Effects of Zinc on Particulate Methane Monooxygenase Activity and Structure*
Sirajuddin, Sarah; Barupala, Dulmini; Helling, Stefan; Marcus, Katrin; Stemmler, Timothy L.; Rosenzweig, Amy C.
2014-01-01
Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. Zinc is a known inhibitor of pMMO, but the details of zinc binding and the mechanism of inhibition are not understood. Metal binding and activity assays on membrane-bound pMMO from Methylococcus capsulatus (Bath) reveal that zinc inhibits pMMO at two sites that are distinct from the copper active site. The 2.6 Å resolution crystal structure of Methylocystis species strain Rockwell pMMO reveals two previously undetected bound lipids, and metal soaking experiments identify likely locations for the two zinc inhibition sites. The first is the crystallographic zinc site in the pmoC subunit, and zinc binding here leads to the ordering of 10 previously unobserved residues. A second zinc site is present on the cytoplasmic side of the pmoC subunit. Parallels between these results and zinc inhibition studies of several respiratory complexes suggest that zinc might inhibit proton transfer in pMMO. PMID:24942740
Nayak, Tapan K.; Ramesh, Chinnasamy; Hathaway, Helen J.; Norenberg, Jeffrey P.; Arterburn, Jeffrey B.; Prossnitz, Eric R.
2014-01-01
Our understanding of estrogen (E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER1/GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial and ovarian cancers, establishing the importance of non-invasive methods to evaluate GPER expression in vivo. Herein, we developed 99mTc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor and for GPER visualization in whole animals. A series of 99mTc(I)-labeled non-steroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10–30 nM range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4–1.1 %ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, mammary tissue) as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first generation 99mTc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/ image-guided drug delivery. PMID:25030373
Development of an aptamer beacon for detection of interferon-gamma.
Tuleuova, Nazgul; Jones, Caroline N; Yan, Jun; Ramanculov, Erlan; Yokobayashi, Yohei; Revzin, Alexander
2010-03-01
Traditional antibody-based affinity sensing strategies employ multiple reagents and washing steps and are unsuitable for real-time detection of analyte binding. Aptamers, on the other hand, may be designed to monitor binding events directly, in real-time, without the need for secondary labels. The goal of the present study was to design an aptamer beacon for fluorescence resonance energy transfer (FRET)-based detection of interferon-gamma (IFN-gamma)--an important inflammatory cytokine. Variants of DNA aptamer modified with biotin moieties and spacers were immobilized on avidin-coated surfaces and characterized by surface plasmon resonance (SPR). The SPR studies showed that immobilization of aptamer via the 3' end resulted in the best binding IFN-gamma (K(d) = 3.44 nM). This optimal aptamer variant was then used to construct a beacon by hybridizing fluorophore-labeled aptamer with an antisense oligonucleotide strand carrying a quencher. SPR studies revealed that IFN-gamma binding with an aptamer beacon occurred within 15 min of analyte introduction--suggesting dynamic replacement of the quencher-complementary strand by IFN-gamma molecules. To further highlight biosensing applications, aptamer beacon molecules were immobilized inside microfluidic channels and challenged with varying concentration of analyte. Fluorescence microscopy revealed low fluorescence in the absence of analyte and high fluorescence after introduction of IFN-gamma. Importantly, unlike traditional antibody-based immunoassays, the signal was observed directly upon binding of analyte without the need for multiple washing steps. The surface immobilized aptamer beacon had a linear range from 5 to 100 nM and a lower limit of detection of 5 nM IFN-gamma. In conclusion, we designed a FRET-based aptamer beacon for monitoring of an inflammatory cytokine-IFN-gamma. In the future, this biosensing strategy will be employed to monitor dynamics of cytokine production by the immune cells.
Radwan, Mohamed O; Sonoda, Sachiko; Ejima, Tomohiko; Tanaka, Ayumi; Koga, Ryoko; Okamoto, Yoshinari; Fujita, Mikako; Otsuka, Masami
2016-09-15
Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G, A3G), is a human anti-virus restriction protein which works deaminase-dependently and -independently. A3G is known to be ubiquitinated by HIV-1 viral infectivity factor (Vif) protein, leading to proteasomal degradation. A3G contains two zinc ions at the N-terminal domain and the C-terminal domain. Four lysine residues, K(297), K(301), K(303), and K(334), are known to be required for Vif-mediated A3G ubiquitination and degradation. Previously, we reported compound SN-1, a zinc chelator that increases steady-state expression level of A3G in the presence of Vif. In this study, we prepared Biotin-SN-1, a biotinylated derivative of SN-1, to study the SN-1-A3G interaction. A pull-down assay revealed that Biotin-SN-1 bound A3G. A zinc-abstraction experiment indicated that SN-1 binds to the zinc site of A3G. We carried out a SN-1-A3G docking study using molecular operating environment. The calculations revealed that SN-1 binds to the C-terminal domain through Zn(2+), H(216), P(247), C(288), and Y(315). Notably, SN-1-binding covers the H(257), E(259), C(288), and C(291) residues that participate in zinc-mediated deamination, and the ubiquitination regions of A3G. The binding of SN-1 presumably perturbs the secondary structure between C(288) and Y(315), leading to less efficient ubiquitination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tron, Cecile M; McNae, Iain W; Nutley, Margaret; Clarke, David J; Cooper, Alan; Walkinshaw, Malcolm D; Baxter, Robert L; Campopiano, Dominic J
2009-03-20
Biotin protein ligase (BPL; EC 6.3.4.15) catalyses the formation of biotinyl-5'-AMP from biotin and ATP, and the succeeding biotinylation of the biotin carboxyl carrier protein. We describe the crystal structures, at 2.4 A resolution, of the class I BPL from the hyperthermophilic bacteria Aquifex aeolicus (AaBPL) in its ligand-free form and in complex with biotin and ATP. The solvent-exposed beta- and gamma-phosphates of ATP are located in the inter-subunit cavity formed by the N- and C-terminal domains. The Arg40 residue from the conserved GXGRXG motif is shown to interact with the carboxyl group of biotin and to stabilise the alpha- and beta-phosphates of the nucleotide. The structure of the mutant AaBPL R40G in both the ligand-free and biotin-bound forms reveals that the mutated loop has collapsed, thus hindering ATP binding. Isothermal titration calorimetry indicated that the presence of biotin is not required for ATP binding to wild-type AaBPL in the absence of Mg(2+), and the binding of biotin and ATP has been determined to occur via a random but cooperative process. The affinity for biotin is relatively unaffected by the R40G mutation. In contrast, the thermodynamic data indicate that binding of ATP to AaBPL R40G is very weak in the absence or in the presence of biotin. The AaBPL R40G mutant remains catalytically active but shows poor substrate specificity; mass spectrometry and Western blot studies revealed that the mutant biotinylates both the target A. aeolicus BCCPDelta67 fragment and BSA, and is subject to self-biotinylation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muench, Stephen P.; Prigge, Sean T.; McLeod, Rima
2007-03-01
The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. Recent studies have demonstrated that submicromolar concentrations of the biocide triclosan arrest the growth of the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii and inhibit the activity of the apicomplexan enoyl acyl carrier protein reductase (ENR). The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have beenmore » solved to 2.6, 2.2 and 2.8 Å, respectively. The structures of T. gondii ENR have revealed that, as in its bacterial and plant homologues, a loop region which flanks the active site becomes ordered upon inhibitor binding, resulting in the slow tight binding of triclosan. In addition, the T. gondii ENR–triclosan complex reveals the folding of a hydrophilic insert common to the apicomplexan family that flanks the substrate-binding domain and is disordered in all other reported apicomplexan ENR structures. Structural comparison of the apicomplexan ENR structures with their bacterial and plant counterparts has revealed that although the active sites of the parasite enzymes are broadly similar to those of their bacterial counterparts, there are a number of important differences within the drug-binding pocket that reduce the packing interactions formed with several inhibitors in the apicomplexan ENR enzymes. Together with other significant structural differences, this provides a possible explanation of the lower affinity of the parasite ENR enzyme family for aminopyridine-based inhibitors, suggesting that an effective antiparasitic agent may well be distinct from equivalent antimicrobials.« less
NASA Astrophysics Data System (ADS)
Orlov, Sergey; Goncharova, Iryna; Urbanová, Marie
Although recent investigations have shown that bilirubin not only has a negative role in the organism but also exhibits significant antimutagenic properties, the mechanisms of interactions between bilirubin and mutagens are not clear. In this study, interaction between bilirubin bound to different binding sites of mammalian serum albumins with structural analogues of the mutagens 2-aminofluorene, 2,7-diaminofluorene and mutagen 2,4,7-trinitrofluorenone were investigated by circular dichroism and absorption spectroscopy. Homological human and bovine serum albumins were used as chiral matrices, which preferentially bind different conformers of bilirubin in the primary binding sites and make it observable by circular dichroism. These molecular systems approximated a real system for the study of mutagens in blood serum. Differences between the interaction of bilirubin bound to primary and to secondary binding sites of serum albumins with mutagens were shown. For bilirubin bound to secondary binding sites with low affinity, partial displacement and the formation of self-associates were observed in all studied mutagens. The associates of bilirubin bound to primary binding sites of serum albumins are formed with 2-aminofluorene and 2,4,7-trinitrofluorenone. It was proposed that 2,7-diaminofluorene does not interact with bilirubin bound to primary sites of human and bovine serum albumins due to the spatial hindrance of the albumins binding domains. The spatial arrangement of the bilirubin bound to serum albumin along with the studied mutagens was modelled using ligand docking, which revealed a possibility of an arrangement of the both bilirubin and 2-aminofluorene and 2,4,7-trinitrofluorenone in the primary binding site of human serum albumin.
NASA Astrophysics Data System (ADS)
Kabir, Md. Zahirul; Tee, Wei-Ven; Mohamad, Saharuddin B.; Alias, Zazali; Tayyab, Saad
2017-06-01
Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04 × 104 M-1), obtained at 298 K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.
NASA Astrophysics Data System (ADS)
Isvoran, Adriana
2016-03-01
Assessment of the effects of the herbicides nicosulfuron and chlorsulfuron and the fungicides difenoconazole and drazoxlone upon catalase produced by soil microorganism Proteus mirabilis is performed using the molecular docking technique. The interactions of pesticides with the enzymes are predicted using SwissDock and PatchDock docking tools. There are correlations for predicted binding energy values for enzyme-pesticide complexes obtained using the two docking tools, all the considered pesticides revealing favorable binding to the enzyme, but only the herbicides bind to the catalytic site. These results suggest the inhibitory potential of chlorsulfuron and nicosulfuron on the catalase activity in soil.
Synthesis of two fluorescent GTPγS molecules and their biological relevance.
Trans, Denise J; Bai, Ruoli; Addison, J Bennet; Liu, Ruiwu; Hamel, Ernest; Coleman, Matthew A; Henderson, Paul T
2017-06-03
Fluorescent GTP analogues are utilized for an assortment of nucleic acid and protein characterization studies. Non-hydrolysable analogues such as GTPγS offer the advantage of keeping proteins in a GTP-bound conformation due to their resistance to hydrolysis into GDP. Two novel fluorescent GTPγS molecules were developed by linking fluorescein and tetramethylrhodamine to the γ-thiophosphate of GTPγS. Chemical and biological analysis of these two compounds revealed their successful synthesis and ability to bind to the nucleotide-binding site of tubulin. These two new fluorescent non-hydrolysable nucleotides offer new possibilities for biophysical and biochemical characterization of GTP-binding proteins.
2011-01-01
3,5-Dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester is a promising antitubulin lead agent that targets the colchicine site of tubulin. C-2 analogues were synthesized and tested for microtubule depolymerizing and antiproliferative activity. Molecular modeling studies using both GOLD docking and HINT (Hydropathic INTeraction) scoring revealed two distinct binding modes that explain the structure–activity relationships and are in accord with the structural basis of colchicine binding to tubulin. The binding mode of higher activity compounds is buried deeper in the site and overlaps well with rings A and C of colchicine, while the lower activity binding mode shows fewer critical contacts with tubulin. The model distinguishes highly active compounds from those with weaker activities and provides novel insights into the colchicine site and compound design. PMID:22611477
Da, Chenxiao; Telang, Nakul; Barelli, Peter; Jia, Xin; Gupton, John T; Mooberry, Susan L; Kellogg, Glen E
2012-01-12
3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester is a promising antitubulin lead agent that targets the colchicine site of tubulin. C-2 analogs were synthesized and tested for microtubule depolymerizing and antiproliferative activity. Molecular modeling studies using both GOLD docking and HINT (Hydropathic INTeraction) scoring revealed two distinct binding modes that explain the structural-activity relationships and are in accord with the structural basis of colchicine binding to tubulin. The binding mode of higher activity compounds is buried deeper in the site and overlaps well with rings A and C of colchicine, while the lower activity binding mode shows fewer critical contacts with tubulin. The model distinguishes highly active compounds from those with weaker activities and provides novel insights into the colchicine site and compound design.
NASA Astrophysics Data System (ADS)
Yang, Sun; Shi-Sheng, Sun; Ying-Yong, Zhao; Jun, Fan
2012-07-01
In this study, we compared different binding interactions of TBMS2 with proteins both in hepatocarcinoma HepG2 cells and in normal embryo hepatic L02 cells by using fluorescence, absorption, and CD spectroscopy. The fluorescence data revealed that the fluorescence intensity of proteins in the HepG2 and L02 cells decreased in the presence of TBMS2 by 30.79% and 12.01%, respectively. Binding constants and thermodynamic parameters were obtained for systems of TBMS2 with the two kinds of cell proteins. The results indicated that HepG2 cell proteins had a higher TBMS2 binding activity than those in the L02 cells. Analysis of the TBMS2 cytotoxic activities showed that TBMS2 could selectively induce apoptosis of HepG2 cells by binding to them, while its apoptotic effect on L02 cells was relatively weaker.
Kuroyanagi, Hidehito; Watanabe, Yohei; Suzuki, Yutaka; Hagiwara, Masatoshi
2013-01-01
A large fraction of protein-coding genes in metazoans undergo alternative pre-mRNA splicing in tissue- or cell-type-specific manners. Recent genome-wide approaches have identified many putative-binding sites for some of tissue-specific trans-acting splicing regulators. However, the mechanisms of splicing regulation in vivo remain largely unknown. To elucidate the modes of splicing regulation by the neuron-specific CELF family RNA-binding protein UNC-75 in Caenorhabditis elegans, we performed deep sequencing of poly(A)+ RNAs from the unc-75(+)- and unc-75-mutant worms and identified more than 20 cassette and mutually exclusive exons repressed or activated by UNC-75. Motif searches revealed that (G/U)UGUUGUG stretches are enriched in the upstream and downstream introns of the UNC-75-repressed and -activated exons, respectively. Recombinant UNC-75 protein specifically binds to RNA fragments carrying the (G/U)UGUUGUG stretches in vitro. Bi-chromatic fluorescence alternative splicing reporters revealed that the UNC-75-target exons are regulated in tissue-specific and (G/U)UGUUGUG element-dependent manners in vivo. The unc-75 mutation affected the splicing reporter expression specifically in the nervous system. These results indicate that UNC-75 regulates alternative splicing of its target exons in neuron-specific and position-dependent manners through the (G/U)UGUUGUG elements in C. elegans. This study thus reveals the repertoire of target events for the CELF family in the living organism. PMID:23416545
Asamitsu, Kaori; Hirokawa, Takatsugu; Okamoto, Takashi
2017-01-01
In this study, we applied molecular dynamics (MD) simulation to analyze the dynamic behavior of the Tat/CycT1/CDK9 tri-molecular complex and revealed the structural changes of P-TEFb upon Tat binding. We found that Tat could deliberately change the local flexibility of CycT1. Although the structural coordinates of the H1 and H2 helices did not substantially change, H1', H2', and H3' exhibited significant changes en masse. Consequently, the CycT1 residues involved in Tat binding, namely Tat-recognition residues (TRRs), lost their flexibility with the addition of Tat to P-TEFb. In addition, we clarified the structural variation of CDK9 in complex with CycT1 in the presence or absence of Tat. Interestingly, Tat addition significantly reduced the structural variability of the T-loop, thus consolidating the structural integrity of P-TEFb. Finally, we deciphered the formation of the hidden catalytic cavity of CDK9 upon Tat binding. MD simulation revealed that the PITALRE signature sequence of CDK9 flips the inactive kinase cavity of CDK9 into the active form by connecting with Thr186, which is crucial for its activity, thus presumably recruiting the substrate peptide such as the C-terminal domain of RNA pol II. These findings provide vital information for the development of effective novel anti-HIV drugs with CDK9 catalytic activity as the target.
The Effects of Select Histidine to Cysteine Mutations on Transcriptional Regulation by E. coli RcnR‡
Higgins, Khadine A.; Hu, Heidi Q.; Chivers, Peter T.; Maroney, Michael J.
2013-01-01
The RcnR metalloregulator represses the transcription of the Co(II) and Ni(II) exporter, RcnAB. Previous studies have shown that Co(II) and Ni(II) bind to RcnR in six-coordinate sites, resulting in de-repression. Here, the roles of His60, His64, and His67 in specific metal recognition are examined. His60 and His64 correspond to ligands that are important for Cu(I) binding in the homologous Cu(I)-responsive metalloregulator, CsoR. These residues are known to be functionally important in RcnR transcriptional regulation. XAS was used to examine the structure of bound cognate and non-cognate metal ions, and lacZ reporter assays were used to assess the transcription of rcnA in response to metal binding in the three His → Cys mutations, H60C, H64C and H67C. These studies confirm that both Ni(II) and Co(II) use His64 as a ligand. H64C-RcnR is also the only known mutation that retains a Co(II) response while eliminating the response to Ni(II) binding. XAS data indicate that His60 and His67 are potential Co(II) ligands. The effects of the mutations of His60, His64, and His67 residues on the structures of the non-cognate metal ions (Zn(II) and Cu(I)) reveals that these residues have distinctive roles in binding non-cognate metals. None of the His → Cys mutants in RcnR confer any response to Cu(I) binding, including H64C-RcnR, where the ligands involved in Cu(I) binding in CsoR are present. These data indicate that while the secondary, tertiary and quaternary structures of CsoR and RcnR are quite similar, small changes in primary sequence reveal that the specific mechanisms involved in metal recognition are quite different. PMID:23215580
Sahoo, Dibakar; Mandal, Abhishek; Mitra, Tapas; Chakraborty, Kaushik; Bardhan, Munmun; Dasgupta, Anjan Kumar
2018-01-17
Present study reveals the low concentrations (∼4 ppm) of pesticide sensing vis-à-vis degradation of pesticides with the help of nontoxic zinc oxide quantum dots (QD). In our study, we have taken four different pesticides viz., aldrin, tetradifon, glyphosate, and atrazine, which are widely used in agriculture and have structural dissimilarities/diversity. By using optical sensing techniques such as steady state and time-resolved fluorescence, we have analyzed the detailed exciton dynamics of QD in the presence of different pesticides. It has been found that the pesticide containing good leaving groups (-Cl) can interact with QD promptly and has high binding affinity (∼10 7 M -1 ). The different binding signatures of QD with different pesticides enable us to differentiate between the pesticides. Time resolved fluorescence spectroscopy provides significant variance (∼150-300 ns) for different pesticides. Furthermore, a large variation (10 5 Ω to 7 × 10 4 Ω) in the resistance of QD in the presence of different pesticides was revealed by electrochemical sensing technique. Moreover, during the interaction with pesticides, QD can also act as a photocatalyst to degrade pesticides. Present investigation explored the fact that the rate of degradation is positively affected by the binding affinity, i.e., the greater the binding, the greater is the degradation. What is more, both optical and electrochemical measurements of QD, in tandem, as described in our study could be utilized as the pattern recognition sensor for detection of several pesticides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prins, Kathleen C.; Delpeut, Sebastien; Leung, Daisy W.
2010-10-11
Ebola virus (EBOV) protein VP35 is a double-stranded RNA (dsRNA) binding inhibitor of host interferon (IFN)-{alpha}/{beta} responses that also functions as a viral polymerase cofactor. Recent structural studies identified key features, including a central basic patch, required for VP35 dsRNA binding activity. To address the functional significance of these VP35 structural features for EBOV replication and pathogenesis, two point mutations, K319A/R322A, that abrogate VP35 dsRNA binding activity and severely impair its suppression of IFN-{alpha}/{beta} production were identified. Solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography reveal minimal structural perturbations in the K319A/R322A VP35 double mutant and suggest that lossmore » of basic charge leads to altered function. Recombinant EBOVs encoding the mutant VP35 exhibit, relative to wild-type VP35 viruses, minimal growth attenuation in IFN-defective Vero cells but severe impairment in IFN-competent cells. In guinea pigs, the VP35 mutant virus revealed a complete loss of virulence. Strikingly, the VP35 mutant virus effectively immunized animals against subsequent wild-type EBOV challenge. These in vivo studies, using recombinant EBOV viruses, combined with the accompanying biochemical and structural analyses directly correlate VP35 dsRNA binding and IFN inhibition functions with viral pathogenesis. Moreover, these studies provide a framework for the development of antivirals targeting this critical EBOV virulence factor.« less
Xu, Emma-Ruoqi; Blythe, Emily E; Fischer, Gerhard; Hyvönen, Marko
2017-07-28
Bone morphogenetic proteins (BMPs) are secreted growth factors that promote differentiation processes in embryogenesis and tissue development. Regulation of BMP signaling involves binding to a variety of extracellular proteins, among which are many von Willebrand factor C (vWC) domain-containing proteins. Although the crystal structure of the complex of crossveinless-2 (CV-2) vWC1 and BMP-2 previously revealed one mode of the vWC/BMP-binding mechanism, other vWC domains may bind to BMP differently. Here, using X-ray crystallography, we present for the first time structures of the vWC domains of two proteins thought to interact with BMP-2: collagen IIA and matricellular protein CCN3. We found that these two vWC domains share a similar N-terminal fold that differs greatly from that in CV-2 vWC, which comprises its BMP-2-binding site. We analyzed the ability of these vWC domains to directly bind to BMP-2 and detected an interaction only between the collagen IIa vWC and BMP-2. Guided by the collagen IIa vWC domain crystal structure and conservation of surface residues among orthologous domains, we mapped the BMP-binding epitope on the subdomain 1 of the vWC domain. This binding site is different from that previously observed in the complex between CV-2 vWC and BMP-2, revealing an alternative mode of interaction between vWC domains and BMPs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yong; Kovach, Amanda; Suino-Powell, Kelly
2008-07-23
The functional interaction between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and its coactivator PGC-1{alpha} is crucial for the normal physiology of PPAR{gamma} and its pharmacological response to antidiabetic treatment with rosiglitazone. Here we report the crystal structure of the PPAR{gamma} ligand-binding domain bound to rosiglitazone and to a large PGC-1{alpha} fragment that contains two LXXLL-related motifs. The structure reveals critical contacts mediated through the first LXXLL motif of PGC-1{alpha} and the PPAR{gamma} coactivator binding site. Through a combination of biochemical and structural studies, we demonstrate that the first LXXLL motif is the most potent among all nuclear receptor coactivator motifsmore » tested, and only this motif of the two LXXLL-related motifs in PGC-1{alpha} is capable of binding to PPAR{gamma}. Our studies reveal that the strong interaction of PGC-1{alpha} and PPAR{gamma} is mediated through both hydrophobic and specific polar interactions. Mutations within the context of the full-length PGC-1{alpha} indicate that the first PGC-1{alpha} motif is necessary and sufficient for PGC-1{alpha} to coactivate PPAR{gamma} in the presence or absence of rosiglitazone. These results provide a molecular basis for specific recruitment and functional interplay between PPAR{gamma} and PGC-1{alpha} in glucose homeostasis and adipocyte differentiation.« less
Capture and quality control mechanisms for ATP binding
Li, Li; Martinis, Susan A.
2013-01-01
The catalytic events in members of the nucleotidylyl transferase superfamily are initiated by a millisecond binding of ATP in the active site. Through metadynamics simulations on a class I aminoacyl-tRNA synthetase (aaRSs), the largest group in the superfamily, we calculate the free energy landscape of ATP selection and binding. Mutagenesis studies and fluorescence spectroscopy validated the identification of the most populated intermediate states. The rapid first binding step involves formation of encounter complexes captured through a fly-casting mechanism that acts up on the triphosphate moiety of ATP. In the slower nucleoside binding step, a conserved histidine in the HxxH motif orients the incoming ATP through base-stacking interactions resulting in a deep minimum in the free energy surface. Mutation of this histidine significantly decreases the binding affinity measured experimentally and computationally. The metadynamics simulations further reveal an intermediate quality control state that the synthetases and most likely other members of the superfamily use to select ATP over other nucleoside triphosphates. PMID:23276298
Characterization of the interaction between furosemide and bovine serum albumin
NASA Astrophysics Data System (ADS)
Zhou, Neng; Liang, Yi-Zeng; Wang, Ping
2008-01-01
The interaction of furosemide (FU), one kind of potent diuretic, with bovine serum albumin (BSA) has been investigated at physiological acidity (pH 7.40) by fluorescent technique. Displacement experiment with site markers and Synchronous fluorescence clearly reveal that there are non-specific binding sites of FU with BSA. This conclusion was supported by the binding studies in the presence of the hydrophobic probe 1-anilinonaphthalene-8-sulfonic acid (ANS) and in different ionic strength. The binding sites number n and binding constant K were measured. The thermodynamic parameters Δ H°, Δ G°, Δ S° at different temperatures were calculated. The effects of other four diuretics, some common metal ions and bioactive components from herbal medicine on the binding are also considered. The results show only bumetanide has strong effect on FU's binding. Moreover, several data processing methods presently used were evaluated with Data of the same set. Quite different results were obtained from these methods suggesting more attention should be paid to the data processing methods.
Pan, Jiongwei; Ye, Zaiting; Cai, Xiaoping; Wang, Liangxing; Cao, Zhuo
2012-12-01
The interaction of ceftriaxone sodium (CS), a cephalosporin antibiotic, with the major transport protein, bovine serum albumin (BSA), was investigated using different spectroscopic techniques such as fluorescence, circular dichroism (CD), and UV-vis spectroscopy. Values of binding parameters for BSA-CS interaction in terms of binding constant and number of binding sides were found to be 9.00 × 10(3), 3.24 × 10(3), and 2.30 × 10(3) M(-1) at 281, 301, and 321 K, respectively. Thermodynamic analysis of the binding data obtained at different temperatures showed that the binding process was spontaneous and was primarily mediated by van der Waals force or hydrogen bonding. CS binding to BSA caused secondary structural alterations in the protein as revealed by CD results. The distance between CS and Trp of BSA was determined as 3.23 nm according to the Förster resonance energy transfer theory. © 2012 Wiley Periodicals, Inc.
Protein unfolding as a switch from self-recognition to high-affinity client binding
Groitl, Bastian; Horowitz, Scott; Makepeace, Karl A. T.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.; Reichmann, Dana; Bardwell, James C. A.; Jakob, Ursula
2016-01-01
Stress-specific activation of the chaperone Hsp33 requires the unfolding of a central linker region. This activation mechanism suggests an intriguing functional relationship between the chaperone's own partial unfolding and its ability to bind other partially folded client proteins. However, identifying where Hsp33 binds its clients has remained a major gap in our understanding of Hsp33's working mechanism. By using site-specific Fluorine-19 nuclear magnetic resonance experiments guided by in vivo crosslinking studies, we now reveal that the partial unfolding of Hsp33's linker region facilitates client binding to an amphipathic docking surface on Hsp33. Furthermore, our results provide experimental evidence for the direct involvement of conditionally disordered regions in unfolded protein binding. The observed structural similarities between Hsp33's own metastable linker region and client proteins present a possible model for how Hsp33 uses protein unfolding as a switch from self-recognition to high-affinity client binding. PMID:26787517
Capture and quality control mechanisms for adenosine-5'-triphosphate binding.
Li, Li; Martinis, Susan A; Luthey-Schulten, Zaida
2013-04-24
The catalytic events in members of the nucleotidylyl transferase superfamily are initiated by a millisecond binding of ATP in the active site. Through metadynamics simulations on a class I aminoacyl-tRNA synthetase (aaRSs), the largest group in the superfamily, we calculate the free energy landscape of ATP selection and binding. Mutagenesis studies and fluorescence spectroscopy validated the identification of the most populated intermediate states. The rapid first binding step involves formation of encounter complexes captured through a fly casting mechanism that acts upon the triphosphate moiety of ATP. In the slower nucleoside binding step, a conserved histidine in the HxxH motif orients the incoming ATP through base-stacking interactions resulting in a deep minimum in the free energy surface. Mutation of this histidine significantly decreases the binding affinity measured experimentally and computationally. The metadynamics simulations further reveal an intermediate quality control state that the synthetases and most likely other members of the superfamily use to select ATP over other nucleoside triphosphates.
Pedersen, S A; Kristiansen, E; Andersen, R A; Zachariassen, K E
2007-04-01
The effect of cadmium (Cd) exposure on Cd-binding ligands was investigated for the first time in a beetle (Coleoptera), using the mealworm Tenebrio molitor (L) as a model species. Exposure to Cd resulted in an approximate doubling of the Cd-binding capacity of the protein extracts from whole animals. Analysis showed that the increase was mainly explained by the induction of a Cd-binding protein of 7134.5 Da, with non-metallothionein characteristics. Amino acid analysis and de novo sequencing revealed that the protein has an unusually high content of the acidic amino acids aspartic and glutamic acid that may explain how this protein can bind Cd even without cysteine residues. Similarities in the amino acid composition suggest it to belong to a group of little studied proteins often referred to as "Cd-binding proteins without high cysteine content". This is the first report on isolation and peptide sequence determination of such a protein from a coleopteran.
Baureithel, K H; Büter, K B; Engesser, A; Burkard, W; Schaffner, W
1997-06-01
Flower extracts of Hypericum perforatum, Hypericum hirsutum, Hypericum patulum and Hypericum olympicum efficiently inhibited binding of [3H]flumazenil to rat brain benzodiazepine binding sites of the GABAA-receptor in vitro with IC50 values of 6.83, 6.97, 13.2 and 6.14 micrograms/ml, respectively. Single constituents of the extracts like hypericin, the flavones quercetin and luteolin, the glycosylated flavonoides rutin, hyperoside and quercitrin and the biflavone 13, II8-biapigenin did not inhibit binding up to concentrations of 1 microM. In contrast, amentoflavone revealed an IC50 = 14.9 +/- 1.9 nM on benzodiazepine binding in vitro. Comparative HPLC analyses of hypericin and amentoflavone in extracts of different Hypericum species revealed a possible correlation between the amentoflavone concentration and the inhibition of flumazenil binding. For hypericin no such correlation was observed. Our experimental data demonstrate that amentoflavone, in contrast to hypericin, presents a very active compound with regard to the inhibition of [3H]-flumazenil binding in vitro and thus might be involved in the antidepressant effects of Hypericum perforatum extracts.
Berntsson, Ronnie Per-Arne; Peng, Lisheng; Svensson, Linda Marie; Dong, Min; Stenmark, Pål
2013-09-03
Botulinum neurotoxins (BoNTs) can cause paralysis at exceptionally low concentrations and include seven serotypes (BoNT/A-G). The chimeric BoNT/DC toxin has a receptor binding domain similar to the same region in BoNT/C. However, BoNT/DC does not share protein receptor with BoNT/C. Instead, it shares synaptotagmin (Syt) I and II as receptors with BoNT/B, despite their low sequence similarity. Here, we present the crystal structures of the binding domain of BoNT/DC in complex with the recognition domains of its protein receptors, Syt-I and Syt-II. The structures reveal that BoNT/DC possesses a Syt binding site, distinct from the established Syt-II binding site in BoNT/B. Structure-based mutagenesis further shows that hydrophobic interactions play a key role in Syt binding. The structures suggest that the BoNT/DC ganglioside binding sites are independent of the protein receptor binding site. Our results reveal the remarkable versatility in the receptor recognition of the BoNTs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Taillebois, Emiliane; Beloula, Abdelhamid; Quinchard, Sophie; Jaubert-Possamai, Stéphanie; Daguin, Antoine; Servent, Denis; Tagu, Denis
2014-01-01
Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16±0.04 nM and 41.7±5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008±0.002 nM and 1.135±0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies. PMID:24801634
Competition Between Co(NH3)63+ and Inner Sphere Mg2+ Ions in the HDV Ribozyme
Gong, Bo; Chen, Jui-Hui; Bevilacqua, Philip C.; Golden, Barbara L.; Carey, Paul R.
2009-01-01
Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg2+ are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH3)63+, an analog of Mg(H2O)62+. Here, the binding of Mg2+ and Co(NH3)63+ to the HDV ribozyme are studied by Raman microscopic analysis of crystals. Raman difference spectra acquired at different metal ion conditions reveal changes in the ribozyme. When Mg2+ alone is introduced to the ribozyme, inner sphere coordination of Mg(H2O)x2+ (x≤5) to non-bridging PO2− oxygen, and changes in base stretches and phosphodiester group conformation are observed. In addition, binding of Mg2+ induces deprotonation of a cytosine assigned to the general acid C75, consistent with solution studies. When Co(NH3)63+ alone is introduced, deprotonation of C75 is again observed, as are distinctive changes in base vibrational ring modes and phosphodiester backbone conformation. In contrast to Mg2+ binding, Co(NH3)63+ binding does not perturb PO2− group vibrations, consistent with its ability to make only outer sphere contacts. Surprisingly, competitive binding studies reveal that Co(NH3)63+ ions displace some inner sphere-coordinated magnesium species, including ions coordinated to PO2− groups or the N7 of a guanine, likely G1 at the active site. These observations contrast with the tenet that Co(NH3)63+ ions displace only outer sphere magnesium ions. Overall, our data support two classes of inner sphere Mg2+-PO2− binding sites: sites that Co(NH3)63+ can displace, and others it cannot. PMID:19888753
The Binding of Silibinin, the Main Constituent of Silymarin, to Site I on Human Serum Albumin.
Yamasaki, Keishi; Sato, Hiroki; Minagoshi, Saori; Kyubun, Karin; Anraku, Makoto; Miyamura, Shigeyuki; Watanabe, Hiroshi; Taguchi, Kazuaki; Seo, Hakaru; Maruyama, Toru; Otagiri, Masaki
2017-01-01
Silibinin is the main constituent of silymarin, an extract from the seeds of milk thistle (Silybum marianum). Because silibinin has many pharmacological activities, extending its clinical use in the treatment of a wider variety of diseases would be desirable. In this study, we report on the binding of silibinin to plasma proteins, an issue that has not previously been extensively studied. The findings indicated that silibinin mainly binds to human serum albumin (HSA). Mutual displacement experiments using ligands that primarily bind to sites I and II clearly revealed that silibinin binds tightly and selectively to site I (subsites Ia and/or Ic) of HSA, which is located in subdomain IIA. Thermodynamic analyses suggested that hydrogen bonding and van der Waals interactions are major contributors to silibinin-HSA interactions. Furthermore, the binding of silibinin to HSA was found to be decreased with increasing ionic strength and detergent concentration of the media, suggesting that electrostatic and hydrophobic interactions are involved in the binding. Trp214 and Arg218 were identified as being involved in the binding of silibinin to site I, based on binding experiments using chemically modified- and mutant-HSAs. In conclusion, the available evidence indicates that silibinin binds to the region close to Trp214 and Arg218 in site I of HSA with assistance by multiple forces and can displace site I drugs (e.g., warfarin or iodipamide), but not site II drugs (e.g., ibuprofen).
Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krummenacher, Claude; Supekar, Vinit M.; Whitbeck, J. Charles
2010-07-19
Herpes simplex virus (HSV) entry into cells requires binding of the envelope glycoprotein D (gD) to one of several cell surface receptors. The 50 C-terminal residues of the gD ectodomain are essential for virus entry, but not for receptor binding. We have determined the structure of an unliganded gD molecule that includes these C-terminal residues. The structure reveals that the C-terminus is anchored near the N-terminal region and masks receptor-binding sites. Locking the C-terminus in the position observed in the crystals by an intramolecular disulfide bond abolished receptor binding and virus entry, demonstrating that this region of gD moves uponmore » receptor binding. Similarly, a point mutant that would destabilize the C-terminus structure was nonfunctional for entry, despite increased affinity for receptors. We propose that a controlled displacement of the gD C-terminus upon receptor binding is an essential feature of HSV entry, ensuring the timely activation of membrane fusion.« less
Lee, Yong-Jik; Lee, Sang-Jae; Kim, Seong-Bo; Lee, Sang Jun; Lee, Sung Haeng; Lee, Dong-Woo
2014-03-18
Structural genomics demonstrates that despite low levels of structural similarity of proteins comprising a metabolic pathway, their substrate binding regions are likely to be conserved. Herein based on the 3D-structures of the α/β-fold proteins involved in the ara operon, we attempted to predict the substrate binding residues of thermophilic Geobacillus stearothermophilus L-arabinose isomerase (GSAI) with no 3D-structure available. Comparison of the structures of L-arabinose catabolic enzymes revealed a conserved feature to form the substrate-binding modules, which can be extended to predict the substrate binding site of GSAI (i.e., D195, E261 and E333). Moreover, these data implicated that proteins in the l-arabinose metabolic pathway might retain their substrate binding niches as the modular structure through conserved molecular evolution even with totally different structural scaffolds. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Molecular Mechanism Underlying the Action of Substituted Pro-Gly Dipeptide Noopept.
Vakhitova, Y V; Sadovnikov, S V; Borisevich, S S; Ostrovskaya, R U; A Gudasheva, T; Seredenin, S B
2016-01-01
This study was performed in order to reveal the effect of Noopept (ethyl ester of N-phenylacetyl-Lprolylglycine, GVS-111) on the DNA-binding activity of transcriptional factors (TF) in HEK293 cells transiently transfected with luciferase reporter constructs containing sequences for CREB, NFAT, NF-κB, p53, STAT1, GAS, VDR, HSF1, and HIF-1. Noopept (10 μM) was shown to increase the DNA-binding activity of HIF-1 only, while lacking the ability to affect that of CREB, NFAT, NF-κB, p53, STAT1, GAS, VDR, and HSF1. Noopept provoked an additional increase in the DNA-binding activity of HIF-1 when applied in conditions of CoCl2-induced HIF- 1 stabilization. The degree of this HIF-positive effect of Noopept was shown to be concentration-dependent. Piracetam (1 mM) failed to affect significantly any of the TF under study. The results of molecular docking showed that Noopept (L-isomer), as well as its metabolite, L-isomer of N-phenyl-acetylprolyl, unlike its pharmacologically ineffective D-isomer, is able to bind to the active site of prolyl hydroxylase 2. Taking into account the important role of the genes activated by HIF-1 in the formation of an adaptive response to hypoxia, data on the ability of Noopept to provoke a selective increase in the DNA-binding activity of HIF-1 explain the wide spectrum of neurochemical and pharmacological effects of Noopept revealed before. The obtained data allow one to propose the HIF-positive effect as the primary mechanism of the activity of this Pro-Gly-containing dipeptide.
NASA Astrophysics Data System (ADS)
Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng
2015-10-01
Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2-6Galβ, human-origin viruses could bind glycans with Neu5Acα2-8Neu5Acα2-8Neu5Ac and Neu5Gcα2-6Galβ1-4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2-3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms.
NASA Astrophysics Data System (ADS)
Zhao, Qin; Wang, Chengcheng; Wang, Chengyuan; Guo, Hui; Bao, Zhihao; Zhang, Minhua; Zhang, Peng
2015-07-01
Energy-coupling factor (ECF) transporters are a new family of ABC transporters that consist of four subunits, two cytoplasmic ATPases EcfA and EcfA' and two transmembrane proteins namely EcfS for substrate-specific binding and EcfT for energy coupling. Here, we report the 3.2-Å resolution crystal structure of the EcfS protein of a folate ECF transporter from Enterococcus faecalis-EfFolT, a close homologue of FolT from Lactobacillus brevis-LbFolT. Structural and biochemical analyses reveal the residues constituting the folate-binding pocket and determining the substrate-binding specificity. Structural comparison of the folate-bound EfFolT with the folate-free LbFolT contained in the holotransporter complex discloses significant conformational change at the L1 loop, and reveals a gating mechanism of ECF transporters in which the L1 loop of EcfS acts as a gate in the substrate binding and release.
Willenborg, Jörg; de Greeff, Astrid; Jarek, Michael; Valentin-Weigand, Peter; Goethe, Ralph
2014-04-01
Streptococcus suis (S. suis) is a neglected zoonotic streptococcus causing fatal diseases in humans and in pigs. The transcriptional regulator CcpA (catabolite control protein A) is involved in the metabolic adaptation to different carbohydrate sources and virulence of S. suis and other pathogenic streptococci. In this study, we determined the DNA binding characteristics of CcpA and identified the CcpA regulon during growth of S. suis. Electrophoretic mobility shift analyses showed promiscuous DNA binding of CcpA to cognate cre sites in vitro. In contrast, sequencing of immunoprecipitated chromatin revealed two specific consensus motifs, a pseudo-palindromic cre motif (WWGAAARCGYTTTCWW) and a novel cre2 motif (TTTTYHWDHHWWTTTY), within the regulatory elements of the genes directly controlled by CcpA. Via these elements CcpA regulates expression of genes involved in carbohydrate uptake and conversion, and in addition in important metabolic pathways of the central carbon metabolism, like glycolysis, mixed-acid fermentation, and the fragmentary TCA cycle. Furthermore, our analyses provide evidence that CcpA regulates the genes of the central carbon metabolism by binding either the pseudo-palindromic cre motif or the cre2 motif in a HPr(Ser)∼P independent conformation. © 2014 John Wiley & Sons Ltd.
Kabir, Ayesha; Suresh Kumar, Gopinatha
2013-01-01
Background The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. Methodology/Principal Findings Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. Conclusion/Significance From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies. PMID:23894663
A crystal structure of the bifunctional antibiotic simocyclinone D8, bound to DNA gyrase.
Edwards, Marcus J; Flatman, Ruth H; Mitchenall, Lesley A; Stevenson, Clare E M; Le, Tung B K; Clarke, Thomas A; McKay, Adam R; Fiedler, Hans-Peter; Buttner, Mark J; Lawson, David M; Maxwell, Anthony
2009-12-04
Simocyclinones are bifunctional antibiotics that inhibit bacterial DNA gyrase by preventing DNA binding to the enzyme. We report the crystal structure of the complex formed between the N-terminal domain of the Escherichia coli gyrase A subunit and simocyclinone D8, revealing two binding pockets that separately accommodate the aminocoumarin and polyketide moieties of the antibiotic. These are close to, but distinct from, the quinolone-binding site, consistent with our observations that several mutations in this region confer resistance to both agents. Biochemical studies show that the individual moieties of simocyclinone D8 are comparatively weak inhibitors of gyrase relative to the parent compound, but their combination generates a more potent inhibitor. Our results should facilitate the design of drug molecules that target these unexploited binding pockets.
Garcia, Ricardo Basso; Mammarella, Irene C; Pancera, Arianna; Galera, Cesar; Cornoldi, Cesare
2015-01-01
It has been hypothesized that learning disabled children meet short-term memory (STM) problems especially when they must bind different types of information, however the hypothesis has not been systematically tested. This study assessed visual STM for shapes and colors and the binding of shapes and colors, comparing a group of children (aged between 8 and 10 years) at risk of non-verbal learning disabilities (NLD) with a control group of children matched for general verbal abilities, age, gender, and socioeconomic level. Results revealed that groups did not differ in retention of either shapes or colors, but children at risk of NLD were poorer than controls in memory for shape-color bindings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Studies on interaction of norbixin with DNA: Multispectroscopic and in silico analysis
NASA Astrophysics Data System (ADS)
Anantharaman, Amrita; Priya, Rajendra Rao; Hemachandran, Hridya; Sivaramakrishna, Akella; Babu, Subramanian; Siva, Ramamoorthy
2015-06-01
The interaction of food colorant norbixin with calf thymus DNA (CTDNA) was investigated through UV-Visible spectroscopy, Fourier Transform Infrared (FTIR), Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR), DNA melting studies, electrophoretic analysis, histological staining technique and molecular docking studies. The results indicated that norbixin interacted with CTDNA by partial intercalation mode. The binding constant (K) of norbixin with CTDNA was calculated to be 5.08 × 105 Mol-1 L. FTIR and CD studies were coupled with 1H NMR spectra revealed that norbixin intercalates partially and binds to the groove's, phosphate group, deoxyribose sugar of DNA and also induces conformational transition of B-form to A-form DNA. Agarose gel electrophoretic and histological staining technique results further prove that, norbixin specifically binds to the DNA in the cell. Moreover, molecular docking studies on the specific binding of norbixin with CTDNA have exhibited lowest conformation energy score of -3.2. Therefore, this food colorant has the ability to interact with DNA and it could emerge as a promising class of natural DNA targeted therapeutic.
Gonsalves, Sarah E.; Moses, Alan M.; Razak, Zak; Robert, Francois; Westwood, J. Timothy
2011-01-01
During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions. PMID:21264254
Gonsalves, Sarah E; Moses, Alan M; Razak, Zak; Robert, Francois; Westwood, J Timothy
2011-01-14
During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions.
Albury, Mary S; Elliott, Catherine; Moore, Anthony L
2010-12-01
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in all plants, some fungi, green algae, bacteria and pathogenic protozoa. The lack of AOX in the mammalian host renders this protein an important potential therapeutic target in the treatment of pathogenic protozoan infections. Bioinformatic searches revealed that, within a putative ubiquinol-binding crevice in AOX, Gln242, Asn247, Tyr253, Ser256, His261 and Arg262 were highly conserved. To confirm that these amino-acid residues are important for ubiquinol-binding and hence activity substitution mutations were generated and characterised. Assessment of AOX activity in isolated Schizosaccharomyces pombe mitochondria revealed that mutation of either Gln242, Ser256, His261 and Arg262 resulted in >90% inhibition of antimycin A-insensitive respiration suggesting that hydroxyl, guanidino, imidazole groups, polar and charged residues in addition to the size of the amino-acid chain are important for ubiquinone-binding. Substitution of Asn247 with glutamine or Tyr253 with phenylalanine had little effect upon the respiratory rate indicating that these residues are not critical for AOX activity. However replacement of Tyr253 by alanine resulted in a 72% loss of activity suggesting that the benzoquinone group and not hydroxyl group is important for quinol binding. These results provide important new insights into the ubiquinol-binding site of the alternative oxidase, the identity of which maybe important for future rational drug design. Copyright © 2010 Elsevier B.V. All rights reserved.
2004-01-01
Gas6 (growth-arrest-specific gene 6) is a vitamin K-dependent protein known to activate the Axl family of receptor tyrosine kinases. It is an important regulator of thrombosis and many other biological functions. The C-terminus of Gas6 binds to receptors and consists of two laminin-like globular domains LG1 and LG2. It has been reported that a Ca2+-binding site at the junction of LG1 and LG2 domains and a hydrophobic patch at the LG2 domain are important for receptor binding [Sasaki, Knyazev, Cheburkin, Gohring, Tisi, Ullrich, Timpl and Hohenester (2002) J. Biol. Chem. 277, 44164–44170]. In the present study, we developed a neutralizing human monoclonal antibody, named CNTO300, for Gas6. The antibody was generated by immunization of human IgG-expressing transgenic mice with recombinant human Gas6 protein and the anti-Gas6 IgG sequences were rescued from an unstable hybridoma clone. Binding of Gas6 to its receptors was partially inhibited by the CNTO300 antibody in a dose-dependent manner. To characterize further the interaction between Gas6 and this antibody, the binding kinetics of CNTO300 for recombinant Gas6 were compared with independently expressed LG1 and LG2. The CNTO300 antibody showed comparable binding affinity, yet different dependence on Ca2+, to Gas6 and LG1. No binding to LG2 was detected. In the presence of EDTA, binding of the antibody to Gas6 was disrupted, but no significant effect of EDTA on LG1 binding was evident. Further epitope mapping identified a Gas6 peptide sequence recognized by the CNTO300 antibody. This peptide sequence was found to be located at the LG1 domain distant from the Ca2+-binding site and the hydrophobic patch. Co-interaction of Gas6 with its receptor and CNTO300 antibody was detected by BIAcore analysis, suggesting a second receptor-binding site on the LG1 domain. This hypothesis was further supported by direct binding of Gas6 receptors to an independently expressed LG1 domain. Our results revealed, for the first time, a second binding site for Gas6–receptor interaction. PMID:15579134
Gallon, Matthew; Clairfeuille, Thomas; Steinberg, Florian; Mas, Caroline; Ghai, Rajesh; Sessions, Richard B; Teasdale, Rohan D; Collins, Brett M; Cullen, Peter J
2014-09-02
The sorting nexin 27 (SNX27)-retromer complex is a major regulator of endosome-to-plasma membrane recycling of transmembrane cargos that contain a PSD95, Dlg1, zo-1 (PDZ)-binding motif. Here we describe the core interaction in SNX27-retromer assembly and its functional relevance for cargo sorting. Crystal structures and NMR experiments reveal that an exposed β-hairpin in the SNX27 PDZ domain engages a groove in the arrestin-like structure of the vacuolar protein sorting 26A (VPS26A) retromer subunit. The structure establishes how the SNX27 PDZ domain simultaneously binds PDZ-binding motifs and retromer-associated VPS26. Importantly, VPS26A binding increases the affinity of the SNX27 PDZ domain for PDZ- binding motifs by an order of magnitude, revealing cooperativity in cargo selection. With disruption of SNX27 and retromer function linked to synaptic dysfunction and neurodegenerative disease, our work provides the first step, to our knowledge, in the molecular description of this important sorting complex, and more broadly describes a unique interaction between a PDZ domain and an arrestin-like fold.
NASA Astrophysics Data System (ADS)
Venkateswarlu, Kadtala; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Daravath, Sreenu; Rangan, Krishnan; Shivaraj
2018-05-01
Three novel binary metal complexes; 1 [Cu(L)2], 2 [Ni(L)2] and 3 [Co(L)3] where, L (2-(((furan-2-yl) methylimino)methyl)-6-ethoxyphenol, C14H15NO3), were synthesized and characterized by various spectral techniques. Based on spectral studies square planar geometry is assigned for Cu(II) and Ni(II) complexes, whereas Co(III) owned octahedral geometry. Ligand, [Cu(L)2] and [Ni(L)2] are crystallized and found to be monoclinic crystal systems. CT-DNA absorption binding studies revealed that the complexes show good binding propensity (Kb = 5.02 × 103 M-1, 2.77 × 103 M-1, 1.63 × 104 M-1 for 1, 2 and 3 respectively). The role of these complexes in the oxidative and photolytic cleavage of supercoiled pBR322 DNA was studied and found that the complexes cleave the pBR322 DNA effectively. The catalytic ability of 1, 2 and 3 follows the order: 3 > 1 >2. Antioxidant studies of the new complexes revealed that they exhibit significant antioxidant activity against DPPH radical. The Schiff base and its metal complexes have been screened for antibacterial studies by Minimum Inhibitory Concentration method. It is observed that all metal complexes showed more activity than free ligand.
Abraini, Jacques H; Marassio, Guillaume; David, Helene N; Vallone, Beatrice; Prangé, Thierry; Colloc'h, Nathalie
2014-11-01
The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein-gas interactions. To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins. Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other's effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites. These data demonstrate that xenon and nitrous oxide obey different binding mechanisms, a finding that argues against all unitary hypotheses of narcosis and anesthesia, and indicate that the Meyer-Overton rule of a high correlation between anesthetic potency and solubility in lipids of general anesthetics is often overinterpreted. This study provides evidence that the mechanisms of gas binding to proteins and therefore of general anesthesia should be considered as the result of a fully reversible interaction between a drug ligand and a receptor as this occurs in classical pharmacology.
Mapping Hfq-RNA interaction surfaces using tryptophan fluorescence quenching
Robinson, Kirsten E.; Orans, Jillian; Kovach, Alexander R.; Link, Todd M.; Brennan, Richard G.
2014-01-01
Hfq is a posttranscriptional riboregulator and RNA chaperone that binds small RNAs and target mRNAs to effect their annealing and message-specific regulation in response to environmental stressors. Structures of Hfq-RNA complexes indicate that U-rich sequences prefer the proximal face and A-rich sequences the distal face; however, the Hfq-binding sites of most RNAs are unknown. Here, we present an Hfq-RNA mapping approach that uses single tryptophan-substituted Hfq proteins, all of which retain the wild-type Hfq structure, and tryptophan fluorescence quenching (TFQ) by proximal RNA binding. TFQ properly identified the respective distal and proximal binding of A15 and U6 RNA to Gram-negative Escherichia coli (Ec) Hfq and the distal face binding of (AA)3A, (AU)3A and (AC)3A to Gram-positive Staphylococcus aureus (Sa) Hfq. The inability of (GU)3G to bind the distal face of Sa Hfq reveals the (R-L)n binding motif is a more restrictive (A-L)n binding motif. Remarkably Hfq from Gram-positive Listeria monocytogenes (Lm) binds (GU)3G on its proximal face. TFQ experiments also revealed the Ec Hfq (A-R-N)n distal face-binding motif should be redefined as an (A-A-N)n binding motif. TFQ data also demonstrated that the 5′-untranslated region of hfq mRNA binds both the proximal and distal faces of Ec Hfq and the unstructured C-terminus. PMID:24288369
Differential Regulation of Elastic Fiber Formation by Fibulin-4 and -5*
Choudhury, Rawshan; McGovern, Amanda; Ridley, Caroline; Cain, Stuart A.; Baldwin, Andrew; Wang, Ming-Chuan; Guo, Chun; Mironov, Aleksandr; Drymoussi, Zoe; Trump, Dorothy; Shuttleworth, Adrian; Baldock, Clair; Kielty, Cay M.
2009-01-01
Fibulin-4 and -5 are extracellular glycoproteins with essential non-compensatory roles in elastic fiber assembly. We have determined how they interact with tropoelastin, lysyl oxidase, and fibrillin-1, thereby revealing how they differentially regulate assembly. Strong binding between fibulin-4 and lysyl oxidase enhanced the interaction of fibulin-4 with tropoelastin, forming ternary complexes that may direct elastin cross-linking. In contrast, fibulin-5 did not bind lysyl oxidase strongly but bound tropoelastin in terminal and central regions and could concurrently bind fibulin-4. Both fibulins differentially bound N-terminal fibrillin-1, which strongly inhibited their binding to lysyl oxidase and tropoelastin. Knockdown experiments revealed that fibulin-5 controlled elastin deposition on microfibrils, although fibulin-4 can also bind fibrillin-1. These experiments provide a molecular account of the distinct roles of fibulin-4 and -5 in elastic fiber assembly and how they act in concert to chaperone cross-linked elastin onto microfibrils. PMID:19570982
Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase
Purohit, Rahul; Weichsel, Andrzej; Montfort, William R
2013-01-01
Soluble guanylate cyclase (sGC) is a heterodimeric heme protein of ∼150 kDa and the primary nitric oxide receptor. Binding of NO stimulates cyclase activity, leading to regulation of cardiovascular physiology and providing attractive opportunities for drug discovery. How sGC is stimulated and where candidate drugs bind remains unknown. The α and β sGC chains are each composed of Heme-Nitric Oxide Oxygen (H-NOX), Per-ARNT-Sim (PAS), coiled-coil and cyclase domains. Here, we present the crystal structure of the α1 PAS domain to 1.8 Å resolution. The structure reveals the binding surfaces of importance to heterodimer function, particularly with respect to regulating NO binding to heme in the β1 H-NOX domain. It also reveals a small internal cavity that may serve to bind ligands or participate in signal transduction. PMID:23934793
Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.
Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle
2017-10-01
The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
NASA Astrophysics Data System (ADS)
Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi
2005-11-01
The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.
Autoradiographic demonstration of oxytocin-binding sites in the macula densa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoeckel, M.E.; Freund-Mercier, M.J.
1989-08-01
Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experimentsmore » showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.« less
Changes in the hemagglutinin of H5N1 viruses during human infection – Influence on receptor binding☆
Crusat, Martin; Liu, Junfeng; Palma, Angelina S.; Childs, Robert A.; Liu, Yan; Wharton, Stephen A.; Lin, Yi Pu; Coombs, Peter J.; Martin, Stephen R.; Matrosovich, Mikhail; Chen, Zi; Stevens, David J.; Hien, Vo Minh; Thanh, Tran Tan; Nhu, Le Nguyen Truc; Nguyet, Lam Anh; Ha, Do Quang; van Doorn, H.Rogier; Hien, Tran Tinh; Conradt, Harald S.; Kiso, Makoto; Gamblin, Steve J.; Chai, Wengang; Skehel, John J.; Hay, Alan J.; Farrar, Jeremy; de Jong, Menno D.; Feizi, Ten
2013-01-01
As avian influenza A(H5N1) viruses continue to circulate in Asia and Africa, global concerns of an imminent pandemic persist. Recent experimental studies suggest that efficient transmission between humans of current H5N1 viruses only requires a few genetic changes. An essential step is alteration of the virus hemagglutinin from preferential binding to avian receptors for the recognition of human receptors present in the upper airway. We have identified receptor-binding changes which emerged during H5N1 infection of humans, due to single amino acid substitutions, Ala134Val and Ile151Phe, in the hemagglutinin. Detailed biological, receptor-binding, and structural analyses revealed reduced binding of the mutated viruses to avian-like receptors, but without commensurate increased binding to the human-like receptors investigated, possibly reflecting a receptor-binding phenotype intermediate in adaptation to more human-like characteristics. These observations emphasize that evolution in nature of avian H5N1 viruses to efficient binding of human receptors is a complex multistep process. PMID:24050651
Yao, Ningning; Li, Jianchao; Liu, Haiyang; Wan, Jun; Liu, Wei; Zhang, Mingjie
2017-11-07
Malfunctions of the actin binding protein Drebrin have been implicated in various human diseases such as Alzheimer's disease, cognitive impairments, cancer, and digestive disorders, though with poorly understood mechanisms. The ADF-H domain of Drebrin does not contain actin binding and depolymerizing activity. Instead, it binds to a histone marker reader, ZMYND8. Here we present the high-resolution crystal structure of Drebrin ADF-H in complex with the ZMYND8 PHD-BROMO-PWWP tandem, elucidating the mechanistic basis governing the highly specific interaction of the two proteins. The structure reveals that the ZMYND8 PHD-BROMO-PWWP tandem forms a structural supramodule that is necessary for binding to Drebrin ADF-H. Drebrin ADF-H competes with modified histone for binding to ZMYND8. Binding of Drebrin can shuttle ZMYND8 from nucleus to cytoplasm in living cells. Taken together, our study uncovers a non-actin target binding mode for ADF-H domains, and suggests that Drebrin may regulate activities of epigenetic reader ZMYND8 via its cytoplasmic sequestration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lipzig, Rosalinde van; Montagu, Marc Van; Cornelissen, Marc; Meulewaeter, Frank
2001-01-01
The satellite tobacco necrosis virus RNA is uncapped and requires a 3′ translational enhancer domain (TED) for translation. Both in the wheat germ extract and in tobacco, TED stimulates in cis translation of heterologous, uncapped RNAs. In this study we investigated to what extent translation stimulation by TED depends on binding to wheat germ factors. We show that in vitro TED binds at least seven wheat germ proteins. Translation and crosslinking assays, to which TED or TED derivatives with reduced functionality were included as competitor, showed that TED function correlates with binding to a 28 kDa protein (p28). One particular condition of competition revealed that p28 binding is not obligatory for TED function. Under this condition, a 30 kDa protein (p30) binds to TED. Importantly, affinity of p30 correlates with functionality of TED. These results strongly suggest that TED has the capacity to stimulate translation by recruiting the translational machinery either via binding to p28 or via binding to p30. PMID:11222757
High-affinity cannabinoid binding site in brain: A possible marijuana receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nye, J.S.
The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one classmore » of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.« less
NASA Astrophysics Data System (ADS)
Islam, Md. Maidul; Suresh Kumar, Gopinatha
2008-03-01
The binding affinity, energetics and conformational aspects of the interaction of isoquinoline alkaloids berberine and palmatine to four single stranded polyribonucleotides polyguanylic acid [poly(G)], polyinosinic acid [poly(I)], polycytidylic acid [poly(C)] and polyuridylic acid [poly(U)] were studied by absorption, fluorescence, isothermal titration calorimetry and circular dichroism spectroscopy and compared with ethidium. Berberine, palmatine and ethidium binds strongly with poly(G) and poly(I) with affinity in the order 10 5 M -1 while their binding to poly(C) and poly(U) were very weak or practically nil. The same conclusions have also emerged from isothermal titration calorimetric studies. The binding of all the three compounds to poly(C) and poly(I) was exothermic and favored by both negative enthalpy change and positive entropy change. Conformational change in the polymer associated with the binding was observed in poly(I) with all the three molecules and poly(U) with ethidium but not in poly(G) and poly(C) revealing differences in the orientation of the bound molecules in the hitherto different helical organization of these polymers. These fundamental results may be useful and serve as database for the development of futuristic RNA based small molecule therapeutics.
Mechanisms of Lin28-Mediated miRNA and mRNA Regulation—A Structural and Functional Perspective
Mayr, Florian; Heinemann, Udo
2013-01-01
Lin28 is an essential RNA-binding protein that is ubiquitously expressed in embryonic stem cells. Its physiological function has been linked to the regulation of differentiation, development, and oncogenesis as well as glucose metabolism. Lin28 mediates these pleiotropic functions by inhibiting let-7 miRNA biogenesis and by modulating the translation of target mRNAs. Both activities strongly depend on Lin28’s RNA-binding domains (RBDs), an N-terminal cold-shock domain (CSD) and a C-terminal Zn-knuckle domain (ZKD). Recent biochemical and structural studies revealed the mechanisms of how Lin28 controls let-7 biogenesis. Lin28 binds to the terminal loop of pri- and pre-let-7 miRNA and represses their processing by Drosha and Dicer. Several biochemical and structural studies showed that the specificity of this interaction is mainly mediated by the ZKD with a conserved GGAGA or GGAGA-like motif. Further RNA crosslinking and immunoprecipitation coupled to high-throughput sequencing (CLIP-seq) studies confirmed this binding motif and uncovered a large number of new mRNA binding sites. Here we review exciting recent progress in our understanding of how Lin28 binds structurally diverse RNAs and fulfills its pleiotropic functions. PMID:23939427
Hämmerle, Hermann; Beich-Frandsen, Mads; Večerek, Branislav; Rajkowitsch, Lukas; Carugo, Oliviero; Djinović-Carugo, Kristina; Bläsi, Udo
2012-01-01
In Escherichia coli the RNA chaperone Hfq is involved in riboregulation by assisting base-pairing between small regulatory RNAs (sRNAs) and mRNA targets. Several structural and biochemical studies revealed RNA binding sites on either surface of the donut shaped Hfq-hexamer. Whereas sRNAs are believed to contact preferentially the YKH motifs present on the proximal site, poly(A)(15) and ADP were shown to bind to tripartite binding motifs (ARE) circularly positioned on the distal site. Hfq has been reported to bind and to hydrolyze ATP. Here, we present the crystal structure of a C-terminally truncated variant of E. coli Hfq (Hfq(65)) in complex with ATP, showing that it binds to the distal R-sites. In addition, we revisited the reported ATPase activity of full length Hfq purified to homogeneity. At variance with previous reports, no ATPase activity was observed for Hfq. In addition, FRET assays neither indicated an impact of ATP on annealing of two model oligoribonucleotides nor did the presence of ATP induce strand displacement. Moreover, ATP did not lead to destabilization of binary and ternary Hfq-RNA complexes, unless a vast stoichiometric excess of ATP was used. Taken together, these studies strongly suggest that ATP is dispensable for and does not interfere with Hfq-mediated RNA transactions.
NASA Astrophysics Data System (ADS)
Tzoupis, Haralambos; Leonis, Georgios; Durdagi, Serdar; Mouchlis, Varnavas; Mavromoustakos, Thomas; Papadopoulos, Manthos G.
2011-10-01
The objectives of this study include the design of a series of novel fullerene-based inhibitors for HIV-1 protease (HIV-1 PR), by employing two strategies that can also be applied to the design of inhibitors for any other target. Additionally, the interactions which contribute to the observed exceptionally high binding free energies were analyzed. In particular, we investigated: (1) hydrogen bonding (H-bond) interactions between specific fullerene derivatives and the protease, (2) the regions of HIV-1 PR that play a significant role in binding, (3) protease changes upon binding and (4) various contributions to the binding free energy, in order to identify the most significant of them. This study has been performed by employing a docking technique, two 3D-QSAR models, molecular dynamics (MD) simulations and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. Our computed binding free energies are in satisfactory agreement with the experimental results. The suitability of specific fullerene derivatives as drug candidates was further enhanced, after ADMET (absorption, distribution, metabolism, excretion and toxicity) properties have been estimated to be promising. The outcomes of this study revealed important protein-ligand interaction patterns that may lead towards the development of novel, potent HIV-1 PR inhibitors.
Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.
2017-01-01
The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble. PMID:28028171
Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi
2017-08-01
The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 10 10 L mol -1 s -1 , indicating forming QNPL-BSA complex through the intermolecular binding interaction. The binding constant for the QNPL-BSA complex is in the order of 10 5 M -1 , indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal's forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.
Zhang, Tong; Mu, Yuguang
2012-01-01
Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III) Hexamine ions or Mg2+ ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III) Hexamine ions were found to bind stronger with the loop than Mg2+ ions with binding free energy −7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg2+ ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III) Hexamine ions on CorA ions transportation. PMID:22952795
Interaction of the dietary pigment curcumin with hemoglobin: energetics of the complexation.
Basu, Anirban; Kumar, Gopinatha Suresh
2014-08-01
Thermodynamics of the interaction of the chemotherapeutic and chemopreventive dietary pigment, curcumin, with hemoglobin was studied by isothermal titration calorimetry. The binding was characterized to be exothermic. At 293.15 K, the equilibrium constant for curcumin-Hb complexation was found to be (4.88 ± 0.06) × 10(5) M(-1). The binding stoichiometry was calculated to be 1.08 ± 0.05, confirming a 1:1 complexation. The binding was driven by a large negative standard molar enthalpy change (ΔH(0) = -118.45 ± 0.05 kJ mol(-1)) and an unfavorable standard molar entropy change (TΔS(0) = -86.53 ± 0.01 kJ mol(-1)) at 293.15 K. Increasing the temperature favoured the binding, and the magnitude of the negative standard molar heat capacity change suggested the involvement of significant hydrophobic forces in the binding process. With increasing salt concentration, the magnitude of the equilibrium constant decreased slightly; and the complexation mostly involved non-polyelectrolytic forces contributing about 92-94% of the standard molar Gibbs energy change. DSC studies revealed that curcumin binding caused a partial unfolding of the protein.
Interaction of cinnamic acid derivatives with serum albumins: A fluorescence spectroscopic study
NASA Astrophysics Data System (ADS)
Singh, T. Sanjoy; Mitra, Sivaprasad
2011-03-01
Cinnamic acid (CA) derivatives are known to possess broad therapeutic applications including anti-tumor activity. The present study was designed to determine the underlying mechanism and thermodynamic parameters for the binding of two CA based intramolecular charge transfer (ICT) fluorescent probes, namely, 4-(dimethylamino) cinnamic acid (DMACA) and trans-ethyl p-(dimethylamino) cinnamate (EDAC), with albumins by fluorescence spectroscopy. Stern-Volmer analysis of the tryptophan fluorescence quenching data in presence of the added ligand reveals fluorescence quenching constant ( κq), Stern-Volmer constant ( KSV) and also the ligand-protein association constant ( Ka). The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated. The results show that the ligands bind into the sub-domain IIA of the proteins in 1:1 stoichiometry with an apparent binding constant value in the range of 10 4 dm 3 mol -1. In both the cases, the spontaneous ligand binding to the proteins occur through entropy driven mechanism, although the interaction of DMACA is relatively stronger in comparison with EDAC. The temperature dependence of the binding constant indicates the induced change in protein secondary structure.
The structure of transcription termination factor Nrd1 reveals an original mode for GUAA recognition
Franco-Echevarría, Elsa; González-Polo, Noelia; Zorrilla, Silvia; Martínez-Lumbreras, Santiago; Santiveri, Clara M.; Campos-Olivas, Ramón; Sánchez, Mar; Calvo, Olga
2017-01-01
Abstract Transcription termination of non-coding RNAs is regulated in yeast by a complex of three RNA binding proteins: Nrd1, Nab3 and Sen1. Nrd1 is central in this process by interacting with Rbp1 of RNA polymerase II, Trf4 of TRAMP and GUAA/G terminator sequences. We lack structural data for the last of these binding events. We determined the structures of Nrd1 RNA binding domain and its complexes with three GUAA-containing RNAs, characterized RNA binding energetics and tested rationally designed mutants in vivo. The Nrd1 structure shows an RRM domain fused with a second α/β domain that we name split domain (SD), because it is formed by two non-consecutive segments at each side of the RRM. The GUAA interacts with both domains and with a pocket of water molecules, trapped between the two stacking adenines and the SD. Comprehensive binding studies demonstrate for the first time that Nrd1 has a slight preference for GUAA over GUAG and genetic and functional studies suggest that Nrd1 RNA binding domain might play further roles in non-coding RNAs transcription termination. PMID:28973465
Energetics of drug-DNA interactions.
Chaires, J B
1997-01-01
Understanding the thermodynamics of drug binding to DNA is of both practical and fundamental interest. The practical interest lies in the contribution that thermodynamics can make to the rational design process for the development of new DNA targeted drugs. Thermodynamics offer key insights into the molecular forces that drive complex formation that cannot be obtained by structural or computational studies alone. The fundamental interest in these interactions lies in what they can reveal about the general problems of parsing and predicting ligand binding free energies. For these problems, drug-DNA interactions offer several distinct advantages, among them being that the structures of many drug-DNA complexes are known at high resolution and that such structures reveal that in many cases the drug acts as a rigid body, with little conformational change upon binding. Complete thermodynamic profiles (delta G, delta H, delta S, delta Cp) for numerous drug-DNA interactions have been obtained, with the help of high-sensitivity microcalorimetry. The purpose of this article is to offer a perspective on the interpretation of these thermodynamics parameters, and in particular how they might be correlated with known structural features. Obligatory conformational changes in the DNA to accommodate intercalators and the loss of translational and rotational freedom upon complex formation both present unfavorable free energy barriers for binding. Such barriers must be overcome by favorable free energy contributions from the hydrophobic transfer of ligand from solution into the binding site, polyelectrolyte contributions from coupled ion release, and molecular interactions (hydrogen and ionic bonds, van der Waals interactions) that form within the binding site. Theoretical and semiempirical tools that allow estimates of these contributions to be made will be discussed, and their use in dissecting experimental data illustrated. This process, even at the current level of approximation, can shed considerable light on the drug-DNA binding process.
Katre, Uma V; Mazumder, Suman; Prusti, Rabi K; Mohanty, Smita
2009-11-13
In moths, pheromone-binding proteins (PBPs) are responsible for the transport of the hydrophobic pheromones to the membrane-bound receptors across the aqueous sensillar lymph. We report here that recombinant Antheraea polyphemus PBP1 (ApolPBP1) picks up hydrophobic molecule(s) endogenous to the Escherichia coli expression host that keeps the protein in the "open" (bound) conformation at high pH but switches to the "closed" (free) conformation at low pH. This finding has bearing on the solution structures of undelipidated lepidopteran moth PBPs determined thus far. Picking up a hydrophobic molecule from the host expression system could be a common feature for lipid-binding proteins. Thus, delipidation is critical for bacterially expressed lipid-binding proteins. We have shown for the first time that the delipidated ApolPBP1 exists primarily in the closed form at all pH levels. Thus, current views on the pH-induced conformational switch of PBPs hold true only for the ligand-bound open conformation of the protein. Binding of various ligands to delipidated ApolPBP1 studied by solution NMR revealed that the protein in the closed conformation switches to the open conformation only at or above pH 6.0 with a protein to ligand stoichiometry of approximately 1:1. Mutation of His(70) and His(95) to alanine drives the equilibrium toward the open conformation even at low pH for the ligand-bound protein by eliminating the histidine-dependent pH-induced conformational switch. Thus, the delipidated double mutant can bind ligand even at low pH in contrast to the wild type protein as revealed by fluorescence competitive displacement assay using 1-aminoanthracene and solution NMR.
Ficko-Blean, Elizabeth; Stuart, Christopher P.; Suits, Michael D.; Cid, Melissa; Tessier, Matthew; Woods, Robert J.; Boraston, Alisdair B.
2012-01-01
CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-α-d-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-β-d-glucosamine-α-1,4-d-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-β-d-glucosamine-α-1,4-d-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract. PMID:22479408
Yu, Tao; Wang, Xiao-Qing; Sang, Jian-Ping; Pan, Chun-Xu; Zou, Xian-Wu; Chen, Tsung-Yu; Zou, Xiaoqin
2012-01-01
Mutations in ClC channel proteins may cause serious functional changes and even diseases. The function of ClC proteins mainly manifests as Cl− transport, which is related to the binding free energies of chloride ions. Therefore, the influence of a mutation on ClC function can be studied by investigating the mutational effect on the binding free energies of chloride ions. The present study provides quantitative and systematic investigations on the influences of residue mutations on the electrostatic binding free energies in Escherichia coli ClC (EcClC) proteins, using all-atom molecular dynamics simulations. It was found that the change of the electrostatic binding free energy decreases linearly with the increase of the residue-chloride ion distance for a mutation. This work reveals how changes in the charge of a mutated residue and in the distance between the mutated residue and the binding site govern the variations in the electrostatic binding free energies, and therefore influence the transport of chloride ions and conduction in EcClC. This work would facilitate our understanding of the mutational effects on transport of chloride ions and functions of ClC proteins, and provide a guideline to estimate which residue mutations will have great influences on ClC functions. PMID:22612693
Functional Loop Dynamics of the Streptavidin-Biotin Complex
Song, Jianing; Li, Yongle; Ji, Changge; Zhang, John Z. H.
2015-01-01
Accelerated molecular dynamics (aMD) simulation is employed to study the functional dynamics of the flexible loop3-4 in the strong-binding streptavidin-biotin complex system. Conventional molecular (cMD) simulation is also performed for comparison. The present study reveals the following important properties of the loop dynamics: (1) The transition of loop3-4 from open to closed state is observed in 200 ns aMD simulation. (2) In the absence of biotin binding, the open-state streptavidin is more stable, which is consistent with experimental evidences. The free energy (ΔG) difference is about 5 kcal/mol between two states. But with biotin binding, the closed state is more stable due to electrostatic and hydrophobic interactions between the loop3-4 and biotin. (3) The closure of loop3-4 is concerted to the stable binding of biotin to streptavidin. When the loop3-4 is in its open-state, biotin moves out of the binding pocket, indicating that the interactions between the loop3-4 and biotin are essential in trapping biotin in the binding pocket. (4) In the tetrameric streptavidin system, the conformational change of the loop3-4 in each monomer is independent of each other. That is, there is no cooperative binding for biotin bound to the four subunits of the tetramer. PMID:25601277
Ma, Liang; Wang, Jiaman; Zhang, Yuhao
2017-01-01
The binding characterization of aflatoxins with calf thymus DNA (ctDNA) under physiological conditions was investigated. Multispectroscopic techniques, ctDNA melting, viscosity measurements, and molecular docking techniques were employed to elucidate the binding mechanism of the aflatoxins with DNA. The fluorescence results indicated that both aflatoxin B1 (AFB1) and aflatoxin G1 (AFG1) bound to the ctDNA, forming complexes through hydrogen bonding. The binding constants of AFB1 and AFG1 with ctDNA reached up to 103 L·mol−1 and 104 L·mol−1, respectively, and AFG1 exhibited a higher binding propensity than that of AFB1. Furthermore, both AFB1 and AFG1 bound to the ctDNA through groove binding, as evidenced by the results of the spectroscopic, iodide quenching effect, viscosity, and ctDNA melting measurements. Changes in the circular dichroism signal manifested that both AFB1 and AFG1 induced an increase in the right-handed helicity, but only minimally influenced the base stacking of the DNA. A molecular docking study of the aflatoxin’s binding with the DNA revealed a groove binding mode, which was driven mainly by hydrogen bonding. This study of aflatoxin–ctDNA interaction may provide novel insights into the toxicological effect of the mycotoxins. PMID:28671585
Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy
Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.
2016-01-01
There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806
Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus
Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji
2012-01-01
Thioredoxin binding protein −2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein −2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein −2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein −2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein −2 in metabolic control. Enhancement of thioredoxin binding protein −2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein −2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein −2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β2-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus. PMID:22247597
Kranz, Georg S; Hahn, Andreas; Kraus, Christoph; Spies, Marie; Pichler, Verena; Jungwirth, Johannes; Mitterhauser, Markus; Wadsak, Wolfgang; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert
2018-05-01
The serotonergic system modulates affect and is a target in the treatment of mood disorders. 5-HT 1A autoreceptors in the raphe control serotonin release by means of negative feedback inhibition. Hence, 5-HT 1A autoreceptor function should influence the serotonergic regulation of emotional reactivity in limbic regions. Previous findings suggest an inverse relationship between 5-HT 1A autoreceptor binding and amygdala reactivity to facial emotional expressions. The aim of the current multimodal neuroimaging study was to replicate the previous finding in a larger cohort. 31 healthy participants underwent fMRI as well as PET using the radioligand [carbonyl- 11 C]WAY-100635 to quantify 5-HT 1A autoreceptor binding in the dorsal raphe. The binding potential (BP ND ) was quantified using the multilinear reference tissue model (MRTM2) and cerebellar white matter as reference tissue. Functional MRI was done at 3T using a well-established facial emotion discrimination task (EDT). Here, participants had to match the emotional valence of facial expressions, while in a control condition they had to match geometric shapes. Effects of 5-HT 1A autoreceptor binding on amygdala reactivity were investigated using linear regression analysis with SPM8. Regression analysis between 5-HT 1A autoreceptor binding and mean amygdala reactivity revealed no statistically significant associations. Investigating amygdala reactivity in a voxel-wise approach revealed a positive association in the right amygdala (peak-T = 3.64, p < .05 FWE corrected for the amygdala volume) which was however conditional on the omission of age and sex as covariates in the model. Despite highly significant amygdala reactivity to facial emotional expressions, we were unable to replicate the inverse relationship between 5-HT 1A autoreceptor binding in the DRN and amygdala reactivity. Our results oppose previous multimodal imaging studies but seem to be in line with recent animal research. Deviation in results may be explained by methodological differences between our and previous multimodal studies. Copyright © 2018 Elsevier Inc. All rights reserved.
NMR Studies of Protein Hydration and Protein-Ligand Interactions
NASA Astrophysics Data System (ADS)
Chong, Yuan
Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be facilitated by hydration. On the other hand, alcohols can bind to many nonspecific sites on the protein. In dry proteins, this type of binding only occurs above a threshold of alcohol vapor pressure. Such a threshold is gradually reduced by increasing the hydration level and can be removed above a critical hydration level. Hydration also shifts the nonspecific alcohol binding from an entropy-driven to an enthalpy-driven process. This dissertation reveals the mechanism of protein hydration and the detailed roles of hydration in ligand binding, with important implications for the understanding of protein functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougherty, Gerard W.; Section on Structural Cell Biology, National Institute on Deafness and Communication Disorders; Chopp, Treasa
2005-05-15
Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5more » domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.« less
Gopal, J Vinay; Kannabiran, K
2013-12-01
The aim of the study was to identify the interactions between insect repellent compounds and target olfactory proteins. Four compounds, camphor (C10H16O), carvacrol (C10H14O), oleic acid (C18H34O2) and firmotox (C22H28O5) were chosen as ligands. Seven olfactory proteins of insects with PDB IDs: 3K1E, 1QWV, 1TUJ, 1OOF, 2ERB, 3R1O and OBP1 were chosen for docking analysis. Patch dock was used and pymol for visualizing the structures. The interactions of these ligands with few odorant binding proteins showed binding energies. The ligand camphor had showed a binding energy of -136 kcal/mol with OBP1 protein. The ligand carvacrol interacted with 1QWV and 1TUJ proteins with a least binding energy of -117.45 kcal/mol and -21.78 kcal/mol respectively. The ligand oleic acid interacted with 1OOF, 2ERB, 3R1O and OBP1 with least binding energies. Ligand firmotox interacted with OBP1 and showed least binding energies. Three ligands (camphor, oleic acid and firmotox) had one, two, three interactions with a single protein OBP1 of Nilaparvatha lugens (Rice pest). From this in silico study we identified the interaction patterns for insect repellent compounds with the target insect odarant proteins. The results of our study revealed that the chosen ligands showed hydrogen bond interactions with the target olfactory receptor proteins.
Singh, Manvender; Brahma, Biswajit; Maharana, Jitendra; Patra, Mahesh Chandra; Kumar, Sushil; Mishra, Purusottam; Saini, Megha; De, Bidhan Chandra; Mahanty, Sourav; Datta, Tirtha Kumar; De, Sachinandan
2014-01-01
RIG1 and MDA5 have emerged as important intracellular innate pattern recognition receptors that recognize viral RNA and mediate cellular signals controlling Type I interferon (IFN-I) response. Buffalo RIG1 and MDA5 genes were investigated to understand the mechanism of receptor induced antiviral response. Sequence analysis revealed that RIG1 and MDA5 maintain a domain arrangement that is common in mammals. Critical binding site residues of the receptors are evolutionary conserved among mammals. Molecular dynamics simulations suggested that RIG1 and MDA5 follow a similar, if not identical, dsRNA binding pattern that has been previously reported in human. Moreover, binding free energy calculation revealed that MDA5 had a greater affinity towards dsRNA compared to RIG1. Constitutive expressions of RLR genes were ubiquitous in different tissues without being specific to immune organs. Poly I:C stimulation induced elevated expressions of IFN-β and IFN-stimulated genes (ISGs) through interferon regulatory factors (IRFs) mediated pathway in buffalo foetal fibroblast cells. The present study provides crucial insights into the structure and function of RIG1 and MDA5 receptors in buffalo. PMID:24587036
Neural Correlates of Multisensory Perceptual Learning
Powers, Albert R.; Hevey, Matthew A.; Wallace, Mark T.
2012-01-01
The brain’s ability to bind incoming auditory and visual stimuli depends critically on the temporal structure of this information. Specifically, there exists a temporal window of audiovisual integration within which stimuli are highly likely to be perceived as part of the same environmental event. Several studies have described the temporal bounds of this window, but few have investigated its malleability. Recently, our laboratory has demonstrated that a perceptual training paradigm is capable of eliciting a 40% narrowing in the width of this window that is stable for at least one week after cessation of training. In the current study we sought to reveal the neural substrates of these changes. Eleven human subjects completed an audiovisual simultaneity judgment training paradigm, immediately before and after which they performed the same task during an event-related 3T fMRI session. The posterior superior temporal sulcus (pSTS) and areas of auditory and visual cortex exhibited robust BOLD decreases following training, and resting state and effective connectivity analyses revealed significant increases in coupling among these cortices after training. These results provide the first evidence of the neural correlates underlying changes in multisensory temporal binding and that likely represent the substrate for a multisensory temporal binding window. PMID:22553032
Hida, Akiko; Oku, Shota; Nakashimada, Yutaka; Tajima, Takahisa; Kato, Junichi
2017-08-17
Chemotaxis enables bacteria to move toward more favorable environmental conditions. We observed chemotaxis toward boric acid by Ralstonia pseudosolanacearum Ps29. At higher concentrations, the chemotactic response of R. pseudosolanacearum toward boric acid was comparable to or higher than that toward L-malate, indicating that boric acid is a strong attractant for R. pseudosolanacearum. Chemotaxis assays under different pH conditions suggested that R. pseudosolanacearum recognizes B(OH) 3 (or B(OH 3 ) + B(OH) 4 - ) but not B(OH) 4 - alone. Our previous study revealed that R. pseudosolanacearum Ps29 harbors homologs of all 22R. pseudosolanacearum GMI1000 mcp genes. Screening of 22 mcp single-deletion mutants identified the RS_RS17100 homolog as the boric acid chemoreceptor, which was designated McpB. The McpB ligand-binding domain (LBD) was purified in order to characterize its binding to boric acid. Using isothermal titration calorimetry, we demonstrated that boric acid binds directly to the McpB LBD with a K D (dissociation constant) of 5.4 µM. Analytical ultracentrifugation studies revealed that the McpB LBD is present as a dimer that recognizes one boric acid molecule.
Cang, Zixuan; Wei, Guo-Wei
2018-02-01
Protein-ligand binding is a fundamental biological process that is paramount to many other biological processes, such as signal transduction, metabolic pathways, enzyme construction, cell secretion, and gene expression. Accurate prediction of protein-ligand binding affinities is vital to rational drug design and the understanding of protein-ligand binding and binding induced function. Existing binding affinity prediction methods are inundated with geometric detail and involve excessively high dimensions, which undermines their predictive power for massive binding data. Topology provides the ultimate level of abstraction and thus incurs too much reduction in geometric information. Persistent homology embeds geometric information into topological invariants and bridges the gap between complex geometry and abstract topology. However, it oversimplifies biological information. This work introduces element specific persistent homology (ESPH) or multicomponent persistent homology to retain crucial biological information during topological simplification. The combination of ESPH and machine learning gives rise to a powerful paradigm for macromolecular analysis. Tests on 2 large data sets indicate that the proposed topology-based machine-learning paradigm outperforms other existing methods in protein-ligand binding affinity predictions. ESPH reveals protein-ligand binding mechanism that can not be attained from other conventional techniques. The present approach reveals that protein-ligand hydrophobic interactions are extended to 40Å away from the binding site, which has a significant ramification to drug and protein design. Copyright © 2017 John Wiley & Sons, Ltd.
Shah, Manish B.; Ingram-Smith, Cheryl; Cooper, Leroy L.; Qu, Jun; Meng, Yu; Smith, Kerry S.; Gulick, Andrew M.
2009-01-01
The acyl-AMP forming family of adenylating enzymes catalyze two-step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X-ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140° to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl-CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl-CoA synthetase and 4-chlorobenzoate:CoA ligase. Most interestingly, the acyl binding pocket of the new structure is compared with other acyl- and aryl-CoA synthetases. A comparison of the acyl-binding pocket of the acyl-CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl binding pocket. PMID:19544569
Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen.
Bujacz, Anna; Zielinski, Kamil; Sekula, Bartosz
2014-09-01
Serum albumin, a protein naturally abundant in blood plasma, shows remarkable ligand binding properties of numerous endogenous and exogenous compounds. Most of serum albumin binding sites are able to interact with more than one class of ligands. Determining the protein-ligand interactions among mammalian serum albumins is essential for understanding the complexity of this transporter. We present three crystal structures of serum albumins in complexes with naproxen (NPS): bovine (BSA-NPS), equine (ESA-NPS), and leporine (LSA-NPS) determined to 2.58 Å (C2), 2.42 Å (P61), and 2.73 Å (P2₁2₁2₁) resolutions, respectively. A comparison of the structurally investigated complexes with the analogous complex of human serum albumin (HSA-NPS) revealed surprising differences in the number and distribution of naproxen binding sites. Bovine and leporine serum albumins possess three NPS binding sites, but ESA has only two. All three complexes of albumins studied here have two common naproxen locations, but BSA and LSA differ in the third NPS binding site. None of these binding sites coincides with the naproxen location in the HSA-NPS complex, which was obtained in the presence of other ligands besides naproxen. Even small differences in sequences of serum albumins from various species, especially in the area of the binding pockets, influence the affinity and the binding mode of naproxen to this transport protein. © 2014 Wiley Periodicals, Inc.
Agarwal, Shivangi; Verma, Ekta; Kumar, Vivek; Lall, Namrita; Sau, Samaresh; Iyer, Arun K; Kashaw, Sushil K
2018-05-03
Tuberculosis is an infectious chronic disease caused by obligate pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Although many first and second line drugs are available for its treatment, but their irrational use has adversely lead to the emerging cases of multiple drug resistant and extensively drug-resistant tuberculosis. Therefore, there is an intense need to develop novel potent analogues for its treatment. This has prompted us to develop potent analogues against TB. The Mycobacterium tuberculosis genome provides us with number of validated targets to combat against TB. Study of Mtb genome disclosed six epoxide hydrolases (A to F) which convert harmful epoxide into diols and act as a potential drug target for rational drug design. Our current strategy is to develop such analogues which inhibits epoxide hydrolase enzyme present in Mtb genome. To achieve this, we adopted an integrated computational approach involving QSAR, pharmacophore mapping, molecular docking and molecular dynamics simulation studies. The approach envisaged vital information about the role of molecular descriptors, essential pharmacophoric features and binding energy for compounds to bind into the active site of epoxide hydrolase. Molecular docking analysis revealed that analogues exhibited significant binding to Mtb epoxide hydrolase. Further, three docked complexes 2s, 37s and 15s with high, moderate and low docking scores respectively were selected for molecular dynamics simulation studies. RMSD analysis revealed that all complexes are stable with average RMSD below 2 Å throughout the 10 ns simulations. The B-factor analysis showed that the active site residues of epoxide hydrolase are flexible enough to interact with inhibitor. Moreover, to confirm the binding of these urea derivatives, MM-GBSA binding energy analysis were performed. The calculations showed that 37s has more binding affinity (ΔGtotal = -52.24 kcal/mol) towards epoxide hydrolase compared to 2s (ΔGtotal = -51.70 kcal/mol) and 15s (ΔGtotal = -49.97 kcal/mol). The structural features inferred in our study may provide the future directions to the scientists towards the discovery of new chemical entity exhibiting anti-TB property. Copyright © 2018 Elsevier Inc. All rights reserved.
Ando, Tadashi; Skolnick, Jeffrey
2014-12-01
DNA binding proteins efficiently search for their cognitive sites on long genomic DNA by combining 3D diffusion and 1D diffusion (sliding) along the DNA. Recent experimental results and theoretical analyses revealed that the proteins show a rotation-coupled sliding along DNA helical pitch. Here, we performed Brownian dynamics simulations using newly developed coarse-grained protein and DNA models for evaluating how hydrodynamic interactions between the protein and DNA molecules, binding affinity of the protein to DNA, and DNA fluctuations affect the one dimensional diffusion of the protein on the DNA. Our results indicate that intermolecular hydrodynamic interactions reduce 1D diffusivity by 30%. On the other hand, structural fluctuations of DNA give rise to steric collisions between the CG-proteins and DNA, resulting in faster 1D sliding of the protein. Proteins with low binding affinities consistent with experimental estimates of non-specific DNA binding show hopping along the CG-DNA. This hopping significantly increases sliding speed. These simulation studies provide additional insights into the mechanism of how DNA binding proteins find their target sites on the genome.
Bielawski, Krzysztof; Bielawska, Anna; Anchim, Tomasz; Wołczyński, Sławomir
2005-06-01
A number of novel 2-chloroethylnitrosourea derivatives of Hoechst 33258 were synthesized and examined for cytotoxicity in breast cancer cell cultures and for inhibition of topoisomerases I and II. Evaluation of the cytotoxicity of these compounds employing a MTT assay and inhibition of [3H]thymidine incorporation into DNA in both MDA-MB-231 and MCF-7 breast cancer cells demonstrated that these compounds were more active than Hoechst 33258. The DNA-binding ability of these compounds was evaluated by an ultrafiltration method using calf thymus DNA, poly(dA-dT)2 and poly(dG-dC)2, indicated that these compounds as well as Hoechst 33258 well interact with AT base pair compared with GC pair. Binding studies indicate that these compounds bind more tightly to double-stranded DNA than the parent compound Hoechst 33258. The degree to which these compounds inhibited cell growth breast cancer cells was generally consistent with their relative DNA binding affinity. Mechanistic studies revealed that these compounds act as topoisomerase I (topo I) or topoisomerase II (topo II) inhibitors in plasmid relaxation assays.
Meers, P; Feigenson, G W
1988-03-03
Valinomycin, incorporated in small unilamellar vesicles of perdeuterated dimyristoylphosphatidylcholine, reveals several well-resolved 1H-NMR resonances. These resonances were used to examine the location, orientation and ion-binding of membrane-bound valinomycin. The order of affinity of membrane-bound valinomycin for cations is Rb+ greater than K+ greater than Cs+ greater than Ba2+, and binding is sensitive to surface change. The exchange between bound and free forms is fast on the NMR time scale. The intrinsic binding constants, extrapolated to zero anion concentration, are similar to those determined in aqueous solution. Rb+ and K+ show 1:1 binding to valinomycin, whereas the stoichiometry of Cs+ and Ba2+ is not certain. Paramagnetic chemical shift reagents and nitroxide spin label relaxation probes were used to study the location and orientation of valinomycin in the membrane. Despite relatively fast exchange of bound cations, the time average location of the cation-free form of valinomycin is deep within the bilayer under the conditions of these experiments. Upon complexation to K+, valinomycin moves closer to the interfacial region.
A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases.
Shin, Sung-Bong; Golovkin, Maxim; Reddy, Anireddy S N
2014-06-12
Previous genetic studies have revealed that a pollen-specific calmodulin-binding protein, No Pollen Germination 1 (NPG1), is required for pollen germination. However, its mode of action is unknown. Here we report direct interaction of NPG1 with pectate lyase-like proteins (PLLs). A truncated form of AtNPG1 lacking the N-terminal tetratricopeptide repeat 1 (TPR1) failed to interact with PLLs, suggesting that it is essential for NPG1 interaction with PLLs. Localization studies with AtNPG1 fused to a fluorescent reporter driven by its native promoter revealed its presence in the cytosol and cell wall of the pollen grain and the growing pollen tube of plasmolyzed pollen. Together, our data suggest that the function of NPG1 in regulating pollen germination is mediated through its interaction with PLLs, which may modify the pollen cell wall and regulate pollen tube emergence and growth.
Teng, Yue; Zou, Luyi; Huang, Ming; Zong, Wansong
2014-12-01
2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment possesses a potential risk to human health. In this work, the toxic interaction of MBI with the important antioxidant enzyme catalase (CAT) was investigated using spectroscopic and molecular docking methods under physiological conditions. MBI can spontaneously bind with CAT with one binding site through hydrogen bonds and van der Waals forces to form MBI-CAT complex. The molecular docking study revealed that MBI bound into the CAT interface of chains B and C, which led to some conformational and microenvironmental changes of CAT and further resulted in the inhibition of CAT activity. This present study provides direct evidence at a molecular level to show that exposure to MBI could induce changes in the structure and function of the enzyme CAT. Copyright © 2014 Elsevier B.V. All rights reserved.
Ying, Qi; Ansong, Emmanuel; Diamond, Alan M.; Lu, Zhaoxin; Yang, Wancai; Bie, Xiaomei
2015-01-01
Previous studies have shown the tumor-suppressive role of selenium-binding protein 1 (SBP1), but the underlying mechanisms are unclear. In this study, we found that induction of SBP1 showed significant inhibition of colorectal cancer cell growth and metastasis in mice. We further employed isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins that were involved in SBP1-mediated anti-cancer effects in tumor tissues. We identified 132 differentially expressed proteins, among them, 53 proteins were upregulated and 79 proteins were downregulated. Importantly, many of the differentially altered proteins were associated with lipid/glucose metabolism, which were also linked to Glycolysis, MAPK, Wnt, NF-kB, NOTCH and epithelial-mesenchymal transition (EMT) signaling pathways. These results have revealed a novel mechanism that SBP1-mediated cancer inhibition is through altering lipid/glucose metabolic signaling pathways. PMID:25974208
USDA-ARS?s Scientific Manuscript database
In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approxima...
Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette
2009-12-18
Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.
Yuan, Yaxia; Zhu, Jun; Zhan, Chang-Guo
2018-03-09
Molecular modeling and molecular dynamics simulations were performed in the present study to examine the modes of dopamine binding with human and Drosophila dopamine transporters (hDAT and dDAT). The computational data revealed flipped binding orientations of dopamine in hDAT and dDAT due to the major differences in three key residues (S149, G153, and A423 of hDAT vs A117, D121, and S422 of dDAT) in the binding pocket. These three residues dictate the binding orientation of dopamine in the binding pocket, as the aromatic ring of dopamine tends to take an orientation with both the para- and meta-hydroxyl groups being close to polar residues and away from nonpolar residues of the protein. The flipped binding orientations of dopamine in hDAT and dDAT clearly demonstrate a generally valuable insight concerning how the species difference could drastically affect the protein-ligand binding modes, demonstrating that the species difference, which is a factor rarely considered in early drug design stage, must be accounted for throughout the ligand/drug design and discovery processes in general.
Deletion of transcription factor binding motifs using the CRISPR/spCas9 system in the β-globin LCR.
Kim, Yea Woon; Kim, AeRi
2017-07-20
Transcription factors play roles in gene transcription through direct binding to their motifs in genome, and inhibiting this binding provides an effective strategy for studying their roles. Here we applied the CRISPR/spCas9 system to mutate the binding motifs of transcription factors. Binding motifs for erythroid specific transcription factors were mutated in the locus control region hypersensitive sites of the human β-globin locus. Guide RNAs targeting binding motifs were cloned into lentiviral CRISPR vector containing the spCas9 gene, and transduced into MEL/ch11 cells carrying a human chromosome 11. DNA mutations in clonal cells were initially screened by quantitative PCR in genomic DNA and then clarified by sequencing. Mutations in binding motifs reduced occupancy by transcription factors in a chromatin environment. Characterization of mutations revealed that the CRISPR/spCas9 system mainly induced deletions in short regions of <20 bp and preferentially deleted nucleotides around the fifth nucleotide upstream of Protospacer adjacent motifs. These results indicate that the CRISPR/Cas9 system is suitable for mutating the binding motifs of transcription factors, and, consequently, would contribute to elucidate the direct roles of transcription factors. ©2017 The Author(s).
Lape, Michael; Paula, Stefan; Ball, William J
2010-06-01
Immunotherapy by cocaine-binding monoclonal antibodies (mAbs) has emerged as a promising strategy for the treatment of cocaine addiction. The human (gamma1 heavy chain)/murine (lambda light chain) chimeric mAb 2E2 has excellent affinity and specificity for cocaine and recent animal studies have demonstrated 2E2's ability in vivo to reduce cocaine levels in the brain as well as alter cocaine self-administration behavior in rats. In this study, we used mAb 2E2 amino acid sequence information to create a homology model for the 3-D structure of its Fv fragment. Subsequent computational docking studies revealed the intermolecular interactions potentially responsible for mAb 2E2's cocaine binding properties. The driving force of cocaine binding was identified as a combination of hydrophobic interactions and a single hydrogen bond between a light chain tyrosine residue and a carbonyl oxygen atom of cocaine. The model also allowed for an in silico evaluation of single/double residue mutations in the heavy and light chain variable regions that might further enhance mAb 2E2's cocaine binding properties. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Lape, Michael; Paula, Stefan; Ball, William J.
2010-01-01
Immunotherapy by cocaine-binding monoclonal antibodies (mAbs) has emerged as a promising strategy for the treatment of cocaine addiction. The human (γ1 heavy chain)/murine (λ light chain) chimeric mAb 2E2 has excellent affinity and specificity for cocaine and recent animal studies have demonstrated 2E2’s ability in vivo to reduce cocaine levels in the brain as well as alter cocaine self-administration behavior in rats. In this study, we used mAb 2E2 amino acid sequence information to create a homology model for the 3-D structure of its Fv fragment. Subsequent computational docking studies revealed the intermolecular interactions potentially responsible for mAb 2E2’s cocaine binding properties. The driving force of cocaine binding was identified as a combination of hydrophobic interactions and a single hydrogen bond between a light chain tyrosine residue and a carbonyl oxygen atom of cocaine. The model also allowed for an in silico evaluation of single/double residue mutations in the heavy and light chain variable regions that might further enhance mAb 2E2’s cocaine binding properties. PMID:20185210
Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective.
Hu, Xiaotang; Li, Hongbin
2014-10-01
Protein-ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein-ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein-ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein-ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Stoffers, D.; Winogrodzka, A.; Isaias, I.-U.; Costantino, G.; Pezzoli, G.; Ferrarese, C.; Antonini, A.; Wolters, E.-Ch.; Booij, J.
2008-01-01
In vitro studies revealed serotonin transporter (5-HTT) decline in Parkinson’s disease (PD). Yet, few studies investigated thalamic 5-HTT in vivo and its effect on PD heterogeneity. We analyzed thalamic [123I]β-CIT binding (mainly reflecting 5-HTT binding) in 32 drug-naïve PD patients and 13 controls with SPECT. Twenty-six patients were examined twice (17 months apart). Based on UPDRS scores, we identified subgroups of patients with moderate/severe tremor (PDT) and without tremor (PDWT) at the time of clinical diagnosis. Additionally, depressive symptoms were evaluated using the Beck Depression Inventory (BDI) at baseline. Mean thalamic specific to non-specific [123I]β-CIT binding ratio was lower in patients when compared to controls, and further decreased during follow-up. At baseline, average thalamic ratio was significantly lower in the PDT than in the PDWT subgroup. No correlation was found between BDI scores and thalamic binding ratios. Our findings show decline of [123I]β-CIT binding to thalamic 5-HTT in PD and its possible contribution to tremor onset. PMID:18335163
Basu, Anirban; Kumar, Gopinatha Suresh
2016-12-01
Interaction of proflavine with hemoglobin (Hgb) was studied employing spectroscopy, calorimetry, and atomic force microscopy. The equilibrium constant was found to be of the order 10 4 M -1 . The quenching of Hgb fluorescence by proflavine was due to the complex formation. Calculation of the molecular distance (r) between the donor (β-Trp37 of Hgb) and acceptor (proflavine) suggested that energy can be efficiently transferred from the β-Trp37 residue at the α1β2 interface of the protein to the dye. Proflavine induced significant secondary structural changes in Hgb. Synchronous fluorescence studies showed that proflavine altered the microenvironment around the tryptophan residues to a greater extent than the tyrosine residues. Circular dichroism spectral studies showed that proflavine caused significant reduction in the α-helical content of Hgb. The esterase activity assay further complemented the circular dichroism data. The Soret band intensity of Hgb decreased upon complexation. Differential scanning calorimetry and circular dichroism melting results revealed that proflavine induced destabilization of Hgb. The binding was driven by both positive entropy and negative enthalpy. Atomic force microscopy studies revealed that the essential morphological features of hemoglobin were retained in the presence of proflavine. Overall, insights on the photophysical aspects and energetics of the binding of proflavine with Hgb are presented. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.
2017-08-01
The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.
Ramesh, Chinnasamy; Nayak, Tapan K; Burai, Ritwik; Dennis, Megan K; Hathaway, Helen J; Sklar, Larry A; Prossnitz, Eric R; Arterburn, Jeffrey B
2010-02-11
A series of iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines was synthesized as potential targeted imaging agents for the G protein-coupled estrogen receptor GPR30. The affinity and specificity of binding to GPR30 versus the classical estrogen receptors ER alpha/beta and functional responses associated with ligand-binding were determined. Selected iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines exhibited IC(50) values lower than 20 nM in competitive binding studies with GPR30-expressing human endometrial cancer cells. These compounds functioned as antagonists of GPR30 and blocked estrogen-induced PI3K activation and calcium mobilization. The tributylstannyl precursors of selected compounds were radiolabeled with (125)I using the iodogen method. In vivo biodistribution studies in female ovariectomized athymic (NCr) nu/nu mice bearing GPR30-expressing human endometrial tumors revealed GPR30-mediated uptake of the radiotracer ligands in tumor, adrenal, and reproductive organs. Biodistribution and quantitative SPECT/CT studies revealed structurally related differences in the pharmacokinetic profiles, target tissue uptake, and metabolism of the radiolabeled compounds as well as differences in susceptibility to deiodination. The high lipophilicity of the compounds adversely affects the in vivo biodistribution and clearance of these radioligands and suggests that further optimization of this parameter may lead to improved targeting characteristics.
Middha, Sushil Kumar; Goyal, Arvind Kumar; Faizan, Syed Ahmed; Sanghamitra, Nethramurthy; Basistha, Bharat Chandra; Usha, Talambedu
2013-11-01
Type 2 diabetes is an inevitably progressive disease, with irreversible beta cell failure. Glycogen synthase kinase and Glukokinase, two important enzymes with diverse biological actions in carbohydrate metabolism, are promising targets for developing novel antidiabetic drugs. A combinatorial structure-based molecular docking and pharmacophore modelling study was performed with the compounds of Hippophae salicifolia and H. rhamnoides as inhibitors. Docking with Discovery Studio 3.5 revealed that two compounds from H. salicifolia, viz Lutein D and an analogue of Zeaxanthin, and two compounds from H. rhamnoides, viz Isorhamnetin-3-rhamnoside and Isorhamnetin-7-glucoside, bind significantly to the GSK-3 beta receptor and play a role in its inhibition; whereas in the case of Glucokinase, only one compound from both the plants, i.e. vitamin C, had good binding characteristics capable of activation. The results help to understand the type of interactions that occur between the ligands and the receptors. Toxicity predictions revealed that none of the compounds had hepatotoxic effects and had good absorption as well as solubility characteristics. The compounds did not possess plasma protein-binding, crossing blood-brain barrier ability. Further, in vivo and in vitro studies need to be performed to prove that these compounds can be used effectively as antidiabetic drugs.
Er, Tze-Kiong; Chen, Chih-Chieh; Liu, Yen-Yi; Chang, Hui-Chiu; Chien, Yin-Hsiu; Chang, Jan-Gowth; Hwang, Jenn-Kang; Jong, Yuh-Jyh
2011-10-21
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an autosomal recessive disease caused by the defects in the mitochondrial electron transfer system and the metabolism of fatty acids. Recently, mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene, encoding electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) have been reported to be the major causes of riboflavin-responsive MADD. To date, no studies have been performed to explore the functional impact of these mutations or their mechanism of disrupting enzyme activity. High resolution melting (HRM) analysis and sequencing of the entire ETFDH gene revealed a novel mutation (p.Phe128Ser) and the hotspot mutation (p.Ala84Thr) from a patient with MADD. According to the predicted 3D structure of ETF:QO, the two mutations are located within the flavin adenine dinucleotide (FAD) binding domain; however, the two residues do not have direct interactions with the FAD ligand. Using molecular dynamics (MD) simulations and normal mode analysis (NMA), we found that the p.Ala84Thr and p.Phe128Ser mutations are most likely to alter the protein structure near the FAD binding site as well as disrupt the stability of the FAD binding required for the activation of ETF:QO. Intriguingly, NMA revealed that several reported disease-causing mutations in the ETF:QO protein show highly correlated motions with the FAD-binding site. Based on the present findings, we conclude that the changes made to the amino acids in ETF:QO are likely to influence the FAD-binding stability.
2011-01-01
Background Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an autosomal recessive disease caused by the defects in the mitochondrial electron transfer system and the metabolism of fatty acids. Recently, mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene, encoding electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) have been reported to be the major causes of riboflavin-responsive MADD. To date, no studies have been performed to explore the functional impact of these mutations or their mechanism of disrupting enzyme activity. Results High resolution melting (HRM) analysis and sequencing of the entire ETFDH gene revealed a novel mutation (p.Phe128Ser) and the hotspot mutation (p.Ala84Thr) from a patient with MADD. According to the predicted 3D structure of ETF:QO, the two mutations are located within the flavin adenine dinucleotide (FAD) binding domain; however, the two residues do not have direct interactions with the FAD ligand. Using molecular dynamics (MD) simulations and normal mode analysis (NMA), we found that the p.Ala84Thr and p.Phe128Ser mutations are most likely to alter the protein structure near the FAD binding site as well as disrupt the stability of the FAD binding required for the activation of ETF:QO. Intriguingly, NMA revealed that several reported disease-causing mutations in the ETF:QO protein show highly correlated motions with the FAD-binding site. Conclusions Based on the present findings, we conclude that the changes made to the amino acids in ETF:QO are likely to influence the FAD-binding stability. PMID:22013910
Myers, James FM; Rosso, Lula; Watson, Ben J; Wilson, Sue J; Kalk, Nicola J; Clementi, Nicoletta; Brooks, David J; Nutt, David J; Turkheimer, Federico E; Lingford-Hughes, Anne R
2012-01-01
This positron emission tomography (PET) study aimed to further define selectivity of [11C]Ro15-4513 binding to the GABARα5 relative to the GABARα1 benzodiazepine receptor subtype. The impact of zolpidem, a GABARα1-selective agonist, on [11C]Ro15-4513, which shows selectivity for GABARα5, and the nonselective benzodiazepine ligand [11C]flumazenil binding was assessed in humans. Compartmental modelling of the kinetics of [11C]Ro15-4513 time-activity curves was used to describe distribution volume (VT) differences in regions populated by different GABA receptor subtypes. Those with low α5 were best fitted by one-tissue compartment models; and those with high α5 required a more complex model. The heterogeneity between brain regions suggested spectral analysis as a more appropriate method to quantify binding as it does not a priori specify compartments. Spectral analysis revealed that zolpidem caused a significant VT decrease (∼10%) in [11C]flumazenil, but no decrease in [11C]Ro15-4513 binding. Further analysis of [11C]Ro15-4513 kinetics revealed additional frequency components present in regions containing both α1 and α5 subtypes compared with those containing only α1. Zolpidem reduced one component (mean±s.d.: 71%±41%), presumed to reflect α1-subtype binding, but not another (13%±22%), presumed to reflect α5. The proposed method for [11C]Ro15-4513 analysis may allow more accurate selective binding assays and estimation of drug occupancy for other nonselective ligands. PMID:22214903
Hironiwa, N; Ishii, S; Kadono, S; Iwayanagi, Y; Mimoto, F; Habu, K; Igawa, T; Hattori, K
2016-01-01
The pH-dependent antigen binding antibody, termed a recycling antibody, has recently been reported as an attractive type of second-generation engineered therapeutic antibody. A recycling antibody can dissociate antigen in the acidic endosome, and thus bind to its antigen multiple times. As a consequence, a recycling antibody can neutralize large amounts of antigen in plasma. Because this approach relies on histidine residues to achieve pH-dependent antigen binding, which could limit the epitopes that can be targeted and affect the rate of antigen dissociation in the endosome, we explored an alternative approach for generating recycling antibodies. Since calcium ion concentration is known to be lower in endosome than in plasma, we hypothesized that an antibody with antigen-binding properties that are calcium-dependent could be used as recycling antibody. Here, we report a novel anti-interleukin-6 receptor (IL-6R) antibody, identified from a phage library that binds to IL-6R only in the presence of a calcium ion. Thermal dynamics and a crystal structure study revealed that the calcium ion binds to the heavy chain CDR3 region (HCDR3), which changes and possibly stabilizes the structure of HCDR3 to make it bind to antigen calcium dependently (PDB 5AZE). In vitro and in vivo studies confirmed that this calcium-dependent antigen-binding antibody can dissociate its antigen in the endosome and accelerate antigen clearance from plasma, making it a novel approach for generating recycling antibody. PMID:26496237
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.
2016-01-01
The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.
Carbone, V; Kim, H; Huang, J X; Baker, M A; Ong, C; Cooper, M A; Li, J; Rockman, S; Velkov, T
2013-01-01
Selectivity of α2,6-linked human-like receptors by B hemagglutinin (HA) is yet to be fully understood. This study integrates binding data with structure-recognition models to examine the impact of regional-specific sequence variations within the receptor-binding pocket on selectivity and structure activity relationships (SAR). The receptor-binding selectivity of influenza B HAs corresponding to either B/Victoria/2/1987 or the B/Yamagata/16/88 lineages was examined using surface plasmon resonance, solid-phase ELISA and gel-capture assays. Our SAR data showed that the presence of asialyl sugar units is the main determinant of receptor preference of α2,6 versus α2,3 receptor binding. Changes to the type of sialyl-glycan linkage present on receptors exhibit only a minor effect upon binding affinity. Homology-based structural models revealed that structural properties within the HA pocket, such as a glyco-conjugate at Asn194 on the 190-helix, sterically interfere with binding to avian receptor analogs by blocking the exit path of the asialyl sugars. Similarly, naturally occurring substitutions in the C-terminal region of the 190-helix and near the N-terminal end of the 140-loop narrows the horizontal borders of the binding pocket, which restricts access of the avian receptor analog LSTa. This study helps bridge the gap between ligand structure and receptor recognition for influenza B HA; and provides a consensus SAR model for the binding of human and avian receptor analogs to influenza B HA.
Cooley, Anne E; Riley, Sean P; Kral, Keith; Miller, M Clarke; DeMoll, Edward; Fried, Michael G; Stevenson, Brian
2009-07-13
Genes orthologous to the ybaB loci of Escherichia coli and Haemophilus influenzae are widely distributed among eubacteria. Several years ago, the three-dimensional structures of the YbaB orthologs of both E. coli and H. influenzae were determined, revealing a novel "tweezer"-like structure. However, a function for YbaB had remained elusive, with an early study of the H. influenzae ortholog failing to detect DNA-binding activity. Our group recently determined that the Borrelia burgdorferi YbaB ortholog, EbfC, is a DNA-binding protein. To reconcile those results, we assessed the abilities of both the H. influenzae and E. coli YbaB proteins to bind DNA to which B. burgdorferi EbfC can bind. Both the H. influenzae and the E. coli YbaB proteins bound to tested DNAs. DNA-binding was not well competed with poly-dI-dC, indicating some sequence preferences for those two proteins. Analyses of binding characteristics determined that both YbaB orthologs bind as homodimers. Different DNA sequence preferences were observed between H. influenzae YbaB, E. coli YbaB and B. burgdorferi EbfC, consistent with amino acid differences in the putative DNA-binding domains of these proteins. Three distinct members of the YbaB/EbfC bacterial protein family have now been demonstrated to bind DNA. Members of this protein family are encoded by a broad range of bacteria, including many pathogenic species, and results of our studies suggest that all such proteins have DNA-binding activities. The functions of YbaB/EbfC family members in each bacterial species are as-yet unknown, but given the ubiquity of these DNA-binding proteins among Eubacteria, further investigations are warranted.
Nithya, Palanivelu; Helena, Sannasi; Simpson, Jim; Ilanchelian, Malaichamy; Muthusankar, Aathi; Govindarajan, Subbiah
2016-12-01
In the present study, new Schiff base complexes with the composition [M(NCS) 2 (L1) 2 ]·nH 2 O, where M=Co (n=0) (1) and Ni (n=2) (2); [M(NCS) 2 (L2) 2 ], M=Co (3) and Ni (4) as well as [M(NCS) 2 (L3) 2 ], M=Co (5) and Ni (6); (L1=benzyl 2-(propan-2-ylidene)hydrazinecarboxylate, L2=benzyl 2-(butan-2-ylidene)hydrazinecarboxylate and L3=benzyl 2-(pentan-3-ylidene)hydrazinecarboxylate) have been synthesized by a template method. The complexes were characterised by analytical methods, spectroscopic studies, thermal and X-ray diffraction techniques. The structures of all the complexes explore that the metal(II) cation has a trans-planar coordination environment, the monomeric units containing a six-coordinated metal center in octahedral geometry with N-bound isothiocyanate anions coordinated as terminal ligands. Furthermore, the binding of the two Schiff base ligands to the metal centers involves the azomethine nitrogen and the carbonyl oxygen in mutually trans configuration. The binding interactions of all the complexes with Calf thymus-deoxyribonucleic acid (CT-DNA) and human serum albumin (HSA) have been investigated using absorption and emission spectral techniques. The CT-DNA binding properties of these complexes reveal that they bind to CT-DNA through a partial intercalation mode and the binding constant values were calculated using the absorption and emission spectral data. The binding constant values (~10×10 6 moldm -3 ) indicate strong binding of metal complexes with CT-DNA. HSA binding interaction studies showed that the cobalt and nickel complexes can quench the intrinsic fluorescence of HSA through static quenching process. Also, molecular docking studies were supported out to apprehend the binding interactions of these complexes with DNA and HSA which offer new understandings into the experimental model observations. Copyright © 2016 Elsevier B.V. All rights reserved.
Chouquet, Anne; Païdassi, Helena; Ling, Wai Li; Frachet, Philippe; Houen, Gunnar; Arlaud, Gérard J.; Gaboriaud, Christine
2011-01-01
In the endoplasmic reticulum, calreticulin acts as a chaperone and a Ca2+-signalling protein. At the cell surface, it mediates numerous important biological effects. The crystal structure of the human calreticulin globular domain was solved at 1.55 Å resolution. Interactions of the flexible N-terminal extension with the edge of the lectin site are consistently observed, revealing a hitherto unidentified peptide-binding site. A calreticulin molecular zipper, observed in all crystal lattices, could further extend this site by creating a binding cavity lined by hydrophobic residues. These data thus provide a first structural insight into the lectin-independent binding properties of calreticulin and suggest new working hypotheses, including that of a multi-molecular mechanism. PMID:21423620
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unterberger, Claudia; Hanson, Steven; Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN
Little is known about determinants regulating expression of Mannan-binding lectin associated serine protease-2 (MASP-2), the effector component of the lectin pathway of complement activation. Comparative bioinformatic analysis of the MASP2 promoter regions in human, mouse, and rat, revealed conservation of two putative Stat binding sites, termed StatA and StatB. Site directed mutagenesis specific for these sites was performed. Transcription activity was decreased 5-fold when StatB site was mutated in the wildtype reporter gene construct. Gel retardation and competition assays demonstrated that proteins contained in the nuclear extract prepared from HepG2 specifically bound double-stranded StatB oligonucleotides. Supershift analysis revealed Stat3 tomore » be the major specific binding protein. We conclude that Stat3 binding is important for MASP2 promoter activity.« less
NASA Technical Reports Server (NTRS)
Hu, Shaowen; Cucinotta, Francis A.
2009-01-01
The Ku70/80 heterodimer is the first repair protein in the initial binding of double-strand break (DSB) ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. In this study we constructed a full-length human Ku70 structure based on its crystal structure, and performed 20 ns conventional molecular dynamic (CMD) simulations on this protein and several other complexes with short DNA duplexes of different sequences. The trajectories of these simulations indicated that, without the topological support of Ku80, the residues in the bridge and C-terminal arm of Ku70 are more flexible than other experimentally identified domains. We studied the two missing loops in the crystal structure and predicted that they are also very flexible. Simulations revealed that they make an important contribution to the Ku70 interaction with DNA. Dislocation of the previously studied SAP domain was observed in several systems, implying its role in DNA binding. Targeted molecular dynamic (TMD) simulation was also performed for one system with a far-away 14bp DNA duplex. The TMD trajectory and energetic analysis disclosed detailed interactions of the DNA-binding residues during the DNA dislocation, and revealed a possible conformational transition for a DSB end when encountering Ku70 in solution. Compared to experimentally based analysis, this study identified more detailed interactions between DNA and Ku70. Free energy analysis indicated Ku70 alone is able to bind DNA with relatively high affinity, with consistent contributions from various domains of Ku70 in different systems. The functional implications of these domains in the processes of Ku heterodimerization and DNA damage recognition and repair can be characterized in detail based upon this analysis.
Patzke, Christopher; Max, Klaas E A; Behlke, Joachim; Schreiber, Jadwiga; Schmidt, Hannes; Dorner, Armin A; Kröger, Stephan; Henning, Mechthild; Otto, Albrecht; Heinemann, Udo; Rathjen, Fritz G
2010-02-24
The coxsackievirus-adenovirus receptor (CAR) is a member of the Ig superfamily strongly expressed in the developing nervous system. Our histological investigations during development reveal an initial uniform distribution of CAR on all neural cells with a concentration on membranes that face the margins of the nervous system (e.g., the basal laminae and the ventricular side). At more advanced stages, CAR becomes downregulated and restricted to specific regions including areas rich in axonal and dendritic surfaces. To study the function of CAR on neural cells, we used the fiber knob of the adenovirus, extracellular CAR domains, blocking antibodies to CAR, as well as CAR-deficient neural cells. Blocking antibodies were found to inhibit neurite extension in retina organ and retinal explant cultures, whereas the application of the recombinant fiber knob of the adenovirus subtype Ad2 or extracellular CAR domains promoted neurite extension and adhesion to extracellular matrices. We observed a promiscuous interaction of CAR with extracellular matrix glycoproteins, which was deduced from analytical ultracentrifugation experiments, affinity chromatography, and adhesion assays. The membrane proximal Ig domain of CAR, termed D2, was found to bind to a fibronectin fragment, including the heparin-binding domain 2, which promotes neurite extension of wild type, but not of CAR-deficient neural cells. In contrast to heterophilic interactions, homophilic association of CAR involves both Ig domains, as was revealed by ultracentrifugation, chemical cross-linking, and adhesion studies. The results of these functional and binding studies are correlated to a U-shaped homodimer of the complete extracellular domains of CAR detected by x-ray crystallography.
Interaction of Human Hemoglobin with Methotrexate
NASA Astrophysics Data System (ADS)
Zaharia, M.; Gradinaru, R.
2015-05-01
This study focuses on the interaction between methotrexate and human hemoglobin using steady-state ultraviolet-visible and fluorescence quenching methods. Fluorescence quenching was found to be valuable in assessing drug binding to hemoglobin. The quenching of methotrexate is slightly smaller than the quenching observed with related analogs (dihydrofolate and tetrahydrofolate). The quenching studies were performed at four different temperatures and various pH values. The number of binding sites for tryptophan is ~1. Parameter-dependent assays revealed that electrostatic forces play an essential role in the methotrexate-hemoglobin interaction. Furthermore, the complex was easily eluted using gel filtration chromatography.
The Actin Nucleator Cobl Is Controlled by Calcium and Calmodulin
Haag, Natja; Kessels, Michael M.; Qualmann, Britta
2015-01-01
Actin nucleation triggers the formation of new actin filaments and has the power to shape cells but requires tight control in order to bring about proper morphologies. The regulation of the members of the novel class of WASP Homology 2 (WH2) domain-based actin nucleators, however, thus far has largely remained elusive. Our study reveals signal cascades and mechanisms regulating Cordon-Bleu (Cobl). Cobl plays some, albeit not fully understood, role in early arborization of neurons and nucleates actin by a mechanism that requires a combination of all three of its actin monomer–binding WH2 domains. Our experiments reveal that Cobl is regulated by Ca2+ and multiple, direct associations of the Ca2+ sensor Calmodulin (CaM). Overexpression analyses and rescue experiments of Cobl loss-of-function phenotypes with Cobl mutants in primary neurons and in tissue slices demonstrated the importance of CaM binding for Cobl’s functions. Cobl-induced dendritic branch initiation was preceded by Ca2+ signals and coincided with local F-actin and CaM accumulations. CaM inhibitor studies showed that Cobl-mediated branching is strictly dependent on CaM activity. Mechanistic studies revealed that Ca2+/CaM modulates Cobl’s actin binding properties and furthermore promotes Cobl’s previously identified interactions with the membrane-shaping F-BAR protein syndapin I, which accumulated with Cobl at nascent dendritic protrusion sites. The findings of our study demonstrate a direct regulation of an actin nucleator by Ca2+/CaM and reveal that the Ca2+/CaM-controlled molecular mechanisms we discovered are crucial for Cobl’s cellular functions. By unveiling the means of Cobl regulation and the mechanisms, by which Ca2+/CaM signals directly converge on a cellular effector promoting actin filament formation, our work furthermore sheds light on how local Ca2+ signals steer and power branch initiation during early arborization of nerve cells—a key process in neuronal network formation. PMID:26334624
Iarkova, M A
2011-01-01
The level of specific 3H-flunitrazepam binding in synaptosomal membranes of C57BL/6 and BALB/c mice brain underwent to the stress of different types has been studied. Mild stress (Elevated Plus Maze) was shown to induce the decrease of benzodiazepine binding in BALB/c mice only, while the strong one (Exposure to a predator) was revealed to cause this decrease in both strains. Behavioral effects of different non-benzodiazepine drugs possessing anxiolytic properties (Afobazol, Ladasten and Noopept) was accompanied with the normalization of the level of benzodiazepine reception, reduced by the stress of both modalities.
Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya
2014-07-01
Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, Nils; Scherthan, Harry
The telomere binding proteins TRF1 and TRF2 maintain and protect chromosome ends and confer karyotypic stability. Chromosome evolution in the genus Muntiacus is characterized by numerous tandem (end-to-end) fusions. To study TRF1 and TRF2 telomere binding proteins in Muntiacus species, we isolated and characterized the TERF1 and -2 genes from Indian muntjac (Muntiacus muntjak vaginalis; 2n = 6 female) and from Chinese muntjac (Muntiacus reveesi; 2n = 46). Expression analysis revealed that both genes are ubiquitously expressed and sequence analysis identified several transcript variants of both TERF genes. Control experiments disclosed a novel testis-specific splice variant of TERF1 in humanmore » testes. Amino acid sequence comparisons demonstrate that Muntiacus TRF1 and in particular TRF2 are highly conserved between muntjac and human. In vivo TRF2-GFP and immuno-staining studies in muntjac cell lines revealed telomeric TRF2 localization, while deletion of the DNA binding domain abrogated this localization, suggesting muntjac TRF2 represents a functional telomere protein. Finally, expression analysis of a set of telomere-related genes revealed their presence in muntjac fibroblasts and testis tissue, which suggests the presence of a conserved telomere complex in muntjacs. However, a deviation from the common theme was noted for the TERT gene, encoding the catalytic subunit of telomerase; TERT expression could not be detected in Indian or Chinese muntjac cDNA or genomic DNA using a series of conserved primers, while TRAP assay revealed functional telomerase in Chinese muntjac testis tissues. This suggests muntjacs may harbor a diverged telomerase sequence.« less
Diddens, Diddo; Lesch, Volker; Heuer, Andreas; Smiatek, Jens
2017-08-09
Low concentrated aqueous ionic liquids (ILs) and their influence on protein structures have attracted a lot of interest over the last few years. This can be mostly attributed to the fact that aqueous ILs, depending on the ion species involved, can be used as protein protectants or protein denaturants. Atomistic molecular dynamics (MD) simulations are performed in order to study the influence of different aprotic ILs on the properties of a short hairpin peptide. Our results reveal distinct binding and denaturation effects for 1-ethyl-3-methylimidazolium (EMIM) in combination with different anions, namely, chloride (CL), tetrafluoroborate (BF4) and acetate (ACE). The simulation outcomes demonstrate that the studied ILs with larger anions reveal a more pronounced accumulation behavior of the individual ion species around the peptide, which is accomplished by a stronger dehydration effect. We can relate these findings to the implications of the Kirkwood-Buff theory, which provides a thermodynamic explanation for the denaturation strength in terms of the IL accumulation behavior. The results for the spatial distribution functions, the binding energies and the local/bulk partition coefficients are in good agreement with metadynamics simulations in order to determine the energetically most stable peptide conformations. The free energy landscapes indicate a decrease of the denaturation strength in the order EMIM/ACE, EMIM/BF4 and EMIM/CL, which coincides with a decreasing size of the anion species. An analysis of the potential binding energies reveals that this effect is mainly of enthalpic nature.
Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin
2016-11-16
An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.
Larrea, Christian R.; Narouz, Mina R.; Mosey, Nicholas J.; Horton, J. Hugh; Crudden, Cathleen M.
2017-01-01
Abstract Self‐assembled monolayers of N‐heterocyclic carbenes (NHCs) on copper are reported. The monolayer structure is highly dependent on the N,N‐substituents on the NHC. On both Cu(111) and Au(111), bulky isopropyl substituents force the NHC to bind perpendicular to the metal surface while methyl‐ or ethyl‐substituted NHCs lie flat. Temperature‐programmed desorption studies show that the NHC binds to Cu(111) with a desorption energy of E des=152±10 kJ mol−1. NHCs that bind upright desorb cleanly, while flat‐lying NHCs decompose leaving adsorbed organic residues. Scanning tunneling microscopy of methylated NHCs reveals arrays of covalently linked dimers which transform into adsorbed (NHC)2Cu species by extraction of a copper atom from the surface after annealing. PMID:28960768
Winata, Cecilia L; Kondrychyn, Igor; Kumar, Vibhor; Srinivasan, Kandhadayar G; Orlov, Yuriy; Ravishankar, Ashwini; Prabhakar, Shyam; Stanton, Lawrence W; Korzh, Vladimir; Mathavan, Sinnakaruppan
2013-10-01
Zic3 regulates early embryonic patterning in vertebrates. Loss of Zic3 function is known to disrupt gastrulation, left-right patterning, and neurogenesis. However, molecular events downstream of this transcription factor are poorly characterized. Here we use the zebrafish as a model to study the developmental role of Zic3 in vivo, by applying a combination of two powerful genomics approaches--ChIP-seq and microarray. Besides confirming direct regulation of previously implicated Zic3 targets of the Nodal and canonical Wnt pathways, analysis of gastrula stage embryos uncovered a number of novel candidate target genes, among which were members of the non-canonical Wnt pathway and the neural pre-pattern genes. A similar analysis in zic3-expressing cells obtained by FACS at segmentation stage revealed a dramatic shift in Zic3 binding site locations and identified an entirely distinct set of target genes associated with later developmental functions such as neural development. We demonstrate cis-regulation of several of these target genes by Zic3 using in vivo enhancer assay. Analysis of Zic3 binding sites revealed a distribution biased towards distal intergenic regions, indicative of a long distance regulatory mechanism; some of these binding sites are highly conserved during evolution and act as functional enhancers. This demonstrated that Zic3 regulation of developmental genes is achieved predominantly through long distance regulatory mechanism and revealed that developmental transitions could be accompanied by dramatic changes in regulatory landscape.
Ithuralde, Raúl Esteban; Roitberg, Adrián Enrique; Turjanski, Adrián Gustavo
2016-07-20
Intrinsically disordered proteins (IDPs) are a set of proteins that lack a definite secondary structure in solution. IDPs can acquire tertiary structure when bound to their partners; therefore, the recognition process must also involve protein folding. The nature of the transition state (TS), structured or unstructured, determines the binding mechanism. The characterization of the TS has become a major challenge for experimental techniques and molecular simulations approaches since diffusion, recognition, and binding is coupled to folding. In this work we present atomistic molecular dynamics (MD) simulations that sample the free energy surface of the coupled folding and binding of the transcription factor c-myb to the cotranscription factor CREB binding protein (CBP). This process has been recently studied and became a model to study IDPs. Despite the plethora of available information, we still do not know how c-myb binds to CBP. We performed a set of atomistic biased MD simulations running a total of 15.6 μs. Our results show that c-myb folds very fast upon binding to CBP with no unique pathway for binding. The process can proceed through both structured or unstructured TS's with similar probabilities. This finding reconciles previous seemingly different experimental results. We also performed Go-type coarse-grained MD of several structured and unstructured models that indicate that coupled folding and binding follows a native contact mechanism. To the best of our knowledge, this is the first atomistic MD simulation that samples the free energy surface of the coupled folding and binding processes of IDPs.
Binding Sites Analyser (BiSA): Software for Genomic Binding Sites Archiving and Overlap Analysis
Khushi, Matloob; Liddle, Christopher; Clarke, Christine L.; Graham, J. Dinny
2014-01-01
Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions. Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed transcription factor DNA binding site analyser software (BiSA), for archiving of binding regions and easy identification of overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone modifications, which can be directly compared to user data. The documentation and source code are available on http://bisa.sourceforge.net PMID:24533055
NASA Astrophysics Data System (ADS)
Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju
2014-06-01
Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.
Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L
2017-07-18
Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.
NASA Astrophysics Data System (ADS)
Woods, Christopher J.; Malaisree, Maturos; Long, Ben; McIntosh-Smith, Simon; Mulholland, Adrian J.
2013-12-01
The emergence of a novel H7N9 avian influenza that infects humans is a serious cause for concern. Of the genome sequences of H7N9 neuraminidase available, one contains a substitution of arginine to lysine at position 292, suggesting a potential for reduced drug binding efficacy. We have performed molecular dynamics simulations of oseltamivir, zanamivir and peramivir bound to H7N9, H7N9-R292K, and a structurally related H11N9 neuraminidase. They show that H7N9 neuraminidase is structurally homologous to H11N9, binding the drugs in identical modes. The simulations reveal that the R292K mutation disrupts drug binding in H7N9 in a comparable manner to that observed experimentally for H11N9-R292K. Absolute binding free energy calculations with the WaterSwap method confirm a reduction in binding affinity. This indicates that the efficacy of antiviral drugs against H7N9-R292K will be reduced. Simulations can assist in predicting disruption of binding caused by mutations in neuraminidase, thereby providing a computational `assay.'
Nayak, Tapan K; Ramesh, Chinnasamy; Hathaway, Helen J; Norenberg, Jeffrey P; Arterburn, Jeffrey B; Prossnitz, Eric R
2014-11-01
Our understanding of estrogen (17β-estradiol, E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial, and ovarian cancers, establishing the importance of noninvasive methods to evaluate GPER expression in vivo. Here, we developed (99m)Tc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor (ER) and for GPER visualization in whole animals. A series of (99m)Tc(I)-labeled nonsteroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10 to 30 nmol/L range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties, whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4-1.1%ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, and mammary tissue), as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first-generation (99m)Tc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/image-guided drug delivery. These studies provide a molecular basis to evaluate GPER expression and function as an ER through in vivo imaging. ©2014 American Association for Cancer Research.
Ibrutinib targets mutant-EGFR kinase with a distinct binding conformation.
Wang, Aoli; Yan, Xiao-E; Wu, Hong; Wang, Wenchao; Hu, Chen; Chen, Cheng; Zhao, Zheng; Zhao, Peng; Li, Xixiang; Wang, Li; Wang, Beilei; Ye, Zi; Wang, Jinhua; Wang, Chu; Zhang, Wei; Gray, Nathanael S; Weisberg, Ellen L; Chen, Liang; Liu, Jing; Yun, Cai-Hong; Liu, Qingsong
2016-10-25
Ibrutinib, a clinically approved irreversible BTK kinase inhibitor for Mantle Cell Lymphoma (MCL) and Chronic Lymphocytic Leukemia (CLL) etc, has been reported to be potent against EGFR mutant kinase and currently being evaluated in clinic for Non Small Cell Lung Cancer (NSCLC). Through EGFR wt/mutant engineered isogenic BaF3 cell lines we confirmed the irreversible binding mode of Ibrutinib with EGFR wt/mutant kinase via Cys797. However, comparing to typical irreversible EGFR inhibitor, such as WZ4002, the washing-out experiments revealed a much less efficient covalent binding for Ibrutinib. The biochemical binding affinity examination in the EGFR L858R/T790M kinase revealed that, comparing to more efficient irreversible inhibitor WZ4002 (Kd: 0.074 μM), Ibrutinib exhibited less efficient binding (Kd: 0.18 μM). An X-ray crystal structure of EGFR (T790M) in complex with Ibrutinib exhibited a unique DFG-in/c-Helix-out inactive binding conformation, which partially explained the less efficiency of covalent binding and provided insight for further development of highly efficient irreversible binding inhibitor for the EGFR mutant kinase. These results also imply that, unlike the canonical irreversible inhibitor, sustained effective concentration might be required for Ibrutinib in order to achieve the maximal efficacy in the clinic application against EGFR driven NSCLC.
NASA Astrophysics Data System (ADS)
Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh
2016-09-01
The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298 K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb = (7.6 ± 0.21) × 105) between complex and protein have been obtained at 298 K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2 ± 0.11) × 106 M- 1. Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.
Churchill, Mair E.A.; Klass, Janet; Zoetewey, David L.
2010-01-01
The ubiquitous eukaryotic High-Mobility-Group-Box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and fifty base pairs of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1-boxA-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending. PMID:20800069
Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N; Klassen, John S; Ng, Kenneth K S
2014-01-24
Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.
Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N.; Klassen, John S.; Ng, Kenneth K. S.
2014-01-01
Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents. PMID:24311789
A novel class of dual-family immunophilins.
Adams, Brian; Musiyenko, Alla; Kumar, Rajinder; Barik, Sailen
2005-07-01
Immunophilins are protein chaperones with peptidylprolyl isomerase activity that belong to one of two large families, the cyclosporin-binding cyclophilins (CyPs) and the FK506-binding proteins (FKBPs). Each family displays characteristic and conserved sequence features that differ between the two families. We report a novel group of dual-family immunophilins that contain both CyP and FKBP domains for which we propose the name FCBP (FK506- and cyclosporin-binding protein). The FCBP of Toxoplasma gondii, a protozoan parasite, contained N-terminal FKBP and C-terminal CyP domains joined by tetratricopeptide repeats. Structure-function analysis revealed that both domains were functional and exhibited family-specific drug sensitivity. The individual domains of FCBP inhibited calcineurin (protein phosphatase 2B) in the presence of the appropriate drugs. In binding studies, FCBP recruited calcineurin in the presence of FK506 and a putative target of rapamycin homolog in the presence of rapamycin. Two additional FCBP sequences in Flavobacterium and one in Treponema (spirochete) were also identified in which the CyP and FKBP domains were in the reverse order. T. gondii growth was inhibited by cyclosporin and FK506 in a moderately synergistic manner. The knockdown of FCBP by RNA interference revealed its essentiality for T. gondii growth. Clearly, the FCBPs are novel chaperones and potential targets of multiple immunosuppressant drugs.
Kanaya, Shoko; Fujisaki, Waka; Nishida, Shin'ya; Furukawa, Shigeto; Yokosawa, Kazuhiko
2015-02-01
Temporal phase discrimination is a useful psychophysical task to evaluate how sensory signals, synchronously detected in parallel, are perceptually bound by human observers. In this task two stimulus sequences synchronously alternate between two states (say, A-B-A-B and X-Y-X-Y) in either of two temporal phases (ie A and B are respectively paired with X and Y, or vice versa). The critical alternation frequency beyond which participants cannot discriminate the temporal phase is measured as an index characterizing the temporal property of the underlying binding process. This task has been used to reveal the mechanisms underlying visual and cross-modal bindings. To directly compare these binding mechanisms with those in another modality, this study used the temporal phase discrimination task to reveal the processes underlying auditory bindings. The two sequences were alternations between two pitches. We manipulated the distance between the two sequences by changing intersequence frequency separation, or presentation ears (diotic vs dichotic). Results showed that the alternation frequency limit ranged from 7 to 30 Hz, becoming higher as the intersequence distance decreased, as is the case with vision. However, unlike vision, auditory phase discrimination limits were higher and more variable across participants. © 2015 SAGE Publications.
Takakusagi, Kaori; Takakusagi, Yoichi; Suzuki, Takahiro; Toizaki, Aya; Suzuki, Aiko; Kawakatsu, Yaichi; Watanabe, Madoka; Saito, Yukihiro; Fukuda, Ryushi; Nakazaki, Atsuo; Kobayashi, Susumu; Sakaguchi, Kengo; Sugawara, Fumio
2015-01-27
Roxithromycin (RXM) is a semi-synthetic fourteen-membered macrolide antibiotic that shows anti-angiogenic activity in solid tumors. In the present study, we conducted biopanning of T7 phage-displayed peptides either on a 96-well formatted microplate, a flow injection-type quartz-crystal microbalance (QCM) biosensor, or a cuvette-type QCM. RXM-selected peptides of different sequence, length and number were obtained from each mode of screening. Subsequent bioinformatics analysis of the RXM-selected peptides consistently gave positive scores for the extracellular domain (E458-T596) of angiomotin (Amot), indicating that this may comprise a binding region for RXM. Bead pull down assay and QCM analysis confirmed that RXM directly interacts with Amot via the screen-guided region, which also corresponds to the binding site for the endogenous anti-angiogenic inhibitor angiostatin (Anst). Thus, multimodal biopanning of T7PD revealed that RXM binds to the extracellular domain on Amot as a common binding site with Anst, leading to inhibition of angiogenesis-dependent tumor growth and metastasis. These data might explain the molecular basis underlying the mechanism of action for the anti-angiogenic activity of RXM. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Kumar, Gaurav; Tripathi, Amit Kumar; Seena, Sahadevan; Koh, Joonseok
2018-04-01
Hybrid derivatives are a fascinating and challenging process in the area of drug discovery. Naphthalimide derivatives with modified norfloxacin moiety were designed and synthesized. Docking simulations were done to assess the interactions of the derivatives with the E. coli type II topoisomerases Gyrase B and ParE ATP-binding pocket by taking novobiocin as a standard molecule. Results suggested that the norfloxacin substituted naphthalimide derivatives indicate red-shift emission maxima when compared to 4-bromo 1,8-naphthalic anhydride. The molecular docking simulation study revealed that the derivatives have similar interaction but a different mode of binding with the gyrase B ATP-binding pocket as compare to novobiocin. However, they bound to ParE ATP-binding pocket similarly to novobiocin. The antibacterial property was confirmed with disc diffusion method. Our study indicated that the norfloxacin substituted naphthalimide novel derivatives have pronounced fluorescence, anti-topoisomerase activity, and antibacterial properties; therefore, they could be developed into new drug candidates.
The importance of hydration thermodynamics in fragment-to-lead optimization.
Ichihara, Osamu; Shimada, Yuzo; Yoshidome, Daisuke
2014-12-01
Using a computational approach to assess changes in solvation thermodynamics upon ligand binding, we investigated the effects of water molecules on the binding energetics of over 20 fragment hits and their corresponding optimized lead compounds. Binding activity and X-ray crystallographic data of published fragment-to-lead optimization studies from various therapeutically relevant targets were studied. The analysis reveals a distinct difference between the thermodynamic profile of water molecules displaced by fragment hits and those displaced by the corresponding optimized lead compounds. Specifically, fragment hits tend to displace water molecules with notably unfavorable excess entropies-configurationally constrained water molecules-relative to those displaced by the newly added moieties of the lead compound during the course of fragment-to-lead optimization. Herein we describe the details of this analysis with the goal of providing practical guidelines for exploiting thermodynamic signatures of binding site water molecules in the context of fragment-to-lead optimization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Eierhoff, Thorsten; Hrincius, Eike R; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina
2010-09-09
Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake.
Gajda, Angela M; Storch, Judith
2015-02-01
Fatty acid-binding proteins (FABP) are highly abundant cytosolic proteins that are expressed in most mammalian tissues. In the intestinal enterocyte, both liver- (LFABP; FABP1) and intestinal FABPs (IFABP; FABP2) are expressed. These proteins display high-affinity binding for long-chain fatty acids (FA) and other hydrophobic ligands; thus, they are believed to be involved with uptake and trafficking of lipids in the intestine. In vitro studies have identified differences in ligand-binding stoichiometry and specificity, and in mechanisms of FA transfer to membranes, and it has been hypothesized that LFABP and IFABP have different functions in the enterocyte. Studies directly comparing LFABP- and IFABP-null mice have revealed markedly different phenotypes, indicating that these proteins indeed have different functions in intestinal lipid metabolism and whole body energy homeostasis. In this review, we discuss the evolving knowledge of the functions of LFABP and IFABP in the intestinal enterocyte. Copyright © 2014 Elsevier Ltd. All rights reserved.
Eierhoff, Thorsten; Hrincius, Eike R.; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina
2010-01-01
Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake. PMID:20844577
CW EPR parameters reveal cytochrome P450 ligand binding modes.
Lockart, Molly M; Rodriguez, Carlo A; Atkins, William M; Bowman, Michael K
2018-06-01
Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H 2 O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR. Copyright © 2018 Elsevier Inc. All rights reserved.
Nancolas, Bethany; Sessions, Richard B; Halestrap, Andrew P
2015-02-15
The proton-linked monocarboxylate transporters (MCTs) are required for lactic acid transport into and out of all mammalian cells. Thus, they play an essential role in tumour cells that are usually highly glycolytic and are promising targets for anti-cancer drugs. AR-C155858 is a potent MCT1 inhibitor (Ki ~2 nM) that also inhibits MCT2 when associated with basigin but not MCT4. Previous work [Ovens, M.J. et al. (2010) Biochem. J. 425, 523-530] revealed that AR-C155858 binding to MCT1 occurs from the intracellular side and involves transmembrane helices (TMs) 7-10. In the present paper, we generate a molecular model of MCT4 based on our previous models of MCT1 and identify residues in the intracellular substrate-binding cavity that differ significantly between MCT4 and MCT1/MCT2 and so might account for differences in inhibitor binding. We tested their involvement using site-directed mutagenesis (SDM) of MCT1 to change residues individually or in combination with their MCT4 equivalent and determined inhibitor sensitivity following expression in Xenopus oocytes. Phe360 and Ser364 were identified as important for AR-C155858 binding with the F360Y/S364G mutant exhibiting >100-fold reduction in inhibitor sensitivity. To refine the binding site further, we used molecular dynamics (MD) simulations and additional SDM. This approach implicated six more residues whose involvement was confirmed by both transport studies and [3H]-AR-C155858 binding to oocyte membranes. Taken together, our data imply that Asn147, Arg306 and Ser364 are important for directing AR-C155858 to its final binding site which involves interaction of the inhibitor with Lys38, Asp302 and Phe360 (residues that also play key roles in the translocation cycle) and also Leu274 and Ser278.
Nancolas, Bethany; Sessions, Richard B.; Halestrap, Andrew P.
2014-01-01
The proton-linked monocarboxylate transporters (MCTs) are required for lactic acid transport into and out of all mammalian cells. Thus, they play an essential role in tumour cells that are usually highly glycolytic and are promising targets for anti-cancer drugs. AR-C155858 is a potent MCT1 inhibitor (Ki ~2 nM) that also inhibits MCT2 when associated with basigin but not MCT4. Previous work [Ovens, M.J. et al. (2010) Biochem. J. 425, 523–530] revealed that AR-C155858 binding to MCT1 occurs from the intracellular side and involves transmembrane helices (TMs) 7–10. In the present paper, we generate a molecular model of MCT4 based on our previous models of MCT1 and identify residues in the intracellular substrate-binding cavity that differ significantly between MCT4 and MCT1/MCT2 and so might account for differences in inhibitor binding. We tested their involvement using site-directed mutagenesis (SDM) of MCT1 to change residues individually or in combination with their MCT4 equivalent and determined inhibitor sensitivity following expression in Xenopus oocytes. Phe360 and Ser364 were identified as important for AR-C155858 binding with the F360Y/S364G mutant exhibiting >100-fold reduction in inhibitor sensitivity. To refine the binding site further, we used molecular dynamics (MD) simulations and additional SDM. This approach implicated six more residues whose involvement was confirmed by both transport studies and [3H]-AR-C155858 binding to oocyte membranes. Taken together, our data imply that Asn147, Arg306 and Ser364 are important for directing AR-C155858 to its final binding site which involves interaction of the inhibitor with Lys38, Asp302 and Phe360 (residues that also play key roles in the translocation cycle) and also Leu274 and Ser278. PMID:25437897
Fluorescent carbohydrate probes for cell lectins
NASA Astrophysics Data System (ADS)
Galanina, Oxana; Feofanov, Alexei; Tuzikov, Alexander B.; Rapoport, Evgenia; Crocker, Paul R.; Grichine, Alexei; Egret-Charlier, Marguerite; Vigny, Paul; Le Pendu, Jacques; Bovin, Nicolai V.
2001-09-01
Fluorescein labeled carbohydrate (Glyc) probes were synthesized as analytical tools for the study of cellular lectins, i.e. SiaLe x-PAA-flu, Sia 2-PAA-flu, GlcNAc 2-PAA-flu, LacNAc-PAA-flu and a number of similar ones, with PAA a soluble polyacrylamide carrier. The binding of SiaLe x-PAA-flu was assessed using CHO cells transfected with E-selectin, and the binding of Sia 2-PAA-flu was assessed by COS cells transfected with siglec-9. In flow cytometry assays, the fluorescein probes demonstrated a specific binding to the lectin-transfected cells that was inhibited by unlabeled carbohydrate ligands. The intense binding of SiaLe x-PAA- 3H to the E-selectin transfected cells and the lack of binding to both native and permeabilized control cells lead to the conclusion that the polyacrylamide carrier itself and the spacer arm connecting the carbohydrate moiety with PAA did not contribute anymore to the binding. Tumors were obtained from nude mice by injection of CHO E-selectin or mock transfected cells. The fluorescent SiaLe x-PAA-flu probe could bind to the tumor sections from E-selectin positive CHO cells, but not from the control ones. Thus, these probes can be used to reveal specifically the carbohydrate binding sites on cells in culture as well as cells in tissue sections. The use of the confocal spectral imaging technique with Glyc-PAA-flu probes offered the unique possibility to detect lectins in different cells, even when the level of lectin expression was rather low. The confocal mode of spectrum recording provided an analysis of the probe localization with 3D submicron resolution. The spectral analysis (as a constituent part of the confocal spectral imaging technique) enabled interfering signals of the probe and intrinsic cellular fluorescence to be accurately separated, the distribution of the probe to be revealed and its local concentration to be measured.